A Multiplet Table of Astrophysical Interest Revised Edition Part I—Table of Multiplets Part II—Finding List of All Lines in the Table of Multiplets Charlotte E. Moore Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234 Contributions from the Princeton University Observatory No. 20, 1945 Reprinted by permission of the Director of the Princeton University Observatory ### NSRDS-NBS 40 Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40, 253 pages (Feb. 1972) CODEN: NSRDAP Reprint of NBS Technical Note 36 (PB151395). See author's note, pp. v-vi. Issued February 1972 #### **FOREWORD** The National Standard Reference Data System provides effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards. The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field. The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned; nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties and mechanical properties. The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources, as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities. The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community. LEWIS M. BRANSCOMB, Director ### **AUTHOR'S FOREWORD** The present Multiplet Table was first published in 1945 by the Princeton University Observatory; it has not yet been superseded. In 1959 it was reprinted as Technical Note 36 of the National Bureau of Standards. This issue is now out of print and is being reprinted as NSRDS-NBS 40. The format is not being changed. In the present publication a special note has been added in the heading for those spectra included in "Selected Tables of Atomic Spectra," NSRDS-NBS 3, to indicate the existence of a Revised Multiplet Table. August 2, 1971 #### ABSTRACT Pending the completion of a current edition, the 1945 Multiplet Table is being reprinted here to meet continuing demands. The leading lines in 196 atomic spectra of 85 chemical elements are listed in related groups called multiplets. Estimated intensities, excitation potentials and multiplet designations are given for the individual lines, and each multiplet is assigned a number. An extensive bibliography covers the source material used for the compilation. The Table is presented in two parts: Part I includes the multiplets, with the spectra of each element being given in order of increasing ionization, and the elements in order of increasing atomic number. Part II is a Finding List in which all the lines in Part I are entered in order of increasing wavelength, with their multiplet numbers. The range of the Table is from 2951 Å to 13164 Å. A supplementary table of "Forbidden Lines" extends from 2972 Å to 12645 Å. Key words: Atomic spectra, multiplet table; finding list, atomic spectra; multiplet table; spectra, atomic. # Editorial Note—Spectra in Technical Note 36 (PB151395), for which revised data are given in NSRDS-NBS 3* | | Page | Spectrum | Reference | |-------------------|------------------|---|---| | | 2
2
3
3 | C II
C III
C IV | SEE REVISION IN NSRDS-NBS 3, Section 3, November 1970. | | | New | Cv | SEE Section 3, November 1970. | | | 6
6 | $\left. egin{array}{l} \mathbf{N} \ \mathbf{v} \ \mathbf{N} \ \mathbf{v} \end{array} ight\}$ | SEE REVISION IN NSRDS-NBS 3, Section 4, August 1971. | | | New
New | N vi)
N vii} | SEE Section 4, August 1971. | | | 15
16 | Siı´
Siıı) | SEE REVISION IN NSRDS-NBS 3, Section 2, November 1967. | | | 16
17 | Si III
Si IV | SEE REVISION IN NSRDS-NBS 3, Section 1, June 1965. | | | | | Correction | | Part I
Part II | 2
76 | Не 11
Не 11 | λ 6570.0 Ref. A has been corrected to λ 6527.10 Ref. P. λ 6570.0 has been corrected to λ 6527.10. | ^{*} See List of Publications in the National Standard Reference Data Series at the back of this book for information about obtaining these publications. ## Author's Note on the Reprinting of the 1945 Princeton Multiplet Table: U.S. Department of Commerce, N.B.S. Tech. Note 36, (PB151395), 1959 The Multiplet Table that first appeared as Contributions from the Princeton University Observatory No. 20, 1945, is still a standard reference source used by astrophysicists, physicists, chemists, and many others. To date it has not been superseded and it continues to be in steady demand, although it is seriously in need of revision. In 1959 this table was reprinted as U.S. Department of Commerce, National Bureau of Standards Technical Note 36 (PB151395). This issue is now out of print. In view of the continuing requests, the Office of Standard Reference Data has decided to reprint Technical Note 36 as National Standard Reference Data Series-National Bureau of Standards, NSRDS-NBS 40, 1971, Parts I and II. Similarly, Volumes I, II, and III of "Atomic Energy Levels," Circular of the National Bureau of Standards 467 are being reprinted in the same series, NSRDS-NBS 35, Parts I, II, III. The present rapid technological advances by the astrophysicist in observing celestial spectra have created an urgent need for a current Multiplet Table of Astrophysical Interest. The correct interpretation of these spectra depends directly on the laboratory analyses of optical spectra. A critical compilation of spectroscopic data that provides the leading lines of individual atomic and ionic spectra of the more abundant elements, over the range from the x-ray to the microwave region is essential. In preparing such a table an effort should be made to envisage future developments in observing celestial spectra over this range and to design laboratory programs that will provide the requisite data. Many gaps exist in our knowledge of atomic and ionic spectra. Sources that will produce clearly separated spectra in all stages of ionization for the elements H to Ni will be needed. Some of the less complex spectra can be traced along isoelectronic sequences, while more complex spectra have line lists containing thousands of lines. Encouraging progress is being made in the laboratory, where excellent spectrographs and carefully controlled sources can produce spectra that far outweigh the observations quoted in 1945. Although it is not yet possible to provide a complete revision of this 1945 edition, current Multiplet Tables together with corresponding revised tables of Atomic Energy Levels are available for selected spectra. They are being published by the National Bureau of Standards under the title "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," as Sections of NSRDS-NBS 3. Section 1 contains these data for the spectra Si II, Si III, Si IV; Section 2 for Si I; Section 3 for C I, C III, C IV, C V, C VI; Section 4 for N IV, N V, N VI, N VII. Similar tables for N I, N II, N III are in course of preparation as Section 5. A number of additional spectra are partially completed for inclusion in this series. These new Multiplet Tables cover the entire observed range of individual spectra, and, therefore, supersede not only the 1945 Multiplet Table, but also the Ultraviolet Multiplet Table which appeared as Circular of the National Bureau of Standards 488, Section 1, 1950; Section 2, 1952; Sections 3, 4, 5, 1962. In the present reprinted issue of the Princeton Table, the individual spectra that have been revised are clearly indicated. Readers are urged to use the revised data for the spectra thus marked and to note further such revisions of selected spectra as they appear in this series. This work advances slowly, although a number of revised analyses of spectra have been published that supersede the 1945 data. A bibliography in the National Bureau of Standards Special Publication 306, Sections 1, 2, 3, 4,
1968-1969, provides reference material on individual spectra to about July 1968, continuing from the reference listings given in the Volumes on Atomic Energy Levels. The most serious need for revision is perhaps in the infrared data. Current references to work on the spectra H I to Ni I in the range > 7000 Å may be found in a forthcoming publication of the Proceedings of the Seventeenth International Astrophysical Symposium, on "Astronomical Spectra in the Infrared and Microwave Regions," held at the Institut d'Astrophysique, Université de Liège, Cointe-Ougrée, Belgium, June 28-30, 1971. Washington, D.C. August 2, 1971 CHARLOTTE E. MOORE #### OI COMILLIMI ## PART I. TABLE OF MULTIPLETS | ĩ | Introduction | Page | |------|--|-----------------------------------| | • | 1 Need for spectrum analysis 2 Need for Multiplet Table 3 Range of Present Table 4 Importance of Multiplets 5 First edition 6 Arrangement of Table | XII
XII
XII
XII
XII | | ·II | The Multiplet Table—General Considerations 7 Astronomical Spectra. 8 Astrophysical importance of spectra, H-Zn. 9 Elements Ga-Ba. 10 Rare Earths. 11 Elements Hf-U. | XIII
XIII
XIII
XIII | | Ш | Basis of Selection 12 The Short Periods (H-A) 13 Nebular spectra 14 First Spark Spectra 15 Infra-Red Solar Spectrum 16 The First Long Period (K-Kr) 17 The Spectrum of Fe I 18 The Second Long Period (Rb-Xe) 19 Forbidden Lines | XIII XIII XIII XIII XIV XIV XIV | | IV | General Arrangement of the Multiplet Table 20 Size of Present Revised Multiplet Table 21 Periodic Table 22 Headings 23 Ionization Potential 24 Grading of Analysis of Individual Spectra 25 Grading of List of Individual Spectra 26 Date of completion of Individual Spectra | XIV XIV XVI XVI XVI XVI XVII | | v | Arrangement of the Multiplets of Each Spectrum 27 Spectrum Analysis—general arrangement of multiplets. 28 Multiplet Designations—quantum numbers. 29 Incomplete Multiplets. 30 Unclassified Lines. 31 Special Remarks on Individual Spectra. | XVII
XVIII
XX
XXI
XXI | | VI | Columns of the Table of Multiplets 32 Wave-Length 33 Symbols 34 Intensity 35 Excitation Potentials | XXII
XXIII
XXIII | | VII | Spectroscopic Notation A Series Spectra 36 Series Notation and Limits. 37 Special Cases. B Complex Spectra 38 Regular Notation. 39 Numbered Levels. | XXIV
XXV
XXVI | | VIII | Special Notes on Individual Spectra 40 H, D, He II etc | XXVI | ## TABLE OF CONTENTS ## PART I. TABLE OF MULTIPLETS—Continued | | | Page | |--------|---|---------| | IX | Spectra Omitted from the R M T | | | | 42 Spectra of Astrophysical Interest—No Analysis | XXVIII | | | 43 Analyzed Spectra without Astrophysical Importance | XXIX | | | 44 Spectra for which nothing is known | XXIX | | X | Forbidden Lines | | | | 45 Basis of Selection | xxix | | ХI | Details of Publication | | | | 46 Revised Solar Identifications | xxxı | | XII | | AAAI | | ΛII | Bibliography—Description 47 References used for Wave-Length, Intensity and Analysis | | | | | XXXI | | XIII | Acknowledgments | | | Biblio | graphy | xxxxx | | | | | | | by Pages | XLIII | | Index | by Elements | XLIV | | Revis | ed Multiplet Table | | | | Body of Table | 1-99 | | | Forbidden Lines | 100-110 | | | | | #### PREFACE The preparation of a Multiplet Table that will meet the needs of all astrophysicists both now and in the future is an almost overwhelming undertaking. The most eminent workers would have to exercise careful judgment in handling the spectroscopic literature today. The writer has been bold enough to attempt it, only because of the many requests for a revision of the earlier Table and the enthusiasm with which it was received in spite of its many faults. Admittedly the present work is far from ideal. With all its limitations, however, it could never have been published without a vast amount of collaboration. The generosity and encouragement of spectroscopists and astrophysicists both at home and abroad has been the inspiration for this book. No two people would present the same choice of material, and the writer feels that her judgment has been far from adequate for this task. Whatever usefulness the volume may have is due to the many workers who have stood by, ready to supply material, to discuss puzzling questions and to offer the most valuable suggestions. Since 1932 work on spectrum analysis has progressed so speedily that the selection of data useful to the astrophysicist has been one of the major problems. Requests for an entirely complete Multiplet Table have been received, but the purpose of this work has been to provide a book whose scope is limited—one that contains astrophysically useful data but is not unwieldy because of the inclusion of other material from the vast storehouse of spectroscopic literature now accessible. The bibliography should be consulted by those who desire more complete Tables of Multiplets. More work of astrophysical importance remains to be done, chiefly on the spectra of the rare-earths and on the second spark spectra in general. It is hoped that a supplement can be prepared to cover these spectra and that a large part of the present work will prove to be definitive. This book has been brought to a conclusion during the second world war. Consequently, restrictions of all kinds have been imposed and assistance has been limited. A very careful attempt has been made to prepare the manuscript accurately. The writer believes, however, that errors have inevitably been made in the compiling and editing of more than 25,750 spectral lines, for the work has been done with the minimum amount of clerical aid. She relies upon the users to detect serious errors and report them to her so that a list of errata may be published. Suggestions will be welcome. Mention has been made of the cordial cooperation experienced from the beginning of this work. It could not now have been brought to a conclusion without the hearty and enthusiastic support of Henry Norris Russell, the author of the first list of multiplets of astrophysical importance. He has generously offered his valuable collection of data on spectra and has been ever ready to help in spite of the many complications that have arisen in carrying out such an extensive program. CHARLOTTE E. MOORE Princeton University Observatory Princeton, New Jersey April 3, 1945 ## A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST #### PART I #### TABLE OF MULTIPLETS #### I. INTRODUCTION - 1. The detailed interpretation of stellar spectra demands of the laboratory investigators an ever increasing amount of careful work on spectrum analysis. With the impetus provided by Hund's theory, remarkably rapid strides have been made. Additional encouragement, particularly in handling complex spectra, has resulted from the great development of mechanical devices to decrease the enormous labor of measuring and reducing spectrograms. The valuable machine developed by Harrison at the Massachusetts Institute of Technology for this purpose has already proven its worth and promises much more in the future. - 2. From an astrophysical point of view there is a definite need for a compendium of multiplets. The manuscript lists prepared for the present work have been almost continuously on loan to various investigators. Spectrum analysis has not been carried far enough to compile a completely satisfactory Table. So many spectra have been analyzed, however, that to wait for perfection is to retard scientific progress. For many spectra "prediction" may be invoked to extend the existing lists of observed laboratory lines, and this has been done throughout the work. Three general classes of lines are tabulated: those observed in the laboratory; predicted "permitted" lines calculated from combinations among spectroscopic term values; and predicted "forbidden" lines. 3. A complete multiplet table would be welcomed by many scientists. It is not the purpose of the present work to furnish this. The range of wave-lengths is roughly from $\lambda 2950$ to $\lambda 13000$. The violet limit is imposed by the ozone in our atmosphere, which cuts off stellar observations beyond this region. In the infra-red the scarcity and inaccuracy of laboratory wave-lengths have made it necessary to predict many lines. Even within these limits, only the lines thought to be useful in the interpretation of astronomical spectra are listed. These are selected from the elements sufficiently abundant to appear in stellar spectra, and from only those stages of ionization and types of excitation which are to be expected. - 4. The importance of handling the various laboratory spectra by multiplets was stressed in 1925 by Russell,¹ who published the original multiplet table under the title "A List of Ultimate and Penultimate Lines of Astrophysical Interest." Useful as it was, this soon proved to be incomplete, not only because it was intentionally limited, but also because more data were becoming available. Work on spectrum analysis was proceeding so rapidly that an extension of his list was imperative. - 5. When the writer was at the Mount Wilson Observatory in 1931 she prepared a solar multiplet table for private use in revising and extending the identification of lines in the solar and sun-spot spectra. This manuscript was constantly used by astronomers. In response to requests for copies, the laboratory data for light elements present in early type stars were added and a limited edition was printed in 1933.² This edition was out of date and out of print almost immediately—the demand for it had not been anticipated. To meet the situation the present book was planned; it is the first book designed
from the start as a multiplet table for astrophysicists. For this reason, solar wave-lengths and intensities are excluded. It is essentially a manual of laboratory data needed by astronomers. - 6. In the Multiplet Table (Part I) the elements are arranged in order of increasing atomic number. For each spectrum of each element the multiplets are listed in order of increasing energy level (see § 27 for details), and are numbered for reference. While such an arrangement is useful in studying stellar spectra, it introduces one serious disadvantage. The search for a particular line is laborious. This has been a widespread and an entirely justified criticism of the earlier Table. A Finding List has, therefore, been prepared and forms Part II of this Contribution. Here every line in the Revised Multiplet Table (hereinafter referred to as the R M T), is entered in order of wavelength, listing the spectrum to which the line belongs, and the number of the multiplet containing it. #### II. THE MULTIPLET TABLE—General Considerations 7. The astronomical spectra forming the basis of selection of the elements, spectra and lines included, fall into several general classes. The sun receives first consideration. The observed solar spectrum now extends from $\lambda 2914^*$ to $\lambda 13495$, which accounts for the range covered in this Table. In addition, the spot and chromospheric spectra, stellar spectra of every type from Wolf-Rayet stars down through M-stars, including giants and dwarfs, spectra of novae and nebulae, and of the corona must be taken into account. ¹ Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925. A Multiplet Table of Astrophysical Interest, Princeton 1933. Accurate measures have not been made to the violet of λ2949. 8. The astrophysical importance of a spectrum depends upon the abundance of the element in the most favorable celestial sources, and the number and excitation potentials of the lines in the visible region. Almost all of the elements of atomic number 1-30 (H-Zn) have, on this account, preference over those that follow. The analyses of their arc spectra are almost all adequate for astrophysical purposes. For the first spark spectra, which on the whole are more important, the analyses are fairly complete (except for Mn II and Co II) The lists for these spectra in the R M T include all but the weakest observed lines except for a few elements of low abundance. The second spark spectra are less completely analyzed in the two short periods. In the first long period Fe III is complete and only a beginning has been made for any of the rest. Detailed knowledge of spectra of more highly ionized atoms is confined to a few of the lighter elements. - 9. The spectra of the elements from Ga to Ba are on the average considerably richer, and much less completely analyzed; but these elements are decidedly less abundant and the existing data are usually, though not always, fairly adequate for astrophysical purposes. - 10. The rare earths, which are no rarer than neighboring elements in cosmical abundance, usually have rich spectra, which adds to their significance. The arc spectra rarely appear. The first spark spectra are important in many stars, and lines of the second spark spectra of several of them have recently been identified. Analysis of the third spectra is barely begun; for the second spectra it is well advanced for six of these elements and well begun for four more. The lists given here for the rare earths are approximately definitive for La 11, Eu 11 and Lu 11. It is hoped that greatly improved data for the others will be available in the near future. Extended tables for rare earths are likely to form the larger part of a supplement to the R M T. 11. The elements from Hf onward are of low abundance, and the data for them, though incomplete, meet most astrophysical needs tolerably. #### III. BASIS OF SELECTION 12. The Short Periods (H-A). These spectra are so important in the hotter stars that the lists are entirely or almost complete for all degrees of ionization included, except for a few elements of low cosmic abundance. The spectra of Wolf-Rayet stars,2,3 novae and nebulae contain many "predicted" lines of these elements, not yet observed in the laboratory. For many light elements more predicted lines could probably have been included to advantage. More accurate values of predicted wave-lengths could also have been given, particularly in the spark spectra of C, N, and O. The precedent set by Edlén in his work on Wolf-Rayet⁸ stars was followed. In many cases the term separations are known with sufficient accuracy to justify predictions to 0.1 A, although he uses no decimals. Use of the photographic method of reproduction for this book has prevented all but the most necessary alterations of the original manuscript. Changes later realized to be improvements have been omitted because of this restriction. - 13. Bowen's 4 work naturally forms the guide for selecting material related to nebular spectra. The leading nebular lines are due to forbidden lines of the light elements. In anticipation of future needs, the lists of forbidden lines have, however, been greatly extended throughout the first long period. - 14. No particular type of stellar spectrum has influenced the choice of lines from the first spark spectra of light elements. The lists have not been restricted to include only those lines known to be present in the stars. The abundance of the element has been the chief factor considered in omitting lines. For elements known to be fairly abundant, favorable predicted lines have been added. The lists are as extensive as the present state of analysis permits. - 15. For some years Mr. H. D. Babcock at Mount Wilson, has been preparing for publication a monograph on the Infra-Red Solar Spectrum. His work now covers the interval λλ6600-13495 and includes approximately 7300 lines. The leading accessible lines of the arc spectra of most of the light elements lie in this interval. For example, important solar lines are unquestionably due to H, C I, N I, O I, Mg I, Si I, P I, and S I. In fact, the presence of phosphorus could not be detected until the solar observations were extended to the infra-red. The present Table has been compiled with Mr. Babcock's work especially in mind. For unblended lines the solar wave-lengths in this region are far more accurate than many laboratory measures. Si affords an excellent illustration. The lines are sharp in the sun and the term separations among solar wave- ¹ Swings, Ap. J. 100, 132, 1944. ² Payne, Zeit. fur Ap. 7, 1, 1933. ³ Edlén, Zeit. fur Ap. 7, 378, 1933. ⁴ Rev. Mod. Phys. 8, 55 (No. 2), 1936. numbers are so consistent that accurate solar term values can be calculated. These term values have been very useful in predicting wave-lengths. Similarly, the triplet and singlet "F" series of Mg I were extended with the aid of solar data.1 The constancy of the term separations proves beyond doubt the correctness of the identifications. 16. The First Long Period (K-Kr). The elements in the first long period from K through Ni constitute by far the major portion of this book (pp. 23-77), on account of the complexity of their spectra. Generally speaking, the arc and first spark spectra are well analyzed except for those mentioned in § 8. Many lines of these spectra (as far as Cu) are present throughout the entire range of the solar and sun-spot spectra, the flash spectrum, stellar spectra like those of Y Cygni and a Persei, and later type stars. The only second spark spectrum in this group that can be given completely is that of Fe III. Astronomers eagerly await the definitive analysis of the rest. - 17. The spectrum of Fe I deserves special mention. Although the importance of the analysis has long been realized, a complete monograph of this spectrum has only recently been published.² Practically every known line of Fe 1 is present in the sun. An amazing number of predicted lines agree well with solar wave-lengths. A statistical study of these coincidences indicates that most of them are real. For the statistical work the predicted lines were graded as "good," "fair," or "poor." The grades were based on the behavior of all the lines of each multiplet in the solar spectrum, the agreement in wave-length, and other factors. Only the "good" and "fair" lines have been published to date. Since the grading was severe, and since predicted wave-lengths are much in demand, many of the lines graded "poor," but considered useful to other workers, have been retained in the R M T. - 18. The Second Long Period (Rb-Xe). These elements are observed chiefly in the solar and sun-spot spectra and later dwarf stars. Except for Y II and Zr II the lists are restricted to the lines from low atomic energy levels. They are, however, more extensive than in the earlier Multiplet Table and slightly longer than are necessary to meet present needs. 19. Forbidden lines are assuming more and more significance in astronomical sources. A special section of the R M T (pp. 100-110) and one of the Finding List (pp. 87-96) are devoted to them. It is extremely difficult to predict what the future needs will be. To list the array of possible predicted lines even among only abundant elements would be prohibitive. The present selection has been based largely on suggestions made by Dr. P. Swings. He was planning to publish a paper on this subject, but this was unknown to the writer when she was confronted with the problem of including them in the R M T. He generously suggested that they be given here instead of in a separate paper, and has examined the manuscript carefully. The author is extremely fortunate to have had the benefit of his extensive knowledge of both the theoretical and astrophysical aspects of forbidden lines while preparing this section of the Table. Details are discussed later in § 44. #### IV. GENERAL ARRANGEMENT OF THE MULTIPLET TABLE - 20. The toregoing remarks serve only as the most general guide
to the scope of the material presented here. The book is colored throughout by individual judgment in the editing of spectroscopic literature. A serious attempt has been made to limit it in such a manner that it will be a useful astrophysical handbook. Even so, it is now more than twice the size of the earlier edition. - 21. The elements in the R M T are discussed in order of increasing atomic number, and the spectra of each element in order of increasing ionization. Table 1 gives a convenient arrangement of the Periodic Table of the elements. This Table is self-explanatory. The atomic number and chemical symbol of each element are given and elements with similar spectra in the short and long periods are connected by diagonal lines. ¹ Russell, Babcock and Moore, Phys. Rev. (2) 46, 826 (No. 9), 1934. Babcock and Moore, Ap. J. 101, 374, 1945. ² Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34, 111 (Part 2), 1944. TABLE 1 THE PERIODIC TABLE 1 | First
Period | | 1
H | | 2
He | : | | | | | | | | | | | | | | |-------------------|----------|----------|-----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------| | Second
Period | | 3
Li | | 4
Be | | 5
B | | - | 6
C | | 7
N | | 8
O | | 9
F | | | 0
Ne | | Third
Period | | 11
Na | | 12
M | | 1
A | 3
.l | | 14
Si | | 15
P | _ | 16
S | | 17
C | | 1 | 8
\
\ | | Fourth | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35
Br | 36
Kr | | Period | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Со | Ni | Cu | Zn | Ga | Ge | As | Se | | | | Fifth
Period | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Cb | 42
Mo | 43
(Ma) | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | Sixth
Period | 55
Cs | 56
Ba | 57*
La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85 | 86
Rn | | Seventh
Period | 87 | 88
Ra | 89
Ac | 90
Th | 91
Pa | 92
U | | | | | | | | | | | | | ^{*} Atomic numbers 58-71—Rare Earths. See below. 70 71 69 62 63 64 65 66 67 68 60 61 Rare Er Sm Eu Gd $\mathbf{T}\mathbf{b}$ Dy Ho TmΥb Lu Earths Nd (II) In Table 2 the elements are listed in the alphabetical order of their names. The successive columns contain, respectively, the name, the chemical symbol, and the atomic number of each element. Table 2 ALPHABETICAL LIST OF ELEMENTS | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | |-----------|--------|---------------|------------|--------|---------------|-----------|--------|---------------| | Actinium | Ac | 89 | Chlorine | Cl | 17 | Holmium | Но | 67 | | Aluminium | Al | 13 | Chromium | Cr | 24 | Hydrogen | Ή | 1 | | Antimony | Sb | 51 | Cobalt | Co | 27 | (Illinium | Il | 61)† | | Argon | A | 18 | Columbium | Cb | 41 | Indium | In | 49 | | Arsenic | As | 33 | Copper | Cu | 29 | Iodine | I | 53 | | Barium | Ba | 56 | Dysprosium | Dy | 66 | Iridium | Ir | 77 | | Beryllium | Be | 4 | Erbium | Er | 68 | Iron | Fe | 2 6 | | Bismuth | Bi | 83 | Europium | Eu | 63 | Krypton | Kr | 36 | | Boron | В | 5 | Fluorine | F | 9 | Lanthanum | La | 57 | | Bromine | Br | 35 | Gadolinium | Gd | 64 | Lead | Pb | 82 | | Cadmium | Cd | 48 | Gallium | Ga | 31 | Lithium | Li | 3 | | Caesium | Cs | 55 | Germanium | Ge | 32 | Lutecium | Lu | 71 | | Calcium | Ca | 20 | Gold | Au | 79 | Magnesium | Mg | 12 | | Carbon | C | 6 | Hafnium | Hf | 72 | Manganese | Mn | 25 | | Cerium | Ce | 58 | Helium | He | 2 | (Masurium | Ma | 43)† | [†] Not isolated. ¹ International Chemical Symbols—1941. | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | |-------------------|--------|---------------|-----------|--------|---------------|-----------|---------------|---------------| | Mercury | Hg | 80 | Radium | Ra | 88 | Tellurium | Te | 52 | | Molybdenum | Mo | 42 | Radon | Rn | 86 | Terbium | Тb | 65 | | Neodymium | Nd | 60 | Rhenium | Re | 75 | Thallium | Tl | 81 | | Neon | Ne | 10 | Rhodium | Rh | 45 | Thorium | \mathbf{Th} | 90 | | Nickel | Ni | 28 | Rubidium | Rb | 37 | Thulium | Tm | 69 | | Nitrogen | N | 7 | Ruthenium | Ru | 44 | Tin | Sn | 50 | | Osmium | Os | 76 | Samarium | Sm | 62 | Titanium | Ti | 22 | | Oxygen | O | 8 | Scandium | Sc | 21 | Tungsten | W | 74 | | P alladium | Pd | 4 6 | Selenium | Se | 34 | Uranium | Ü | 92 | | Phosphorus | P | 15 | Silicon | Si | 14 | Vanadium | V | 23 | | Platinum | Pt | 78 | Silver | Ag | 47 | Xenon | Xe | 5 4 | | Polonium | Po | 84 | Sodium | Na | 11 | Ytterbium | Yb | 70 | | Potassium | K | 19 | Strontium | Sr | 38 | Yttrium | Y | 39 | | Praseodymium | Pr | 59 | Sulphur | S | 16 | Zinc | Zn | 30 | | Protoactinium | Pa | 91 | Tantalum | Ta | 73 | Zirconium | Zr | 40 | #### 22. Headings. Each spectrum of each element for which multiplets are given, begins with a heading containing four entries: the ionization potential, an astrophysical grade of the analysis, a grade of the list, expressing the fraction of classified lines listed, and finally, the date of completion of the manuscript of that spectrum. For example, Cr 1 (p. 37) starts with the heading Cr I I P 6.74 Anal A List B March 1941. #### 23. The Ionization Potential. For arc spectra many of these have been taken from the list published by Meggers in 1941.¹ For the first spark spectra he has kindly furnished a similar list ² which has been extensively used. The monograph by Edlén ³ has furnished many more, but the values have been recalculated using the factor 0.00012345 instead of the one he used (see § 35). Edlén's unpublished values are quoted ⁴ for Ne. For many other elements the I P has been obtained from the limits published in the papers on analysis, as for Edlén's results. The list by Boyce ⁵ is frequently quoted, particularly in the section dealing with Forbidden Lines. Those interested in the source are advised to consult the part of the bibliography pertaining to analysis (Tables 9 and 10), or one of the above mentioned general lists. 24. The completeness of analysis from the standpoint of the astrophysicist (§§ 8–11) is indicated by four grades. "Anal A" signifies that practically all the important lines of wave-length > 2950 are classified, "Anal B" that only a small fraction remain unclassified, "Anal C" that a considerable proportion are unclassified and "Anal D" that the analysis is seriously incomplete. This rating necessarily involves a large amount of opinion and should not be given too much weight. No two appraisements would agree completely. Its purpose is to indicate the present state of analysis with regard to the needs of the astronomer. From the viewpoint of the physicist, the state of the *term* analysis of the various spectra has been similarly summarized elsewhere by means of grades A, B, C etc. With the aid of Hund's theory the physicist can compare the number of predicted and observed *terms* and assign a grade accordingly, whether or not most of the leading lines occur in a given region of the spectrum. Both Boyce ⁵ and Shenstone ⁶ have published extensive surveys. On account of the different viewpoints, the two grades are often not identical for the same spectrum. 25. A similar grading "List A, B, C, or D" is introduced to indicate the percentage of classified lines of a given spectrum included in the R M T. Since all lines of each spectrum considered are not equally useful to the astrophysicist, the omissions have been much more drastic in some cases than in others. For example, practically every ¹ Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ² Unpublished material, April 1941. ³ Nova Acta Regiæ Societatis Scientiarum Upsaliensis (IV) 9, No. 6, 1933. ^{*} Communicated by Swings in a letter, March 1945. ^{Rev. Mod. Phys. 13, 1 (No. 1), 1941. Reports on Progress in Physics 5, 210, 1939.} well as strong lines. Hence, all classified lines of Fe 1 to the red of $\lambda 2950$ are entered and the list entry in the heading is "List A". Most of the spark spectra of the first long period are in this class, unless the element is scarce in stars. For many spark spectra most of the observed lines are in the violet and ultra-violet. In such cases the list may be very short, although graded "List A". This means that only a small fraction of the total number of observed classified lines lie in the region considered in this book. When all but the weakest classified lines are given, the list is graded "B". The spectra of Na I and Mg I illustrate "List B", the higher series members having been omitted as unimportant. In anticipation of requests for more material, the general policy has been to include slightly more than is necessary. Since all classified lines are not given, however, the list cannot be graded "A". "List C" denotes that most of the strong lines are entered: "List D", that only the leading strong lines are given. In grading the *lists*, unclassified lines have not been given consideration (although the stronger ones are listed after the multiplets of a spectrum). The purpose of this grading is to enable the reader to judge how many classified lines have been omitted, regardless of whether or not the *analysis* is complete. Thus for Co II few lines are classified, but all these are listed. Hence this element is in the class "Anal C, List A." 26. The last entry at the head of each spectrum gives the month and year in which that section of manuscript was completed. This work has extended over such a long period that the date of publication does not apply even approximately to the date at which some spectra were last examined. It is hoped that the lists are up to date, but if important references have been missed, or if existing
unpublished material should replace that included here, the writer invites such suggestions. ## V. ARRANGEMENT OF THE MULTIPLETS OF EACH SPECTRUM 27. Reference must be made to some details of spectrum analysis in order to discuss the plan of presentation adopted here. In brief, the atoms of a gas, when excited by radiation, absorb certain wave-lengths corresponding to transitions of their outer electrons from lower energy levels to higher ones. From differences in the wave numbers of the observed lines, energy levels can be worked out, each line being produced by a transition between two such levels. Related levels are grouped accordingly to well known rules to form spectroscopic terms. Transitions between terms give rise to groups of related lines called multiplets. In the RMT the terms of each spectrum have been arranged in order of increasing value of the component of lowest energy. This defines the relative level of the term, starting with the lowest term zero. The excitation potentials (columns 4 and 5) express in electron volts the values of the energy levels of those term components involved in the production of each line (see §35). To illustrate, the lowest term of Fe 1 is a^5D . This term is made up of five energy levels whose E P's are respectively 0.00, 0.05, 0.09, 0.11 and 0.12. The next term is a^5F . Here the components have E P's 0.86, 0.91, 0.95, 0.99 and 1.01. For the purposes of this book the terms are considered in order of the lowest level of each, i.e. a^5D 0.00, a^5F 0.86 etc. This is to avoid confusion in spectra whose term values overlap seriously. In each spectrum all multiplets with the same low term are in one group. The various groups are listed in the order of increasing value of the low terms. Within a group (which represents the combinations of a given low term with higher terms) the multiplets follow the order of increasing high term values. For example, all combinations from a⁵D of Fe 1 (Multiplets 1-11) form the first group. These multiplets are listed in order of increasing high E P, 2.39, 2.82, 2.93, 3.20 etc. The next low term is a⁵F. The combinations from this term form the next group (Multiplets 12-31) etc. In certain multiplets, the lowest components of one or both of the terms involved are not represented. This does not alter the arrangement. Whenever the low level changes, the break in the continuity is indicated by three long dashes between the groups. For Fe 1 the first of these occurs between multiplets 11 and 12. When terms are widely separated this arrangement results in listing the multiplets from a given low term in the order of decreasing wave-length of the leading line of each multiplet, since increasing energy of the high terms automatically results in increasing wave number, or decreasing wave-length. The wave-length criterion alone was used for part of the RMT until the overlapping of terms in some complex spectra of the first long period introduced serious complications of arrangement. Then the more rigorous procedure ¹ Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34 (Part 2), 111, 1944. described above was adopted. Some spectra had been typed before the strictly orderly listing was put into effect. Owing to the excessive amount of labor involved in making such minor changes, slight irregularities of arrangement have not been corrected. For the greater part of the Table, however, the multiplets are in orderly array. 28. The energy levels that are grouped to form spectroscopic terms are defined by inner quantum numbers, commonly known as J-values. The terms have multiplicities (which are either all odd or all even in a given spectrum), and are further defined by azimuthal quantum numbers L which have the values 1, 2, 3 etc. for terms labeled S, P, D, F, G, H, I, K. The complete multiplet designation of any line includes all of these quantities for both the lower and upper energy level involved in the production of the line. In the R M T a simplified plan has been adopted. The inner quantum numbers are listed separately from the rest of the designation, in column six, under the heading J. The J-value belonging to the lower term comes first and is followed by that of the higher term. In the next column, headed "Multiplet Desig" the spectroscopic designation of the lower term is always stated first, followed by a dash, then that of the higher term. For example, in multiplet No. 5 of Fe I the first line, 3719.935 has J-values 4-5. The rest of the designation is $a^5D-z^5F^\circ$. In the complete notation the "4" appears as the subscript of a^5D and 5 as that of z^5F° , i.e. $a^5D_4-z^5F^\circ$. The complete designation of the second line $\lambda 3737.133$, is $a^5D_3-z^5F^\circ$ 4 etc. The "a" and "z" merely distinguish these 5D and 5F° terms from others of the same type. This notation is discussed later in § 38. For both terms the superscript 5 denotes the multiplicity. "Permitted" lines occur among combinations between two sets of terms, one "odd" and the other "even". The superscript "o" attached to ⁵F tells that this is the odd term. When both terms belong to the same set (odd or even), the lines are commonly called "Forbidden". Within a multiplet the arrangement of the individual lines is governed by the J-values. Each multiplet is entered as if it were written in multiplet array, i. e. the lines on the main diagonal come first, then the strongest satellite lines, then the next strongest etc. This is best illustrated by considering the inner quantum numbers, J, of each type of spectroscopic term. For convenience the J-values of all terms from S through I, of multiplicities 1-11 and 2-10 are given in Table 3, which applies equally to odd or even terms. Even multiplicites are on the left and odd on the right half of the table. The types of terms (in order of increasing L value) S, P, D, F, G, H, I are in the vertical column on the left. To arrange any multiplet in standard array, such as Multiplet No. 5 of Fe 1, a⁵D-z⁵F°, find the J-values of the two types of terms (odd or even) from Table 3. The term ⁵D is listed under multiplicity 5, and entry D on the left (J-values are 4, 3, 2, 1, 0). The term ⁵F° has J-values 5, 4, 3, 2, 1. Write these arrays as follows, with the low term horizontally arranged, and the high one vertically arranged: | z ⁵ F° | ⁵ D ₄ | ⁵ D ₃ | ⁵ D ₂ | ⁵D₁ | ⁵ D ₀ | |------------------------------|-----------------------------|-----------------------------|-----------------------------|-----|--------------------------------| | 5F°5 | x ₁ | | | | | | 5F°4 | y ₁ | $\mathbf{x_2}$ | | | | | ⁵ F° ₈ | z ₁ | y ₂ | X8 | | | | ⁵ F° ₂ | | $\mathbf{z_2}$ | уз | X4 | | | ⁵ F° ₁ | | | Z ₃ | У4 | $\mathbf{x}_{\mathbf{\delta}}$ | Table 3 J-Values of Spectroscopic Terms | Mu | ltiplicity | 2 | 4 | 6 | 8 | 10 | 1 | 3 | 5 | 7 | 9 | 11 | |----|------------|----------------|-------------------------------------|--|---|---|---|-------------|-----------------------|---------------------------------|--|--| | L | Term | | | | | | | | | | ., | | | 1 | s | 1/2 | 1½ | 2½ | 3½ | 4½ | 0 | 1 | 2 | 3 | 4 | 5 | | 2 | P | 1½ ½ ½ | $\frac{2\frac{1}{2}}{1\frac{1}{2}}$ | $ \begin{array}{r} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $ | $\frac{4\frac{1}{2}}{3\frac{1}{2}}$
$\frac{2\frac{1}{2}}{2}$ | 5½
4½
3½ | 1 | 2
1
0 | 3
2
1 | 4
3
2 | 5
4
3 | 6
5
4 | | 3 | D | 2½
1½ | 3½
2½
1½
½
½ | 4½
3½
2½
1½
½ | 5½
4½
3½
2½
1½ | 6½
5½
4½
3½
2½ | 2 | 3
2
1 | 4
3
2
1
0 | 5
4
3
2
1 | 6
5
4
3
2 | 7
6
5
4
3 | | 4 | F | 3½
2½
2½ | 4½
3½
2½
1½ | 5½
4½
3½
2½
1½
½ | 6½
5½
4½
3½
2½
1½ | 7½ 6½ 5½ 4½ 3½ 2½ 1½ | 3 | 4
3
2 | 5
4
3
2
1 | 6
5
4
3
2
1
0 | 7
6
5
4
3
2 | 8
7
6
5
4
3
2 | | 5 | G | 41/2 31/2 | 5½
4½
3½
2½ | 6½
5½
4½
3½
2½
1½ | 7½
6½
5½
4½
3½
2½
1½ | 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½ ½ | 4 | 5
4
3 | 6
5
4
3
2 | 7
6
5
4
3
2 | 8
7
6
5
4
3
2
1 | 9
8
7
6
5
4
3
2 | | 6 | H. | 5½
4½ | 6½
5½
4½
3½ | 7½
6½
5½
4½
3½
2½ | 8½
7½
6½
5½
4½
3½
2½
1½ | 9½
8½
7½
6½
5½
4½
3½
2½
1½
½ | 5 | 6 5 4 | 7
6
5
4
3 | 8
7
6
5
4
3
2 | 9
8
7
6
5
4
3
2 | 10
9
8
7
6
5
4
3
2
1 | | 7 | I | 6½
5½ | 7½
6½
5½
4½ | 8½
7½
6½
5½
4½
3½ | 9½
8½
7½
6½
5½
4½
3½
2½ | 10½
9½
8½
7½
6½
5½
4½
3½
2½
1½ | 6 | 7
6
5 | 8
7
6
5
4 | 9
8
7
6
5
4
3 | 10
9
8
7
6
5
4
3
2 | 11
10
9
8
7
6
5
4
3
2 | Only those combinations between the low and high terms, for which J changes by O or ± 1 are "permitted". This rule restricts the number of lines to be expected to those denoted by x, y, and z, where the subscripts 1, 2, 3 represent decreasing J-values. The main diagonal lines are x_1-x_5 . The first satellites are y_1-y_4 and the second satellites, z_1-z_3 . In the RMT, the lines on the main diagonal are listed first, in order of decreasing J-values. From the example, the first lines entered are those in the positions x_1 , x_2 , x_3 , x_4 , x_5 in the Multiplet. The line at x_1 has the designation $a^5D_4-z^5F_5^0$, at x_2 $a^5D_3-z^5F_4^0$ etc. In the RMT the lines of this multiplet appear in the
following order: | | λ | J | Desig | | |----------------|----------|-----|-----------------------------------|-------------------| | $\mathbf{x_1}$ | 3719.935 | 4-5 | $a^{\delta}D-z^{\delta}F^{\circ}$ |) | | $\mathbf{x_2}$ | 3737.133 | 3-4 | " | / | | X ₃ | 3745.561 | 2-3 | " | Main Diagonal | | $\mathbf{x_4}$ | 3748.264 | 1-2 | " | S _i | | X5 | 3745.901 | 0-1 | " |) | | y ₁ | 3679.915 | 4-4 | " | } | | y 2 | 3705.567 | 3-3 | " | TP' + 0 + 11' | | уз | 3722.564 | 2-2 | " | First Satellites | | y 4 | 3733.319 | 1-1 | " | | | $\mathbf{z_1}$ | 3649.304 | 4-3 | " |) | | $\mathbf{z_2}$ | 3683.054 | 3-2 | " | Second Satellites | | $\mathbf{Z_3}$ | 3707.828 | 2-1 | ") | | An example of a symmetrical multiplet should also be given. Multiplet No. 12 of Cr II (p. 43) has the designation a P-z P°. Since the multiplicity (4) and type of term (P) are identical for both terms, the J-values are also identical. From Table 3 the J-values for a P term are $2\frac{1}{2}$, $1\frac{1}{2}$, $\frac{1}{2}$. | z ⁴ P° | ⁴ P ₂ 1⁄ ₄ | ⁴P _{11⁄4} | ⁴ P _{1/4} | |--|---|--------------------|-------------------------------| | ¹ P° ₂ ½
⁴ P° ₁ ½
⁴ P° _½ | x ₁ | y 1 | | | 4P°114 | y 1 | X ₂ | y ₂ | | 4P°14 | | \mathbf{y}_2 | X 3 | Here both sets of satellites involve the same J-values, $1\frac{1}{2}-2\frac{1}{2}$, $\frac{1}{2}-1\frac{1}{2}$ and $2\frac{1}{2}-1\frac{1}{2}$, $1\frac{1}{2}-\frac{1}{2}$. Throughout the R M T for such cases, combinations in which J-values read from larger J to smaller J are entered first. Here, for example the pair $2\frac{1}{2}-1\frac{1}{2}$, $1\frac{1}{2}-\frac{1}{2}$ (y₁ and y₂ in bold face type above), precede the pair with J-values $1\frac{1}{2}-2\frac{1}{2}$, $1\frac{1}{2}-1\frac{1}{2}$ respectively. According to elementary theory the leading line of the principal diagonal is the strongest in the multiplet, and first satellites are stronger than the second, while the two sets of satellites in a symmetrical multiplet are comparable.¹ In the majority of spectra intersystem combinations occur, i.e. those in which the multiplicities of the terms differ by 2 or even 4, as for example multiplets 1 and 332 of Fe 1, $a^5D-z^7D^\circ$ and $z^7F^\circ-e^3G$ respectively. These multiplets often include strong lines, particularly for the heavier elements. The rule $\Delta J=0$ or ± 1 is strictly observed but there are no known formulae for the prediction of intensities, which are often apparently erratic. When intersystem lines are strong, intensities in regular multiplets often deviate from the formulae. The intersystem multiplets are arranged in the R M T on the "diagonal" basis described above, so far as irregularities permit. 29. For all types of multiplets the reader must bear in mind that the arrays described above, and the J-values in Table 3 give all the possible permitted theoretical transitions. In many cases the R M T does not give theoretically complete multiplets. Reasons for this are: - 1. When the strongest lines of a multiplet are likely to be very weak in astrophysical sources, the weaker ones have been deliberately omitted even though they may have been observed in the laboratory. Omissions are indicated by a "†" following the "Multiplet Designation". - 2. Individual lines in a multiplet are sometimes much fainter than theoretically expected and have never been observed. Sequences along the diagonals are thus broken. For such lines predicted positions are given only when it is believed that they may be observable astrophysically. ⁸ For details see Russell, Mt. Wilson Contr. No. 537; Ap. J. 83, 129, 1936. 3. In some cases one or more components of a spectroscopic term have not yet been indentified. Such cases may be detected by comparing the column headed J for a given multiplet with the theoretical array of permitted lines, just described. 30. For the more important spectra, limited lists of the leading unclassified lines follow the multiplets. The R M T is not designed as a source for the investigator who is interested primarily in unclassified lines. Three general factors have controlled the selection: the abundance of the element in astronomical sources, the grade of the analysis and the accuracy of the laboratory material. Under "Anal A" more lines will be unclassified for a complex spectrum like Fe I than for a simpler spectrum, but the percentage of strong lines will be small. Under "Anal B" there will be more and stronger unclassified lines than if the grade were A, etc. If A. S. King has made a temperature classification of the spectrum the leading unclassified lines can be readily chosen from his lists. In such cases his temperature class follows the intensity in the R M T Among arc spectra the lists of unclassified lines are longest for N 1, Ti 1, Cr 1, Mn 1, Fe 1, Ni 1, Tm 1. Only a few lines are listed for Si 1, S 1, Ca 1, Sc 1, V 1, Co 1, Y 1, Lu 1, and none for any other elements. For first spark spectra the lists of unclassified lines may be summarized as follows: Limited Si II, A II, Fe II, Cb II, La II, Nd II, Sm II, Gd II, Tm II. Very limited O II, S II, Cl II, Ti II, V II, Cr II, Y II, Zr II, Ce II, Pr II, Eu II, Hf II. Measures inadequate Mn II, Co II, Ni II. Lists are given for only five "third" spectra: C III (where a dubious classification has been suggested for the lines) N III, Si III, S III and Fe III. The only one of any length is that of Fe III. For some spark spectra, notably La II and Fe III it is not certain that the separation of the lines in different states of ionization is definitive. This is mentioned in the R M T under these spectra. For many spectra the separation is so uncertain that no unclassified lines have been included. For no spectrum is a complete list given. 31. A few notes are appended to the list of multiplets for certain spectra. These fall into two classes: those dealing with notation (see § 37), and those dealing with fine structure. This book does not discuss fine structure or isotope effects in any detail. Those spectra in which the fine structure or isotope effects should be called especially to the attention of the astrophysicist have this fact mentioned, as follows: Li II Very wide fine structure Mg I, Al II Fine structure Hg I, Tl I Many lines show fine structure He II, Bi I Wide fine structure. ## VI. COLUMNS OF THE TABLE OF MULTIPLETS 32. Wave-length. The data for each spectrum are given in seven columns. The first contains the laboratory wave-length in I A units. In the earlier edition solar wave-lengths were listed for all but the lighter elements (see § 5). Since any solar line may be a blend, it was decided to replace this entry by laboratory material. An effort has been made to select the best available wave-length for each line. The individual lists are far from homogeneous—there is often an enormous range in accuracy among the lines of a given spectrum. The reference from which each line has been taken is indicated in column two, by the letters A, B, C etc. Table 7 (p. xxiv), contains the number of the reference in the bibliography to which the letters refer. The letter "P" in this column denotes throughout that the wave-length is predicted from the laboratory term values, which may be found in the references to analysis, Table 9 (p. xxvii). The order of the letters represents roughly the estimated precision of the measures, but this must not be interpreted too literally because some investigators have measured only limited regions of a spectrum. Consequently, several accurate sources may be used within a multiplet. Furthermore, the letters A, B, etc. denote very different degrees of accuracy for different spectra. While the earlier letters of the alphabet are the more favored choices, it would be erroneous to conclude that the letters are arranged strictly according to the writer's rating of the accuracy of the measures. #### 33. Symbols in the R M T. Since most of the symbols occur in column one, they will all be described here. Wave-length column: - // This symbol follows the wave-length of the "Raie Ultime" as determined from observations in the laboratory. High transition probabilities as well as low energy levels are involved, and they do not always come from the lowest levels. When the known Raies Ultimes are to the violet of $\lambda 2950$ they are not included in the R M T. With the exception of Eu II1 they are all quoted from Meggers 2, who generously furnished the data on first spark spectra 3 in advance of publication. - * An asterisk precedes the wave-length throughout the R M T to denote a blend. If no symbol follows the wave-length, the line is blended with another line in the same spectrum. For example, the line *2970.106 appears in multiplets 10 and 11 of Fe I. An "*" is also used to denote blended intensities. For symbols in the intensity column see § 34G. - § This symbol follows the wave-length (an "*" always preceding) to indicate a blend of an arc and spark line; or of two spark lines of the same element in spectra of different degrees of ionization. When this pair of symbols appears with an arc line it denotes that the arc line is blended with a line in the first spark spectrum of the element. Similarly, if it appears with a line in a first spark spectrum, the spark line is blended with an arc line of that element. Examples: - Fe I Multiplet No. 28 *3116.633 &—Blend of Fe I and Fe II. - Cr 11 Multiplet No. 4 *3349.34§—Blend of Cr II and Cr I. All uses of pairs of symbols not covered by the general cases of blends of arc lines with those in the first spark spectra or vice-versa, as described above, are summarized in Table 4, where another pair of symbols "* and §§" is also introduced. TABLE 4 SYMBOLS DENOTING BLENDS—SPECIAL CASES | Spectrum | * and § | * and §§ | |---
