Prospects for Early Deployment of Power Plants Employing Carbon Capture

John Ruether¹, Robert Dahowski², Massood Ramezan³, Charles Schmidt¹

- 1. National Energy Technology Laboratory, USDOE
- 2. Pacific Northwest National Laboratory, Battelle
- 3. National Energy Technology Laboratory, SAIC

Electric Utilities Environmental ConferenceTucson, AZJanuary 22-25, 2002

CO₂-EOR: The U.S. Landscape

- 66 Projects: > 190,000 bbl/day enhanced production
- 5 CO₂ Domes: > 1300 MMcfd, 30 TCF recoverable reserves (50+ years worth)
- Other CO₂ Sources
- CO₂ Pipeline Infrastructure

CO₂-EOR: The Permian Basin

- 47 Projects: > 155,000 bbl/day enhanced production
- 3 Domes Supplying Majority of CO₂ (> 1Bcfd)
- Gas Processing Plants Supplying Remainder
- CO₂ Pipeline Infrastructure (1900+ Miles)

CO₂-EOR: California Prospects

- Many experts believe next largest opportunity outside Permian Basin
- CO₂ Demand Estimate: 3-5 Tcf
- Mature Fields in San Joaquin and Los Angeles Basins
- Pilot Study On-Going
- Success Could Lead to Recovery of Billions of Barrels of Trapped Oil

Some Risks in Building and Operating Electric Power Generators

• Technical Risk

- Construction cost overrun
- Delay in start up
- Equipment fails to achieve design performance
- Unscheduled down time
- Regulatory Risk
 - Construction permits delayed/denied
 - Operating permits delayed/redefined
 - Emission standards tightened
- Supply Risk
 - Price increase for fuel, etc.
- Market Risk

- Reduced demand/reduced selling price of products

Cost & Performance Data for Fossil Generators

	Thermal Efficiency,	Carbon Emissions,	Total Plant	LCOE @ 80% cf,	
<u>Technology</u>	<u>HHV, %</u>	kg CO2/kWh	Cost, \$/kW	<u>Mills/kWh</u>	
NGCC-H	53.6	0.338	496	30.7	
NGCC-H	43.3	0.04	943	48.8	
90% capture					
IGCC-H	43.1	0.718	1263	45.1	
IGCC-H	37.0	0.073	1642	56.4	
90% capture					
Source: "Evaluation of Fossil Fuel Power Plants with CO2 Removal," EPRI, 2000					
http://www.netl.doe.gov/product/power1/gasification/30_publications.htm					

Study Methodology

- Fossil generators practicing capture & sequestration commercial in 2010.
- Plant book life 20 years.
- *"AEO2002"* NEMS output to estimate expected prices in California *(or a region that includes CA)*
 - -Price of electricity received by generators
 - Price of natural gas to generators
 - -Price of coal to generators
 - Price of World Oil (determines value of CO₂ based on linear correlation developed for Permian basin)

Study Methodology (2)

- Historic data for prices to estimate variability (standard deviation) in 2010-2030.
- Expressions for Required Selling Price of Electricity (RSPOE) for
 - -NGCC
 - -NGCC+S
 - -IGCC+S
- Cost components of RSPOE
 - -Fixed O&M
 - -Var. O&M
 - -Consumables
 - Byproduct credit including CO₂
 - -Fuel

-Capital charges

Descriptor - include initials, /org#/date

Study Methodology (3)

- In expressions for RSPOE, fuel costs and CO₂ value are probabilistic variables.
- In expressions for Return on Common Stock Equity, RSPOE and price of electricity received by generators are probabilistic variables.
- All prices expressed as constant year 2000 dollars and cents.

Capital Structure for Plant Investment

	Percent	Rate of Return	
	of Total	Current \$	Constant \$
Debt	45	9	5.83
Pref. Stock	10	8.5	5.34
<u>Com. Stock</u>	<u>45</u>	12	8.74
Total	100		

Typical Product Revenue per Million Btu Fuel Consumption, Dollars

(6 cent/kWh electricity, \$19/tonne CO₂, or \$1.00/Mcf)

Historic Prices Used to Estimate Variability

Historic Prices Used to Estimate Variability

Price Variability, 1990-2000

<u>Price</u>	Data Set	Std. Dev.
Nat. Gas	Deliv. Cost to CA Utilities	\$0.90/mill. btu
Coal	Deliv. Cost to U.S. Utilities	\$0.024/mill. Btu
Oil	World Oil	\$4.03/bbl
Electricity	Avg. Revenue to CA Generators	0.37 cent/kWh

Predicted Prices with Std. Devs.

Predicted Annual Electric Utility Average Revenue per kWh (CNV Region of NERC) and Delivered Cost of Natural Gas to Utilities (NEMS Pacific Region), 2005-2020, with Projections to 2030

Predicted Prices with Std. Devs.

Predicted Required Selling Prices of Electricity with Std. Devs.

Descriptor - include initials, /org#/date

Predicted Required Selling Prices of Electricity with Std. Devs.

Predicted Return on Common Stock

Descriptor - include initials, /org#/date

Predicted Return on Common Stock

Descriptor - include initials, /org#/date

Results

- When there is a market for CO₂, IGCC+S is profitable without regulatory incentive for carbon capture.
- NGCC has lowest RSPOE and highest return on investment over entire period.
- NGCC+S has highest RSPOE and greatest uncertainty in RSPOE, i.e. it is Weakest Link.
- Use of expected prices specific to CA could change results, probably in favor of IGCC+S.
- Standard deviation of RSPOE for NGCC three times larger than for IGCC+S.
- Probability of negative return on common stock greater for NGCC than for IGCC+S.

