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ABSTRACT

The interpretation of model precipitation output (e.g., as a gridpoint estimate versus as an areal mean)
has a large impact on the evaluation and comparison of simulated daily extreme rainfall indices from climate
models. It is first argued that interpretation as a gridpoint estimate (i.e., corresponding to station data) is
incorrect. The impacts of this interpretation versus the areal mean interpretation in the context of rainfall
extremes are then illustrated. A high-resolution (0.25° � 0.25° grid) daily observed precipitation dataset for
the United States [from Climate Prediction Center (CPC)] is used as idealized perfect model gridded data.
Both 30-yr return levels of daily precipitation (P30) and a simple daily intensity index are substantially
reduced in these data when estimated at coarser resolution compared to the estimation at finer resolution.
The reduction of P30 averaged over the conterminous United States is about 9%, 15%, 28%, 33%, and 43%
when the data were first interpolated to 0.5° � 0.5°, 1° � 1°, 2° � 2°, 3° � 3°, and 4° � 4° grid boxes,
respectively, before the calculation of extremes. The differences resulting from the point estimate versus
areal mean interpretation are sensitive to both the data grid size and to the particular extreme rainfall index
analyzed. The differences are not as sensitive to the magnitude and regional distribution of the indices.
Almost all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models
underestimate U.S. mean P30 if it is compared directly with P30 estimated from the high-resolution CPC
daily rainfall observation. On the other hand, if CPC daily data are first interpolated to various model
resolutions before calculating the P30 (a more correct procedure in our view), about half of the models show
good agreement with observations while most of the remaining models tend to overestimate the mean
intensity of heavy rainfall events. A further implication of interpreting model precipitation output as an
areal mean is that use of either simple multimodel ensemble averages of extreme rainfall or of intermodel
variability measures of extreme rainfall to assess the common characteristics and range of uncertainties in
current climate models is not appropriate if simulated extreme rainfall is analyzed at a model’s native
resolution. Owing to the large sensitivity to the assumption used, the authors recommend that for analysis
of precipitation extremes, investigators interpret model precipitation output as an area average as opposed
to a point estimate and then ensure that various analysis steps remain consistent with that interpretation.

1. Introduction

Changes in the frequency or intensity of extreme
weather and climate events could have profound im-
pacts on both human society and the natural environ-
ment (Easterling et al. 2000b; Meehl et al. 2000). Indi-

cators based on the observed daily precipitation during
the second half of the twentieth century suggest that, on
average, wet spells produce significantly higher rainfall
totals now than a few decades ago (Frich et al. 2002;
Alexander et al. 2006). Heavy rainfall events have be-
come more frequent over the past 50 yr even in loca-
tions where the mean precipitation has decreased or is
unchanged (Easterling et al. 2000a; Folland et al. 2001;
Groisman et al. 2005).

It is of great interest to evaluate the ability of the
current generation of coupled atmosphere–ocean gen-
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eral circulation models (AOGCMs) to simulate ob-
served extreme rainfall distributions and their trends.
But the lack of comparable long-term global gridded
daily observations often leads to a deferral of the model
evaluation (e.g., Hennessy et al. 1997; Watterson and
Dix 2003; Wehner 2004; Tebaldi et al. 2006) or limited
evaluation of only the mean precipitation climatology
(McGuffie et al. 1999; Semenov and Bengtsson 2002;
Voss et al. 2002). Other studies have used station gauge
and/or reanalyses data for the assessment (Zwiers and
Kharin 1998; Hegerl et al. 2004; May 2004; Kharin et al.
2005) and show some level of agreement between mod-
els and observations. The Third Assessment Report
(TAR) of the Intergovernmental Panel on Climate
Change (IPCC) concluded that comparatively low
model resolution is an inhibiting factor for detailed
evaluation of extreme rainfall (McAvaney et al. 2001).
Studies of daily precipitation characteristics from cli-
mate models have generally concluded that simulated
precipitation tends to occur more frequently but is less
intense than observed heavy rainfall (Osborn and
Hulme 1998; Dai 2006; Sun et al. 2006). There is little
demonstrated model skill in simulating observed past
trends in precipitation extremes (Kiktev et al. 2003).

Despite the problems that current models have in
reproducing present-day precipitation frequency distri-
butions and heavy events, projected changes in extreme
rainfall are receiving increased attention in view of the
serious consequences from possible changes of fre-
quency or intensity of extreme rainfall events (Kharin
and Zwiers 2000; Semenov and Bengtsson 2002; Voss et
al. 2002; Watterson and Dix 2003; Wehner 2004). Re-
cently, building upon several model intercomparison
projects, climate studies of extreme events have used
multiple models to further address the issue of possible
model dependence and to provide a range of uncer-
tainty from different model formulations (Hegerl et al.
2004; Kharin et al. 2005; Tebaldi et al. 2006). It has been
acknowledged that the comparison between model grid
output and station data is not straightforward (Kiktev
et al. 2003; Wehner 2004; Hegerl et al. 2004) and that
calculations of precipitation extreme indices could be
sensitive to model resolution (Iorio et al. 2004; Kharin
et al. 2005; Emori et al. 2005). For example, Kharin et
al. (2005) note that

Precipitation extremes obtained from individual sta-
tion records are essentially point estimates and are
not directly comparable to the gridded model output
that presumably represents precipitation variability
on much coarser spatial scales . . . The proper coarse
graining of station data is not a trivial task . . . and is
beyond the scope of the present paper.

In this study, we will expand on this by quantitatively
illustrating the impact on extremes analysis of using the
point estimate versus areal mean interpretation of
model precipitation output. This will demonstrate that
the assumption of model precipitation data as point
estimates, or the inconsistent handling of the extreme
analysis and comparisons, could easily lead to misinter-
pretation of model performance and differences. It
should be noted that we regard these two interpreta-
tions as representing two extreme ends of a range of
possible interpretations. We illustrate the impact across
this entire range, since a number of previous extreme
precipitation analysis studies mentioned above handled
the data comparison with procedures that implicitly as-
sumed either a gridpoint or areal average interpreta-
tion.

As noted above, a key initial issue to be addressed in
model extreme rainfall analysis is the interpretation of
the model gridded output. Does the model data repre-
sent point (station) estimates, areal mean values, or
somewhere in between? With rainfall observations, it is
straightforward to treat station data as point estimates
and the gridded rainfall analysis as interpolated and
weighted means from a set of surrounding stations. The
choice of observed data grid size could have a strong
impact on the daily rainfall amounts for individual grid
boxes if the nearby stations do not have similar precipi-
tation in the same day (i.e., short correlation length
scales). In fact this is very likely to occur for many
synoptic situations considering the small-scale spatial
and temporal variation of precipitation.