--|--| | C 11 C 111 P 11 P 111 P 1v S 11 S 111 K 111 | PII and PIII PIII "PII PIV "PIII SII "SIII SIII "SII KIII "KII | CII and CIII CIII "CII PII "PIV PIII "PIV PIV "PII | | Fe 11
Fe 111 |
Ге пт " Fe п | Fен" Fенн
Fенн" Fен | Column one of Table 4 indicates the spectrum in which the symbols are found. Columns two and three of the Table contain the pairs of symbols used and the meaning of each. For example: - C II Multiplet No. 45 *4368.14§§—Blend of C II and C III. - S II Multiplet No. 50 *3860.64§—Blend of S II and S III. The symbols mentioned above apply to blended lines which have come to the attention of the writer, but doubtless many more blends exist than are thus noted. A careful examination of the Finding List should reveal any important blends, but this list was prepared after the R M T was typed, and consequently could not be used to check the thoroughness with which the blended lines are marked. - m An "m" preceding the wave-length indicates that the line is masked (see § 34F). - † This symbol follows the Multiplet Designation to call attention to the fact that not all the lines observed in the multiplet are listed in the R M T. The violet limit $\lambda 2950$ explains the omission of some strong lines. Most of the omitted lines are too faint to be of astrophysical importance. ¹ Russell, Unpublished material. ² Meggers, Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ³ April 1941. 34. Intensity Column three contains the estimated laboratory intensity. It has been included only because of persistent requests. The intensities must be used with great caution not only because of the glaring lack of homogeneity in the estimates, but also on account of the difference in the intensity scales used by various investigators. For each spectrum the writer has tried to adopt the best existing set of estimates made by a good observer who has covered a long range of wave-length. In the red, the intensities by Meggers and Kiess have been the first choice. In the visible, the arc intensities by A. S. King are given for arc spectra and for first spark spectra of the rare earths. For other spark spectra, spark intensities have been used. When the intensities of the lines of a spectrum are taken from one or two main references they are not given in parentheses. If only a few intensities are from one source, or if the listed ones are probably on a very different scale from the majority used for a spectrum, parentheses are used. In general, the parentheses denote that the intensity is not the first or second choice. Table 8, Page xxvi, gives the references from which the intensities have been taken. The reader is warned not to assume that the wave-length and intensity come from the same reference. This may be the case, but frequently it is not. The intensity column contains several types of notes discussed below under entries A to G: A The letters used to describe the intensities are as follows: - d Double - g Ghost; g coin Ghost coincident; gn Ghost near - l Shaded to longer wave-length 1 - n Diffuse (without structure) or hazy - N Very diffuse (without structure) or very hazy - p Part of band - r Narrow self-reversal - R Wide self-reversal - s Shaded to shorter wave-length (noted by "v" or "nv" in some papers)1 - tr Trace - w Wide (fine structure type), broad or complex - W Very wide (fine structure type) or very broad B The intensity column is often blank for predicted lines because most of them have not been observed in the laboratory. If the predicted position is assumed to be more accurate than the measured one, the laboratory intensity is given with a predicted wave-length. C A dash indicates that the line is so faint that no laboratory intensity has been assigned, except for H, D and He II, where no intensities are listed. D "Forb" indicates that the line is forbidden but has been observed in the laboratory. Lines due to Stark Effect are thus marked. E Familiar "names" of selected lines are included: Series Names: H Ha, H β etc. D Da, D β " Fraunhofer Names: He I D Na 1 D_1 and D_2 Ca II H and K F When an important line is masked, "m" precedes the wave-length, the predicted position of the masked line is given, and the spectrum to which the masking line belongs, is noted by the chemical symbol in the intensity column. The Roman numerals have been omitted except for masked lines of Fe III. If for example "Fe" or "Ti" appears in the intensity column, the line in question is masked by Fe I or Ti I the "I" being omitted because of the limited space in this column. Similarly, a "+" is mostly used for first spark spectra in place of "II," although the conventional use of Roman numerals is fully recognized. ¹ Recommended by the International Astronomical Union—Trans. Intern. Astr. Union 6, 100, 1938. - G Symbols in the intensity column: - * Blended Intensity - Predicted line of Fe 1 present in the solar spectrum; •? denotes that the solar identification as Fe 1 is subject to some question. - 35. Columns four and five give the low and high excitation potentials (E P) of the levels involved in the production of the line (see § 27). Some E P's are given in parentheses in the R M T to denote that they are not accurately known. In analyzing a spectrum it often happens that two or more sets of terms of different multiplicity exist that are unconnected, since no intersystem combinations have been detected. If long series, whose correctness is unquestionable, can be found, the limits furnish a fairly accurate determination of the relative positions of the different types of terms. This is the case for $Be \, I, B \, II, C \, III, O \, III,$ and $O \, IV,$ but no symbol has been introduced to indicate that intersystem combinations have not been observed. The limits are less accurate for N 11, N 11, O 11, O 11, O 12 and F 11. The E P's affected by this are in parentheses. For Ce II, two sets of terms are well known but they are unconnected. For this reason the lines are listed in two Groups, I and II. Within each group the relative values of the E P's are correct, but the terms in Group I are believed to be lower than those in Group II by about 0.6 volt.\(^1\) In Group II all values are, therefore, enclosed in parentheses. For Ce III parentheses are used because the lowest level may not have been found. For Si 11, P 111 and Mn 11 some terms are established by their internal separations, but are entirely unconnected with the rest of the terms. Here the E P columns contain question marks. In the earlier Multiplet Table all E P's were obtained by multiplying the term values in cm-1 by the factor 0.00012345. An improved value of this factor, 0.00012336, was published by Birge 2 in 1929. Since then he has announced that 0.00012395 is more nearly correct 3. This last change deserves serious consideration—it involves a change in "e", the charge on the electron, which will doubtless be carefully checked experimentally in the near future. The change is surprisingly large and affects many calculations of an astrophysical nature. Although it is wrong, in principle, to perpetuate the use of an incorrect value of a fundamental physical constant, the old value 0.00012345 has been used throughout the R M T in calculating the E P's (and I P's for which the limits were known. See § 23). The reason is threefold: - 1. The errors in stellar temperatures and other quantities based on observational data far exceed those introduced by the change in this factor. - 2. Until a definitive value of the constant is available it has seemed an unjustifiable expenditure of time and money to revise the extensive calculations, many of which had already been done with the oldest value. - 3. The change in the value of "e" enters into so many calculations, that to recalculate the E P's and I P's is far from sufficient. As soon as the new value is confirmed without likelihood of further change, it should be used in all calculations of astrophysical importance. The last two columns contain J-values and Multiplet Designations. These have already been discussed in § 28, but a few comments are in order. When levels of a term are so close that they are unresolved, all the J-values for the term should be listed. This is impossible because of limited space, and consequently the column headed J is frequently blank or has the J-value of only one level entered. The multiplet numbers which appear in parentheses under the Multiplet Designation are reference numbers to be used in locating any line. (See §6). In each spectrum the numbers start with "1." All lines in a multiplet have the same multiplet number. These numbers are entered in the Finding List. #### VII. SPECTROSCOPIC NOTATION The notation used in the column headed "Multiplet Designation" differs for spectra which contain conspicuous series and for the complex spectra which do not. #### A. Series Spectra 36. For many elements the spectra become more complex as the degree of ionization decreases. The terms of each spectrum are the parent terms or "limits" of the terms in the spectrum of the next lower degree of ionization. The addition of s, p, d, f, etc. electrons to each limit produces arrays of terms accurately predictable from theory. Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439 (No. 6), 1941. Phys. Rev. Suppl. 1, 62 (No. 1), 1929. Rev. Mod. Phys. 13, 237 (No. 4), 1941; Reports on Progress in Physics 8, 131, 1941. The simplest case is illustrated by O vi. Here the lowest term of O vii, $1s^2$ ¹S, is so much lower than any other that no other limit need be considered. The addition of a "running" s, p, d, f... electron to this state produces series of doublet S, P°, D, F°... terms in O vi. In this case the electron and the terms are of the same type. For example, the ground term of O vi is $1s^22s$ ²S, and the next term $1s^22p$ ²P°. The term type and total quantum
number of the running electron suffice to define the configuration. In the R M T the notation 2^2 S, 2^2 P° etc. is used in spectra of this type. To illustrate, Multiplet No. 1 of Li i has the designation 2^2 S- 2^2 P°. (Other features of the notation are discussed in §28 and in Table 3). The case of O v is more complicated because 2^2P° of O vi is not much higher than 2^2S and terms from both limits are important. The addition of a running electron to these limits gives the following terms: | O vi | Limit | 1s²2s | 2 | S | 1s²2p | ²P | 0 | | | | | |------|-------------------|--|---|----|--|--------------------------------|-----------|------|-----|-----|-----| | O v | Added
Electron | Config | Ter | ms | Config | Ter | ms | | | | | | | 3s
3p
3d | 1s ² 2s3s
1s ² 2s3p
1s ² 2s3d | ¹ S
¹ P°
¹ D | 3D | 1s ² 2p3s
1s ² 2p3p
1s ² 2p3d | ¹ P° ¹ S | ¹P
¹D° | ¹D , | 3P° | ³D° | ³F° | The configuration is 1s²2s² gives only ¹S; and 1s²2p² only ¹S ¹D ³P. It appears from this array that if the terms having the limit 2°S in O vi are labeled 3°S, 3°S, 3°P°, When two or more of the effective limits are all even or all odd an addition to this notation is necessary. For terms derived from the lowest of such a group of limits, the running electron is given as before; for those derived from the next higher limit a prime is affixed; and for those from the limit above this a double prime. Where the lowest limit is an S term, the type of the electron and of the term itself are the same, and the former is omitted. For example, the limiting terms in O 11 are 4S°, 2D° and 2P° in order. The addition of a 3p electron to these gives (among others) the terms in O 1 here called 35P from 4S°, 3p′ 3D from 2D° and 3p″ 3D from 2P°. In several spectra there remain terms which cannot be described by this scheme: but it has been found possible to give a special abbreviated form of the configuration notation, etc. which make their nature intelligible to one versed in the theory of spectral structure. There is at present no general agreement regarding the use of abbreviated notation of this sort. The notation here adopted has been largely influenced by the limitations of the photographic process—and is not presented as an ideal system—but it illustrates the glaring need for the preparation and general adoption of a better one. #### 37. Special Cases. The notation used in the R M T for Ne 1, Na 11, A 1, K 11 and Ca 111 deserves special mention. Paschen's notation formerly used for spectra of this type defined the total quantum number and the type of electron, but introduced subscripts that were not inner quantum numbers. A revised notation which is given in detail by Bacher and Goudsmit 1 is adopted here. The levels with "s" electrons were called by Paschen s2, s3, s4 and s5; those with "p" electrons were p1 to p10 etc. In this book the subscripts used by Paschen have been omitted but the rest of his notation is retained with numbers assigned to the levels, in order of increasing values for the lowest group of levels of each type. All the members of a series have the same number, but with this arrangement homologous levels which have the same J-values for different elements are not always assigned the same index number. Ne 1 illustrates the changes: | Paschen | Revised | Paschen | Revised | |----------------------------------|---------|------------------|---------| | | | | | | 385 | 3s 1° | | | | 384 | 3s 2° | 4d6 | 4d 1° | | | | 4 d₅ | 4d 2° | | | 3p 1 | 4d' ₄ | 4d 3° | | 3p ₁₀ 3p ₉ | 3p 2 | 4d ₄ | 4d 4° | | 3p ₈ | 3p 3 | | | Ne i Notation ¹ Atomic Energy States, McGraw Hill, New York, London, 1932. Most of the levels for spectra of this type are not grouped into terms and consequently multiplets in the ordinary sense cannot be listed. Arbitrary groups of lines have been formed and numbered to facilitate the search for a given line. In Ne 1 for example, all important lines from the level 3s 1° combining with "3p" levels have multiplet number 1; those from 3s 1° combining with 4p levels have multiplet number 2 etc. #### B. COMPLEX SPECTRA - 38. In the majority of complex spectra the terms are so numerous that it is impracticable to designate them by their configurations. For these spectra the prefixes a, b, c, d are assigned to the low terms of each type and z, y, x etc. to those which combine with them. In Fe 1, for example, the lowest 3F term is a3F, the next higher one b3F etc. There are ten ⁸G° terms. They are labeled z³G°, y³G° q³G°. In Multiplet No. 449 the designation is b3G-t3G°. Here the low term is the second 3G term as indicated by the prefix "b". The high term is the seventh odd ³G term, as indicated by "t". - 39. In many complex spectra it is impossible to group all known levels into spectroscopic terms. These miscellaneous levels are assigned numbers, and the superscript "o" if they belong to the odd set. Many combinations between terms and miscellaneous levels are given in the R M T and assigned multiplet numbers. For example, the designation of multiplet number 450 of Fe 1 is b³G-12°. Numbered levels are numerous in spectra of the rare earths. The arrangement is similar to that described in § 27, i.e. the lines from a given low term are listed in order of increasing E P of the numbered levels. In Sm 11 only the low levels have been grouped into terms. All high levels are numbered odd levels. In the RMT the combinations of the separate components of the low terms with arbitrarily grouped odd levels are assigned multiplet numbers. For example, the combinations of a8F_{1/2} with the levels labeled 1°, 2°, 5°, 23°, 35°, 37° have multiplet number 1. The E P's increase for the various groups similarly to those in spectra with regular terms, as discussed in §27. ### VIII. SPECIAL NOTES ON INDIVIDUAL SPECTRA **4**0. *H* The wave-lengths listed for these spectra have been calculated for the center of gravity of the lines, \boldsymbol{D} taking into account the fine structure, and using the values of RH, RD and RHe respectively, given by Birge in 1941 1. These computations were made by Dr. J. E. Mack for inclusion here. The *He* 11 writer is deeply indebted to Dr. Mack for his cordial cooperation in furnishing this unpublished material. No intensities have been included for these spectra. O II Improved term values are needed. The writer has constructed the multiplets from Edlén's term list. Measures by different investigators are discordant, and considerable editing has been done, especially in the interpretation of blends. For the sextet terms the configuration in abbreviated form is used to indicate that the terms are from the high limit sp3 5S° in O III, namely: sp33p 6P, sp33d 6D°, sp34s 6S°. Na I The fine structure components of D₁ and D₂ have been measured with the interferometer by Meissner and Luft 2, as follows: | $\mathbf{D_1}$ | $\mathbf{D_2}$ | |---------------------|----------------| | 5895.9316 | 5889.9579 | | 5895.9103 | 5889.9380 | | Center of 5895.9236 | 5889.9504 | The measures listed in the R M T are taken from a source where the lines appeared as impurities, since it was thought that for astrophysical purposes these measures might be preferable to those of the fine structure components. The two lines $\lambda 11403$ and $\lambda 11381$ were also measured as impurities. Improved laboratory intensities are needed for Na 1. ¹ Rev. Mod. Phys. 13, 233 (No. 4), 1941. ² Ann. der Phys. (5) 29, 698, 1937. - Wall The changes made in the Laschen notation for the in have been discussed in § 5... also known in this spectrum, and two types of notation appear. The lines are listed in order of increasing low level and these levels combine with the terms. Although no complete multiplets are listed, multiplet numbers have been assigned as usual. For example, multiplet No. 17 is 3p 9-4s3P°. In spectra of this type no attempt has been made to indicate omitted lines by the use of a "†". The "List D" indicates that only the leading lines are listed. - Mg 1 Two sets of series, 31D-1F° and 33D-3F° have been extended by the use of infra-red solar wave-lengths from Babcock's Table (see § 15)1. This has been done on the assumption that the 1F° and 3F° terms are coincident, as Paschen suggested for the first members of the series. The predicted wave-lengths in the R M T are obtained from solar term values. The series appear to be so well confirmed that the solar wave-lengths are preferable to the predicted ones, but for uniformity, no exception has been made for these series lines of Mg 1. In Multiplets 7, 8 and 9 the J-values and designation apply to all three lines entered. In each case singlet combinations are involved. Normally one one line is observed in a combination of this type, but the fine structure components of each line are listed. - Al II The G and H terms given by Paschen and Ritschl 2 are in both cases assumed to be coincident singlet and triplet terms. When combinations of these terms with singlet terms are listed in the RMT, ¹G or ¹H° has been used in place of ^{1,3}G or ^{1,3}H°. Similarly, the last three entries are given as singlet combinations, but in reality they are probably singlet and triplet combinations. Double multiplicities for unresolved terms have not been used in the R M T. - Si II Owing to the use of the photographic method of publication, it has been impossible to add lines without retyping one or more pages. One predicted multiplet of Si II has been omitted which should possibly have been inserted. | I A | Ref | ΕP | | J | Multiplet | |---------|-----|------|-------|------------------------------|-----------| | | | Low | High | | Desig | | 4075.81 | P | 9.80 | 12.82 | 2½-1½ | 32D-52P° | | 4077.09 | P | 9.79 | 12.82 | $1\frac{1}{2} - \frac{1}{2}$ | | | 4073.05 | P |
9.79 | 12.82 | $1\frac{1}{2}-1\frac{1}{2}$ | | - P III The multiplets are listed slightly out of order, but it was thought unnecessary to retype the page on this account. - The measures by different observers are very discordant. This spectrum needs thorough observa-SII tion. Accurate wave-lengths, intensity estimates and term values, and further analysis are desirable. - A 11 This spectrum is fairly well analyzed but needs careful editing before a definitive analysis can be published. Rosenthal3 has measured many lines and from his measures alone a consistent set of term values could probably be calculated. The lists of classified lines are not homogeneous and a larger residual in the observed minus calculated wave number must be permitted than for most spectra. The multiplets listed in the R M T appear to be fairly satisfactory in spite of the inaccurate term values. One term, labeled a²P by de Bruin is puzzling because it has no configuration assignment. It has been retained, but needs to be checked carefully when the analysis is carried further. This is the only case where both the running electron notation and the prefix "a" appear in a given spectrum. Ca I Although the analyses of these spectra are almost completed, the spectra require further laboratory observation. Accurate wave-lengths, especially of the fainter lines are urgently needed. It is surprisingly difficult to obtain accordant term values. The interferometer measures made at Allegheny furnish an excellent starting point, but these spectra still invite the attention of the laboratory investigator, from the violet through the infra-red. Babcock and Moore, Ap. J. 101, 374, 1945. Ann. der Phys. (5) 18, 867, 1933. Ann. der Phys. (5) 4, 49, 1930. - Sc II Multiplet No. 9. Enter intensity 2 for $\lambda 3923.503$. - 41. Fe I The rigorous arrangement of multiplets described in § 27 applies only approximately to Fe I. In this spectrum the multiplet numbers reach 1352 but this figure is not definitive. Owing to an extension of the analysis which altered some term assignments, a number of multiplets were rearranged after the lines and multiplet numbers had been entered and checked in the Finding List. All the revisions were entered in the R M T. For unchanged multiplets the original multiplet numbers were retained. The revised multiplets were inserted as nearly as possible in the correct place and assigned the available numbers, or to avoid duplication, a number followed by "a". As a result of these changes the multiplets do not always have consecutive numbers and some numbers are omitted. The renumbering of all the multiplets entailed so many changes in the Finding List that it was not undertaken. In three multiplets of Fe 1, Nos. 3, 7 and 81, an "R" is entered under the multiplet number. A line has been inadvertently omitted from each of these multiplets. The omitted lines are listed on page 65 at the end of the Fe 1 multiplets, and preceding the list of unclassified lines. In multiplet No. 78, columns one and two, $\lambda 3497.137$ V should read 3497.15 P. Multiplet No. 1151 should be rejected; $\lambda 4618.568$ is erroneous. - Ni I Attention has been called to the fact that the intensities in Multiplet No. 62 are not so abnormal as indicated here. It has been impossible to insert revised estimates. - Rh II The use of the symbol "†" to denote omitted lines has not been checked owing to the lack of a complete line list. It has been assumed from the term lists that the fainter members of the multiplets thus marked have been observed. - Ce II The lack of connection between Groups I and II has been mentioned (§ 35). It is assumed that the terms in Group I are the lower set. The prefixes a, b and c etc. have been assigned to the low set of terms of each Group. There can be no ambiguity because in Group I the low set is even, while in Group II it is odd. W II All the miscellaneous levels published by Laun 1 have been numbered in order. These numbers are used in the R M T in place of Laun's notation. ### IX. SPECTRA OMITTED FROM THE R M T. These may be grouped in several general classes. 42. Spectra of probable astrophysical importance for which there is no analysis to date. These spectra are mentioned in the RMT in the appropriate place with the remark "No Analysis" and the date. If A. S. King has assigned a Temperature Class to the lines, this fact is noted. For example: page 86, Ce I No Analysis May 1942 (Temperature Class). The spectra in this class are listed in Table 5. Table 5 Spectra Omitted from R M T No Analysis | Spectrum | Ref. to
Temp. Class | Spectrum | Ref. to
Temp. Class | |----------|------------------------|----------|------------------------| | Се 1 | 215 | Dy 1 | 217 | | Pr 1 | 215 | Dy 11 | 217, 229 | | Nd 1 | 219 | Ho 1 | 217 | | Tb 1 | 217 | Но п | 217 | | Ть п | 217 | Th 1 | 123 | All but Th I have been observed by A.S. King. The bibliography numbers of the references to the work on temperature classification are entered in column two. ¹ Bur. St. Journ. Res. 21, 207 (RP 1125), 1938. astrophysically. These spectra are mentioned in the R M T with the remark "See Introduction". They are listed in Table 6 with numbers from the bibliography referring to the papers on analysis. Table 6 Spectra Omitted from R M T Not of Astrophysical Interest | Spectrum | Ref. to
Analysis | Spectrum | Ref. to
Analysis | Spectrum | Ref. to
Analysis | |----------|---------------------|----------|---------------------|----------|---------------------| | B 1 1 | 16, 89 | Rb 11 | 238 | Cs 11 | 309, 405 | | F iv | 84 | Pd 11 | 384, 24 | Тап | 192 | | F vi | 83, 87 | Ag II | 383, 24 | Pt 11 | 387 | | Cl iv | 31, 32 | Cd 11 | 372, 401 | Au 11 | 324 | | Ga 11 | 376 | In 11 | 317 | Hg 11 | 313 | | Se 11 | 244 | Sb 11 | 236 | Tl 11 | 106 | | Br 1 | 194 | Ιı | 107, 69, 325 | Pb 11 | 80 | | Br 11 | 232 | III | 232 | Ві п | 64, 115 | | Krı | 274, 276, 165 | Xe ı | 156 | Rnı | 329 | | Kr 11 | 53 | Xe 11 | 155 | Th III | 54 | The low abundance of these elements in celestial sources, and the high E P of the lines in the visible region have been the determining factors for omission. - 44. There are three types of spectra for which little or nothing is known: - Er, U. Lines have been observed in spectra of these elements, but the spectra of various degrees of ionization have not been separated. - Te II, Re II, Os II, Ir II, Po, Ac, Pa. The writer has found no references to work on these spectra. - Ma, Il, 85, 87. There is nothing known about these elements. It appears doubtful whether they have been successfully isolated. No reference is made in the body of the R M T to those spectra whose leading lines are in the region to the violet of $\lambda 2950$, since this is a book designed for astrophysical use. Selected spectra of this type are included in the section dealing with Forbidden Lines (see § 45 and pp. 100–110). #### X. FORBIDDEN LINES 45. The author of a "Multiplet Table of Astrophysical Interest" published in 1945 is obliged to consider the probable importance of the forbidden lines of *all abundant* elements. This is indicated by the work of Bowen on nebular lines, of Edlén on coronal lines, and of Swings, Merrill and others on various astronomical spectra. Following the body of the R M T is a Table of Forbidden Lines of Astrophysical Interest (pp. 100-110). This Table is arranged in detail similarly to the R M T. The lines in a multiplet are listed by diagonals and the multiplets are listed in the order described in § 27. In order to avoid duplication, all multiplets of forbidden lines have an "F" following the multiplet number, 1F, 2F etc. Unlike the R M T, the headings for each spectrum contain only the name of spectrum and the I P. No grading of analysis or list has been attempted and no date of completion of the manuscript is given. All of this section has been written between January and May 1945. In preparing this manuscript the writer has been most cordially assisted by Dr. Swings. He has edited the lists and offered many valuable suggestions concerning the limitations of the Table. No explicit statement can be made as to the principles of selection adopted, but severe restrictions have been necessary in complex spectra because of the great array of possible forbidden transitions. For simple spectra only a limited number of transitions occurs, but as the complexity increases the number increases rapidly. The general principles followed are: A Only transitions from metastable states are forbidden. Consequently only the lowest terms in a spectrum are considered. Lines of B I have not been observed in the visible, but should exist. B The lists are restricted to multiplets involving likely combinations as regards multiplicity and azimuthal quantum numbers, except for those in which the lowest terms are involved. In Fe II, for example, many more combinations and more unlikely combinations from the lowest term, a D are listed than from higher terms. C Transitions involving $\Delta J = \pm 2$ as well as $\Delta J = 0$ or ± 1 are listed for the multiplets most likely to be important. D The high E P is limited to about 4.0 for the most abundant elements and to about 3.5 for arc spectra of these elements. E The lists have been extended to include lines that may be important in the red and infra-red. Forbidden lines of neutral atoms are included only for the most abundant elements. The multiplets listed must be interpreted with caution, because of these restrictions. If complete multiplet arrays are written up from Table 3, lines omitted from any multiplet among the forbidden lines can be detected. Those interested in longer lists must construct them from the term lists given in the papers on the analysis of each spectrum (Table 10 p. xxix). The great majority of forbidden lines are predicted from the term values. If accurate measures have been obtained, they are entered with a letter indicating the source, as follows: - N Nebular
N II, O II, O III, Ne III, Ne v, S II - L Laboratory O 1 - A Auroral O 1 - C Coronal Entered under the predicted positions of lines of highly ionized Fe and Ni When term values permit, the wave-lengths of predicted lines have been calculated to two decimal places. For some spectra the term values are not accurately known, but the internal separations are well established. For these the position is given to 0.1 A. For the most inaccurate wave-lengths no decimals are recorded and in very dubious cases a "?" follows the wave-length. Some I P's and some predicted wave-lengths have been obtained by interpolation or extrapolation along the isoelectronic sequences. These are: | | Те | rm | | I P | | | | | |----------------------------------|--|--|---|--|--|--|--|--| | Sp | Term | Sp | Term | Sp | Sp | | | | | Cl II S XII A III A XI A XIV K V | ¹ S
² P
¹ S
³ P
² P°
² P° ² D°
¹ S | Ca vii
Ca xv
Fe xv
Ni xii
Ni xiii
Ni xv
Ni xvi | ¹ S
³ P
³ P°
² P°
³ P, ¹ D
³ P
² P° | Ca v Sc vi V viii Cr viii Cr ix Mn ix Mn x | Fe x Fe xII Fe xIV Fe xV Co xI Ni xIII | | | | As in the body of the RMT, EP's in parentheses denote that the terms involved do not have observed connections with the rest of the terms of the spectrum. Dr. Swings has pointed out that forbidden lines are essentially emission lines, and therefore, astrophysically the high E P is the important one. For this reason the multiplets of a spectrum should be listed by high E P rather than by low E P (§ 27). It is fully recognized that emission lines are better handled in this order and it is hoped that all multiplets having the same high term can be readily selected in any spectrum. The arrangement by low terms has been adopted merely for the sake of uniformity. Another highly significant comment has been made by Dr. Swings 1, namely, that "certain forbidden transitions that are not directly observable may play a role in astronomy, for example, by flourescence excitation, ionization or dissociation." ¹ Letter, May 1945. The importance of lines in the extreme violet such as $\lambda 303.7$ of He II, $\lambda 303.7$ and $\lambda 374.4$ of O III and the pair at $\lambda 374.4$ of N III, in producing the nebular lines has been fully discussed by Bowen I. The violet limit, $\lambda 2950$, imposed in this book has excluded both permitted and forbidden lines in the violet that are extremely important in the interpretation of forbidden lines observed in astronomical spectra. Readers are, therefore, urged to consult the individual papers on this subject, as it has been regarded as beyond the scope of the present work. #### XI DETAILS OF PUBLICATION The preparation of the manuscript of this book has covered such a long period of time that the typing has been done as various spectra were finished, which is not in the order of increasing atomic number. It has been practically impossible to terminate every section of the manuscript at the end of a typed page. Some important insertions have also broken the continuity of typing. Consequently, the pages are frequently unequal in length and some have large gaps. No serious effort has been made to avoid irregularities of this kind, for two reasons: first, the retyping and rechecking of these large pages in order to adjust spacing has seemed an unjustifiable procedure, particularly since there is always the chance of introducing new errors in handling so much tabular data; second, the blank spaces may prove to be useful for notes. Doubtless there are more serious irregularities, namely inconsistencies in notation of similar spectra. During the course of the work the manuscript has been widely distributed to interested investigators. To date it has never all been assembled in one place. The writer has been unable to remember all the details connected with each spectrum, but has proceeded on the assumption that minor irregularities would not impair the value of the R M T so seriously as the delays required to correct all of them. 46. One of the purposes of this book has been to provide adequate material for fairly definitive identifications of solar lines. Mention has been made of the forthcoming publication by Babcock and others on the Infra-Red Solar Spectrum $\lambda\lambda6600-13495$ (§§ 7, 15). A similar program covering the violet solar spectrum is being carried on at Mount Wilson by Babcock. The writer has been working on the identifications of the solar lines throughout the entire solar spectrum, with the aid of the manuscript of the R M T. The publication of the results to the violet of $\lambda6600$ has been postponed in order to complete the present book. It is planned to publish them as soon as possible. #### XII. BIBLIOGRAPHY Following the text is a Bibliography in which all references used in the preparation of this book are listed in the alphabetical order of the names of the authors. Each reference is assigned a number for purposes of cross reference. 47. In the R M T (excluding the section on Forbidden Lines) each spectrum has three sets of references: one giving the sources from which the wave-lengths have been taken—Table 7; one giving the first, second, etc. choices of references for intensity estimates—Table 8; and one referring to papers on analysis—Table 9. The Tables are arranged similarly. In each, the first column gives the chemical symbol of the element and the spectrum (I = arc, II first spark etc.), the second the number with which to enter the Bibliography. In Table 7 the letters A, B, C, etc. are taken from column 2 of the R M T for each spectrum. In Table 8 the first choice for intensity is indicated in column one, the second in column two etc. In general, reference numbers are in italics when the intensities from the reference are in parentheses in the R M T (see § 34). Table 9 does not list choices. It contains references to papers on analysis that were used in compiling the R M T. Table 10 gives the sources used for analysis of spectra contained in the Table of Forbidden Lines. It is arranged similarly to Table 9. Following the Bibliography are an index by pages, and one by elements arranged in the alphabetical order of the chemical symbols. ¹ Ap. J. 81, 1, 1935. Table 7 References—Wave-Length | Sp | A | В | С | D | E | F | Sp | Α | В | С | D | E | F | G | Н | I | J | K | L | |---------------|----------|-------|-----|------|-------|-----|---------------|-----------|-----|-----|------|----------------|------|-----|------------|-----|-----|-----|----| | Н | 243 | | | | | | Cl 11 | 195 | | | | | | | | | | | | | D | 243 | | | | | | Cl 111 | 31 | 27 | | | | | | | | | | | | Не 1 | 263 | 299 | 319 | 174 | 275 | | Аі | 277 | 154 | | | | | | | | | | | | He II | 243 | | | | | | Ап | 340 | 18 | 48 | 47 | | | | | | | | | | Li į | 206 | 175 | 149 | | | | Аш | 49 | 51 | | | | | | | | | | | | Li 11 | 378 | 404 | | | | | A iv | 50 | | | | | | | | | | | | | Вел | 318 | 315 | 149 | | | | K ı | 149 | 403 | 263 | 259 | 88 | 116 | 108 | 380 | | | | | | Be 11 | 318 | | | | | 1 | К 11 | 46 | | | | | | | | | | | | | Вп | 81 | | | | | | К п | 47a | | | 4.00 | 050 | 0.11 | 071 | | | | | | | Вш | 81 | | | | | | Ca 1 | 403 | 66 | 259 | 369 | 373 | 241 | 3/4 | | | | | | | _ | 40.0 | ••• | | 4.00 | . = - | | Ca 11 | 168 | 403 | 66 | 375 | 390 | | | | | | | | | Cı | 185 | | | 160 | 370 | | Ca 111 | 11 | | | | | | | | | | | | | Сп | 122 | 81 | 89 | | | | Sc 1 | 245 | 253 | 349 | | | | | | | | | | | Сш | 81 | 121 | | | | | Sc 11 | 245 | 253 | | | | | | | | | | | | Civ | 81 | 70 | 160 | 270 | | | Sc 111 | 172 | | | | | | | | | | | | | Nı | 93 | | 160 | 3/0 | | | Tir | 178 | | | | 245 | | 212 | 348 | 199 | 172 | 177 | 21 | | NII | 20 | 125 | 120 | | | | Ti 11 | 178 | 65 | 245 | 201 | 347 | 172 | | | | | | | | N III | 124 | 81 | | | | | Ti ıv | 364 | | | | | | | | | | | | | Nıv | 126 | 81 | 127 | 116 | 216 | 120 | Vı | 264 | 368 | 245 | 242 | 266 | 213 | 109 | | | | | | | 10 | 98 | 118 | | 110 | 316 | 120 | V 11 | 266 | | | | | | | | | | | | | Оп | 20 | 110 | 301 | | | | | | | | | (204) | , | | | | | | | | | 110 | 0.0 | 200 | | | | Cr 1 | 183 | 184 | 245 | 142 | (204)
(213) | 173 | | | | | | | | 0 111 | 119 | | 302 | | | | Cr 11 | 184 | | 142 | | (213) | , | | | | | | | | O iv | 81 | 126 | 86 | | | | Mn 1 | 260 | | 246 | | | | | | | | | | | O v | 81 | | | | | | | (67) | | | | | | | | | | | | | O vi | 81 | | | | | | Mn 11 | (68) | 245 | 108 | | | | | | | | | | | Fı | 88 | | | | | | Fe 1 * | (35) | | | | | | | | | | | | | FII | 73
72 | 85 | | | | | Fe 11 | 76 | 222 | 55 | | | | | | | | | | | FIII | 162 | | 154 | 276 | 311 | 263 | Fe III | 103 | | 222 | | | | | | | | | | | Ne 1 | 52 | 2,11 | 134 | 210 | 311 | 203 | Со і | 56 | | | 280 | 71 | 230 | 62 | 147 | | | | | | Ne 11
Na 1 | 149 | 116 | 263 | 208 | 259 | 338 | Со 11 | 255 | | | | | | | | | | | | | Ivai | 147 | 110 | 203 | 270 | 237 | 330 | Ni 1 | 282 | 245 | 178 | 143 | 109 | 146 | 280 | 398 | | | | | | Na 11 | 130 | 393 | | | | | 1 | 252 | 245 | 111 | | | | | | | | | | | Mgı | 295 | | 141 | 261 | 116 | | Ni 11 | 252
58 | 243 | 111 | | | | | | | | | | | Mg II | 116 | 011 | | | | | Cu I | 137 | | | | | | | | | | | | | Alı | 403 | 315 | 116 | 319 | 310 | | Cu 11
Zn 1 | 149 | | | | | | | | | | | | | Al 11 | 319 | 377 | | | • • • | | Zn 11 | 149 | 319 | | | | | | | | | | | | Al III | 312 | • • • | | | | | Ga I | 402 | 313 | | | | | | | | | | | | Si 1 | 186 | | | | | | Ge I | 188 | 245 | | | | | | | | | | | | Si 11 | 117 | | | | | | Ge 11 | 188 | 235 | | | | | | | | | | | | Si m | 117 | | | | | | As I
| 273 | 255 | | | | | | | | | | | | Si 1v | 117 | 101 | | | | | As ií | 328 | 1 | | | | | | | | | | | | | Pі | 180 | | | | | | Se 1 | 189 | | | | | | | | | | | | | Рп | 133 | 181 | 70 | | | | Rbı | 149 | 333 | | | | | | | | | | | | Рш | 133 | | | | | | Sr 1 | 399 | 245 | 116 | | | | | | | | | | | P iv | 133 | | | | | | Sr 11 | 399 | | | | | | | | | | | | | Pν | 133 | | | | | | Yı | 254 | 245 | | | | | | | | | | | | Sı | 297 | 129 | | | | | Ү п | 254 | | 245 | | | | | | | | | | | SII | 157 | | 158 | 25 | 7136 | | Zr 1 | 197 | 282 | | | | | | | | | | | | S 111 | 157 | 159 | | | | | Zr 11 | 196 | | | | | | | | | | | | | Siv | 303 | | | | | | Cb 1 | 283 | | | | | | | | | | | | | Clı | 182 | | | | | | Cb 11 | 283 | | | | | | | | | | | | ^{*} See references for Fe 1 at end of Table 7. Table 7—Continued References—Wave-Length | Sp | A | В | C | D | E | | Sı |) | A | В | C | D | E | | Sp |) | A | В | C | D | E | |--------|-----|-----|-----|-----|---|------|----|------|-------|--------------|-----|---|---|------|--------------|----|-----|-----|-----|-----|----| | Мо і | 326 | 176 | 113 | | | | C | e 11 | 144 | 9 | 245 | | | | Та | I | 200 | | | | | | Моп | 245 | 113 | | | | | | 111 | 362 | | | | | | \mathbf{W} | | 22 | | | | | | Ru 1 | 245 | | | | | | | . 11 | 339 | 245 | | | | | W | | 239 | | | | | | Ru 11 | 272 | | | | | | | d 11 | 10 | | 219 | | | | Re | | 257 | | | | | | Rh 1 | 304 | | | | | | | | (221) | | | | | | Os | | 245 | | | | | | Rh 11 | 150 | | | | | - | Sr | n I | 4 | | | | | | Ir | | 6 | | | | | | Pd 1 | 256 | 109 | | | | | Sr | n II | 221 | (- | , | | | - 11 | Pt | | 109 | | | | | | Ag ı | 149 | | | | | | | ı I | 223 | | | | | | Au | | 324 | | | | | | Cd 1 | 149 | 163 | | | | | | 1 II | 223 | | | | | - 11 | Hg | | 396 | 166 | | | | | In 1 | 402 | | | | | | | d 1 | 225 | | | | | | Tl | | 307 | 109 | | | | | | | | | | | | | | ł | | | | | | | | | | | | | | Sn 1 | 265 | | | | | - 11 | | d 11 | 225 | | | | | | Pb | | 149 | 135 | | | | | Sn 11 | 248 | | | | | | Tı | n I | 268 | | | | | - 11 | Bi | I | 214 | 17 | | | | | Sb 1 | 279 | | | | | | Т | n II | 269 | <i>§</i> 268 | | | | | Ra | I | 332 | | | | | | Те і | 189 | | | | | | | | | (224 | | | | | Ra | II | 331 | | | | | | Cs 1 | 259 | 149 | | | | | Yl | I C | 291 | | | | | | Th | II | 250 | | | | | | Вал | 400 | | | | | | Yl | 11 | 291 | | | | | | | | | | | | | | Вап | 400 | 245 | 259 | 330 | | | Lu | ΙI | 288 | | | | | | | | | | | | | | La 1 | 258 | | | | | | Lu | I II | 288 | | | | | | | | | | | | | | La 11 | 258 | | | | | | H | ī | 287 | | | | | | | | | | | | | | La III | 258 | | | | | | H | 11 | 289 | | | | | | | | | | | | | | Sp | A | В | С | D | E | F | G | Н | I J | K | L | M | N | 0 | Q. | R | S T | U | V V | V 3 | ΧΥ | Fe I 164 161 278 185 262 282 59 167 14 371 57 281 220 $\begin{Bmatrix} 139 \\ 138 \end{Bmatrix}$ \dagger 280 15 227 77 391 247 55 171 379 \dagger 74 [†] These references have been used for lines to the violet of the range covered in the RMT, but are included for completeness. Table 8 References—Intensity | Sp | Reference Numbers | Sp | Reference Numbers | Sp | Reference Numbers | |--------|----------------------------|--------|---|--------|-----------------------| | Не і | 263 275 174 116 319 | Ап | 340 | Ru 11 | 272 | | Liı | 113 <i>175</i> | A III | 49 51 | Rhı | 105 | | Lin | 378 404 | A iv | 50 | Rh 11 | 150 | | Вел | 315 318 | Кı | 259 116 <i>88 108</i> | Pd L | 256 | | Веп | 318 | Кп | 410 46 | Agı | 389 | | Вп | 81 | Kın | 47a 51a | Cd 1 | 173 | | Вш | 81 | Ca 1 | 207 259 <i>369 241 374</i> | In 1 | 402 | | Cı | 185 300 169 <i>160 370</i> | Ca 11 | 259 207 <i>375 390 66</i> | Sn 1 | 265 | | Сп | 81 <i>122</i> | Сапп | 11 | Sn 11 | 248 | | Сп | 81 | Sc 1 | 210 253 349 367 | Sb 1 | 279 | | Civ | 81 | Sc 11 | 253 365 | Тел | 189 | | Νi | 93 78 160 370 | Sc 111 | 172 | Cs 1 | 259 245 | | Nıı | 20 125 120 | Ti 1 | 185 282 212 203 348 199 172 | Ваг | 207 259 | | N III | 124 81 | Тіп | 347 | Вап | 207 259 330 | | N iv | 81 | Ti ıv | 364 | Laı | 228 258 | | 0 1 | 98 263 127 116 128 | Vı | 264 213 204 | La 11 | 258 | | Оп | 20 118 301 | VII | 266 | La III | 258 | | 0 111 | 119 86 302 | Cr 1 | 183 184 204 213 | Ce 11 | 215 144 9 245 | | O iv | 81 <i>126</i> | Cr 11 | 184 | Ce 111 | 362 | | O v | 81 | Mn 1 | 260 209 131 61 113 | Pr 11 | 215 339 | | O vi | 81 | Mn 11 | 67 68 108 | Nd 11 | 219 <i>10</i> | | Fı | 88 | Fe 1 | 185 282 220 211 202 227 59 57 | Sm 1 | 221 | | Fп | 73 | | 281 280 55 15 77 391 171 74 | Sm 11 | 221 | | FIII | 72 85 | Fe 11 | 76 222 55 | Eu 1 | 223 | | Ne 1 | 263 276 <i>311</i> | Fe III | 103 102 | Eu 11 | 223 | | Ne 11 | 52 | Соі | 205 208 282 280 71 56 230 62 147 | Gd 1 | 225 | | Naı | 259 <i>172 116</i> | Со 11 | 255 | Gd 11 | 225 | | Na 11 | 130 393 | Ni 1 | 208 205 282 143 109 146 280 398 245 | Tm 1 | 268 | | Mgı | 261 207 <i>295 314 170</i> | Ni 11 | 252 382 | Tm II | 269 268 224 | | Mg 11 | 116 | Cu 1 | 58 | Ybı | 291 | | Alı | 315 116 319 <i>310</i> | Cu 11 | 137 | Yb 11 | 291 | | Al 11 | 319 377 | Zn 1 | 149 | Lui | 288 | | Al III | 312 | Zn 11 | 372 | Lu 11 | 288 | | Si ı | 186 | Ga 1 | 402 174 | Hf I | 216 | | Si 11 | 117 | Ge 1 | 188 132 | Hf 11 | 289 | | Si III | 117 | Ge 11 | 188 235 | Таі | 200 | | Si IV | 117 101 | As 1 | 273 | Wı | 218 <i>22</i> | | Рі | 180 | As 11 | 328 | WII | 239 | | PII | 133 <i>181</i> | Se 1 | 189 | Reı | 257 | | Рш | 133 | Rbı | 172 | Os 1 | 245 | | Pıv | 133 | Sr 1 | 207 259 | Ir 1 | 6 | | Pv | 133 | Sr 11 | 207 259 | Pt 1 | 109 | | Si | 297 <i>129</i> | Yı | 228 | Auı | 324 | | SII | 25 19 136 | YII | 254 <i>351</i> | Hgi | 112 108 | | SIII | 157 <i>159</i> | Zr I | 23 4 331
228 282 <i>197</i> | Tlı | 109 | | Siv | 303 | Zr 11 | 196 | Pbı | 109
109 <i>271</i> | | Cli | 182 | Cbı | 283 | Biı | 308 17 | | Cl 11 | 195 | Cb 11 | 283 | Rai | 332 | | Cl III | 31 27 | Moı | 326 176 <i>113</i> | Raii | 331 | | Aı | 263 276 293 294 | Мои | 113 | Th II | 226 | | | | Rui | 251 <i>109</i> | 11111 | <i>₩₩</i> | | | | | | | | ## References—Analysis | Sp | Reference Numbers | Sp | Reference Numbers | |---------------|-----------------------|---------------|-----------------------| | Н | 243 23 116 | Sıı | 157 19 158 25 136 | | D | 243 23 | S 111 | 157 159 136 337 | | He 1 | 16 45 319 263 275 134 | Siv | 303 27 29 | | Не 11 | 243 23 | Cl 1 | 182 193 92 | | Li 1 | 116 16 206 | Cl 11 | 195 96 | | Li 11 | 16 81 | Cl 111 | 31 27 | | Be 1 | 318 315 | Cl iv | 31 32 | | Ве п | 318 | Aı | 154 276 42 16 293 294 | | Ві | 16 89 | Ап | 92 42 48 47 | | Вп | 81 89 | А 111 | 49 51 42 44 96 | | В пп | 81 | A iv | 42 50 | | Cı | 81 300 | Кı | 116 88 | | CII | 81 89 | К 11 | 46 28 105 | | Сш | 81 89 82 | К 111 | 47a 92 | | Civ | 81 82 | Ca 1 | 373 369 259 116 | | Nι | 104 78 160 | Сап | 375 346 390 | | NII | 89 81 125 120 | Ca 111 | 28 16 | | N III | 89 81 | Sc 1 | 365 | | N IV | 89 81 82 | Sc 11 | 365 285 | | Nv | 81 82 | Sc 111 | 364 392 | | 0 1 | 98 | Ti ı | 348 355 282 185 178 | | O 11 | 86 81 350 118 | Ti 11 | 347 | | 0 111 | 95 81 119 86 302 | Ti ıv | 364 | | O iv | 81 82 | VI | 286 305 | | O v | 81 82 | VII | 284 | | O vi | 81 82 | Cr 1 | 179 183 187 346 | | Fı | 88 | Cr 11 | 184 | | FII | 85 73 | Mn 1 | 61 79 260 346 | | F III
F IV | 85 30 72
84 | Mn 11
Fe 1 | 67 68
363a | | F vi | 83 87 | Fe 11 | 75 76 94 139 | | Ne 1 | 154 41 276 16 311 | Fe 111 | 103 102 | | Ne 11 | 41 52 | Сол | 363 | | Na 1 | 298 338 116 | Co 11 | 114 | | Na 11 | 130 393 16 | Ni 1 | 352 | | Mg I | 295 296 314 345 | Ni 11 | 382 233 | | Mg 11 | 116 16 | Cu I | 381 | | Alı | 315 319 | Cu 11 | 386 | | Al 11 | 319 377 | Zn I | 149 116 | | Al III | 312 16 | Zn 11 | 319 372 | | Si 1 | 186 | Ga 1 | 116 | | Si 11 | 117 29 16 | Ga 11 | 376 | | Si 111 | 117 29 | Ge 1 | 188 327 | | Si ıv | 117 101 | Ge 11 | 188 234 | | Pı | 180 335 | As 1 | 273 | | Pп | 26 335 336 | As 11 | 140 328 | | P 111 | 29 303 336 | Se 1 | 343 | | P iv | 29 336 | Se 11 | 244 | | Pν | 336 40 | Br 1 | 194 | | Sı | 297 342 | Br 11 | 232 | ## TABLE 9—Continued ### REFERENCES—Analysis | Kr I 274 276 Kr II 53 Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr II 196 Cb I 290 | 399 | Gd 1
Gd 11
Tm 1
Tm 11
Yb 1 | 2 357 358
8 358
270 | | |---|-------|--|---------------------------|--| | Kr II 53 Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196 | 399 | Gd 11
Tm 1
Tm 11 | 8 358
270 | | | Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196 | | Tm I
Tm II | | | | Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196 | | Tm 11 | 070.0(0 | | | Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196 | | | 270 269 | | | Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196 | | | 291 359 | | | Y I 285
Y II 285
Zr I 197 28
Zr II 196 | | Yb 11 | 291 359 | | | Y II 285
Zr I 197 28
Zr II 196 | | Lui | 288 267 | | | Zr I 197 28
Zr II 196 | | Lu 11 | 288 | | | Zr 11 196 | , | Hf I | 287 | | | | - | Hf II | 289 | | | Cb 1 290 | | | | | | | | Таг | 192 | | | Сь п 290 | | Тап | 192 | | | Mo I 63 19: | l | Wı | 237 | | | Мо 11 190 | | W 11 | 239 | | | Ru i 394 14. | | Re 1 | 257 | | | Ru 11 272 293 | | Os 1 | 1 5 | | | Rh i 395 30 | 1 | Ir 1 | 6 | | | Rh 11 150 | | Pt 1 | 240 148 | | | Pd 1 385 | | Pt 11 | 387 | | | Pd 11 384 24 | 1 | Auı | 324 306 | | | Ag I 388 | | Au 11 | 324 | | | Ag 11 383 2 | 4 | Hg 1 | 16 | | | Cd 1 116 1 | 6 | Hg 11 | 313 | | | Cd 11 372 40 | 1 | Tlı | 116 | | | In 1 116 | | Tl 11 | 106 | | | In 11 317 | | Pb 1 | 16 | | | Sn 1 265 | | Pb 11 | 80 | | | Sn 11 248 | | Ві г | 16 | | | Sb 1 279 | | Ві п | 64 115 | | | Sb 11 236 | | Rnı | 329 | | | Te 1 341 | | Raı | 332 354 | | | I 1
107 6 | 9 325 | Ra 11 | 331 | | | I 11 232 | | Th 11 | 249 250 | | | Xe 1 156 | | Th 111 | 54 | | | Xe 11 155 | | | | | | Cs 1 116 | | | | | | Cs 11 309 40 | 5 | | | | | Ba I 400 34 | | | | | | Ba II 330 40 | | | | | | La 1 366 | - | | | | | La 11 366 | | | | | | La 111 366 | | 11 | | | | | 7 9 | | | | | Ce III 362 | | | | | | Pr 11 339 35 | 6 | | | | | Nd II 10 | | | | | | | 4 | | | | | Sm II 3 | | | | | | Eu 1 361 | | | | | | Eu 11 360 | | | | | Table 10 References—Forbidden Lines | Sp | Reference Numbers | Sp | Reference Numbers | Sp | Reference Numbers | |--------|-----------------------|---------|-------------------|---------|-------------------| | Вел | 318-315 | Ca vi | 33 | Fe xiv | 97 | | Сі | 81 | Ca vii | 337 | Fe xv | 90 | | Nι | 104 | Са хи | 97 | Со 11 | 114 | | NII | 81 43 409 | Ca xiii | 97 | Co vi | 37 | | 0 1 | 98 13 151 | Ca xv | 97 | Co vii | 12 | | Oп | 81 409 | Sc 11 | 365 | Co viii | 60 | | 0 111 | 81 409 | Sc III | 364 | Со хі | 92 | | FII | 85 | Sc vi | 91 231 | Ni 1 | 352 | | Fiii | 85 | Sc vII | 231 | Ni 11 | 382 233 | | Fiv | 84 | Ti ı | 348 | Ni vii | 322 | | Ne III | 41 43 409 | Ті п | 347 | Ni viii | 12 | | Ne IV | 320 | Ti m | 364 | Ni ix | 60 | | Ne v | 100 320 35 397 | Ti vII | 231 91 | Ni xII | 97 | | Na IV | 393 | Ti viii | 231 | Ni xiii | 97 | | Na v | 393 | VII | 284 | Ni xv | 97 | | Mg vi | 393 | VIII | 407 | Ni xvi | 97 | | Al vII | 393 | V iv | 406 | Cu 11 | 386 | | Si r | 186 | V viii | 91 | Kr III | 152 | | Pι | 180 335 | Cr 1 | 179 183 187 | Sr 11 | 116 259 399 | | Pп | 26 335 336 | Cr 11 | 184 | Yп | 285 | | Sı | 96 342 33 | Cr III | 36 | Υv | 321 | | SII | 157 19 158 25 136 409 | Cr IV | 36 38 | Zr 11 | 196 | | S III | 157 159 136 337 | Cr v | 406 | Zr 111 | 198 | | S viii | 97 337 | Cr vIII | 92 | Zr vi | 321 | | S xII | 97 | Cr 1x | 91 | Xe 11 | 155 | | Cl 11 | 96 195 | Mn 11 | 67 68 | Xe III | 99 153 | | Cl III | 31 27 | Mn iv | 36 | La 11 | 366 | | Cl iv | 31 32 | Mn v | 34 38 | La 111 | 366 | | Аш | 96 | Mn vi | 60 | Eu 11 | 360 | | A iv | 42 50 | Mn 1x | 92 | | | | A v | 323 334 | Mn x | 91 | | | | Αx | 97 | Fe 1 | 363a | | | | A xı | 97 | Fe 11 | 75 76 94 139 | | | | A xiv | 97 | Fe III | 103 102 | | | | K iv | 96 33 | Fe v | 36 | | | | Κv | 33 | Fe vi | 34 38 | | | | K vi | 337 408 334 | Fe vii | 39 | | | | Ca I | 373 369 259 116 | Fe x | 92 97 | | | | Ca 11 | 375 | Fe xi | 91 97 | | | | Ca v | 96 33 91 | Fe xiii | 97 | | | | | | | | | | ## XIII. ACKNOWLEDGMENTS This book is the result of an enormous amount of cooperation for which the writer cannot express adequate appreciation. She is extremely grateful to all who have generously furnished material, offered valuable suggestions, and assisted in many other ways. In spite of war conditions both M. A. Catalán of Madrid and B. Edlén of Lund have been active collaborators. At home, physicists, astronomers, librarians and many others have likewise contributed. To each of these the writer extends most hearty thanks. At the Mount Wilson Observatory, W. S. Adams has willingly assembled interested members of his staff for consultation concerning the form, content and scope of the book. H. D. Babcock's unpublished solar material has been of inestimable value. A. S. King has obligingly settled many puzzling questions about intensities. P. W. Merrill has urged the publication of the book from the start and supported the work enthusiastically. A. H. Joy has furnished detailed material on stellar spectra observed at Mount Wilson. The writer has also been in constant communication with the Bureau of Standards. W. F. Meggers and C. C. Kiess have furnished more material on analysis in advance of publication than any other contributors. Special mention should be made of the valuable work on Cr 1 and Cr 11 by Kiess. The multiplet lists of these spectra have already been in constant demand. Many intricate details have been referred to Meggers. His continued interest and work on behalf of this book will not be forgotten. In addition to the help with the forbidden lines, P. Swings together with O. Struve at the Yerkes Observatory have given most helpful assistance in the handling of the spectra of light elements from an astrophysical point of view. Mention has already been made of the computations generously furnished by J. E. Mack. The writer has been privileged to use the facilities of various institutions not directly connected with this program. At Wesleyan University the late Professor Slocum welcomed her most cordially to the Van Vleck Observatory. W. G. Cady, Chairman of the Department of Physics, was equally generous. Without the library privileges extended by these friends, the program would have been seriously impaired. A welcome no less cordial has been extended in Cambridge, Massachusetts. J. C. Boyce, Harlow Shapley and Mrs. C. P. Gaposchkin have taken a most personal interest in the work. It has also been an enormous advantage to have free access to the libraries at the Cruft Laboratory, at the Massachusetts Institute of Technology and at the Harvard Observatory. At Princeton this research program has been most enthusiastically supported by Henry Norris Russell over the long period of years since the publication of the first edition in 1933. The writer has had the great benefit of his wide experience in analyzing spectra, of his detailed knowledge of spectra and above all of his keen interest—all of which are recorded in the pages of the book itself. She expresses to him her gratitude with the hope that the readers will find the R M T worthy of all he has contributed to it. Miss Margaret C. Shields of Fine Hall library in Princeton has cooperated so extensively that it is inadequate to express the personal gratitude of the writer in a single sentence. The same is true of Mrs. Jay Murray who has patiently and efficiently brought to a successful conclusion the appalling task of typing the Multiplet Table for photographic reproduction. Her painstaking care and skill are largely responsible for the completion of the work at this time. Miss Marion Daly at Princeton and Miss Ada Spaterna of Washington, D. C., have spared no effort in typing the Finding List carefully and accurately. The personal interest and help of President John A. Eckert of the Columbia Planograph Company have been one of the greatest sources of encouragement in completing the manuscript for publication. In conclusion the writer wishes to record her appreciation of the cordial cooperation of her husband, Bancroft W. Sitterly. #### BIBLIOGRAPHY - 1 Albertson, Phys. Rev. (2) 45, 304, 1934. - 2 Albertson, Phys. Rev. (2) 47, 370, 1935. - 3 Albertson, Mt. Wilson Contr. No. 546; Ap. J. 84, 26, 1936. - 4 Albertson, Phys. Rev. (2) 52, 644, 1937. - 5 Albertson, Phys. Rev. (2) 53, 940, 1938. - 6 Albertson, Phys. Rev. (2) 54, 183, 1938. - 7 Albertson, Unpublished material, Nov. 1941. - 8 Albertson, Bruynes and Hanau, Phys. Rev. (2) 57, 292, 1940. - 9 Albertson and Harrison, Phys. Rev. (2) 52, 1209, 1937. - 10 Albertson, Harrison and McNally, Jr., Phys. Rev. (2) 61, 167, 1942. - 11 Anderson, J. A., Ap. J. 59, 76, 1924. - 12 Anderson, E. E. and Mack, Phys. Rev. (2) 59, 717, 1941. - 13 Babcock, Mt. Wilson Contr. No. 259; Ap. J. 57, 209, 1923. - 14 Babcock, Mt. Wilson Contr. No. 343; Ap. J. 66, 256, 1927. - 15 Babcock, Unpublished material. - 16 See Bacher and Goudsmit, <u>Atomic Energy States</u>, McGraw-Hill, N. Y. and London, 1932. - 17 Back und Goudsmit, Zeit. f. Phys. 47, 174, 1928. - 18 Baly, de Bruin, Bloch, L., Bloch, E., meas. quoted by Rosenthal, Ann. der Phys. (5) 4, 49, 1930. - 19 Bartelt und Eckstein, Zeit. f. Phys. 86, 77, 1933. - 20 Beals, Publ. Dom. Ap. Obs. 6, 17, 1931. - 21 Behner, Zeit. f. Wiss. Ptg. 23, 325, 1925. - 22 Belke, Zeit. f. Wiss. Ptg. 17, 132 and 145, 1918. - 23 Birge, Rev. Mod. Phys. 13, 233 (No. 4), 1941. - 24 Blair, Phys. Rev. (2) 36, 173, 1930. - 35 Bloch, L. et Bloch, E., Annales de Physique (10) 12, 5, 1929. - 26 Bowen, Phys. Rev. (2) 29, 510, 1927. - 27 Bowen, Phys. Rev. (2) 31, 34, 1928. - 28 Bowen, Phys. Rev. (2) 31, 497, 1928. - 29 Bowen, Phys. Rev. (2) 39, 8, 1932. - 30 Bowen, Phys. Rev. (2) 45, 82, 1934. - 31 Bowen, Phys. Rev. (2) 45, 401, 1934. 32 Bowen, Phys. Rev. (2) 46, 377, 1934. - 32 Bowen, <u>Phys. Rev.</u> (2) 40, 377, 1934 - 33 Bowen, Phys. Rev. (2) 46, 791, 1934. - 34 Bowen, Phys. Rev. (2) 47, 924, 1935. - 35 Bowen, Rev. Mod. Phys. 8, 55 (No. 2), 1936. - 36 Bowen, Phys. Rev. (2) 52, 1153, 1937. - 37 Bowen, Phys. Rev. (2) 53, 889, 1938. - 38 Bowen, see Pasternack, Ap. J. 92, 140, 1940. - 39 Bowen and Edlen, Nature 143, 374, 1939. - 40 Bowen and Millikan, Phys. Rev. (2) 25, 295, 1925. - 41 Boyce, Phys. Rev. (2) 46, 378, 1934. - 42 Boyce, Phys. Rev. (2) 48, 396, 1935. - 43 Boyce, Mon. Not. Royal Astr. Soc. 96, 690 (No. 7), 1936. - 44 Boyce, Phys. Rev. (2) 49, 351, 1936. - 45 Boyce and Robinson, Journ. Opt. Soc. Am. 26, 143, 1936. - 46 de Bruin, Zeit. f. Phys. 38, 94, 1926. - 47 de Bruin, Zeit. f. Phys. 51, 108, 1928. - 47a de Bruin, <u>Zeit. f. Phys</u>. <u>53</u>, 658, 1929. - 48 de Bruin, Zeit. f. Phys. 61, 307, 1930. - 49 de Bruin, Proc. Amsterdam Acad. 36, 724 (No. 7), 1933. - 50 de Bruin, Physica 3, 809 (No. 8), 1936. - 51 de Bruin, Proc. Amsterdam Acad. 40, 340 (No. 4), 1937. - 5ia de Bruin, see Edlén, Zeit. f. Phys. 104, 407, 1937. - 52 de Bruin und Bakker, Zeit. f. Phys. 69, 19, 1931. - 53 de Bruin, Humphreys and Meggers, <u>Bur. St. Journ. Reg. 11</u>, 409 (RP 599) 1933. - 54 de Bruin, Klinkenberg und Schuurmans, Zeit. f. Phys. 118, 58, 1941. - 55 Burns, <u>Lick Bull</u>. <u>8</u>, 27 (No. 247), 1913. - 56 Burns, Unpublished material. For interferometer meas. see Ref. No. 363. - 57 Burns and Walters, Jr., Publ. Allegheny Obs. 6, 159 (No. 11), 1929. - 58 Burns and Walters, Jr., Publ. Allegheny Obs 8, 27 (No. 3), 1930. - 59 Burns and Walters, Jr., Publ. Allegheny Obs. 8, 39 (No. 4), 1931. - 60 Cady, Willoughby, Phys. Rev. (2) 43, 322, 1933. - 61 Catalán, Phil. Trans. Royal Soc. A 223, 127, 1922. - 63
