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ABSTRACT

We used multi-temporal Landsat Thematic Mapper
imagery for developing a technique for identifying fuel
types based on seasonal changes in plant phenology.
Six ortho-corrected and registered TM scenes repre-
senting approximately one-month intervals during the
1992 growing season are being examined using
hyperspectral analysis techniques.  With accurate fu-
els information in hand, fire managers should be able
to make informed decisions about ongoing wildland
fires and fuels treatments.  These decisions will result
in safer conditions for fire fighters and less resource
damage.
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INTRODUCTION

In recent years, wildland fires have become more in-
tense, resulting in increased loss of life and resource
damage.  Critical to resolving this problem is better
information on the amount and condition of fuels on
the ground.  Traditional approaches have been to ana-
lyze aircraft and Landsat MSS data collections.  For
example, single-scene TM images have been used in
the past to classify fuels (van Wagtendonk 1999).  Maps
produced from that analysis have been used to predict
the behavior of two large wildland fires that were be-
ing allowed to burn to meet resource objectives, plan
for extensive prescribed fires set by managers, and to
make tactical decisions on a wildland fire that was
being actively suppressed.  In each case, operations
were enhanced by the availability of accurate informa-
tion on fuels.

In order to enhance the single-scene map, we decided
to try a new approach using  multi-temporal TM data.
Such an analysis would allow us to discriminate fuels
based on both spectral and temporal characteristics.
Using temporal sequences, changes in annual grass-
lands, for instance, can be traced as the grasses green
up in the spring and cure during the summer.  This
fuel type can thus be distinguished from alpine mead-
ows which cure at a different rate.  Similarly, decidu-
ous hardwood fuels which drop to the ground in the
fall are differentiated from evergreen hardwoods which
retain their leaves.

METHODS

Six ortho-corrected and registered TM scenes repre-
senting approximately one-month intervals from April
through November during the 1992 growing season
were examined using hyperspectral analysis.  The first
step was to get all six scenes to overlay as closely as
possible.  We found that “standard” terrain correction
was not sufficient and ended up using custom ortho-
rectification to 1:24,000 digital elevation models.

After the scenes were georectified, we applied a “veg-
etation-only” mask created from a maximum NDVI
layer from all 6 scenes using a value of 0.09 to distin-
guish vegetated areas from barren areas.

Hyperspectral processing techniques were then applied
to TM bands 2, 3, 4, 5, and 7 for a total of 30 bands.
This process involves several steps beginning with
looking at changes in spectral signatures in both space
and time (RSI 1997).  The spectral data are then re-
duced using a minimum noise fraction function which
determines the inherent dimensionality of the image
data and segregates the noise in the data.  Spatial data
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reduction is then accomplished using the pixel purity
index function which finds the most “spectrally pure”
pixels that typically correspond to mixing end mem-
bers.  These functions, in conjunction with the n-di-
mensional visualizer, help to locate, identify, and cluster
the purest pixels and the most extreme spectral re-
sponses in the data set.  Finally, mixture tuned matched
filtering is used to find the abundances of user defined
end members.

RESULTS

Initially, we tried to perform the analysis on a dedi-
cated machine for the entire data set encompassing
Yosemite National Park and the surrounding environs.
After two months of  run time, we prudently decided
to segment the area and make multiple runs.  Three
subsets were selected; El Portal on the west edge of the
Park, Yosemite Valley, and Tuolumne Meadows on the
east edge.  We will illustrate the process with data from
Yosemite Valley.

Data Browsing

Data browsing is a technique used to look at spatial
and spectral changes in reflectance over time.  For
example, Figure 1 shows band 3 (the red band) for the
May, 1992, scene of Yosemite Valley.  The black areas
are devoid of vegetation and were masked out by the
NDVI screen.  Different areas of the scene show dif-
ferent values for band 3 based on varying reflectances.
Grassy vegetation, such as that in El Capitan Meadow
indicated by the arrow, has a high reflectance value in
comparison to surrounding conifer vegetation.  Areas
in the shadow of the sheer valley walls show up as
darker grays, as do some north-facing conifer stands.

Shrubs in a large burned area in the lower left portion
of the scene are a light shade of gray.

If we follow the grassy meadow pixel through the sea-
son, we can see how each spectral band varies with
time.  In Figure 2 the values for each band are dis-
played by month.  For example, the near-infrared band
(labeled as bands 4, 9, 14, 19, 24, and 29 in Figure 2)
shows a slight increase between May and September
and then decreases the remainder of the year.  Similar
spectral profiles of the other bands can elucidate dif-
ferences between vegetation types and resulting fuels.

Figure 1. Calibrated reflectance, May 1992 Band 3
(red).  The white arrow indicates the position of the
grassy meadow pixel.