All the models use some type of grid system for cal-
culation of atmospheric dynamics and physics. One
source of ambiguity in interpreting the meaning of
model precipitation output arises from the fact that a
model’s numerical schemes can be interpreted as a mix-
ture of both gridbox and gridpoint approaches. While
some model parameterizations are implicitly areal in
implementation, to aggregate the subgrid-scale varia-
tions, the finite difference or spectral methods for nu-
merics produce point values at model grid locations.
Skelly and Henderson-Sellers (1996) discuss these al-
ternative views in more detail. Mass-flux-based moist
convection parameterizations (e.g., Arakawa and Schu-
bert 1974; Moorthi and Suarez 1992) assume the pres-
ence of ascending and descending motions within the
grid cell (i.e., subgrid-scale variability of convection).
Similarly, large-scale (stratiform) cloud parameteriza-
tions (e.g., Tiedtke 1993) may explicitly track the frac-
tion of grid cell in which rain is occurring. Clearly the
rainfall totals obtained from these parameterizations
represents an area average of smaller-scale features
(i.e., of the ascending and descending regions or of rain-
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ing and nonraining parts of the grid cell) and not a point
estimate. We thus consider the interpretation of model
precipitation gridbox output as representing a point es-
timate to be inappropriate in the context of extreme
precipitation analysis. From the viewpoint of the large-
scale water budget, one must generally assume that the
model output represents an areal average. While dif-
ferent interpretations of model grid precipitation data
may not be particularly important to studies focused on
understanding and improving the model simulation of
large spatial-scale precipitation features, these interpre-
tations strongly affect the comparison of extreme pre-
cipitation indices between observations and models and
among different models. Data analysis methods that
either implicitly or explicitly assume either the point
estimate or areal mean interpretation have been vari-
ously applied in previous studies.

If one assumes (incorrectly, we would argue) that
model grid data represent a set of point estimates, like
station data, one would then compute the daily rainfall
extremes of different model data on their native grids
and then interpolate to a common grid for intercom-
parison. The same procedure would also apply to ob-
served station data and gridded estimates from radar,
satellite, or combined analyses. Examples of recent in-
tercomparison studies of daily rainfall characteristics
and extremes using this approach (albeit with strong
caveats) include Kharin et al. (2005, 2007), Sun et al.
(2006), and Tebaldi et al. (2006). It is noteworthy that
gridded observational analyses, even with relatively
high resolution, already involve spatial interpolation
and thus should represent an underestimate of extreme
daily rainfall as compared to the point measurements.

If the model grid precipitation data are treated as
“areal averages” assigned to the center point of the
model grid boxes, one should first interpolate the
model and observation data to a common grid and then
compute the extreme rainfall indices for model evalu-
ation. The same procedure should apply when two
models with different resolutions are compared. Oth-
erwise, the disagreement between two datasets could
be solely due to the different grid size. The studies by
Osborn and Hulme (1997, 1998), Booij (2002), and
Iorio et al. (2004) adopted this assumption for model
evaluation. This second approach also leads to the gen-
eral notion that daily station rainfall data, by their na-
ture as point measurements, are not directly compa-
rable to the gridded model output (Hegerl et al. 2004;
Kharin et al. 2005). Subgrid-scale variability is not ex-
plicitly represented in the model gridded output under
this assumption.

It is noteworthy that the spatial interpolation
schemes used can also have important impacts on the

analysis results. Since the interpolation needed for
comparison in our analysis is generally from a fine grid
to a coarse grid, the application of conservative remap-
ping would be more consistent with the “areal mean”
assumption for model output. The area-averaged rain-
fall is conserved using this type of interpolation (Jones
1999). The commonly used bilinear or bicubic interpo-
lation schemes would be more appropriate under a
“point estimate” assumption (not recommended).
These interpolation schemes are not conservative. The
destination grid is mainly determined by the nearby
quadrilateral points of the input grid.

Depending on the assumption used, the order of two
operations (i.e., data interpolation and extremes analy-
sis) applied to daily precipitation will differ, and one
could obtain very different conclusions in an assess-
ment of a climate model’s ability to simulate extreme
rainfall. Intuitively, when the second (areal average)
assumption is used, one would expect a lower-resolu-
tion model (all other things being equal) to have higher
wet-day frequency, reduced daily intensity, and weaker
extreme events. On the other hand, if the point esti-
mate assumption were used, a low-resolution model
would not necessarily be expected to produce weaker
daily rainfall extremes in the analysis. We will try to
illustrate more quantitatively the differences in extreme
rainfall indices that result from the assumptions about
model output. Note that these different assumptions
have minimal impact on the long-term seasonal clima-
tology of precipitation.

Treating model rainfall as an areal average, it is
straightforward to reinterpolate the daily gridded
model data or observational rainfall analysis before cal-
culating the extremes (Iorio et al. 2004). It is not as
simple to transform data assumed to be point estimates
to areal mean values. Neither objective analysis of
gauge data and other rainfall measurements (Higgins et
al. 2000; McCollum and Krajewski 1998; Hewiston and
Crane 2005) nor the gridding of daily rainfall charac-
teristics and extreme precipitation indices derived from
station data (Osborn and Hulme 1997; Sivapalan and
Blöschl 1998; Booij 2002; Kiktev et al. 2003; Alexander
et al. 2006) is trivial. Almost all previous work in con-
verting different extreme rainfall indices and their past
trends from point (station) observations to areal mean
(grid box) form is based primarily on the empirical spa-
tial statistical structure of time series of station ex-
tremes. A gridding methodology is developed from the
spatial correlation structure of the time series of neigh-
boring station data (Kiktev et al. 2003; Alexander et al.
2006). This statistical structure depends not only on the
geographical location but also on the particular indices
selected. Additional assumptions are necessary for the
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search radius and the calculation of weighting functions
for each station involved in the gridding process. The
characteristic decorrelation length scales are deter-
mined from sampled data and curve fitting. Since the
time series of extreme indices at stations are the basis
for gridding, the gridded result from this method could
be rather similar to the station data if the distances of
the stations from the gridbox center are short and the
decorrelation length scale is small.

Instead of attempting to transform rainfall station
data to areal averages here, the starting point for our
analysis is a relatively high-resolution gridded daily pre-
cipitation analysis for the continental United States
(Higgins et al. 2000). An objective analysis scheme was
used by Higgins et al. (2000) to interpolate the station
data to grids. The daily precipitation regional distribu-
tion and movement are generally well preserved in the
analysis. Local rainfall intensity in this dataset should
be somewhat less than that for gauge data due to the
interpolation. In our analysis, we further conservatively
interpolate the data to different gridbox sizes and de-
rive the extreme indices based on these interpolated
daily rainfall observations. Although both techniques
for gridding (based on objective analysis of station daily
rainfall or based on the spatial structure of station data
time series) attempt to derive grid data from station
data, they are different in methodology. However, the
objective analysis (spatial interpolation) and, subse-
quently, conservative remapping of observed data be-
fore the calculation of extreme indices is presumably
more comparable to the model output under the as-
sumption that model grid data represent areal means.