Catalán y Antunes, Ann. de la Soc. Esp. de Fisica y Quimica 34, 207, 1936 (Some measures by Exner and Haschek included here) - 63 Catalán y Madariaga, Ann. de la Soc. Esp. de Fisica y Quimica 31, 707, 1933 - 64 Crawford and McLay, Proc. Royal Soc. A 143, 540, 1934. - 65 Crew, Ap. J. 60, 108, 1924. - 66 Crew and McCauley, Ap. J. 39, 29, 1914. - 67 Curtis, Phys. Rev. (2) 53, 474, 1938. - 68 Curtis, Unpublished material, July 1941. - 69 Deb, Proc. Royal Soc. A 139, 380, 1933. - 70 Déjardin, Canadian Journ. Res. 7, 556, 1932. - 71 Dhein, Zeit. f. Wiss. Ptg. 19, 289, 1920. - 72 Dingle, Proc. Royal Soc. A 122, 144, 1929. - 73 Dingle, Proc. Royal Soc. A 128, 600, 1930. 74 Dingle, Mon. Not. Royal Astr. Soc. 94, 866, 1934. - 75 Dobbie, Phys. Rev. (2) 45, 76, 1934. - 76 Dobbie, Ann. Solar Phys. Obs. 5, 1 (Part I), 1938. - 77 Dobbie, Unpublished material. - 78 Duffendack and Wolfe, Phys. Rev. (2) 34, 409, 1929. - 79 Dunham, T. Jr., Unpublished material, 1926. - 80 Earls and Sawyer, Phys. Rev. (2) 47, 115, 1935. - 81 Edlen, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, 9 (No. 6), 1933. - 82 Edlén, Zeit. f. Ap. 7, 378, 1933. - 83 Edlén, Zeit. f. Phys. 89, 179, 1934. - 84 Edlén, Zeit. f. Phys. 92, 19, 1934. - 85 Edlén, Zeit. f. Phys. 93, 433, 1935. - 86 Edlén, Zeit. f. Phys. 93, 726, 1935. 87 Edlén, Zeit. f. Phys. 94, 47, 1935. - 88 Edlén, Zeit. f. Phys. 98, 445, 1936. - 89 Edlén, Zeit. f. Phys. 98, 561, 1936. - 90 Edlén, Zeit. f. Phys. 103, 536, 1936. - 91 Edlén, Zeit. f. Phys. 104, 188, 1937. - 92 Edlén, Zeit. f. Phys. 104, 407, 1937. - 93 Edlén, Festskrift Tillägnad, Östen Bergstrand p. 135, 1938. - 94 Edlén, Unpublished material, Feb. 1940. - 95 Edlén, Naturwiss. 30, 279, 1942. - 96 Edlén, Phys. Rev. (2) 62, 434, 1942. - 97 Edlén, Zeit. f. Ap. 22, 30, 1942; see Swings, Ap. J. 98, 116, 1943. - 98 Edlén, <u>Kungl. Svenska Vetenskapsakademiens Handlingar</u>, Tredje Serien, <u>20</u> (No. 10), 1943. - 99 Edlen, Phys. Rev. (3) 65, 348, 1944. - 100 Edlén, Unpublished material. - 101 Edlén und Söderqvist, Zeit. f. Phys. 87, 217, 1933. - 103 Edlén and Swings, Unpublished material, Dec. 1941. - 103 Edlén and Swings, Contr. McDonald Obs. No. 49; Ap. J. 95, 532, 1942. - 104 Ekefors, Zeit. f. Phys. 63, 437, 1930. - 105 Ekefors, Zeit. f. Phys. 71, 53, 1931. - 106 Ellis and Sawyer, Phys. Rev. (2) 49, 145, 1936. - 107 Evans, Proc. Royal Soc. A 133, 417, 1931. - 108 Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910. - 109 Exner und Haschek, see Kayser, Handbuch der Sp. 6, 1912. #### BIBLIOGRAPHY - 110 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. - 111 Exner and Haschek, see Shenstone, Phys. Rev. (2) 30, 255, 1927. - 112 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 2, 1930. - 113 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. - 114 Findlay, Phys. Rev. (2) 36, 5, 1930. - 115 Fisher and Goudsmit, Phys. Rev. (2) 37, 1057, 1931. - 116 See Fowler, Report on Series in Line Spectra, Fleetway Press, London, 1922. - 117 Fowler, Phil. Trans. Royal Soc. A 225, 1, 1925. - 118 Fowler, Proc. Royal Soc. A 110, 476, 1936. - 119 Fowler, Proc. Royal Soc. A 117, 317, 1928. - 120 Fowler and Freeman, Proc. Royal Soc. A 114, 662, 1927. - 121 Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928. - 122 See Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928. - 123 Fred, Ap. J. 87, 176, 1938. - 124 Freeman, Proc. Royal Soc. A 121, 318, 1928. - 125 Freeman, Proc. Royal Soc. A 124, 654, 1929. - 126 See Freeman, Proc. Royal Soc. A. 127, 330, 1930. - 127 Frerichs, Phys. Rev. (2) 34, 1239, 1929. - 128 Frerichs, Naturwiss. 21, 849, 1933. - 129 Frerichs, Zeit. f. Phys. 80, 150, 1933. - 130 Frisch, Zeit. f. Phys. 70, 498, 1931. - 131 Fuchs, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. - 132 Gartlein, Phys. Rev. (2) 31, 782, 1928. - 33 Geuter, <u>Zeit. f. Wiss. Ptg.</u> <u>5</u>, 1, 1907. (See Kayser, Handbuch der Sp. <u>6</u>, 1912.) - 134 Gibbs and Kruger, Phys. Rev. (2) 37, 1559, 1931. - 135 Gieseler und Grotrian, Zeit. f. Phys. 34, 374, 1925. - 136 Gilles, Annales de Physique (10) 15, 267, 1931. - 137 Green, L.C., See Shenstone, Phil. Trans. Royal Soc. A 235, 195 (No. 751), 1936. - 138 Green, L.C., Unpublished material, 1937. - 39 Green, L.C., Phys. Rev. (2) 55, 1209, 1939. - 40 Green, J.B. and Barrows, Jr., Phys. Rev. (2) 47, 131, 1935. - 141 Gremmer, see Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse 32, 709, 1931. - 142 Hall, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. - 143 Hamm, Zeit. f. Wiss. Ptg. 13, 105, 1913. - 144 Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439, 1941. - 145 Harrison and McNally, Jr., Phys. Rev. (2) 58, 703, 1940. - 146 Hasselberg, see Kayser, Handbuch der Sp. 6, 1912. - 147 Hasselberg or Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910. - 148 Haussmann, Ap. J. 66, 333, 1927. - 149 Hetzler, Boreman and Burns, Phys. Rev. (2) 48, 656, 1935. - 150 Hitchcock, W. J., Unpublished material, Nov. 1943. - 151 Hopfield, Phys. Rev. (2) 37, 160, 1931. - 152 Humphreys, Phys. Rev. (2) 47, 712, 1935. - 153 Humphreys, <u>Bur. St. Journ. Res. 16</u>, 639 (RP 898) 1936. - 154 Humphreys, Bur. St. Journ. Res. 20, 17 (RP 1061) 1938. - 155 Humphreys, <u>Bur. St. Journ. Res</u>. <u>22</u>, 19 (RP 1164) 1939. - 56 Humphreys and Meggers, Bur. St. Journ. Res. 10, 139 (RP 521), 1933. - 157 Hunter, Phil. Trans. Royal Soc. A 233, 303, 1934. - 158 Ingram, Phys. Rev. (2) 32, 172, 1928. - 159 Ingram, Phys. Rev. (2) 33, 907, 1929. - 160 Ingram, Phys. Rev. (2) 34, 421, 1929. - 161 International Standard, see <u>Trans. Intern. Astr. Union</u> 3, 86, 1928. - 162 International Standard, see Trans. Intern. Astr. Union 5, 85, 1935. - 163 International Standard, see <u>Trans. Intern. Astr. Union</u> <u>6</u>, 79, 1938. - 164 International Standard, see Trans. Intern. Astr. Union 6, 80, 1938. - 165 International Standard, see Trans. Intern. Astr. Union 6, 89, 1938. - 166 Jackson, Proc. Royal Soc. A 130, 395, 1931. - 167 Jackson, Proc. Royal Soc. A 133, 553, 1931. - 168 Jackson, Mon. Not. Royal Astr. Soc. 93, 98 (No. 1), 1932. - 169 Johnson or Merton and Johnson, see Kayser und Konen, <u>Handbuch der Sp. 8</u>, Part 1, 1932. - 170 See Kayser, Handbuch der Sp. 5, 1910. - 171 Kayser, Handbuch der Sp. 6, 893, 1912. - 172 See Kayser, Handbuch der Sp. 6, 1912. - 173 See Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. - 174 See Kayser und Konen, Handbuch der Sp. 7, Part 2, 1930. - 175 See Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. - 176 Kiess, Sci. Papers Bur. St. 19, 113 (No. 474), 1923. - 177 Kiess, Unpublished material, 19247. - 178 Kiess, Bur. St. Journ. Res. 1, 75 (RP 4), 1928. - 179 Kiess, Bur. St. Journ. Res. 5, 775 (RP 229), 1930. - 180 Kiess, Bur. St. Journ. Res. 8, 393 (RP 425), 1932. - 181 Kiess, Unpublished material, May 1932. - 182 Kiess, Bur. St. Journ. Res. 10, 827 (RP 570), 1933. - 183 Kiess, <u>Bur. St. Journ. Res.</u> 15, 79 (RP 812) 1935. - 184 Kiess, Unpublished material, Jan. 1936, June 1940, Mar. 1941, Apr. 1941. - 185 Kiess, Bur. St. Journ. Res. 20, 33 (RP 1062), 1938. - 186 Kiess, Bur. St. Journ. Res. 21, 185 (RP 1124), 1938. - 187 Kiess, Unpublished material, Feb. 1939, June 1940, Feb. 1941. - 188 Kiess, Bur. St. Journ. Res. 24, 1 (RP 1266), 1940. - 189 Kiess, Letter, June 1942. - 190 Kiess, Unpublished material, Aug. 1942. - 191 Kiess, Unpublished material, Oct. 1942. - 192 Kiess, Unpublished material, Dec. 1942. - 193 Kiess and de Bruin, Bur. St. Journ. Res. 2, 1117 (RP 73), 1929. - 194 Kiess and de Bruin, Bur. St. Journ. Res. 4, 667 (RP 172), 1930. - 195 Kiess and de Bruin, Bur. St. Journ. Res. 23, 443 (RP 1244), 1939. - 196 Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 5, 1205 (RP 255) 1930. - 197 Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 6, 621 (RP 396) 1931. - 198 Kiess and Lang, Bur. St. Journ. Res. 5, 305 (RP 202), 1930. - 199 Kless and Meggers, <u>801. Papers Bur. St. 16</u>, 54 (No. 372), 1920. 200 Kless and Stowell, <u>Bur. St. Journ. Res</u>. 12, 459 (RP 671), 1934. - 201 Kilby, Ap. J. 30, 243, 1909. - 202 King, A. S., Mt. Wilson Contr. No. 66; Ap. J. 37, 239, 1913. - 203 King, A. S., Mt. Wilson Contr. No. 76; Ap. J. 39, 139, 1914. - 204 King, A. S., Mt. Wilson Contr. No. 94; Ap. J. 41, 86, 1915. - 205 King, A. S., <u>Mt. Wilson Contr.</u> No. 108; <u>Ap. J.</u> 42, 347, 1915. 206 King, A. S., <u>Mt. Wilson Contr.</u> No. 122; <u>Ap. J.</u> 44, 169, 1916. - 307 King, A. S., Mt. Wilson Contr. No. 150; Ap. J. 48, 13, 1918. - 208 King, A. S., Mt. Wilson Contr. No. 181; Ap. J. 51, 179, 1920. - 309 King, A. S., Mt. Wilson Contr. No. 198; Ap. J. 53, 133, 1981. - 210 King, A. S., Mt. Wilson Contr. No. 211; Ap. J. 54, 28, 1921. - 211 King, A. S., Mt. Wilson Contr. No. 247; Ap. J. 56, 318, 1922. - 212 King, A. S., Mt. Wilson Contr. No. 274; Ap. J. 59, 155, 1924. - 213 King, A. S., Mt. Wilson Contr. No. 283; Ap. J. 60, 282, 1924. - 214 King, A. S., Unpublished material, 19277. - 215 King, A. S., Mt. Wilson Contr. No. 368; Ap. J. 68, 194, 1928. - 216 King, A. S., Mt. Wilson Contr. No. 384; Ap. J. 70, 105, 1929. - 217 King, A. S., Mt. Wilson Contr. No. 414; Ap. J. 73, 221, 1930. - 218 King, A. S., <u>Mt. Wilson Contr.</u> No. 448; <u>Ap. J. 75</u>, 379, 1932. 219 King, A. S., <u>Mt. Wilson Contr.</u> No. 470; <u>Ap. J. 78</u>, 9, 1933. - 220 King, A. S., Mt. Wilson Contr. No. 496; Ap. J. 80, 124, 1934. - 221 King, A. S., Mt. Wilson Contr. No. 523; Ap. J. 82, 140, 1935. - 222 King, A. S., Mt. Wilson Contr. No. 584; Ap. J. 87, 109, 1938. ### BIBLIOGRAPHY - 223 King, A. S., Mt. Wilson Contr. No. 608; Ap. J. 89, 377, 1939. - 224 King, A. S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941. - 225 King, A. S., Mt. Wilson Contr. No. 678; Ap. J. 97, 323, 1943. - 226 King, A. S., see Sitterly and King, <u>Proc. Am. Phil. Soc</u>. <u>86</u>, 339 (No. 3), 1943. - 227 King, A. S., Unpublished material. - 228 King, A. S. and Carter, Mt. Wilson Contr. No. 326; Ap. J. 65, 86, 1927. - 229
King, A. S. and Moore, Mt. Wilson Contr. No. 681; Ap. J. 98, 33, 1943. - 230 Krebs, Zeit. f. Wiss. Ptg. 16, 293, 1917. - 231 Kruger and Pattin, Phys. Rev. (2) 52, 621, 1937. - 232 Lacroute, Annales de Physique (11) 3, 1, 1935. - 233 Lang, Phys. Rev. (2) 31, 773, 1928. - 234 Lang, Proc. Nat. Acad. Sci. 14, 32, 1928. - 235 Lang, Phys. Rev. (2) 34, 697, 1929 - 236 Lang and Vestine, Phys. Rev. (2) 42, 233, 1932. - 237 Laporte and Mack, Phys. Rev. (2) 63, 246, 1943. - 238 Laporte, Miller and Sawyer, Phys. Rev. (2) 38, 843, 1931. - 239 Laun, Bur. St. Journ. Res. 21, 207 (RP 1125), 1938. - 240 Livingood, Phys. Rev. (2) 34, 185, 1929. - 241 Lorenser, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. - 242 Ludwig, Zeit. f. Wiss. Ptg. 16, 157, 1917. - 243 Mack, Unpublished material, June 1942. - 244 Martin, Phys. Rev. (2) 48, 938, 1935. - 245 Mass. Inst. Tech., Wave Length Tables, Wiley, New York, 1939. - 246 Mass. Inst. Tech., Unpublished material, May 1941. - 247 Mass. Inst. Tech., Unpublished material, June 1942. - 248 McCormick and Sawyer, Phys. Rev. (2) 54, 71, 1938. - 249 McNally, Jr., Unpublished material, May 1944. - 250 McNally, Jr., Harrison and Park, Journ. Opt. Soc. Am. 32, 334, 1942. - 251 Meggers, Sci. Papers Bur. St. 20, 19 (No. 499), 1925. - 252 Meggers (Bureau of Standards), see Shenstone, Phys. Rev. 30, 255, 1927. - 253 Meggers, Sci. Papers Bur. St. 22, 61 (No. 549), 1927. - 254 Meggers, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>2</u>, 733 (RP 55), 1929. - 255 Meggers, see Findlay, Phys. Rev. (2) 36, 5, 1930. - 256 Meggers, see Shenstone, Phys. Rev. (2) 36, 669, 1930. - 257 Meggers, Bur. St. Journ. Res. 6, 1027 (RP 322), 1931. - 258 Meggers, see Russell and Meggers, <u>Bur. St. Journ. Res</u>. <u>9</u>, 625 (RP 497), 1932. - 259 Meggers, Bur. St. Journ. Res. 10, 669 (RP 558), 1933. - 260 Meggers, Bur. St. Journ. Res. 10, 75% (RP 564), 1933. - 261 Meggers, Unpublished material, Feb. 1934. - 262 Meggers, Bur. St. Journ. Res. 14, 33 (RP 755), 1935. - 263 Meggers, Bur. St. Journ. Res. 14, 487 (RP 781) 1935. - 264 Meggers, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906), 1936. - 265 Meggers, <u>Bur. St. Journ. Res</u>. <u>24</u>, 153 (RP 1275), 1940. - 366 Meggers, see Meggers and Moore, <u>Bur. St. Journ. Res</u>. <u>35</u>, 83 (RP 1317), 1940. - 267 Meggers, <u>Journ. Opt. Soc. Am</u>. <u>31</u>, 39, 1941. - 268 Meggers, see King, A.S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941. - 269 Meggers, Unpublished material, Nov. 1941. - 270 Meggers, Rev. Mod. Phys. 14, 96, 1942. - 271 Meggers, Unpublished material, Jan. 1943. - 272 Meggers, Unpublished material. - 273 Meggers and de Bruin, Bur. St. Journ. Res. 3, 765 (RP 116), 1929. - 274 Meggers, de Bruin and Humphreys, Bur. St. Journ Res. 7, 643 (RP 364), 1931. - 275 Meggers and Dieke, Bur. St. Journ. Res. 9, 121 (RP 462), 1932. - 276 Meggers and Humphreys, Bur. St. Journ. Res. 10, 427 (RP 540), 1933. - 277 Meggers and Humphreys, Bur. St. Journ. Res. 13, 293 (RP 710), 1934. - 278 Meggers and Humphreys, Bur. St. Journ. Res. 18, 543 (RP 992), 1937. - 279 Meggers and Humphreys, Bur. St. Journ. Res. 28, 463 (RP 1464), 1943. - 280 Meggers and Kiess, Sci. Papers Bur. St. 14, 637 (No. 324), 1918. - 281 Meggers and Kiess, Sci. Papers Bur. St. 19, 273 (No. 479), 1924. - 282 Meggers and Kiess, <u>Bur. St. Journ. Res. 9</u>, 309 (RP 473), 1932. - 283 Meggers and King, Bur. St. Journ. Res. 16, 385 (RP 881), 1936. - 384 Meggers and Moore, Bur. St. Journ. Res. 25, 83 (RP 1317), 1940. - 285 Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>2</u>, 733 (RP 55), 1929. - 286 Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906), 1936. - 287 Meggers and Scribner, Bur. St. Journ. Res. 4, 169 (RP 139), 1930 - 288 Meggers and Scribner, <u>Bur. St. Journ. Res.</u> <u>5</u>, 73 (RP 187), 1930. 289 Meggers and Scribner, <u>Bur. St. Journ. Res</u>. <u>13</u>, 625 (RP 732), 1934. - 290 Meggers and Scribner, Bur. St. Journ. Res. 14, 629 (RP 793), 1935. - 291 Meggers and Scribner, Bur. St. Journ. Res. 19, 651 (RP 1053), 1937. - 292 Meggers and Shenstone, Phys. Rev. (2) 35, 868, 1930. - 293 Meissner, Zeit. f. Phys. 39, 172, 1926. - 294 Meissner, Zeit. f. Phys. 40, 839, 1927. - 295 Meissner, Ann. der Phys. (5) 31, 505, 1938. - 296 Meissner, Ann. der Phys. (5) 31, 518, 1938. - 297 Meissner, Bartelt und Eckstein, Zeit. f. Phys. 86, 54, 1933. - 298 Meissner und Luft, Ann. der Phys. (5) 29, 698, 1937. - 299 Merrill, Bull. Bur. St. 14, 159, 1918. - 300 Merton and Johnson, see Fowler and Selwyn, <u>Proc. Royal Soc</u>. A <u>118</u>, 34, 1928. - 301 Mihul, Annales de Physique (10) 9, 294, 1928. - 302 Mihul, Annales de Physique (10) 9, 301, 1928. - 303 Millikan and Bowen, Phys. Rev. (2) 25, 600, 1925. - 304 Molnar and Hitchcock, Journ. Opt. Soc. Am. 30, 523, 1940. - 305 Moore, C. E., Phys. Rev. (2) 55, 710, 1939. - 306 Moore, C. E. and King, A. S., Publ. Astr. Soc. Pacific <u>55</u>, 27 (No. 323), 1943. - 307 Narayan, Kodaikanal Obs. Bull. 4, 311 (No. 99), 1932. - 308 Offermann, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. - 309 Olthoff and Sawyer, Phys. Rev. (2) 42, 766, 1932. - 310 Paschen, Ann. der Phys. (4) 39, 642, 1909. - 311 Paschen, Ann. der Phys. (4) 60, 405, 1919. - 313 Paschen, <u>Ann. der Phys</u>. (4) <u>71</u>, 142, 1923. 313 Paschen, <u>Sitz. der Preuss. Akad. der Wiss</u>., <u>Phys.-Math. Klasse</u>, <u>32</u>, 536, 1938. - 314 Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse, 32, 709, 1931. - 315 Paschen, Ann. der Phys. (5) 12, 509, 1932. - 316 Paschen und Back, Ann. der Phys. (4) 39, 897, 1912. - 317 Paschen und Campbell, Ann. der Phys. (5) 31, 29, 1938. - 318 Paschen und Kruger, Ann. der Phys. (5) 8, 1005, 1931. - 319 Paschen und Ritschl, Ann. der Phys. (5) 18, 867, 1933. - 320 Paul and Polster, Phys. Rev. (2) 59, 424, 1941. - 321 Paul and Rense, Phys. Rev. (2) 56, 1110, 1939. - 322 Phillips and Kruger, Phys. Rev. (2) 54, 839, 1938. - 323 Phillips and Parker, Phys. Rev. (2) 60, 301, 1941. - 324 Platt and Sawyer, <u>Phys. Rev.</u> (2) <u>60</u>, 866, 1941. 325 Price, <u>Phys. Rev.</u> (2) <u>48</u>, 477, 1935. - 326 Puhlmann, Zeit. f. Wiss. Ptg. 17, 97, 1917. - 327 Rao, Proc. Royal Soc. A 124, 465, 1929. - 338 Rao, Indian Journ. Phys. 7, 561, 1932. - 329 Rasmussen, Zeit. f. Phys. 80, 726, 1933. ## BIBLIOGRAPHY - 330 Rasmussen, Zeit. f. Phys. 83, 404, 1933. - 331 Rasmussen, Zeit. f. Phys. 86, 24, 1933. - 32 Rasmussen, Zeit. f. Phys. 87, 607, 1934. - 333 Reinheimmer, Ann. der Phys. (4) 71, 162, 1923. - 334 Robinson, <u>Nature</u> 137, 992, 1936. - 35 Robinson, Phys. Rev. (2) 49, 297, 1936. - 336 Robinson, Phys. Rev. (2) 51, 726, 1937. - 337 Robinson, Phys. Rev. (2) 52, 724, 1937. - 338 Rood and Sawyer, Ap. J. 87, 68, 1938. - 339 Rosen, Harrison and McNally, Jr., Phys. Rev. (2) 60, 722, 1941. - 340 Rosenthal, Ann. der Phys. (5) 4, 49, 1930. - 341 Ruedy, Phys. Rev. (2) 41, 588, 1932. - 342 Ruedy, Phys. Rev. (2) 44, 757, 1933. - 343 Ruedy and Gibbs, Phys. Rev. (2) 46, 880, 1934. - 344 Russell, Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925. - 345 Russell, Publ. Astr. Soc. Pacific 38, 236, 1926. - 346 Russell, Mt. Wilson Contr. No. 342; Ap. J. 66, 233, 1927. - 347 Russell, Mt. Wilson Contr. No. 344; Ap. J. 66, 283, 1927. - 348 Russell, Mt. Wilson Contr. No. 345; Ap. J. 66, 347, 1927. - 349 Russell, see Russell and Meggers, <u>Sci. Papers Bur. St</u>. <u>32</u>, 329 (No. 558). 1927. - 350 Russell, Phys. Rev. (2) 31, 27, 1928. - 351 Russell, see Meggers and Russell, <u>Bur. St. Journ. Res.</u> 2, 733 (RP 55), 1929. - 352 Russell, Phys. Rev. (2) 34, 821, 1929. - 353 Russell, see Meggers, Bur. St. Journ. Res. 10, 676, 684 (RP 558), 1933. - 354 Russell, Phys. Rev. (2) 46, 989, 1934. - 355 Russell, Unpublished material, May 1940. - 356 Russell, Unpublished material, Nov. 1941. - 357 Russell, Mt. Wilson Contr. No. 663; Ap. J. 96, 11, 1942. - 358 Russell, Unpublished material, 1943. - 359 Russell, Unpublished material. - 360 Russell, Albertson and Davis, Phys. Rev. (2) 60, 641, 1941. - 361 Russell and King, A. S., Mt. Wilson Contr. No. 611; Ap. J. 90, 155, 1939. - 362 Russell, King, R. B. and Lang, Phys. Rev. (2) <u>52</u>, 456, 1937. - 363 Russell, King, R. B. and Moore, Phys. Rev. (2) 58, 407, 1940. - 363a Russell, Moore and Weeks, <u>Trans. Am. Phil. Soc</u>. <u>34</u>, 111 (Part 2), 1944. - 364 Russell and Lang, Mt. Wilson Contr. No. 337; Ap. J. 66, 13, 1927. - 365 Russell and Meggers, Sci. Papers Bur. St. 22, 329 (No. 558), 1927. - 366 Russell and Meggers, <u>Bur. St. Journ. Res</u>. 9, 625 (RP 497), 1932. - 367 Russell and Meggers, Unpublished material. - 368 Russell or Moore, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906) 1936. - 369 Russell and Saunders, Ap. J. 61, 38, 1925. - 370 Ryde, Proc. Royal Soc. A 117, 164, 1927. - 371 St. John and Babcock, Mt. Wilson Contr. No. 202; Ap. J. 53, 260, 1921. - 372 von Salis, Ann. der Phys. (4) 76, 145, 1925. - 373 Saunders, Ap. J. 52, 265, 1920. - 374 Saunders, Unpublished material. - 375 Saunders and Russell, Ap. J. 62, 1, 1925. - 376 Sawyer and Lang, Phys. Rev. (2) 34, 712, 1929. - 377 Sawyer und Paschen, Ann. der Phys. (4) 84, 1, 1927. - 378 Schüler, Zeit. f. Phys. 42, 487, 1927. - 379 Schumacher, Zeit. f. Wiss. Ptg. 19, 149, 1919. - 380 Segre und Bakker, Zeit. f. Phys. 72, 734, 1931. - 381 Shenstone, Phys. Rev. (2) 28, 449, 1926. - 382 Shenstone, Phys. Rev. (2) 30, 255, 1927. - 383 Shenstone, Phys. Rev. (2) 31, 317, 1928. - 384 Shenstone, Phys. Rev. (2) 32, 30, 1928. - 385 Shenstone, Phys. Rev. (2) 36, 669, 1930. - 386 Shenstone, Phil. Trans. Royal Soc. A 235, 195 (No. 751), 1936. - 387 Shenstone, Phil. Trans. Royal Soc. A 237, 453, 1938. - 388 Shenstone, Phys. Rev. (2) 57, 894, 1940. - 389 See Shenstone, Phys. Rev. (2) 57, 894, 1940. - 390 Shenstone, Unpublished material. - 391 Smith, Sinclair, Unpublished material. - 392 Smith, Stanley, Proc. Nat. Acad. Sci. 13, 65, 1927. - 393 Söderqvist, Nova Acta Regiae
Societatis Scientiarum Upsaliensis (IV) 9 (No.7), 1934. - 394 Sommer, Zeit. f. Phys. 37, 1, 1926. - 395 Sommer, Zeit. f. Phys. 45, 147, 1927. - 396 See Stiles, Ap. J. 30, 48, 1909. - 397 Stoy, Lick Bull. 17, 179 (No. 480), 1935. - 398 Stüting, see Kayser, Handbuch der Sp. 6, 1912. - 399 Sullivan, Univ. Pittsburgh Bull. 35, 1 (No. 1), 1938. - 400 Sullivan and Burns, <u>Science Studies</u> 9, 7 (No. 3), 1941. 401 Takahashi, <u>Ann. der Phys.</u> (5) 3, 27, 1929. - 402 Uhler and Tanch, Ap. J. 55, 291, 1922. - 403 Wagman, Univ. Pittsburgh Bull. 34, 1 (No. 1), 1937. - 404 Werner, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. - 405 Wheatley and Sawyer, Phys. Rev. (2) 61, 591, 1942. - 406 White, Phys. Rev. (2) 33, 538, 1929. - 407 White, Phys. Rev. (2) 33, 672, 1929. - 408 Whitford, Phys. Rev. (2) 46, 793, 1934. - 409 Wright, Publ. Lick Obs. 13, 193, 1918. - 410 Zeeman und Dik, see de Bruin, Zeit. f. Phys. 38, 94, 1926. INDEX-By Pages | | | | | | | | INDEX.—By | | _ | _ | Mult sp | Mult | |------|--------|---------------|------------|------|------------|------------|-----------------|-------------|------|---------|--------------|-------------| | Page | Sp | Mult
No Sp | Mult
No | Page | 8 p | Mult
No | Sp | Mult
No | Page | | | No | | 1 | н | 1 - He II | 5 | 40 | Cr I | 115 | - Cr I | 173 | 79 | Y II | 9 - Zr I | 17 | | 3 | He II | 6 - C II | 21 | 41 | Cr I | 174 | - Cr I | 243 | 80 | Zr I | 18 - Zr II | 23 | | 3 | C II | 33 - N I | 6 | 43 | Cr I | 244 | - Cr I | Unclass. | 81 | Zr II | 24 - Zr II | 108 | | 4 | N I | 7 - N I | 24 | 43 | Cr I | Unclass. | 3911.95 - Cr II | 36 | 82 | Zr II | 109 - No II | 2 | | 5 | N I | 25 - N II | 68 | 44 | Cr II | 37 | - Cr II | 116 | 83 | Mo II | 3 - Ag II | | | 6 | N II | 69 - 0 I | 11 | 45 | Cr II | 117 | - Mn I | 4 | 84 | Cd I | 1 - La II | 4 | | 7 | OI | 12 - 0 I | 44 | 46 | Mn I | 5 | - Mn I | 59 | 85 | La II | 5 - La II | 86 | | 8 | O I | 45 - 0 II | 62 | 47 | Min I | 60 | - Mn II | 1 21 | 86 | La II | 87 - Ce I | | | 9 | O II | 63 - 0 III | 35 | 48 | Fe I | 1 | - Fe I | 36 | 87 | Ge II | 1 - Ce II | 99 | | 10 | o III | 36 - F II | 4 | 49 | Fe I | 37 | - Fe I | 91 | 88 | Ce II | 100 - Ce II | 233 | | 11 | F II | 5 - Ne I | 32 | 50 | Fe I | 90 | - Fe I | 159 | 89 | Ce II | 234 - Nd II | 7 | | 12 | Ne I | 33 - Ne II | 70 | 51 | Fe I | 160 | - Fe I | 223 | 90 | Nd II | 8 - Sm I | 3 | | 13 | Ne II | 71 - Mg II | 9 | 52 | Fe I | 224 | - Fe I | 308 | 91 | Sm II | 1 - Sm II | 58 | | 14 | Mg II | 10 - Al II | 65 | 53 | Fe I | 309 | - Fe I | 368 | 92 | Sm II | 59 - Gd II | 1 | | 15 | Al II | 66 - S1 I | 28 | 54 | Fe I | 369 | - Fe I | 443 | 93 | Gd II | 2 - Gd II | 49 | | 16 | 81 I | 29 - S1 III | 8 | 55 | Fe I | 444 | - Fe I | 549 | 94 | Gd II | 50 - Gd II | 98 | | 17 | S1 III | 9 - P V | 1 | 56 | Fe I | 550 | - Fe I | 613a | 95 | Gđ II | 99 - Tb II | | | 18 | S I | 1 - S II | 48 | 57 | Fe I | 613 | - Fe I | 693 | 96 | Dy I | - Hf II | 17 | | 19 | s II | 49 - Cl II | 8 | 58 | Fe I | 694 | - Fé I | 815 | 97 | Hf II | 18 - Ta I | 2 | | 20 | Cl II | 9 - Cl III | 8 | 59 | Fe I | 816 | - Fe I | 918 | 98 | Ta I | 3 - T1 II | | | 21 | Cl III | 9 - A II | 43 | 60 | Fe I | 919 | - Fe I | 1012 | 99 | Pb I | - U | | | 22 | A Il | 44 - A II | 123 | 61 | Fe I | 1013 | - Fe I | 1084 | | | | | | 23 | A II | 124 - Ca I | 13 | 62 | Fe I | 1085 | - Fe I | 1156 | | | | | | 24 | Ca I | 14 - Ca III | 4 | 63 | Fe 1 | 1157 | - Fe I | | | | | | | 25 | Sc I | 1 - Sc III | 1 | 64 | Fe 1 | 1233 | - Fe I | | | | | | | 26 | Ti I | 1 - T1 I | 54 | 65 | Fe 1 | 1297 | | of Unclass. | Fe I | | | | | 27 | T1 I | 55 - T1 I | 140 | 66 | Fe 1 | 1 1 | - Fe I | | | | | | | 28 | T1 I | 141 - Ti I | 192 | 67 | Fe : | II 55 | - Fe I | | | | den Lines | | | 29 | T1 I | 193 - T1 I | 268 | 68 | Fe : | 129 | ⊸ Fe I | | 100 | Be I | 1F - Cl IV | 3F | | 30 | T1 I | 269 - T1 II | 33 | 69 | Fe : | II 883 | - Fe I | | 101 | A III | 1F - T1 I | 15F | | 31 | T1 II | 23 - T1 II | 93 | 70 | Fe : | III 66 | - Co 1 | | 102 | Ti I | 16F - T1 II | 37F | | 32 | T1 II | 94 - V I | 31 | 71 | Co : | 10 | - Co 1 | | 103 | Ti II | 38F - V VIII | | | 33 | VI | 33 - A I | 78 | 72 | Co | | - Co 1 | | 104 | Cr I | 1F - Cr II | 26 F | | 34 | V I | 79 – V I Ur | nclass. | 73 | Co | I 150 | - Co 1 | | 105 | Cr II | 27F - Fe I | 3F | | 35 | A 11 | 1 - V II | 61 | 74 | N1 | 1 1 | - N1 I | | 106 | Fe I | 4F - Fe I | 41F | | 36 | A 11 | 63 - A II | 162 | 75 | N1 | | - N1 1 | | 107 | Fe II | 1F - Fe II | 38F | | 37 | A II | 163 - Cr I | 18 | 76 | N1 | | - N1 1 | | 108 | Fe II | 39F - Fe XV | 1F | | 38 | Cr I | 19 - Cr I | 52 | 77 | N1 | | - Zn 1 | | 109 | Co II | 1F - N1 XII | | | 39 | Cr I | 53 - Cr I | 114 | 78 | Ge. | 1 | - Y I | 1 8 | 110 | N1 XIII | 1F - Eu II | 2F | | | | | | | INDEXB | y Elements | | | | | | |---------------|----------------|---------------|----------------|---------------|------------------|------------|---------|----------------|------------|---------|------------| | 8 p | Page | Sp | Page | Sp | Page | Sp | Page | S p | Page | Sp | Page | | AI | 21 | Dy II | 96 | N III | 6 | Si I | 15,16 | VIX A | 101 | Mn V | 105 | | A II | 21,23 | Er | 96 | N IA | 6 | Si II | 16 | Al VII | 100 | Mn VI | 105 | | A III | 23 | Eu I | 92 | N A | 6 | Si III | 16,17 | Be I | 100 | Mn IX | 105 | | A IV | 23 | Eu II | 92 | Na I | 13 | S1 IV | 17 | CI | 100 | Mn X | 105 | | Ag I | 83 | F I | 10 | Na II | 13 | Sm I | 90 | Ca I | 101 | N I | 100 | | Ag II | 83 | F II | 10,11 | Nd I | 89 | Sm II | 91,92 | Ca II | 101 | N II | 100 | | Al I | 14 | F III | 11 | Nd II | 89,90 | Sn. I | 84 | Ca. V | 101 | Na IV | 100 | | Al II | 14,15 | F IV | 11 | Ne I | 11,12 | Sn II | 84 | Ca VI | 101 | Na V | 100 | | Al III | 15 | F VI | 11 | Ne II | 12,13 | Sr I | 78 | Ca VII | 101 | Ne III | 100 | | As I | 78 | Fe I | 48-65 | Ni I | 74-77 | Sr II | 78 | Ca XII | 101 | Ne IV | 100 | | As II | 78 | Fe II | 66-69 | N1 II | 77 | Ta I | 97,98 | Ca XIII | 101 | Ne V | 100 | | Au I | 98 | Fe III | 69,70 | 0 I | 6- 8 | Ta II | 98 | Ca XV | 101 | N1 I | 109 | | Au II | 98 | Ga I | 78 | O II | 8, 9 | Tb I | 95 | C1 II | 100 | N1 II | 109 | | BI | 2 | Ga II | 78 | o III | 9,10 | Tb II | 95 | C1 III | 100 | N1 VII | 109 | | BII | a ' | Gđ I | 92 | O IV | 10 | Te I | 84 | C1 IV | 100 | N1 VIII | 109 | | B III | 2 | Gđ II | 92-95 | 0 4 | 10 | Th I | 99 | Co II | 109 | N1 IX | 109 | | Ba I | 84 | Ge I | 78 | o vi | 10 | Th II | 99 | Co VI | 109 | N1 XII | 109 | | Ba II | 84 | Ge II | 78 | Os I | 98 | Th III | 99 | Co VII | 109 | N1 XIII | 110 | | Be I | 2 | H | 1 | PI | 17 | Ti I | 26-30 | Co VIII | 109 | N1 XV | 110 | | Be II | 2 | He I | 1 | P II | 17 | T1 II | 30-32 | Co XI | 109 | N1 XVI | 110 | | Bi I | 99 | He II | 1, 3 | P III | 17 | T1 IV | 32 | Cr I | 104 | 0 I | 100 | | Bi II | 99 | Hf I | 96 | P IV | 17 | Tl I | 98 | Cr II | 104,105 | OII | 100 | | Br I | 78 | Hf II | 96,97 | P V | 17 | Tl II | 98 | Cr III | 105 | O III | 100 | | Br II | 78 | Hg I | 98 | Pb I | 99 | Tm I | 96 | Cr IV | 105 | ΡI | 100 | | СÍ | 3 | Hg II | 98 | Pb II | 99 | Tm II | 96 | Cr V | 105 | PII | 100 | | CII | 2, 3 | Ho I | 96 | Pd I | 83 | ט | 99 | Cr VIII | 105 | SI | 100 | | CIII | 3 | Ho II | 96 | På II | 83 | VI | 32-34 | Cr IX | 105 | s II | 100 | | CIV | 3 | II | 84 | Pr I | 89 | A II | 35–37 | Cu II | 110 | s III | 100 | | Ca I | 23,24 | I II | 84 | Pr II | 89 | WI | 98 | Eu II | 110 | s VIII | 100 | | Ca II | 24 | In I | 84 | Pt I | 98 | WII | 98 | F II | 100 | SXII | 100 | | Ca III | 24 | In II | 84 | Pt II | 98 | Xe I | 84 | F III | 100 | Sc II | 101 | | CP I | 82 | Ir I | 98 | Ra I | 99 | Xe II | 84 | F IV | 100 | Sc III | 101 | | CP II | 82 | KI | 23 | Ra II | 99 | YI | 78 | Fe I | 105,106 | Sc VI | 101 | | Cd I | 84 | K II | 23 | Rb I | 78 | X II | 78,79 | Fe II | 107,108 | Sc VII | 101 | | Cd II | 84 | KIII | 23 | Rb II | 78 | Yb I | 96 | Fe III | 108 | S1 I | 100 | | Ce I | 86 | Kr I | 78 | Re I | 98 | Yb II | 96 | Fe V | 108 | Sr II | 110 | | Ce II | 87-89 | Kr II | 78 | Rh I | 83 | Zn I | 77 | Fe VI | 108 | T1 I | 101,102 | | Ce III | 89 | La I | 84 | Rh II | 83 | Zn II | 77 | Fe VII | 108 | T1 II | 102,103 | | Cl I | 19 | La II | 84-86 | Rn I | 99 | Zr I | 79,80 | Fe X | 108 | T1 III | 103 | | C1 II | 19,20 | La III | 86 | Ru I | 83 | Zr II | 80-82 | Fe XI | 108 | T1 VII | 103 | | C1 III | 30,21 | LA I | 3 | Ru II | 83 | | | Fe XIII | 108 | T1 VIII | 103 | | C1 IV | 21 | L1 II | 2 | S I | 18 | | | Fe XIV | 108 | V II | 103 | | Co I | 70-73 | Lu I | 96 | S II | 18,19 | | | Fe XV | 108 | V III | 103 | | Co II | 73 | Lu II | 96 | S III | 19 | | | K IV | 101 | A AIII | 103
103 | | Cr I | 37-43
43-45 | Mg I | 13 14 | S IV | 19 | | | K VI | 101
101 | V VIII | 110 | | Cr II
Cs I | 43-45
84 | Mg II
Mn I | 13,14
45-47 | Sb I
Sb II | 8 4
84 | Forbidder | . Tines | K VI
Kr III | 110 | Xe III | 110 | | Cs II | 84 | Mn II | 45-47 | Sc I | 25 | A III | 101 | La II | 110 | Y II | 110 | | Cu I | 77 | Mo I | 82 | Sc II | 25 | A IV | 101 | La III | 110 | Y V | 110 | | Cu II | 77 | Mo II | 82,83 | Se III | 25 | A V | 101 | Mg VI | 100 | Zr II | 110 | | D D | 1 | MO II | 3 - 5 | Se I | 78 | AX | 101 | Mn II | 105 | Zr III | 110 | | Dy I | 96 | N II | 5, 6 | Se II | 78 | AXI | 101 | Mn IV | 105 | Zr VI | 110 | | DJ 1 | 30 | * ** | 5, 5 | 50 11 | 10 | w vr | 101 | TH. 14 | 200 | | *** | | Labor
I A | ator;
Ref | | E P
Low High | J | Multiplet
(No) | Labo: | rator
Ref | y
Int | E I | High | J | Multiplet
(Ep) | Labor
I A | rator;
Ref | | E P
Low | High | J | Multiplet
(No) | |------------------------|--------------|--|----------------------------|------------|---|----------------------------|--------------|----------------|----------------------|----------------|--------------|---
----------------------|---------------|------|-----------------|----------------|----------|--| | н гр 13 | . 54 | Anal . | _ | June : | 1942 | He I con | tinue | eđ | | | | | He I cont | tinue | đ | | | | | | -
6562.817 | A | H ∝ | 10.15 13.04 | | 2 ² P°-3 ² D etc | 3187.743 | В | (8) | 19.73 2 | 33.61 | | 23S-43P° | 4168.971 | D | (1) | 21.13 2 | 4.09 | 1-0 | 2 ¹ P°_6 ¹ s | | 4861.332
4340.468 | A
A | H p | 10.15 12.69
10.15 13.00 | _ | (1) 4 ² Deto
5 ² Deto | 1 | _ | | | | | (3)
21 _{S-3} 1 _P o | 4143.759 | В | (2) | 21.13 2 | 4.11 | 1-2 | (52)
21pe_61p
(53) | | 4101.737
3970.074 | A
A | H & | 10.15 13.16
10.15 13.26 | _ | 6°D etc
7 ² D etc | | В | (6) | 20.53 | | 0-1 | (4) | 4023.986 | D | (1) | 21.13 2 | 4.19 | 1-0 | 21p°_?1s
(54) | | 3889.051 | A | н ₈ | 10.15 13.33 | _ | 3 ³ P°-8 ³ D eto | 3964.727 | В | (4) | 20.53 2 | | 0-1 | 215_41po
(5) | 4009.270 | D | (1) | 21.13 2 | 4.21 | 1-3 | 21P°_71D | | 3835.386
3797.900 | A
A | H9
H10 | 10.15 13.37
10.15 13.40 | _ | (2) 9 ² D etc
10 ² D etc | 3613.641 | В | (3) | 20.53 2 | | 0-1 | 21g_51p° | 4007.81 | P | Forb | 21.13 2 | 4.21 | 1-1 | 21pe_71pe | | 3770.632
3750.154 | A
A | H ₁₁
H ₁₂ | 10.15 13.43
10.15 13.45 | _ | 112D etc
12D etc | | D | (2) | 20.53 2 | | 0-1 | 21g_61po
(7) | 3935.914 | D | (1) | 21.13 2 | 4.26 | 1-0 | (56)
21P°_81g | | 3734.370 | A | H ₁₃ | 10.15 13.46 | | 3 ² P°−13 ² D et | | D | (2) | 20.53 2 | | 0-1 | 218_71pe
(8) | 3926.530 | D | (1) | 21.13 2 | 34.27 | 1-2 | (57)
21 po_ 81D | | 3721.940
3711.973 | A
A | H ₁₄
H ₁₅ | 10.15 13.47
10.15 13.48 | _ | 15 ² D et | | D | (1) | 20.53 | 34.27 | 0-1 | 218_81P°
(9) | 3878.180 | D | (1) | 21.13 | 34.31 | 1-0 | 21p°_91s | | 3703.855
3697.154 | A
A | H ₁₆
H ₁₇ | 10.15 13.49
10.15 13.49 | _ | 16 ² D et
17 ² D et | c 7065.188 | В | (5) | 20.87 | | | 2 ³ P°-3 ³ g | 3871.819 | D | (1) | 21.13 2 | 34.31 | 1-2 | 2 ¹ p°_9 ¹ p | | 3691.557 | A | H ₁₈ | 10.15 13.50 | | 2 ² P°-18 ² D et | 7065.719 | D | (1) | 20.87 | | 0-1 | (10) | 3838.094 | D | (1) | 21.13 | 34.34 | 1-0 | (60)
21P°-1018 | | 3686.833
3682.810 | A
A | H ₁₉ | 10.15 13.50
10.15 13.51 | _ | (4) 19 ² D et
20 ² D et | c 5875.618
c 5875.650 | B) | (10)D3 | 20.87 2
3 20.87 2 | | 2-
1- | 2 ³ P°-3 ³ D
(11) | 3833.574 | D | (1) | 21.13 2 | 34.35 | 1-3 | 2 ¹ P°-10 ¹ D | | 3679.355
3676.365 | A
A | H21
H23 | 10.15 13.51
10.15 13.51 | _ | 21 ² D et
22 ² D et | te 5875.989 | D | (1) | 20.87 | 32.97 | 0- | | 3805.765 | D | (1) | 21.13 2 | 34.37 | 1-2 | 2 ¹ P°-11 ¹ D | | 3673.761 | A | H23 | 10.15 13.51 | | 2 ² P°-23 ² D et | 4713.143 | B
D | (3)
(1) | 20.87 | | 3,1-1
0-1 | 2 ³ P°_4 ³ S
(12) | 3784.886 | D | (1) | 21.13 2 | 34.39 | 1-2 | 3 ¹ P°-13 ¹ D | | 3671.478
3669.466 | A
A | H24
H25 | 10.15 13.52
10.15 13.52 | _ | (5) 24 ² D et | | P | Forb | 20.87 | 23.61 | 2- | 2 ³ P°_4 ³ P° | 3768.81 | D | (1) | 21.13 2 | 34.40 | 1-2 | 2 ¹ P°-13 ¹ D | | 3667.684
3666.097 | A
A | H26
H27 | 10.15 13.52
10.15 13.52 | | 26 ² D e1 | | В | (6) | 20.87 | 23.63 | 2,1- | 2 ³ P°-4 ³ D | 3756.10 | D | (1) | 21.13 2 | 34.41 | 1-2 | 8 ¹ P°-14 ¹ D | | 3664.679 | A | H ₂₈ | 10.15 13.52 | _ | 2 ² P°-28 ² D e1 | 4474 699 | D | (6)
(1) | 20.87 | 23.63 | 0- | (14) | | | | | | | (66) | | 3663.406
3662.258 | A
A | H ₂₉
H ₃₀ | 10.15 13.52 10.15 13.53 | _ | (6) 29 ² D et | tc 4469.92 | P | Forb | 20.87 | 83.63 | 2- | 2 ³ pe_4 ³ pe
(15) | 9463.57 | С | 60 | 22.62 | | | 3 ³ 8_5 ³ p° | | 3661.221
3660.279 | A
A | H31 | 10.15 13.53
10.15 13.53 | _ | 31 ² D e1 | te 4120.812
te 4120.993 | B | (3)
(1) | 20.87 2
20.87 | 23.87 | 3,1-1
0-1 | 23 pe_53g
(16) | 8361.77 | С | (4) | 22.62 2 | 34.10 | _ | 338 <u>-6</u> 3pe
_(68) | | 3659.423 | Ä | H33 | 10.15 13.53 | | 33 ² D e1 | te
4045.16 | P | Forb | 20.87 | | 2- | 23po_53po | 7816.16 | С | (4) | 22.62 | 34.20 | | 33g_73pe
(69) | | 3658.641
3657.926 | A
A | H34
H35 | 10.15 13.53
10.15 13.53 | = | 2 ² P°-34 ² D et
(7) 35 ² D et | te
te 4026.189 | В | (5) | 20.87 | 23.94 | 3,1- | 23pe_53D | 11012.97 | A | 30 | 22.82 | 33.94 | 0-1 | 31g_51p• | | 3657.269
3656.666 | Ā | H36
H37 | 10.15 13.53
10.15 13.53 | _ | 36 ² D et
37 ² D et | A026 362 | D | (5)
(1) | 20.87 | 23.94 | 0- | (18) | 9603.50 | E | 6 | 22.82 | 34.11 | 0-1 | | | 3656.135
3645.981 | A
A | H38 | 10.15 13.53
10.15 13.54 | | 38 ² D e | te 4025.49 | P | Forb | 20.87 | 23.94 | 2- | 2 ³ p°_5 ³ p°
(19)
2 ³ p°_6 ³ S | | | | | | | (71) | | 00401001 | •• | | | | | 3867.477
3867.631 | D | (2) | 20.87
20.87 | | 3,1-1
0-1 | 23pe_63g
(20) | 11969.07 | A | 20 | 22.91 | | | 3 ³ Pe_5 ³ D
(73) | | 12818.05
10938.09 | A
A | _ | 12.04 13.00
12.04 13.16 | | 3 ² D-5 ² F° et
(8)6 ² F° et | c 3829.47 | P | Forb | 20.87 | 24.10 | 2- | 23po_63po | 10667.60 | A | 30 | 22.91 | | | 33pe_63g
(73) | | 0049.38
9545.974 | Ā | _ | 12.04 13.26
12.04 13.33 | | 72F° et. | 3819.606 | В | (4) | 20.87 | 24.11 | 3,1- | 23pe_63D | 10311.18
10311.37 | Ĉ) | 40 | (22.91
22.91 | 34.11
34.11 | _ | 33pe_63p
(74) | | 9229.017 | Ā | - | 12.04 13.37 | | | 3819.761 | D | (4)
(1) | 20.87 | 24.11 | 0 | (22) | 9702.66 | E | 10 | 22.91 | 34.18 | | 3 ³ P°_7 ³ S | | 9014.911
8862.787 | A
A | _ | 13.04 13.40
13.04 13.43 | | 3 ² D-10 ² F° e
(9)11 ² F° e | tc | P | Forb | 20.87 | | | 23Pe_63Fe
(23) | 9516.51 | c) | 30 | ,22.91 | | | (75)
3 ³ pe_7 ³ p | | 8750.475
8665.021 | A
A | _ | 12.04 13.45
12.04 13.46 | - | 12 ² F° e
13 ² F° e | te 3732.861
te 3732.992 | C | $\binom{1}{1}$ | 20.87
20.87 | | | 23po_73g
(24) | 9516.66 | | | 122.91 | | - | (76) | | 8598.394 | Ā | | 12.04 13.47 | | 14°F° e | te
3705.003 | В | (3)
(1) | 20.87 | 24.21 | 2,1- | 2 ³ P°-7 ³ D | 9063.40 | E | 6 | 22.91 | 34.37 | | 3 ³ P°_8 ³ D
(77) | | 8545.384
8502.487 | A
A | _ | 12.04 13.48
12.04 13.49 | | 3 ² D-15 ² F° e
(10)16 ² F° e | tc | C | | 20.87 | | | (25) | 10996.55 | A | 5 | 22.97 | 34.10 | | 33p_63pe | | 8467.256
8437.958 | A
A | | 13.04 13.49
13.04 13.50 | | 18 F° € | tc 3704.79
tc | P | Forb | 20.87 | | | 2 ³ P°_7 ³ F°
(26) | 10913.92 | A | 100 | 22.97 | 34.11 | | (78)
33D-63F° | | 8413.321 | A | - | 12.04 13.50 | - | | te 3651.971
3652.119 | D
D | (1) | 20.87
20.87 | | | 2 ³ pe_8 ³ 8
(27) | 10072.10 | E | 2 | 22.97 | 24.20 | | 33p_73pe | | 8392.400
8374.478 | A
A | _ | 12.04 13.51
12.04 13.51 | | 3 ² D-20 ² F° e
(11)21 ² F° e | te 3634.235 | D | (2) | 20.87 | | | 2 ³ P°-8 ³ D | 10027.73 | E | 40 | 22.97 | 34.21 | _ | (80)
3 ³ D-7 ³ F° | | 8359.006
8345.553 | A
A | _ | 12.04 13.51
12.04 13.51 | | 23 2F° e
23 2F° e | te 3634.373
te | D | (1) | 20.87 | | 0 | (28) | 9526.17 | Ē | 10 | 22.97 | 24.27 | | 33D_83Fe | | 8333.785 | A | | 13.04 13.52 | | | tc 3634.10 | P | Forb | 20.87 | | 2 | 2 ³ P°_8 ³ F° | 9210.28 | E | 6 | 22.97 | 24.31 | | (82)
33p_93F° | | 8323.428
8314.262 | A
A | _ | 12.04 13.52
12.04 13.52 | | (12)26 ² F° e | tc 3599.304
tc 3599.442 | D
D | $\binom{1}{1}$ | 20.87
20.87 | 24.30
24.30 | 3,1-1
0-1 | 23pe_93g
(30) | | | | | | | (83) | | 8306.115
8298.837 | A
A | = | 12.04 13.52
12.04 13.52 | _ | 27 ² F° e
28 ² F° e | te 3587.252 | D | (2) | 20.87 | | | 23P°-93D | 10916.98 | A
 | 50 | 22.97 | | 2-3 | 3 ¹ D-6 ¹ F°
(84)
3 ¹ D-7 ¹ F° | | 8292.309 | A | _ | 12.04 13.52 | | | te 3587.396 | D | _ | 20.87 | | | (31) | 10031.16 | E | 15 | 22.97 | | 2-3 | (85) | | 8286.434
8281.125 | A
A | _ | 12.04 13.52
12.04 13.53 | | 3 ² D-30 ² F° e
(13)31 ² F° e | tc | P | Forb | 20.87 | | 2- | 33po_93po
(33) | 9529.27 | E | 4 | 22.97 | 24.27 | 2–3
- | 31 <u>0</u> _81 F°
(86) | | 8276.310
8271.934 | A | = | 12.04 13.53
12.04 13.53 | | 33 ² F° e | te 3562.950
te | D | (1) | 20.87 | | | 23po_103g
(33)
23po_103p | 11225.83 | A | 6 | 22.99 | 24.09 | 1-0 | 3 ¹ P°_6 ¹ S | | 8267.941 | A | | 12.04 13.53 | | 342F° e
32D-352F° e | tc 3554.394
3554.524 | D
D | {1
1} | 20.87
20.87 | 34.35
34.35 | 3,1-
0- | (34) | 11044.95 | A | 40 | 22.99 | 24.11 | 1-2 | (87)
3 ¹ P°-6 ¹ D | | 8264.288
8260.938 | A
A | _ | 12.04 13.53
12.04 13.53 | _ | 35D-355F° e
(14)362F° e
372F° e | te 3536.820 | D | (1) | 20.87 | 24.36 | | 2 ³ P°-11 ³ S | 10138.50 | E | 10 | 22.99 | 24.21 | 1-3 | (88)
3 ¹ P°-7 ¹ D
(89) | | 8257.859
8255.153 | A
A | | 12.04 13.53
12.04 13.53 | _ | 38 ² F° e | te
te 3530.487 | D | (1) | 20.87 | 24.37 | | (35)
2 ³ p°-11 ³ D
_(36) _ | 9625.80 | E | 3 | 22.99 | 24.27 | 1-3 | | | 8203.572 | A
 | | 12.04 13.54 | | Limit | 3517.327 | ם | (1) | 20.87 | 24.38 | | 23pe_123g | | | | | | | | | | | | | | | 3512.511 | D | (1) | 20.87 | 24.39 | | (37)
3 ³ P°-13 ³ D
(38) | | | | | | | | | <u>D</u> IP1 | .3.54 | Anal | A List B | June | 1942 | 3502.381 | D | (1) | 20.87 | 24.40 | | 2 ³ p°-13 ³ g
(39) | He II | P 5 | 4.17 | Anal A | List A | . Ju | ine 1942 | | 6561.032
4860.029 | A
A | D∝
De | 10.16 12.04
10.16 12.70 | | 2 ² P°-3 ² Det
(1) 4 ² Det | c 3498.641 | D | (1) | 20.87 | 24.40 | | 2 ³ p°-13 ³ p
(40) | 4685.682
3203.104 | A
A | _ | 48.16
48.16 | | _ | 3 ² D-4 ² F° etc
(1)5 ² F° etc | | 4339.287
4100.621 | A
A | DB
DY
DS | 10.16 13.00
10.16 13.17 |) — | 52Det
62Det | c 3490.62 | D | (1) | 20.87 | 24.41 | _ | 2 ³ p°-14 ³ s | 10123.61 | A | | 50.80 | | | 4 ² F°-5 ² Getc | | 3968.995
3887.993 | A
A | D E | 10.16 13.27
10.16 13.33 | <i>'</i> — | 72 D et
82 D et | c 3487.721 | D | (1) | 20.87 | 24.41 | - | 23po_143p
(42) | 6560.099
5411.524 | A
A | _ | 50.80 | 52.68 | _ | (2) 6 ² G etc
7 ² G etc | |
00011000 | •• | | | | | 3478.97 | D | (1) | 20.87 | 24.42 | | 23pe_153p
_(43) | 4859.323
4541.59 | Ā | _ | 50.80
50.80 | 53.34 | = | 82G etc
92G etc | | 12814.56
10935.11 | A
A | _ | 12.04 13.00
12.04 13.1 | | 3 ² D-5 ² F° et
(2)6 ² F° et | c 3471.80 | D | (1) | 20.87 | 24.43 | | 2 ³ po-16 ³ D
(44) | 4338.67 | A | _ | 50.80 | | | 4 ² F°-10 ² G etc | | 10046.64
9543.376 | Ā | _ | 12.04 13.2
12.04 13.3 | <i>'</i> — | (2)6 ² F° et
7 ² F° et
8 ² F° et | c 7281.349 | В | (3) | 21.13 | 22.82 | 1-0 | 21po_31g | 4199.83
4100.04 | Â | = | 50.80 | 53.74 | _ | (3) 11 ² G etc
12 ² G etc | | | | | | | | 6678.149 | | (6) | 21.13 | | | (45)
21po_31D | 4025.60
3968.43 | Ā | _ | 50.80
50.80 | 53.86 | = | 13 ² G etc
14 ² G etc | | | | | | | | 5047.736 | | (2) | 21.13 | | | (46)
21pe_41s | 3923.48 | A | _ | 50.80 | 53.94 | _ | 42F0_152Getc | | | P 24 | | nal A List | | an 1943 | 4921.929 | | (4) | 21.13 | | | (47)
21po_41D | 3887.44
3858.07 | Ā | _ | 50.80
50.80 | 53.97
54.00 | _ | (4) 16 ² G etc
17 ² G etc | | 10830.341
10830.250 | A
A | 2500
1500 | 19.73 20.8° | 7 1- | 1 (1) | 4920.35 | P | Forb | 21.13 | | | (48)
21po_41po | 3833.80
3813.50 | Ā | _ | 50.80
50.80 | 54.02 | _ | 18 ² G etc
19 ² G etc | | 10829.081 | A | 500 | 19.73 20.8 | | | 4437.549 | | (1) | 21.13 | | | (49)
21p°_51g | 3796.33 | A | _ | 50.80 | 54.05 | _ | 4 ² F°-20 ² G etc | | 3888.646 | В | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 19.73 22.9 | 1 1- | 2)
1) 2 ³ 8-3 ³ P° | 4387.928 | | (3) | 21.13 | | | (50) | 3781.68
3644.47 | ·Ā
Ā | | 50.80
50.80 | 54.06 | _ | (5) 21 ² Getc
Limit | | | | [(3)] | | | o) (2) | | | •=• | | | | (51) | | | | | | - | 3 | ٥ | | | | | | | R L V | 1 2 | E D M | ULTI | PLE | T T | ABLL | | | | | | | | |-----------------------------|--------|-----------|----------------|----------------|-------------|---|------------------------------------|--------------|----------------------|----------------------|-------------------------|--------------------|--|---------------------------------|---------------|--|-------------------------------|----------------|---|---| | Labo
I A | | ry
Int | | P
High | J | Multiplet
(No) | Labo
I A | orato
Ref | ry
Int | E
Low | P
High | J | Multiplet (No) | Lab
I A | orator
Ref | | E I
Low | P
High | J | Multiplet
(No) | | He II co | nt1n | 1ed | | | | | B II I | P 25 | .02 Aı | | List D | Feb | 1943 | C I con | tinued | | | | | | | 11626.40
9 344.93 | A
A | | | 53.08
53.34 | _ | 5 ² G-7 ² H° etc
(6) 8 ² H° etc | 3451.41 | A | 10 | 9.06 | 12.64 | 1-2 | 21p°-2p ² 1 | 13164.1 | D | (100) | 8.73 | 9.67 | 1-1 | 3p ³ S-4s ¹ p° | | 8236.77
7592.74 | Ā | | 52.02 | 53.51
53.64 | = | 92H° etc | 4121.95 | A | 7 | 18.60 | 21.59 | _ | 3 ³ D-4 ³ F° | 12521.0 | D | (30) | 8.73 | 9.72 | 1-1 | (27)
3p ³ S-3d ¹ P°
(28) | | 7177.50 | Ā | _ | | 53.74 | _ | 11 ³ H° etc | | | | | | | | *11667.1
11656.0 | D
D | (100)
(200) | 8.73
8.73 | 9.79
9.79 | 1-2
1-1 | (28)
3p ³ 5-3d ³ P°
(29) | | 6890.88
6683.2 | A | _ | 52.02 | 53.81
53.86 | _ | 5 ² G-13 ² H° etc
(7) 13 ² H° etc
14 ² H° etc | 3 | | | | | | | | | () | | | - | | | 6527.10
6406.3
6310.8 | P
A | _ | 52.02 | 53.91
53.94 | _ | 155H° etc | 3 | I P 3 | | | List | 3 Fe | b 1943
₄ 2 _{P°-5} 2 _D | 12614.8
*12565.0 | D
D | (30) | 8.81
8.81 | 9.79 | 2-2
1-1 | 3p ³ P-3d ³ P°
(30) | | 6233.8 | A | = | 52.02 | 53.97
54.00 | _ | 16 ² H° etc
17 ² H° etc | 4243.60 | A | | 29.98 | | | (1) | 12602.6
•12565.0
12582.3 | D
D | (40)
(30)
(40) | 8.81
8.81
8.81 | 9.79 | 2-1
1-0
1-2 | | | 6170.6
6118.2 | A
A | _ | | 54.02
54.03 | _ | 5 ² G-18 ² H° etc
(8) 19 ² H° etc | | A | 5₫ | 30.14 | 32.89 | _ | 4 ² D-5 ² F°
(2) | 12551.0 | Ď | (50) | 8.81 | | 0-1 | | | 6074.1
6036.7 | A | _ | 52.02 | 54.05
54.06 | _ | 20 ² H° etc
21 ² H° etc | 3 | A | 10d | 30.15 | 32.89 | _ | 4 ² F°-5 ² G | 8018 | E | (1d) | 8.81 | 10.35 | _ | 3p ³ P-4d ³ D° (31) | | 5694.46 | A | _ | 52.02 | 54.18 | _ | Limit | | | | | | | (3) | 7850 | E | (1d) | 8.81 | 10.38 | - | 3p ³ P-4d ³ P° (32) | | Wide Fine | Stm | ucture | | | | | See. | NSR | DS-NE | REV | ISED | tior | ı 3 , 197 | 'n | | ~ | REVI | SED | | | | | | | | | | | CIII | P 11. | 20 Ans | | 1st A | Marc | h 1943 | see | NSRD: | | 53, | | | 3, 1970 | | | P 5.3 | 37 Ar | | List B | | 1943 | 10691.36
10683.18 | A
A | 50
25 | 7.46
7.45 | 8.61
8.61 | 2-3
1-3 | 3s ³ P°-3p ³ D | 4744.90 | В | 1 | | | | | | 6707,74 //
6707.89 | A) | 1000R | (0.00 | 1.84
1.84 | }-1-
 | 3 ² 8-3 ² P° (1) | 10685.44
10729.59 | A | 10
8 | 7.45
7.46 | 8.60
8.61 | 0-1
2-2 | •-• | 4738.11 | В | 0 | 13.66 | 16.26 | - } } | 3p ² P-3 ² P°
(1) | | 3232.61 | В | 50R | 0.00 | 3.82 | _ | 2 ² 5-3 ² P° | 10707.44
10754.09 | A
P | 8 | 7.45
7.46 | 8.60
8.60 | 1-1
2-1 | | 6578.03 | Ā | 10 | 14.39 | | -
-
1 | 3 ² 8-3 ² P° (2) | | 8126.52 | В | (500) | 1.84 | 3.36 | | (2)
2 ² P°-3 ² S | 9658.49
9620.86 | A
A | 2
1 | 7.46
7.45 | 8.73
8.73 | 2-1
1-1 | 3s ³ p°-3p ³ s | 6582.85 | A . | 9 | 14.39 | | _ | | | 6103.642 | c | 500R | 1.84 | | _ | 3 ² P°-3 ² D | 9603.09 | Â | ō | 7.45 | 8.73 | 0-1 | | 7236.19
7231.12 | A
A | 8d
7 d | 16.26
16.26 | 17.97 | 11-21 | 3 ² P°-3 ² D
(3) | | 4971.92 | В | 10r | 1.84 | 4.32 | _ | 2 ² P°-4 ² S | 9094.89
9078.32 | A
A | 25
6 | 7.46
7.45 | 8.81
8.81 | 2-2
1-1 | 3s ³ P°-3p ³ P | 3920.677 | , A | 10 | | | | | | 4602.99 | В | 100R | 1.84 | 4.52 | _ | 2 ² P°-4 ² D | 9111.85
9088.57 | A
A | 10
8 | 7.45 | 8.81
8.81 | 2-1
1-0 | | 3918.977 | ' A . | 9 | 16.26 | 19.41 | _ } _ }
- | 3 ² P°_4 ² S
(4) | | | | | | | | (6) | 9061.48
9062.53 | A
A | 15
10 | | 8.81
8.81 | 1-2
0-1 | | 5889.97 | Ā | 4 | 17.97 | 30.06 | 2 1 -1= | 3 ² D-4 ² P° | | | | | | | | | 5041.66 | В | 3 | | 9.90 | 2-3
1-2 | 38 ³ P°-4p ³ D | 5891.65
4267.27 | A | 3
20 | 17.97 | | 1를- 를
21_31 | (5)
3 ² D-4 ² F° | | L1 II I | | 5.31 | Anal A | List | D Ja | an 1943 | *5039.05 | В | 3 | (7.45
7.45 | 9.90 | 0-1 | | 4267.02 | Ã | 19 | 17.97 | | 1 2 -22 | (6) | | 5483.55 to
5485.65 |) A | 10 | 58.77 | 61.03 | | 2 ³ 5-2 ³ P°
(1) | 4826.73
4817.33 | B
B | 1 1 | 7.45 | 10.01
10.01 | 2-1
1-1 | 3s ^{3p•} -4p ³ s
(5) | 3361.09
3361.75 | A
A | 3
2 | 17.97 : | | 23-13
13- 3 | 3 ² D-5 ² P°
(7) | | 3684.1 | В | a | 69.49 | 71.83 | | 3 ³ 8-4 ³ P° | 4812.84 | E | (1) | | 10.01 | 0-1 | a 3no . 3n | 2992.63 | A | 5đ | 17.97 | 32.09 | | 3 ² D-5 ² F° | | 000411 | , | | | | | (3) | 4771.72
4766.62
4775.87 | B
B
B | 4
2
3 | 7.45 | 10.04
10.04
10.04 | 3-2
1-1
3-1 | 3s ³ P°-4p ³ P
(6) | 3165.51 | | 4 | 10 57 | | -
- 21 +1 | (8)
Sp ³ ² D°-3p ² P | | 4156.3 | В | 0.5 | 68.98 | 71.95 | 0-1 | 3 ¹ S_4 ¹ P° (3) | 4770.00 | В | ä | 7.45 | 10.04 | 1-0 | | 3167.95
3165.99 | A
A
B | 3
1 | 18.58
18.58 | 32.47 | $1\frac{1}{2} - \frac{1}{2}$ $1\frac{1}{2} - 1\frac{1}{2}$ | (9) | | 4881.3 | В | 2.5 | 69.07 | 71.60 | | 3 ³ P°-4 ³ S | *4762.41 | . B | 4 | (7.45
7.45 | 10.04 | 0-1 | | 5355.55 | ٠. | | | | - | | | 4325.7 | В | 3 | 69.0 7 | 71.92 | _ | 3 ³ P ⁶ -4 ³ D | 4065.1
•4064.2 | C | 2
1 | ,7.45 | | 1-27 | 3s ³ P°-5p ³ D
(7) | 5536.0 | В | 1d | 19.41 | 31.64 | - | 4 ² S-5 ² P° (10) | | Very wide | fine | struc | ture | | | (5) | 100111 | | | 7.45 | 10.49 | 0 -1 ?
- | | 5336.7 | В | Odd | 20.06 | 32.38 | 11/2- 1/2 | 4 ² P°-6 ² S | | | | | | | | | 10653.6 | D | (50) | 7.65 | 8.81 | 1-1 | 3s ¹ P°-3p ³ P | 5121.69 | A | 1 | 20.06 | | 1=1=1 | 4 ² P°-3p ² P | | Be I I | P 9.2 | 38 An | al A 1 | List C | Feb | 1943 | 9405.77 | A | 30 | 7.65 | 8.96 | | 3s ¹ po_3p ¹ D | 3832.12
3836.10 | B
B | 2đ
1đ | 20.06 | 23.28
23.28 | 1 1 - 2 1 | 4 ² P°-3p ² D
(13) | | 3321.347
3321.086 | A
A | 30
20 | 2.71 | 6.43 | 2-1 | 2 ³ P°-3 ³ S | 8335.19 | A | 10 | | 9.13 | | 3s ¹ po-3p ¹ s
(10)
3s ¹ po-4p ¹ p | | | | | | | | | 3321.013 | Ã | 10 | 2.71 | 6.43
6.43 | 1-1
0-1 | (1) | 5380.242
5052.122 | B
B | 8
6 | 7.65 | 9.95 | 1-1 | 3s ¹ P°-4p ¹ P
(11)
3s ¹ P°-4p ¹ D | 6783.75
6779.74 | A
A | (6)
(4)
(2) | 20.62 | 22.44 | 13-23 | 3s ⁴ P°-3p ⁴ D
(14) | | 8254.10 | В | 10 | 5.25 | 6.75 |
1_0 | 2 ¹ P°-3 ¹ S | 4932.00 | В | 5 | | 10.05 | 1-3 | (13)
3s ¹ p°-4p ¹ S | 6780.27
6800.50
6791.30 | A
A
A | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 20.61 2
20.62 2
20.61 | 22.44 | 3-13
23-23
13-13 | | | 4572.671 | C | 15 | 5.25 | 7.95 | 1-3 | 21P°-31D | 4371.33 | c | 4 | 7.65 | | 1-1 | 3s ¹ P°-5p ¹ P | 6787.09
6812.19 | Ä
A | 33
33
23
(0)
(1) | 20.61 | 22.43 | 23-13 | | | 4407.911 | В | 10 | 5.25 | 8.05 | 1-0 | 21P°-41S | 4352.1 | C | 1 | 7.65 | | 1-27 | (14)
3s ¹ P°-5p ³ D | 6798.04 | A | | 20.61 | 32.43 | 1 2 - 2 | 4 - 4 | | 3813.402 | В | 15 | 5.25 | 8.49 | 1-2 | 2 ¹ P°-4 ¹ D | 4268.99 | C | а | 7.65 | 10.54 | 1-3 | (15)
3a ¹ p°-5p ¹ D | 5662.51
5648.08 | A
A | (4)
(3)
(2) | 20.62 | 32.80 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3s ⁴ P°-3p ⁴ S
(15) | | 3736.280 | В | 10 | 5.25 | 8.56 | 1-0 | 2 ¹ p ⁶ _5 ¹ g | 4231.35 | C | 1 | 7.65 | 10.57 | 1-0 | 3s ¹ p°-5p ¹ s
(17) | 5640.50 | A | | 20.61 | | | 3s ⁴ P°-3p ⁴ P |
 3515.538 | В | 12 | 5.25 | 8.77 | 1-3 | 2 ¹ P°-5 ¹ D
(7) | 5793.51 | E | (3) | 7.91 | 10.04 | -
3 –2 | 3p ³ ³ D°-4p ³ | 5145.16
5139.21
P 5137.26 | A
A
A | (5)
(1)
(0) | 20.62 2
20.61 2
20.61 | 23.02 | 21-21
11-11 | (16) | | | | | | | | | 5801.17
5805.76 | Ē | (3)
(2)
(1) | 7.91
7.91 | 10.04 | 3-1
1-0 | (18) | 5151.08
5143.49 | A
A | (3d?)
(2)
(2) | 20.62 | 33.02 | 21-11
11-1 | | | Re TT T | P 18 | 1 17 | Amal A | 74-4 | n n- | 0.45 | | | | | | | - 11 | 5133.29
5132.96 | A
A | (2)
(3) | 20.61 | 33.02 | 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | | Be II I
3130.416// | | 50 | Anal A | List
3.94 | | b 1943
- 2 ² 5_2 ² po | 11330.36 | A | 1
(60) | | 9.59 | 1-3 | 3p ¹ P-3d ¹ D°
(19)
3p ¹ P-4s ¹ P° | E077 0 | | | 20 07 1 | | - 11 01 | -3 2ne2- | | 3131.064 | Â | 30 | 0.00 | 3.94 | } | 2 ² S-2 ² P° (1) | 10 548.0
68 28. 5 | E | (60)
0 | 8.50
8.50 | | 1-1 | 3p ¹ P-4s ¹ P°
(20)
3p ¹ P-4d ¹ D° | 5033.2
5037.0 | B
B | 1d
0d | 20.83 2 | 33.28 | 13-23
2-12 | ^{2p³ ²p°-3p²D.} | | 3274.640 | A | 10 | 10.89 | 14.66 | | 3 ² 5_4 ² P° | 6587.75 | c | 4 | 8.50 | | 1-3 | (21) | 3871.62
3868.84 | B
B | 2
1 | 20.83 2 | 34.02 | 1 : | 2p ^{3 2pe} -3p ² s
(18) | | 5270.843 | A | | | | | (3) | | • | | | | - | (22) | | | | | | - | | | 5270.322 | A
A | 12
10 | 11.91
11.91 | | | 3 ² P°-4 ² S
(3) | 11894.9 | D | (200) | | 9.64 | 3-2
3-1 | 3p ³ D-4s ³ P° (23) | 6115.21 | A - | 0 | 22.00 2 | 34.02 | 1출- 출
- | 3s ² P°-3p ² S
(19) | | 4361.025
4360.690 | A
A | 10
9 | 11.91
11.91 | 14.74
14.74 | 1}-
}- | 3 ² P°-4 ² D
(4) | 11880.4
11849.3
11863.0 | D
D | (15)
(10)
(15) | 8.61 | 9.64
9.65 | 1-07 | | *7119.45 | A | (2) | 22.44 | 34.17 | 31-41 | 3p ⁴ D-3d ⁴ F° | | 3241.835 | A | 10 | | | | 3 ² P°-5 ² s† | | | | 8.61
.8.61 | | 1-1
3-4 | 3p ³ D-3d ³ F° | 7115.13
*7112.36 | A
A | (1) | 22.43
22.43
22.43 | 4.17
34.17 | 1 2 2 1 | 3p ⁴ D-3d ⁴ F°
(20) | | 4877 460 | | | | | - 2 | (5) | 11754.0
11747.5 | D
D | (600)
(300) | | 9.65 | 2-3
1-2 | (24) | 7133.52
7125.49 | A
A | (0)
(0)
(2) | 22.44 2 | 34.17
34.17 | 31-31
31-31
21-21 | | | 4673.462 | A | 30 | 12.10 | 14.75 | _ | 3 ² D-4 ² F° (6) | 11801.8 | D | (10) | 8.61 | 9.66 | 3-3 | 2 2 | *7119.45 | Ā | | 22.43 2 | 34.17 | 1ۇ-1ۇ | , 4 | | B I See | ntro | duction | n. | | | | 11667.1 | D
P | (100) | 8.61
8.61 | 9.67 | 3-3
2-2 | 3p ³ D-3d ³ D°
(25) | 6750.22
6738.36 | A
A | (2)
(1)
(0) | 22.44 2 | 4.27
4.27 | $3\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - 1\frac{1}{2}$ | 3p ⁴ D-3d ⁴ D°
(21) | | | | | | | | | 11609.917
11676.997 | P
P | | 8.60
8.61 | 9.67 | 1-1
3-2 | | 6730.79
*6726.84 | A
A | <u>{}}</u> | 22.43 2 | 24.2h | *- * | | | | | | | | | | 11638.60?