May        June        July        Sept       Oct       Nov

Figure 2. Spectral profile of raw data, grassy
meadow pixel.
Data Reduction

The data reduction phase of the analysis strives to iden-
tify end members in the data set by separating noise
from information and reducing the data set to its true
dimensionality by applying the minimum noise trans-
form and then determining spectrally pure (extreme)
pixels using the pixel purity index function on the
minimum noise fraction results.  Figure 3 shows the
spectral profile of the grassy meadow pixel resulting
from the minimum noise fraction transform.  As can

Figure 3. Minimum noise fraction, grassy meadow
pixel.
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be seen from the plot, most of the variation had been
removed after five reprojections of transformed data.
If the transformed data are redisplayed, the result is a
“fuzzy” data set with little distinction between the
classes (Figure 4).  It is useful to remember that the

The function then tallies the number of pixels that ex-
ceed a user specified threshold and fall into the tails of
the distribution of the projected data.  The result of
thousands of iterations of the pixel purity index func-
tion is a plot of the total number of times that a pixel
fell into a tail of the randomly projected distributions
(Figure 7).  Although an asymptote was not yet
achieved, the rate of increase had started to decline
after 5,000 iterations and 6,000 pixels, indicating that
most of the pure pixels had been found.

Figure 4. Map of minimum noise fraction transform
with resultant “fuzzy” classes.
map now displays minimum noise data, with the light-
est areas having the least noise.  For example, the
meadow areas still appear as the whitest areas in the
map. The shadow and conifer areas come out as a mix-
ture of grays, indicating that more noise is present in
those pixels.  These areas can be accentuated by doing
a contrast stretch which refines the gray scale good-
ness of fit as shown in Figure 5.

Figure 5. Contrast stretch function.

A replot of the stretched data clearly contrasts the ar-
eas with minimum noise from those with mixed sig-
natures (Figure 6).  In this case, the stand of open pon-
derosa pines (Pinus ponderosa) and some dry areas in
El Capitan Meadow show up in gray. Meadows with-
out trees in them appear as white while most of the
other previously gray areas are black. The burned area
still has a gray appearance.

The pixel purity index was then used to identify the
purest pixels by projecting the first 15 minimum noise
fraction bands onto a random unit vector (RSI 1997).

Figure 6. Map of contrast stretched minimum noise
fractions.

Visualization and Identification

The intersections of the randomly projected vectors in
the PPI analysis define projections or “bulges” in the
n-dimensional data cloud which represent the compo-
nent space characteristics of spectrally pure end-mem-
bers.  The results of the PPI analysis are thresholded to
emphasize extreme pixel selection (i.e. the apex of the
bulges) to the extent of 2 to 3 times the noise level in
the data.  The resulting data then can be viewed graphi-
cally by an animated n-dimensional viewer (Figure 8)
where consistent clustering of points represents the
presence of pure end-members in component space.

Figure 7. Pixel purity index.
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Individual clusters can be interactively delineated by
“heads-up” digitizing of polygons around clusters in
the n-d visualizer which can then be exported as “re-
gions of interest” for input into classifications,
unmixing, matched filtering, or other types of analy-
ses (RSI, 1977).

Distribution and Abundance of End Members

Mixture tuned matched filtering (MTMF) was the tech-
nique used to develop a map of distribution and abun-
dance of end-members defined in the process described
above.  This process is designed to maximize the re-

Figure 8. N-dimensional visualizer.

Figure 9. Mixture tuned matched filtering output
for the herbaceous end-member, divided and nor-
malized by the infeasibility image and contrast
stretched for display.

areas (mostly on the south side of the valley) were simi-
larly mapped.  All 3 of these can be visualized simul-
taneously via color compositing.  Figure 10 shows the
herbaceous  as green, evergreen hardwood as blue, and

sponse of known end-members and suppress the re-
sults of the complex unknown background.  Because
the technique may sometimes find some “false posi-
tives”, an infeasibility image is also output (Figure 9)
which can be divided into the MTMF output and nor-
malized (using the NDVI algorithm) to substantially
reduce the number of false positives found.
Two additional end-members,  evergreen hardwood
(mostly on the north side of the valley) and shadowed

Figure 10. Herbaceous (green), evergreen hardwood (blue), and shadowed area (red) end-members viewed
simultaneously as a color composite.
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shadowed areas as red.  Mixtures of herbaceous and
evergreen hardwood (greens and blues) form complex
patterns on the valley floor, especially in areas of mixed
forest which did not express itself as an end-member.

CONCLUSIONS

End member classes mapped by the hyperspectral tech-
niques described in this study successfully identified
herbaceous and evergreen hardwood vegetation types,
which had distinctive phenology.  Other end members
often represented areas of extreme spectral and tem-
poral contrast such as clouds, patches of snow, and
shadow.  Only those areas with simple or highly con-
trasting characteristics were  defined by this process
as end members.  Many vegetation types showed too
little variation either spectrally or temporally to be dis-
criminated.  Mixtures of some end members may help
define other fuel types.

Hyperspectral processing tools look promising for ex-
tracting information about herbaceous and evergreen
hardwood fuel types from TM data at a level of detail
not achieved by more conventional algorithms.  The
next steps will include refinements of the technique to
improve results (e.g.,  removal of cloud and shadow
effects), concentration on spectrally mixed areas in-
cluding those dominated by conifers,  evaluation of
seasonal changes in NDVI values for more sensitivity
to phenological variation, and exploration of the po-
tential of neural net classifiers.
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