Presently the IPCC data archive includes extreme
precipitation indices calculated on the native grid of the
climate models that participated in the modeling activi-
ties of the IPCC Fourth Assessment Report (AR4). If
studies of extremes and their future changes for multi-
model ensembles are based on these archived indices
(e.g., Meehl et al. 2005; Tebaldi et al. 2006), then these
studies implicitly assume that model output is more like
a point estimate. Alternatively, if one assumes that
model data represent areal averages, then the archived
model indices with different resolutions cannot be com-
pared or averaged directly due to the different data grid
sizes.

Other recent assessments of modeled extreme pre-
cipitation and daily rainfall characteristics (e.g., Kharin
et al. 2005, 2007; Sun et al. 2006; Dai 2006) also use
multiple climate model outputs from the Atmospheric
Model Intercomparison Project (AMIP)/Coupled
Model Intercomparison Project (CMIP) or IPCC AR4
future climate scenario runs. Although Kharin et al.
(2005) argued that the model results should not be di-

rectly comparable to station data, extreme analysis and
other daily rainfall characteristics (i.e., mean intensity
or frequency) are commonly done on the original
model grid before interpolation to a common grid for
multimodel ensemble mean and model intercompari-
son (e.g., Kharin et al. 2005; Sun et al. 2006; Dai 2006),
which is consistent with the assumption that model data
are more like point measurements. Hegerl et al. (2004)
and Sun et al. (2006) also recognize the possible impact
of the different data scale but argue that it should not
substantially affect results in their study. On the other
hand, the different model formulations and diversity of
precipitation-related parameterizations could obscure
this apparent scaling effect when multiple model simu-
lations are involved in the comparison.

The main purpose of this note is to further explore
the scaling–aggregation issue of extreme rainfall indices
derived from climate models and to quantitatively as-
sess the impact of a range of different assumptions. We
limit the focus to precipitation indices due to their com-
mon usage and the stochastic and noisy nature of their
spatial distribution. We discuss the data and extreme
rainfall indices used in this study in section 2. In section
3, we explore how different assumptions about the data
(gridpoint value versus areal mean) affect the extreme
rainfall indices, using idealized data from observational
rainfall analysis. In section 4, we discuss the extreme
rainfall indices derived from IPCC AR4 participating
models and their evaluation under different model grid
output assumptions. In section 5, we briefly discuss the
possible impact of the spatial interpolation scheme on
the estimation of extreme rainfall indices. Our sum-
mary and conclusions are presented in section 6.

2. Data and extreme indices

Station gauge measurements are the main data
source for previous studies on observed changes in ex-
treme daily precipitation and other extreme climate in-
dices related to precipitation (Frich et al. 2002; Alex-
ander et al. 2006). To study various extreme rainfall
characteristics, high-resolution (e.g., hourly to daily)
data are required. Although many efforts have been
devoted to providing better coverage of historical daily
station data over the globe, data quality control and
homogeneity checks are also extremely important is-
sues (Groisman et al. 2005; Alexander et al. 2006). In
addition, deriving gridded data from time series of in-
dividual stations involves detailed analysis of the spatial
statistical structure of rainfall (Kiktev et al. 2003;
Alexander et al. 2006). Both are beyond the scope of
this note, where we ignore possible data quality issues
and directly use the Climate Prediction Center (CPC)
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Daily U.S. Unified Precipitation gridded dataset as an
example of high-resolution precipitation data. The
dataset provides daily rainfall estimates on a 0.25° �
0.25° grid for the period 1961–90. Simulated daily
rainfall data from different climate models were down-
loaded from the IPCC AR4 data archive at the Pro-
gram for Climate Model Diagnosis and Intercompari-
son (PCMDI) at Lawrence Livermore National Labo-
ratory. Two extreme rainfall indices, the 30-yr return
level of daily rainfall and a simple daily intensity index
(SDII), are chosen for our study. These have been fre-
quently used for previous studies of extreme precipita-
tion in observations and models (e.g., Zwiers and
Kharin 1998; Semenov and Bengtsson 2002; Voss et al.
2002; Wehner 2004; Kharin et al. 2005, 2007; Tebaldi et
al. 2006).

a. CPC Daily U.S. Unified Precipitation

The continental United States has a relatively dense
array of in situ (hourly and daily) rain gauge data. Thus
studies of this region have good potential to provide a
relatively useful high-resolution precipitation analysis.
Over the past few years, the CPC has developed the
U.S. Precipitation Quality Control (QC) system and
analysis to fulfill this need. The gridded observed daily
rainfall data we used in this study are based on this
work—the CPC Daily U.S. Unified Precipitation. The
detailed description of the data sources, compilation,
analysis, and verification are documented in Higgins et
al. (2000). The daily analyses are gridded at a horizontal
resolution of 0.25° � 0.25° over the domain 20°–60°N,
140°–60°W. A Cressman scheme with modifications
was used for the objective analyses. The historical pre-
cipitation reanalysis covers the period from 1948 to
1998 with no missing values. Several quality control
procedures, including standard techniques (duplicate,
buddy, and deviation checks) and intercomparison with
radar and satellite estimates, are applied to the gauge
data. There is a small possibility that real station ex-
treme values could be erroneously discarded when the
“buddy check” standard QC step is applied. We assume
that this procedure would not significantly affect our
results, although one should be aware of such a possi-
bility. We interpolated the data to grids of increasing
grid size (from 0.25° to 4° at an interval 0.25°). This
range of grid sizes covers the range used by most cur-
rent climate model grid sizes in the IPCC AR4 model
data archive. For these interpolated observed precipi-
tation analyses (using various grid sizes), only grids
consisting exclusively of land are analyzed. This is done
to avoid ambiguity of mixing results with grids having
partial land cover. For our sensitivity test, we also in-

terpolated the observed daily precipitation to all the
model grids [i.e., from 4° � 5° to �1.1° � 1.1° (T106)]
found in the IPCC AR4 model data archive before
computing the extreme indices. The spatial interpola-
tion scheme used was based on a conservative remap-
ping technique (Jones 1999). Thus, the interpolated
daily precipitation analysis at a coarser grid is consis-
tent with an “area-average” assumption.