11619.0
11602.94? | P
D
P | (30) | 8.61
8.61
8.60 | 9.67 | 2-1
2-3
1-2 | | 6754.75
6742.05 | A
A | { 0} | 22.44 2
22.44 2
22.43 2 | 4.27 | 3 1 - 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | | | | | | | | | 7118.5 | E | (6d) | 8.61 | | | 3p ³ D-4d ³ F° | *6733.56
*6726.84 | A
A | (o)
(o) | 22.44 2
23.43 2 | 4.27 | 23-33
12-23
12-23 | | | | | | | | | | - | - | | | | | (26) | | | ,-, | | | -2 -2 | | | I A | | Int | Low | P
High | J | Multiplet (No) | Labor
I A | | y
Int | E
Low | P
High | J | Multiplet (No) | Labo:
I A | ratory
Ref I | nt | E
Low | P
High | J | Multiplet
(No) | |---|------------------|--------------------------|----------------------------------|-------------------------|--|--|---|------------------|-------------------|----------------------------------|----------------|---|--|----------------------------------|-----------------|---------------|---------------------------|-------------------------|--|--| | C II cont | inue | eđ | | | | | C II cont | inue | đ | | | | | C III co | ntinued | | | | | | | 5856.09
5836.31
5823.13
5843.77 | A
A
A
A | (2)
(1)
(0)
(0) | 22.43 | 24.55
24.55 | $2\frac{1}{2} - 2\frac{1}{2}$ | 3p ⁴ D-3d ⁴ P°
(22) | 5907.36
5914.92
5919.60 | A
A
A | (1)
(0)
(0) | 24.55
24.55
24.55 | | | 3d ⁴ P°-4p ⁴ S
(44) | 5894.1
5871.6
5857.9 | P
P
P | | 39.88
39.87
39.87 | 41.98 | 2-1
1-0 | 3p ³ D-3d ³ p• (20) | | 5827.80
5817.87
3589.67 | A
A
A | (1)
(0)
(4) | 22.43
32.43 | 24.55 | $1\frac{1}{2}-1\frac{1}{2}$ $\frac{1}{2}-\frac{1}{2}$ | 3p ⁴ D-4s ⁴ P°
(23) | 4374.28
4372.49
4371.59
*4368.14§§ | A
A
A
B | 5
4
3
4d | 24.55
24.55
24.55
24.55 | 27.37 | 21-31
11-21
1-11 | 3d ⁴ P°-4f ⁴ D
(45) | 4162.80
4156.50
4152.43 | A
A
A | 5
4
3 | 39.88
39.87
39.87 | 42.84 | 3-4
2-3
1-2 | 3p ³ D-5 ³ F° (21) | | *3590.87
3584.98 | A
A | (2) | (22.44
22.43
22.44 | 25.87 | 25-15
15- 5
25-25 | (23) | 4376.78 | С | 24 | 24.55 | 27.37 | 1 ½-2½ | 3d ⁴ P°-4f ² D
(46) | 5827.1 | A | 1 | 40.02 | 42.14 | 2-3 | 4 ¹ D-3d ¹ F° | | 3587.68
3588.92 | A
A | (1)
(2)
(1) | 22.43 | 25.87 | 1 | | 3059.24 | В | Ođ | 24.55 | 28.58 | 2] -3] | 3d ⁴ P°-5f ⁴ D
(47) | 5249.6 | A | 0 | 40.02 | 42.37 | 2-1 | (22)
4 ¹ D-5 ¹ Pe
(23) | | 3581.80
3585.83 | B
A | (3) | 22.43 | 25.87 | 1 3-2 3
2-1 2
- | | 4734.75
4737.21 | ВВ | 2d
1d | 24.69
24.68 | | | 3d ² F°-4f ² F
(48) | 4056.06 | A | 5 | 40.02 | 43.07 | 2–3 | 4 ¹ D-5 ¹ Fe
(24) | | 6098.62
6095.37 | A
A | 3 | 22.47 | 24.50
24.50 | 13-23 | 3p ² P-3d ² D°
(24) | 4630.52
4625.71 | C | 1d
1d | 24.69
24.68 | | 3 1 - 4 1
2 2 - 3 2 | 3d ² F°-4f ⁴ G
(49) | Lines att: | ributed | _ | <u> </u> | lassif | ication | n dubious | | 6102.59
4964.90 | A
A | 0
2 | | | | 3p ² P-3d ² P° | 4618.85 | A | 5đ. | 24.69 | 27.36 | | 3d ² F°-4f ² G
(50) | 4593.47
*4368.14§§
4361.85 | A
A
A | 2d
4d
2 | | | | | | 4954.16
*4959.52 | В | 1
0d | 22.47
(22.47
(22.47 | 24.96
24.96 | 12-12
12-12 | (25) | 5119.55
5114.07 | A
A | 2 2 | 24.96 | | -
1] -2]
2-12 | 3d ² P°-4f ² D | 4001.56
3999.92 | A
A | Od
Od | REVI | SED ' | | | | 7063.4
7052.9
7045.8 | A
A
A | (in)
(in)
(on) | 22.80
22.80
22.80 | 24.55
24.55
24.55 | -
13-23
13-13
13-13
13- 3 | 3p ⁴ S-3d ⁴ P° (26) | See NS | RDS | S-NBS | REVI: | Sect | | 3, 1970
b 1943 | <u>C IV</u> I | P 64.22 | NBS
An | 3, al A | Sect: | Feb | 3, 1970 | | 4009.90
4017.27
4021.13 | A
A
A | (2)
(1)
(0) | 22.80
22.80
22.80 | | | 3p ⁴ S-4s ⁴ P° (27) | 4647.40
4650.16
4651.35 | A
A | 20
19
18 | 29.39
29.39
29.39 | 32.05 | 1-2
1-1
1-0 | 3 ³ S-3 ³ P° (1) | 5801.51
5812.14 | A | 3 | 37.39
37.39 | | \$-1\$
2- \$
- | 3 ² S-3 ² P° (1) | | 4051.13 | A | | | | _ | | 4001.00 | A | | | | - | | 3936 | , P | | 54.98 | 58.12 | 1 2- | 5 ² S-6 ² P° (2) | | 4317.42
4321.95
*4325.88 | B
B
B | 4
0
2 | 23.02 | 25.88
25.87
25.87 | 21-21
11-11
21-11 | 3p ⁴ P-4s ⁴ P° (28) | 5696.0 | A | 8 | 31.97 | - | _ | 3 ¹ P°-3 ¹ D
(2) | 5023
5021 | P
P | | 55.41
55.41 | 57.87
57.87 | -
11- 1
1- 1
1- 1 | 5 ² P°-6 ² S | | 4313.50
4318.92 | B
B | 2 2 | 23.02
23.02
23.01 | 25.88 | 15- 5
15-25
2-15 | | 6744.2
6730.7
6727.1 | P
P
P | | 38.05
38.04
38.04 | 39.87 | 2-3
1-2
0-1 | 3s ³ p•_3p ³ D (3) | 4441.81 | A | 0 d | 55.41 | 58.19 | | 5 ² P•-6 ² D
(4) | | 3039.67 | В | 0d | 23.28 | 27.34 | | 3p ² D-4d ² F° (29) | 5272.56
5253.55 | B
A
A | 2
1
0 | 38.05
38.04
38.04 | 40.39 | 2-1
1-1
0-1 | 3s ³ P°-3p ³ S
(4) | 4789
4647 | P
P | | 55.54
55.54 | | | 5 ² D-6 ² F° | | 5257.36 | A | (2) | 24.17 | 26.52
26.52 | $\begin{array}{c} 4\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 2\frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \end{array}$ | 3d ⁴ F°-4p ⁴ D (30) | 4665.90
4673.91 | A
A | 6
4 | 38.05
38.05 | 40.69 | 2-2
2-1 | 3s ³ p•_3p ³ p (5) | 4665 | P | | 55.54 | 58.19 | _ | (6)
5 ² F°-6 ² D | | *5259.62
5249.43 | A
A | (3)
(0)
(1) | (24.17
(24.17
24.17 | 26.51
26.52 | 15- 5
35-35 | | 4663.53 | A | | 38.05 | | 1 - 0 | 7 7 | 4658.64 | · A | 5d | 55.54 | 58.20 | | (7)
5 ² F ⁶ -6 ² Getc
(8) | | *5253.55 \$\$
3949.45
3947.60 | A
C
C | (1)
0
0 | 24.17
24.17
24.17 | | 2½-2½ 3½-3½ 3½-3½ | 3d ⁴ F°-4f ² F
(31) | 3262.23
3259.44
3257.90 | A
A
A | 1
0
0 | 38.19
38.19
38.19 | 41.98 | 1-2
1-1
1-0 | 4 ³ S-3d ³ P°
(6) | 4660 | P | | 55.55 | 58.19 | | 5 ² G-6 ² F°
(9) | | *3946.35 | Č | ŏ | 24.17 | | | | 4325.70 | A | - 8 | 38.27 | 41.12 | -
1-2 | 3s ¹ P°-3p ¹ D | 6592 | P | | 57.87 | | 1 | 6 ² S-7 ² P•
(10)
6 ² S-8 ² P• | | 3952.08
3948.15
*3946.35
3945.10 | A
B
C
C | 2
1
0
0 | 24.17
24.17
24.17
24.17 | 27.30 | 42-42
32-32
22-32 | 3d ⁴ F°-4f ⁴ F
(32) | 3170.16 | A | 1d | 38.48 | 42.37 | -
0-1 | (7)
4 ¹ S-5 ¹ P°
(8) | 4217
4737 | P —
P | | 57.87 | | - }-

 (11)
6 ² D-8 ² P° | | 3876.188
3876.409
3876.670 | A
A | 8
7
6 | 24.17
24.17
24.17 | | 3 1 -41 | 3d ⁴ F ^e -4f ⁴ G
(33) | 4516.93
4516.02 | A
A | 4 3 | 39.22
39.22 | 41.95
41.95 | | 4 ³ P°-5 ³ S
(9) | · | | | | | | (12) | | 3876.051
3880.59
3879.60 | A
B
B | 6
1
1 | 24.17
24.17
24.17 | 27.35
27.35
27.35 | $ \begin{array}{c} 1\frac{1}{2} - 2\frac{1}{2} \\ 4\frac{1}{2} - 4\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \end{array} $ | | 3609.61
3608.96 | A
A | 5
4 | 39.22 | | 2-3 | 4 ³ P°-5 ³ D
(10) | <u>N</u> I IP | | | 1 B I | | Feb 1 | | | 3878.22 | В | | 24.17 | 27.35 | 2] -2]
- | | 4247.56 | A | 1 | 39.47 | 42.37 | 1-1 | 3p ¹ P-5 ¹ P° (11) | 8680.24
8683.38
8686.13 | A
A
A | 10
8
7 | 10.29
10.29
10.28 | 11.71 | 25-35
15-25
5-15 | 3s ⁴ P-3p ⁴ D° (1) | | 5478.6 | A | (0) | 24.27 | | | 3d ⁴ D°-4p ⁴ D
(34) | 3703.52 | A | 2 | 39.47 | 42.80 | 1-1 | 3p ¹ p-3d ¹ pe
(12) | 8718.82
8711.69 | A
A | 6 | 10.29
10.29 | 11.71
11.70 | 2 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 5044.8
5047.2 | B
B | 0 | 24.27
24.27 | | | 3d ⁴ D°-4p ⁴ P
(35) | 6156.6
6155.4 | P
P | | 39.67
39.67 | | 3-3
2-2 | 4 ³ D-3d ³ D° (13) | 8703.24
8747.35
8728.88 | A
A
A | 6
0
1 | 10.28
10.29
10.29 | 11.70 | 23-13 | | | 4076.00
4074.53
4074.89 | B
A
A | 7
6
5 | 24.27
24.27
24.27 | 27.30 | $3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$ | 3d ⁴ D°-4f ⁴ F
(36) | 6154.4 | P
A | 2 | 39.66
39.67 | 41.67 | 1-1 | 4 ³ p_5 ³ p° | 8216.28
8210.64 | A | 6 | 10.29 | | $1\frac{1}{2} - \frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ | 3s ⁴ P-3p ⁴ P° (2) | | 3980.35
3973.84 | A
B | 3 | 24.27 | | 3 1 -31 | 3d ⁴ D°-4f ⁴ D
(37) | 4383.24
4379.97 | A
A | 1 0 | 39.67
39.66 | 42.48 | 3-1,
1-0, | 2 (14) | 8200.31
8242.34 | A
A
A | 1
4 | 10.28
10.29 | 11.79 | $2\frac{3}{2}-1\frac{7}{2}$ | (2) | | 3969.38
3978.87
3972.44 | CCC | 1d
0
00
0 | 24.27
24.27
24.27
24.27 | 27.37
27.37
27.37 | 13-13
13-13
23-33
13-23 | (37) | 3889.18
3885.99
3883.80 | B
B
A | 4
3
2 | 39.67
39.67
39.66 | 42.84 | 3-4
2-3
1-2 | 4 ³ D-5 ³ F° (15) | 8223.07
8184.80
8187.95 | A
A
A | 4
4
4 | 10.29
10.29
10.28 | 11.79
11.79 | 12-22
12-22
2-12 | | | 3968.63
3970.20
3977.30 | C | 00
0 | 24.26
24.27 | 27.37 | 2 -12 | 3d ⁴ D°-4f ² D
(38) | 4070.30
4068.97 | ВВ | 10
9 | 39.74 | 42.77 | -
4-5
3-4 | 4 ³ F°-5 ³ G | 7468.29
7442.28
7423.63 | A
A
A | 10
8
7 | 10.29
10.29
10.28 | 11.94 | 5-15 | 38 ⁴ P-3p ⁴ S° (3) | | 4411.52 | A | 5 | 24.50 | 27.29 | _ | 3d ² D°-4f ² F
(39) | 4067.87 | Ā | 9 | 39.74 | 42.77 | 2-3
- | (16) | 4253.28
*4254.7 | B
D | 4
4 | 10.29
(10.29
(10.28 | 13.19
13.19
13.18 | 21-31
11-21
1-21 | 3s ⁴ P-4p ⁴ D° (4) | | 4411.20
4410.06 | A
C | 5
4 | 24.50 | | | (39)
3d ² D°-4f ⁴ F | 4122.05 | A | 3 | 39.80 | 42.79 | 1-2 | 4 ¹ P°-5 ¹ D
(17) | 4223.04 | В | 5 | 10.29 | | | 3s ⁴ P-4p ⁴ P° (5) | | 4292.00 | C | 1 | 24.50 | | | (40) | 4187.05 | A | 10 | 39.84 | 42.78 | 3-4 | 4 ¹ F°-5 ¹ G
(18) | 4230.35
4224.74
4214.73 | E
B
B | 4
4
5 | 10.29
10.29
10.29 | 13.21
13.21 | 12-22 | (5) | | 4296.11
4285.96 | ВВ | 1
1 | 24.50
24.50 | 27.37
27.38 | 21-21
13-1* | 3d ² D•-4f ⁴ D
(41)
3d ² D•-4f ² D
(42) | 6871.7
6862.9 | P
P | | 39.88
39.87 | | 3-3
2-2 | 3p ³ D-3d ³ D• | 4215.92
4151.46 | ВВ | 2
12 | 10.28 | 13.21 | } −1 } | 3e4p_4r4c0 | | 3049.44 | В | 1đ | 24.50 | | | 3d ² D ^o -5f ² F
(43) | 6857.3 | P | | 39.87 | | 1-1 | (10) | 4143.42
4137.63 | P
B | 7 | 10.29 | 13.26 | 12-12 | 3s ⁴ P-4p ⁴ S° (6) | _ | | | * | | | | ~ ~ . | 0 2 0 2 | | | | | | |-------------------------------|----------------------|---|---|--------------------------------|-----------------------------|--|---|---|--|---| | | oratory | E P | J Multiplet | Labor | | E P | J Multiplet | Laboratory | E P | J Multiplet | | IA | Ref Int | Low High | (No) | IA | Ref Int | Low High | (No) | I A Ref Int | Low High | (No) | | N I con | tinued | | | N I conti | nueđ | | | N I continued | | | | 9392.80
9386.79
9460.66 | A 1
A 0
P (25) | 10.64 11.96
10.63 11.95
10.64 11.95 | 1 1 2 3 3 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3 | 5328.70
5356.77
5372.66 | B 5
B 5
B 3d | 10.88 13.19
10.88 13.19
10.88 13.18 | $3\frac{1}{2} - 3\frac{1}{2} \text{ sp}^4 \ ^4\text{P} - 4\text{p}^4\text{D}^{\circ}$
$1\frac{1}{2} - 2\frac{1}{2}$ (13)
$\frac{1}{2} - 1\frac{1}{2}$ | 6653.41 B 5
6656.61 B 1
6633.53 B | 11.71 13.57
11.71 13.56
11.70 13.56
11.71 13.57 | 31-21 3p4D°-5s4P†
21-12 (20)
11-23 | | 8629.24
8594.01
8655.88 | A 8
A 6
A 3 | 10.64 12.07
10.63 12.07
10.64 12.07 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5281.18 | B 3 | 10.88 13.21 | 2 1 2-2 1 sp4 4P-4p4P°
(14) | 1 6637.01 B 4
6646.52 B 2 | 11.70 13.56
11.70 13.56 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 8567.74 | A 4 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9060.6
9028.9 | C (350)
C (50) | 11.55 12.91
11.55 12.92 | $\frac{1}{2}$ -1 $\frac{1}{2}$ 3p ² s°-3d ² P (15) | 6482.74 B 9 | 11.71 13.62 | 3-4-3 3p4D°-4d4F
2-3-3 (21) | | 4935.03
4914.90 | B 10
B 5 | 10.64 13.14
10.63 13.14 | ∑ _ ₹ (9) | 6008.48
5999.47 | B 10
B 6 | 11.55 13.61
11.55 13.61 | $\frac{1}{2}$ -1 $\frac{1}{2}$ 3p ² S°-4d ² P $\frac{1}{2}$ - $\frac{1}{2}$ (16) | 6483.75 B 3
6481.73 B 2
6506.45 B 0 | 3 11.70 13.61
11.70 13.60
11.71 13.61 | 12-22
5-15
32-32 | | 4109.98
4099.94
4114.00 | B 12
B 9
B 6 | 10.64 13.65
10.63 13.64
10.64 13.64 | 1 2 3 3 8 2 P - 3 p 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 | 11294.0 | C (125) | 11.71 12.81 | -
3 1 -2 1 3p ⁴ p°-4s ⁴ P | 6499.52 B 3
6491.28 B 3 | 11.71 13.61
11.70 13.60 | 21-21
12-12 | | 3830.39
3822.07 | B 9
B 6 | 10.64 13.87
10.63 13.86 | | 11313.8
*11329.0
11227.5 | C (30)
C (200)
C (10) | 11.71 12.80
11.70 12.79
11.71 12.81 | 21-11 (17)
11-12
21-21 | *6468.32 B 4 | (11.71 13.62
11.71 13.62
11.70 13.61 | 3 2 3 3 3 3 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 | | 3834.24
3818.27 | B 4
B 2 | 10.64 13.86
10.63 13.87 | - | *10113.4 | C (900) | (11.71 12.93
(11.71 12.93
(11.70 12.92 | 31-41?3p4p-3d4F
21-31? (18)
11-21? | 6441.70 B 5
6437.01 B 4
6420.47 B 3 | 11.71 13.63
11.70 13.62
11.71 13.63 | 31-31 3p4D-4d4P+
11-1 (23)
21-21 | | 11564.8
11628.0
11656.0 | C (200) | 10.88 11.94
10.88 11.94
10.88 11.94 | $3\frac{1}{2}-1\frac{1}{2}$ sp ⁴ $^{4}P-3p^{4}S$
$1\frac{1}{2}-1\frac{1}{2}$ (12)
$\frac{1}{2}-1\frac{1}{2}$ | 10164.5
10147.3 | C {30} | (11.70 12.92
11.71 12.93
11.71 12.92 | \$-1\$?
3\$-3\$?
2\$-2\$? | 5616.54 B 5
5623.20 B 4
5625.43 B 2 | 11.71 13.91
11.71 13.90
11.70 13.90 | 3 - 2 3p4D°-6s4P†
2 - 1 (34) | | | | | | 9862.5
9821.8 | C (60) | 11.71 12.96
11.71 12.96 | $3\frac{1}{2}-3\frac{1}{2}$ $3p^4D^0-3d^4D$ $3\frac{1}{2}-3\frac{1}{2}$ (19) | 00a0.#3 B A | 11.10 13.90 | 11/2- 1/2 | | I A | Ref | Int | Low | High | | (No) | I A | Ref | Int | Low High | | (No) | I A | Ref | Int | Low | High | - | (No) | |----------------------------------|-------------|-----------------------------|--------------|----------------------------|---|---|----------------------------------|-------------|---------------|---|-------------------|--|-------------------------------------|-------------|--------------|----------------------------------|------------------|-------------------|--| | N I cont | inue | đ | | | | | <u>N II</u> con | tinue | đ | | | | N II cont | | | | | | 1 | | 5560.37
5564.37 | B
B | 9
9 | | 13.93
13.92 | $3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$ | ?3p ⁴ D°-5d ⁴ F
? (25) | 4564.78 | C | 1 | 20.32 23.02 | 1-2 | 3p ¹ P-3d ³ F°
(14)
3p ¹ P-3d ¹ D° | 4110.00 | C . | 0n | 23.10 2 | | 2-2 | 3d ¹ D°-4f ³ D
(44) | | 5545.11 | В | 3 | 11.7 | 13.94 | 3 } _2 } | 3p ⁴ D°-5d ⁴ P
(26) | 4447.033 | A.
C | 10
0 | 20.32 23.10 | 1-3 | (15)
3p ¹ P-3d ³ D• | 6504.9
6533.0 | C | 2
1 | 23.15 2
23.14 2 | 5.03 | 3-3
2-2 | 3d ³ D°-4p ³ D
(45) | | 12186.9 | Ç | (100) | | 12.81 | 2] -2] | • • | 3919.005 | A | 6 | 20.32 23.47 | 1-1 | (16)
3p1P-3d1P° | *6545.2
6492.0 | C
C | 0 | (23.14 2
23.15 2
23.14 2 | 35.03 | 1-1
3-2
2-3 | | | 12232.9
12288.0
12128.6 | 000 | (8)
(75)
(30)
(75) | 11.79 | 12.80
12.80
12.81 | 13-13
23-13
13-23 | 3p ⁴ p ⁶ _4s ⁴ p
(27) | 3006.86 | C | 7 | 20.32 24.43 | 1-1 | (17)
3p1p_4s1pe
(18) |
6522.3 | č | ŏ | 23.14 2 | 5.03 | 1-2 | | | 12203.4 | C | | 11.79 | 12.80 | | | •5005.140 | ç | 10 | 20.58 23.04 | 3-4
2-3 | 3p ³ D-3d ³ F° (19) | 6340.67
•6357.0 | C | 4
3 | 23.15 2
(23.14 2
(23.14 2 | 35.08 | 3-2
3-1
1-0 | 3d ³ D°-4p ³ P
(46) | | 10539.0
10506.5
10548.0 | CCC | (125)
(70)
(60) | 11.79 | 12.96
12.96
12.96 | 15-25
25-25 | 3p ⁴ P°-3d ⁴ D
(28) | 5001.469
5001.128
5025.665 | 000 | 8
7
6 | 20.56 23.03
20.56 23.02
20.58 23.03 | 1-2
3-3 | (15) | 632 8.6
63 47.1 | C | 1
1 | 23.14 2
23.14 2 | 35.09 | 2-2
1-1 | | | 6945.22 | В | 4 | 11.79 | 13.57 | | 3p ⁴ P°-5s ⁴ P† (29) | E046 707 | C | 5
0 | 20.56 23.02
20.58 23.02 | 2-2
3-2 | | •4241.787 | A | 8n | 23.14 | 6.05 | 2-3 | 3d ³ D°-4f ¹ F
(47) | | 6979.10
6926.90 | B | 1 | 11.79 | 13.56 | | | 4/00.100 | C | 6
5 | 20.58 23.15
20.56 23.14 | 3-3
2-2 | 3p ³ D-3d ³ D°
(20) | *4341.787
4237.049 | A
A | 8n
4 | 23.15 2
23.14 2 | 36.05 | 3-4 | 3d ³ D°-4f ³ F
(48) | | 6752.40
6758.60 | B
B | 4 | | 13.62 | | 3p ⁴ P°-4d ⁴ D (30) | 4779.710
4810.286
4793.656 | 000 | 4
2
2 | 20.56 23.14
20.58 23.14
20.56 23.14 | 1-1
3-2
2-1 | | 4236.9 30
4181.1 7 | A.
C | 5
On | 23.14 2 | | 1-2
3-4 | 3d ³ D°-4f ¹ G | | 6723.12
6733.48 | B
B | 9
6 | 11.79 | 13.63 | \$ - \$ | 3p ⁴ P ⁰ -4d ⁴ P (31) | 4781.168
4774.222 | Ċ | a
a | 20.56 23.15
20.56 23.14 | 3-3
1-3 | | 4179.667
4173.51 | A
C | 1n
On | 23.15 2
23.14 2 | | 3-3
2-2 | (49)
3d ³ D°-4f ³ D
(50) | | 6706.20
6741.29 | B
B | 3 | | 9 13.63
9 13.62 | 17- 7 | | 4507.559
4477.74 | A
C | 3
2 | 20.58 23.31
20.56 23.32 | 3-2
2-1 | 3p ³ D-3d ³ P° (21) | *4156.8
*4160.8 | 000 | Onn
Onn | 23.14 2 | 36.11 | 1-1
2-1 | (50) | | 5829.53
5841.01 | В | 8 | 11.79 | 13.91 | 2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 3p ⁴ P ^e -6s ⁴ P† | 4459.96
4488.15 | 000 | 1
0
0 | 20.56 23.32
20.56 23.31
20.56 23.32 | 1-0
3-3
1-1 | | 4173.75
*4160.8 | C
C | On
Onn | 23.14 2 | | 2-3
2-2 | 3d ³ D°-4f ¹ D | | 5854.16
5816.48 | B
B | 3 | 11.79 | 9 13.90
9 13.91 | . 1] -3 | | 4465.54
3328.79 | C | 4 | 20.58 24.28 | 3-2 | 3p ³ D-4s ³ pe | *4156.8 | č | Onn | 23.14 | | 1-2 | (51) | | 5752.64 | В | 4 | 11.7 | 13.9 | . 3 } −3 }
 | 3p ⁴ P°-5d ⁴ P
(33) | 3331.32
3330.30 | 000 | 3
2
2 | 20.56 24.27
20.56 24.26
20.56 24.28 | 2-1
1-0
2-2 | (33) | 7139.8
7217.0 | B
B | 3
2 | 23.31 2
23.32 2 | | 2-3
1-2 | 3d ³ P°-4p ³ D
(52) | | 12186.9
12288.0 | C | (100)
(75) | 11.9
11.9 | 4 12.96
4 12.95 | 13-23
13-13 | 73p ⁴ 8°-3d ⁴ P
7 (34) | 3318.14
3324.58 | č |
2 | 30.56 24.27 | 1-1 | | 7259.3
7188.7 | B
B | 2
0 | 23.32 2 | 35.03 | 0-1
2-2 | (/ | | 12327.7 | C | (150) | | 4 12.9!
4 14.09 | | 3p ⁴ 8°-7s ⁴ P | 5383.82 | C | 0 | 20.85 23.14 | 1-2 | 3p ³ 8-3d ³ p° | 6942.9
7003.0 | B
B | 3
On | 23.31 2
23.32 2 | | 2-3
1-1 | 3d ³ p°_4p ³ p
(53) | | 5747.36 | В | s | | | | (35) | 5007.316
•4994.358 | G | 7
6 | 20.85 23.31
20.85 23.32 | 1-2
1-1 | 3p3g_3d3P°
(24) | 6976.8
*7015.3 | B
B | 2 | 23.31 2 | 35.08
35.08 | 2-1
1-0 | • | | 13467.8
13461.3 | 000 | (350)
(200) | 11.9 | 5 12.99
5 12.99 | 23-33
13-23 | 3p ² D°-3d ² F | 4987.377
4709.45 | C | 4 | 20.85 23.32 | 1-0 | 3p3s-3d1pe | 6967.6
•7015.3 | B
B | 1 | 23.32 2
23.32 2 | | 1-2
0-1 | | | 12582.3
12074.1 | C | (40)
(60) | 11.9 | 6 12.9 | 3 } -3 | 3p ² D°-3d ² D | 3593.60 | C | 3 | 20.85 24.28 | 1-2 | (25)
3p38_4s3pe | 6812.26
6836.2 | C | 2
1 | 23.31 2
23.32 2 | | 3-1
1-1 | 3d ³ P°-4p ³ 8
(54) | | 11997.9
12107.4 | C | (30)
(10) | 11.9
11.9 | 5 12.98
6 12.98 | 15-15
35-15 | 3p ² p°-3d ² p
(37) | 3609.09
3615.88 | C | 3
1 | 20.85 24.27
20.85 24.26 | 1-1
1-0 | (36) | 4432.739
4441.99 | A
C | 6n
3n | 23.31 2
23.32 2 | | 2-3
1-2 | 3d ³ P°-4f ³ D
(55) | | Strongest | Unc | lassifi | ed Lin | es Att | ributed | to <u>N I</u> | 6065.5 | С | 0 | 21.06 23.10 | 1-3 | 3p ³ P-3d ¹ De | 4433.48
4431.82
4437.97 | 000 | 2n
0
2 | 23.32 2
23.31 2
23.32 2 | 36.10 | 0-1
2-2
1-1 | | | 6708.81
4494.67 | B
B | 4
5 | | | | | 5941.67
5931.79 | C | 8
7 | 21.07 23.15
21.06 23.14 | 2-3
1-2 | 3p ³ p-3d ³ p° | 4427.21 | c | 2 | 23.32 | | 1-2 | 3d ³ P°-4f ¹ D | | 4492.40
4358.27 | B
B | 7
10
5 | | | | | 5927.82
5952.39
5940.25 | 000 | 4
3
2 | 21.06 23.14
21.07 23.14
21.06 23.14 | 0-1
3-3
1-1 | | 6242.52 | С | 5 | 23.37 |
85.35 | 3 – 2 | (56)
3d ¹ F°-4p ¹ D | | 4336.48
4317.70 | B | 5 | | | | | 5960.93 | Ċ | 0 | 21.07 23.14 | 2-1 | - 33-0 | 4552.536 | A | 4 | 23.37 | | 3-4 | (57)
3d1F°-4f3G | | 4313.11
4305.46
3999.98 | B
B
B | 4
6
4 | | | | | 5495.70
5462.62
5480.10 | 000 | 5
3
3 | 21.07 23.31
21.06 23.32
21.07 23.32 | 2-2
1-1
3-1 | 3p ³ P-3d ³ P°
(29) | 4530.403 | A | 5 | 23.37 | 36.10 | 3-4 | (58)
3d ¹ F°-4f ¹ G
(59) | | 3869.10
3650.19 | B
B | 4
5 | | | | | 5454.26
5478.13 | Ċ | 2
2 | 21.06 23.32
21.06 23.31 | 1-0
1-3 | | *6167.83 | С | 4 | 23.47 | 35.47 | 1-0 | 3d ¹ pe_4p ¹ s
(60) | | 3532.65 | В | 4 | | | | | 5452.12
3838.39 | c | 3
5 | 21.06 23.32
21.07 24.28 | 0-1
2-2 | 3p3p_4s3pe | 4694.55 | С | 3n | 23.47 | | 1-3 | 3d1po_4f3p
(61) | | w | P 29 | . 40 | anal B | List | A 001 | 1943 | 3847.38
3856.07
3855.08 | 000 | 3
3
2 | 21.06 24.27
21.07 24.27
21.06 24.26 | 1-1
3-1
1-0 | (30) | 4677.93 | С | 3n | 23.47 | 36.11 | 1-2 | 3d1pe_4f1D
(62) | | <u>N II</u> I
4895.20 | C | 4 | | 0 20.3 | | 2p ³ 1p°-3p ¹ | 3829.80 | 000 | 3
3 | 21.06 24.28
21.06 24.27 | 1-2
0-1 | | *5535.39
5530.27 | C | 5 -
4 | (25.38
(25.37 | 27.61) | 3-4
2-3 | 3 ₈ 5 p_ 3p 5p°
(63) | | 6379.63 | c |
5 | 18.3 | 9 20.3 |
3 1-1 | (1)
3s ³ p°-3p ¹ p | 6610.58 | G | 6 | 21.51 23.37 | -
2-3 | 3p ¹ D-3d ¹ F° | 5526.26
5551.95
5543.49 | CCC | 2
3
3 | (25.37
(25.38
(25.37 | 37.61) | 1-2
3-3
2-2 | | | 6365.7 | Ċ | Ō | 18.3 | 8 20.3 | 3 0-1 | (3) | 6284.30 | c | 3 | 21.51 23.47 | 3-1 | (31)
3p1p-3d1pe | *5535.39
5565.30 | 000 | 5 | (25.37)
(25.38) | 37.60)
37.60) | 1-1
3-2 | | | 5679.56
5666.64
5676.02 | Q
Q | 10
8
6 | 18.3 | 0 20.5
9 20.5
8 20.5 | 3 1-2 | 3s ³ P°-3p ³ D
(3) | 4227.749 | A | 3n | 21.51 24.43 | 2-1 | (32)
3p1p_4s1pe
(33) | 5552.54
5540.16 | B | 00
1 | (25.37
(25.37 | 27.59) | 2-1
1-0 | | | 5710.76
5686.21 | Ċ | 6
6 | 18.4
18.3 | 0 20.50
9 20.5 | 3 2-2
3 1-1 | | 5104.45 | С | 3 | 22.01 24.43 | 0-1 | 3p1s-4s1p0 | 5012.026
*5005.140
4997.23 | 000 | 2
10
0 | (25.38)
(25.37)
(25.37) | 37.84) | 3-3
2-2
1-1 | 3s ⁵ P-3p ⁵ P°
(64) | | 5730.67
5045.098 | C | 8
8 | 18.4 | 0 20.5 | 5 2-1 | 38 ³ p°-3p ³ S | 3023.80 | C | 3 | 22.01 26.09 | 0-1 | (34)
3p18-4d1P°
(35) | 5023.11
5011.24 | C
B | 2
1 | (25.38)
(25.37) | 27.84)
27.84) | 3-2
2-1 | | | 5010.620
5002.692 | Ç | 8 | 18.3 | 9 20.8 | 5 1-1 | (4) | *6167.82
6173.40 | C | 4 3 | 23.04 25.04
23.03 25.03 | -
4-3
3-3 | 3d ³ F°-4p ³ D
(36) | *4994.358
4991.22 | C | 6
2 | (25.37
(25.37 | 27.84)
27.84) | 2-3
1-2 | _ | | 4630.537
4613.868 | A
A | 10
6 | 18.3 | 0 21.0 | 5 1-1 | 3s ³ P°-3p ³ P
(5) | 6170.16
6136.9 | C | 0 | 23.02 25.03
23.03 25.04 | 2-1
3-3 | ,50, | 4145.764
4133.669 | A | 3 | (25.38 | 28.36) | 3-2 | 38 ⁵ P-3p ⁵ 8°
(65) | | 4643.086
4621.392
4601.478 | A | 8
7
8 | 18.3 | 0 21.0
9 21.0
9 21.0 | 3 1-0 | | 6150.9
6114.6 | C | 0 | 23.02 25.03
23.02 25.03 | 2-2
2-3 | | 4124.081 | A | | (25.37 | a 8. 36) | 1-2
- | | | 4607.153 | A | 7 | 18.3 | 8 21.0 | 5 0-1 | 7-3na m.1- | 4087.35 | C | 0n | 23.03 26.05 | 3-3 | 3d ³ F°-4f ¹ F
(37)
3d ³ F°-4f ³ F | *5179.50
5175.89 | 000 | 5
3 | (27.61
(27.61 | 29.99) | 4-5
3-4 | 3p ⁵ D°-3d ⁵ F
(66) | | 3955.851
3408.136 | A
C | 6
3 | | 9 21.5
9 22.0 | | 3s ^{3pe} -3p ¹ D
(6)
3s ^{3pe} -3p ¹ S | 4095.92
4082.85
4076.83 | P
C
C | oo
On | 23.04 26.06
23.03 26.05
23.02 26.05 | 4-4
3-3
2-3 | (38) | 5173.37
•5172.32 | C | 2
1 | (27.60
(27.60
(27.59 | 29.98)
29.98) | 2-3
1-2
0-1 | | | 6482.07 | C | 8 | | 2 20.3 | | (7) | 4082.280
4073.055 | Ā | 3n
3n | 23.03 26.06
23.02 26.05 | 3-4
3-3 | | 5190.42
5184.97
5180.34 | C
C
B | 2
2
1 | (27.61
(27.61
(27.60 | 29.99)
29.99) | 4-4
3-3
2-3 | | | 5747.29 | C | 4 | 18.4 | 2 20.5 | 8 1-2 | 3s ¹ P°-3p ³ D | 4041.321
4043.537 | A
A | 5n
3n | 23.04 26.10
23.03 26.08 | 4-5
3-4 | 3d ³ F°-4f ³ G
(39) | 5199.50 | В | 00 | (27.61 | 89.99) | 4-3 | - 5 | | 5767.43
5073.60 | C
C | 3 | 18.4 | 2 20.5
2 20.8 | 5 1-1 | (9)
3s ¹ P°-3p ³ S | 4035.087
4057.00
4044.75 | A
C
C | 4n
1
1 | 23.02 26.08
23.04 26.08
23.03 26.08 | 2-3
4-4
3-3 | | 4860.35
4718.43 | C | 3 | (27.61 | | 4-3
4-4 | 3p ⁵ D°-3d ⁵ P
(67)
3p ⁵ D°-3d ⁵ D | | 4654.57 | C | 8 | 18.4 | 2 21.0 | 7 1-3 | (10)
3 s1pe_ 3p3p | 4026.080 | A | 3n | 23.03 26.10 | 3-4 | 3d ³ F°-4f ¹ G | 4709.45
4702.57 | C | 0 | (27.61
(27.60 | 30.23)
30.22) | 3-3
2-2 | (68) | | 466728
4674.98 | C | 3 | | 2 21.0
2 21.0 | | (11) | 6630.5 | С | | 23.10 24.96 | -
3-1 | (40)
3d ¹ D ^e -4p ¹ P | 4721.59
4712.13
4704.33 | 000 | 0 | (27.61
(27.61
(27.60 | 30.22)
30.22) |
4-3
3-2
2-1 | | | 3994.996 | | | | 2 21.5 | | (12) | 4176.164 | • | 3n | 23.10 26.05 | 2-3 | (41)
3d ¹ D°-4f ¹ F | 4698.62
4706.41 | B
C | 0 | (27.60
(27.61 | 30.22)
30.23) | 1-0
3-4 | | | 3437.162 | C | | 18.4 | | 1-0 | 3s1pe_3p1s
(13) | 4171.608 | A | 2n | 23.10 26.05 | 2-3 | (42)
3d ¹ D°-4f ³ F
(43) | 4700.12
4695.91 | C | 0
1 | (27.60 | 30.22) | 2-3
1-2 | | | | | | | | | | | | | | | ,, | | | | | | - | | | Labo
I A | rato
Ref | ry
Int | E P
Low High | J | Multiplet
(No) | Labo
I A | rator
Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | La
I A | iborato:
Ref | | E P
Low High | J | Multiplet
(No) | |--|-------------|-----------------------|--|---|---|---|------------------|----------------------|----------------------------------|---|---|--|----------------------------------|-----------------|-------------------|--|-------------------|--| | N II cor | tinu | ed | | | | N III co | ntinu | reg | | | | | N IV | ontinu | eđ | · · | | ,, | | 5351.21
5327.45
5313.43 | B
B
B | 4
0
0 | (27.84 30.15
(27.84 30.16
(27.84 30.16 |) 2- 3 | 3p ⁵ p°_3d ⁵ p
(69) | 4544.80 | В | (0) | | | _ | 4 ² P°-5 ² S
(12) | 5561
5571 | P
P | | (60.19 62.41
(60.19 62.40 |) 1-2
) 1-1 | 3p ³ S-3d ³ D° (13) | | 5340.20
*5320.96
5338.66
*5320.96 | B
B
B | 1
3
2
3 | (27.84 30.16
(27.84 30.16
(27.84 30.15
(27.84 30.16 | 3-2
2-1
2-3 | | 4546.36
4535.11
4527.86 | A
A
A | 3
2
0 | 38.79
38.79
38.79 | 41.51
41.51
41.52 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3p ⁴ S-3d ⁴ P°
(13) | 4183
4174 | P
P | | (60.19 63.14
(60.19 63.14 | 1-2 | 3p ³ S-3d ³ pe
(14) | | *5179.50
5171.46
5168.24
5183.21
5174.46 | 00000 | 5
1
1
2
1 | (27.84 30.23
(27.84 30.23
(27.84 30.22
(27.84 30.23
(27.84 30.23 |) 2-3
) 1-2
) 3-3 | 3p ⁵ P°-3d ⁵ D
(70) | 6466.86
6453.95
6445.05
6478.69
6463.03 | A
A
A
A | 4
3
2
2 | 39.18
39.18
39.17
39.18 | 41.09
41.09
41.09
41.09
41.09 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | 3p ⁴ P-3d ⁴ D°
(14) | 5846
5794
5828
5812 | P
P
P | | (61.03 63.14
(61.01 63.14
(61.03 63.14
(61.01 63.14 |) 1-1
3-1 | (15) | | 5170.08
5186.17 | C
B | 0 | (27.84 30.22
(27.84 30.22 | 1-1 | | 6450.78
6487.55
6468.77 | A
A
A | 8
0
00 | 39.17
39.18 | 41.08
41.09
41.08 | 25-15
15- 5 | • | 6125 | P | | 61.52 63.53 | _ | 3d ¹ D°-4 ¹ D
(16) | | 6888.7
6870.8
6857.6 | B
B
B | 2
1
1 | (28.36 30.15)
(28.36 30.16)
(28.36 30.16) | 3-2 | 3p ⁵ 8°-3d ⁵ P
(71) | 5314.45
5282.52
5260.91 | A
A
A | 00
1n | 39.18 | 41.51
41.51
41.52 | - 5 5 | 3p ⁴ P-3d ⁴ P* (15) | 5073 | P | | 61.69 64.12
REVISED | 2-1 | 3p ¹ D-3d ¹ P°
(17) | | | | | | | | 5298.93
5272.60
5297.86
5270.59 | A
A
A | 1
1
1 | 39.18 | 41.51
41.52
41.51 | 13-3 | ·
· | See M | NSRDS | S-NB: | S 3, Sect | ion
Dec | 4, 1971 | | | P 47 | | Anal A List | • | r 1943 | | | | | | - | | 4603.2
4619.4 | P
P | | 56.31 58.99
56.31 58.98 | } −1 | 3 ² S-3 ² P° (1) | | 4097.31
4103.37 | A
A | 10
9 | 27.32 30.33
27.32 30.33 | _ | 3 ² S-3 ² P° (1) | 4003.64
3998.69 | A
A | (4d)
(3d) | 39.23
39.23 | 42.31
42.31 | 2] -3]
1] -2]
- | 4 ² D-5 ² F•
(16) | 3161 | P | | 83.74 87.64 | | ½ 5 ² P°-6 ² S | | 4640.64
4634.16
4641.90 | A
A
A | (10)
(9)
(7) | 30.33 32.99
30.33 32.99
30.33 32.99 | 1 2 - 2 3
5 - 1 3
1 2 - 1 2 | (3)
3 ³ P•-3 ² D | 4379.09 | A | (104) | 39.54 | 42.36 | _ | 4 ² F°-5 ² G
(17) | 4335 | P | | 87.64 90.49 | | (2)
6 ² s_7²p°
(3) | | 4514.89 | A | 7 | | _ | | Unclassif | | | N III | | | | 5273 | P | | 87.95 90.30 | | ¹ ⁄ ₂ 6 ² P°−? ² s | | *4510.92
4534.57 | A
A | 6 | 35.52 38.25
(35.50 38.24
(35.50 38.23
35.52 38.24 | 5 −15 | (3) | 4294.76
4290.80
4290.55
4288.72 | A
A
A | On
3n
1n
1n | | | | | 4751 | P | | 87.95 90.55 | _ | (4)
6 ² P°_7 ² D
(5) | | 4523.60
4518.18 | A
A | 4
3 | 35.50 38.23
35.50 38.23 | 1 1 1 1 1 1 1 | | 4288.21
4284.51 | A
A | On
1n | | | | | 5067 | P | | 88.05 90.49 | _ | 6 ² D_7 ² P* | | 4547.34
4530.84 | A
A | 0 | 35.52 38.23
35.50 38.23 | 25-15
15- 5 | . 4 4 | 3172.97
3171.14 | A
A | 2
1 | | | | | 4933 | P | | 88.05 90.56 | _ | (6)
6 ² D-7 ² F°
(7) | | 3771.08
3754.62
3745.83 | A
A
A | 7
6
4 | 35.52 38.79
35.50 38.79
35.50 38.79 | 23-15
15-15 | 3s ⁴ P ^e -3p ⁴ S (4) | | | | REVI | SED | | | 4952 | P | | 88.06 90.55 | _ | 6 ² F°-7 ² D
(8)
6 ² F°-7 ² G etc | | 3367.36
3361.90 | A | 7 | 35.52 39.18
35.50 39.18 | 2 1 -2 1 | 3s ⁴ P°-3p ⁴ P
(5) | See NS | SRDS
P 77. | 5-NBS
09 Ar | 3, 3 | Sect | ion
Feb | 4, 1971 | 4943 | P | | 88.06 90.56 | - - | (9) | | 3358.72
3374.06 | A
A | 2
1
6 | 35.50 39.17
35.52 39.18 | 2 } -1 | (5) | 3478.69
3482.98 | A
A | 7
5 | (46.57
(46.57 | 50.11)
50.11) | 1-3
1-1 | 3 ³ S-3 ³ P° (1) | 4945 | P | | 88.06 90.56 | _ | 6 ² G-7 ² H° etc
(10) | | 3365.79
3354.29
3353.78 | A
A
A | 3
4
4 | 35.50 39.17
35.50 39.18
35.50 39.18 | 15- 5
15-25
5-15 | | 3484.90 | A . | 3 | (46.57 | 50.11) | 1-0
- | | 67 19 | P | | 90.30 92.13 | _ } - | 7 ² 5-8 ² P*
(11) | | 4200.02 | A | 6 | 36.70 39.64 | -
. 1] -2] | 38 ² P°-3p ² D | 6383 | P . | | 48.00 | 49.94 | 0-1 | 3 ¹ 8-3 ¹ P° (2) | 7330 | P | | 90.49 92.17 | | 7 ² P°-8 ² D
(12) | | 4195.70
4215.69 | A
B | 5
(3) | 36.70 39.64
36.68 39.62
36.70 39.62 | | | 4057.80 | В | | 49.98 | 52.98 | 1-3
- | 3 ¹ P°-3 ¹ D
(3) | | - | | | | | | 3355.47
3342.77 | B
B | (2)
(1) | 36.70 40.38
36.68 40.38 | 13- 3 | 3s ² P°-3p ² S
(7) | 7123.10
7109.48
7103.28 | A
A | 5
3
1 | (50.11
(50.11
(50.11 | 51.85) | 1-2 | 3 ³ P°-3 ³ D
(4) | | P 13.5 | | al A List B | _ | 1944 | | 3938.52
3934.41
3942.78 | A
A
B | 4
3
(1) | 38.17 41.30
38.16 41.30
38.17 41.30 | -
1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 3p ² P-3d ² D°
(8) | 7127.21
7111.28
7129 | A
A
P | 1 1 | (50.11
(50.11
(50.11 | 51.85)
51.85) | 0-1
2-3
1-1
3-1 | | 7771.96
7774.18
7775.40 | A | 27
26
25 | 9.11 10.69
9.11 10.69
9.11 10.69 | 3-3
3-1 | 3 ⁵ s°-3 ⁵ p
(1) | | 4867.18 | Α. | 5 | | | 3p4D-3d4F° | 5245
5236 | P
P | | (57.46 !
(57.44 ! | | 2-3 | 3s ³ P°-3p ³ D | 6726.25
6726.50 | A | 5
2 | 9.11 10.94
9.11 10.94 | 2-1 | 3 ⁵ g•_3 ³ p
(2) | | 4861.33
4858.88
4858.74 | A
A
A | 4
3
2 | 38.25 40.79
38.24 40.78
38.23 40.77
38.23 40.77 | 23-33
13-23
3-13 | (9) | 5281
4528 | P
P | | (57.46 ! | 59.80) | 1-2
3-3
3-1 | 3s ³ pe-3p ³ s | 3947.301
3947.489
3947.594 |) E | 10
7
4 | 9.11 12.23
9.11 12.23
9.11 12.23 | 2-3
2-2
2-1 | 3 ⁵ 8°-4 ⁵ P
(3) | | 4884.14
4873.58
4867.18
4896.71 | A
A
A | 1
2
5
0 |
38.25 40.78
38.24 40.77
38.23 40.77 | 32-32
32-32
32-32
13-12
32-32
22-12 | | 4495
4479 | P
P | | (57.46 6
(57.44 6
(57.43 6 | 60.19) | 1-1
0-1 | (6) | *8446.35
8446.76 | A
A | 25
23 | 9.48 10.94
9.48 10.94 |
1-2
1-1 | 3 ³ Se_3 ³ P (4) | | 4881.81 | A
A | ŏ | 38.25 40.77
38.24 40.77 | 33-33
23-13 | | 3463.36
3454
3474.56 | B
P
B | 1
0 | (57.46 6
(57.44 6
(57.46 6 | 31.01) | 2-2
1-1
2-1 | 3s ³ p•-3p ³ p
(7) | *8446.35 | A | 25 | 9.48 10.94 | 1-0 | | | 4348.36
4335.53
4328.15
4323.93 | A
A | 5
4
3 | 38.25 41.09
38.24 41.09
38.23 41.09
38.23 41.09 | 3 2 - 3 2
2 2 - 2 2
1 2 - 1 2 | 3p ⁴ D-3d ⁴ D°
(10) | 3461.34
3443
3445 | B
P
P | Ō | (57.44 6
(57.44 6
(57.43 6 | 31.01)
31.03) | 1-0 | | 4368.30
3692.44 | D
D | (10)
(7) | 9.48 12.31 | 1- | 3 ³ 5°-4 ³ P
(5)
3 ³ 5°-5 ³ P
(6) | | 4353.66
4339.52
4330.44 | A
A
A | 2
3
2 | 38.25 41.09
38.24 41.09
38.23 41.08 | 3 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - | | 3747.66 | В - | 0 | 58.44 6 | 81.69 | 1–2 | 3s ¹ p•-3p ¹ D | 11302.22
11297.54 | B
B | 15
10 | 10.69 11.79
10.69 11.79 | -
3-2
2-2 | 3 ⁵ P-4 ⁵ 8°
(7) | | 4330.14
4323.93
4321.37 | A
A
A | 2
2
1 | 38.24 41.09
38.23 41.09
38.23 41.09 | 23-33
13-23
3-13 | | 5734 | P | | 59.36 6 | 31.52 | 1-3 | (8)
3p ¹ P-3d ¹ D• | 9265.99 | B
A | 5
16 | 10.69 11.79
10.69 12.03 | 1–2
3– | 3 ⁵ P-3 ⁵ D° | | 3792.87
3771.45 | A
P | 1 | | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 3p ⁴ D-3d ⁴ P° (11) | 3824 | P - | | 59.36 6 | .59
——— | | (9)
3p ¹ p ₋₄ 1pe
(10) | 9262.73
9260.88 | A
A | 15
14 | 10.69 12.03
10.69 12.03 | 2-
1- | (8) | | 3757.66
3779.23
3762.62
3752.65 | P
P
P | | 38.23 41.51 | 12-13 | | 4752
4733
4762
4740 | P
P
P | (| 59.81 6
59.80 6
59.81 6 | 3.41)
3.41) | 2-2
3-2 | 3p ³ D-3d ³ D°
(11) | 6456.01
6454.48
6453.64 | A
A | 17
16
15 | 10.69 12.61
10.69 12.61
10.69 12.61 | 3-2
3-3
1-3 | 3 ⁵ P_5 ⁵ S•
(9) | | 3770.37
3757.60 | P
P | | 38.23 41.52
38.23 41.51
38.23 41.51 | $1\frac{3}{2} - 2\frac{3}{2}$
$\frac{1}{2} - 1\frac{1}{2}$ | | 4723
3714 | P
P
P | (| 59.80 6
59.80 6 | 3.41) | 2-1
2-3 | 3p ³ D-3d ³ P° | 6158.19
6156.78
6155.99 | A
A
A | 18
17
16 | 10.69 12.70
10.69 12.70
10.69 12.70 | 3-
2-
1- | 3 ⁵ P ₋₄ ⁵ D ^e
(10) | | | | | - Value of the latest and | - | | 3689
3696 | P
P | (| 59.81 6
59.80 6
59.80 6 | 3.14) | 2-1 | (12) | 5436.83
5435.76
5435.16 | D
D
D | (8)
(6)
(5) | 10.69 12.96
10.69 12.96 | 2-2 | 3 ⁵ P-6 ⁵ S• (11) | | | | | | | | | | | | | | | 0400.10 | ע | (0) | 10.69 12.96 | 1-3 | | | La
I A | borator
Ref | y
Tnt | E
Low | | J | Multiplet
(No) | Labor
I A | ratory
Ref | Int | Low
E | | J | Multiplet
(No) | Labo: | ratory
Ref | Int | E
Low | | J Multi | | |--------------------|----------------|--------------------|----------------|----------------|------------|--|-----------------------|---------------|----------|----------|----------------|--------------|--|----------------------|---------------|------------|----------------|---------|--|---------------------| | | | | | - | | | O I cont | inued | | | | | | O I cont | inued | | | | , | . 7 | | | ontinued | | 10.69 | 17 01 | 3- | 3 ⁵ P-5 ⁵ D° | *5958.63 | A | 9 | 10.94 | 13.01 | 3- | 3 ³ P-5 ³ D° | 7947.56 | A | 12
10 | 12.49
12.49 | | 3-4 3s ¹ 3p ²
2-3 (35 | _3p' | | 5330.66
5329.59 | 5 D
9 D | (10)
(7)
(6) | 10.69 | 13.01 | ā_ | (12) | 5958.46
•5958.63 | Ā | 7
9 | 10.94 | | 1-
0- | (23) | 7950.83
7952.18 | A
A | 9 | 12.49 | 14.04 | 1-2 | , | | 5328.98 | | (6) | 10.69 | 13.01 | 1- | | | | • | | | • | 3 ³ P-7 ³ S° | 7943.15
7947.204 | A
C | 6
3 | 12.49
12.49 | | 3-3
2-2 | | | 5020.13 | | (5) | 10.69 | | 3-2
2-2 | 3 ⁵ P-7 ⁵ S° (13) | 5554.94 | D | (6a) | 10.94 | | 2-1 | (24) | 7939.49 | Ă | ĭ | 12.49 | | 3-2 | | | 5019.34
5018.78 | 4 D
B D | (5)
(4)
(3) | 10.69
10.69 | | 1-2 | (13) | 5512.71 | D | (5d) | 10.94 | 13.18 | 3- | 33p_63p•
(25) | 3823.469 | C | 10 | 12.49 | | | -3p" ³ D | | 4968.70 | | | 10.69 | 13.18 | 3- | 3 ⁵ P-6 ⁵ D* | 5299.00 | D | (5) | 10.94 | 13.27 | 2-1 | (25)
3 ³ P_8 ³ S°
(26) | 3824.425
3825.090 | C | 3 | 12.49
12.49 | | 2-2 (36
1-1 | 5) | | 4967.8 | 6 D | (6)
(5)
(4) | 10.69 | 13.18 | 3-
1- | (14) | 5275.08 | D | (4) | 10.94 | 13.28 | 2- | 3 ³ P_7 ³ D° | 3822.63 | P | | 12.49 | 15.71 | 3-2
2-3 | | | 4967.4 | O D | | 10.69 | | _ | 3 ⁵ P-8 ⁵ 5° | | D | (5) | 10.94 | 13.34 | 2-1 | (27)
3 ³ P_9 ³ g• | 3825.249
3825.530 | C | 1 | 12.49
12.49 | 15.71 | 1-2 | | | 4803.0 | | (4)
(3) | 10.69 | | 3-2
3-3 | (15) | *5146.06 | _ | • • | | | - | 3 ³ P-8 ³ D° | | | | | | | | | 4802.2
4801.8 | | (ž) | 10.69 | | 1-3 | | *5130.53 | D | (3) | | 13 .35 | 2- | (29)
33P-38" 3pe | 8820.45 | A | 15 | 12.67 | 14.07 | 2-3 3s' ¹ p' | -3p' 1F' | | 4773.7 | 6 D | (5) | 10.69 | | 3- | 3 ⁵ P-7 ⁵ D° | 3954.687 | C | 10
1 | 10.94 | 14.06
14.06 | 3-2
1-1 | 33P-38" 3Pe | 7156.80 | A | 12 | 12.67 | 14.40 | 2-2 3s' ¹ D' | -3p' 1p | | 4772.8 | 9 D | (5)
(4)
(3) | | 13.28
13.28 | 2-
1- | (16) | 3952.982
*3953.056 | Ğ | ä | 10.94 | 14.06 | 2-1 | (/ | | | | | | (38 | • | | 4772.5 | - | | | | 3-2 | 3 ⁵ P_9 ⁵ 8° | 3951.987
3954.596 | o
c | 3
5 | | 14.06
14.06 | 1-0
1-3 | | *5146.06 | D | (5)
(3) | 12.82 | 15.22 | _2 5 ³ P_3 | 3d' 3pe | | 4673.7 | | (3)
(3d) | ,10.69 | 13,34
13.34 | 2-2 | (17) | *3953.056 | č | 3 | 10.94 | 14.06 | 0-1 | | *5130.53 | D | (3) | 12.82 | 15.23 | -1 (3 | 9) | | *4672.7 | '5 D | (30) | 10.69 | 13.34 | 1–2 | | | • | | | | , | 3 ³ D°-3p' ³ D | 5750.424 | c | 5 | 13.07 | 15.22 | _2 6 ³ P_3 | 3d' 3pe | | 4655.3 | | (4) | | 13.35
13.35 | 3-
2- | 3 ⁵ P-8 ⁵ D°
(18) | •6324.84 | A | 3 | | 13.99 | (-3
(-2 | (31) | 5731.103 | C | 3 | 13.07 | 15.23 | -1 (40
-0 | 0) | | 4654.5
4654.2 | | (4)
(3)
(2) | | 13.35 | 1- | (10) | 6323.39 | A | 1 | 12.03 | 13.99 | -1 | | 5720.613 | C | 1 | 13.07 | 15.23 | | | | | | | | | - | | | | | | | - , | 4 ³ P-3s" ³ Pe | 9156.02 | A | 4 | 13.99 | 15.33 | 3-4 3p1 3D | _3d1 3pe | | 7995.1 | .a A | 9 | | 12.49
12.49 | 2-3
1-2 | 3 ³ P-3s ¹ ³ De | 7025.52 | A | 3 | 12.31 | 14.06 | -2 | _(32) _ | | | | | 15.59 | 3-2 3p' 3r | 1)
5 3pe | | 7987.0
7982.4 | | 7
5 | | 12.49 | 0-1 | (15) | 4833.32 | D | 7 | 12.31 | 15.22 | -2
-1 | 4°P-3d' °P° (33) | *7706.77
7663.45 | A
A | 5
3 | | 15.59 | 3-2 3p 01
3-1 (4 | 2)
2) | | 7987.3 | | 4 | 10.94 | 12.49 | 3-3 | | 4222.78 | D
D | 5 | 12.31 | 15.23
15.23 | -0 | | 7639.99 | Â | ĭ | 13.99 | 15.60 | 1-0 | • | | 7981.9 | | 4 | 10.94 | 12.49 | 1-1 | | 4317.09 | ע | * | 18.31 | | | | *7706.77 | Ā | 5
1 | | 15.59 | 2-2
1-1 | | | *7254. 4 | | 17 | | 12.64 | 3-1 | 3 ³ P-5 ³ 5°
(20) | *8221.84 | A | 15 | 12.49 | 13.99 | 3-3 | 381 3D4_3p1 3D | | | _ | | | 3-4 3p ¹ 3I | 340 | | 7254.1 | | 15
17 | | 12.64 | 1-1
0-1 | | *8230.01 | Â | 10 | 12.49 | 13.99 | 3-2 | | 6106.25 | A | 4 | 13.99 | 16.01 | 3-4 3p. 01 |)–4a. 9 | | *7254.4 | 47 A | 17 | 10.54 | 12.04 | U-1 | | 8232.99 | A | 13 | 12.49 | 13.99 | 1-1
3-2 | | *5995.28 | A | 3 | 13.99 | 16.04 | 3-2 3p 31 | 0_4d 3pe | | *7003.2 | | 17 | | 12.70 | 3 – | 3 ³ P_4 ³ D° | *8221.84
8227.64 | A | 15
11 | 12.49 | 13.99 | 3-a
2-1 | | 5991.93 | Ã | ă | 13.99 | 16.05 | 2-1 (4 | 4) | | 7001.9 | | 15 | | 12.70 | 1-
0- | (21) | *8230.01 | Â | 10 | 12.49 | 13.99 | 2-3 | | 5991.34 | A | 1 | 13.99 | 16.05 | 1-0 | | | •7002.2 | 88 Y | 17 | 10.94 | 13.70 | 0- | | 8235.31 | Ã | 5 | 12.49 | 13.99 | 1-2 | | *5995.28 | A | 3
1 | | 16.04 | 2-2
1-1 | | | *6046.4 | 46 A | 10 | | 12.98 | 2-1 | 3 ³ P-6 ³ 8• | | | | | | | | 5993.18 | A | - | 10.50 | . 10.00 | | | | 6046 . 2 | 36 A | . 8 | | 12.98 | 1-1 | | | | | | | | | | | | | | _ | | | *6046.4 | 46 A | 10 | 10.94 | 12.98 | 0-1 | | | | | | | | | | | | | | | | | 8 | | | | | | REV | ISE | D M | ULTIPL | ET 1 | ABLE | | | | | | | |-------------------------------|---------------|----------------|--|---|--|--|--------------|----------------|--|---|--|----------------------------------|-------------|---------------------|--|---|---| | Lab | orator
Ref | y
Int | E P
Low High | | Multiplet
(No) | Labo
I A | rator
Ref | | E P
Low High | J | Multiplet (No) | Labo: | | y
Int | E P
Low High | J | Multiplet (No) | | OI con | timued | Ĺ | _ | | | <u>O II</u> con | tinue | đ | | | ,, | O II con | | | | | (20) | | 9522.01 | A | 4 | 14.04 15.33 | | 3p' 3p-3d' 3 | | P | | 25.55 28.70
25.54 28.71 | 31-21 | 3p4D0-3d4P | 4943.06 | В | 7 | 36.45 38.94 | 1] - 2] | 3p2P°-3d2D | | 9499.39
9505\67 | A
A | 0
5 | 14.04 15.34
14.04 15.34 | 4-4
3-4 | (45)
3p' 3F-3d' 1
(46) | 3896.30
G° 3872.45
3907.45 | B
B
B | 1
1
4 | 25.54 28.71
25.53
28.71
25.54 28.70 | 15- 5 | (11) | 4941.12
4955.78 | B | 5
3 | 26.44 28.94
26.45 28.94 | $\frac{\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-1\frac{1}{2}}$ | (33) | | 9498.04 | A | 8 | 14.04 15.34 | 4-5 | 3p' 3r-3d' 3 | 3882.45
G°† 38 64.1 3 | B | i | 25.53 28.71
25.52 28.71 | 1-1-1-1 | | 3803.14
3821.68 | B
B | 61
41 | 26.45 29.69
26.44 29.67 | 13-13 | 3p ² p°_4s ² p
(34) | | 9487.49
9498.04 | A
A | 6
8 | 14.04 15.34
14.04 15.34 | | (47) | 3893.53
38 74. 10 | B
B | 3 | 25.53 28.70
25.52 28.71 | 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | • | 3830.45
3794.48 | B
B | 41
31 | 26.45 29.67
26.44 29.69 | 15-5 | , , , | | 6266.89 | A | 3 | 14.04 16.01 | 4-4 | 3p' 3F-4d' 3 | F° 3882.197
3864.45 | A
B | 7
5 | 25.55 28.73
25.54 28.73 | 3] - 3] | 3p ⁴ D°-3d ⁴ D (12) | 4448.21 | В | | 20 24 34 04 | | | | 6264.55 | A | 3 | 14.04 16.01 | 3-4 | (48)
3p' 3F_4d' 1
(49)
3p' 3F_4d' 3 | G° 3851.04
3847.89 | B
B | 3
3 | 25.53 28.73
25.52 28.73 | 15-15 | • | 4443.05 | В | 5 | | | 3p' 2F°_3d' 2p
(35) | | 6261.55
6256.84
6261.55 | A
A
A | 6
4
6 | 14.04 16.01
14.04 16.01
14.04 16.01 | 3-4
3-3 | (50) | 3864.68
3856.16 | B
B
B | 3
1
5 | 25.55 28.73
25.54 28.73
25.53 28.73 | 2] -1 | | 4189.788
4185.456 | A | 10
8 | 28.24 31.18
28.24 31.18 | 31-41
21-31 | 3p' 3p°-3d' 30 | | 5410.76 | F | (4) | 14.04 16.32 | | 3p' 3F-5d' 3 | 3863.50
F° 3850.81 | B
B | 3 | 25.54 28.73
25.53 28.73 | 2 } -3 | • | 4113.82
4110.20 | B
B | 1 | 28.24 31.24
28.24 31.24 | 3-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 3p' 2p°-3d' 2p
(37) | | 5410.76 | F | (4) | 14.04 16.32 | 3-4 | (51)
3p' 3F-5d' 1 | 3842.82
G° | B | 3
0 | 25.52 28.73
25.55 28.76 | -1-1-1-1
1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | 3741.69 | C | 0 | | -1 -1 | 2 2 | | 5408.59
5404.87 | D
F | $\binom{4}{3}$ | 14.04 16.32
14.04 16.32 | 4-5
3-4 | (52)
3p' ³ F-5d' 3
(53) | 3875.82 | B
B | 4 | 25.54 28.74
25.55 28.74 | 21-21
31-21 | 3p ⁴ D°-3d ² F
(13) | 3273.52
3270.98 | B
B | 71
71 | 28.24 32.01
28.24 32.01 | 31-21
31-11 | (38)
3p' 3p-4s' 2p
(39) | | 8 426.3 26 | C | | 14.06 15.53 | | 3s" 3p0_4p1 | 3833.10
3843.58 | B
B | 3
3 | 25.54 28.76
25.53 28.74 | 2 } -3}
1}-2} | • | | | | | | | | 8428.342
8429.128 | CC | 2 | 14.06 15.53
14.06 15.53 | 1-2 | (54) | 3134.82
3138.44 | B
B | 10 1
8 1 | 25.55 29.49
25.54 29.47 | | 3p ⁴ D°-4s ⁴ P (14) | *4699.21
4703.18
4698.48 | B
B
C | 7
3
1 | 28.39 31.01
28.39 31.01 | 25-25 | 3p1 3pe_3d1 3p
(40) | | 8420.968
8424.780 | C | 1 | 14.06 15.53
14.06 15.53 | 2-2
1-1 | | 3139.77
3122.62 | B
B | 41
61 | 25.53 29.46
25.54 29.49 | 15- 5
25-25 | | 4327.48 | В | 3 | | | | | 7476.45
7479.06 | A
A | 12
8 | 14.06 15.71
14.06 15.71 | 3-3
1-3 | 3s" ^{3pe} -3p" (55) | | B
B | 71
31 | 25.53 29.47
25.52 29.46 | 3-3 | . | 4331.89
4327.89 | B
B | 8 | 28.39 31.24
28.39 31.24 | 1\$-1\$
2\$-1\$ | 3p' ² p°-3d' ² p
(41) | | 7480.66
7473.23 | A
A | 8 | 14.06 15.71
14.06 15.71 | 0-1
2-2 | | 3113.71
3124.02 | B
B | 11
21 | 25.53 29.49
25.52 29.47 | | • | 4331.47
4192.50 | B
B | o [,]
2 | 20.35 31.84 | 15-95 | | | 7477.21
7471.36 | A
A | 7
2 | 14.06 15.71
14.06 15.71 | 1-1
2-1 | | 4590.971 | Ā. | 9 | 25.55 28.24 |
8출-3출 | 3s' ² D_3p' ² Fo | 4400 70 | B | 00 | 28.39 31.33
28.39 31.33 | 12-13
13-13 | 3p1 3jpe_3d1 3p
(43) | | 760.65 | Α. | 5 | 14.07 15.34 |
3-4 | 3p' 1F_3d' 1 | 4596.174
4351.269 | A | 8
6 | 25.55 28.24
25.55 28.39 | | | 3063 13 | В | 0 | 28.39 31.50 | | 73p' ³ D°-4d ³ P | | 9741.49 | A | 4 | 14.07 15.34 | | 3p' 1F-3d' 3 | 4347, 425 | Â | 5 | 25.55 28.39 | | 3s' ³ D-3p' ³ D° | 3 <i>1</i> 00 01 | B
B | 71
61 | 28.39 32.01
28.39 32.01 | 2 1 - | (43)
3p ¹ 3p ² -4s ¹ 3p
(44) | | 677.41 | A | 1 | 14.07 15.35 | 3-3 | 3p' 1F_3d' 1 | | A | 10
6 | 25.55 28.71
25.55 28.70 | 23-13
13- 3 | 3s' ² D_3p' ² P° (17) | | | | | | | | 8374.31 | A | 4 | 14.07 16.01 | 3-4 | (58)
3p' 1F-4d' 1
(59) | 3912.088 | В - | | 25.55 28.71 | . | | 6895.29
6906.54
6910.75 | CCC | 5
4 | 28.58 30.37
28.57 30.36 | 41-31
31-21 | 3d ⁴ F-4p ⁴ D ⁹
(45) | | 366.33 | A | 3 | 14.07 16.01 | | 3p' 1r-4d' 3 | | В | 0 | 25.74 28.57 | 2 1 _3 | 3p ⁴ P°-3d ⁴ F
(18) | 6908.11
6846.97 | 000 | 3
2
1 | 28.56 30.35
28.55 30.34
28.57 30.37 | 15-3 | | | 6351.17
5492.8 | A
F | 0
(3) | 14.07 16.02
14.07 16.32 | | 3p' 1F-4d' 1
(61)
3p' 1F-5d' 1 | 4140.74 | A
B
B | 4
0
4 | 25.74 28.70
25.73 28.71
25.72 28.71 | 24-24
14-14 | 3p ⁴ P°-3d ⁴ F
(18)
3p ⁴ P°-3d ⁴ P
(19) | 6869.74
6885.07 | C | 1 | 28.56 30.36
28.55 30.35 | | | | 486.6 | F | (3) | 14.07 16.32 | | (62)
3p' 1 r-5 d' 3 | 4156.54 | B
B | 3 2 | 25.74 28.71
25.73 28.71 | | | 4098.27 | В | On | 28.55 31.56 | 12-22 | 3d ⁴ F-4f ² D° (46) | | 7886.31 | Α. | 4 | 14.31 15.38 | _ | (63) | 4153.302
4132.806 | A | 7
6 | 25.73 28.70
25.72 28.71 | 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4107.07 | В | 1n | 28.56 31.57 | | 3d4F-4f4D° | | 653.78 | A | 5 | 14.31 15.36 | | (64)
3s" 1P°-3p" | 4119 221 | A
A | 8 | 25.74 28.73 | 3}-3} | 3p4P°-3d4D (30) | 4089.295
•4097.260
4095.63 | A | 4n
4n | 28.58 31.60
28.57 31.58 | 3-4-4- | 3d4F_4f4G°
(48) | | | | | | | (65) | *4097.260
4130.279 | Ā | 4n
3 | 25.72 28.73
25.74 28.73 | 4-14 | (80) | 4087.16