b. Daily precipitation from IPCC AR4 models

The model-simulated daily precipitation data for
present-day climate conditions was extracted from vari-
ous simulations developed for the IPCC AR4. The data
archive at PCMDI (available online at http://www-
pcmdi.llnl.gov/ipcc/about_ipcc.php) consists of output
from a large sample of current generation coupled
AOGCMs. At the time we began this study, 17 models
were available with at least one ensemble member and
having daily precipitation data for the 1961–2000 period
from their twentieth-century climate simulations
(20c3m) for the IPCC AR4. Table 1 briefly summarizes
the characteristics of these models, including the hori-
zontal grid spacing of the atmospheric components.
The global model output was available on longitude–
latitude grids ranging in grid spacing from 5° � 4° to
T106 with a median spacing of �2.8° � 2.8° (T42). Only
one ensemble member was obtained for each model for
validation. Since our model evaluation is focused on the
conterminous United States, we masked out model grid
boxes that were not entirely land according to the land–
sea mask of the CPC dataset. Two modeling groups
provide experiments at more than one model resolu-
tion. The Center for Climate System Research/National
Institute for Environmental Studies/ Frontier Research
Center for Global Change (CCSR/NIES/FRCGC)
Model for Interdisciplinary Research on Climate 3.2
(MIROC3.2) runs are available for both T106 (hires)
and T42 (medres) resolutions. The Canadian Centre for
Climate Modelling and Analysis (CCCma) Coupled
General Circulation Model, version 3.1 (CGCM3.1)
simulations are done at both T63 and T47 resolutions
(data available on 128 � 64 and 96 � 48 grids). In these
cases we also conservatively interpolated the daily pre-
cipitation data from the higher-resolution model run to
the model grid boxes of the lower-resolution model.
The paired high–low-resolution runs from the same ba-
sic model might be useful for examining effects of the
different analysis procedures on the model extreme sta-
tistics output. However, scale-dependent parameters
used in the model and model tuning could be the
sources of further differences even for the case of a
“single” model framework (Iorio et al. 2004).
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c. Extreme daily rainfall indices

1) 30-YR RETURN LEVEL OF DAILY PRECIPITATION

A frequently used extreme precipitation index is the
return level associated with a given time scale as de-
rived from the estimated parameters of the generalized
extreme value (GEV) distribution. Several recent stud-
ies have focused on model projections of future changes
in the return level of daily precipitation (Kharin and
Zwiers 2000; May 2004; Wehner 2004; Kharin et al.
2005, 2007). The theory and application of statistical
modeling to analysis of extreme values using the GEV
distribution are well established (e.g., Coles 2001).
Similar to Kharin et al. (2005), we estimate the param-
eters for the GEV distribution using L moments (Hosk-
ing 1990) with 30-yearly maximum data from the 1961–
90 period. Having fit the GEV distribution to a sample
of annual extreme precipitation, the T-year return val-
ues XT can be estimated from the quantile function
(inverse of the cumulative distribution function) as

XT � � � �
�

� �1 � ��ln�1 �
1
T�����, if � � 0;

� � � ln��ln�1 �
1
T��, if � � 0.

�1�

Here � is the location parameter, � is the scale pa-
rameter, and 	 is the shape parameter of GEV distri-
bution. We have selected the 30-yr return level (i.e.,

T � 30) as the main extreme precipitation indicator in
this study. The same procedure was used for analyzing
both the observed and model data. Other methods
(e.g., maximum likelihood) can also be used to estimate
these parameters. It is argued that the uncertainty and
bias due to the use of different methods, as estimated
by a Monte Carlo technique, is relatively small for this
type of precipitation extreme statistic (Kharin and
Zwiers 2005; Wehner 2004). Goodness-of-fit tests by a
bootstrap procedure and the Kolmogorov–Smirnov test
have been used to demonstrate that a GEV distribution
fits the annual precipitation extremes satisfactorily
(Karin and Zwiers 2000). Using the same procedure, we
obtained similar outcome in the goodness of statistical
model fit.

2) SIMPLE DAILY INTENSITY INDEX

Another extreme precipitation index often used in
previous studies is the SDII (Semenov and Bengtsson
2002; Meehl et al. 2005; Tebaldi et al. 2006; Alexander
et al. 2006). This is one of 27 indices recommended by
the World Climate Research Programme/Climate Vari-
ability and Predictability (WCRP/CLIVAR) Expert
Team on Climate Change Detection, Monitoring, and
Indices (ETCCDMI). The SDII is defined as the mean
intensity of daily rainfall of all wet days with daily pre-
cipitation exceeding 1 mm day�1. This index is not as
extreme as the 30-yr return level of daily precipitation
derived from yearly maximum rainfall. Nevertheless,
this “not as extreme” characteristic could be advanta-

TABLE 1. The list of IPCC AR4 model simulations, with daily precipitation of twentieth century available, analyzed in this study.
Model resolution is the size of a horizontal grid on which model output was available. Spectral truncations are shown with “T numbers”
referring to the triangular truncation wavenumber for various spectral models. Model documentation, references, and links can be
found online at http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.

Model Resolution Modeling center

CCCma CGCM3.1 T47 96 � 48 (T47) Canadian Centre for Climate Modeling and Analysis
CCCma CGCM3.1 T63 128 � 64 (T63) Canadian Centre for Climate Modeling and Analysis
CNRM-CM3 128 � 64 T42 Centre National de Recherches Météorologiques, Météo-France
CSIRO Mk3.0 192 � 96 T63 CSIRO Atmospheric Research, Australia
GFDL CM2.0 144 � 90 Geophysical Fluid Dynamics Laboratory
GFDL CM2.1 144 � 90 Geophysical Fluid Dynamics Laboratory
GISS-ER 72 � 46 Goddard Institute for Space Studies
IAP FGOALS-g1.0 128 � 60 T42 LASG/Institute of Atmospheric Physics, China
INM-CM3.0 72 � 45 Institute for Numerical Mathematics, Russia
IPSL CM4 96 � 72 L’Institut Pierre-Simon Laplace, France
MIROC3.2(hires) 320 � 160 T106 Center for Climate System Research (The University of Tokyo), National

Institute for Environmental Studies, and Frontier Research Center for Global
Change (JAMSTEC), Japan

MIROC3.2(medres) 128 � 64 T42

MIUB ECHO-G 96 � 48 T30 Meteorological Institute of the University of Bonn, Germany; Meteorological
Research Institute of KMA, Korea

MPI ECHAM5/MPI-OM 192 � 96 T63 Max-Planck-Institut für Meteorologie, Germany
MRI CGCM2.3.2 128 � 64 T42 Meteorological Research Institute, Japan
NCAR CCSM3 256 � 128 T85 National Center for Atmospheric Research
NCAR PCM1 128 � 64 T42 National Center for Atmospheric Research

1610 J O U R N A L O F C L I M A T E VOLUME 21



geous for model comparison studies (Tebaldi et al.
2006; Sun et al. 2006). The SDII, using the mean value
from all wet days, might be less affected by strong spa-
tial variability of individual rainfall events. However,
the rain-day frequency from different spatial-scale data
would still be affected and require some attention (Os-
born and Hulme 1997; Sun et al. 2006). It is still of
interest to examine how our assumption (point value
versus areal mean) about the input gridded data affects
the SDII when the grid size changes.