4108.75 | B
B
B | On
2n
On | 28.56 31.57
28.55 31.57
28.57 31.57 | 25-35
15-25
35-35 | | | | | | | | | 4105.000
4103.017 | A | 7
5 | 25.73 28.73
25.72 28.73 | 23-23
13-13
23-13 | | 4096.18 | C | Ođ | 28.56 31.57 | 3 } -3 } | | | | | | nal A List A | | | 4120.554
4110.795 | A | 3 | 25.74 28.73
25.73 28.73 | 12- 2 | | 4071.20
4083.907 | A | 0
2n | 28.57 31.60
28.56 31.58 | 31-41
22-32 | 3d ⁴ F-4f ² G ⁰
(49) | | 649.139
641.811
638.854 | A | 10
9
6 | 22.90 25.55
22.88 25.54
22.87 25.53 | 2 1 2 - 3 2 | 3s ⁴ P-3p ⁴ D° | 4084.66
4096.543 | B
A | 1
3 | 25.74 28.76
25.73 28.74 | 31-31
11-31 | 3p4p0_3d3F
(21) | 4062.90
4048.22 | B
B | in
in | 28.58 31.62
28.57 31.62
28.56 31.61 | 41-41
31-31 | 3d ⁴ F-4f ⁴ F° | | 676.234
661.635 | A
A
A | 8 | 22.90 25.54
22.88 25.53 | 21-21
11-11 | | 4112.029
3967.441 | A | 4 | 45.74 48.74 | ಜಕ್ಷ-ಜಕ್ | | 4041.31
4033.18 | C | 0d
0d | 28.55 31.61 | 15-15 | (00) | | 650.841
696.36 | A
B | 6
2 | 22.90 25.54
22.88 25.53
22.87 25.52
22.90 25.53
22.88 25.52 | 3
3
1 | | 3985.46 | C | 0 | 25.72 28.83
25.72 28.82 | | (33) | 4054.10
4046.15 | C | 00d | 28.57 31.61
28.57 31.62 | 3 1 - 2 1 3 1 - 2 1 1 | | | 673.75
349.426 | B
A | 4
8 | 32.88 25.52
22.90 25.74 | 1출- 출 | 3-4D 2-4D0 | 3287.59
3295.13 | B
B | 91
41 | 25.74 29.49
25.73 29.47
25.72 29.46
25.74 29.47 | 21-21
11-11 | 3p ⁴ P°-4s ⁴ P
(23) | 4044.96
4035.09 | C | 0d
0d | 28.57 31.62
28.56 31.62
28.55 31.62 | 31-31
21-21 | 3d ⁴ F-4f ² F* (51) | | 336.865
325.77 | A
B | 6
3 | 22.88 25.73
22.87 25.72 | 1 - 1 - 1 | (3) | 3301.56
3305.15
3306.60 | B
B
B | 31
61
61 | 25.72 29.46
25.74 29.47
25.73 29.46 | 23-13
13-13
13-13 | | 4026.40
3371.85 | В | On
On | | | | | 366.896
345.562
319.631 | A
A
A | 7
7
8 | 22.90 25.74
22.88 25.73
22.87 25.72
23.90 25.73
22.88 25.73
23.88 25.74 | 25-15
15- 5 | | 3277.69
3290.13 | B
B | 71
51 | | 13-21 | | 3375.77
3360.15 | B
B
B | an
O
OOn | 28.58 32.24
28.57 32.23
28.57 32.24
28.56 32.23 | 49-39
31-21
31-31 | (52) | | 317.139 | A | 8 | 22.87 25.73 | 2-12 | | 4751.34 | в - | | 26 44 20 77 | - 1 al | z-2-a z-4- | 3367.00
3370.23 | B
B | 00n
00n | 28.56 32.23
28.55 32.22 | 3 - 3 - 3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - | | | 749.49
727.33
712.75 | B
B
B | 9
8 | 22.90 26.19
22.88 26.19
22.87 26.19 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3s ⁴ P-3p ⁴ S° (3) | 4710.04
4752.70 | B
B | 5
2 | 26.14 28.73
26.11 28.73
26.14 28.73 | 13-23 | (34) | 4317.65 | С - | 0 | 28.71 31.56 |
11_21 | 244D_4+300 | | 112.73 | - | 7 | | - 2-1 2
- | • | 4705.355 | A | 8 | | | | 4307.31 | B | in | 28.71 31.56
28.71 31.58 | | | | 721.35
640.90 | B
B | 5
4 | 23.34 25.18
23.32 25.18 | | 3s ² P-3p ² g• | *4699.21
4741.71 | B
B | 7
3 | 26.14 28.76
36.11 28.74
26.14 28.74 | | | 4303.82
4294.82
4281.40 | B
B
B | 5n
3n | 28.70 31.57
28.71 31.58 | 23-33
13-23 | 3d ⁴ P-4f ⁴ D°
(54) | | 414.909
416.975 | A
A | 10
8 | 23.34 26.14
23.32 26.11
23.34 26.11 | | | 4395.95
4369.28 | B
B | 7 | 26.14 28.94
26.11 28.94
26.14 28.94 | 2-2-2-1
1-1-1-1 | 3p ² D•-3d ² D
(26) | 4282.82
4288.83 | C
B | On
3đ
1n | 28.70 31.58
28.71 31.59
28.71 31.59 | 11-11 | | | 452.377 | Ā | 6 | | | | 4406.02
4359.38 | B
B | 1 | 26.14 28.94
26.11 28.94 | 3 - 1 - 1 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | 4276.71 | В | 1n | 28.71 31.59 | 1 2 - 2 | | | 973.263
954.372
982.719 | A
A | 10
7 | 23.34 26.45
23.32 26.44
23.34 26.44
23.32 26.45 | 13-13 | 38 ² P-3p ² P° | 3470.81
3470.42 | B
B | 8
5 | 26.14 29.69
26.11 29.67
26.11 29.69 | 31-11
11-11 | 3p ² D°-4s ² P | 4291.25
4305.53 | B
B | 1n
0 | 28.70 31.57
28.71 31.57 | 25-35
15-35 | 3d ⁴ P-4f ⁴ G ⁰
(55) | | 945.048 | A |
5
5 | 23.32 26.45 | 13- 3
2-12 | | 3447.98 | В _ | 5 | 26.11 29.69 | 1\$-1\$
- | (51) | 3013.37 | В | 3 | 28.70 32.79 | 3 1 _31 | 3d ⁴ P-5f ⁴ D ⁰
(56) | | 496.27 | c | 1 | 25.18 28.71 | -
-
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 3p ² S°-3d4p | 4924.60
4906.88 | B
B | 6
5 | 26.19 28.70 | 11-31 | 3p4se-3d4p | 4871.58 | В - | 5 | 28.71 31.24 | -
1=-2= | - | | 488.18
474.94 | C
B | 0 | 25.18 28.71 | | 3p ³ S°-3d ⁴ P
(7) | 4890.93 | В | 4 | 26.19 28.70
26.19 28.71
26.19 28.71 | | | 4861.03
4701.23 | B | 3 | | | 3p1 3pe_3d1 3p
(57) | | 390.25 | В | 1
8 | 25.18 28.73
25.18 28.82 | \$- \$
1_11 | 3p ² S°-3d ⁴ D
(8)
3p ² S°-3d ² P
(9) | 4856.49
4856.76 | B | 3 | 26.19 28.73
26.19 28.73
26.19 28.73 | 11-31
11-11 | 3p ⁴ 5°-3d ⁴ D
(29) | 4701.23
4691.47
4701.76 | B
B
B | 2
1
0 | 28.70 31.33
28.70 31.33
28.71 31.33 | | 3⊝'3ps_3d'3p
(58) | | 377.20 | B _ | 7 | 25.18 28.83 | -
\$\$ | (9) | 4864.95
4845.01 | В | 3
1 | | | | 4690.97 | B | _ | | | | | 075.868
072.164 | A
A | 10
8 | 25.55 28.58
25.54 28 52 | 31-41 | 3p4D0-3d4F | 3739.92 | В | | 26.19 28.74
26.19 29.49 | | (30) | 4469.32
4414.37 | B | 3
1 | 28.71 31.47 | | (59) | | 069.897
069.636 | A
A | 6
4 | 25.55 28.58
25.54 28.57
25.53 28.56
25.52 28.55
25.55 28.57
25.54 28.56 | 13-23 | (10) | 3762.63
3 777.6 0 | B
B | 51
41 | 26.19 29.49
26.19 29.47
26.19 29.46 | 13-13 | | 4328.62 | B | 2 | 28.71 31.50
28.71 31.56 | 13-13 | 3p' 3pe_443p
(60)
3p' 3pe_34' 3g
(61) | | 092.940
085.124
078.862 | A
A
A | 5
3
4 | 25.55 28.57
25.54 28.56
25.53 28.55 | 43-45 | | 5806.73 | В — | 5 | 36.45 38.82 | -
1]1] | • | 4319.93
3735.94 | В | 1 | 28.70 31.56 | -] - [] | (61) | | 106.03
094.18 | B
B | 0 | 25.55 28.56
25.54 28.55 | 11-11
31-21
21-11 | | 5160.02
5176.00 | B
B | 3 | 26.45 28.82
26.44 28.83
26.45 28.83
26.44 28.82 | | (38) | 3735.94
37 39. 34 | B | 3 | 28.71 32.01
28.70 32.01 | 19-34 | ap'a₽°–4s'≊D
(62) | | | | | 20100 | -22 | | 5190.56 | В | 3 | 25.44 28.82 | 1 _1. | | | _ | | | - | | | | oratory
Ref | | E : | P
High | J | Multiplet (No) | | rator;
Ref | | E P | | J | Multiplet
(No) | | atory
Ref I | int | E P | | J | Multiplet
(No) | |----------------------------------|----------------|----------------------|----------------------------------|----------------------------|-----------------------------------|--|--|---------------|------------------|--|-------------------------|-------------------|--|---------------------------------|----------------|---------------|--|----------------|--------------------------|---| | A
II com | ntinued | | 20" | | | () | O II con | | | | | | , , | O III cor | tinued | l | | | | | | 4.29
7.25 | B
B | | (28.73
28.73
28.73 | 31.58
31.58
31.56 | 23-13
13-13
13-23
13-23 | 3d ⁴ D-4f ³ D•
(63) | 4060.58
4060.98 | B
B | 3n
3n | | 4.05 | 31-41
22-32 | 3di 2 y_41 i 2ge
(97)
3ai 2y 4ei 2 y e | 3725.30
3714.03
3732.13 | A
A
A | 8 | 37.09 4
37.07 4
37.09 4 | 0.40 | 3-3
1-1
3-1 | 3p ^{3p} -3d ³ pe
(14)
cont | | 8.40 | В | 0
On | 28.73
28.73 | 31.57 | 31-31
31-31 | 3d ⁴ D-4f ⁴ D°
(64) | *4054.10
4054.55 | C | 00g | 31.01 3
31.01 3 | 4.06 | | 3d' 3r_4f' 3re
(98) | 3415.29 | A
A | 3 | 37.09 4
37.07 4 | 0.69 | 1-1 | 3p ³ P-3d ³ P*
(15) | | 4.29
8.96
.5.35
57.25 | B
C
B | 1n
0d
0 | 28.73
28.73
28.73
28.73 | 31.59
31.59
31.57 | 13- 3-
13- 3-
23-3-
3-1- | (01) | 4024.04 | В | 1n
 | 31.01 3 | | - | 3d' ³ g_4f' ³ g•
(100) | 3430.60
3408.13 | A
A
A | 1
3 | 37.09 4
37.07 4
37.07 4
37.06 4 | 0.69
0.67 | 2-1
1-0
1-2
0-1 | | | .5.35
32.76 | C
B | Od
1n | 28.73 | | | 3d ⁴ D-4f ⁴ G°
(65) | 4303.06 | Č | Od | | | | | | | 1 | 37.85 4 | | 2_2 | 3p ¹ D-3d ¹ D° | | 14.43 | В | On
Of | 28.73 | | | (65)
3d ⁴ D-4f ² G° | 4253.74
4253.98 | C | 4d
4d | 31.18 3
31.18 3 | 4.09 | 31-41
31-41 | 3d' 3G_4f' 3H°
(101) | 3961.59 | A | 8 | 37.85 4 | | 2-3 | (16)
3p ¹ D-3d ¹ F° | | 75.52
76.71 | C
B
B | 0d
4n
1n | 28.73 | | | (66)
3d*D-4f*F*
(67) | 4378.41
4378.01 | C | 0 | 31.24 3
31.24 3 | 34.06
34.06 | 3}-3}
12-3} | 3d ^{1 2} D-4f 2po
(102) | | A _ | 1 | 37.85 | 1.08 | | (17)
3p ¹ D-3d ¹ P•
(18) | | 82.96
77.40
77.90
83.13 | B
B
C | in
in
in
Od | 28.73
28.73
28.73
28.73 | 31.61
31,62 | 14-24
3-13
33-34
23-24 | | *4343.36
4342.83 | C | 0đ
1đ | | | | 3d ^{i 2} D-42 ^{i 2} D°
(103) | 5268.06 | A _ | 2 | 38.74 | | | 3p ¹ S-3d ¹ P ⁰ (19) 3d ¹ P ⁰ -4p ¹ P | | B3.75 | В | 0n | 28.73 | 31.61 | 1분-1분 | 3d ⁴ D-4f ² F° | 4488.09
4487.72 | B
B | 3n
On | 31.33 3 | 34.08 | 11-21 | 3d1 3p_4f1 3pe
(104) | 3034.32 | ۸ | <u> </u> | 41.08 4 | | 1-1 | (30) | | 74.13
76.21
77.40 | C
C
B | 00d
0d
1n | 28.73
28.73
28.73 | 31.62 | 31-31
31-31
31-31 | (68) | | | | | | - | | 3698.70 | Å | 5 | 41.78 4
41.76 4
41.74 4 | 15.10 | 3-4 | 3e ⁵ P-3p ⁵ De
(21) | | 73.17
75.90 | B
C | On
Od | 28.73
28.73 | | 15-25 | | 4843.26 | В | 1n | 31.56 | | | 3d' 2g_4g' 2pe
(105) | 3720.86
3712.48 | A
A
A | 4
3
2 | 41.78 4 | 15.10
15.08 | 1-2
3-3
3-3 | | | 16.92
33.97 | B
B | On
OOn | 28.73
28.73 | | 31-31
31-21 | 3d ⁴ D-5p ⁴ D°
(69) | 4146.09
4143.77 | B
B | 3 | (33.06 3
(33.06 3 | 36.03) | 31-41
21-31 | sp ³ 3p ⁶ p_
sp ³ 3d ⁶ p• | 3704.73
3734.80
3721.95 | A
A
A | 3
1 | 41.74 4
41.78 4
41.76 4 | 15.08 | 1-1
3-2
3-1 | | | 95.44
06.02
94.66 | B
B
B | On
On
OOn | 28.73
28.73
28.73 | 32.25 | | 3d ⁴ D-5p ⁴ P ⁶
(70) | 4143.24
4145.90
4143.52
4141.96 | B
B
C | 0
0
1
1 | (33.06
(33.06
(33.06
(33.06
(33.06
(33.06 | 30.03/ | 15-15 | | 3709.52
3350.99 | A | 3 | 41.74 4
41.78 4
41.76 4 | 15.07
15.46 | 1-0
3-3 | 3g ⁵ p_3p ⁵ pe
(22) | | 01.67 | B
B | 00n
0n | 28.73 | 32.25
32.31 | 5-15 | 3d ⁴ D-5p ² D° | 4142.08
3218.10 | c
c | 1 | (33.08 3 | 36.04) | 15- 5 | | •3344.26
•3336.78
3362.38 | A
A
A | 2
3
4 | 41.74 4 | 45.44 | 2-3
1-1
3-3 | (55) | | 53.31
39.76 | В | 1 | 28.73 | 32.79 | | (71)
13d ⁴ D-5f ⁴ D°
(72) | 3216.76
3216.08 | Ċ | 0 | (33.06 3
(33.06 3 | 36.89)
36.89) | 23-23
13-23 | sp ³ 3p6P_
sp ³ 4s6ge
(107) | 3350.68
3333.00
•3330.40 | A
A
A | 3
4
4 | 41.76 4
41.76 4 | 45.46 | 2-1
2-3
1-2 | | | 39.51
38.82 | B
B | 1 | | 32.79
32.81 | | 34 <u>4</u> D-5146° | Strongest | Unol | assifi | | | | | | ^ - | | | | | - 3 3 | | 07.08 | В | 3 | | | | | 4506.50
3420.61 | B | 3n
3n | | | | | 4081.10
4073.90 | A | 0 | 43.24 4 | | 1-2 | 3s ³ p_3p ³ D° | | 07.74
08.28 | C
B | 3dd
1 | 28.73 | 32.84 | 31-31
31-31
- | 3d ¹ D-5f ⁴ F° (74) | 3419.87
3081.46 | B
B | 2n
2n | | | | | 3556.92 | A _ | 1 | 43.24 | 46.71 | 3-3 | 38 ³ P-3p ³ P* (24) | | 43.36
31.13 | C | 0đ | 28.74
28.74 | 31.58
31.59 | 21-21
21-11 | 13d ² F-4f ⁴ D°
(75) | 3006.82
3006.04
3005.62 | B
B
B | 3
2
2 | | | | | 3455.18
3450.94 | A
A | 5
4 | 45.11 4
45.10 | 48.67 | 4-5
3-4 | 3p ⁵ D°-3d 5F
(25) | | 71.65 | В | 2n | 28.76 | 31.58
31.57 | | 3d ² F-41 ⁴ G°
(76) | | | | | | ······· | | m3448.05
3446.73
3447.22 | P
A
A | 0+
2
1 | 45.08 4
45.08 4
45.07 4 | 48.66 | 2-3
1-2
0-1 | | | 53.60
42.00 | B
B | in
4n | | | | 3d ² F-41 ² G* | <u>0 III</u> | I P 54 | 1.71 | Anal B | List . | A Sej | pt 19 4 3 | 3466.15
3459.98 | A
A | 3 | 45.11 4
45.10 | 48.67
48.66 | 4-4
3-3
3-3 | | | 40.36
13.43 | B
B | 2n
1n | | 31.58
31.62 | 2ģ-3ģ
3l-4l | ; (77)
. 34 ² F_4f ⁴ F° | 4239.5 | A | 00 | 33.01 | 35.92 | | 3s ³ p ^e -3p ¹ p | 3454.90
3451.33
3466.90 | A
A
A | 3
1
0 | 45.08
45.08
45.10 | 48.65 | 1-1
3-2 | | | 85.70
15.80 | B | 3n
00d | 28.74
28.76 | 31.62
31.62 | 24-34
34-34 | 3d ³ F-4f ⁴ F° (78) | 3759.87
3754.67 | Ā | 9 | 33.04
33.01 | 36.29 | 1-2 | 3s ³ p̄•̃_3p ³ p | 3459.52
3088.04 | A | 0 | 45.08 | | 2-1
4-4 | 3p ⁵ p°-3d ⁵ p | | 92.23 | B
B | On
On | | 31.61
31.62 | 3-3-3-3 | 3d ² F-4f ² F° | 3757.21
3791.26
3774.00 | A
A | 5
6
6 | 32.99
33.04
33.01 | 36.29
36.28 | 0-1
3-2
1-1 | | 3083.65
3075.19 | A
B
B | 0 | 45.10 4
45.08 | 49.10
49.10 | 3-3
2-2 | (26) | | 15.35
00.5 | ° C
R | 0d
00n | | 31.62
32.26 | | (79)
3d ² F-5p ⁴ P° | 3810.96
3340.74 | A | 8
6 | 33.04 3
33.04 | | 3–1
3–1 | 3s ³ pe_3p ³ s | 3095.81
3084.63
3074.68 | B
B
B | 00
0
00 | 45.11
45.10
45.08 | 49.10
49.10 | 4-3
3-2
3-1 | | | 57.99 | В | 1n | 28.76 | 32.33 | | (80)
3d ² F-5p ² D°
(81) | 3312.30
3299.36 | A | 5
3 | 33.01
32.99 | | 1-1
0-1 | (3) | 3068.06
3075.95
3074.15 | B
B
B | 00
0 | 45.08
45.10
45.08 | 49.11 | 1-0
3-4
3-3 | | | 59.07
47.9 | B | On
Odd | | 32.31 | | | 3047.13
3035.43 | A | 8
4 |
33.04
33.01 | 37.07 | 2-2
1-1 | 3s ³ P°-3p ³ P
(4) | 3068.68
3065.01 | B
B | 00 | 45.08
45.07 | 49.10 | 1-3
0-1 | | | 32.08
32.50 | B | 2
1 | | 32.83
32.81 | 31-41 | 3d ³ F-5f ⁴ G ⁶
(82)
3d ³ F-5f ³ G ⁶
(83) | 3059.30
3043.02
3023.45 | A
A
A | 6
5
5 | 33.04
33.01
33.01 | 37.06 | 2-1
1-0
1-3 | | 3384.95 | A - | 4 | 45.46 |
49.1ì | 3-4 | 3p ⁵ p°-3d ⁵ D | | 25.75 | В | 1 | | 32.84 | 3-1-4-2 | 3d F-51 F0 | 3024.57 | Ä | 4 | 32.99 | | 0-1
- | | 3382.69
3394.26 | A
A | 3
1
2 | 45.45
45.46
45.45 | 49.10 | 3-3
3-3
3-3 | (27) | | 27.62 | C | 3 | | | - | (04/ | 5592.37 | A | 6 | 33.71 | 35.92 | 1-1 | 3s ¹ P°-3p ¹ P
(5) | 3383.85
3376.82 | A
C | (1) | 45.44 | 49.10 | 1-1 | E E- | | 78.19
66.94 | Ġ | 0 | 28.83
28.82 | 30.68
30.67 | $1\frac{1}{2}$ | 3d ² P-4p ² P* | 2983.78 | A | 9 | 33.71 | 37.85 | 1-3
- | 3s ¹ p•_3p ¹ D
(6) | 3355.92
*3336.78
3326.16 | A
A
A | 3
3
0 | 45.46
45.45
45.44 | 49.15 | 3-3
3-2
1-1 | 3p5pe_3d5p
(28) | | 91.25
89.48 | B
B | 3n
1n | | | | 3d ² P_4f ² D°
(86) | 2983.66 | A | 1 | 35.92 | 40.05 | 1-3
 | 3p ¹ P-3d ³ F* (7) | 3348.05
3332.49 | A
A | 2
1 | 45.46
45.45 | 49.15
49.15 | 3-2
3-1 | | | 66.32
76.08 | B | 3n
Od | 28.82 | 31.58
31.59 | | 3d ² P-4f ⁴ D°
(87) | 3265.46
3260.98 | A
A | 10 | 36.32 | | 3-4
2-3 | 3p ³ D-3d ³ F* | *3344.26
*3330.40 | A
A | 3
4 | 45.45
45.44 | | 2-3
1-2 | | | 77.88 | В | 2n | | | | 3d ² P_4f ⁴ G° (88) | 3267.31
3284.57
3281.94 | A
A | 5
4
3 | 36.28
36.32
36.29 | 40.05
40.08
40.05 | 1-2
3-3
2-2 | ,0, | 3279.97 | c _ | (1) | 46.05 | 49.82 | 0_1 | 4p ¹ S-5d ¹ P° (29) | | 07.80
69.53 | C
B | 0 | 28.94
28.94 | 31.56
31.58 | 31-31
12-15 | 3d ² D-4f ² D° (89) | 3305.77
3252.94 | A | 0
2 | 36.32
36.29 | 40.09 | 3-2 | 3p ³ D-3d ¹ D° | 3728.82
3728.49 | C
C | {1
0} | 46.27
46.25 | 49.56 | 3-4
2-3 | 3p ³ D°-3d ³ F
(30) | | 69.33 | C | 0 | | 31.58 | 11_21 | 348n_4+4no | 3238.57
3017.63 | A | 5
5 | 36.28 | 40.09 | 1-2
3-3 | (9)
3p ³ D-3d ³ D• | 3729.70
3215.97 | A
B | 1 | 46.24 | | 1-2
3-3 | 3p ³ D°-3d ³ D | | 77.00 | G | 0 | 28.94 | 31.58 | 21-31 | (90)
3d ² D_4f ² G•
(91) | 3004.35
2996.51 | A
A | 4
3 | 36.29
36.28 | 40.40
40.40 | 2-2
1-1 | (10) | 3207.12
3200.95 | P
A | 1 | 46.25
46.24 | 50.10 | 2-2
1-1 | (31) | | 13.67
10.14
21.28 | C
B
C | 1d
3n
Od | 28.94
28.94
28.94 | 31.61
31.61 | 43-34
13-34
33-34 | (91)
3d ² D-4f ⁴ F°
(92) | 3024.36
3008.79
2997.71 | A
A
A | 1
3
2 | 36.32
36.29
36.29 | 40.40
40.41 | 3-2
2-1
2-3 | | 4529.7 | , -
A | 00 | 46.37 | 49.10 | 2 – 3 | 3p5go-3d5p | | 09.43
03.11 | ВВ | 4n
3n | 28.94
28.94 | 31.62
31.62 | 21-31
11-21 | 3d ² D-4f ² F° (93) | 2992.11 | | 3 | 36.28 | | - 1-3 | 3p ³ 8-3d ³ D° | 4461.56
m4447.82 | A
P | 0+
0 | 46.37
46.37 | 49.15 | 2-3
2-2
2-1 | (32)
3p5g°-3d5p
(33) | | 13.11 | c | | | | - | | 3363.83
3369.40 | A | 00 | 36.73
36.73 | 40.40 | 1-3 | (11) | 4440.1 | | | 46.37 | | | 3p ³ P°-3d ³ P | | 65.40
67.88
69.32 | B
B
B | 4
4
3 | (30.29
(30.29
(30.29 | 33.06)
33.06)
33.06) | 21-31
21-31
21-31 | sp ³ 3s ⁶ 8°-
sp ³ 3p ⁶ p
(94) | 3132.86
3121.71
3115.73 | A
A
A | 6
5
4 | 36.73
36.73
36.73 | 40.69 | 1-3
1-1
1-0 | 3p ³ S-3d ³ P°
(12) | 4555.30
3638.70 | A | 3 | 46.71 | 50.11 | 2-3
1-3 | (34)
3p ³ pe _{-3d} 3p
(35) | | 85.01 | В | | 30.68 | 33.94 |
1}-2} | 74p3pe_4d1 3 | D 3440.39 | A | 4 | 36.82 | 40.41 | -
2-31 | 2p4 1p-3d3pe | 3646.84
3653.00
3645.20 | A
A
A | 3
1
1 | 46.72
46.72
46.71 | 50.10
50.10 | 1-3
0-1
3-3 | (00) | | 74.77 | В | 00 | 30.68 | 34.34 | 1 ½-3 ½ | (95)
4p2P°-5s' 2 | D | | | 37.09 | | - | (13)
3p ³ P-3d ³ D° | 3650.70
3649.20 | A | 00 | 46.72
46.71 | 50.10
50.10 | 1-1
2-1 | | | | | | | | _ | (96) | 3715.08
3707.24
3702.75 | A
A | 6
6
5 | 37.09
37.07
37.06 | 40.40 | 1-3
0-1 | (14) | | - | | | | • | | | 10 | | | | | | REV | ISE | D M | ULTIPLE | T 1 | ABLE | | | | | | | | |-------------------------------|---------------|-------------------|---|---|--|------------------------------|---------------|----------|---|-------------------|--|---|---------------|---------------|----------------------------|-------------------------|---|--| | Labo
I A | rator;
Ref | | E P
Low High | J | Multiplet (No) | Labo
I A | ratory
Ref | | E P
Low High | J | Multiplet (No) | Labo
I A | rator;
Ref | | | P
High | J | Multiplet
(No) | | O III co | ntinu | eđ | | | | <u>o v</u> I P | 113.3 | 8 A | nal B List A | Feb | 1943 | O VI con | tinue | đ | | | | | | 4569.50 | A | 1n | 52.63 55.33 | 2-37 | 3p ¹ D°-3d ¹ F
(36) | 5114 | P | | 69.29 71.70 | 0-1 | 3 ¹ S-3 ¹ P° (1) | 350 9 | P | | 123.97 | 127.49 | - | 6 ² D-7 ² P° | | 4474.95 | A | 1n | 52.63 55.39 | 2-21 | 3p ¹ D°-3d ¹ D
(37) | 3144.68 | Α - | 1 | 71.70 75.63 | 1-3 | 3 ¹ P°-3 ¹ D | 3426 | Ρ. | | 123.97 | 127.57 | | 6 ² D_72F•
(6) | | | | | | | | 5600 | P | | (74 00 74 17) | -
2–3 | (2)
3 ³ P°-3 ³ D | 3438 | P | | 123.98 | 127.57 | _ | 6 ² F°-7 ² D | | O TV T | P 77. | 18 Ar | al B List A | Von | 1943 | 5582
5573 | P
P | | (71.92 74.13)
(71.91 74.12)
(71.91 74.12) | 1-3 | (3) | 3433 | P | | 123.98 | 127.57 | _ | 6 ² F ⁶ -7 ² G
(8) | | <u>0 IV</u> I
3063.46 | В | بر 6 | 44.15 48.18 | | | 5606
5584 | P
P | | (71.92 74.12)
(71.91 74.12) | 3-3 | | 3434 | P - | | 123.98 | 127.57 | - | 6 ² G-7 ² H° etc | | 3071.66 | B. | 5 | 44.15 48.17 | _ } <u>}</u> | 3 ² S-3 ² Pe (1) | 5608 | P | | (71.92 74.12) | 3-1
- | | | - | | | | - | (9) | | 3411.76
3403.58 | B
B | 4
3 | 48.18 51.79
48.17 51.79 | 11-21 | 3 ² P°-3 ² D | 4123.90
4120 | A
P | 3 | (80.63 83.62)
(80.58 83.58) | 2-3
1-2 | 3s ³ P°-3p ³ D | 4751 | Ρ. | | 127.25 | 129.85 | - 1 | 7 ² 5-8 ² P°
(10) | | 3413.71 | Ā | 1 | 48.18 51.79 | 12-12 | . (2) | 4123
4179 | P
P | | (80.56 83.56)
(80.63 83.58) | 0-1
3-3 | (=/ | 5602 | P | | 127.49 | 129.69 | -1 | 7 ² P°_8 ² s | | 3385.55 | В | (6) | 54.19 57.84
54.16 57.81 | -
2] -3] | 3s ⁴ P°-3p ⁴ D | 4151
4211 | P
P | | (80.58 83.56)
(80.63 83.56) | 1-1
3-1 | | 5112 | P | | 127.49 | 129.90 | | 7 ² po_8 ² D
(12) | | 3381.28
3381.33 | B
P | (4) | 54.14 57.79 | } -1⅓ | (3) | 3275.67 | A | 0 | (80.63 84.39) | 3-1 | 38 ³ P°-3p ³ S | 5410 | P | | 127.57 | 129.85 | | 7 ² D-8 ² Pe | | 3409.75
3396.83
3390.37 | B
B
P | (2) | 54.19 57.81
54.16 57.79
54.14 57.78 | 33-34
13-14 | | 3239
3222 | P
P | | (80.58 84.39)
(80.56 84.39) | 1-1
0-1 | (5) | 5279 | P | | 127.57 | 129.90 | _ | 72D_82F0 | | 3425.57
3405.97 | B
P | (0) | 54.19 57.79
54.16 57.78 | 23-13
13-3 | • | 3058.68 | A - | 0 | 82.03 86.07 | 1-3 | 3s1P0-3p1D | 5298 | P | | 127.57 | 129.90 | -
- | (14)
7 ² F°_8 ² D | | 7740 44 | | | | | 38 ² P°-3p ² D | | _ | | | - | (6) | 5289 | P | | | 129.90 | | 7 ² F°_8 ² G | | 3349.11
3348.08
3378.09 | A
A
A | 3
2
0 | 55.93 59.62
55.90 59.59
55.93 59.59 | ģ-1ģ | (4) | 4554 .28 | A - | <u> </u> | 83.04 85.75 | 1-3
- | 3p ¹ P-3d ¹ D°
(7) | 5000 | | | 400.50 | 400.00 | - | (16) | | 3052.54 | À | 1 | 55.93 59.97 | 1출-1출 | 3s ² p•_3p ² S | 3747
3717 | P
P | | (83.62 86.91)
(83.58 86.90) | 3-3
2-2 | 3p ³ D-3d ³ D° (8) | 5292
5291 | P
P | | | 129.90 | | 7 ² G-8 ² F°
(17)
7 ² G-8 ² H° etc | | 3028.04 | Α. | 0 | 55.90 59.97 | _ 1 _1
_ | (5) | 3701
3762 | P
P | | (83.56 86.89)
(83.62 86.90) | 1-1
3-2 | (0) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | • | | 101101 | 150.50 | _ | (18) | | *3736.78 | В | (4) | 57.84 61.14 | 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | 3p ⁴ D-3d ⁴ F° (6) | 3726
3703 | P
P | | (83.58 86.89)
(83.58 86.91) | 2-1
2-3 | | | | | | | | | | 3729.03
•3725.81 | B
B | (3)
(3) | 57.81 61.12
(57.79 61.11
(57.78 61.10 | 12-32 | (6) | 3692
3298 | P
P | | (83.56 86.90) | 1-2 | 3p ³ p-3d ³ pe | <u>FI</u> IF | 17.3 | 5 A1 | nal C | List D | Мау | 1944 | | 3758.45
3744.73 | B
B | { 0} | 57.84 61.12
57.81 61.11 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | • | 3249
3222 | P
P | | (83.62 87.36)
(83.58 87.38)
(83.56 87.39) | 3-2
2-1
1-0 | (9) | 7398.68
7482.72 | A
A | 17
11 | 12.64 | 14.31
14.33 | 2] _2] | 3s ⁴ P-3p ⁴ Pe | | 3736.78
3774.38 | B
P | (4) | 57.79 61.10
57.84 61.11 | 13-15
33-25 | | 3264
3230 | P
P | | (83.58 87.36)
(83.56 87.38) | 2-2
1-1 | | 7514.93
7331.95 | Ā | 9
15 | 12.70 | 14.34
14.33 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | . (-) | | 3755.82 | P | (2) | 57.81 61.10 | 3½-1½ | 3p ⁴ D-3d ⁴ D° | 3245 | P _ | | (83.56 87.36) | 1-3 | | 7425.64
7552.24 | A
A | 14
14 | 12.68
12.68 | 14.34
14.31 | 15-25 | | | 3209.64
3194.75
3185.72 | B
B
B | {3}
{1}
{0} | 57.84 61.68
57.81 61.67
57.79 61.67 | 3 1 - 3 1 2 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 | (7) | 4925
4940 | P
P | | (84.39 86.90)
(84.39 86.89) | 1-3
1-1 | 3p ³ S-3d ³ D° (10) | 7573.41
6856.02 | A
^
| 14
16 | | 14.33 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 3s ⁴ P-3p ⁴ D● | | 3180.72
3216.31 | B
P | (0) | 57.78 61.66
57.84 61.67 | 3-2-2- | | 4158.76 | A | 0 | (84.39 87.36) | 1-3 | 3p ³ 8-3d ³ P° | 6902.46
6909.82 | A
A | 15
13 | 12.68 | 14.44
14.46
14.48 | 23-33
13-23 | (3) | | 3199.53
3188.65 | B
P | (1) | 57.81 61.67
57.79 61.66 | 3 - 1 - 1 - 1 - 1 - 1 - 1 | | 4135.9
4121.7 | P
P | | (84.39 87.38)
(84.39 87.39) | 1-1
1-0 | (11) | 677 3.97
683 4.26 | Ā | 11 | 12.64 | 14.46
14.48 | 21-21 | | | 3188.17
3180.98
3177.80 | P
P
B | (o) | 57.81 61.68
57.79 61.67
57.78 61.67 | 21-31
11-31 | | 2070 | P - | | (05.44.00.04) | - | 3p ³ P-3d ³ D° | 6870.22
6708.27 | A | 12 | 12.70
12.64 | 14.49
14.48 | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 0111100 | ٠. | | | -
5-18 | | 6830
6 790
6767 | P
P | | (85.11 86.91)
(85.08 86.90)
(85.07 86.89) | 2-3
1-2
0-1 | (12) | 6795.52
6239.64 | A . | 9
16 | | 14.49 | 12- 2 | 3s ⁴ P-3p ⁴ S | | 3375.50
3362.63 | B
P | (3) | 58.54 62.21 | 13-33
13-13 | 3p ⁴ S-3d ⁴ P° (8) | 6878
6819 | P
P | | (85.11 86.90)
(85.08 86.89) | 3-3
1-1 | | 6348.50
6413.66 | A
A
A | 15
14 | 12.68 | 14.62
14.62
14.62 | 34-14 | (3) | | 3354.31 | Α. | | 58.54 62.22 | 1] -]
- | | 6909 | P | | (85.11 86.89) | 2–1 | 7 7 | | | | | | - | | | 4798.25
4783.43 | B
B | (5)
(4) | 59.11 61.68
59.09 61.67 | 21-31
11-31 | 3p ⁴ P-3d ⁴ D° (9) | 5473
5376
5432 | P
P
P | | (85.11 87.36)
(85.08 87.38)
(85.11 87.38) | 2-3
1-1
2-1 | 3p ³ P-3d ³ Pe
(13) | 7754.70
7800.22 | A
A | 19
18 | 12.97 | 14.53 | 13-23
3-13
13-13 | 3s ² P-3p ² D•
(4) | | 4772.57
4813.07 | ВВ | (2) | 59.08 61.67
59.11 61.67 | 3-13
23-23 | | 5352
5417 | P
P | | (85.08 87.39)
(85.08 87.36) | 1-0 | | 7607.17
7311.02 | A
A | 15
13 | | 14.55 | 12-12 | 3s ² p_3p ² ge | | 4794.22
4779.09 | B
B | (1)
(2)
(2) | 59.09 61.67
59.08 61.66 | 13-13 | | 5343 | P | | (85.07 87.38) | 0-1 | | 7489.14 | Ã | 8 | | 14.62 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (5) | | 4823.93
4800.77 | P
P | | 59.11 61.67
59.09 61.66 | 31-11
11-1 | | 6329 | P | | 86.07 88.02 | a_3 | 3p ¹ D-3d ¹ F° | 7037.45
7127.88 | A
A | 15
14 | 12.97 | 14.68
14.70 | | 3s ² P-3p ² P° (6) | | 3995.17
3956.82 | B
P | (2) | 59.11 62.20
59.09 62.21 | 31-31
11-11 | 3p ⁴ P-3d ⁴ P° (10) | 4522 | P | | 86.07 88.79 | 2-1 | (14)
3p ¹ D-3d ¹ P°
(15) | 6966.35
7202.37 | A
A | 10
13 | 12.93
12.97 | 14.70
14.68 | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | | | 3930.63
3977.10 | P
B | (1) | 59.08 62.22
59.11 62.21 | $3\frac{7}{2}-1\frac{7}{2}$ | \/ | 3702 | P - | | 88.79 92.13 | 1-3 | 3d ¹ P°-4 ¹ D | | | | | | | | | 3945.29
3974.66 | P
P | (0) | 59.09 62.22
59.09 62.20 | 15-25 | | | _ | | | | (16) | F II I | P 34.8 | 34 A | nal B | List D | May | 1944 | | 3942.14 | В - | (0) | 59.08 62.21 | 1년
- | | 7438 | P | | (89.15 90.81) | - | 4 ³ 8_4 ³ P° (17) | 3847.086 | A | 20 | (21.81 | 25.02) | 2-3 | 3s ⁵ s°-3p ⁵ p | | 5362.4
5305.3 | P
P | | 59.62 61.92
59.59 61.91 | $2\frac{1}{2}-2\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$ | 3p ² D-3d ² D°
(11) | | | | | | | 38 49.987
3851.667 | A
A | 15
10 | (21.81
(21.81 | 25.01)
25.01) | 2-3
3-1 | (1) | | 3563.36
3560.42 | A | 2 | 59.62 63.08 | | 3p ² D-3d ² F° (12) | <u>o vi</u> i i | 137. | 52 4 | Anal A List A | . Fe | b 1943 | 4034.727 | A - | 20 | 22.57 | | 1-2 | 3s ³ 5°-3p ³ P | | 0000.46 | A - | | 59.59 63.05 | - | | 3811.35
3834.24 | A
A | 2
1 | 79.01 82.25
79.01 82.23 | } _1=} | 3 ² 8-3 ² P° | 4025.495
4025.010 | A
A | 15
10 | 22.57
22.57 | 25.64 | 1-1
1-0 | (3) | | 3520.9
3502.2 | P
P | | 59.97 63.48
59.97 63.50 | 1-11
1-11 | 3p ² s-3d ² pe
(13) | 5007.54 | ^ - | | 79.01 82.23 | \$- \$ | (1) | 3505 614 | _ | 15 | (25.00 | 29 541 | - 7 4 | 3p ⁵ p-3d ⁵ p• † | | 7400 | - | | | _ | | 3068 | P | | 123.46 127.49 | } - | 6 ² 5-7 ² P°
(2) | 3505.614
3503.095
3502.954 | A
A
A | 13
13
8 | (25.02
(25.01
(25.01 | 28.54) | 3-4
2-3
2-2 | (3) | | 3489.84
3492.24 | C | 1
0 | 64.03 67.57
64.03 67.57 | 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 3s' 2po_3p' 21
(14) | 3622 | P - | | 123.84 127.25 | | 6 ² P°-7 ² S | 3501.416 | Â | 10 | (25.01 | | 1-0 | | | 4568 | P - | | 68.20 70.91 | _ ` | 5 ² F°-6 ² D | 3314 | P | | 123.84 127.57 | _ | 6 ² p ⁶ -7 ² D | 4103.525 | Ă. | 15 | 25.64 | | 2-3 | 3p ³ p-3d ³ p• † | | | | | 16.01 04.60 | _ | (15) | | _ | | | | (4) | 4103.085
4103.724 | A
A | 10
7 | 25.64
25.64 | 28.65 | 1-2
0-1 | (4) | | | | | | | | | | | | | | 4103.871 | A _ | 7 | 25.64 | 48.65
 | . 2–2 | I A | abo | rator
Ref | y
Int | Lov | E F | High | J | Mo | ltiplet
(No) | | I | Laboi
A | Ref | Int | Low | E P | High | J | Mult: | b) | I. | | Ref | | Low | | J | (No) | |------------------------------|-------------------|------------------|---------------|-------------------|----------------|-------------------------|---------------------------------|-----------------|---|-------------------|------------------------------|--------------------------------------|------------------|------------------------------|----------------------|----------------------|----------------------------------|--------------------------|-------------|--------------------------------------|----------------------|-----------------------------------|-------------|---------------------------|----------------------------------|----------------------------------|--------------------------|--| | 11 | con | tinue | đ | | | | | | | | Ne I | 1 1 | P 21. | . 47 | nal A | L | ist C | May | 1944 | | <u>Ye I</u> | con | tinued | l | | | | | | 109.1
116.5
119.2 | 47 | A
A
A | 8
7
7 | 26.1 | 16 2 | 39.16
39.16
39.16 | 3-3
2-2
1-1 | | ³ p°-3p¹
(5) | | 6402 | . 4127
. 2455
. 4279 | В | (10)
(20)
(10) | 16.5 | 5 1 | 8.30
8.48
8.50 | 2-1
2-3
2-2 | | -3p 1
-3p 2
-3p 3 | 5764
5748 | | B
B | (15)
(10) | 18.48
18.48 | | | 3p 2-4d 3° (13)-4d 8° | | | | | 9 | | | 39.64 | | | 3 _{D0_3n} 1 | | 6217 | . 2813 | A | (15) | 16.5 | 5 1 | 8.53
8.56 | 3-1
3-3 | | -3p 4
-3p 5 | 5037 | . 7505 | В | (10) | 18.48 | 20.93 | 3-4 | 3p 2-5d 3° (14) | | 541.7
536.8 | 38 | A
A | 7 | | | 9.65 | 3-1 | 06 | ³ D°-3p'
(6) | • | 5975 | . 5340
. 8342 | Â | (12)
(10) | 16.5 | 5 1 | 8.61 | 3-1
3-3 | | -3p 7
-3p 8 | 4788 | .9258 | В | (12) | 18.48 | 21.05 | 3–2 | 3p 2-7s 1°
(15) | | 299.1 | 77 | A | 10 | 26. |
55 2 | 39.42 | -
2-3 | 3e¹ | 1p°_3p' | 1 _F | 5881 | . 8950 | A | (20) | 16.5 | 55 1 | 8.65 | 2-1
2-3 | 7- 11 | -3p 9
-4p 2 | 4715
4718 | .344
.060 | B
E | (15)
(10) | 18.48
18.48 | | 3-4
3-3 | 3p 2-6d 3° (16)-6d 8° | | 202.7 | 40 | A | 10 | 26. | 55 3
 | 30.40 | a-a
 | 3s ^t | (7)
10°-3p'
(8) | 1 _D | 3369 | .5711
.9081
.8086 | Ċ | (15)
(10) | 16.5 | 55 2 | 30.21 | 2-3
2-3 | | -4p 9
-4p 8 | 4540 | .376 | В | (10) | 18.48 | 21.19 | 3-4 | 3p 2-7d 3° (17) | | 246.1 | .6 | A | 15n | (28. | 54 3 | 31.44) | _ | | 1 ⁵ D°_4f ⁵
(9) | | 6506 | .1668
.5279 | À | (10)
(15) | 16.6 | 30 1 | .8.30
18.50 | 1-2 | | -3p 1
-3p 3 | 8418 | .3600
.4274
.1802 | В | 500
400
200 | 18.50
18.50
18.50 | 19.96 | | 3p 3-3d 4°
(18)-3d 7°
-3d 10° | | 447.1
446.1 | | A
A | 13n
10n | | | 31.42
31.42 | 3-
2-
- | | 1 ³ D°-4f ³
(10) | | 6074
6029 | .9914
.3377
.9971
.5620 | A
A | (12)
(10)
(10)
(50) | 16.6
16.6 | 30 1
30 1 | 18.53
18.63
18.65
18.88 | 1-1
1-0
1-1
1-0 | | -3p 4
-3p 6
-3p 9
-3p 10 | 5804 | .155
.4488
.769 | B
B
B | (10)
(10)
(10) | 18.50
18.50
18.50 | 20.62 | 2-3
2-3
2-3 | 3p 3-4d 4°
(19)-4d 7°
-4d 10° | | 640.8
641.9
642. | 85 | A
A
A | 9
8
7 | 29. | 32 : | 32.71
32.71
32.71 | 4-4
-3
-2 | | 3 _{F-3d} 1 (11) | or•+ | 3417 | .9036 | Ç | (10) | 16.6 | 30 a | 30.21 | 1-3 | 3s 2
(4) | •-4p 8 | •4884 | .915 | В | (10) | 18.50 | | 2-3 | 3p 3-5d 10° (20) | | | | | | | | | | | | _ | | . 4950
. 5939 | | (15)
(12) | 16.6 | 34 1
34 1 | 18.61
18.65 | | | °-3p 7
-3p 9 | 4752 | 3.7313 | В. | (10) | 18.50 | 21.09 | 2-3 | 3p 3-6d 4° (21) | | l | - | | . 70 | 4-07 | | List | n 14 | ov. | 1944 | | 0200 | | •• | | | _ | | - | • • • | -• | 10798 | 3.12 | F | 150 | 18.53 | 19.68 | 1-0 | 3p 4-4s 3° (22) | | 121.
121.
115.
113. | 515
369
579 | P 63 | 13
10
8 | 39.
39.
39. | 16
12
10 | 43.12
43.08
43.06 | 31-3
11-3
3-1 | 3 | s ⁴ P-3p ⁴ I
(1) |) ° | 7173
7024
6929 | . 4580
. 9389
. 0508
. 4678 | B
B
B | 200
(10)
(9)
(10) | 16.7
16.7
16.7 | 78 :
78 :
78 : | 18.30
18.50
18.53
18.56 | 1-3
1-1
1-3 | | -3p 1
-3p 3
-3p 4
-3p 5 | 8634 | 1.15
1.920
1.6480
3.4060 | D
B
B | 200
500
600
300 | 18.53
18.53
18.53
18.53 | 19.95
19.96 | | 3p 4-3d 5°
(23)-3d 6°
-3d 7°
-3d 9° | | 146.
134.
134. | 308
762 | A
A
A
P | 8
8 | 39. | 12 - | 43.08
43.06
43.05 | 15-1 | ¥ | | | 6598 | . 2764
. 9529
. 4878 | A | (9)
(15)
(50) | 16.7 | 78 : | 18.62
18.65
18.88 | 1-3
1-1
1-0 | | -3p 8
-3p 9
-3p 10 | | 3.6585
7.0334 | | (10)
(10) | 18.53
18.53 | 20.71
21.02 | _ | 3p 4-4d 9°
(24)
3p 4-5d 11° | | 3145. | 536 | Ā | 4 | | | 43.05
43.06
43.05 | | |
 | | .5259
.4717 | | (10) | | | 20.21
30.28 | 1-3
1-0 | 3s 4
(7) | -4p 8
-4p 10 | | | F | 300 | | 19.69 | • | (25)
3p 5-4s 4° | | 3174.
3174.
3213. | 725 | A
A
A | 13
10
6 | | | | - | | s ³ P_3p ³ I
(2) | | 9665
9486
8988
8865 | .680 | D
B
D
B | 1000
500
200
500 | 18.3
18.3 | 30 :
30 : | 19.58
19.60
19.68
19.69 | 1-3
1-1
1-0
1-1 | (8) | -4s 1°
-4s 2°
-4s 3°
-4s 4° | 8919
8853
8780 | | D
B | 300
700
1200
250 | 18.56
18.56
18.56 | 19.94
19.95
19.96
20.05 | 2-1
2-2
2-3
2-3 | (26)
3p 5-3d 2° | | 039.
039.
034. | 746 | A
A | 7
6
1.5 | 46.
46.
46. | 94
95
94 | 51.00
51.01
51.01 | 2 1 2 - 3
1 2 - 2
2 2 - 2 | 3 | p' 2p°_3d
(3) | l, AL | 5343
5341
5330 | . 284
. 096
. 779 | B
B | (12)
(30)
(12) | 18.3 | 30 2 | 30.61
30.61
30.62 | 1-0
1-1
1-3 | (9) | -4d 1°
-4d 2°
-4d 5° | 5719 | 1.628
9.2254 | | (10)
(10) | 18.56 | 20.62
20.71 | 2-3 | 3p 5-4d 8° (38)-4d 10° | | 3154. | | A | 4 | 47. | 46 | 51.38 |
1}-2 |] 3 | p' ² P°-3d | լս a _D | 4827 | .338 | В | (10) | 18.3 | 30 2 | 30.86 | 1-1 | 3p 1 | -6s 2° | 5005 | .160 | В | (10) | 18.56 | 21.02 | 2-3 | 3p 5-5d 10°
(29) | | 3142.
3156.: | | A
B | 3 0 | | 45
46 | 51.38
51.38 | 1 1 1 | 2 | p ¹ ² po _{-3d} (4) | | 4704 | .395 | E
B
B | (10)
(12)
(15)
(10) | 18.3
18.3 | 30 2
30 2 | 30.92
30.93 | 1-0
1-1
1-3
1-3 | (11) | -5d 1°
-5d 2°
-5d 5°
-5d 9° | 9226
9201
9148 | .76 | D
D
D | 200
600
600
400 | 18.61
18.61
18.61
18.61 | 19.96 | 1-2
1-1
1-2
1-3 | 3p 7-3d 5°
(30)-3d 6°
-3d 7°
-3d 9° | | . IV | 56 | e TU | troduct | ton | | | | | | | 4537 | . 751 | В | (10) | 18. | | 31.03 | - 1-0 | | -3a 9° | | .828 | . в | (10) | 18.61 | | 1-2 | 3p 7-4d 9° | | · VI | 86 | e In | troduct | ion | | | | | | | 8376 | .6068
.41
.3258 | D | 800
800 | 18.4 | 18 | 19.95
19.95
1 9.9 6 | 3-4
3-3
3-3 | (12) | -3d 3°
-3d 4°
-3d 8° | | .218 | B . | (10) | 18.61 | | | (31)
3p 7-6d 11°
(32) | Laborat
I A Re | tory
ef Int | E P
Low High | J | Multiplet
(No) | Labo
I A | rator;
Ref | | E P
Low High | J | Multiplet
(No) | Labo
I A | oratory
Ref Int | E P
Low High | J | Multiplet
(No) | |--------------------------------------|-------------------------|---|---|---|-------------------------------|---------------|-------------------|---|---|--|---------------------------------|--------------------|---|---|--| | Ne I conti | nued | | | | Ne II o | ntinu | ьe | | | | Ne II c | ontinued | | | | | 9313.98 | D 300 | 18.62 19.94
18.62 19.95 | 2-1
2-3 | 3p 8-3d 2° (33)-3d 4° | 3208.99
3188.74 | A
A | 3 | 30.75 34.60
30.79 34.66 | 31-31
31-31 | 3p ⁴ D°-3d ² F
(14) | 3336.12 | A 2 | | | 3p' 3po_3d' 2p
(46) | | 9221.59 | D 600
D 300
D 400 | 18.62 19.95
18.62 19.96
18.63 19.96 | 2-2
2-2
2-3 | -3d 5°
-3d 7°
-3d 8° | 3154.82
3244.15
3214.38 | A
A
A | 1
5
5 | 30.75 34.66
30.79 34.60
30.83 34.66 | 2] -3] | • | 3141.35
3050.57 | A 3 | | | 3p ¹ 3pe_3d 1 3p
(47)
3p ¹ 3pe_3d 1 3g | | 8654.51 1
8654.3835 1 | D 400
B 1500 | 18.62 20.05
18.62 20.05 | 2-2
2-3 | -3d 9°
-3d 10° | 3243.34 | A | 2 | 30.79 34.60 | 3 } -3} | 3p4D0-3d3D | *3072.68 | à 1 | | | (48) | | 5145.011 | E (10) | 18.62 20.05
18.62 21.02 | 2-3
2-3 | -3d 11° | 3248.15
3269.86
3263.43 | A
A
A | 3dr
3
3 | 30.83 34.62
30.83 34.60
30.84 34.62 | 1 2-2 | • | 3480.75
3479.53 | A 2
A 1 | | -1
-1
2 | sp4(1s)3s2s_
sp4(1s)3p2pe | | 5144.9376 I | B (10)
B (10) | 18.62 21.02
18.62 20.57 | 2-3
2-1 | (34)-5d 10°
3p 8-5s 4° | 3118.02
3169.30 | A
A | 4
0 | 30.75 34.71
30.79 34.69 | 31-21
21-1 | 3p ⁴ D°-3d ⁴ P
(16) | 3542.28 | A 2 | 34.24 37.72 | | (49) | | 9425.38 | D 500 | 18.63 19.94 |
0-1 | (35)
3p 6-3d 2° | 3151.16
3194.61
3176.16 | A
A
A | 2
4
3 | 30.79 34.71
30.83 34.69
30.83 34.71 | 34-34
14-1 | | 3537.99
3539.94 | A 3 | | | . 3p ⁱ 3pe_3di 3p
: (50) | | 9326.52 | D 600 | 18.63 19.95 | 0-1 | (36)-3d 6° | 3209.38 | A | 3 | 30.84 34.69 | -1-1-1 | 3p ⁴ D°-4s ⁴ P | 3406.88
3457.16 | | 34.24 37.86
dr* 34.24 37.81 | 3 1 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 | 3p' 2pe_34' 2p
(51) | | | B 500 | 18.63 20.05 | | 3p 6-3d 12°
(37) | 3039.65
3035.98
3030.85 | A
A
A | 3
3
2 | 30.75 34.81
30.79 34.86
30.83 34.90 | 2}-1 | (17) | 3459.38
3404.77 | A 2
A 4 | OA.DA OL.OT | | • | | 9534.17 | D 300
D 500
D 300 | 18.65 19.94
18.65 19.94
18.65 19.95 | 1-0
1-1
1-3 | 3p 9-3d 1°
(38)-3d 2°
-3d 5° | 3071.08
3059.16
3044.16 | A
A
A | 3
3
2 | 30.79 34.81
30.83 34.86
30.84 34.90 | | | 4219.76 | A 6 | |
3] -3] | 3d ⁴ D-4f ⁴ D° (52) | | | B 1000 | 18.65 20.05
18.65 20.05 | 1-2 | | *3072.68 | Â | 1d | 30.84 34.86 | | | 4231.60
4239.95
4242.20 | A 4
A 2
A 1 | | 13-13 | (58) | | 59 65 . 474 1 | B (10) | 18.65 20.71 | 1-3 | 3p 9-4d 11° (39) | 3554.39 | A | 1 | 30.99 34.46 | | | 4217.15
4220.92
4224.57 | A 3
A 2
A 1 | 34.47 37.39 | 3 - 2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | •
• | | 10562.43 | F 200 | 18.88 20.05 | 0-1 | 3p 10-3d 12° | 3367.20
3388.46
3330.78 | A
A
A | 6
6
2 | 30.99 34.65
31.05 34.69
30.99 34.69 | 23-31
13-2
23-2 | 3p ² D°-3d ⁴ F
(19) | 4250.68
4257.82 | A 4
A 3 | 34.48 37.39 | 13-25 | | | For changes | in Pasci | nen's notation | see te | _ | 3417.71 | A | 5 | 30.99 34.60 | | | 4206.43
4080.48 | A 3 | d 34.48 37.51 | 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | 3d ⁴ D-4f ⁴ F° (53) | | | | | | | 3414.82
3356.35 | A | 3 | 31.05 34.66
30.99 34.66 | 13-25
25-25 | 3p ² D°-3d ² F
(20) | 4150.67
4098.77
4062.90 | A 3
A 4
A 3 | 34.46 37.47 | 3-11
3-31
3-21 | | | <u>Ne II</u> I P | 40.91 | Anal A List | | ne 1944 | 3416.87
3453.10
3477.69 | A
A
A | 4
3
3 | 30.99 34.60
31.05 34.62
31.05 34.60 | 23-23
13-13
13-24 | 3p ² D°-3d ² D (21) | 4133.65
4118.10 | A 3 | | 1ۇ-1ۇ | 3d ⁴ D-41 ⁴ G° | | | A 10
A 7
A 5 | 27.05 30.39
27.12 30.42
27.15 30.44 | 3-3-3-1
1-1-1 | 3s ⁴ P-3p ⁴ P° (1) | 3314.60 | A | 1 | 30.99 34.71
31.05 34.71 | | | 4100.30
4086.69 | A 10
A 1 | d 34.47 37.48 | 31-21
31-21 | (54) | | 3664.09 A | A 9 | 27.05 30.42
27.12 30.44 | 13-3 | | 3371.87
3255.39 | A | 3 | 30.99 34.78 | | | 4413.54 | A 3 | 34.59 37.38 |
4}-3} | 3d ⁴ F-4f ⁴ D [•] (55) | | | 8 A
8 | 27.12 30.39
27.15 30.42 | 1 3-2 3
2-1 2 | | 3353.63
3310.55 | A
A | 3
1 | 31.05 34.73
31.05 34.78 | | 3p ³ D°-3d ³ P
(23) | 4514.80
4535.47
4517.79 | A 3 | 34.65 37.39
34.68 37.40
34.65 37.38 | 31-21
11-
31-31 | (55) | | 3355.05 | - | 27.05 30.75
27.12 30.79 | 33-33
13-33 | 3s ⁴ P-3p ⁴ D° (2) | 3094.08
3088.23 | A | 4
3 | 30.99 34.98
31.05 35.05 | 31-11
11-1 | 3p ³ p ^e -4s ³ p
(34) | 4553.16
4565.49 | A 4
A 1 | 34.68 37.39
34.68 37.39 | 13-13
13-33 | | | 3297.74 A
3327.16 A | A 7 | 27.15 30.83
27.05 30.79
27.12 30.83 | 21-21
11-11 | | 3143.74 | A - | | 31.05 34.98 | - | | 4397.94
4379.50 | A 6
A 6 | 34.59 37.39
34.65 37.47 | 41-41
32-31 | 3d ⁴ F-4f ⁴ F° (56) | | 3344.43 A
3270.79 A
3311.30 A | | 27.15 30.84
27.05 30.83
27.12 30.84 | <u>}</u> | | 3551.52
3612.35 | A | 1
3 | 31.21 34.68
31.21 34.62 | 출-1호
1호 | 3p ² S ^o -3d ⁴ F
(25)
3p ² S ^o -3d ² D | 4385.00
4430.90
4446.46 | A 2
A 4
A 3 | 34.69 37.51
34.68 37.47
34.69 37.47 | 23-23
13-13
23-13 | | | 3135.82 A | 1 | 27.05 30.99 | 31-31 | 3s ⁴ P-3p ³ D° | 3546.22 | A | 1 | 31.21 34.69 | | (36) | 4502.53
4443.67 | A B | 34.65 37.39
34.69 37.47 | 3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | 3187.60 A | a 6 | 37.13 30.99
37.13 31.23 | | | 3456.68
3503.61 | A
A | 4 dr*
5 | 31.21 34.78
31.21 34.73 | 1-1-1
3-1-1 | 3p ² 8°-3d ⁴ P
(27)
3p ² 8°-3d ² P
(28) | 4369.77
4290.40 | A 5 | 34.68 37.51
34.59 37.46 | 1}-2}
4}-5} | 3d4F_4 f4g • | | 302 8.84 A | 4 | | - | 3s ⁴ P-3p ⁴ S°†
(4) | 3275.20 | A | 2 | 31.81 34.98 | }-1} | 3p ² 8°-4s ² P
(29) | 4391.94
4409.30
•4413.20 | A 7
A 4 | 34.65 37.46
34.69 37.49
34.68 37.48 | 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | 3727.08 A | | 27.66 30.99
27.74 31.05 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3s ² P-3p ² D°
(5) | 3806.30 | ,
A | ä | 31.23 34.47 | _
1글-3글 | 3p ⁴ 8°-3d ⁴ D | *4428.54
4365.72 | Å 6 | 34.69 37.48 | 13-23
23-23
33-23 | | | 3643.89 A | | 27.66 31.05
27.66 31.21 | | 3s ² P-3p ² S* | 3790.96
3561.23 | A
A | 1 | 31.23 34.48
31.23 34.69 | | | 4534.66 | A 3 | 34.66 37.39 | -
2] -2] | 3d ² F-4f ⁴ D° | | 3557.84 A | | 27.74 31.21
27.66 31.38 | | | 3571.26
3590.47 | Ā | 4 2 | 31.23 34.68
31.23 34.66 | | 3p ⁴ S°-3d ⁴ F
(31)
3p ⁴ S°-3d ² F | 4341.48 | A 3 | 34.66 37.51 | | (58)
3d ² F-4f ⁴ F*
(59) | | 3378.28
A
3309.78 A
3392.78 A | . 5 | 27.74 31.39
27.66 31.39 | 15- 5 | 3s ³ P-3p ³ P°
(7) | 3659.93 | A | 3 | 31.23 34.60 | 1글-2글 | 3p45°-3d2D | 4384.08 | A 1 | 34.66 37.48 | s } _s } | 3d ² F-4f ⁴ G ⁰
(60) | | | | 27.74 31.38 | - 2 -1 2
 | | 3632.75
3542.90 | A | 2
7 | 31.23 34.62
31.23 34.71 | 1출-1출
1출-2출 | (33)
3p4g°-3d4p
(34) | 4468.91
•4428.54 | A 5 | 34.62 37.39
34.60 37.39 | 11-21 | 3d ³ D-4f ⁴ D°
(61) | | 3034.48 A
3047.57 A
3054.69 A | 6 | 30.39 34.46
30.42 34.47
30.44 34.48 | 23-33
13-23
2-13 | 3p ⁴ P°-3d ⁴ D (8) | 3565.84
3594.18 | A | 4 | 31.23 34.69
31.23 34.66 | 75- E | | 4456.95
4416.77
4439.95 | A 3
A 3 | 34.62 37.39
34.60 37.39
34.62 37.40 | 15-15
25-15
15-5 | | | 3027.04 A
3037.73 A
3045.58 A | 4 | 30.39 34.47
30.42 34.48
30.44 34.50 | 3 - 2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | 3475.25
3522.72 | A | 1 | 31.23 34.78
31.23 34.73 | 11-11 | 3p ⁴ s ^e -3d ² P
(35) | 4344.17 | A 0 | 34.60 37.51 | | 3d ² D_4 f⁴F • (62) | | 3017.34 A | | 30.39 34.48 | a}_1.}
− | | 3442.12
3397.90 | A | 1 | 31.23 34.81
31.23 34.86 | | | 4339.78
4322.66 | A 1 | 34.62 37.47
34.62 37.48 | | 3d ² D-4f ⁴ G* | | 3568.53 A
3574.64 A | . 5 | 30.42 33.88
30.42 33.87 | 2-3-3-3-1
1-3-2-1 | 38, 3D-3D, 3L. | 3721.86 | A - | 2 | 31.38 34.69 | - | 3p ² P°-3d ⁴ F | •4615.98 | A 4 | 34.71 37.38 | _ | (63) | | 3574.23 A | | 30.42 33.87 | | | | A | 5 | | | (37) | 4574.49
4612.89
4562.05 | A 1 | 34.69 37.39
34.71 37.39 | 13-35
25-35 | 3d ⁴ P-4f ⁴ D°
(64) | | 3319.75 A
•3345.88 A | | 30.42 34.14
30.42 34.11 | 11-12
12-12 | 3s' 3D-3p' 3pe
(10) | 3829.77
3818.44 | A
A | 7
6 | 31.38 34.60
31.39 34.62 | 1 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3p ² p•_3d ² p
(38)
3p ² p•_3d ² p
(39) | 4498.94
4600.11 | A 1
A 5
A 1 | 34.69 37.39
34.66 37.40
34.71 37.39 | 19-19
29-19 | | | 3230.16 A
3232.38 A | 3 | | | 3s' ² D-3p' ² D° | | A | 5
4 | | | | 4544.11
4471.58 | A 1 | 34.69 37.40
34.71 37.47 | 12- 2 | 3d ⁴ P-4f ⁴ F* | | 3231.97 A | | | _ | | 3744.66
3628.06 | | 4 | 31.39 34.69 | \$-15
11 41 | 3p ² p•_3d ⁴ p
(40)
3p ² p•_3d ² p | 4377.95 | A 2
A 4 | 34.69 37.51
34.71 37.51 | 35-35 | 3d ⁴ P-4f ⁴ F*
(65) | | 3329.20 A
3357.90 A | . 3 | 30.75 34.46
30.79 34.47 | 31-31
31-31 | 3p ⁴ D°-3d ⁴ D
(12) | 3697.09
3679.80 | A
A | 3 | 31.38 34.78
31.39 34.73
31.38 34.73 | | 3p ³ P•-3d ³ P
(41) | 4475.22 | Ā 1 | 34.69 37.47
34.71 37.47 | 14-14
22-12 | 4- | | 3374.10 A
3379.39 A
3320.29 A | | 30.83 34.48
30.84 34.50
30.75 34.47 | 14-14
32-24 | | 3644.86
3428.76 | A | 4
5 | 31.39 34.78
31.38 34.98 | 13-13 | 3p ² P°-4s ² P | 4421.38 | A 3 | 34.69 37.48 | _ | 3d ⁴ P-4f ⁴ G*
(66) | | *3345.88 A
3362.89 A
3367.05 P | 1 3 | 30.79 34.48
30.83 34.50
30.79 34.46 | 21-1-
11-
21-3- | | 3377.23
3443.70 | Ä | 3 | 31.39 35.05
31.39 34.98 | 1 | (43) | 4732.53
4634.73 | A 1 | 34.78 37.39
34.73 37.39 | 11-21 | 3d ² P-4f ⁴ D ⁰
(67) | | 3386.24 A
3390.56 A | . 2 | 30.83 34.47
30.84 34.48 | 14-24
14-24
2-12 | | 3229.50 | A | 3 | 33.88 37.70 | -
3}-4} | 3p1 3y-3d1 3
(43) | 4719.37
*4615.98
G 4700.1 | A 1½
A 4 | 34.78 37.39
34.73 37.40
34.78 37.40 | | | | 3218.21 A
3198.62 A | . 8
. 5 | 30.75 34.59
30.79 34.65 | | 3p ⁴ D ⁶ -3d ⁴ F
(13) | 3224.82
3097.15 | Ā | | 33.87 37.70
33.88 37.86 | | | | A 4
A 3 | 34.78 37.51
34.73 37.47 | 13-23 | 3d ³ P _4f⁴P*
(68) | | 3190.86 A
3213.70 A
3164.46 A | . 3 | 30.84 34.68 | 4-1+ | / | 3092.91 | _ | a | 33.87 37.86 | ă∳_â∳
_ | 3p1 3p0_3d1 3
(44) | | A 3 | 34.78 37.47 | 12-12 | | | 3165.70 A
3198.88 P | 4 | 30.83 34.68 | 35-35
25-25
15-15 | | 3411.38
3440.80 | A | 1 1 | 34.11 37.72
34.14 37.72 | 址址 | 3p' 3p°-3d' 3 | 4569.01
P
4511.37 | A 5 | 34.78 37.48
34.78 37.51 | | 3d ³ P_4 f⁴G*
(69)
3d ³ P_4 f ³ D* | | 3132.22 A
3173.58 A | | 30.75 34.69
30.79 34.68 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3413.13
3438. 97 | Ä | 3 | 34.11 37.73
34.14 37.73 | 1 | ,, | 4511.29 | à ž | 34.73 37.46 | - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | (70) | R | E V I | S E | D M | ULTI | PLE | T T | ABLE | | | | | | | 13 | |-----------------------------------|-------------|---|-------------------------|----------------|-------------------------|--|----------------------------|--------------|--------------|---------------------|----------------------|----------------------|-------------------|---|-----------------------------|-------------|--------------------------|----------------|----------------|--|--| | Labo
I A | | ry
Int | E
Low | | J | Multiplet (No) | IA | Labor | | y
Int | E
Low | P
High | J | Multiplet (No) | Labor
I A | | y
Int | Low | P
High | J | Multiplet (No) | | e II co | ntin | neq | | - | | | Na II | | | | | = | | • | Mg I cont | | | - | _ | | | | 795.62
869.8 | A
A | 0 | 34.81
34.86 | 3 7.39 | 23-23
13-13 | 4s ⁴ P-4f ⁴ D°
(71) | 3711.