3. Data spatial scale and extreme precipitation
indices

The differences resulting from the two assumptions
(point value or areal mean) on gridded precipitation
data can be explored by reversing the order of two
operations (i.e., data interpolation and extreme indices
calculation). We can simply interpolate the high-resolu-
tion observed analysis data (treating it as “perfect
model” grid output) to illustrate the impact of these
assumptions and how sensitive the impacts are to the
spatial scale.

Earlier studies have discussed the precipitation scale
issue. Sivapalan and Blöschl (1998) derived empirical
areal reduction factors based on the statistical proper-
ties of the transformation from point rainfall to areal
mean rainfall. For daily precipitation, they found that
the factor mainly depends on the scaled catchment area
and return period from parameters of the Gumble dis-
tribution. Booij (2002) further modified their expres-
sion for the more general case of the GEV distribution.
Both studies assumed that gridded data represent areal
mean precipitation. From their results, for a given basin
area, the ratio between the area-averaged rainfall in-
tensity over a duration D with return period T and the
point rainfall intensity for the same D and T is smaller
when the area size and return period are increased.
This is expected since very extreme events are unlikely
to occur simultaneously at different locations within a
large grid domain. Many assumptions and parameters
are involved in their empirically derived relationships.
Therefore, we did not try to directly apply their rela-
tionships here. Further, we are not directly using station
measurements but rather the high-resolution gridded.

Figure 1a shows the 30-yr return levels of daily pre-
cipitation (P30) estimated from the original CPC Daily
U.S. Precipitation dataset on a 0.25° � 0.25° grid. Fig-
ures 1b–f are the interpolation of Fig. 1a to 0.5° � 0.5°,
1° � 1°, 2° � 2°, 3° � 3°, and 4° � 4° grid boxes,
respectively. The 30-yr return levels were interpolated
to the larger grids after performing the extremes analy-
sis. In contrast, Figs. 1g–k are P30 of the same resolution
corresponding to Figs. 1b–f, but the interpolation of

rainfall data to 0.5° � 0.5°, 1° � 1°, 2° � 2°, 3° � 3°, and
4° � 4° grid boxes is done before the calculation of
GEV parameters and P30. For the case of different
models with the same resolution from 0.5° to 4° grid, we
would use Figs. 1b–f for the evaluation if we assume
that the raw model outputs represent point estimates.
However, since we argue that model precipitation out-
put represents areal means, this implies we should use
Figs. 1g–k for the evaluation. Some effects of spatial
smoothing from interpolation are evident from Figs.
1a–f. Nevertheless, the domain-averaged return level
remains approximately the same. When the same inter-
polation is applied to the daily precipitation first and
then the return levels estimated based on 30-yearly
maxima of the coarser grid precipitation data, the do-
main-averaged P30 is reduced from 74.4 to 68.3, 63.1,
53.9, 48.4, and 40.0 mm day�1 as the grid size is in-
creased from 0.25° to 0.5°, 1°, 2°, 3°, and 4°, respec-
tively. Also the domain-averaged root-mean-square
(rms) difference between results using the two ap-
proaches increases to 9.2, 13.8, 22.2, 26.7, and 32.9 mm
day�1, respectively.

Figure 2 is a box plot of P30 obtained using the pre-
ferred approach (interpolation before extreme value
analysis) at all U.S. grid points analyzed at various reso-
lutions from 0.5° to 4°. They are all positively skewed
due to the nature of the probability distribution of the
daily precipitation. There is an obvious trend of a de-
crease in the distribution values (25th, 50th, 75th per-
centiles, etc.) when the data gridbox size is increased.
Note that the sample size for the coarse-resolution data
is much smaller, which might lead to some irregularity
in the general trend.

The areal reduction factors (ARFs; defined as the
ratio between area-averaged rainfall indices when ex-
treme analysis is done before versus after the interpo-
lation) for various resolutions are shown in Figs. 3a–e.
These depict the ratio of Figs. 1g–k to 1b–f for each
corresponding grid size. The ARFs are strongly depen-
dent on the grid size. The different intensities of P30 in
the eastern United States versus the western mountain
region do not lead to a similar difference in the ARFs.
The domain-averaged values are 0.91, 0.85, 0.72, 0.67,
and 0.57 for grid size increases to 0.5°, 1°, 2°, 3°, and 4°,
respectively. Similarly, the ARFs for SDII at different
resolutions are shown in Figs. 3f–j. This is the ratio of
SDIIs between two approaches, with the wet-day fre-
quency (areal daily rainfall larger than 1 mm day�1)
analysis and SDII calculation applied either after or
before the spatial interpolation of data. Even for a
much “less extreme” index like SDII, the ARFs are
reduced drastically as the grid size increases, with do-
main-averaged values of 0.93, 0.87, 0.79, 0.74, and 0.69
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for grid sizes of 0.5°, 1°, 2°, 3°, and 4°, respectively. The
ARFs for SDII are larger on average than ARFs for
P30. This is as expected since SDII is not as extreme as
P30. The ARFs for SDII, analogous to P30 ARFs, are
not directly linked to the magnitude of SDII and are
primarily affected by the gridbox size.

4. Impact of different interpretations of model grid
rainfall on model evaluation

For the evaluation of IPCC AR4 models over the
U.S. domain, again we illustrate both approaches for
deriving P30 from the CPC Daily U.S. Precipitation
analyses for various model resolutions. It should be
noted that there are model biases in rainfall simulation
that are not related to the interpretation of model grid
output. We do not try to address the sources of those
model biases here. Rather, we emphasize here that
model versus observation differences that arise from

the spatial scale of the model grid (resolution) can be
better accounted for in model evaluation studies if the
(more appropriate) areal mean assumption is used.

Figure 4 shows the U.S. domain-averaged P30 calcu-
lated from CPC gridded observations and from years
1961 to 1990 of the 17 different IPCC AR4 climate
model runs. The closed circles are estimated by first
interpolating the observed rainfall data to various reso-
lutions before conducting the extreme value analysis.
These are consistent with the assumption that the
model precipitation output represents areal means. The
original observed rainfall analysis data at 0.25° � 0.25°
resolution results in a domain averaged P30 of 74.4 mm
day�1. It should also be expected that the domain-
averaged P30 would be higher than 74.4 mm day�1 if the
extreme value analysis had been based on point mea-
surements (station data), in view of the general trend of
scale impacts and theoretical considerations (Sivapalan
and Blöschl 1998).

Figure 4 also shows U.S. domain-averaged P30 for
precipitation output from various models. The extreme
indices were calculated based on each model’s native
grid data, consistent with the (not recommended) point
estimate assumption if one made direct comparison
among models. Comparing these model results to the
observations under this assumption, most of the model
would appear to underestimate the magnitude of P30.

Of the 17 models, only the MIROC3.2(hires) (T106)
run, the Max Planck Institute (MPI) ECHAM5/MPI
Ocean Model (MPI-OM), and the L’Institut Pierre-
Simon Laplace Coupled Model, version 4 (IPSL CM4)
produce present-day P30 values of similar magnitude to
the high-resolution observed rainfall analysis (i.e., 
70
mm day�1). Note that one cannot exclude the possibil-
ity that the underestimation is mainly due to the com-
mon errors in model formulation or parameterization.
But from the analyses in section 3, a certain part of
underestimation can be attributed to the spatial-scale
difference between models and observation.

If the model output are assumed to represent areal
means (as we recommend), then we compare with the
observed result obtained after regridding to the model’s
resolution, and in this case about half of models over-
estimate the domain-averaged P30. Under this assump-
tion, seven models simulate a reasonable range of P30.

←

FIG. 1. Illustration of the impact of reversing the order of operations (data interpolation vs extreme indices calculation) for the
estimate of 30-yr return levels of P30 for different grid sizes starting from the 0.25° � 0.25° CPC Daily U.S. Unified Precipitation dataset.
(a) P30 estimated at original data resolution and interpolated to (b) 0.5°, (c) 1°, (d) 2°, (e) 3°, and (f) 4° grid boxes. P30 estimated with
the data interpolation performed prior to calculation of P30 based on daily data interpolated to (g) 0.5°, (h) 1°, (i) 2°, ( j) 3°, and (k)
4° grid boxes. The domain-averaged P30 and rms difference (rmsd) between the two approaches are shown in the upper-right corner
of the panels. Unit is mm day�1. Only grids with all land points in the original data are shown.

FIG. 2. Box plots of 30-yr return levels of P30 over all grid points
in the conterminous United States at various grid box sizes from
0.25° to 4°. P30s are calculated by interpolating the data to differ-
ent resolutions before estimating P30 from parameters of the GEV
distribution. Each box encloses 50% of the data with the median
value of the variable displayed as a line within each box. The lines
extending from the top and bottom of each box denote the mini-
mum and maximum values within the dataset that fall within 1.5
times the interquartile distance (between upper and lower quar-
tiles) from the median. Any value outside of this range, called an
outlier, is displayed as an individual point.
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FIG. 3. The distribution of ARFs for 30-yr return levels of P30 at data grid sizes of (a) 0.5°,
(b) 1°, (c) 2°, (d) 3°, and (e) 4°. The ARF is defined as the ratio of P30 estimated after vs before
the data are interpolated from the original 0.25° resolution. ARF distributions for the SDII at
data grid sizes of (f) 0.5°, (g) 1°, (h) 2°, (i) 3°, and ( j) 4°. The domain-averaged ARFs are
shown in the upper-right corner of each panel.
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Only the National Center for Atmospheric Research
(NCAR) Community Climate System Model version 3
(CCSM3) integration with T85 resolution produces a
domain-averaged P30 much smaller than the observed
value. It is clear that the two assumptions about the
nature of the model precipitation output lead to totally
different conclusions regarding the ability of the models
to simulate extreme precipitation events.

To assess the significance of the differences between
the models and observation, we use a Monte Carlo
method to construct 1000 samples at each grid by ran-
domly selecting 30-yearly maximum daily rainfall
amounts out of the 40-yr period from 1956 to 1995 for
the P30 calculation. The random resampling is done
without replacement to ensure that the same yearly

maximum daily rainfall is not sampled more than once.
The U.S. domain average of the 5th and 95th percen-
tiles of P30 value at each grid is used as a rough estimate
of the possible range of U.S. mean P30 under this sta-
tistically unusual condition (all the grids are at the 5th
or 95th percentiles of 1000 samples). The 5th and 95th
percentiles are shown as the lower and upper error bars
associated with P30 from the CPC observed analysis in
Fig. 4. Such a measure of uncertainty does not allow for
cancellation of overestimates and underestimates as oc-
curred in almost all the models shown here. The 5th and
95th percentiles of the 1000 resampled U.S. domain-
averaged P30 (allowing cancellation of differences
among grid points due to data sampling) deviate only
slightly from the median value (less than 0.5 and 1.5
mm day�1 for T106 and T30 resolutions, respectively).

Taking all the model results into consideration, there
is some tendency for climate models to produce smaller
P30 values at lower resolution. Kharin et al. (2005) also
found a similar trend in the AMIP II models. This ten-
dency provides more support for the view of treating
model output as an areal mean.

For two of the climate models (CCCma CGCM3.1
and MIROC3.2), a pair of numerical simulations were
run at both high and low resolutions. Although scale-
dependent parameters can affect the model integra-
tions and model tuning is often done to minimize the
model biases, these simulation pairs still used basically
identical dynamical and physical structures for each
specific model. Comparing the rainfall extreme events
simulated at these different resolutions could reveal
more about the fundamental characteristics of model
grid output. Therefore, in this section we will examine
in more detail the spatial distribution of P30 over the
United States from these simulations. Further, we can
use the second approach again to interpolate the
higher-resolution results to lower resolution before cal-
culating the extreme indices. This attempts to illustrate
the impact on the model simulated extreme events re-
sulting solely from interpolation.

Figure 5 compares the MIROC3.2 model simulations
of P30 with observations under different assumptions.
Figures 5a–d use the point estimate assumption where
we analyze the extreme statistics of the data on their
native grid, then interpolate P30 obtained from ob-
served data to T106 and T42 grids for comparison to the
models. Under that assumption, the MIROC3.2 T106
run tends to overestimate extreme rainfall over the
Rocky Mountain region and underestimates P30 in the
southeastern United States (cf. Figs. 5a and 5c). The
MIROC3.2 T42 run considerably underestimates P30

for the eastern United States while reasonable P30 val-
ues are simulated in the western United States, where

FIG. 4. Area-averaged 30-yr return levels of P30 over the con-
terminous United States for different grid box sizes as derived
from CPC Daily U.S. Unified Precipitation and available IPCC
AR4 models. For the CPC observations, the P30s are calculated
using data interpolation to different resolutions before estimating
the P30 values. P30s from all climate models are estimated at their
native resolution. Additional P30 estimates are presented for the
MIROC3.2(hires) (T106), NCAR CCSM3 (T85), and CCCma
CGCM3.1 (T63) models using model data interpolated to T42,
T42, and T30 grids, respectively, before the calculation of P30.
Solid lines link the pairs of P30 estimates obtained from these
model runs. A log scale is used for the x axis (gridbox area). The
CCCma CGCM3.1 T63 (T47) run used a 128 � 64 (96 � 48)
global transform grid, the same transform grid as used in other
T42 (T30) models. The error bars associated with CPC values are
the U.S. area mean of the 5th and 95th percentiles across all the
grid points. The percentiles are estimated at each grid point using
a Monte Carlo resampling method (n � 1000) in which for each
trial, 30-yearly maximum daily precipitation values are randomly
selected from the 1956–95 period without replacement before cal-
culating the 30-yr return level.
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relatively weak extreme events are found in the obser-
vations (cf. Figs. 5b and 5d). Again, the difference
shown here is not only due to the less appropriate as-
sumption but could be caused by model bias. If the

(recommended) areal-average interpretation is used
and both observed and simulated daily data are inter-
polated to T42 resolution before calculating the P30

(Figs. 5e–g), the MIROC3.2 T106 run still overesti-

FIG. 5. Comparison of 30-yr return levels of P30 estimated from the CPC Daily U.S. Unified
Precipitation dataset and the MIROC3.2 model simulations. P30s estimated from observations
on a 0.25° � 0.25° grid are interpolated to (a) T106 and (b) T42 model grids for comparison
with the MIROC3.2 (c) T106 and (d) T42 runs. Based on data interpolated to a common T42
grid before estimation of P30, (e) observed P30 estimates are compared to P30 estimated from
the (f) T106 and (g) T42 runs. Domain-averaged P30 are reported in the upper-right corner of
the panels. Average rmsds are also evaluated for the model data with respect to P30 estimates
from observations. Unit is mm day�1.