3135. | | A
A | 6
5 | 32.87
32.87 | | 0-1
0-1 | 3s 3°-3p 1
(3) -3p 4 | 3986.7533 | A | (1) | 4.33 | 7.43 | 1-2 | 3 ¹ P°_ 9 ¹ D | | 922.3
7 9 1.95
849.4 | A
A
A | 1 | 34.90
34.81
34.86 | 3 7.39 | 21-11 | | 4087. | e0 | | | 33.18 | 76 20 | -
1 -1 | 3s 4°-3p 1 | 3938.400
3904.02 | A
E | (0) | | 7.46 | 1-2 | 3 ¹ po ₋₁₀ 1 _D
(18)
3 ¹ po ₋₁₁ 1 _D | | 580.35 | A | 3 | 34.81 | 37.51 | 12- 2
33-23 | 48 ⁴ P-41 ⁴ F° | 3462.
3400. | 494 | A
A | 3 2 | 33.18
33.18 | 36.74 | 1-3 | (4) -3p 3
-3p 4 | 3878.58 | В | (2r)
(1) | | 7.49
7.51 | 1-2
1-2 | (19)
3 ¹ P°-13 ¹ D | | 730.24
847.34 | A | | 34.86
34.81 | | 15-15
25-15 | (72) | 3285.
3212. | 186 | A | 8
6
6 | 33.18
33.18 | 37.02 | 1-3
1-1
1-3 | -3p 5
-3p 7 | 3859.24 | В | (1) | 4.33 | 7.52 | 1-2 | 3 ¹ P°-13 ¹ D | | 710.0 <u>4</u>
327.85 | A
A | | 34.86
34.81 | 37.48
37.48 | 11-21
21-21 | 4s ⁴ P-4f ⁴ G°
(73) | 3189.
3149. | | A | 5 | 33.18
33.18 | | 1-1 | -3p 8
-3p 9 | 7657.60 | В | (35) | 5.09 | 6.70 | -
1-2 | (21)
4 ³ 5–5 ³ p• | | | | 1 | 37 70 | | _ | | 3015. | 400 | A | 6 | 36.74 | 40.84 | 2-3 | 3p 3-3d ³ P°
(5) | 6318.23
6318.75 | B) | (5) | (5.09
5.09 | 7.04
7.04 | 1-3 | 438-63 pe | | 132.26
131.67
129.60 | Ä | 1 3 | 37.70
37.70 | 40.49
40.49 | 12-23
12-23 | sp ⁴ (18)3p ² P°
-sp ⁴ (18)3d ² D
(74) | 3064. | 372 | A | 4 | 36.81 | 40.84 | -
1-3 | 3p 4-3d ³ pe | 5785.08 | В | (3) | 5.09 | 7.22 | 1-2 | | | | | | | | | | 3179. | 055 | A . | 5 | 36.94 | 40.83 | -
2-1 | (6)
3n 5-3d ³ P° | 8923.8 | D | 20 | 5.37 | 6.75 |
0-1 | (34)
4 ¹ 8-5 ¹ P* | | <u>. I</u> I | P 5.1 | 12 Anal | A L | ist B | | 1944 | 3163. | 731 | A . | 6 | 36.94 | 40.84 | 3-2 | (7) | | _ | | | | - | (25)
3 ¹ D-4 ¹ F* | | 389.953 <i> </i> /
395.923 | Å | (10R)D ₃
(9R)D ₁ | 0.00 | 2.10
2.09 | 1-1 | 3 ² 8_3 ² Pe (1) | 3078.:
3074.: | | A | 6
6 | 36.94
36.94 | | 2-2
2-3 | 3p 5-3d ³ F° (8) 3p 5-3d ¹ F° | 12083.79
9256.0 | P
D | (50)
200N1 | 5.73
5.73 | 6.75
7.06 | 2-3
2-3 | (26)
31D_51F* | | 502.34 | В | (8R) | 0.00 | 3.74 | -1-1-1 | 3 ² 5_4 ² pe | | | | | | | - | (9) | 8213.02 | P | (-) | 5.73 | 7.23 | 2-3 | (27)
31p_61re | | 502.94 | В | (8R) | 0.00 | 3.74 | -
5- 5 | (6) | 3234. | | A | 4
5 | 37.02
37.02 | | 1-2 | 3p 7-3d ³ P° (10)
3p 7-4s ³ P° | 7691. 57 | P | (-) | 5.73 | 7.33 | 2–3 | (28)
3 ¹ D_7 ¹ F°
(29) | | 103.55
381.21 | Ç | 10
6 | 2.10
2.09 | 3.18
3.18 | 李章 | 3 ³ P°_4 ³ S
(3) | 3007. | | A | 5 | 37.02 | | 1-3 | (11)
3p 7-3a ¹ D° | 7387.70 | P | (-) | | | 2-3 | 3 ¹ D-8 ¹ F° (30) | | 194.824
183.256 | D
D | (10R)
(8R) | 2.10
2.09 | 3.60 | 2-12 | 3 ² P°-3 ² D
(4) | 3009. | 138 | A | 4 | 37.02 | 41.13 | 1-1 | (13)
3p ?-4s ¹ P°
(13) | 7193.20
7060.43 | P
P | (-) | | 7.44
7.48 | 2-3
2-3 | 31 <u>b</u> _91 F°
(31)
31 <u>b</u> _101 F° | | 194.791 | D | (-) | 2.10 | 3.60 | 15-15 | | 3274. | | Ă. | 5 | 37.05 | | -
2-1 | 3p 8-3d ³ P° | 6965.42 | P | | | 7.50 | 2-3 | (32)
3 ¹ D-11 ¹ F° | | 160.747
154.225 | D
D | (8r)
(8r) | 2.10 | | 李章 | (5) | 3257.
3053. | | A | 6
6 | 37.05
37.05 | | 2-2
2-3 | (14)
3p 8-3d ³ D° | 6894.92 | P | | 5.73 | 7.52 | 2-3 | 31 _{D-12} 1 _F (34) | | 388.205
382.633
388.193 | D | (10)
(8)
(-) | 3.10
3.09 | 4.27 | 13-34
13-14
13-14 | 3 ² P°-4 ² D
(6) | | | | | | | - | (15) | 10968.1 | P | (30) | 5.91 | | - 2- | 4 ³ p°-5 ³ D | | 988.193
875.3 | D
P | (3s)Forb | 3.10
3.10 | 4.27
4.27 | 12-12 | 3 ² p•_4 ² p• | 3327.
3318. | | A | 4 | 37.10
37.10 | | 1-0
1-1 | (16) | 10961.2
9993.7 | P
D | (10)
3nl | 5.91
5.91 | 7.03
7.14 | • | (35)
4 ³ P°_7 ³ S | | 869.8
153.402 | P
D | (3s)Forb
(6n) | | 4.27 | 2- | (7)
3 ² P°-6 ² s | 3225.
3104. | | A | 4 | 37.10
37.10 | | 1-2
1-0 | 3p 9-4s ³ P°
(17) | 9987.0 | D | 2n | | 7.14 | | (36) | | 148.838 | Ď | (5n) | 2.09 | | 출- 출 | (8) | 3066. | 536 | A | 4 | 37.10 | 41 - 13 | 1-1 | 3p 9-4s ¹ pe (18) | 10812.8 | D | (30) | 5.92 | 7.06 | _ | 3 ³ D-5 ³ F°
_(37) | | 982.813
978.541 | D
D | (6r)
(5r) | 2.10
2.09 | 4.57
4.57 |
13-23
2-12 | 3 ² P°_5 ² D | 4123. | 069 | A | 3 | 38.13 | 41.13 | 0-1 | 3p 10-4s ¹ P° (19) | 9415.5
8736.0 | D
D | 10nl | | 7.23 | | 33D_63F0
(38)
33D_73F0 | | 977.6
973.4 | P
P | (is)Forb | | 4.57
4.57 | 1 | 3 ² P°_5 ² F°
(10) | 4114. | 95 | В | 3 | 38.13 | 41.13 | 0-1 | 3p 10-3d ³ p° (20) | 8346.13 | P | 1n | | 7.33
7.40 | | (39)
3 ³ D-8 ³ F° | | 751.822
747.941 | D
D | (4n)
(3n) | 2.10
2.09 | 4.69
4.69 | 生主 | 3 ² pe_7 ² s
(11) | For d | hange | s i n | Pascher | n notat | ion sec | text | ₿ 37 | 8098.72 | P | | 5.92 | 7.44 | | 33D_93F° | | 568.560 | D | (4r) | 3.10 | 4.74 | 1 } -2} | 3 ² P°-6 ² D | | | | | | | | | 7930.83 | P | | 5.92 | 7.48 | _ | 33 _{D-10} 3 _F e
(42)
33 _{D-11} 3 _{Fe} | | 864.811
865.8 | D
P | (3r)
(-)Forb | 2.09 | 4.74 | ۇ −1ģ | (12)
3 ² pe_6 ² Fe | We I | I P | 7.6 | 1 Anal | LAI | ist B | July | 1944 | 7811.14
7733.60 | P
P | | | 7.50
7.52 | _ | 3 ³ D ₋₁ 1 ³ F°
(43)
3 ³ D ₋₁ 3 ³ F° | | 862.0 | P | (-)Forb | 2.09 | 4.74 | \$ | (13) | 4571. | 0956 | A | 5 | 0.00 | 2.70 | 0-1 | 3 ¹ S-3 ³ P° (1) | | - | | | | _ | (44) | | 545.218
541.671 | B | (4n)
(3n) | | | | 3 ³ pe_8 ³ S
(14) | 5183.
5172. | | | 125
80 | | 5.09
5.09 | 3-1
1-1 | 3 ³ P°_4 ³ S
(2) | 3627.63 | В | <u>(4)</u> | 6.56 | 9.96 | 2-3
- | 4 ¹ D-3p3d ¹ F°
(45) | | 497.657
494.180 | D
D | (3n)
(3n) | 2.10
2.09 | 4.84
4.84 | 13-23 | 3 ³ p•_7 ³ D
(15) | 5167. | 3216 | A | 40 | 3.70 | 5.09 | 0-1 | 33pe_33p | 4099.77 | В | (3) | 6.95 | 9.96 | 23
- | 5 ¹ D-3p3d ¹ F° (46) | | 433.31
419.94 | B
B | (4n)
(3) | 2.10
2.09 | 4.89
4.89 | 1 1 | 3 ² P°_9 ² S
(16) | 3838.2
3832.2
3829.2 | 3037 | A
A | 100r*
80r*
40 | | 5.92
5.92
5.93 | 2-3
1-2
0-1 | (3) | 3895.662
3891.976 | B
B | (10)
(5) | | 10.31
10.31 | 2-3 3
1-2 | 3p ² | | 393.45
390.14 | B
B | - | 2.10
2.09 | | | | 3838.2
3832.2 | 2943 | A | 100r*
80r* | 2.70
2.70 | 5.92
5.92 | 2-2
1-1 | | 3890.241
3898.120 | B
B
B | (5)
(3)
(4)
(3) | 7.14
7.14 | 10.31
10.31 | 0-1
2-3 | • • • | | | - | | | | - | | 3336.6
3332. | 17 | B
B | 20
15 | | 6.40
6.40 | 1-1 | 3 ³ P°-5 ³ 8
(4) | 3893.376 | | | | 10.31 | 1-1
- | | | 745.9
748.7 | E | 2 | 3.18
3.18 | 4.33
4.33 | \$_1\$ | 4 ² 8_5 ² P*
(18) | 3329.9 | | B
B | 10
50 | 2.70
2.70 | 6.40
6.69 | 0-1
2- | 33pe_43p | 4409.84 | В | (1) | 7.16 | 9.96 | 2-3 | 6 ¹ D-3p3d ¹ F° (48) | | 849.6 | F | - | 3.18 | 4.60 | } - | 4 ² 8_6 ² pe
(19)
4 ² 5_7 ² pe | 3092.9 | 997 | B
B | 40
80 | 2.70
2.70
2.70 | 6.69
6.69 | 1-
0- | (5) | Fine Struc | ture | | | | | | | 809.4 | F. | | 3.18 | 4.76 | -
}- | (30) | 1828. | В | В. | (130) | 4.33 | 5.37 | -
1 ∩ | 31pe_41g | | | | | - | | | | 879.0
874.4 | F | - , | 3.60 | | - | 32D-23Fe | 8806. | 7678 | A | (10) | | 5.73 | | 3 ¹ P°-3 ¹ D | | P 14 | .97 A | nal A | | | ne 1944 | | 961.0 | F | - | 3.60 | 4.74 | _ | 32D-43Le
(33) | 8806.1 | 7350
7032 | A | (a) | | | | (7) | 9217.4
9243.4 | P
P | | | 9.96
9.95 | \$-1\$
\$- \$ | 4 ² S-4 ² P°
(1) | | 466. 0 | P | - | 3.60 | 4.91 | _ | 38D-88be | 5711.0 | 0831 | | (6)
(1)
(1) | 4.33 | 6.49 | 1-0 | 3 ¹ P°-5 ¹ S
(8) | 3613. 8 0
3615.64 | A
A | 4
3 | | 12.03
12.03 | $\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$ | 4 ² 5-5 ² p° (2) | | 154.7 | F | - | | 4.95 | _ | (24)
3 ² D_9 ² F°
(25) | 5711.0
5528.4 | | A
A | (1)
(10) | 4.33 | 6.56 | 1-2 | 31pe_41p | 10914.2 | P | | 8.83 | 9.96 | - | 32D_42pe | | 943.6
796 | F
F | - | | 4.98
5.00 | - | 3 ² D-10 ² F°
(26)
3 ² D-11 ² F° | 55 28 55 28 | 3986 | Ā | (a) | | | | (9) | 10949.4 | P | | | | | 32D_42Pe
(3) | | | • | _ | J. U | | | (27) | 4730.0 | | | (3) | 4.33 | 6.94 | _ | 3 ¹ P°-6 ¹ S | 4481.327
4481.129 | A) | 100 | 18.83 | | | 3 ² D-4 ² F° (4) | | | | | | | | | 4702.9
4702.9 | 9831 | A) | 40 | 4.33 | 6.95 | 1-2 | 3 ¹ pe_5 ¹ D
(11) | 3848.24
3850.40 | A | 7
6 | 8.83
8.83 | 12.03
12.03 | $3\frac{1}{2}-1\frac{1}{2}$
$1\frac{1}{2}-\frac{1}{2}$ | 3 ² D-5 ² P°
(5) | | <u>a II</u> I | P 4 | | | List 1 | | ne 1944 | 4380. | | A)
B | (5) | 4.33 | 7.14 | 1-3 | 3 ¹ P°-3p ² 3p | 3104.805
3104.713 | A
A | 30 | (8.83
(8.83 | 12.80
12.80 | 21-
12-22 | 3 ² D-5 ² F° (6) | | 533.043
092.729
056.157 | A
A | 10 | 32.71
32.71
32.71 | 36.70 | 2-1
3-3
2-2 | 3e 1°-3p 1
(1) -3p 2
-3p 3 | 4354. | | В | (1) | | 7.16 | 1-0 | 3 ¹ po ₋₇ ¹ s | 8238.4 | P | | | | - | | | 007.443 | Ã | | 32.71 | | 2-1
- | -3p 4 | 4351.5
4351.5 | 9056
8941 | A) | 30 | 4.33 | 7.16 | 1-3 | 3 ¹ pe_6 ¹ D
(14) | 8217.8 | P | | | | | 4 ³ P°_5 ³ 8
(7) | | 631.266
129.368 | A
A | 8 | 32.80
32.80 | 36.20
36.74 | 1-1
1-3 | 3s 2°-3p 1
(2) -3p 3 | 4167.2
4167.2 | 3713
3604 | A) | 10n | 4.33 | 7.29 | 1-2 | | 7896.37
7877.13 | A | - | 9.96
9.95 | 11.52
11.52 | 1\$-
2-12 | 4 ³ P°_4 ³ D
(8) | | 078.315
984.183 | A
A | 6 | 32.80
32.80 | 36.81 | 1-1
1-2 | -3p 4
-3p 5 | 4057. | | | 5n | 4.33 | 7.37 | 1-3 | 3 ¹ P°-8 ¹ D | 4433.991
4427.995 | A
A | 8
7 | 9.96
9.95 | 12.74
12.74 | $1\frac{1}{2}$ $\frac{1}{2}$ | 4 ² P°-6 ² S
(9) | | | | | | | - | | | | | | | | | (16) | | | | | | | | | 14 | | | | | | | REV | I S | ED M | ULT | IPL | ET 1 | ABLE | | | | | | | | |----------------------------------|-------------|----------------|---|----------------------|---|--|---|-------------|-------------------|-------------------------|-------------------------|---------------------|--|-----------------------------------|---------------|----------------------|-------------------------|----------------|-------------------|--| | Labo
I A | | ory
! Int | Low | P
High | J | Multiplet (No) | Lab
I A | | tory
of Int | Low | P
High | J | Multiplet (No) | Lab
I A | orato:
Ref | ry
Int | Low E | P
High | J | Multiplet (No) | | Mg II co | nti | nneg | | | | | Al I co | ntir | med | | | | • | Al II co | | | 20 | | | (20) | | 4390.585
4384.643 | A
A | 10
8 | | 13.77
13.77 | | 4 ² P°-5 ² D
(10) | 3931.97
3935.77 | E | | 5.21
5.21 | | 3}-3}
12-12 | 5 ³ D-3d' ³ D ⁶ | 6696.39
6699.46 | B
B | 0.5 | | 16.67
16.67 | 1-3
1-1 | 5 ³ 8-6 ³ pe
(29) | | 3553.51
3549.61 | A | 5
4 | 9.96 | 13.43
13.43 | 11- | | 3087.02 | В | 5 | 5.45 | | _ | 6 ² p−4₫ ² pe | 4000 42 | P | · | | 17.29 | 1-1 | 5 ³ 8_7 ³ pe | | 3538.86 | Ā | 6 | 9.96 | 13.44 | 11- | 4 ² P°-6 ² D | | | | | | - | (19) | 4332.0 | В | 0.5 | 14.83 | 17.67 | _ | (30)
5 ³ 8-8 ³ P•
2(31) | | 3535.04
3175.84 | A | 5
2 | | 13.44
13.84 | 2 -1 | | 3203.39 | В | 4 | 5.60 | 9.45 | 3 } _1 } | 7 ³ D-4d 1 ³ Pe
(30) | | В | 0.5 | 14.83 | | _ | 53 g_93pe | | 3172.79 | Ā | 1 | 9.95 | 13.84 | - <u>1</u> - 1 | (13) | *************************************** | | | | | | | 3774.3 | В | | 14.83 | 18.09 | _ | 5 ³ S-10 ³ P•
(33) | | 3168.98
3165.94 | A | 3
2 | | 13.85
13.85 | | 4 ³ Po_7 ³ D
(14) | Al II | P | 18.75 | nal A | List | A Ju | ly 1944 | 5388.48
4629.7 | B
B | 1 | | 17.27 | 0-1 | 5 ¹ g_7 ¹ pe
(34) | | 9633.0 | P | | 11.52 | 12.80 | _ | 4 ² D-5 ² F° | 3900.680 | В | 10 | 7.39 | 10.55 | 1-3 | 3 ¹ P°-3 ¹ D
(1) | 4840.75 | В | 3 | 14.98 | 17.65 | 0-1
0-1 | 51g_81pe
(35)
51g_91pe | | 6346.67 | A | 5 | 11.52 | 13.46 | _ | 4 ² D_6 ² F° | 4663.054 | В | 0 | 10.55 | 13.20 | 3–1 | 3 ¹ D-4 ¹ Pe | 4009.58 | В | 1 | | 18.06 | 0-1 | (36)
5 ¹ 8-10 ¹ P° | | 5264.14 | A . | 5 | | 13.86 | | 42D_72F0
(17) | 7042.06 | A | 10 | | 13.02 | _
1-3 | (3)
4 ³ 8_4 ³ pe | 3859.33 | В | 3 | 14.98 | 18.18 | 0-1 | 5 ¹ S-11 ¹ Pe
(38) | | 4739.59
4436.48 | A | 5
5 | | 14.12
14.30 | _ | 4 ² n_8 ² F°
(18)
4 ² n_9 ² F° | 7056.60
7063.64 | A | | | 13.02 | 1-1
1-0 | (3) | 3753.10 | В | 1 | 14.98 | 18.27 | 0-1 | 5 ¹ 8-13 ¹ P*
(39) | | 4343.47 |
A | 4 | | 14.43 | | 42D-102F° | 8640.70 | A | . 8 | 11.77 | 13.20 |
0-1 | 4 ¹ S-4 ¹ P° | 8354.35
8359.57 | A
A | 10
9 | 15.00
15.00 | 16.47 | 3-4
3-3 | 4 ³ D-5 ³ F°
(40) | | 4109.54 | A | 3 | 11.52 | 14.52 | _ | (30)
4 ³ D-11 ³ F° | 3275.776 | В | 4 | | 15.54 | 0-1 | 4 ¹ 8-5 ¹ pe | 8363.52
8359.23 | A | 8
1 | 15.00
15.00 | 16.47
16.47 | 1-2
3-3 | (40) | | 4013.80 | A | 3 | 11.52 | 14.59 | _ | 4 ^{20_12} 2 F e | 10076.29 | A | | 11.80 | 13.02 | _
3-2 | (5)
3 ³ D_4 ³ Pe | 8363.30
5853.62 | A
B | 1
5 | 15.00
15.00 | | 2-2
7 4 | 43 _{D-6} 3Fe | | 6545.80 | A | 5 | 11.58 | 13.47 | _ | 4 ² F°-6 ² G | 10107.19
10122.50 | A | 0.5 | 11.80
11.80 | 13.02 | 2-1
1-0 | (6) | 5861.53
5867.81 | B
B | 4 3 | 15.00
15.00 | 17.10 | 3-4
3-3
1-3 | (41) | | 5401.05 | A | 5 | | 13.86 | _ | (23)
4 ² F°-7 ² G | 10077.33
10077.53
10108.01 | A
A
A | 0.5 | | 13.02 | 2-3
1-1 | | 5371.84 | В | 6 | | 17.29 | | 4 ³ D_7 ³ pe | | 4851.10
4534.26 | A | 5
4 | | 14.18 | - | 43ře_63 _G
(35)
43ře_93 _G | 10108.37 | A | 0.8 | | | | -3- 3 | 5085.02
5093.65 | B
B | 4
2 | 15.00
15.00 | | 3-4
3-3 | (42)
43 _{D-7} 3 _F o
(43) | | 4331.93 | A | 3 | | 14.30
14.43 | _ | (36)
4 ³ F°-10 ³ G | 3586.557
3587.068
3587.450 |
A
A
A | . 9 | 11.80 | 15.24
15.24
15.24 | 3-4
3-3
1-3 | 3 ³ D_4 ³ F° (7) | 5100.34
4609.7 | B
B | 1 | 15.00
15.00 | | 1-3 | 4 ³ D_8 ³ pe | | 4193.44 | A | 3 | 11.58 | 14.52 | | 4 ² F°-11 ² G | 3586.912
3586.936 | A
A | 4
2) | 11.80 | 15.24 | 3-3 | | 4585.820 | В | 6 | 15.00 | | 3-4 | (44)
43D_83Fe | | 4093.90 | A | 1 | 11.58 | 14.59 | | 4 ² F°-12 ² G
(29) | 3587.309
3587.342
3587.165 | A
A
A | . 3) | | 15.24 | 3-2
3-21 | | 4588.194
4589.750
4588.082 | B
B
B | 5
4
0.5 | 15.00
15.00 | 17.69 | 3-3
1-3 | (45) | | | | | *************************************** | | | | *3587.195
3586.708 | A | 1.5Forb | 11.80 | 15.24 | 3-4 | | 4589.689 | В | 1 | 15.00
15.00 | 17.69 | 3–3
3–2 | | | Ali II | P 5. | 96 Ans | al A I | List B | July | 1944 | 3586.811
•3587.195 | A | | 11.80 | | 1-4
1-3 | | 4226.827
*4227.509
4227.999 | A
A | 8
4
3 | 15.00
15.00 | 17.92 | 3-4
2-3 | 4 ³ D_9 ³ Fe
(46) | | 3961.523//
3944.009 | A | 10R | 0.01 | 3.13 | 1 1 | | 3313.344
3314.883 | A | | 11.80 | 15.52
15.52 | 3-2
2-1 | 3 ³ D-5 ³ P° (8) | *4327.509
4327.430 | A
A
A | 4
1) | 15.00
15.00 | | 1-2
3-3 | | | 3443.651 | В | 10R
10 | 0.00 | 3.13
3.60 | 2- 2
1-3-3-3 | | 3315.608
3313.470
3314.981 | A
A | 0.5 | 11.80 | 15.52
15.52
15.53 | 1-0
3-3 | | 4227.945
4227.875 | A
A | 0.5 | 15.00
15.00 | 17.92 | 3-2
3-2 | | | 3439.352
3452.670 | B
B | 8
5 | 0.00 | 3.59
3.59 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (3) | 3314.756
3315.516 | Ā | 0.5Forb | 11.80 | 15.52 | 1-1
3-1
3-0 | | 4226.918
4227.545 | Å | 0.5Forb | 15.00
15.00 | 17.93
17.93 | 2-4
1-3 | | | 3444.871
3458.230 | B | 7
8 | 0.00 | 3.58
3.58 | 1 | | 6837.14 | | 8 | 13.02 | 14 97 | - | 43po_53g | 3995.860
3996.159 | B
B | 5
4 | 15.00
15.00 | 18.09 | 3-4
2-3 | 4 ³ D-10 ³ F°
(47) | | 3092.716
3082.159 | C | 10R
10R | 0.00 | 4.00 | 4 _1+ | 3gbe ^{-3gD} | 6823.48
6816.69 | A
A
A | 5
1 | | 14.83
14.83
14.83 | 2-1
1-1
0-1 | (9) | 3996.381
3996.075
3996.323 | B
B
B | 3
1
0.5 | 15.00
15.00
15.00 | 18.09 | 1-2
3-3
2-2 | | | 3092.843 | C | 6R | 0.01 | 4.00 | 1 1-11
 | | 6243.36
6231.78 | Ā | 10
9 | | 15.00 | | 4 ³ P°-4 ³ D | 3996.182 | В | O.5Forb | 15.00 | 18.09 | 1-3 | 33 | | 13123.37
13150.68 | P
P | (400)
(200) | 3.13
3.13 | 4.07
4.07 | 1-12
2-12 | 4 ² 8_4 ² p°
(4) | 6226.18 | A | 8 | 13.02 | 15.00
15.00 | 1-3
0-1 | (10) | *3983.7
3842.037 | B
B | 0.5
3 | 15.00
15.00 | | 3-4 | 4 ³ D-10 ³ P°
(48)
4 ³ D-11 ³ F° | | 6695.97
6698.63 | D
D | 7
6 | 3.13
3.13 | 4.97
4.97 | <u>}</u> -1} | 4 ² 8-5 ² P° (5) | 3738.003
3733.910
3731.950 | B
B
B | 3
2 | 13.02
13.02
13.01 | 16.32 | 3-1
1-1
0-1 | 4 ³ P°-6 ³ S
(11) | 3842.213
3842.317 | B
B | 3 | 15.00
15.00 | 18.21 | 2-3
1-2 | (49) | | 5557.08 | С | 1n | 3.13 | 5.35 | 2-2
2-13 | 4 ² S-6 ² P° (6) | 3654.995 | A | 1
(8)
5 | 13.02 | | | 4 ³ pe_5 ³ p | 3734.567
3734.715 | B
B | 1
0.5 | 15.00
15.00 | | 3-4
2-3 | 4 ³ D-12 ³ F° (50) | | 5557.95 | С | 1n | 3.13 | 5.35 | | | 3651.096
3651.065 | A | 7 Forb | 13.02
13.02 | 16.40
16.40 | 1-2
1-37 | (12) | 3734.805 | В | Ō | 15.00 | 18.30 | 1-2 | | | 3057.155
3059.047 | B | 10
4 | 3.60
3.59 | 7.63
7.62 | 3-2-2-1
1-1-1-1 | 3p ² 4p_4s ¹ 4po (7) | 13649.232 | A | 1.5Forb
1 Forb | 13.01 | 16.40 | 0-31
0-21 | | 3656.319
3597.50 | B
B | 0.5
a | 15.00
15.00 | | 3-4
3-4 | 4 ³ D-13 ³ Fe
(51)
4 ³ D-14 ³ Fe | | 3066.158
3064.302
3050.073 | B
B
B | 5
5
9 | 3.60
3.59
3.59 | 7.62
7.62
7.63 | 24-14
14- 4
14-24 | | 3026.781 | P) | | 13.02 | | | 4 ³ P°-7 ³ S
(13) | 3552.00 | В | 1 | 15.00 | | 3- | (52)
4 ³ D-153 F • | | 3054.694 | В | 6 | 3.58 | 7.62 | | | 3024.098
3024.114
3022.804 | P)
P | | 13.03 | | 1-1
0-1 | | 3516.05 | В | 0.5 | 15.00 | 18.51 | 3- | (53)
43D_163Fe
(54) | | 11255.69
11253.81 | P) | (300) | (4.00 | 5.10
5.10 | 21-
11- | 3 ² D_4 ² F° (8) | 2998.158
2998.163 | P
P) | 2 | 13.02 | | - | 4 ³ p°_6 ³ D | 3463.63 | В. | 0 | 15.00 | 18.56 | 3 | 4 ³ D-18 ³ F°
(55) | | 8773.91 | D | 30 | 4.00 | 5.41 | 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | 2995.530
2995.546 | P) | | 13.02 | | 1 | (14) | 9331.546
9331.979 | A
A | 3
2) | 15.24 | 16.56 | 3- | 4 ¹ F°-5 ¹ G
(56) | | 8772.88
7836.15 | D
D | 15
10 | 4.00 | 5.41
5.58 | _ | (9)
3 ² D_6 ² F° | 2994.259 | P | 1 | 13.01 | 17.14 | 0 1 | | 6201.52 | A | 10, | 15.24 | 17.23 | 3- | 4 ¹ F°-6 ¹ G | | 7835.33 | D | 9 | 4.00 | 5.58 | 3}-
12-3} | (10) | 6919. 9 6 | В | 0.5 | 13.20 | 14.98 | | 4 ¹ p°_5 ¹ s | 6201.70
5158.187 | A
B | 9 ⁾
1đ | 15.24 | 17.63 | 3 | (57)
4 ¹ F°_7 ¹ G | | 7362.31
7361.59 | D
D | 10
6 | 4.00
4.00 | 5.68
5.68 | 3출-
1출-3출 | 3 ² D_7 ² F ⁶
(11) | 5593.23 | В | 10 | 13.20 | | | 4 ¹ po_5 ¹ D
(16) | 4650.544 | В | 2 | 15.24 | | 4- | (58)
41F0_81G | | 10891.21 | P | | 4.07 | 5.20 | -
1麦- 호 | 4 ² P°-6 ² S
(12) | 3866.160
3703.217 | B
B | 3
4 | 13.20 | | _ | 4 ¹ p°_6 ¹ g
(17)
4 ¹ p°_6 ¹ D | 4650.646
4356.711 | B
B | 1.5 | | | 3- | (59)
4 ¹ F°-9 ¹ G | | 10872.47 | P
P | | 4.07 | 5.20
5.21 | | (13)
4 ³ P°-5 ³ D | 3135.875 | В | 3 | 13.20 | | | (18)
41pe_71g | 4356.807 | В | 1.5 | | | | (60) | | 10768.39
10786.78 | P
P | | 4.07 | 5.21 | 13-03
3-13
12-12 | (13) | 3088.523 | В | 3 | 13.20 | 17.19 | 1-3 | (19)
4 ¹ Pe_7 ¹ D
(20) | 4168.424
4168.511 | B
B | 0.5) | 15.24 | 18.30 | 3-4 | 4 ¹ F°-10 ¹ G
(61) | | 8923.56
8912.88 | D
D | 2
1 | 4.07
4.07 | 5.45
5.45 | | 4 ³ P°-6 ³ D
(14) | 7471.41 | A | 9 | 13.59 | 15.24 | -
2-3 | 4 ¹ D-4 ¹ F° | 4039.397
4039.302 | B
B | 0
0.5) | 15.34 | 18.30 | 3-4 | 4 ¹ F°-11 ¹ G
(62) | | 8841.26 | D | 3 | 4.07 | 5.47 | 11-21 | 4 ³ Po-7 ³ 8 | 6335.74 | A | 10 | 13.59 | 15.54 | 3-1 | (21)
41 _{D-5} 1 _P o
(22) | 3946.406 | В | 0.54 | 15.24 | 8.37 | 3- | 4 ¹ F°-13 ¹ G | | 8828.91
8075.37 | D
D | 1 | 4.07 | 5.47
5.60 | 2 −12 | (15)
4 ³ p•_7 ³ D | 4237.57 | P | _ | 13.59 | | | 4 ¹ D-5 ¹ F° (23) | 9290.649 | A - | 6, | 15.24 | 6.56 | 4- | (63)
4 ³ F°-5 ³ G | | 8065.99 | Ď | 3 | 4.07 | 5.60 | 12-22
2-12 | (16) | 4026.5
3428.916 | B
B | 5
6 | 13.59
13.59 | | | 41 <u>0</u> _61 po
(34)
41 D_61 F° | 9290.747
9288.145 | A
A | 5)
3\ | 15.24 | | 3 | (64) | | 3479.78
3482.58 | B
B | 6 | 4.81 | 8.35 | 3 } -3 } | 4 ² D-3d' ² D° (17) | 3351.456 | В | 3 | 13.59 | | | 4-D_6-F0
(25)
4 ¹ D_7 ¹ P0 | 9288.550
9286.578
9286.794 | A
A
A | a)
2) | 15.34 1 | 6.56 | a | • | | 3479.27 | В | 51
1 | 4.81 | 8.35
8.35 | 14-14
14-24 | (17) | 3094 GGE | - | _ | 50 | | | (26) | | | - | | | | 2 2 | | | oratory
Ref | | E | P
High | J | Multiplet
(No) | Labor
I A | atory
Ref | | E
Low | P
High | J | Multiplet (No) | I A | aborat
Re | o ry
f Int | E
Low | P
High | J | Multiplet
(No) | |----------------------------|----------------|---------------------|----------------|-------------------------|---------------------|--|-----------------------------|--------------|-------------------|----------------|----------------|------------------------|--|--------------------------------|---------------------|-------------------------|----------------------|--------------|-------------------|--| | IA
II c | ontinue | | DOW | птеп | | (110) | Al II con | | | 2.04 | | | () | Al III | | | | | | (==, | | 83.42 | A | 10n | 15.24 | | - | 4 ³ F°-6 ³ G | 5324.61 | В | 4 | 15.54 | 17.86 | 1-0 | | 5163.90 | 0 A | . 7 | 23.45 | 25.84 | | 5 ² 0-7 ² H° | | 82.28
82.45 | A | 7) | 15.24 | | 3 | (66) | 5285.85 | В | 6 | 15.54 | 17.87 | 1-2 | (101)
51pe_91p
(102) | 3658.3 | A | . (1n) | 23.45 | 26.82 | | 5 ² G-9 ² H•
(30) | | 81.57
81.68 | A
A | 5
6) | 15.24 | 17.43 | 2- | | 4918.98 | В | 3 | 15.54 | 18.05 | 1-0 | 51P°-101s
(103) | | | | REVI | SED- | | | | 77.68
76.81 | B
B | | 15.24
15.24 | | 4-
3- | 4 ³ F°-7 ³ D
(67) | 4898.76 | В | 5 | 15.54 | | 13 | 5 ¹ P°-10 ¹ D
(104) | | | | s 3 , : | Secti | | 2, 1967 | | 76.42 | В | 2 | 15.24 | | 2_ | 4 ³ F°-7 ³ G | 4666.8 | В | 11 | 15.54 | | 1-0 | 51P°-111S
(105)
51P°-111D | <u>81 I</u>
2970.3 | IP8 | | | 4.93 | Aug : | 1944
3p ^{2 1} D-48 ³ pe | | 45.654
44.998 | В | | 15.24
15.24 | | 4-
3- | (68) | 4655.05
4489.87 | B
B | | 15.54
15.54 | | 1-3 | (106)
51P°-13¹D | 2987.6 | | | 0.78 | | 3-1 | (1) | | 44.875
44.413 | | | 15.24 | 17.63 | 2- | | 4400.01 | - | | | | - | (107) | 4102.9 | 2 6 <i>A</i> | 25 | 1.90 | 4.91 | 0-1 | | | 40.362
40.384 | | | 15.24 | | 4- | 4 ³ F°-8 ³ G
(69) | 9124.27 | A _ | 0.5 | 16.33 | 17.67 | 1-3
- | 6 ³ 5-8 ³ P°
(108) | 3905.5 | 27 / | 100 | 1.90 | 5.06 | 0-1 | 3p ² (3)
15-4s ¹ pe | | 39.725
39.833 | B
B | 1.5 | 15.84 | 17.90 | 3- | | 6001.18 | В | 1 | 16.39 | 18.45 | 0-1 | 6 ¹ S-15 ¹ P° (109) | 12031.4 | .9 <i>l</i> | 25 | 4.93 | 5.96 | -
2–3 | (3)
4s ³ p ^o -4p ³ p | | 39.384
39.326 | | 0.5 | 15.24 | 17.90 | 2- | | 8119.72 | A - | 1.5 | 16.40 | 17.92 | -
-4 | 7 7 | 11984.2 | 10 | 20 | 4.91
4.90 | 5.94 | 1-2
0-1 | (4) | | 47.785
47.802 | | 4
3.5) | 15.24 | 18.07 | 4- | 4 ³ F°-9
³ G
(70) | 8122.08
8121.89 | A
A | 0.5) | 16.40 | 17.92 | -3 | (110) | 12370.5 | 60 A | A 2
A 5 | 4.93
4.91 | 5.93 | 2-2 | | | 47.223
47.316 | В | 1.5) | 15.84 | 18.07 | 3- | , , | 8123.52 | A | 0 | 16.40 | | -3 | c33-no | 12395.9 | | P 400 | 4.93 | | 3-1
3-2 | 48 ³ P°-4p ³ P | | 46.918
46.866 | В | 1.0
0.5) | 15.24 | 18.07 | 2- | | 6775.97 | В - | 0.5 | 16.40 | 18.22 | - - | 5 ³ D-11 ³ P°
(111) | 10827.0
10749.4
10979.2 | ю , | A 100
A 60
A 35 | 4.91
4.93 | | 1-1
3-1 | (5) | | 60.263
60.239 | | 3
2.5) | 15.34 | 18.20 | 4_ | 4 ³ F°-10 ³ G
(71) | 8680.31
8674.92 | A
A | 3
2\ | 16.47
16.47 | | 4-
3- | 5 ³ F°-8 ³ G
(112) | 10786.8 | 36 | A 50
A 60 | 4.91
4.91 | 6.05 | 1-0
1-2 | | | 59.725
59.809 | В | 1.5 | | 18.20 | 3– | (1-7 | 8675.28
8671.06 | A
A | 1, | 16.47 | | 2- | • | 10660.9 | 8 4 | A 50 | 4.90 | | 0-1 | . 3-0 . 3- | | 59.450
59.407 | В | 1
0.5) | 15.24 | 18.20 | 2- | | 8671.28 | A . | 1 / | | | | 5 ³ F°-9 ³ G | 10585.1
10371.2
10288.8 | 33 . | A 100
A 50
A 25 | 4.93
4.91
4.90 | 6.10 | 2-1
1-1
0-1 | 48 ³ P°-4p ³ S
(6) | | 31.633 | | 0.54 | 15.24 | 18.30 | 4-
3- | 4 ³ F°-11 ³ G
(72) | 7709.78
7138.81 | A
B | 0
0.5 | 16.47
16.47 | | 4-
4- | (113)
53F°-103G | 9768.2 | | n. 25
A. 5w | | 6.20 | 3-3 | 4s3pe_4p1p | | 31.210
31.135
30.867 | В | | | 18.30
18.30 | 3- | (10) | 7134.66
7131.29 | B
B | 0.5 | 16.47 | 18.20
18.20 | 3- | (114) | 9585.7 | | A 4 | 4.91 | 6.20 | 1-2 | (7) | | 39.066 | - | | | 18.37 | 4 | 4 ³ F°-13 ³ 0 | | - | | | | - | -11 | 8435.2 | | P | | 6.37 | 1-0 | 48 ³ P°-4p ¹ S
(8)
48 ³ P°-5p ³ D | | 38.621 | В | | | 18.37 | 3- | (73) | 8858.39
8858.77 | A
A | 0. ₅) | 16.50 | 17.90 | 3– | 5 ¹ F°-8 ¹ G
(115) | 5797.9
5793.1
5780.4 | 128 | A 40
A 30
A 25 | 4.93
4.91
4.90 | 7.04 | 2-3
1-2
0-1 | 48°P°-5p°D
(9) | | 70.057 | 'В _ | 0.5 | 15.24 | 18.43 | 4 | 4 ³ F°-13 ³ G
(74) | 8086.91 | Α - | 0.5 | 16.53 | 18.06 | -
2-3 | 6 ¹ D-9 ¹ F° | 5859.2 | | P 25 | 4.93 | | 2-2 | | | 17.93 | A | 1 | 15.41 | 17.19 | 2-3 | 5 ¹ D-6 ¹ F° (75) | 8080.31 | ^ - | | | | - | (116) | 5708 · 4 | | A 75
A 40 | 4.91 | | 2-2
1-1 | 4s ³ P°-5p ³ P
(10) | | 09.64 | A | 0.5 | 15.41 | 17.27 | 3-1 | (75)
51D-71po
(76) | 9249.41 | A | 1 | | 17.90 | | 5 ¹ G-8 ¹ H°
(117)
5 ¹ G-9 ¹ H° | 5754.2
5701.1 | L38 . | A 8w | 4.91 | 7.07 | 2-1
1-0 | | | 13.19 | В | 3 | | 17.60 | 2–3 | 5 ¹ D_7 ¹ F° (77) | 8160.15 | Α . | 3 | | 18.08 | _ | 51G-91H°
(118)
51G-101H° | 5645.6
5665.6 | | A 25
A 25 | 4.91
4.90 | | 1-2
0-1 | | | 02.88 | B
B | 3
3 | | 17.65
17.87 | 2-1
2-3 | 51D_81po
(78)
51D_81po | 7526.2 | A | 0.2 | 16.56 | 18.20 | _ | (119) | 5684.5
5622.2 | | A 50
A 3 | | 7.10
7.10 | 2-1
1-1 | 4s ³ P°-5p ³ S
(11) | | 00.97
62.10 | В | 3 | | 17.89 | 2-1 | (79)
51 _{D-9} 1 _P • | Fine Struc | cture | | | | | | 00000 | | | | | - | | | 53.0 | В | - | | 18.06 | 2-3 | (80)
51D-91F° | | | | | | | | 11890.4 | | P | 5.06 | - | | 4s ¹ po_4p ³ s | | 48.62 | В | 1 | 15.41 | 18.06 | 2-1 | 5 ¹ D-10 ¹ P° | A3 TTT : | I P 28 | 0 77 | Anal A | List | Δ 1 | July 1944 | 10869.5
9413.5 | | A 125
A 200 | 5.06 | | 1-2 | 4s1po_4p1p
(13)
4s1po_4p1s | | 47.8 | В | 3 | 15.41 | 18.18 | 2-1 | 5 ¹ D-11 ¹ P°
(83) | Al III : | | (20) | | | | 3 ² D-4 ² P° | 6067.6 | | A 200 | 5.06 | | | (14)
481P°-5p3P | | 32.82 | В | 0.5 | 15.41 | 18.19 | 2-3 | 5 ¹ D-10 ¹ F° | 3612.352
3601.916 | A
A | (15) | 14.31
14.31 | 17.73
17.74 | 14-1 | (1) | 5948. | | A 100 | 5.06 | 7.14 | | (15)
4s ¹ P°-5p ¹ D | | 07.20 | В | 3 | | 18.27 | 2-1 | 5 ¹ D-12 ¹ P°
(85)
5 ¹ D-11 ¹ F° | | - | | | | | | 5772.2 | 258 | A 50 | 5.06 | 7.20 | 1-0 | (16)
4s ¹ po-5p ¹ S | | 82.97 | В | 0.5
a | | 18.29 | 2-3
2-1 | 51D-111F
(86)
51D-131po | 56 9 6.47
5722.65 | A
A | 8·
6 | 15.57 | 17.74
17.73 | 2-13
2-13 | 4 ² 5-4 ² P°
(2) | 8417.8 | 89 |
P | 5.59 | 7.06 | -
3-3 | (17)
3d ³ D°-5p ³ D | | 02.4 1
056.8 | В | | | 18.45 | 2-1
2-1 | (87)
5 ¹ D-15 ¹ P° | 4529.176 | Α . | (10) | 17.74 | 20.47 | -
1] -2 | 4 ² P°-4 ² D
(3) | 8527.3
8397.9 | 32
96 | P
P | 5.59
5.59 | 7.04 | 2-2
2-3 | (18) | | 005.7 | В | 0 | | 18.49 | 2-1 | (88)
5 ¹ D-16 ¹ P° | 4512.535
4528.911 | A
A | (10)
(8)
1 | 17.73 | 20.47
20.47 | 12-1 | (3) | 8514.6 | | P | 5.59 | | 1-2 | | | | | | 45.50 | 47.40 | - | (89)
5 ³ P°-7 ³ S | 3713.103 | A | (15) | 17.74 | 21.07 | 1 - | 4 ² P°-5 ² S
(4) | 8230.6
8306.8 | в0 | A 15
A 4w | | 7.08 | 3-2
2-1
1-0 | 3d ³ D°-5p ³ P
(19) | | 823.72
815.83
812.31 | A
A
A | 2
1
0.5 | 15.52 | 17.10
17.10
17.10 | 2-1
1-1
0-1 | (90) | 3702.086 | Α. | (10) | | | _ | | 8317.4
8211.4 | | A 2w | 5.59
5.59 | | 2-2 | | | 835.33 | A | 2 | | 17.14 | 2- | 5 ³ P°-6 ³ D | 4149.897
4150.138 | A
A | (10)
(8) | 20.47
20.47 | 23.44 | 21-3 | 4 ² D-5 ² F°
(5) | 8150. | 57 | P | 5.59 | 7.10 | 1-1 | (20) | | 627.85
624.48 | A
A | 1
0.5 | 15.52 | 17.14
17.14 | 1-
0-1 | (91) | 4149.917 | Α . | 1 | 20.47 | 23.44 | _8 } _8} | } | 7995.0 | | P | 5.59 | | 2-2 | 3d ³ D°-5p ¹ D
(21)
3d ³ D°-4f ¹ F | | 73.23 | A | 10 | | 17.55 | 2-1 | 5 ³ P°-8 ³ S | 4701.65 | A | 6 | 20.69 | 23.32 | | 4 ² F°-5 ² D | 7416.0 | 1 | A 250
A 500 | 5.59 | 7.26 | 2-3
3-4 | (22)
3d ³ D°-4f ³ F | | 068.46
066.32
066.44 | A
A
A | (8)
33) | 15.52 | 17.55
17.55 | 1-1
0-1 | (92) | 4490.90 | A a | nn Fort | 20.69 | 23.44 | - | 42re_52re | 7409.:
7405. | 11 | A 500
A 100
A 300 | 5.59
5.59 | 7.26 | 2-3
1-2 | (23) | | 006.42 | A | 10 | 15.58 | 17.57 | 2- | 5 ³ P°-7 ³ D | 4479.968
4479.891 | A
A | 4
3 | 20.69
20.69 | 23.45
23.45 | $3\frac{1}{2}$ | (7)
4 ² F°-5 ² G
(8) | 7424.0
7415. | 63 | A 20
A 15 | 5.59 | 7.26 | 3-3 | | | 001.81
999.70 | A
A | (身)
3) | | 17.57
17.57 | 1-
0-1 | (93) | | | | | | | | 7289. | | A 250 | 5.59 | | 3-4 | | | 999.83 | A | 2 ⁾
7 | 45 50 | 47 04 | 3-1 | 5 ³ p•_9 ³ s | 4364.59
4357.24 | A
P | 2n | 22.03
22.03 | 24.86 | 1 2 -1 | 5 ² P°-6 ² D
(9) | 7275.:
7290.: | | A 50
A 10 | 5.59
5.59 | | 2-3
3-3 | (24) | | 816.07
812.32
810.76 | B
B
B | 5 2 | 15.52 | 17.84
17.84
17.84 | 1-1
0-1 | (94) | 3287.37
3283.11 | A
A | 1
0.5 | 22.03 | 25.79
25.79 | $\frac{1}{2}$ | 5 ² P°-7 ² D
(10) | 7250.0
7193. | | A 40
A 8 | 5.59
5.59 | | 3-3
2-2 | 3d ³ D°-4f ³ D
(25) | | 883.77 | В | 8 | | 17.86 | 3- | 5 ³ P°-8 ³ D | 0.000111 | • | | | | | | 7184.8
7208.2 | 89
2 0 | A 10
A 1 | 5.59
5.59 | 7.31 | 1-1
3-2 | ,, | | 380.21
378.62 | B
B | 6
3 | | 17.86
17.86 | 1-
0-1 | (95) | 4903.71 | A | 4 | | 25.83 | _ | 5 ² D-7 ² F°
(11)
5 ² D-8 ² F° | 7193.8
7235.8 | 86 | A 5
A 10 | 5.59
5.59 | 7.30 | 2-1 | | | 902.77 | В | 5 | | 18.04 | 3-1 | 5 ³ P°-10 ³ S | 3980.56 | A | 2n | 23.32 | 26.42 | -
- | 52D-82F*
(12) | 7184. | | A 1
A 15 | 5.59 | | 1-2
2-2 | 3d ³ D°-4f ¹ D | | 899.64
898.52 | B
B | 3
2 | | 18.04
18.04 | 1-1
0-1 | (96) | 5260.91 | A | On | 23.44 | 25.79 | _ | 5 ² F°-7 ² D | 7226.7 | | A 20 | 5.59 | | 1-2 | (26) | | 635.7
633.2 | B
B | | 15.52 | 18.18 | 2-
1- | 5 ³ P°-10 ³ D
(97) | 5150.86 | A | 6n | | 25.84 | _ | 5 ² F•_7 ² G
(14) | 62 44.
62 37. | | A 10n
A 5n | | | 2-2
1-2 | 3d ³ D°-5f ¹ D
(27) | | 631.5 | В - | | | 18.18 | 0 -1 | | 4188.88 | A | 0.5 | | 26.39 | _ | 5 ² Fe_6 ² D
(15)
, 5 ² Fe_8 ² G | 6254.2 | 25
86 | A 25n | | | 3-4
2-3 | 3d ³ D°-5f ³ F
(28) | | 449.42 | A | 5 | 15.54 | 17.19 | 1-2 | 5 ¹ P°-7 ¹ D
(98) | 4142.15
4141.25 | A
A | 2n
On Fort | | 26.42 | _ | (16)
52F°-82H° | 6243.6
6237.3
6254.9 | 34 | A 10n
A 5n
A 2n | 1 5.59 | 7.57 | 1-2
3-3 | (20) | | 061.11 | A | 6 | 15.54 | 17.57 | 1-0 | 51p•_81s
(99) | ****** | ^ | | | | _ | (17) | 6244. | | P | | 7.57 | 2-2 | | | 971.94 | A | 7 | 15.54 | 17.60 | 1-2 | 5 ¹ po_8 ¹ D
(100) | 5172.6 | A | 1 | 23.45 | 25.83 | | 5 ² G-7 ² F°
(18) | 16 | | | | | | | REV | ΙS | ED M | ULT: | IPLE | T | TABLE | See | NSR | DS-N | BS 3, | Sec | tior | 1, 196 | |---|------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|---|------------------|----------------------|------------------------------|------------------------------|-----------------------------------|--|--|------------------|-------------------|----------------------------------|-------------------------|---|--| | Labo
I A | rator
Ref | | E
Low | P
High | J | Multiplet
(No) | Labo
I A | rato
Rei | ory
[Int | E
Low | P
High | J | Multiplet
(No) | | rato | | E
Low | | | Multiplet (No) | | <u>81 I</u> cor | tinue | đ | | | | | <u>Si I</u> cor | ntinu | neq | | | | _ | <u>81 II</u> | P 1 | 6.27 | Anal B | List | | g 1944 | | 6155.22
6145.08
6155.73 | A
A
A | 30n
10n
2n | 5.59
5.59 | 7.60 | 3-4
2-3
3-3 | · (29) | 9689.41
9789.24
9913.16
9839.58 | A
A
A | 8w
2n
1w
2w | 6.07
6.06
6.07
6.06 | 7.32
7.32
7.31 |
2-2
1-1
2-1
1-0 | (65) | 3856.021
3862.592
3853.657 | A
A
A | 8
6
3 | 6.83 | 10.03
10.02
10.03 | 21-11
11-11
11-11 | 3p ^{2 2} D-4 ² P | | 6143.53
6131.54
6124.85
6131.86
6125.03 | A
A
A
A | 5n
4n
2n
5n
4 n | 5.59
5.59
5.59
5.59
5.59 | 7.60
7.60
7.60
7.60
7.60 | 3-3
2-3
1-1
2-3
1-2 | 3d ³ D°-5f ³ D
(30) | *9570.08
9758.08
9318.24
9238.60 | A
A
A | 4
2n
4
2n | 6.06
6.05
6.07
6.07 | 7.35
7.32
7.40
7.41 | 1-3
0-1
2-3
2-1 | 4p ³ P-5d ³ P• | 6347.091
6371.359 | A
A | 10
8 | | 10.03 | 1-11
1-11
1-1 | 4 ² S-4 ² P° (2) | | 6143.31
6131.30 | P
P | | 5.59 | 7.60
7.60 | 3-2
2-1 | | *9103.37
9208.55
*9103.37 | A
A
A | 3w
5w
3w | 6.06
6.06
6.05 | 7.41
7.40 | 1-0
1-2
0-1 | | 4130.884
4128.053 | A
A | 10
8 | 9.80
9.79 | 12.78
12.78 | 1 } -2 }
- | | | 10844.02 | A | 25w | 5.84 | | 1-2 | 4p ¹ P-4d ¹ D°
(31)
4p ¹ P-4d ³ P° | 80 70.64
8086. 1 8 | P
P | | 6.07
6.06 | 7.60
7.58 | 2 - 3
1-2 | | 5978.970
5957.612 | A
A | 7
5 | 10.03
10.02 | | 11-1 | 4 ² P°-5 ² S
(4) | | 10627.81
8179.43 | A
P | 20 w | | 7.00
7.35 | 1-2 | (32)
4p1p-6s3pe | 7912.55 | A | 3w | 6.07 | 7.63 | 2–2 | (68) | 5056.020
5041.063 | A
A | 10
8 | 10.03
10.02 | 12.47
12.47 | | 4 ² P°-4 ² D | | 8338.43
8093.32 | A
A | 5w
25w | 5.84 | 7.32
7.36 | 1-1 | (33)
4p ¹ P-6s ¹ P° | 7898.38
7105.34 | P
P | | 6.07
6.06 | 7.63 | 2-2 | (69) | 5056.353 | A | 2 | 10.03 | 12.47 | 1출-1출 | | | 7913.47 | A | 10w | | 7.40 | 1-2 | (34)
4p1p-5d3p0 | 7089.03 | P | | 6.05 | 7.79 | 1-1
0-1 | (70) | 3339.84
3333.16 | A
A | 2 | 10.03 | 13.73
13.73 | 13- 3 | (6) | | 7680.35 | A | 100w | 5.84 | 7.44 | 1-2 | (35)
4p ¹ p _{-5d} 1 _D •
(36) | 9891.90 | A | 5 w | 6.10 | 7.35 | 1-2 | | 3210.04
3203.89 | A
A | 3 | 10.03
10.02 | 13.87
13.87 | $\frac{1^{\frac{1}{2}}}{2^{-1}}$ | 4 ² P°-5 ² D
(7) | | 6848.65 | A | 4w | | 7.64 | 1-1 | 4p1p_7s1pe
(37) | 9505.28
9421.82 | A
A | 5
4 | 6.10
6.10 | 7.40
7.41 | 1-2
1-1 | (71)
4p ³ S-5d ³ P°
(72) | 5868.404 | A | 3 | ? | ? | -
2] -2] | 3p4s ⁴ P°-3p4 | | 6722.67 | Α . | 2w | 5.84 | 7.67 | 1-3 | 4p1p_6d1p°
(38) | 9393.40
8046.78 | A
P | 2w | 6.10
6.10 | 7.41 | 1-0 | 2 2 | 5846.12
582 7.8 0 | A
A | 0 | ? ? ? | ? | 15-15 | (8) | | 11018.00 | A | 70 | | 6.97 | | 3d ¹ D°-5p ¹ P
(39) | 8046.78 | P | | 6.10 | 7.64 | 1-2 | (73)
4p3s-7s1pe | 5915.266
5867.497
5800.48 | A
A
A | 1
1
1 | ?
?
? | ?
?
? | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 10153.13 | P
A | 1 | | 7.06 | 2-3
2-1 | 3d ¹ D°-5p ³ D
(40)
3d ¹ D°-5p ³ P | 7392.18
7455.47 | P
P | | 6.10 | 7.77 | 1-2 | (74)
4p ³ g-8s ³ p° | 5806.75 | A | 2 | ?
? | ? | ₹-1₹ | 2n4 c 4ne c | | •9570.08 | A | 4 | | 7.14 | 2-2 | (41)
3d ¹ D°-5p ¹ D | 7455.47 | , | | 6.10 | 7.75 | 1 -1
- | (75) | 5639.492
5576.61
5540.74 | A
A
A | 2
1
0 | ?
?
? | ?
?
? | 25-15
15-15
5-15 | 3p4s ⁴ p° _3p4p
(9) | | 8752.17 | Å | 200 | 5.85 | 7.26 | 2-3 | 3d ¹ D°-4f ¹ F | 11468.54
11202.02 | A
A | 1w
1w | 6.18 | 7.26
7.26 | 4-4
2-2 | 3d ³ F°-4f ³ F
(76) | | | | | | | | | 8742.60
87 51.18 | A
P | 100 | | 7.26
7.26 | 2-3
2-2 | 3d ¹ D°-4f ³ F
(44) | 11308.45
11290.01
11187.74 | A
A
A | 2w
10w
20w | 6.16
6.16
6.15 | 7.26
7.26
7.26 | 3-2
3-4
2-3 | | Strongest | Unc: | lassifi
3 | e a Lines | or <u>81</u> | 11 | | | 8556.64 | A | 100w | | 7.29 | 2-3 | 3d ¹ D°-4f ³ G | 11130.37 | A | 7w | 6.18 | 7.29 | 4-5 | 3d ³ F°-4f ³ G | 6660.49
5785.64 | A | 2
1 | | | | | | 8502.38
8444.00
8444.48 | A
A
A | 30w
15w
3w | 5.85 | 7.30
7.31
7.31 | 2-3
2-2
2-1 | (45)
3d ¹ D ⁰ -4f ³ D
(46) | 10982.28
10885.16
10984.24
10893.72 | A
A
A
P | 7w
10w
3w | 6.16
6.15
6.16 | 7.29
7.29
7.29 | 3-4
2-3
3-3 | (77) 3d ³ F°-4f ¹ D | 5706.375
5701.375
5688.856 | A
A | 1 2 | | | | | | 8501.50 | A | 30 w | | 7.30 | 2-2 | 3d ¹ D°-4f ¹ D
(47) | 10796.52 | Ā | On . | 6.16
6.15 | 7.30
7.30 | 3-2
2-2 | (78) | 5669.590
5496.24
5468.92 | A
A
A | 4
1
2 | | | | | | 7165.62
•7164.75 | A | 100w | 5.85 | 7.57
7.57 | 2-2 | 3d1p°_5f1p
(48)
3d1p°_5f3F | *8898.97
*8790.88 | A
A | 3₩
4₩ | 6.16 | 7.57 | 4-4
3-3 | 3d ³ F °- 5f ³ F
(79) | 5456.11 | A | 2 | | | | | | 7165.09 | P) | 2₩ | (5.85 | 7.57 | 2-2 | (49) | 8729.02
8899.50
8791.28 | A
A
A | 5w
3w
5w | 6.15
6.18
6.16 | 7.57
7.57
7.57 | 2-2
4-3
3-2 | | 5438.41
5294.97
5202.51 | A
A
A | 1
1
3 | | | | | | 7034.96
7017.98 | A
A | 50w
4w | | 7.60
7.60 | 2-3
2-3 | 3d ¹ D°-5f ³ G
(50)
3d ¹ D°-5f ³ D | •8790.88
8728.38 | A
A | 4w
10w | 6.16
6.15 | 7.57
7.57 | 3-4
2-3 | | 5192.75
5185.09 | A
A | 1 | | | | | | 7017.68
7016.90
6527.20 | A
P
P | 1Ôw | 5.85
5.85 | 7.60
7.60
7.74 | 2-2
2-1 | (51)
3d ¹ D°-6f ³ F | 8596.02
8536.38
8597.00 | P
A
A | 3 w
2nl | 6.16
6.15
6.16 | 7.60
7.60
7.60 | 3-4
2-3
3-3 | 3d ³ F°-5f ³ G
(80) | 5181.77
4921.69
4906.88
4859.28 | A
A
A | 1
1
1n
1 | | | | | | 10727.21 | _ | 75- | | | - | (52)
4p ³ D-4d ³ F° | 7850.5
7800.0 | A
A | 2N
4N | 6.16
6.15 | 7.74
7.74 | 3-2
2-2 | 3d ³ F°-6f ³ F
(81) | 4656.80 | A | ī | | | | | | 10694.14
10689.52 | A
A
A | 75w
50w
20w | 5.96
5.94
5.93 | 7.11
7.09
7.08 | 3-4
2-3
1-2 | (53) | 11607.42 | A | Ow | 6.20 | 7.26 | -
2 -1 | 4p ¹ D-4d ¹ P° | 4198.174
4190.738
4076.78 | A
A
A | 2
3
1 | | | | | | 10882.66
10784.33 | A
A | 5₩
5₩ | | 7.09
7.08 | 3-3
2-2 | | 11485.68 | A | 2w | 6.20 | 7.27 | 2-3 | (82)
4p ¹ D-4d ¹ F° | 4075.45
3998.00 | A
A | 2
1n | | | | | | 8892.97
8949.33 | A
A | 25w
15w | | 7.35
7.32 | 3-2
2-1 | 4p ³ D-6s ³ P° (54) | 10582.66 | A | 1 | 6.20 | 7.36 | 2-1 | (83)
4p1 p -6s1 p •
(84) | 3991.77
3199.54 | A
A | 2n
1 | | | | | | 8925.55
8766.68 | A
A | 8w
3w | 5.93
5.94 | 7.31
7.35 | 1-0
2-2 | | 9886.92 | A | 2w | 6.20 | 7.44 | 2-2 | 4p ¹ D-5d ¹ D° (85) | 3193.10
3188.95 | A
A | 1 | | | | | | 8 883.84
8 667.40 | A
P | 4₩ | 5.93
5.94 | 7.32 | 1-1
2-1 | 4p3D-6s1pe | *889 8. 97 | A
P | 3₩ | 6.20 | 7.58
7.63 | 2-3
2-2 | 4p ¹ D-5d ¹ F°
(86)
4p ¹ D-6d ³ P° | C | | | REVIS | | | 3015 | | 8606.43 | Ā | 1W | 5.93 | 7.36 | 1-1 | (55) | 8550.34 | P | | 6.20 | 7.64 | 2-1 | (87)
4p1D-7s1po | See NSI | | | 3, S | | | ., 1965
ug 1944 | | 8579.15
7943.94 | A
A | 2w
500w | 5.96 | 7.40
7.51 | 3 -2
3 -4 | 4p ³ D-5d ³ P°
(56)
4p ³ D-5d ³ F° | 7431.17 | P | | 6.20 | 7.86 | 2-3 | (88)
4p1p_7d1F°
(89) | 3086.225
3093.423 | A
A | 7
6 | 17.63 2
17.63 2 | | 3-2
3-1 | 3 ³ D-4 ³ P° (1) | | 7932.20
7918.38
8035.39
7970.26 | A
A
A | 300w
200w
7w
10w | 5.94
5.93
5.96
5.94 | 7.49
7.49
7.49 | 2-3
1-2
3-3
2-2 | (57) | 11611.49
•11591.98
11640.58
11502.94 | A
A
A | 5w
4w
2w | 6.23
6.24
6.25 | 7.30
7.31
7.31 | 2-3
1-2
0-1 | 3d ³ P°-4f ³ D
(90) | 3096.786
3086.429
3093.613
3086.620 | A
A
A
A | 3
3
1 | 17.63
17.63
17.64
17.64 | 31.62
31.63
31.62 | 1-0
2-2
1-1
1-2 | \1/ | | 7373.02
7285.94 | A
P | 10w | 5.96
5.94 | 7.63
7.63 | 3-2
2-2 | 4p ³ D-7s ³ P° (58) | *11591.98 | A
A | 3w
4w | 6.23
6.24 | 7.31
7.31 | 2-2
1-1 | | 4552.654 | A | 9 | 18.92 | 31.63 | 1-2 | 4 ³ 5-4 ³ P° | | 7255.28 | P | | 5.94 | 7.64 | 2-1 | 4n3n-7s1pe | *9009.04
9064.06
*9009.04 | A
A | 5nl
Owl
5nl | 6.23
6.24 | 7.60
7.60 | 2-3
1-2 | 3d ³ P°-5f ³ D
(91) | 4567.872
4574.777 | A
A | 7
4 | 18.92 2
18.92 2 | 31.62 | 1-1
1-0 | (3) | | 7005.84
7003.58
6976.53
7084.33 | A
A
A | 50w
50w
25w
2w | 5.96
5.94
5.93
5.96 | 7.70 | 3-4
2-3
1-2
3-3 | (59)
4p ³ D-6d ³ F°
(60) | 10015.33 | A
A | 1 | 6.23 | 7.60 | 2 - 2
-
0 - 1 | 4p ¹ S-7s ³ P° (92) | 4338.52 | A . | 1 | 18.94 | 31.79 | 0-1 | 3p ² 1 _{S-4} 1 _P | | 6813.85
6730.38 | P
P | | | 7.77
7.76 | 3-3
1-1 | 4p ³ D-7d ³ D° | 04 | ,, | 1 | | - A | _ | ,/ | 5739.762 | A | 8 | 19.64 | 31.79 | 0-1 | 4 ¹ S-4 ¹ P° (4) | | 6842.35
6729.80 | P
P | | 5.96 | 7.76
7.76
7.76 | 1-1
3-2
1-2 | (61) | Strongest
9770.10 | Unc: | lassified
4w | Lines | or <u>81</u> | Ŧ | | 3806.56
3796.11 | A
A | 5
4 | 21.63 2 | | 2-
1- | 4 ³ P°-4 ³ D
(5) | | 6527.49
6555.20 | A
A | 3n
2n | 5.96 | 7.85
7.82 | 3-4 | 4p ³ D-7d ³ F° | 9738.60
9254.59 | A
A | 6 w
4n | | | | | 3791.41 | A | 3 | 21.62 2 | 4.88 | 0-1 | _ | | 6560.68 | Ä
-
P | 2n | 5.93 | | 1-2 | (62)
4p ³ P-4d ¹ Pe | 8648.89
8503.17
7743.2
7742.7 | A
A
A | 100nl
5
4n | | | | | 3241.67
3234.00
3230.55 | A
A
A | 6
5
3 | 21.63 2
21.62 2
21.62 2 | 35.44 | 2-1
1-1
0-1 | 4 ³ p°_5 ³ S
(6) | | 10067.84 | A | 4w | 6.07 | 7.30 | 2-3 | (63)
4p ³ P-5d ³ D° | 6721.97
6415.24 | A
A
A | 5n
4w
4w | | | | | 3590.46 | A | 8 | 21.79 | 35.22 | 1-2 | 4 ¹ P°-4 ¹ D | | 10025.80
9967.46
10155.88
10001.35 | P
A
A
P | 1 |
6.07 | 7.29
7.29
7.29
7.29 | 1-2
0-1
2-3
1-1 | (64) | | | | | | | | 3185.16 | A . | 3 | 21.79 2 | | 1-0 | (7)
4 ¹ p°-5 ¹ s
(8) | I A | orato
Ref | ry
Int | | P
High | J | Multiplet
(No) | Lab
I A | orator
Ref | | | P
High | J | Multiplet
(No) | Lat
I A | orato
Ref | ry
Int | | P
High | J | Multiplet
(No) | |--|--------------|----------------------|--------------------------------------|-------------------------|---|---|--|---------------|--------------------------|--|-------------------------|--------------------------|--|--|------------------|-------------------|-------------------------|----------------------------------|---|--| | S1 III | conti | nueđ | | | | | P II co | ntinue | đ | | | | | P II co | ntinu | leđ | | | | | | 4828.923
4819.740
4813.290 |) A | 4n
3n
2n | 25.86 | 28.42
28.42
28.42 | | 4 ³ F°-5 ³ G
(9) | 3308.86 | A | 6₩ | | 13.32 | | 3s3p ³ ¹ p°-4p ¹ 1 | | A | 71 | 13.08 | 16.31 | a_a | 3d ¹ D°-11
(36) | | 3040.93
3037.26
3034.74 | A
A
A | 1
1
1 | 25.86 | 29.92
29.92
29.92 | 4-
3-
2- | 4 ³ F°-6 ³ G
(10) | 6043.10
6024.15
6034.01
6165.56 | B
B
B | (5)
(3)
(1)
(1) | 10.71
10.69 | 12.76
12.74
12.76 | 1-2 | • • • | 5727.69 | A | 21 | 13.09 | 15.29
15.24 | 1-2
1-1 | (27) | | 3126.25 | Ā | 0 | 26.68 | 30.62 | | 3p3q ³ P°-3p4p ³ | 6087.76
P 5425.93 | B
A | (1)
7w | 10.71 | 12.74
13.03 | 1-1 | 4s ³ P°-4p ³ P | 4554.81
4628.71
4678.95 | A
A | 4 11 | 13.09
13.09
13.09 | 15.75 | 1-2
1-1
1-0 | 4p ³ S-4d ³ p°
(28) | | 3147.38
3258.67 | A
A | 0
 | | 30.60 | 2-1
 | (11)
3p3d ³ p°-3p4p ³ | 5386.87
5499.72
5409.66 | A
A
A | ?₩
?