1616 J O U R N A L O F C L I M A T E VOLUME 21

Fig 5 live 4/C



mates P30 except for a few areas in the Southeast (cf.
Figs. 5e and 5f). Similar model biases are found in the
MIROC3.2 T42 run (cf. Figs. 5e and 5g), except the
general overestimation is smaller and the underesti-
mate of P30 in the Southeast is not as large as with the
first approach (cf. Figs. 5b and 5d). Assuming the
model outputs represent areal means, the rms differ-
ences for the T106 and T42 runs are comparable at 17.5
and 16.5 mm day�1, respectively. Note that after inter-
polating all data to the same grid size, we regard the
model biases (compared lower panels of Fig. 5) as
mainly arising from model formulation and not from
the impact of the data spatial scale.

When the T106 data are interpolated to T42 prior to
computing P30, the results are fairly similar to those
from the original model run with T42 resolution. Part of
the P30 differences between the original data output
from the high- and medium-resolution model runs
(Figs. 5c versus 5d) can therefore be attributed to this
spatial-scale effect under the second assumption. The
assumption that model output represents a point esti-
mate is inconsistent with the results from MIROC3.2,
since the precipitation parameterization, if designed as
a gridpoint process, should be expected to generate
similar rainfall regardless of model grid size, which it
does not. The CCCma CGCM3.1 uses a different ap-
proach in the calculations of model’s physical tenden-
cies (including precipitation). Both T63 and T47 ver-
sions of CCCma CGCM3.1 overestimate P30 under the
areal mean assumption (Fig. 4). The overestimations
are found in most of the United States except the
Southeast where larger observed P30 values are found.
If we interpolate the CCCma T63 (128 � 64) daily pre-
cipitation to 96 � 48 grids before calculating the P30,
the United States domain-averaged P30 become very
similar to observed P30. However, it is much smaller
than the P30 from the CCCma CGCM3.1 T30 run. In-
terestingly, the behavior shown by the CCCma
CGCM3.1 at different resolutions seems more consis-
tent with the assumption of model output as a point
estimate according to this analysis (i.e., the P30 esti-
mates do not seem to depend very strongly on the reso-
lutions), although we do not regard this as a strong
argument for using the point estimate assumption. We
also reinterpolated the T85 NCAR CCSM3 run to T42
resolution before calculating the extremes. A reduction
of P30 upon interpolation from higher- to lower-resolu-
tion data again occurs, and the area-averaged P30 is
similar to that of the NCAR Parallel Climate Model
version 1 (PCM1) model run at T42 resolution. Al-
though the CAM3 and CCM3 atmospheric models used
in these two coupled models are distinct, part of the
difference between NCAR CCSM3 and NCAR PCM1

could be simply due to the spatial-scaling effects of the
model data.

Attempts to use different model runs to form a
model consensus or an estimate of the range of model
uncertainty (Hegerl et al. 2004; Kharin et al. 2005, 2007;
Tebaldi et al. 2006) are complicated by these alterna-
tive interpretations as discussed in the introduction.
Based on our survey of past studies, there are some-
times inconsistencies in handling the observed and
simulated data and in performing extremes analysis
when multiple models are involved. Based on our
analysis, these inconsistencies could lead to the inclu-
sion of artifacts from spatial-scaling effects during the
data aggregation. These impacts should be carefully
considered in the model evaluation and in comparison
studies aimed at examining the impacts of different
model formulations and diversity of precipitation re-
lated parameterizations.

Using the IPCC data archive of extreme indices cal-
culated from various AR4 model output, Meehl et al.
(2005) and Tebaldi et al. (2006) use the interannual
standard deviation over the simulation period (after de-
trending) to standardize the time series of extreme in-
dices and their changes before model aggregation. This
approach can adjust for different absolute magnitudes
of the simulated indices among the different models. It
is not affected by the spatial-scaling effects when the
assumption that model output represents a point esti-
mate is used. However, if model data are interpreted as
areal means, the impact of the data gridbox size on the
intensity of indices is not necessarily equal to the im-
pact on their interannual standard deviation. For ex-
ample, we found that the reduction of standard devia-
tion of annual SDII in the 1948–98 period after de-
trending, when the data are first interpolated to 4°
before computing the SDII, is about 51% averaged
over the U.S. domain (Fig. 6). The area-averaged ARF
for SDII over the United States is 31%. These results
suggest that the analyses by Meehl et al. (2005) and
Tebaldi et al. (2006) would have obtained a smaller
standardized change in model ensemble mean SDII
than the change estimated if they had interpreted the
model data as areal means (first interpolating all the
models to the lowest possible model resolution before
calculating the SDII). Again this could occur as an ar-
tifact of the effect of data grid scale alone, since only
observed data are used to produce the effect in Fig. 6.

It is not practical to evaluate different resolution
models with a different version of “regridded” obser-
vation. Therefore, our recommendation is to interpo-
late all the model gridded data to lowest possible reso-
lution before extreme precipitation analysis and model
verification (or comparison).
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5. Impact of spatial interpolation scheme

Another relevant issue for extreme rainfall analysis
at different spatial resolutions is the remapping scheme
used for interpolation. A conservative remapping
scheme was used in our study (Jones 1999). We did not
use nonconservative remapping schemes because they
are not consistent with an “areal average” assumption
for model output. Nevertheless, one should also be
aware of the possible impact of different interpolation
methods on extreme rainfall analyses. When a noncon-
servative remapping scheme (e.g., bilinear, bicubic, and
distance weighted) is used for interpolation from a fine
grid to a coarse grid, only the input grids nearest to the
output grids are involved in the interpolation. This al-
lows for the possibility of more extreme local values
being obtained on the output grid in comparison to the
additional smoothing involved with the conservative
scheme. Figure 7 compares P30 estimated by applying
different interpolation schemes (conservative versus bi-

linear), before the estimation of P30. The results show
that higher P30 values are obtained when this non-
conservative interpolation scheme is used. Other non-
conservative remapping schemes, such as bicubic and
distance-weighted average, lead to similar results to bi-
linear interpolation. In conclusion, if one uses a non-
conservative interpolation scheme, such a procedure
can also have an important impact on extreme value
statistics, analogous to the order of operations. How-
ever, even though nonconservative schemes can pro-
duce higher extreme values, their use would appear to
be more justifiable in the context of the point estimate
paradigm, which is not recommended here.

6. Discussion and conclusions

The assessment of the precipitation extreme indices,
in syntheses of multiple climate models, may be
strongly affected by the assumption of whether the
model grid data represent point estimate or areal aver-

FIG. 6. The interannual std dev of the SDII from the period
1948–98. (a) The SDII is derived from the original 0.25° � 0.25°
resolution data and then interpolated to 4° � 4° grid boxes. (b)
The data are interpolated to 4° � 4° grid boxes before the calcu-
lation of the SDII for individual years. Unit is mm day�1.

FIG. 7. The 30-yr return levels of P30 calculated from the CPC
Daily U.S. Unified Precipitation data interpolated to a T42 grid
with (a) conservative remapping or (b) bilinear remapping
schemes before the estimation of P30. Domain-averaged P30 are
reported in the upper-right corner of the panels. Unit is mm
day�1.
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ages. We argue that the areal average assumption is
more appropriate than the point estimate assumption,
which is not recommended. Using the high-resolution
CPC Daily U.S. Unified Precipitation and adopting dif-
ferent assumptions about the gridded data (i.e., on the
order of the data interpolations and extremes analysis),
we highlight the possible impact of these assumptions
using high-resolution observations as perfect model
data. The intensity of extreme precipitation indices at
reduced resolution is much weaker when gridded data
are assumed to be areal means. The reduction in-
creased as the grid size increases. The value of ARFs
due to areal mean assumptions is sensitive to the ex-
treme indices selected (e.g., P30 versus SDII). ARFs are
fairly insensitive to the geographical location and the
magnitude/distribution of indices. We also recommend
that the areal average assumption be used for the
model data in model intercomparison studies. Under
the areal mean assumption, extreme rainfall events
simulated from different models with distinct resolu-
tions should be assessed using observations conserva-
tively interpolated to the same resolution prior to com-
puting extreme statistics. Even though the current gen-
eration of climate models has typical spatial resolution
that many regard as less than ideal for simulation of
extreme events, as compared to higher-resolution re-
gional climate model simulation (Jones and Reid 2001;
Räisänen and Joelsson 2001; Fowler et al. 2005; Frei et
al. 2006), one can still undertake an assessment of the
coarse-resolution models, although our results indicate
that appropriate consideration of the spatial scale of the
validation data be incorporated.

Using the areal mean assumption, the calculation of
multimodel ensemble mean and comparisons of differ-
ent model simulation of extreme rainfall should be
done at the lowest model resolution so that all the data
can be interpolated to a common grid before computa-
tion of extreme indices. Also a conservative interpola-
tion scheme should be used to maintain the same areal-
averaged rainfall before and after the remapping. Our
results also imply that attempts to normalize the vari-
ability of simulated extreme precipitation indices from
different models may also be affected by these issues
associated with assumptions about interpretation of
model outputs. The direct comparison and ensemble
means of derived extreme indices obtained from differ-
ent models (at their native resolution) in the current
IPCC data archive are therefore not possible unless one
assumes that the model output represents point esti-
mates, which is not recommended here. One might be
able to determine an appropriate spatial-scaling factor
for downscaling the lower-resolution model data to
higher-resolution model data (Booij 2002). However,

one typically needs long-term station or gridded daily
precipitation data with near-global coverage to derive
the empirical relationship. Regional climate models
forced by AOGCMs can dynamically downscale ex-
treme precipitation events to a spatial scale that is more
comparable with observed rainfall analysis or station
data. The scaling issues identified in the present study
should be reduced in this case. There are, however,
other issues associated with such regional modeling ap-
proaches, including, for example, the nesting method,
the lack of two-way ocean coupling, and the consistency
of the climate sensitivity and physical parameteriza-
tions used in the global versus regional models.

Many observed analyses of past trends in extreme
weather and climate events use station data as opposed
to gridded data (Frich et al. 2002; Kunkel et al. 2003;
Zhai et al. 2005). Unfortunately, these can be readily
compared with model data only under the point esti-
mate assumption. Other studies have produced gridded
data of observed rainfall extreme indices (or trends in
indices) that have been used, or could be used for com-
parison with models (e.g., Osborn and Hulme 1998;
Kiktev et al. 2003; Alexander et al. 2006). In these cases
the gridding methods were different from the present
study. Typically the extreme indices (time series) were
derived using observed station data as a basis. The sta-
tistical structure of spatial correlations among neigh-
boring station time series was used to construct the
weighting functions for combining the station data into
grid boxes (Kiktev et al. 2003; Alexander et al. 2006).
As discussed in the introduction, the gridding and in-
terpolation are actually applied after the extreme
analysis. Therefore, although the results by Alexander
et al. (2006) are gridded extreme rainfall indices de-
rived from observations, it is not clear that their gridded
data are suitable for model evaluation without further
consideration of the spatial-scale issues identified here.
Figure 8 compares the averaged yearly maximum daily
precipitation during the 1961–90 period over the
United States from the CPC daily precipitation at
0.25° � 0.25° resolution and the gridded HadEX
data from Alexander et al. (2006) at 3.75° � 2.5° reso-
lution (available online at http://hadobs.metoffice.com/
hadex/). It is apparent that the HadEX data, despite
their relatively coarse resolution, show larger yearly
maximum daily rainfall values than the CPC daily rain-
fall. This clearly indicates that the intensities of gridded
yearly maximum daily precipitation from HadEX are
more comparable to that of station data. Nevertheless,
one should note that the gridding methodology in Al-
exander et al. (2006) is not aimed at creating area av-
erages but rather at reducing errors at the interpolated
points by proper weighting of surrounding station data.
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We use high-resolution CPC Daily U.S. Unified Pre-
cipitation and IPCC AR4 model simulations to high-
light the scale dependence of extreme precipitation
when different assumptions about the data (i.e., area
average versus point estimate) are made for the analy-
sis. Even a less extreme index like the SDII is sensitive
to such assumptions. Although our results are based
only on U.S. regional data, we speculate that similar
effects will occur for other regions of the world. The
different daily rainfall characteristics in the tropics
could conceivably lead to quantitatively varying results,
but lack of long-term daily gridded rainfall data hinders
assessment of these issues in the tropical regions at this
time. Extreme temperature indices, with typical decor-
relation lengths at least several times larger than that of
extreme precipitation indices (Alexander et al. 2006),
likely exhibit only a minor effect. They are not dis-
cussed in this note.
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