?₩ | 10.76
10.71 | 13.00
13.00
12.99 | 1-1
2-1
1-0 | (6) | 4558.04 | A | 61 | 13.09 | 15.79 | 1-1 | 4p ³ S-4d ³ D°
(29) | | 3276.25
3279.25
3253.44 | A
A
A | 0 00 | 26.83
26.82 | 30.60
30.59
30.62 | 2-1
1-0 | (12) | 5344.73
5296.09 | A
A
A | 7₩
7₩
8₩ | 10.69 | 13.03
13.00
13.09 | | 48 ³ P°-4p ³ S | 4244.55
4109.19
4044.49
4019.45 | A
A
A | 3
5
7w
4 | 13.25
13.25 | 16.16
16.25
16.31
16.32 | 3-
3-2 | -11 | | 4683.018
4665.87 | A
A | | 27.99
27.95 | 30.62 |
2-2 | 3p4s ³ p•-3p4p ³ | 5191.41
5152.20
• 74720.26 | A
A | 6
4 | 10.71
10.69 | 13.09
13.09 | 1-1
0-1 | (7) | 4450.45 | A | 61 | 13.38 | 16.15 | 3-3

1- | -15
3d ¹ P°-3 | | 4683.774
4638.12 | | 3 | 27.95
27.94 | 30.59 | 1-0
0-1 | (10,) | 4612.84
4581.77 | A
A
A | 3
3
3n | 10.71
10.71
10.69 | 13.38
13.38 | 1-3
1-1
0-1 | 48 ³ P°-4p ¹ D† (8) 48 ³ P°-4p ¹ P (9) | 4423.9
4160.56 | A | 3 d
3 | 13.38 | 16.17
16.34 | 1-1
1-2 | (31) -6
-18 | | Unclassi | fied 1 | Lines of | S1 III | _ | | | 5253.49 | | | | | | • • | 6460.1 | C | 3 | 13.38 | 15.29 | 1-2 | | | 4716.658
3924.44
3486.93 | A
A | 5
4
6 | | | | | 4499.18 | A
A | 8\\
71 | 10.97 | | 1-8 | 4s ¹ p°-4p ¹ D
(10)
4s ¹ p°-4p ¹ S
(11) | 4288.53
3372.70 | A
A | 4 | | 16.26
17.04 | 1-1 | (32)
4p1p_4d1pe
(33)
4p1p_6s1pe
(34) | | 3482.70
3210.52
3196.50
3186.01 | A
A
A | On
3
3
2 | | | | | *3551.16
3470.83
*3404.34
3377.52 | A
A
A | 3n
4
5
4n | 12.69
12.69
12.69
12.69 | 16.25 | 1-
1-2 | 3s3p ³ 1pe_5
(12) -8
-13
-16 | •4530.78
3 | \$ A
A | 8W
71 | 13.62 | 16.31
16.34 | | 1°-11
35)-16 | | ee NS | SRDS | -NBS | EVISE
3. S | D
ecti | ion | 1, 1965 | 4943.42 | Ā. | 71 | 12.80 | 15.29 | -
3 -2 | 4p ³ D-5s ³ P° | 4792.06 | A
A
A | 51
4n
8 W | 13.64 | 16.21
16.31
16.32 | -2 (| 2°- 7
36) -11
-15 | | <u>81 IV</u>
4088.863 | I P 44 | 1.95 A
10 | nal A | List | A Au | g 1944
4 ² S-4 ² P°
(1) | 4969.65
4954.33
4864.38
4927.17 | A
A
A | | 13.76
13.74
13.76
13.74 | 15.23
15.29 | 2-1
1-0
2-2
1-1 | (13) | 4565.22
3710.46 | A | 61 | 13.64 | 16.34 | _ | -16 | | 4116.104
3165.72 | | | | | | | 4823.84
4739.49 | Ã
A | 0
31 | 12.74
12.76 | 15.29
15.36 | 1-2 | 4p ³ D-5s ¹ P° | | A
 | 3n | 13.72 | 17.04 | 0-1 | 4p ¹ S-6s ¹ P°
(37) | | 3149.56 | A | (7)
——— | 26.95 | 30.86 | 13-43
2-12 | 4 ² P°-4 ² D
(2) | 4700.80
4601.97 | A
A | 41
8 W11 | 12.74 | | 1-1
3-4 | (14) | P III | I P 30 | 0.03 | D | ••-• | | | | 3762.41
3773.13 | A
A | (5)
(4) | 30.86
30.86 | 34.14
34.13 | $3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$ | 4 ² D-5 ² P° (3) | 4658.12
4626.61 | A
A
A | 8\
61 | (13.76
12.74
12.80
13.76 | 15.45
15.43
15.45 | 2-3
1-2
3-3 | (15) | 4059.27
4080.04 | A
A | 6 | | 17.47
17.45 | | 3 ² D-4 ² P°
(1) | | 4328.22
4314.18 | B
B | (4)
(3) | 34.14
34.13 | 37.00
37.00 | -
13- 3
2- 2 | 5 ² P°-6 ² S
(4) | 4224.43
4072.13
4036.23 | A
A | 2
3 | 12.80
13.76 | 15.72
15.79 | 3-3
3-3
3-3 | 4p ³ D-4d ³ D° (16) | 4057.39 | A
A | | | | - | | | 4818.44 | . A | (4) | 35.99 | 38.92 | | 5 ² D-6 ² F° (5) | 4036.23
4127.49
4064.64
4166.73 | A
A
A | 2n
5 13
3 13
2n | 12.74
12.80
12.76
12.76 | 15.79
15.79 | 1-1
3-2
2-1
2-3 | | 4246.68
3233.62 | A
A | | | | | 4 ² S_4 ² Pe (3) | | 4631.38 | A | (5) | 36.26 | 38.92 | _ | 5 ² F°-6 ² G
(6) | 4117.09
4120.78
4130.77 | A
A
A | 4
2 n | 12.80
12.76 | 15.80
15.75 | 3-2
2-1 | 4p ³ D-4d ³ P° (17) | 3219.32 | A | | | | - | 4 ² P°-4 ² D
(4) | | 4654.14 | A | (6) | 36.27 | 38.93 | _ | 5 ² 0-6 ² H° (7) | 4062.08
4091.53 | A
A
A | 2 n
3 ld1 | 13.74
13.76
13.74
13.74 | 15.80
15.75 | 1-0
2-3
1-1
1-2 | | 3277.82
3283.22
5203.86 | A
A | 3
2
5 | | | - | 3 ² D-3p ³ 2pe
(2) | | <u> </u> | P 1,0.9 | Ana) | lC L | | - | | 3664.20
3570.34 | A
A | 6w
3d | 12.79
12.79 | 16.25 | 2-2 | 3d ³ P°-4
(18) -9 | 3280.22 | A | 3n | 21.29 | | -1 2 | 4 ² D-5 ² P•
(5)
4 ² D-5 ² F•
(6) | | 0581.52
0529.45
0511.45 | A
A | 8
5
3 | 6.98 | 8.12
8.10 | $2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ | 4s ⁴ P-4p ⁴ D° (1) | 3507.37
*3478.74 | A | 3 | 12.79
12.79 | 16.34 | 2 <u>-</u>
2-1 | _ | *4587.91 \$ | A | 8W | 22.05 | 24.74 | | 4 ² F°-5 ² D | | 0813.03
0681.43
0596.92 | A
A
A | 0
1
1 | 6.96
6.92
6.91 | 8.10
8.08
8.07 | 23-23
13-13
13-13 | 4s ⁴ P-4p ⁴ D° (1) | 3775.03
3676.27
3490.45 | A
A
A | 3
6w
5 | 12.81
12.81
12.81 | 16.17 | | 3d ³ P°-2
(19) -5
-18 | 3978.28
3957.64 | A . | 8W | 22.05 | | _ | (7)
4 ² F°-5 ² G
(8) | | 796.79
734.74
608.97 | A
A
A | 50
20
3 | 6.96
6.92 | 8.21
8.19 | 23-23
13-13 | 4s ⁴ P-4p ⁴ P° (2) | 3706.06
3536.30 | A
A | 7₩
3 | 12.83 | | | 3d ³ D°-4
(20) -14 | 3933.38
3922.72
3997.17 | A
A
A | 6
4
4
5 | ?
?
? | | 23-23
13-13
23-13 | 3p4s ⁴ P°-3p4p ⁴ P
(9) | | 976.65
750.73
563.45 | A
A
A | 5
25
12 | 6.96
6.92
6.92 | 8.19
8.19
8.21 | 23-13
13-3
13-23 | 4s ⁴ P-4p ⁴ P°
(2) | 3559.93
3556.49
3551.16 | A
A
A | 3
6
3n | 12.85
12.85
12.85 | 16.32 | 2-2
2-2 | 3d ³ D°-12
(21) -13
-14 | 3951.51
3895.03
3904.79 | A
A
A | 5
6
6 | ?
?
? | ?
?
? | 13-23
13-23
2-12 | | | 593.54
525.78
304.88 | A
A | 35
30
3 | 6.91
6.96
6.92 | 8.19
8.25
8.25 | \$-1\frac{1}{2}
2\frac{1}{2}-1\frac{1}{2}
1\frac{1}{2}-1\frac{1}{2} | 4s ⁴ P-4p ⁴ S° | 3533.67
3530.25
3527.11
*3404.34 | A
A
A | 2
5
3
5 | 12.85
12.85
12.85
12.85 | 16.34
16.34
16.34 | 2-1
2-2
2-1 | -16
-17 | 3802.08
3744.22
3717.63§§ | A
A
A | 6
5
5 | ?
?
? | ?
?
? | 2 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3p4s ⁴ P°-3p4p ⁴ S
(10) | | 084.22
903.74 | A
A
A | 0
25
8 | 7.18
7.14 | 8.25
8.41
8.39 | 2-1 2
1 2 -1 <u>3</u> | 45 ² P-4p ² P° | *3728.6755
3723.63
3631.41 | A
A | 4đ
3 | 12.85 :
12.85 : | 16.16
16.17 | 3-2
3-2 | 3d ³ D°-4
(22) -5 | | | | | | | | | 204.72
790.08 | A | 3 | 7.18
7.14 | 8.39
8.41 | 13- 12
2-12 | 4s ² P-4p ² P°
(4) | 3566.43
3562.48 | A
A
A | | 12.85 1
12.85 1 | 16.31 | 3-21
3-
3-2 | -12
-13 | P IV I 3347.72 3364.44 | P 51.:
A
A | 15 Ans
6
6 | 28.01
28.01 | 31.70 | Aug
1-2
1-1 | 1944
4 ³ 5_4 ³ po
(1) | | <u>II</u> I | P 19. | 57 Ana | al B I | List B | Aug | 1944 | 5450.66
5507.15
5583.33 | A
A
A | 51 | 13.03 1
13.00 1
13.03 1 | 5.24 | 2-3
1-1
3-1 | 4p ³ P-5s ³ P° (23) | 3371.10 | A - | 5 | 28.01 | 31.67 | 1-0 | | | 715.86
768.71
795.10 | A
A
A | 4
4
3 | 9.48 1
9.48 1 | 12.80
12.76 | 2-3 3
1-2 | s3p ³ 3pe_4p ³ D | | A
A
A | 4
31 | 13.00 1
13.00 1
13.99 1 | 5.23
5.29 | 1-0
1-3
0-1 | | 4249.57 | A - | 6

4d | 36.20 | | | 4 ¹ S_4 ¹ P°
(2)
4 ³ D-5 ³ P° | | 761.82
793.61
786.70 | A
A
A | 3
3
2 | 9.48 1
9.48 1
9.48
1
9.48 1 | 2.76
2.74 | 0-1
2-2
1-1
2-1 | • | 4589.79
4425.95
4401.97 | A
A
A | 8₩
2 | 13.03 1
13.00 1 | 5.72
5.79 | 2-3
1-2 | 7 7 | 3717.635
3717.00 | Â | 5
5 | 36.20
36.20 | 39.52 | | (3) | | 472.88
503.00
518.61 | A
A
A | 5
5
4nd? | 9.48 1
9.48 1
9.48 1 | 13.03 | | 3p3 3pe_4p3p
(2) | 4475 00 | A
A
A | 71
3 | 12.99 1
13.03 1
13.00 1
13.03 1 | .5.79
.5.79 | 0-1
3-2
1-1
3-1 | | <u>P V</u> I P | 64.74 | 4 Anal | LA L: | Lst A | Aug 19 |
944 | | 478.74
419.25 | A
A | 3
6 | 9.48 1 | 13.03 | 1-2
2-1 3 | s3p ³ | | A
A
A | 3
2 | 13.03 1
13.00 1
13.03 1 | .5.75
.5.75 | 1-1
2-1 | 4p3P-4d3P° | 3175.16
3204.06 | A
A | 5 | 33.70 ;
33.70 ; | 37.58 | _ | 4 ² S-4 ² P° (1) | | 424.88
426.20 | A
A | 6
4
 | 9.48 1
9.48 1 | | 1-1
0-1 | | 4530.78
4414.29
4467.98 | A
A
A | 71
6 | 13.00 1
13.00 1
12.99 1 | 5.72
5.80 | 1-0 | • | | | | | | | | | | | orator;
Ref | | E : | | J | Multiplet
(No) | Labor | ratory
Ref | | E P
Low High | J | Multiplet
(No) | Labor | atory
Ref I | int | Low E | P
High | J | Multiplet
(No) | |--------------------------------|----------------|--------------------------|----------------------|------------------------------|-------------------|---|--|---------------|----------------|---|--|--|-----------------------------------|----------------|----------------|-------------------------|-------------------------|---|--| | IA
SI I | | | | ist B | Sept | 1944 | | P 23.3 | | | Sept | 1944 | <u>S II</u> cont | | | | | | | | 9212.91
9228.11 | B
B | (10)
(10) | | 7.84
7.83 | 2-3
2-2 | 4 ⁵ 5°-4 ⁵ P | 5027.19
5142.33 | D
D | 3
1 | 13.04 15.49
13.09 15.49 | 1 | 3s3p ⁴ | 7509.03 | В | 0 | | 15.88 | | 3d ² F-4p ⁴ D° (24) | | 9237.49 | В | (10) | 6.50 | 7.83 | 2_1
2_3 | 4 ⁵ 8°-5 ⁵ P | 4131.0 | A | 00 | 13.04 16.03 | | 1 2-2-4 20 m4m | 0738.88 | D
D
D | 0
1
1 | 14.17 | 16.07
16.03
16.07 | 31-21
21-11
21-21 | 3d ³ F _{-4p} ⁴ P ⁶
(25) | | 4694.13
4695.45
4696.25 | A
A
A | 10
8
6 | 6.50 | 9.12
9.12
9.12 | 2-3
2-1 | (3) | 3906.95 | A | 1 | 13.04 16.20 | 1] -2 | (3)
363p4 3p.4p3p6 | 6287.06 | D | .10 | 14.23 | 16.30 | 3 2-22 | 3d ² F-4p ² D• | | 10455.47 | В - | (8) | 6.83 | 8.01 | -
1 <u></u> 2 | 4 ³ 5°-4 ³ P | 3595.991
3672.14
3613.03 | A
A
A | 4
2
0 | 13.04 16.45
13.09 16.45
13.04 16.45 | 1 | 363p ⁴ ^{3F} 4p ³ p
(4)
(4)
(4) | 6312.68
6102.26 | D
D | 10
4 | 14.17 | 16.13
16.20 | | 3d ² F-4p ² D • (26) | | 10459.46
10456.79 | B
B | (8)
(8)
(4) | 6.83 | 8.01
8.01 | 1-1
1-0 | (3) | 3654.51 | Ā _ | 1 | 13.09 16.4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ł | 6161.84
6314. 39 | D
D | 1 | | 16.18
16.19 | | 3d ² F-4p ⁴ g•
(27)
3d ² F-Y• | | 5278.99
5278.70 | A
A | 3
1 | 6.83
6.83 | 9.17
9.17 | 1-3
1-1 | 4 ³ 8°-5 ³ P
(4) | 6386.48 | D | 3 | | 12- | 4s ⁴ P-4p ² S° | 6128.21 | Ď | 0 | 14.17 | 16.19 | 31-
21- | (28) | | 5278.10 | A | 3 | 6.83 | 9.17 | 1-0
1- | 4 ³ s°-6 ³ p | 5453.81
5432.77
5438.64 | 000 | 15
12
9 | 13.61 15.80
13.56 15.80
13.53 15.80 | 24-3-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1 | 4s ⁴ P _{-4p} ⁴ D°
(6) | 3993.526
3931.938
4007.78 | A
A
A | 4
3
0 | 14.23
14.17
14.23 | 17.32
17.31
17.31 | 34-34
34-34
34-34 | 3d ² F-4p' 2 Fe
(29) | | 4411.34 | Α. | | | | - | (5) | 5564.94
5509.67 | C | 8
15 | 13.61 15.83
13.56 15.80 | 3 3 3 - 2
1 2 - 1 | 1 | 3918.19 | A . | 00 | 14.17 | 17.38 | 2 1 -3 1 | n.3n (-1 3ne | | 8694.70
8680.47
8671.37 | A
A
A | 10
8
1 | 7.84
7.83
7.83 | 9.25 | 3-4
3-3
1-2 | 4 ⁵ P-4 ⁵ D°
(6) | 5473.59
5645.62
5556.01 | C
D
C | 15
4
5 | 13.53 15.76
13.61 15.86
13.56 15.76 |) 2 } _1⋅ | | 3932.30
3853.09
3859.26 | A
A
A | 2
2
0 | 14.17
14.17 | 17.38
17.37 | 35-15
25-25 | 3d ² F-4p' 2pe
(30) | | 8693.98
8679.70 | A
A | 3 | 7.84
7.83 | 9.25
9.26 | 3-3
2-2 | | 5032.41 | C | 2 | 13.61 16.0° | , 3] -3 | 4s ⁴ P-4p ⁴ P° | 7821.47 | В — | | | | - | | | 8670.65
8693.24
8679.00 | A
A
A | 2
1
1 | 7.83
7.84
7.83 | 9.26
9.26 | 1-1
3-2
3-1 | | 4991.94
4942.47
5103.30 | O
C | (1)
1 | 13.53 16.03
13.61 16.03 | 3 2 1 - 1 |] | 8086.67
8273.46 | B
B | 0 | 14.01 | 10.00 | 22 | 3d ⁴ P-4p ⁴ D°
(31) | | 8670.19
7696.73 | A . | 1
10 | 7.83
7.84 | | 1-0
3-2 | 4 ⁵ P-6 ⁵ 5° | 5009.54
4924.08
4925.32 | 0
0 | 1
9
10 | 13.56 16.00
13.56 16.00
13.53 16.00 | ' 1 } -2 | | 8051.91
8258.27
8377.79 | B
B
B | 0
2
1 | 14.30 | 15.83
15.80
15.78 | 34-34
14-14 | | | 7686.13
7679.60 | A
A
A | 8 5 | 7.83 | 9.44 | 3-3
1-3 | 7 (7) | 4779.11 | A | 2 | 13.61 16.2 | - | _ | 8221.63
8361.95 | B
B | 0 | 14.30 | 15.80
15.78 | 23-13
12- 2 | | | 6757.16
6748.79 | A
A | 10
8 | 7.84
7.83 | | 3
3 | 4 ⁵ P-5 ⁵ D⁰
(8) | 4804.12
4681.32
4742.4 | A
A
A | 00
00
00 | 13.61 16.1
13.56 16.2
13.53 16.1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 48 ⁴ P-4p ³ P°
2 (8) | 4431.03 | A - | 1 | 14.59 | 17.37 | -
1] -2] | 3d ² P-4p 1 2pe | | 6743.58 | Α . | 6 | 7.83 | 9.66 | 1 | | 4815.515 | A | 10 | 13.61 16.1 | 3 2] -1 | 1 4s4P-4p4S° | 3924.05 | A
E | 00
(0) | 14.59 | 17.73 | 13-13 | (32)
3d2P-4p: 3pe | | 6415.50
6408.13
6403.58 | A
A
A | 3
2
1 | 7.83 | 9.76
9.76
9.76 | 3-2
2-2
1-2 | 4 ⁵ P_7 ⁵ 8°
(9) | 4716.226
4656.74 | A
A | 8
4 | 13.56 16.1
13.53 16.1 | 3] -1 | 1 | 3945.06 | <u>.</u> | | | | | | | 6052.66 | A | 10
5 | 7.84 | 9.87
9.87 | 3-
3- | 4 ⁵ P-6 ⁵ D° (10) | 4193.51 | A _ | 1 | 13.56 16.4 | _ | 12 48 ⁴ P-4p ³ P° (10) | 8520.23
4755.12 | B
A | 1 | | | | 3d ³ D-4p ⁴ 8°
(34)
3d3D-4p1 3pc | | 6046.04
6041.93 | A | 3 | 7.83 | 9.87 | 1- | | 5606.11
5640.32 | C | 15
10 | 13.67 15.8
13.64 15.8 | 3 43-3
3 33-3 | 3d ⁴ F-4p ⁴ D° | 4763.38 | A . | 1 | | | | 3d2D_4p1 2pe | | 5706.11
5700.24
5696.63 | A
A
A | 6
4
2 | | 10.00
10.00
10.00 | 3-
2-
1- | 4 ⁵ P_7 ⁵ D°
(11) | 565 9.9 5
566 4.73
55 26.22 | 0 0 | 12
10
6 | 13.62 15.8
13.60 15.7
13.64 15.8 | 2- | | 4668.58
4648.17 | A | 3 | 14.73 | 17.37 | 12-12 | 3d ² D-4p ¹ 2pe
(36) | | 5507.01 | Ā | 4 | 7.84 | 10.08 | 3- | 4 ⁵ P-8 ⁵ D° | 5578.85
5616.63 | C
C
E | 7
5
(0) | 13.62 15.8
13.60 15.8
13.62 15.8 | 3 2 1 -2
0 1 1 -1 | 1 | 8422.39
8515.48 | B
B | 0 | 15.00 | 16.47 | 2}-1} | 481 2D-4p3po
(37) | | 5501.54
5498.18 | A | 3 | | 10.08 | 2-
1- | (15) | 5466.55
5536.77 | Ď - | 1 | 13.60 15.8 | 3 1½-2 | 5
3, | 5320.70 | С | 3 | | | | 481 20_4p1 2pp0 (38) | | 9035.92
9036.32 | ВВ | \6\
4\ | | 9.38
9.38 | 2-3
1-2 | 4 ³ P_4 ³ D° (13) | 8314.73
7967.43 | ВВ | 10
10 | 14.01 15.4
13.94 15.4 | 1 | 1 4s ³ P-4p ³ S° (12) | 5345.67
5212.61 | C
C | 4
3 | | | | . (38)
.4 <u>a</u> 1 20_4⊚1 201 | | 9038.72
903 9. 27 | B
B | (3)
(3)
(3)
(2) | 8.01
8.01 | 9.38
9.38 | 0-1
2-3 | (10) | 5996.16 | D | 4 | 14.01 16.0 | 7 1 1 -2 | 1 4s ² P-4p ⁴ P° | 5201.00
5201.32 | C
E | (S) | 15.00 | 17.38 | 13-13
33-13 | (39) | | 9036.73
8452.14 | B
A | (2)
5 | | 9.38
9.47 | 1-1
3-1 | 4 ³ P-6 ³ S° | 5908.25
6097.12
5932.95 | D
D | 2
1
1 | 13.94 16.0
14.01 16.0
13.94 16.0 | 3 1] -1 | 13) | 4524.946
•4552.378 | A
A | 6
7 | 15.00
15.00 | 17.73
17.71 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 481 3 _{D-40} 1 3p4
(40) | | 8449.54
8451.55 | A | 3
1 | 8.01 | 9.47
9.47 | 1-1
0-1 | (14) | 6123.41
5639.96 | D
C | 1
10 | 14.01 16.0
14.01 16.3 | | 1
1 4a ³ D_4n ³ De | 4524.68 | A _ | | 15.00 | 17.73 | - | | | *7244.77 | A | 4 | (8.01
8.01 | 9.71
9.71 | 2-3
2-2 | 4 ³ P-5 ³ D°†
(15) | 5646.98
5819.22 | o o | 8
10 | 13.94 16.1
14.01 16.1 | 3 1-1
3 1-1 | 4s ² P-4p ² D° (14) | 3783.16
3860.15 | A
A | 3 | 15.49
15.49 | 18.75
18.69 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 4p ² ge_5s ² p
(41) | | | _ | | .8.37 | 9.62 | -
3 - 2 | 3 ³ D°-4p¹ ³ P† | 5014.03
4917.15 | C | 1
7 | 14.01 16.4
13.94 16.4 | 7 1 1-1 | 4s ² P-4p ² P° (15) | 3317.70 | D | 0 | 15.49 | 19.21 | <u>}-</u> ½ | 4p ² go_4d ² p
(42) | | *9949.84
9932.26 | B
B | (8)
(8) | 8.37 | 9.61
9.62 | 1-0
2-2 | (16) | 5047.28
4885.63 | C
A | (o) | 14.01 16.4
13.94 16.4 | (5 −1 | 7 | 4463.582
4483.424 | A
A | 7
6 | | 18.64
18.58 | 3
3
3
3
1
3 | 4p ⁴ D°-5s ⁴ P | | *9 633.78 | В | (5) | 8.37 | 9.66
9.65 | 3-4
2-3 | 3 ³ D° - 4p' 3p' (17) | 3669.049
3594.462 | A
A | 5
3 | 14.01 17.3
13.94 17.3 | 7 1] 2
3 1 1 | 1 48 ² P-4p' 2D° | 4486.66
4391.84 | A
A | 3
3 | 15.80
15.83 | 18.55
18.64 | 11-13
23-23 | • | | 9672.34
9649.94
9680.80 | B
B
B | (10)
(12)
(10) | 8.37 | 9.65
9.65
9.65 | 1-2
3-3
3-3
 | 3663.47
3314.50 | A
A | 0 | 14.01 17.3
14.01 17.7 | 2 15-1 | 2
1 48 ² P-4p' 2P°
2 (17) | 4400.41 | A
A
A | 3
2
00 | 15.78 | 18.58
18.55
18.64 | 15-15
5-35
15-85 | • | | 9697.33 | В | (8) | 8.37 | 9.65 | 3-2 | 3 ³ D°-4p¹ ³ D† | 3272.25
33 29. 3 | D
A | 00 | 13.94 17.7
14.01 17.7 | 1 15- | 17) | | A . | 0
10 | 15.78 | 18.58 | 2 −12 | ; | | 9413.46
9421.93
*9437.11 | B
B | (8)
(8) | 8.37 | 9.69
9.68
9.68
9.68 | 3-3
2-2
1-1 | (18) | 3257.83 | D - | <u> </u> | 13.94 17.7 | | | *4162.698
4153.098
4145.100 | A
A
A | 10
9 | 15.83
15.80 | 18.84
18.80
18.78 | 31-41
21-31
11-21 | (44) | | +9437.11 | Б | | 8.37 | 9.68 | 3-2
 | | 6981.40
7139.79
7256.96 | D
B
B | 4
1
1 | 14.11 15.8
14.10 15.8
14.10 15.8 | 8 3 3 -3
3 2 3 -2 | 3d ⁴ D-4p ⁴ D°
(18) | 4142.291
4217.23
•4189.71 | A
A
A | 8
3
6n | 15.88 | 18.76
18.80
18.78 | 3-13
3-3-3
3-2-25 | •
; | | 11453
11472 | В
В) | (1)
(1n) | 8.38 | 9.46
9.46 | 4-
3- | 3 ⁵ D°-4 ⁵ F
(19) | 7317.03
7164.63 | B
D | 0
2 | 14.09 15.7
14.11 15.8 | 3 3 } _a | | 4168.409
4255.01 | A
B | 5
0 | 15.80
15.88 | 18.76
18.78 | 15-15
35-25
35-15 | , | | 11464
9693.68 | в'
в | (10) | 8.38 | 9.46 | 0-
3-3 | 3 ⁵ p°-4p' ³ p' | 7273.20
7337.61
6957.95 | B
B
D | 1
0
1 | 14.10 15.8
14.10 15.7
14.10 15.8 | 0 24-1
8 14-
8 24-3 | 1 | 4213.5
4028.791 | A
A | 00
7 | | 18.76
18.94 | | | | 9739.74
9741.93 | B
B | (8)
(5) | 8.38 | 9.69
9.69 | 2-2
3-2 | (30) | 7124.28
7236.91 | D
B | 0 | 14.10 15.8
14.09 15.8 | 3 1 } ⊸2 | 1 | 3990.94
3963.13 | A
A | 3 2 | 15.83
15.80 | 18.92
18.91 | 3 1 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (45) | | 8874.53
8884.23 | | (9)
(7)
(5)
(3) | | 9.77 | 4
3 | 3 ⁵ D°-5 ⁵ F†
(21) | 6305.51
6397.30 | D
D | 10
8 | 14.11 16.0
14.10 16.0 | 7 3] 2
3 2 3 1 | 3d ⁴ D-4p ⁴ P° | 3946.98
4050.11
4003.89 | A
A
A | 1
1
1 | 15.88 | 18.91
18.92
18.91 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | †
†
† | | 8882.47
8880.70 | | (5)
(3) | 8.38
8.38 | | 2-
1- | | 6413.71
6286.35
6384.89 | D
D
D | 9
8
8 | 14.10 16.0
14.10 16.0
14.10 16.0 | 7 2] _2 | 1 | *3970.69
3950.42
3939.49 | A
A
A | 00
00 | 15.80 | 18.91
18.92
18.91 | 13-3
13-3
2-15 | | | 7923.95
7931.70 | A | 15
10 | 8.38
8.38 | 9.94 | 4
3 | 3 ⁵ D°-6 ⁵ F†
(22) | 6398.05
6274.34 | D
D | 8 | 14.09 16.0
14.10 16.0 | 3]
7 1 3 -2 | 1 | | _ | | | | _ | | | 7930.33
7928.84 | | 8
6 | 8.38
8.38 | | 2-
1- | | 6369.34
6092.13 | D
D | 4
2 | 14.09 16.0
14.10 16.1 | 3 ģ –1
3 2—1—1 | 2
1 3d ⁴ D−4D ² D° | 4792.02
4835.85
4883.73 | A
A
B | 00
1 | 16.03 | 18.64
18.58
18.55 | 25-25
15-15 | 4p ⁴ P°-5s ⁴ P
(46) | | Stronge | st Unc | lassifie | ed Line | s of <u>S</u> | Ī | | 5895.89
6080.85 | D
D | Õ
1 | 14.10 16.2
14.10 16.1 | 0 2 3 - 2
3 1 2 - 1 | 3d ⁴ D-4p ³ D° (20) | 4901.30
4900.47 | C | 1
3 | 16.07
16.03 | 18.58
18.55 | 23-13
13-3 | | | 9958.90
8585.60 | A | (8)
10 | | | | | 5951.30
5940.69 | D
D | 3
1 | 14.10 16.1
14.10 16.1 | 8 2] -1
8 1] -1 | 3d ⁴ D-4p ⁴ S° (31) | 4729.45
*4819.60 | A | 0
2n | 16.02 | 18.64
18.58 | 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | | 7629.82
7578.96
4993.51 | A | 10
10
8 | | | | | 5927.15
3845.21 | D
A | 00 | 14.09 16.1 | | 2 3d ⁴ D-4p' 2F° | 4590.8
4533.3 | A
A | 00
00
00 | 16.03 | 18.75
18.75 | 23-13
13-13 | 4p ⁴ P°-5s ² P
(47) | | 3867.56 | | <u>8</u> | | | | | 3782.6 | A | 00 | 14.10 17.3
14.11 17.3 | | (22)
3 3d*D-4p' ² D° | *4552.378 | A | 7 | 16.07 | 18.75 | | 4p ⁴ P°-4d ⁴ F
(48) | | | | | | | | | | • | | | | (23) | 4495.9
4509.0 | A | 00
00 | | 18.78
18.76 | 1 3-2 3
2-1 2 | (48) | | IA | | Int | E P
Low High | J | Multiplet
(No) | Labo
I A | ratory
Ref | Int | E P
Low High | J | Multiplet
(No) | IA | | Int | E P
Low High | J | Multiplet (No) | |---|-------------------------|----------------------------|---|---|--|---|-----------------------|---|--|---|--|---|-----------------------|---|--|---|---| | II 00
394.432
367.802
369.76
318.68
382.63
378.54
333.84 | 3 A
A
A
A
A | 6
5
3
4
3
3 | 16.07 18.94
16.03 18.93
16.03 18.91
16.07 18.93
16.03 18.91
16.03 18.91 | 3-13
13-13
13-13
23-13 | | 8 III I
3632.022
3709.371
3747.90
3710.42
3750.74 | A
A
A
A | 6
5
3
0
1 | 17.67 21.07
17.67 20.99
17.67 20.99
17.67 20.99
17.67 20.96 | 3-3
1-2
0-1
2-3
1-1 | 3d ³ pe-4p ³ p
(1) | 8375.95
8585.96
8575.25
8212.00
8333.29
8428.25
7980.58 | A
A
A
A
A | 150
100
75
100
100
100 | 8.88 10.36
8.95 10.39
8.99 10.43
8.88 10.39
8.95 10.43
8.99 10.45
8.88 10.43 | 2 - 3 - 3 - 3 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 | 4s ⁴ P-4p ⁴ D°
(2) | | 391.45
392.321
792.46
360.64
302.65
350.93 | В | 1
5
5
3
1
2 | 16.03 18.91
16.07 19.24
16.02 19.28
16.07 19.26
16.03 19.28
16.03 19.24
16.03 19.26 | 12- 2
32-32-32-32-32-32-32-32-32-32-32-32-32-3 | 4p ⁴ P ⁶ -4d ⁴ P
(50) | 3369.49
3370.38
3387.13
3324.01
3367.18
3234.17
3233.24 | A
A
A
B
B | 1
2
2
3
3
4
3
3
(4)
3
3 | 17.67 21.33
17.67 21.33
17.67 21.31
17.67 21.38
17.67 21.48
17.67 21.48 | 1-1 | (2) 3d ³ P°-4p ³ s (3) | | A
A
A
A | 50
75
50
25
75
60 | 8.95 10.45
8.88 10.45
8.95 10.49
8.88 10.49
8.95 10.45
8.99 10.49 | 19-29
2-12 | | | 776.80 | A | | 16.07 19.33 | _ | (51) | 3231.10
4253.593 | B | 9 | 18.17 21.07 | | 48 ³ P°-4p ³ D | 7414.10
7717.57
7924.62 | A
A | 90
100
100 | | | 4s ⁴ P-4p ² P° † (4) | | 824.07
819.60
700.21 | A
A | | 16.20 18.75
16.13 18.69
16.13 18.75 | 12-12
12-12 | (52) | 4284.991
4332.71
4361.53
4340.30 | A
A
A | 5
4
2
2 | 18.11 20.99
18.11 20.96
18.17 20.99
18.11 20.96 | 1-3
0-1
3-3
1-1 | (4) | 7256.63
7547.06
7744.94 | A
A | | 8.88 10.58
8.95 10.58
8.99 10.58 | | | | 497.88
415.37
058.7 | A
D
A | 00
00 | 16.20 18.94
16.13 18.92
16.20 19.24 | 24-34
12-22
24-24 | 4p ² D ² -4d ² D
(53)
4p ² D ² -4d ⁴ P | 4418.84
3838.316
3837.80 |
A
A
A | 00
6
3 | 18.17 20.96
18.17 21.38
18.11 21.33 | 2-1
2-2
1-1 | 48 ³ P°-4p ³ P | 4438.48
4403.03
4389.76 | A
A | 20
15
25 | | | 48 ⁴ P-5p ⁴ P°† (6) | | 970.69
933.294 | A
4 A | 1
9 | 16.20 19.24
16.13 19.24
16.20 19.33
16.13 19.27
16.20 19.27 | 1½-3½
3½-3½ | (54)
4p ² D ⁰ -4d ² F | 3899.09
*3860.64 \$
3778.90 | P
A
A | 3
1
2 | 18.17 21.33
18.11 21.31
18.11 21.38
18.11 21.33 | 3-1
1-0
1-3 | (5) | 4475.31
4379.90 | A | 15
20 | | | 4s ⁴ P-5p ⁴ D°† (7) | | 923.483
009.39
616.916 | A
A | Ó
5 | 16.20 19.27
16.20 19.61
16.13 19.59 | 32-32
32-32 | 4p ³ D°-4d ³ D | 3831.85
3717.775
3662.005 | A
A | 6 | 18.17 21.48
18.11 21.48 | 0-1
8-1
1-1 | 4s ³ P°-4p ³ S
(6) | 4363.30
4369.52
4326.44 | A
A | 20
15
15 | | | 4s ⁴ P-5p ² D° †
(8)
4s ⁴ P-5p ⁴ S° †
(9) | | 567.171
006.71 | L A | (2) | | _ | | 3656.61
4364.73 | A - | 1 | 18.11 21.48 | 0-1

3-3 | 3d ³ D°-4p ³ D | 4323.35
10091.64 | A | 20
 | | _ | | | 126.13
198.89
492.3 | B
B | 3
1
00 | 16.18 18.64
16.18 18.58
16.18 18.55
16.18 18.93 | | . 4 4- | 4467.83
4499.29
4478.48
4527.96 | B
B
A
B | (1)
(0)
(0) | 18.23 20.99
18.22 20.96
18.24 20.99
18.23 20.96 | 3-3
1-1
3-3
3-1 | (7) | 10392.45
9744.33
9592.20 | A | 5
30
75 | | | 4s ² P-4p ⁴ D° † (10) | | 032.812
998.79 | B A | 7
3 | 16.18 19.24
16.18 19.26
16.18 19.28 | 13-23 | (58)
4p48°-4d4P
(59) | 4354.56
4439.87 | A | 3 | 18.23 21.07
18.22 20.99 | 2-3
1-2 | 3 3- | 9875.95
9288.82 | A
A | 50
60 | 9.16 10.45
9.24 10.49
9.16 10.49 | | | | 979.86
922.63 | A | | 16.19 19.33 | | ? ² Y°-4d ² F | 3928.615
3983.77
3985.97
3920.37 | A
A
A
B | 6
3
2
(0) | 18.24 21.38
18.23 21.33
18.22 21.31
18.23 21.38 | 3-3
3-1
1-0
3-3 | 3d ³ D ^e -4p ³ P
(8) | 9073.15
9632.37
8912.88 | A
A | 50
30
40 | 9.16 10.52
9.24 10.52
9.16 10.55 | | | | 400.67
518.74 | E
D |
0
3 | 16.47 18.75
16.45 18.69
16.47 18.69
16.45 18.75 | _ | (60) | 3961.55
3794.69
3774.52 | A
A
A | 2
2
00 | 18.22 21.33
10.38 21.48
10.37 21.48 | 1-1
2-1
1-1 | 3d ³ D°-4p ³ 8 | 9045.40
8550.46
9452.06 | A
A
A | 40
20
75 | | | 4 ₈ 2 _{P-4p} 2 _P 6
(13) | | 559.06
362.69 | D
B | 1 | | - | | 4613.47
4677.67 | A
A | 00 | 18.32 20.99
18.32 20.96 |
1-3
1-1 | 4 2 | 8686.28
9197.49
4526.20 | A
A | 30
25
30 | 9.16 10.58
9.24 10.58 | | | | 125.37
522.64
138.98 | B
B
D | 0 | | | 4p' 2F9_4d4F
(62) | 4099.25 | A
A | 00 | 18.32 21.33
18.32 21.31 | 1-1
1-0 | 4 . 2 | 4601.00
4469.37
4661.22 | A
A
A | 20
18
18 | 9.16 11.89
9.24 11.92
9.16 11.92
9.24 11.89 | 12-12
12-12
2-12 | (15) | | 886.43
189.71 | D
A | 00
6n | 17.32 19.33
17.32 19.27 | 31-31 | 4p1 2p0_4d12 | r | A _ | 00 | 18.32 21.48 | 1-1
- | 4s ¹ pe, 4p ³ s
(12) | | | | | | | | 165.11
180.7
174.042 | A
A
A | 00
4 | 17.31 20.27
17.32 20.27
17.31 20.27 | 33-23
33-33
32-32 | (64) | 3136.00
3185.16 | B
B
B | (3)
(3) | 21.38 25.32
21.38 25.26
21.38 25.51 | 2-3
2-3
2-2 | (13) | C1 II
4794.54
4810.06 | IP3 | 3.70
250
225 | Anal A List:
13.32 15.89
13.32 15.88 | | v 1944
4s ⁵ s°-4p ⁵ p
(1) | | 162.698
146.94
162.39 | A
A
A | 10
3
2 | 17.32 20.29
17.31 20.29
17.32 20.29 | 31-41
21-31
31-31 | 4p' 2pe_4d' 2
(65) | G | | | | | (14) | 4819.46 | A | 300 | 13.32 15.88 | 2-1
- | | | 359.18
357.42
349.92
330.98 | A
A
A | 2
3
0
4 | | 2] -3]
- | 4p1 2p0_4d1 2 | F 4803.81
4283.70
4164.96
4148.91
3 4127.54
4111.56 | A
A
A
A
A | 0
0
0
0
1
0
3 | ed Lines Attri | Duted | to <u>8 111</u> | 5483.85
5443.48
5456.87
5423.58
5444.85
5457.08
5424.36
5444.99
5457.47 | A A A A A A A | 150
100
50
100
60
75
25
10 | 13.62 15.89
13.62 15.88
13.62 15.89
13.62 15.89
13.62 15.88
13.62 15.88
13.62 15.88
13.62 15.88 | 4-3
3-2
3-1
3-3
3-3
1-1
3-3
1-2
0-1 | 3d ⁵ D ⁶ -4P ⁵ P
(2) | | 33.16
33.30
323.16
323.15
018.70
093.25
133.02 | B
B
B
B
B | 1
0
1
1
0
0 | 18.84 20.34
18.80 20.30
18.78 20.38
18.76 20.36
18.80 20.34
18.78 20.30
18.76 20.28 | 33-33
23-23 | 4d ⁴ F-5p ⁴ D ⁹
(68) | 4099.44
4095.17
4064.45
3997.97
3748.73
3699.37 | A
A
A
A | 1
0
8
0
0 | | | | *5217.93
5221.34
*5217.93 | A
A
A | 150
75
150 | 13.90 16.27
13.90 16.27
13.90 16.27 | 1-2
1-1
1-0 | 4s ³ S°-4p ³ P | | 85.26
005.24 | B
B | 1 | 18.78 20.34
18.76 20.30 | 13-13
23-33
13-32 | | 3697.88
3638.15
3626.53 | A
A
A | 0 | | | | 3353.39 | A | 125 | 14.38 17.96 | - | 3s3p5 1pe_4p: 1p
(4) | | 325.15
.79.31
.14.93
.85.29
.89.86
.97.85 | B
B
B
B | a
0
0
0 | 18.80 20.30
18.78 20.28
18.76 20.29
18.78 20.30
18.76 20.28
18.76 20.30 | 35-35
35-15
15-35
15-15
15-25 | 4d ⁴ F-5p ⁴ P° (69) | 3549.72
3497.340 | A
A | 5 | | | | 8360.63
3750.00
3767.57
3774.25
3769.13 | A
A
A
A | 30
30
35
25 | 14.79 16.27
14.79 18.08
14.79 18.06
14.79 18.06
14.79 18.06 | 3-2
3-3
2-2
1-1
3-2 | 3d ³ D ^e -4p ³ P †
(5)
3d ³ D ^e -4p ¹ 3D
(6) | | 45.05
65.02 | B
B | 00 | 18.78 20.37
18.76 20.37 | | 4d ⁴ F-5p ⁴ S ⁶
(70) | <u>S IV</u> I 3097.46
3117.75 | P 47.1
A
A | Ans
5
3 | 22.40 26.38
22.40 26.36 | Aug | 48g_48pe | 3768.13
3748.46
3773.68 | A
A
A | 18
15
20 | 14.79 18.06
14.79 18.08
14.79 18.06 | 2-1
2-3
1-2 | | | 95.27
324.11
91.05 | D
A
A | 6
1
3n | 3911.3
3831.4
3811.8 | 2 A
1 A
0 A | 3 | | P 12.9 | Ans | | Oct | 1944 | 3650.13
3658.38
3673.83
3659.84
3668.03 | A
A
A
A | 30
20
18
18
30 | 14.79 18.17
14.79 18.16
14.79 18.15
14.79 18.16
14.79 18.15 | 3-4
2-3
1-2
3-3
2-3 | 3d ³ D ^e -4p ⁱ ³ F† (7) | | 61.88
49.547
164.425
360.49
.85.95
.74.300 | A
A
A | 2
5
6
1
1
6 | 3730.6
3678.1
3385.8
3371.9
3368.0
3356.4 | 4 A A A A A A A A A A A A A A A A A A A | 1
1
3
1 | 9131.10
9393.81
9486.89
8948.01
9191.67
9584.77
9702.35 | A
A
A
A | 75
50
25
50
60
50
40 | 8.88 10.24
8.95 10.26
8.99 10.29
8.88 10.26
8.95 10.29
8.95 10.24
8.99 10.26 | 3 - 3 - 3 - 1 - 1 - 3 - 1 - 2 | 48 ⁴ P-4p ⁴ P° (1) | 3333.64
*3315.44
3312.78
3332.42
3320.14 | A
A
A
A | 40
100
15
15
30 | 14.79 18.49
14.79 18.51
14.79 18.53
14.79 18.49
14.79 18.51 | 3-3
3-1
1-0
3-3
1-1 | 3d ³ D°-4p ¹ ³ P† | | 20
Labo | rator | 17 | E P | J Multiplet | | rator; | ע א
y | EP | J Multip | | | ratory | E P | J | Multiplet | |--|-------------|-------------------|--|---|--------------------------------|-------------|-----------------|---|--|--------------------------|--|------------------------------|-----------------------------------|--
---| | I A | Ref | | Low High | (No) | IA | Ref | Int | Low High | (No) |) | I A | Ref Int | Low High | | (No) | | | ntinu | | 15.00 18.22 | 2-3 3d' ¹ D°-4p' ¹ F | Cl II .co: | ntinu
A | ea
75 | 16.32 18.17 | 5-4 3d 3go- | _4p'3p | 3833.40 | A 200 | | 4-5 | | | 3829.27
3147.86 | A
A | 15
20 | 15.00 18.92 | 2-2 3d' 1D°-4p' 1D
(10) | 6686.04
6713.43
6653.75 | A
A
A | 45
40
25 | 16.32 18.16
16.32 18.15
16.32 18.17 | 4-3 (38)
3-2
4-4 |) | 3827.62
3820.25
3838.37 | A 150
A 100
A 30 | 18.15 21.38
18.17 21.39 | 3-4
2-3
4-4 | (69) | | 3161.44 | A | 30 | 15.02 18.92 | 3-2 3d' ¹ F°-4p' ¹ D
(11) | 6681.03 | Α . | 15 | 16.32 18.16 | 3-3
-
2-1 4s" ³ po- | _4n# 3g+ | 3830.80
3615.09 | A 15 | | 3–3
4–3 | 4ը՝ 3 <u>բ. 44</u> ։ 3ը•†
(70) | | 4995.52
4970.12 | A | 60
50 | 15.61 18.08
15.58 18.06 | 4-3 3d ¹ ³ F°-4p ¹ ³ D1
3-2 (12) | 4924.83
4907.17 | A
A | 15 | 17.01 19.53 | 1-1 (39) |) | 4235.49 | A 25 | 18.22 21.14 | 3-2 | 4pi 1F-58i 1De | | 4970.12
4925.17
4936. 9 9 | A
A
A | 15
25 | 15.56 18.06
15.58 18.08 | 2-1
3-3 | 4781.32
4768.68 | A
A | 75
150 | 17.02 19.60
17.01 19.60 | 2-3 4s" 3pe-
1-2 (40)
0-1 | | 3781.23 | A 30 | 18.22 21.49 | 3–3 | (71)
4p' 1 <u>F_4d</u> ' 1F°
(72) | | 4924.28 | A | 18
25 | 15.56 18.06
15.61 18.17 | 2-2
4-4 3d' ³ F°-4p' ³ F | 4771.09
4785.44
4778.93 | A
A
A | 40
50
45 | 17.01 19.59
17.02 19.60
17.01 19.59 | 2-2
1-1 | | 3231.75 | A 12 | 18.22 23.04 | 3-2 | 4p' 1r_4d' 1p° (73) | | 4819.79
4781.82
4755.64
4836.79 | A
A
A | 50
50
20 | 15.58 18.16
15.56 18.15
15.61 18.16 | 3-3 (13)
2-2
4-3 | 4490.00
4504.27 | A
A | 50
20 | 17.02 19.77
17.01 19.75 | 2-2 48" ³ po_ | | 4811.57
4857.04 | A 12 | | 2-3
1-2 | 4p ¹ 3P ₋₅₈ ¹ 3po+
(74) | | 4798.40
4765.30
4739.42 | A
A
A | 15
10
10 | 15.58 18.15
15.58 18.17
15.56 18.16 | 3-2
3-4
2-3 | 4519.19
4536.78
*4475.28 | A
A
A | 18
20
20 | 17.02 19.75
17.01 19.73
17.01 19.77 | 2-1
1-0
1-2
0-1 | | 4721.43
4748.67
4738.41 | A 25
A 20
A 10 | 18.51 21.11 | 2-3
1-2
1-1 | 4p! 3P_5d ³ D° †
(75) | | 3092.22
3071.35 | A
A | 50
40
40 | 15.61 19.60
15.58 19.60
15.56 19.59 | 4-3 3d 3Fe-4p" 3p.
3-2 (14)
3-1 | *4497.30
*4259.52 | A
A | 18
35 | 17.01 19.75
17.03 19.93 | 3-1 4s" 3pe. |) | 3990.19
4020.06 | A 30 | 18.49 21.59 | | 4p ¹ 3p_4d ¹ 3pe †
(76) | | 3058.00
3053.74 | A
A | 10 | 15.56 19.60 | 3-3
- | 4208.03
4191.59 | A
A | 30
15 | 17.03 19.95
17.01 19.96 | 3_2 4s" 3pe
1_1 (43) | -4p* 3p | 4036.53 | A 10 | | 0-1 | գր ^{ւ 3} թ_4վ։ 3 ց ։ | | 5333.70 | A | 15 | 15.64 17.96 | 1-1 4s ^{1 3} p°-4p ^{1 1} p-
(15) | 4204.54
4188.82
4195.11 | A
A
A | 18
15
18 | 17.02 19.96
17.01 19.96
17.01 19.95 | 2-1
1-0
1-2 | | 3618.88
3639.19
3648.07 | A 15
A 18
A 10 | 18.51 21.90 | 2-1
1-1
0-1 | (77) | | 5078.25
5103.04 | A
A | 150
125 | 15.65 18.08
15.65 18.06 | 3-3 4e' ³ De_4p' ³ D
2-3 (16) | 4185.61 | Ä | 20 | 17.01 19.96 | ō_ī
- | | 3568.04 | A 20 | | | 4p ⁴ 3p_4d 1 3pe+ | | 5099.30
5113.36
5104.08 | A
A
A | 100
40
25 | 15.64 18.06
15.65 18.06
15.65 18.06
15.65 18.08 | 1-1
3-2
3-1
2-3 | 6831.62
4771.66 | A
A | 30
20 | 17.11 18.92
17.11 19.70 | 1-3 4s" 1pe
(44)
1-3 4s" 1pe |) | 3576.00
3603.72
3587.78
3604.51 | A 15
A 10
A 12
A 15 | 18.51 21.94
18.51 21.95 | 2-1
1-0
1-2
0-1 | (16) | | 5068.10
5098.34 | A
A | 10
20 | 15.64 18.06 | 1-2 | 4399.14 | A | 15 | 17.11 19.92 | 1-1 4s 1p |)
_4p" 1p | | | | - | ant 3mat A | | 4896.77
4904.76
4917.72 | A
A
A | 200
135
125 | 15.65 18.17
15.65 18.16
15.64 18.15 | 3-4 4e ^t 3pc_4pt 3pc
2-3 (17)
1-2 | 4943.24 | A | 15 | 17.20 19.70 | _ (46)
1-3 3d" ¹ P°- | | 7578.07 | A 10 | 18.64 20.27 | | 3d ¹ ³ D°-x ¹ †
(79) | | 4914.32
4922.14 | A
A | 13
20 | 15.65 18.16
15.65 18.15 | 3–3
2–2 | 4544.48 | A | 10 | 17.20 19.92 | 1-1 3d" 1P0- |)
-4p" 1p | 5568.81 | A 15 | | | 4p' 1 _{D-5s'} 1 _D o (80)
4p' 1 _{D-4d'} 3 _F o | | 4792.04 | A | 12 | 15.65 18.22 | 2-3 4s' 3p°-4p' 1 _F ' (18) | 3843.26 | A | 100 | 17.20 20.41 | 1-0 3d" 1P0
(49) | -40" ¹ 5 | *5175.85
3954.21 | W 30 | | 2-2
2-2 | (81)
_{4p} , 1 _{D-4d} , 1 _D , | | 4343.62
4307.42 | A
A | 100
75 | 15.65 18.49
15.65 18.51 | 3_2 4s' 3p°_4p' 3p
2_1 (19) | *5175.8 5 | A | 20 | 17.31 19.70 | 2-2 3d" ¹ D°-
(50) | -4p" ¹ D | 4224.92 | A 15 | 19.60 22.52 | -
3-2 | (82)
4p [#] 3D–5e [#] 3p• ↑ | | 4291.76
4336.26
4304.07 | A
A
A | 50
45
40 | 15.64 18.52
15.65 18.49
15.64 18.51 | 1-0
3-3
1-1 | 4740.40 | A | 150 | 17.31 19.92 | 2-1 3d" 10°.
(51) | 40" 1p | *4235.49 | A 25 | 19.60 22.51 | 2-1 | (83) | | 3123.72
3121.62 | A
A | 15
10 | 15.65 19.60
15.65 19.60 | 3_3 4g' ³ D°_4p" ³ D
2_2 (20) | † 4372.91
4309.06 | A
A | 80
50 | 47.45 30.27
17.41 30.27 | 3-2 3d" ³ p°
2-2 (52) | | 3868.62
3861.95
3854.75 | A 40
A 20
A 15 | 19.60 22.80
19.59 22.80 | 2-3
1-2 | 4р" З _{D—4d} " З ую
(84) | | •3119.82 | A | 12 | (15.65 19.60
15.64 19.60 | 2-3
1-2 | *4259.52 | A
A | 35
35 | 17.37 20.27
17.45 21.51 | 1-2
3-2 3 4" ³D o. | -x" | 3864.60 | A 15 | 19.60 22.80 | 3 -3
 | | | 3045.00 | A | 10 | 15.65 19.70 | 3_3 4s 3p 4p 1p
(31) | 3006.98
2982.78 | A
A | 20
18 | 17.41 21.51
17.37 21.51 | 2-2 (53)
1-3 | | 4482.03
•4497.30 | A 10 | 19.77 22.51 | 2-3
3-1 | 3p _{-5s} , 3pe †
(85) | | 2996.63
3006.05
3018.82 | A
A
A | 40
20
12 | 15.65 19.77
15.65 19.75
15.64 19.73 | 3-2 4s' 3p°- 3p†
2-1 (22)
1-0 | 6759.42 | A | 35 | 17.78 19.60 | -
4-3 3d" ³ F°- | 4p* 3p1 | *4475.28 | A 20 | | 1-0 | | | 3004.39 | Ā | 10 | 15.64 19.75 | 1-1 | 6850.21
6952.13 | A
A | 40
25
10 | 17.80 19.60
17.82 19.59
17.80 19.60 | 3-2 (54)
2-1
3-3 |) - | Strongest | Unclassi
A 18 | fied Lines of <u>Cl</u>
3610.0 | | . 12 | | 5634.84 | A | 18 | 15.77 17.96 | 1-1 3d' ¹ P°_4p' 1P
_ (33) | 6841.86 | A | | | - | | 5356.14
4584.28 | A 10 | 3479.8
3203.0 | 2 A
5 A | . 30
. 20 | | 4253.51
4241.38 | A
A | 75
60 | 15.89 18.79
15.88 18.79 | 3-2 4p ⁵ p-5s ⁵ g°
3-2 (24) | 3883. 8 0
3688.44 | A | 12
15 | 17.96 21.14
17.96 21.30 | 1-3 4p' ¹ p_!
(55)
1-3 4p' ¹ p |) . | 4157.82
3981.94
3793.75 | A 25
A 15
A 25 | 3170.2 | 3 A | . 15 | | 4234.09 | A | 50 | 15.88 18.79 | 1–3 | 3022.93 | A. | 30 | 17.96 22.04 | (56)
1-2 4p' 1p_4 |)
4d' 1D° | | | | | | | 3860.80
3850.97
3845.42 | A
A
A | 150
100
50 | 15.89 19.09
15.88 19.09
15.88 19.09 | 3-4 4p ⁵ p-4d ⁵ p°
2-3 (25)
1-2 | 6399.41 | A | 10 | 18.03 19.95 | _ (57)
2_2 3d" 3p°. | _4p" 3p | † <u>Cl III</u> | I P 39.7 | Anal B List | C No | v 1944 | | 3860.98
3851.38
3845.69 | A
A | 100
75
75 | 15.89 19.09
15.88 19.09
15.88 19.09 | 3-3
2-2
1-1 | 6522.38 | A | 10 | 18.08 19.97 | _ (58)
3-3 4p' ³ D- | • | 3602.10
3612.85 | B 9 | 21.56 24.98
21.49 24.91 | 2 1 - 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4s ⁴ P-4p ⁴ D° † | | 3861.40
3851.69 | A
A
A | 50
30 | 15.89 19.09
15.88 19.09 | 3-2
2-1 | 4147.09 | A | 30 | 18.08 21.06 | 3-3 4p' 3D- |)
5s'3D°† | 3622.69 | B 7 | 21.45 24.85
21.56 24.91 | 3-13
33-23 | (1) | | 3845.84 | A | 30 | 15.88 19.09 | 1-0 | 4130.86
4133.66
4134.00 | A
A
A | 25
20
12 | 18.06 21.05
18.06 21.05
18.06 21.06 | 2-2 (60)
1-1
2-3 |) | 3670.28
3656.95
3705.45 | B 7
B 7
B 6 | | 15-15
5- 5
15- 5 | | | 6094.65 | A | 100 | 15.93 17.96 | 3-1 4e' 10°-4p' 1p
(26) | 4079.88 | A | 15 | 18.08 21.11 | 3-3 4p 3p | 5d ³ Do+ | *3340.42 | в 9 | 21.56 25.25 | | 48 ⁴ P-4p ⁴ P° † | | 5790.50
5392.12 | A
A | 25
100 | 15.93 18.06
15.93 18.22 | 2-1 48' 10°-4p' 30
(27)
3-3 48' 10°-4p' 1F | † 4052.22
3805.24 | A
A | 12
75 | 18.06 21.11 | 3-4 4p' ³ D-4 | 4d' 3F0 | 3329.06
3387.60
*3340.42 | B 8
B 6
B 9 | 21.56 25.20 | 23-23
13-13
23-13
13-3 | | | 4132.48 | A | 200 | 15.93 18.92 | (28)
2-2 4s' 1p°-4p' 1p
(29) | 3798.80
3809.51 | A
A | 50
40 | 18.06 21.31
18.06 21.30 | 2-3 (62)
1-3 |) | 3283.41
3289.80 | B 6 | | 1\$-2\$
\$-1\$ | | | 3276.81 | A | 40 | 15.93 19.70 | 2-2 4e' 10°-40" 10
(30) | 3818.40
3810.10 | A | 30
30 | 18.08 21.31
18.06 21.30 | 3-3
2-2 | _ | 3191.45
3139.34 | B 9 | | 2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 4s ⁴ P-4p ⁴ S° (3) | | 3096.72 | A | 25
 | 15.93 19.92 | 2-1 4s' lpo-4p" lp
_ (31) | 3733.73
3717.94 | A
A | 10
15 | 18.08 21.39
18.06 21.38 | 3-4 4p' 3p
2-3 (63) |) | 3104.46 | В 6 | 21.45 25.42 | $\frac{1\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-1\frac{1}{2}}$ | | | 5285.48 | A | 30 | 16.27 18.60 | 3_3 4p3p_3d 3pe (32) | 3509.39 | A
A | 40
40 | 18.08 21.59
18.06 21.58 | 3-3 4p' 3p_4
2-3 (64) | 4d' ³ D°
) | 3925.87 | A 5 | | | 46 ² P-4p ⁴ P° † | | 5173.15
5189.70
5162.34 | A
A
A | 25
25
10 | 16.27 18.65
16.27 18.64
16.27 18.66 | 2-3 4p ³ p-3d' 3p° 4
1-2 (33)
0-1 | 3513.22
3526.13
3513.69 | A
A
A | 35
30 | 18.06 21.58
18.08 21.58 | 1-1
3-2 | | 3720.45
3748.81 | A 8 | 22.11 25.42
22.02 25.31 | 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 4s ² P-4p ² D• † | | 5193.03 | A | 10 | 16.27 18.64 | 2-2 | 3505.44
3508.94 | A
A | 12
12
13 | 18.06 21.58
18.06 21.59
18.06 21.58 |
2-1
2-3
1-2 | | 3320.57
3259.32 | A 7 | 22.11 27.42
22.02 27.39 | $1\frac{1}{2}-1\frac{1}{2}$ | 4s ² P-4p ² P°
(6) | | 4585.03
•4572.13 | A
A | 15
100 | 16.27 18.96
16.27 18.97 | 2-1 4p ³ P-3d ¹ ³ S ^o †
(34)
2-1 4p ³ P-5s ³ S ^o | 3189.04 | A | 20 | 18.08 21.95 | 3-2 4p' 3p(65) | 4d! 3po+ | 3336.16
3244.44 | A 5 | 22.11 27.39
22.02 27.42 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 4569.42
*4572.13 | A
A | 50
100 | 16.27 18.97
16.27 18.97 | 1-1 (35)
0-1 | 4276.51
4270.61 | A | 30
25 | 18.17 21.06 | 4-3 4p' 3F-5 | 581 300 1 | 3991.50 | A 7 | 22.16 25.25 | -
21-21
21-11 | 3d ⁴ P-4p ⁴ P° † | | 3949.96 | A | 10 | 16.27 19.39 | 2-2 4p ³ p _{-3p} 5 ₄₈ 3po- | 4261.22 | A | 30 | 18.16 21.05
18.15 21.05 | 3-2 (66)
2-1 | | 4059.07
4104.23
4018.50 | A 6
A 5
A 6 | 22.18 25.19 | 13-25 | (7) | | 3329.12
*3315.44
3307.90 | A
A
A | 150
100
50 | 16.27 19.97
16.27 19.99
16.27 20.00 | 2-3 4p ³ p-4d ³ p•
1-2 (37)
0-1 | 4205.07
3913.92 | A | 10 | 18.17 21.11 | 4_3 4p* 3r_5
(67) |) | 4106.83 | A 5 | 22.19 25.20 | ģ-1호 | 744D 4-2004 | | 3316.86
3306.45 | A
A | 50
40 | 16.27 19.99
16.27 20.00 | 2-2
1-1 | 3916.70
3917.57 | A
A
A | 30
20
18 | 18.17 21.32
18.16 21.31
18.15 21.30 | 4_4 4p' 3p_4
3_3 (68)
3_2 |)
eq. A <u>r</u> ot | 3779.35 | A 5 | 23.16 25.42 | ద ర్ల చ ెర్డి
– | 3d ⁴ P-4p ² D°† | | | | | | _ | | | | | | | | | | | | | I A | abora
Re | tory
ef | | Low | P
High | J | Multiplet
(No) | : | | Ref | Int | E P
Low Hig | h | | Multiplet
(No) | | Ref | Int | E P
Low High | J | Multiplet
(No) | |--|----------------------------|------------------|----------------------|----------------------------------|----------------------------------|-------------------------------------|--|--------------------------|--|-------------|-------------------------|--|-----------------------------|---|--|---|------------------|------------------------|---|---|---| | 1 111 | con | tinu | | | | | | | ш.г | 27. | 5 Ana: | l B List | | ct 1 | | A II cont | inue | | | | 4 4 | | 824.4
707.3 | 4 | A
A
-
A | 6 | 22.48 | 27.39 | 12- 2
- | 3d ² D-4p ² F
(9)
4s ¹ ² D-4p ¹
(10) | 43 | 01.02
71.36
32.06
31.02
00.09 | A
A
A | 7
8
5
8
6 | 16.34 19.1
16.35 19.1
16.37 19.2
16.35 19.1
16.37 19.1 | 14 24
18 1 | - \$ | 3d ⁴ D-4p ⁴ P ⁶ (1) | 6643.79
6684.36
6638.24
6639.72
6886.57 | A
A
A
B | 10
8
8
7
6 | 17.55 19.41
17.62 19.46
17.67 19.53
17.70 19.56
17.62 19.41 | 15- 5
35-35 | 3d*F-4p*D*
(20) | | 560.6 | | Ā | 8 | 23.26 | | | (10) | 43
44 | 52.23
60.56 | A | 6
6 | 16.39 19.2
16.37 19.1 | 14 1 | -a‡ | | 6863.52
6756.61 | B
A | 6
5 | 17.67 19.46
17.70 19.53 | 25-25
15-15 | | | 393.4
392.8
386.2 | 19 . | A
A
A | 8 | 23.26
23.26
23.26 | 26.89
26.90
26.90 | 21-21
13-11
21-11 | 4s' ² D_4p'
(11) | 40
39 | 13.87
68.36 | A
A
A | 7
10
10 | 16.39 19.4
16.34 19.4
16.35 19.4 | 18 <u>1</u>
11 3
16 2 | -12
-31
-21 | 3d ⁴ D-4p ⁴ D° | 7077.03
6990.16 | A
A | 1
2
6
3 | 17.67 19.41
17.70 19.46
17.62 19.60
17.67 19.68 | $2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 2\frac{1}{2}$ | 3d ⁴ F-4p ² D° | | 683.3 | 9 | A | 5 | 24.07 | 27.42 | 3] - 1] | 3d' ² D-4p' | 38 19 45
39 | 44.27 | A
A
A | 7
6
8 | 16.37 19.5
16.39 19.5
16.34 19.5 | 56 | -11
- 1
-21
-12 | | *6138.67
6399.23
6239.73 | A
A
A | 4 2 | 17.70 19.68 | $1\frac{2}{2}-1\frac{3}{2}$ | • | | 608.2 | 31 . | A - | 5 | 24.23 | 26.89 | -
3 }- 2 } | 3d' 2F-4p' | SD+38 | 91.97
75.26
38.82 | A
A
A | 7
7
7 | 16.35 19.1
16.37 19.1
16.35 19.1 | 56 1 | -1
- 3
-3 | | 6509.16
6120.12 | A
A | 00
00 | 17.70 19.60
17.70 19.72 | 1출-2출
1출- 출 | 3d4F-4p2P° | | | | | | | | | | 39 | 92.06
31.24 | A | 7
6 | 16.37 19.
16.39 19. | 53 | -2 1
-1 2 | | 3594.41 | A | 00n | | | (22)
3d ⁴ F-4p ¹ 2F°
(23) | | 1 IV | Bee | in | roducti | on | | | | | 86.40
14.74 | A
A | 6
3 | 16.34 19.
16.35 19. | 68 2÷ | 3-15 | 3d ⁴ D-4p ² D° (3) | 6808.55 | A | 3 | 17.86 19.68
17.98 19.68 | _
-
1 - 1 - 1 - 1 - 1 | • | | I | I P 1 | .5.69 | Anal | . A I | ist D | June | 1944 | 38
37
•38 | 08.61
35.49
30.43
50.50 | A
A
A | 5
4
5
4 | 16.35 19.
16.37 19.
16.37 19.
16.39 19. | 68 1
60 1 | -23
-13
-23
-12 | | 7284.27
6861.30
6666.36 | A
A
A | 0
4
5 | 17.98 19.78
17.86 19.72 | | | | 122.9
115.3
014.7 | 3115 | | 1000 | 11.50
11.50
11.50 | 13.02 | 2-1
2-3
2-2 | 4s 1°-4p
(1) -4p
-4p | 2 36 | 01.51
92.33 | A
A | 4
0n | 16.35 19.
16.37 19. | 78 2: | -1 | 3d ⁴ D-4p ² Pe | 6437.63
6500.25 | A
A | 3 | 17.86 19.78
17.98 19.88 | \$-1\$
1\$-1\$ | 3d ² P-4p ⁴ S° | | 723.7
7635.1 | 7597
L053 | A
A
A | 200
500 | 11.50
11.50 | 13.10
13.11 | 3-1
3-3 | -4p
-4p | 4 36 5 37 | 31.06
06.94 | A | 0
4
00n | 16.37 19.
16.39 19.
16.39 19. | 73 | -1 | \- / | 6483.10
6103.56 | A
A | 6. | | | (26)
3d ² P-4p ² S°
(27) | | 147.0
1067.2
1965.4 | 3170 | A
A
A | (ào) | 11.50
11.50
11.50 | 13.24 | 2-1
2-2
2-1 | -4p
-4p
-4p | 8
9 34 | 99.49 | A
A | 5 | 16.35 19. | 88 a | 22
}-1= | 3d ⁴ D-4p ⁴ 8° | 4042.20 | A | 1 | | | 3d ² P-4p' 2F• | | 1251 . 1
1200 . 6 | | B
B | | 11.50
11.50 | | 2-1
2-3 | 4s 1°-5p
(2) -5p | 1 35 | 31.22 | A | 3
2 | 16.37 19.
16.39 19. | 88 1·
88 · | -1
-1
-1 | (5) | 3766.13
3556.91 | A
A | 5
5 | 17.98 21.26
17.86 21.33 | 1 1 - 1 1 | (28)
3d ² P-4p' 2p•
(29) | | 190.1
164.1 | 7127
1800 | B
B | (50)
(80) | 11.50
11.50 | 14.44
14.46 | 2-3
2-1
2-3 | -5p
-5p | 3
4 48 | 306.07
33.24 | A
A | 20
6 | 16.57 19.
16.68 19. | 14 3· | 1-2]
5-1 5 | 4s ⁴ P-4p ⁴ P° (6) | 3682.56
3634.83 | A
A | 4 | 17.98 21.33
17.86 21.26 | 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1158.5
5947.5
5948.9 | 5043 | В | (40) | 11.50
11.50
11.50 | 14.62 | 3-2
3-1
- | –5p
–5p
–5p | 8 49
9 47
48
50 | 978.16
735.93
847.90
909.35 | A
A
A | 5
15
8
8 | 16.74 19.
16.57 19.
16.68 19.
16.68 19. | 22
18 2
23 1
14 1 | -1
-1
-3 | (0) | 3605.89
3490.89
3611.84 | A
A | 6
4
4 | 17.98 21.41
17.86 21.40
17.98 21.40 | 5-1: | 3d ² P-4p' ² D°
(30) | | 9657.1
3424.6
3103.6
3006.1 | 547
5922 | A | 3500
3000 | 11.57
11.57
11.57
11.57 | 13.04
13.10 | 1-1
1-3
1-1
1-3 | 48 2°-4p
(3) -4p
-4p
-4p | 3
4 43
5 44 | 062.07
348.11
126.01 | A
A | 8
20n
15 | 16.74 19.
16.57 19.
16.68 19. | | \$-1\$
}-3}
}-3 | 4s ⁴ P-4p ⁴ D° (7) | 4609.60
4589.93
4637.25 | A
A
A | 15
9
6 | 18.37 21.04 | 35-35 | • | | 1300 . 1
1272 . 1
1266 . 2
1198 . 1 | 1690
3867 | B
B | (100)
(100) | 11.57
11.57
11.57
11.57 | 14.46
14.47 | 1-3
1-1
1-3
1-0 | 4s 2°-5p
(4) -5p
-5p
-5p | 3 42
4 43
5 43 | 130.18
366.53
331.25
379.74
178.39 | A
A
A | 9
10
10
8
5 | 16.74 19.
16.57 19.
16.68 19.
16.74 19.
16.57 19. | 53 1
56 | | | 4277.55
4131.73
4237.23 | A
A
A | 8
8
7 | 10.33 61.60 | 15-13 | • | | 1044. | 4182 | В | (100) | 11.57 | 14.62 | 1-3 | -5p | 8 42 | 382.90 | A | 7 | 16.68 19. | 56 1 | | . 4 3 | 4072.01
4042.91 | A
A | 9
8 | 18.37 21.41
18.35 21.40 | 2-2-2-1 | 4 _B ' 2 _{D-4p} ' 2 _D • (33) | | 3606 · ! | | В. | | 11.57 | | 1-0 | 4s 2°-6p
(5) | 41
39 | 082.40
112.83
974.76 | A
A | 6
5
6 | 16.57 19.
16.68 19.
16.57 19. | 68 1
68 3 | <u>-1</u> | 4s ⁴ P-4p ² D° (8) | 4079.60
4035.47 | A | 5
6
 | 18.37 21.40
18.35 21.41 | | | | 0470.0
3667.9
7948.: | 9430 | A
A
A | 400
400 | 11.67
11.67
11.67 | 13.10 | 0-1
0-1
0-1 | 48 3°-4p
(6) -4p
-4p | 4 *42 | 328.18
301.99 | A | 7
5 | 16.68 19.
16.74 19. | 68 · | 1-24
1-1-2
1-1-2 | 4 2 - | 4936.13
4904.75 | A
A | 00n
6 | 18.54 21.04
18.54 21.05 | 21-2
21-3 | 3d ² F-4p' 2F• | | 7724.2
4522.: | | A
B | | 11.67 | 13.27
14.40 | 0 -1
0-1 | -4p | 38 | 345.42
974.48
147.43 | A
A
A | 5
5
1n | 16.57 19.
16.68 19.
16.74 19. | 78 2
78 1 | -13 | 4s ⁴ P-4p ³ Pe
(9) | 4530.57 | A | 4 | 40 54 04 00 | 01.4 | 1 - 2 - 4 - 1 2 - 2 | | 1191.0 | 0296
8838 | В | (100) | 11.67 | | 0-1
0-1
- | | 7 40
9 37 | 729.29
350.57 | A
A | 0n
10
15 | 16.74 19. | , 0 | 22 | 4s ⁴ P-4p ⁴ S° (10) | 4309.11 | A
A | 0
2
6 | 18.46 21.41
18.54 21.40
18.54 21.41 | 3 1 - 2
2 1 - 2
2 1 - 2 | (35)
3d ² F-4p ¹ ² p ⁶
(36) | | 9354.2
9284.4 | 5010
318
498
4407 | A
A | 1000
200 | 11.78
11.78 |
13.04
13.10
13.11
13.23 | 1-3
1-1
1-3
1-1 | 46 4°-4p
(8) -4p
-4p
-4p | 3 39
4
5 *39 | 928.62 | Ā | 9
1n | 16.74 19.
16.74 19. | | | 4s ⁴ P-4p ² S° | 5141.84
5017.16
5176.28 | A
A
A | 6
6
3 | | 21-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3 | 3d ² D-4p' 2 F° | | 3408.2 | 808
5209 | A : | 3000
1500 | 11.78 | 13.24
13.27 | 1-3
1-1
1-0 | -4p
-4p
-4p | 8
9 59
10 58 | 950.91
843.80
977.43 | A
A
A | 0
00n
00 | 17.07 19.
17.07 19.
17.19 19. | 14 1
18 1 | -2 1 | 4s ² P-4p ⁴ P° (12) | 4732.08
4474.77
4598.77 | B
A
A | 5
6
5 | | - | 1 3d ² p-4p' ² p• | | 1628. | 3164
4410 | В | (90) | 11.78 | | 1-2 | 4s 4°-5p
(9) -5p | 1 57
3 | 724.37 | A | On | 17.07 19. | 00 I | 5_ 5 | | 4481.83 | A | 8 | | 31-2 | 1 3d ² D-4p ¹ ² D° | | 1510.
1345.
1333. | 1682 | B
B
B | (80)
(90)
(90) | 11.78
11.78
11.78
11.78 | 14.51
14.62 | 1-1
1-0
1-1
1-3 | -5p
-5p
-5p
-5p | 6 52
7 50 | 145.36
386.92
017.63 | A
A
A | 8
5
2 | | | | 4s ² P-4p ⁴ D° (13) | 4370.76
4490.99
4362.07 | A
A
A | 6
5
5 | 18.58 21.40
18.65 21.40
18.58 21.41 | 13-1
23-1
13-2 | 1 3d ² D-4p' ² D°
1 (39) | | 1335.3
12 59 .3 | 3380 | В | (70) | 11.78 | 14.63
14.67 | 1-1 | -5p
-5p | 9 48 | 379.90
965.12
726. 9 1 | A
A
A | 12
7
10 | 17.07 19.
17.19 19.
17.07 19. | 60 1
68 1 | -2 1
-1 1
-1 1 | 4s ³ P-4p ³ D° (14) | 5245.49 | A | 0 | 19.18 21.53 | 1 1 2 - 1 | ½ 4p ⁴ P°-3d; 2p | | 0673. | | c . | | 12.85 | | 1-8 | (10) | 1° 45 | 45.08
89.06 | A
B | 10
5 | | | _ | 4s ² P_4p ² P* | *4072.40
4124.09
4127.09 | A
A
B | 7
0
00n | 19.14 22.17
19.18 22.17
19.22 22.21 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 1 4p4pe_a2p
(41) | | 8752.8
8650.1 | | A
A | | 12.85
12.85 | 14.68
15.04 | 1-8 | (11) | 3° 46
47
1° | 557.94
764.89 | A
A | 9
10 | 17.07 19.
17.19 19. | 78 | <u>}-1</u> 2 | | 3765.27
3720.43 | A
A | 6
5 | 19.14 22.42
19.18 22.50 | | | | 3032.1 | | | | 13.02 | | _ | (12) | 43
45 | 83.79
87.90 | A
B | 4
2 | 17.07 19.
17.19 19. | 88 1
88 - | | 4s ² P-4p ⁴ S° (16) | 3669.62
3678.27 | A | 5
5 | 19.22 22.59
19.14 22.50
19.18 22.59 | 2-1-1 | \/ | | 5495.8 | | A | | 13.02 | | 3-4
3-4 | (13)
4p 3-6d | 43 | 75.96
79.39 | A
A | 5
8 | 17.07 19.
17.19 19. | | | 4s ² P-4p ² S° (17) | 3622.15
3809.49
3770.54 | A
A
A | 6
7
6 | 19.18 22.59
19.18 22.42
19.22 22.50 | 11-2
11-2
1-1 | | | | | | | | | | (14) | | .08.82 | A | 000n | 17.07 21. | 04 1 | Lal | 4-2p-4-1 2 | 10 m7564 74 B | | 4 3 | 19.14 22.60
19.18 22.60 | 2-1-1-1 | 4p ⁴ P°_5s ² P | | for cl | anges | 1n | Paschen | notat | ion se | e text | \$ 37 | | 79.05
33.52 | A | 6
6 | 17.19 21.
17.19 21. | 33
26 | -1 | (18)
48 ² P-4p' 21
(19) | 3650.90 | Ā | 4 | 19.18 22.60 | 2-1 | (+0/ | | Labo: | rator
Ref | | E P
Low H: | 1gh | J | Multiplet (No) | I
I A | aborator
Ref | y
Int | E P
Low Hi | .gh | J | Multiplet
(No) | Labo
I A | rator;
Ref | | E
Low | P
High | J | Multiplet
(No) | |--|--------------|------------------|--|-------------------|--|--|---------------------------------------|-------------------|-------------------|--|----------------|---------------------------------------|---|-------------------------------|---------------|---------------|-------------------------|----------------|--|--| | A II con | tinue | đ | | | | | A II | continue | đ | | | | | A II cor | tinue | đ | | | | | | 3491.54
3514.39
3535.33 | A
A
A | 8
9
6
6 | 19.14 22
19.18 22
19.22 22
19.14 23 | .71 | 23-33
13-23
3-13
23-23 | 4p ⁴ P°-4d ⁴ D
(44) | 4372.5
4379.2
4255.6
*4243.7 | 5 A
3 A | 0
1
3
3n | 19.60 22.
19.68 22.
19.60 22.
19.68 22. | 50 1 | 1-21
1-11
1-11
1-11 | 4p ² D°-5s ⁴ P
(63) | 3868.53
3932.55
3979.36 | A
A
A | 8
7
7 | 19.88
19.88
19.88 | 23.02
22.98 | 1\$-1\$
1\$- \$ | 4p4s°-4d4P
(90) | | 3476.74
3491.24
3509.78
3454.10
*3466.34 | A
A
A | 6
6
5
5 | 19.18 22
19.22 22
19.14 22
19.18 22 | .71
.74
.71 | 13-13
23-13
13-13 | | 4502.9
*4103.9
4076.9 | 5 A
1 A
6 A | 5
10
4 | 19.68 22.
19.60 22.
19.68 23. | 43 1
60 3 | 2-321
2-12
2-12
2-12 | 4p ² D°-5s ² P
(64) | 3893.14
3383.94 | A
A | 00n
2 | 19.88 | | | 4p ⁴ S°-4d ² D
(91)
4p ⁴ S°-4d ² P
(92) | | 3478.24 | A | 4 | 19.18 22 | | 1출- 출 | 4p ⁴ p°-3d¹ 2g
(45) | 4218.6 | | 5 | 19.68 22. | | | 4p ² D°-4d ⁴ D | 5305.77 | A | 3 | 19.89 | 22.21 | 1/2 - 1/2 | 4p ² 5°-a ² P
(93) | | 3521.98 | A | 4
2 | 19.22 22 | | | (45)
4p ⁴ P°-4d ⁴ F | 4007.6
4096.4
3988.1 | 7 A | 000 | 19.60 22.
19.68 22.
19.60 22. | 69 1 | \$-3\$
\$-2\$
\$-2\$ | (65) | 4730.69
4572.92 | A
A | 2
1 | 19.89
19.89 | | $\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$ | 4p ² S°-5s ⁴ P
(94) | | 3269.05
3254.03
3263.60 | A
A
A | 1
5 | 19.18 22 | .97 | 13-23
13-23
5-13 | 1 (46) | 4065.1
3958.3 | .4 B | 3
5 | 19.68 22.
19.60 22. | 71 1 | 1-11
1-11 | | 4543.91 | A | 1 | 19.89 | | | 4p2go_5s2p | | 3221.64
3226.00 | A
A | 3 | 19.14 22
19.18 23 | .97 | 2] -2]
1] -1] | | 4031.4 | | 3 | 19.68 22. | | 구 :
1 1 | 4p ² p°-3d' ² 8 | 3388.54 | A | 7 | 19.89 | | } _1} | (95)
4p ² S°-4d ² P | | 3194.25
3139.02 | A
A | 5 | 19.14 23 | | 2] _1]
2] _2] | 4p4P0-4d4P | 4047.5
3717.1 | | 3
5 | 19.68 22.
19.60 22. | | | (66) | 3161.38 | A
A | 3 | 19.89 | | }- }
}-1} | (96) 4p ² S°-3d" ² D | | 3212.54
3281.72 | A
A | 5
6 | 19.18 23 | .02 | 14-14 | (47) | 3746.9
3656.0 | A S | 4
5 | 19.68 22.
19.60 22. | 97 1
97 2 | 3-3+
3-2+
3-2+ | (67) | 010100 | | | | | - | (97) | | 3181.05
3243.70 | A
A | 7
7 | 19.14 23
19.18 22 | .98 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | 3709.9
3620.8 | | 4
0 | 19.68 23.
19.60 23. | 00 1 | \$-1\frac{1}{2} | | 4385.08
4367.87 | B
A | <u>4</u>
5 | 20.65
20.65 | | \$-1\$
\$- \$ | 4s" ² g_5p ² po
(98) | | 3169.68
3249.82 | A
A | 8
7 | 19.18 23
19.22 23 | .02 | 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3550.0
3692.1 | | 4
00n | 19.60 23.
19.68 23. | 07 2 | 1-21
1-11 | 4p ² D°-4d ⁴ P
(68) | 4309.25 | A | 3 | 20.65 | 23.52 | | 4e* ² S-5p ² D°
(99) | | 3186.19 | A | 3 | 19.18 23 | | | 4p ⁴ P°-4d ² D
(48) | *3603.9
3733.3 | 1 B
6 A | 3
On | 19.60 23.
19.68 22. | .98 1 | \$-1\$
\$-1\$
\$-1\$
\$-2 | 1 100/ | 4097.15 | A | 3 | 20.65 | | _ | 4s* ² S-5p ² S*
(100) | | 3146.47 | A | | 19.14 23 | .06 | 2] -3] | 4p ¹ P°-4d ² F
(49) | 3635.6
3570.7 | | 3
2 | 19.68 23.
19.60 23. | 0E 2 | } -2 } | 4-200 442D | 4052.94
*3994.81 | A | 5
5 | 20.65
20.65 | | \$-1\$
\$-\$ | 4gii 2g <u>. 4p</u> ii 2go
(101) | | •6818.39 | A | 4 | (19.46 21
19.53 21 | .27 | 21-21
11-11 | 4p ⁴ D°-3d' 2D
(50) | 3559.5 | | 00n
6 | 19.60 23. | .06 a | 1 -3 1 | (69)
4p ² D°-4d ² F | 6172.28 | Α. | 7 | 21.05 | 23.05 | -
3 } -2 } | 4p ¹ 3r° -4d ² D
(103) | | 4561.03 | Ą | 4 | 19.46 22 | .17 | 2 }-1 } | 4p4p0-a2p | 3545.5
3464.1 | A 8 | 10
6 | 19.68 23.
19.60 23. | 16 a | 2-2 2 | (10) | 6114.92
6123.38 | A
A | 10
3 | 21.04
21.04 | 23.05
23.05 | 23-13
23-23 | (103) | | 4593.44
4666.28
4649.06 | A
B
B | 2
2n
On | 19.53 22
19.53 22
19.56 22 | .31
.17 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (51) | 3137.6
3273.3 | | 4 | 19.60 23.
19.68 23. | 53 a | 1-1 | 4p ² D°-4d ² P (71) | •6138.67 | A | 3 | 21.05 | 23.06 | | 4pt 2F0_4d2F
(103) | | *4103.91 | A | 10 | 19.41 22 | | 2- 2
3-2-2
3-1-2 | 4p ⁴ D°-5s ⁴ P | 3204.3 | | 5 | 19.68 23. | 53 1 | 2-12 | | 4538.73
4480.85 | A
A | 1n
On | 21.05
21.04 | | 3 1 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 40 - 31 - 30 - 31 - 30 (104) | | *4072.40
4033.83 | A
A | 7
6 | 19.46 22
19.53 22 | . 59 | 15- 5 | (52) | 3000.4
3014.4 | | 5
5 | 19.68 23.
19.68 23. | .79 1
.77 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4p ² D°-3d" ² D†
(72) | 3946.10 | A | 7 | 21.05 | | | 4p ^{i 2} F°-5s ⁱ 2p
(105) | | 4179.31
4156.11
4076.64 | A
A
A | 5
5
5 | 19.46 22
19.53 22
19.56 22 | .50 | 23-23
13-13 | | 7617.8 | 36 C | 1 | 19.72 21. | | | 4p ² P°-3d' ² D | 3925.71
3561.04 | A
A | 3
6 | 21.04 | | | | | 4267.47
4201.58 | B
A | 9 | 19.53 22
19.56 22 | . 42 | 1 3 - 2 3 | | 7055.0 |)1 A | 2 | 19.78 21. | 53 1 | 22
- 3 -1 3 | (73)
4p2pe_3d1 2p
(74) | 3545.84
3562.19 | Ā | 9 | 21.04 | 24.52
24.52 | 23-33
33-35 | 4p ¹ 2 po_4d 1 2 g
(106) | | 3933.19
4011.23 | A
A | 0
3 | 19.46 22
19.53 22 | .60 | 3}-1}
1}-1} |
4p ⁴ D°-5s ² P
(53) | 6799.3
5165.8 | | 2
5 | 19.72 21.
19.78 22. | .53 | 1 41 | (74)
4p ² P°-a ² P | 3429.64 | A | 3 | 21.05 | 24.65 | 31_21 | 4n1 2F0_4d1 2D | | *3922.54
4053.56 | A
A | 1n
0 | 19.56 22
19.56 22 | .70 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (33) | 4942.9 | | 4 | 19.72 22. | . 21 | 호- 호 | (75) | 3432.64
3414.46 | A
A | 2
3 | 21.04
21.04 | 24.65 | | (107) | | 3780.84 | A | 8 | 19.41 22 | .67 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | 4p4D0-4d4D | 4681.5
*4440.0 |)9 A | 3 | 19.78 22.
19.72 22. | 42 1 | 1-21
1-11
1-11 | 4p ² P°-5s ⁴ P
(76) | 3373,87 | A . | 2n | 21.04 | | | 4p ¹ 2p ⁰ -6s ² p
(108) | | 3826.83
3872.15
3880.34 | A
A
A | 6
5
4 | 19.46 22
19.53 23
19.56 22 | . 71 | 12-13 | (54) | 4547.7
*4300.6
4401.7 | 66 A | 5
6
1n | 19.78 22.
19.72 22.
19.78 22. | .59 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 3376.46
3350.94
3365.54 | A
A | 7
6 | 21.05
21.04
21.05 | 24.72 | 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 40° 2F°-4d° 2F
(109) | | 3763.52
3 799.39 | A
A | 5 | 19.41 22
19.46 22 | .69 | 3 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | 4374.8 | | 3 | 19.78 22. | | | 4p ² P°-5s ² P | 3361.73 | A | 3 | 21.04 | | 32-32 | | | 3841.54
3844.75 | A
A | 3
4 | 19.53 22
19.46 22 | .67 | 13- 3
23-3 | | 4129.7
4222.6 | 87 A | 4
5 | 19.72 22.
19.78 22. | 70 | | (77) | 5296.48 | A | 00n | 31.13 | 23.45 | -
2 1 -31 | 3d' 2F-5p4D° | | 3900.63
3911.58 | A
A | 5
5 | 19.53 22
19.56 22 | . 71 | 13-25
2-12 | | 4275.1
4243.7 | | 4
2n | 19.78 22. | | | 4n2po_444n | 4205.19 | A | 00n | | | | (110)
3d' 2F_4f2F°
(111) | | 3856.16
3895.26 | A
A | 1 2 | 19.53 22
19.56 22 | .73
.73 | 1출 출 | 4p ⁴ p°-3d' ² s
(55) | 4210.0
4173.7 | 0 A
17 D | 00n
1 | 19.78 22.
19.78 22. | 71 1 | | 4p ² p•_4d ⁴ D
(78) | 4914.32 | Α. | 2 | 21.26 | 23.77 | -
1] -2] | 4p' 2pe_3d* 2p
(112) | | 3588.44
3576.62 | A
A | 10
10 | 19.41 22
19.46 22 | | | 4p ⁴ D°-4d ⁴ F
(56) | 4099.4 | | 3 | 19.72 22. | | | _ | 4877.08 | A . | On
4 | | | | | | 3582.35
3581.62 | A
A | 8 | 19.53 22 | .97 | 13-23
3-13 | (50) | 3869.6
*3753.5 | | 0
4 | 19.78 22.
19.72 23. | 97 1
00 | 1-21
1-21 | 4p ² p•_3d ² s
(79)
(4p ² p•_4d ⁴ F
(80) | 4227.02
4337.10
4226.65 | A
A
A | 4
6
2 | 21.33 | 24.18
24.18 | \$-1\$
\$-1\$ | 4p' 2p°-5e' 2p
(113) | | 3521.27
3520.00
3548.51 | A
A | 5
6
7 | 19.41 22.
19.46 22.
19.53 23. | .92 | 32-32-32-32-32-32-32-32-32-32-32-32-32-3 | | 3751.0 | | 0 | 19.78 23. | 07 1 | 1-21 | 4p ² P°-4d ⁴ P | 3713.03 | A | 2 | 21.26 | | | 4p' 2p°-6s4p | | *3466.34
3487.33 | A
A
A | 5
3 | 19.41 22.
19.46 23. | .97
.00 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 3811.2
3777.5
3855.1 | 5 A | 1
2
0 | 19.78 23.
19.72 22.
19.78 22. | 98
98 1 | 2-12
2-2
2-2 | 4p ² P ^e -4d ⁴ P
(81) | 3600.22
3754.06 | A
A | 3
3 | 21.26
21.33 | | | (114)
4p: 2pe_4d: 2p
(115) | | 3370.97 | A | 5 | 19.41 23. | | | 4p4D0-4d4P | 3655.2 | | 6 | 19.78 23. | | | 4p ² p•_4d ² F | 3671.01
3680.06 | Ā | 3
5 | 21.26
21.33 | 24.62
24.69 | 1 1 2 3 | (115) | | 3471.59
3569.94
3421.64 | A
A
A | 2
1
5 | 19.46 23.
19.53 22.
19.46 23. | .98 | 25-15
15- 5 | 4p ⁴ D°-4d ⁴ P
(57) | 3293.6 | | 7 | 19.78 23. | 53 1 | -
-1-1 | (82)
4p ² p°-4d ² p | 3639.85 | A | 7 | | | | 4p' 2p°_4d' 2p
(116) | | 3532.19
3603.46 | A
A | 00n
3 | 19.53 23.
19.56 22. | .02 : | 15-15 | 7 | 3307.2
3366.5
3236.8 | 9 A | 6
4
4 | 19.72 23.
19.78 23.
19.72 23. | 45
45
1 | 1 3
1 3
1 1 3
1 1 3 | 4p ² p•_4d ² F
(82)
4p ² p•_4d ² p
(83) | 3660.44
3593.76 | A
A | 6
00n | 21.26 | | | 2 | | 3480.52
3565.02 | A
A | 5
5 | 19.53 23.
19.56 23. | .07 : | 1 2 - 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | 3093.4 | 1 A | 8 | 19.78 23. | | | 4p ² P°-3d ^{u 2} D
(84) | 3673.26 | Ā | 4 | 21.33 | | | 4p, 2pe_6s2p
(117) | | 3438.14 | A | 000n | 19.46 23. | .05 | 3] _1] | 4p ⁴ D°-4d ² D | 3028.9 | 3 A | 6 | 19.72 23. | | | | 3104.38
3153.80 | A
A | 5
4 | 21.26 | 35.24
35.25 | 13-13 | 4p ^{, 2} p°_5d ² P
(118) | | 3379.48
3341.77 | A
A | 2n
2 | 19.41 23.
19.46 23. | .06 3 | 3] - 3]
2] - 2] | (58)
4p ⁴ p ⁰ -4d ² F
(59) | 4865.9
4721.6 | | 5
4 | 19.88 22.
19.88 22. | 43 1
50 1 | 1-21
1-11 | 4p48°-5s4P
(85) | 3094.98
3163.61 | A | 3
1 | 21.26 | 35.24 | 13-13
2-13 | | | 3430.44
*3397.89 § | A
A | 4
4 | 19.46 23.
19.53 23. | .16 | 2 2 -3 2
1 2 -2 2 | | 4564.4 | | 5 | 19.88 22. | | | | 3088.24 | A | 5 | 21.26 | | | 4p ¹ 3p°-5d ³ D
(119) | | 7348.11 | A | 2 | 19.60 31. | . 27 2 | 2] _2] | 4p2D0-3d1 2D | 4535.5
4372.0 | | 4
On | 19.88 22.
19.88 22. | 70 1 | -1
-1 | 4p ⁴ g°-5s ² P
(86) | 3026.75
3082.99 | A
A | 4 | 21.26
21.33 | 35.34
35.34 | 12- 2 | 4pi 2pé_4di 8g
(130) | | 7440.54
7090.55 | A
A | 000 | 19.68 21.
19.60 21. | .34 : | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 4p ² D°-3d' ² D
(60) | 4394.6
4358.5 | 3 A | 2n | 19.88 22.
19.88 22. | 69 1
71 1 | 1-21
1-11 | 4p ⁴ 5°-4d ⁴ D
(87) | 5625.74 | A - | On | 21.27 | 33.47 | -
2] -1] | 3d' 2p_5p2p° | | 6376.00 | A | 0 | 19.60 21. | | | 2 | 4319.6
4338.2 | | 00n | 40 00 00 | | 1 1 | . 400 2 | 5090 . 55 | A | 2 | | | | (121)
3d' 2D_4p# 3p°
(123) | | 4792.12
4867.59 | A
A | 5
3 | 19.60 22.
19.68 22. | .17 2 | 3 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4p ² D ⁶ -3d ¹ ² P
(61)
4p ² D ⁶ -a ² P
(62) | 4338.2
3994.8 | | 1
5 | 19.88 22.9 | 73 1:
97 1: | 2- 2
1-21 | 4p ⁴ s°-3d¹ 3s
(88)
4p ⁴ s°-4d ⁴ F | 5125.84
4433.83 | A
A | 0
5 | | | | | | 4949.45 | A | 2 | 19.68 22. | .17 1 | 1 2 -1 2 | | 3952.7 | | 6 | 19.88 23. | 00 1 | 1-1 2 | 4p ⁴ 5 ⁰ -3d ¹ 5g
(88)
4p ⁴ 5 ⁰ -4d ⁴ F
(89) | 4537.67
4438.13 | B
A | 4 | 21.34 | 34.06
34.06 | 13-23
23-23
23-23 | 3d' ² D-4f ² F°
(123) | _ | | | Lab
I A | orator
Ref | y
Int | E P
Low Hig | | Multiplet
(No) | Labo
I A | rator
Ref | | E
Low | P
High | J | Multiplet
(No) | | ratory
Ref | | E P | | J | Multiplet (No) | |--|------------------|------------------|--|---|--|--|--------------|-------------------------|----------------------------------|----------------------|---------------------------------------|--|--|------------------|--------------------------------|--|----------------------|---------------------------------|---| | A II co | ntinue | đ | | | | A III | P 40 | .8 An | al C | List D | Nov | 1944 | K II con | | | | | | , | | 4114.52
4201.99
4116.39
4199.93 | A
A
B
A | 2
5
4
3 | 31.27 24.2
31.34 24.2
31.27 24.2
31.34 24.2 | 7 21-21
7 13-1
7 23-1
7 13-2 | 3d' ³ D-4f ³ D°
(134) | 3285.85
3301.88
3311.25 | A
A
A | 25
20
15 | 21.53
21.53
21.53 | 25.26 | 2-3
2-2
3-1 | 4s ⁵ 8°-4p ⁵ P
(1) | 4659.38
4423.73
4305.00
3966.72 | A
A
A | 15
10
30
15 | 20.36 2
20.36 2
20.36 2
20.36 2 | 3.15
3.23 | 2-3
2-1
2-2
2-1 | 3d 3°-4p 2
(5) -4p 4
-4p 5
-4p 9 | | 5812.81
5216.84
5162.80 | A
A
A | 0
3
1 | 21.41 23.5
21.41 23.7
21.40 23.7 |
3 2½-1½
7 2½-2½
9 1½-1½ | 4p ¹ 2p°_4d ² p
(125)
4p ¹ 2p°_3d ⁿ 2p
(126) | 3480.55
3503.58
3499.67
3336.13 | A
A
A | 20
15
12
25 | 24.28
24.27
24.27 | 27.79
27.80 | 2–2
1–1 | 4s' 3po_4p' 3p | 5536.01
4466.65 | A
A
A | (3)
20
30 | 20.39 2
20.39 2
20.39 2 | 3.15
3.36 | 0-1
0-1 | -4p 7 | | 5204.46
1448.88
1439.45 | B
A
A | 0
6
3 | 21.40 23.7
21.41 24.1
21.40 24.1 | 7 1 1 -21
3 21-21
3 11-1 | 4p' 200°–58' 21
(127) | 3344.72
3358.49 | Ā | 20
15 | 24.27
24.27 | 27.96
27.94 | 2-3
1-3
- | (3) | 5969.64
4943.24 | A
A
A | (2)
5 | 20.39 2
20.55 2
20.55 2 | 2.62 | 0-1
1-1
1-3 | -4p 9 4s 4°-4p 1 (7) -4p 3 | | 1448.47
1440.09
3830.43
3753.53 | A
A
A | 1
3
5
4 | DI. TO DI. I | 12-02 | 4p ¹ ² p°-4d ¹ ² p
(128) | 7070 45 | B
B
B | 12
12
10
10 | 25.58
25.62
25.64
25.62 | 29.66
29.65 | 2-3
1-2
0-1
1-1 | 4 ₆ " Зр <mark>е_{—4р}" Зр
(4)</mark> | 1 4608.45
4388.16
4309.10
4222.97
3530.75 | A
A
A
A | 30
30
30
30
30 | 20.55 2
20.55 2
20.55 2
20.55 2 | 3.36
3.41
3.47 | 1-2
1-1
1-3
1-1
1-0 | -4p 5
-4p 7
-4p 8
-4p 9
-4p 10 | | 3803.19
3819.04
3825.70
3796.60 | A
A
A | 6
4
5
4 | 21.41 24.6
21.40 24.6
21.41 24.6
21.40 24.6 | 3 1 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4p ¹ 3p°_4d ¹ 3 ₁
(129) | 3795.37
3858.32 | B
B | 20
10 | 26.41
26.46
26.41 | 29.66 | 1–3 | 3d* 3po_4p* 3p
(5)
3d* 3po_4p* 3p | f
For chang | | | | | | - | | 8746.46 | A | 4 |
21.40 24.6 | 11-11 | 14p 2p-6s2p | 0002100 | - | | DO- 11 | 00.00 | 5-5 | (6) | • | | | | | | | | 3737.89 | A | 6 | 31.41 34.7 | 2 } _3 | (130)
40' 30°-4d' 3 | , | | | | | | | K III I | P 46 | Anal | . D. Lis | | Nov 1 | | | 3718.21
3724.51
3222.42
3207.61 | A
A
A | 6
4
3
4 | 31.40 34.73
31.41 34.73
31.41 25.33
31.40 35.33 | 12-2
32-2
1 23-1 | (130)
4pi 3pe_4di 3g
(131)
4pi 3pe_5d ² p
(132) | <u>A IV</u> I
3077.40
3016.15 | A | Anal:
8
5 | B L1s | | | 44
4s ² P_4p ⁴ P°
(1) | 3322.40
3420.82
3278.79
3468.32
3513.88 | A
A
A
A | 6
6
6
5 | 25.61 29
25.76 29
25.61 29
25.76 29 | 9.00 | T2-02 | 4s ⁴ P-4p ⁴ P°† (1) | | 8217.70 | Ä | 3 | 21.40 25.2 | 12-12 | | 3134.90 | Ä | 3 | | | | | 2002 24 | A | 6 | 25.86 29
25.61 29 | | 출-1출
음-3분 | 4s ⁴ P-4p ⁴ D° † | | 5691.71
5577.70 | A
B
A |
1
2 | | | 4p ^{1 2} D ² -5d ² D
(133)
3d 2p 4p ² 2pe
(134) | | A | 6 | 31.77 | 35.83 | 1] -1] | 48 ³ P-4p ³ D°†
(3) | 3052.07
3056.84 | A
A | 6
5 | | | | 4s ⁴ P-4p ⁴ D° † (2) | | 1888.29 | A | Ö | 21 53 24 0 | 11.01 | 241 20 A+2mo | KI II | . 4 29 | Annl | A Li | - C | Nov 1 | 044 | *3481.11 § | В | 6 | | | | 48 ² P-4p ⁴ D° | | 498.55 | A | 5 | 21.53 24.2 | 1 1 2 - 2 2 | (135)
3d' ^{Sp_4f S} D° | 7664.907 | // A | 10R | | 1.61 | | 4 ² S_4 ² P° (1) | 3421.83 | Ā | 6
4 | | | | 4s ² P-4p ² D° † (4) | | 985.74 | A | 000n | | | (136)
5p ² P°-5d ² P
(137) | 7698.979
4642.27
4641.77 | A
H
H | 10R
(2)For
(1)For | 0.00
b 0.00
b 0.00 | 1.60
2.66
3.66 | | (1)
4 ² 8-3 ² D
(2) | 3201.95
3209.34
3364.22 | A
A
A | 6
6
6 | 26.26 30
26.45 30
26.45 30 | 0.13
0.29
0.12 | 12-12
2-12
2-12 | 4s ² P-4p ² P° †
(5) | | Stronges | t Uncl | assifie | d Lines Att | 1buted | to A II | 4044.145
4047.214 | B
B | 8R
6R | 0.00 | 3.05
3.05 | 1-11 | 4 ² 8-5 ² P° (3) | | | | | | | | | 689.36 | A | 3 | | | | 3446.38 | G | 8R | | 3.58 | | 4 ² 5-6 ² P° (4) | Ca I I | | | l A Lis | | Mar 1 | | | 380.45
233.58
441.95 | A
A
A | 4
4
3 | | | | 3447.41 | G- | 6R | | 3.58 | _ | | 6572.781
4226.728// | Α
' Δ | 50
500R | 0.00 1 | | | 4 ¹ S ₋ 4 ³ P°
(1)
4 ¹ S ₋ 4 ¹ P° | | 324.45 | В | 3 | | | | 12523.0
12434.3 | F | (90)
(100) | 1.61 | 2.60
2.60 | 1 | 4 ² P°_5 ² S
(5) | | - | | | | | (2) | | 454.41
407.44
402.69 | A
À
A | 3
4
3 | | | | 11772.66 | Ç | 15r | | | | | 6162.172
6122.219 | A | 150
100 | 1.88 3 | 3.89
3.89 | 1-1 | 4 ³ P°-5 ³ S
(3) | | 397.60
882.25 | Ā
A | 3
4 | | | | 11689.76
11769.41 | C
D | 10
3 | | | | 4 ³ P ⁹ -3 ² D
(6) | 6102.722
4454.781 | A
A | 80
80 | | 3.89
4.66 | 0-1
2-3 | 4 ³ P°-4 ³ D | | 703.36
682.29 | A
B | 4
4 | | | | 6964.69
6936.27 | E | {1
1 | 1.61 | 3.38
3.38 | 13-23
3-13 | 4 ³ P°-4 ³ D
(7) | 4434.960
4425.441 | A
A | 60 r
50 | 1.88 4 | 4.66
4.66 | 1-2
0-1 | (4) | | 611.25
563.78 | A
A | 3
5 | | | | 6964.18 | E . | (-) | | 3.38 | _ | | 4455.887
4435.688
4456.612 | A
A
B | 40
40
10 | 1.88 4 | 1.66
1.66
1.66 | 2-2
1-1
2-1 | | | 336.51
297.99 | A
A | 3
5 | | | | 9950.5
9955.2 | D
D | 20N
10N | 2.60
2.60 | 3.84
3.84 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 ² 8-7 ² P° (8) | 4302.527 | A | 60 r | 1.89 4 | 1.76 | 3-2 | 4 ³ P°-4p ² ³ P | | 229.89
217.45
203.43 | A
B
A | 4
4
5 | | | : | 11022.3 | D - | 10NW | 2.66 | 3.78 | | 3 ² D-5 ² F° | 4298.986
4318.652
4307.741 | A
A
A | 30
45
45 | 1.89 4
1.88 4 | 1.75
1.75
1.74 | 1-1
2-1
1-0 | (5) | | 189.67 | A | 4 | | | | 9595.60
9597.76 | E
E | 50N1W
20N1W | 2.66
2.66 | 3.94
3.94 | 2}-
1}- | (9)
3 ² D-6 ² F°
(10) | 4283.010
4289.364 | A
A | 40
40 | | 1.76
1.75 | 1-2
0-1 | | | 168.98
128.65
080.67 | B
A
A | 3
5
4 | | | | | | | | | | • | 3973.707
3957.053
3948.901 | A
A
A | 12
10
6 | 1.88 5 | 5.00
5.00
5.00 | 2-1
1-1
0-1 | 4 ³ p•_6 ³ s
(6) | | 774.5 <u>4</u>
637.89 | A
A | 3
3 | | | | <u>K II</u> I | P 31. | 7 Anal | LA L | ist D | June | 1944 | 3923.50 | D | (0) | | | | 4 ³ pe_4p ² 1s | | 637.05
543.16 | A
A | 5
5 | | | | 4829.23
4186.24 | A
A | 30
30 | 20.06
20.06 | | 2-1
2-3 | 4s 1°-4p 1
(1) -4p 3 | 3761.72 | E | (0) | 1.88 5 | | | 4 ³ P°-6 ¹ S
(8) | | 470.27
379.58
306.50 | A
A
A | 3
5 | | | | 4134.73
3995.10 | A
A | 30
10 | 20.06
20.06 | 23.05
23.15 | 2-2
2-1 | -4p 3
-4p 4 | 3644.410
3630.748 | A
A | 40
30 | 1.89 5
1.88 5 | . 28 | 1-2 | 43p6_53p
(9) | | 293.95 | A | 3
4 | | | | 3897.92
3739.13
3681.54 | A
A
A | 15
9
15 | 20.06
20.06
20.06 | 23.36 | 3-3
3-1
3-3 | -4p 5
-4p 7
-4p 8 | 3624.111
3644.765
3630.974 | A
A | 20
15
15 | 1.87 5
1.89 5 | .28
.28 | 0-1
2-2 | | | 291.47
259.71
247.55 | A
A
A | 4 3 | | | | 3618.49 | Â. | 15 | 20.06 | | 3-3
2-1
- | -4p 8 | 3644.990 | B | 3 | 1.89 5 | .28
.28 | 1-1
2-1 | 7 7 | | 216.75 | A | 4 | | | | 5005.60
4363.40 | A
A | 15
30 | 20.15 | 22.62
23.05 | 1-1
1-3 | 4s 2°-4p 1
(2) -4p 3 | 3487.598
3474.763
3468.476 | A
A
A | 12
8
4 | 1.89 5
1.88 5
1.87 5 | | 2-1
1-1
0-1 | 4 ³ P°-7 ³ S
(10) | | 165.31
161.45
148.24 | A
A
A | 5
3
3 | | | | 4114.99
4012.10 | A
A | 30
10 | 20.15 | 23.15
23.23 | 1-1
1-3 | -4p 4
-4p 5 | 3361.918 | A | 35n* | 1.89 5 | .56 | 2-3 | 4 ³ P°-6 ³ D | | 136.55
109.75 | A
A | 4
3 | | | | 3783.19
3767.36
3716.60 | A
A
A | 15 | 20.15
20,15
20.15 | 23.43 | 1-3
1-0
1-1 | -4p 8
-4p 6
-4p 9 | 3350.209
3344.513
3362.131 | A
A
B | 25n*
8n
35n* | | .56
.56 | 1-2
0-1
2-2 | (11) | | 102.63
099.97 | A
A | 3
4 | | | | 5056 27 | | | | | - | | 3350.361
3362.28 | B
B | 25n*
(0) | 1.88 5 | | 1-1
2-1 | | | 085.05
066.92
060.94 | A
A
B | 4
4
5 | | | | 5056.27
3873.74
3744.42 | A
A
A | 10 | 20.18
20.18
20.18 | 23.36 | 0-1
0-1
0-1 | 3d 1°-4p 1
(3) -4p 7
-4p 9 | 3286.067
3274.661
3269.090 | A
B
B | 4
2
1n | 1.88 5 | . 65 | 2-1
1-1
0-1 | 4 ³ P°-8 ³ S
(13) | | 053.20
046.10
003.00
000.14 | A
A
A | 3
4
3
4 | | | | 4505.33
4340.03
4225.67
3972.58 | A
A
A | 30
30 | 20.31
20.31
20.31
20.31 | 83.15
83.23 | 1-3
1-1
1-3
1-3 | 3d 2°-4p 3
(4) -4p 4
-4p 5
-4p 8 | 3235.896
3215.145
3209.930
3236.129
3215. 334 | A
B
B
B | 8n*
5n*
2n
8n*
5n* | | . 72
. 72
. 73 | 2-3
1-2
0-1
2-2
1-1 | 4 ³ pe_7 ³ D
(13) | | | | | | | | | - | | | | - | | 2220.004 | _ | J., | | | | | | 24 | | | | | | | A E V | 105 | , <u> </u> | 0 11 1 | | • • | | | | | | | | | |----------------------------------|--------------|-------------------|----------------------|----------------------|-------------------|---|-------------------------------|------------------|--------------|------------------------|--------------|------------|---|-------------------------------|--------|-------------------|--------------------|----------------|--|--| | Labor
I A | atory
Ref | | E : | | J | Multiplet
(No) | Labo:
I A | rator
Ref | | Low | P
H1gh | J | Multiplet (No) | Labor
I A | | ry
Int | Low E | P
High | . д | Multiplet
(No) | | Ca I cont | inued | | | | | | Ca I con | tinue | đ. | | | | | <u>Ca II</u> I | P 11 | .82 | Anal A | List : | _ | 1944 | | 3180.521
3169.854
3164.618 | B
B
B | 1 N
1 N
1 N | 1.89
1.88
1.87 | 5.77
5.77
5.77 | 2-1
1-1
0-1 | 4 ³ P°-9 ³ S
(14) | 6798.51
6717.685 | C
A | 6n
500n | 2.70
2.70 | 4.51
4.53 | 2-1
2-1 | 3 ¹ D-5 ³ P° †
(31)
3 ¹ D-3d4p ¹ P° | 3933.664//
3968.470 | A
A | 400R(1
350R(1 | K) 0.00
H) 0.00 | 3.14
3.11 | $\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$ | 4 ² 5_4 ² pe
(1) | | 3150.738 | A | 4N* | 1.89 | 5.81 | 2-3 | 4 ³ P°-8 ³ D | 5349.472 | A | 25 | 2.70 | 5.00 | 2-3 | (32)
3 ¹ D-3d4p ¹ F° | 8542.089 | В | 1500 | 1.69 | 3.14 | -
2] -1] | 3 ² D_4 ² Pe | | 3140.782
3136.003 | B
B | 3N*
1N | 1.88 | 5.81
5.81 | 1-2
0-1 | (15) | 5041.620 | A | 40 | 2.70 | 5.15 | 2-1 | (33)
31D-51po | 8662.140
8498.018 | B
B | 1000
300 | 1.69
1.69 | 3.11 | 13-13 | 3 ² D_4 ² P° | | 3151.280
3141.164 | B
B | 4N*
3N* | 1.89 | 5.81
5.81 | 2-2
1-1 | | 4878.132 | A | 50 | 2.70 | 5.23 | 2-3 | 31 _{D-4} 1 _F | | | | | | - ' | | | 3117.656 | В | 1N | 1.89 | 5.85 | 2-1 | 4 ³ P°-10 ³ S | 4526.935 | A | 30 | 2.70 | 5.42 | 2-1 | (35)
31 _{D-6} 1po | 3736.901
3706.026 | B
B | 12
10 | 3.14
3.11 | 6.44
6.44 | 1 | 4 ² P°-5 ² S
(3) | | 3107.388
3102.36 | B
B | 1N
(0) | 1.88 | 5.85
5.85 | 1-1
0-1 | (16) | 4355.096 | A | 25 | 2.70 | 5.53 | 2-3 | (36)
31 _{D-5} 1 _F 0 | 3179.332 | В | 15 | 3.14 | 7.02 | | 4 ² P°-4 ² D | | 3006.858 | A | 6 | 1.89 | 6.00 | 2–2 | 43pe_3d2 3p | 4240.456 | A | 6 | 2.70 | 5.61 | 2-1 | 3 ¹ D-7 ¹ P° | 3158.869
3181.275 | B
B | 10
4 | 3.11
3.14 | 7.02
7.02 | 13-13 | (4) | | 2999.641
3009.205 | A
A | 4
5 | 1.88 | 5.99
5.99 | 1-1
2-1 | (17) | 4108.554 | В | 10N | 2.70 | 5.70 | 2-3 | 3 ¹ D_6 ¹ F° | | | | | | | 9 | | 3000.863
2997.309 |
A
B | 5
5 | 1.88
1.88 | 5.99
6.00 | 1-0
1-3 | | 4058.912 | В | 1n | 2.70 | 5.74 | 2-1 | 31D-81P° | 11836.4
11947.0 | P
P | | 6.44
6.44 | 7.48
7.47 | \$-1\$
\$-\$ | 5 ² 8-5 ² P°
(5) | | 2994.958 | A | 5 | 1.87 | 5.99 | 0-1 | | 3972.570 | A | (1) | 2.70 | 5.80 | 2-3 | 31 _{D-7} 1 F 0 | 4472.09 | D | (0) | 6.44 | 9.30 | - 1] | 5 ² 8_6 ² P° | | 6439.073 | | 150 | 2.51 | 4.43 | 3-4 | 3 ³ p-3d4p ³ F° | 3889.141 | В | (1) | 2.70 | 5.87 | 2-3 | 31D-81Fe | 4479.29 | D | (1) | 6.44 | 9.20 | -
\$- \$ | (6) | | 6462.566
6493.780 | A
A | 125
80 | 2.51
2.51 | 4.43
4.41 | 2-3
1-2 | (18) | | | | | | | (42) | 4722.58 | D | {=} | | 9.63 | 3}_
1}_ | 4 ² D-5 ² F° | | 6471.660
6499.649 | A
A | 40
30 | 2.51
2.51 | 4.42
4.41 | 3-3
2-2 | | 10343.85 | C | 500 | 2.92 | 4.11 | 1-0 | 4 ¹ P ⁰ -5 ¹ S | 4718.16 | D
- | | 7.02 | 9.63 | _ | (7)
.33 | | 6508.742 | В | (1) | 2.51 | 4.41 | 3-2 | -3 1 | 7326.146 | A | 400 | 2.92 | 4.60 | 1-3 | 4 ¹ po_4 ¹ p | 3758.36
3755.61 | E | (8)
(7) | | 10.30
10.30 | 2}-
1}- | 4 ² D-6 ² F° (8) | | 6464.70
6455.600 | D
A | (1)
10 | 2.51
2.51 | 4.43 | 3-2
2-2 | 3 ³ D-3d4p ¹ D° (19) | 6709.88 | D | (1) | 2.92 | 4.76 | 1-2 | 41pe_4p2 3p | 3346.99 | E | (10) | 7.02 | 10.71 | 2] _ | 4 ² D_7 ² F° | | 6449.810 | A | 50 | 2.51 | 4.42 | 1-2 | -33 | 5867.572 | Α. | 1 | 2.92 | 5.02 | 1-0 | 41 pe_4p2 1g
(46)
41 pe_4p2 1p | 3125.15 | E | (5) | | 10.97 | 2}-
1}- | 4 ² D-8 ² F° | | 6169.559
6169.055 | A
A | 40
25 | | 4.51 | 3-2
3-1 | 3 ³ D-5 ³ P° | 5857.454 | A . | 100 | 2.92 | 5.03 | 1-2 | (47). | 3123.29 | E | (3) | | 10.97 | | (10)
4 ² D_9 ² Fe | | 6166.443
6161.289 | A
A | 15
10 | 2.51 | | 1-0
3-2 | | 5512.979 | Α . | ,20n | 2.92 | 5.16 | 1-0 | 41po_61s | 2989.42
2987.72 | E | (1) | | 11.15
11.15 | 2}_
1}_ | (11) | | 6163.758
6156.10 | A
F | 10
(1) | 2.51
2.51 | 4.51
4.52 | 1-1
1-2 | | 5188.848 | Α. | 50 | 2.92 | 5.30 | 1-2 | 4 ¹ pe_5 ¹ D
(49)
4 ¹ pe_7 ¹ s | 0077 7 | P | | 7.40 | |
41 1 | -2na -2a | | 5588.757 | Ą | 80
60 | | 4.72
4.72 | 3-3 | 3 ³ D-3d4p ³ D ⁹ | 4847.296 | Α . | 2 | 2.92 | 5.47
5.55 | 1-0 | (50)
4 ¹ P°-6 ¹ D | 9933.3
9856.7 | P | | 7.48
7.47 | 8.73 | 13- 3 | 5 ² P°-6 ² S
(12) | | 5594.468
5598.487
5601.285 | A
A | 50
30 | | 4.71
4.72 | 2-2
1-1
3-2 | (21) | 4685.265 | A | 13 | | | 1-3
- | (51) | 8250.2
8203.2 | P
P | | 7.48
7.47 | 8.98
8.98 | 11-21 | 5 ² P°-5 ² D
(13) | | 5602.846
5581.971 | A
A
A | 25
25 | 2.51 | 4.71 | 2-1
2-3 | | 12816.06
12823.89 | P _P) | (50a) | (3.89
(3.89 | 4.86
4.86 | 1-3
1-1 | 5 ³ 8-3d4p ³ P° (52) | 8256.1 | P | | 7.48 | 8.98 | 12-12 | (13) | | 5590.120 | A | 20 | 2.51 | 4.72 | 1-2 | | 12827.09 | P | | 3.89 | 4.86 | 1-0 | (35) | 5307.30
5285.34 | D
D | {-} | 7.48
7.47 | 9.81
9.81 | 1 1 2 1 | 5 ² P°-7 ² S
(14) | | 5270.270
5265.557 | A
A | 60
40 | 2.51
2.51 | 4.86
4.86 | 3-2
2-1 | 3 ³ D-3d4p ³ P°
(22) | 6361.79 | F | (5n) | 4.43 | 6.37 | -
4-5 | 3d4p ³ F°-3d4d ³ G | | В | | 7.48 | | | | | 5262.244
5264.239 | A
A | 25
20 | 2.51 | 4.86
4.86 | 1-0
2-2 | (, | 6343.29
6318.11 | F | (4n)
(3n) | 4.43 | 6.37 | 3-4
2-3 | (53) | 5001.489
5021.141 | Ö | (2)
(1)
(0) | 7.47 | 9.94 | 14-14 | 5 ³ P°-6 ³ D
(15) | | 5261.706
5260.375 | A
A | 20 | 2.51 | 4.86
4.86 | 1-1 | | 5757.69 | F | (4n) | 4.43 | 6.57 | | 3d4p ³ F°-3d4d ³ F | | D | | | 10.41 | 11-1 | 5 ² P°-8 ² 8
(16) | | 4585.871 | A | 50 | 2.51 | 5.21 | 3-4 | 3 ³ D-4 ³ F° | 5735.74
5717.99 | F | (3n)
(4n) | 4.43 | 6.57
6.57 | 3-3
2-2 | (54) | 4206.21 | Ď | {=} | 7.47 | 10.41 | | | | 4581.402
4578.558 | A
A | 40
30 | 2.51
2.51 | 5.21
5.21 | 2-3
1-2 | (23) | 5761.88
5746.81 | F | (1n)
(2N) | 4.43
4.42 | 6.57
6.57 | 4-3
3-2 | | 4109.83
4097.12 | D
D | (1)
(1)
(0) | 7.48
7.47 | 10.49
10.49 | 13-23 | 5 ² P°-7 ² D
(17) | | 4585.923 | В | (2) | 2.51 | 5.21 | 3–3 | | 5731.70
5707.03 | F | (in)
(in) | 4.43 | 6.57
6.57 | 3-4
2-3 | | 4110.33 | D | (0) | 7.48 | 10.49 | 12-12 | | | 4512.282
4509.446 | A
B | .5
.3 | 2.51
2.51 | 5.25
5.25 | 3-2
2-1 | 3 ³ D-6 ³ P° (24) | | | | | | - | | 3694.11
3683.71 | D
D | {1
1 | 7.48
7.47 | 10.82 | 13-23 | 5 ³ P°-8 ³ D
(18) | | 4507.417
4507.854 | B
B | (1) | | 5.25 | 1-0
2-2 | | 9701.81
9688.60 | P
P | 20
15 | 4.72 | 6.00
5.99 | 2-1 | 3d4p ³ D°-3d ² 3p
(55) | 3694.31 | D | (0) | 7.48 | 10.82 | 1] -1]
- | | | 4506.624
4505.00 | B
E | {o} | 2.51
2.51 | 5.25
5.25 | 1-1
1-2 | | 9676.25
9664.29 | P
P
P) | 5
5p1 | 4.71
(4.72
(4.71 | 5.99
6.00 | 1-0
3-3 | | 6456.907 | O, | (-) | 8.40 | 10.31 | _ | 4 ² F°-6 ² G | | 4098.533 | A | 15 | 2.51 | 5.53 | 3-4 | 3 ³ D_5 ³ F° | 9663.58
9639.40 | P'
P | Op. | 4.71 | 5.99
6.00 | 1-1
1-2 | | 5339.29 | D | (-) | 8.40 | 10.71 | | 4 ² F°-7 ² G | | 4094.930
4092.633 | A
A | 12
8 | 2.51
2.51 | 5.53
5.53 | 2-3
1-3 | (25) | | _ | | | | | 3d4p ³ p _{6-3d} 2 3p | | | | | | | (30) | | 3875.807 | В | (4) | 2.51 | 5.70 | 3- | 3 ³ D-6 ³ F° | 10838.77
10863.72 | CC | 10 | 4.86 | 6.00
5.99 | 1-1 | (56) | | | | | | | | | 3872.552
3870.506 | B
B | (4)
(3)
(2) | 2.51
2.51 | 5.70
5.70 | 2-
1- | (26) | 10869.37
10879.78 | 000 | 3
4 | 4.86
4.86 | 5.99
5.99 | 2-1
1-0 | | Ca III | I P ! | 51.00 | Anal D | List | A A | pr 1944 | | 3753.367
3750.349 | B
B | {1}
{1}
(1) | 2.51 | 5.80
5.80 | 3 -
2- | 3 ³ D-7 ³ Fe | 10833.12
10861.51 | C | 4
3 | 4.86
4.86 | 6.00
5.99 | 1-3
0-1 | | 3372.68 | A | 8 | 29.94 | 33.60 | 2-1 | 4s 1°-4p 1 | | 3748.374 | В | \i | 2.51 | 5.80 | 1- | (27) | Strongoot | *** - 1 <i>-</i> | | 74mon | oe (10 · | - | | 3537.75
2988.61 | A | 7
7 | 30.11 | | 1-1 | *(1)
4s 2°-4p 1
(2) -4p 3 | | 3678.240
3675.307 | B
B | 3
2 | 2.51 | 5.87 | 3- | 3 ³ D-8 ³ F° | Strongest | | | Lines | or <u>ca</u> | L | | | A | | 30.11 | | 1-3 | • • | | 3673.448 | В | 1 | 2.51
2.51 | | 2-
1- | (28) | 7468.41
6405.89 | F | (3)
(3n) | | | | | 3761.62
3028.66 | A | 6
6 | 30.32 | | 0-1
0-1 | 4s 3°-4p 1
(3) -4p 4 | | 7202.194 | Α - | 200 | 2.70 | 4.41 | -
2 - 2 | 3 ¹ D-3d4p ³ F° | 6395.16
5764.32
5743 28 | F
F | (3n)
(3n) | | | | | 4081.74 | A | 5
51 | 30.58 | 33.60 | 1-1 | 4s 4°-4p 1
(4) -4p 3 | | 7148.147 | A | 500 | 2.70 | 4.42 | 2-2 | (29)
3 ¹ p-3d4p ¹ p° | 5743.28
5688.47 | E, | (3n) | | | | | 3367.81
3233.02
3119.66 | A
A | 4
8 | 30.58
30.58 | 34.40 | 1-3
1-1
1-3 | -4p 4 | | | | | 23.0 | | 2-5 | (30) | 5682.88 | F | (4N)
(3n) | | | | | 2989.30 | A
A | 6 | 30.58
30.58 | 34.71 | 1-1 | -4p 5
-4p 7 | Labo
I A | rator
Ref | y
Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | | ry
Int | E
Low | P
High | J | Multiplet
(No) | Labo
I A | | ry
Int | E
Low | P
High | J | Multiplet
(No) | |---|------------------|--------------------------------------|------------------------------|--------------------------------------|---|--|--|------------------|--|--------------------------------------|--------------------------------------|---------------------------------|--|--|-----------------------|---------------------------------|--------------------------------------|--|--|--| | | P 6.7 | | | st C | Nov 1 | | Sc I cont | | | | | | • | Sc II con | | | | | | (110) | | 6362.286
6344.831
6413.353
6378.824
6448.10 | A
A
A
B | (2)
.5
50
40
1 | 0.00 | 1.96
1.95
1.95
1.93
1.93 | 21-31
11-21
21-21
11-11
21-12
21-12 | a ² D-z ⁴ F° (1) | 4709.336
4706.967
4711.732 | A
A | (3)
(1) | | |
5-15 | z ⁴ P°-f ⁴ D†
(33) | 5552.25
5239.823 | B
A | 3
15 | | 3.67
3.80 | 0-1
0-1 | a ¹ S-z ³ pe
(25)
a ¹ S-z ¹ pe
(26) | | 6305.671
6210.676 | A | 400
200 | 0.02 | | | (3)
a ² D-z ² D° | 5258.333
5285.752 | A | 15
10 | | | _ | a ² G-z ² H°†
(23) | 7178.33
7151.18 | P
P | | 1.50
1.49 | 3.22 | 2-2
1-3 | a ³ P-z ¹ D* (27) | | 6276.310
6239.410
6231.76
6193.672
6258.962
6239.778 | A C A A | 15
20
(2)
(2)
100
100 | 0.00 | 3.00
1.99
1.99 | -5-05 | a ² D-z ⁴ D* | 6557.87
6558.05
Strongest
6835.03 | B)
Uncl | | | | | z ³ F°-f ³ D
(34) | 6245.629
6279.757
6309.902
6300.697
6320.854
6342.082 | A
A
A
A | 20
15
15
6
7 | 1.50
1.49
1.49
1.50
1.49 | 3.48
3.46
3.45
3.46
3.45
3.45 | 2-3
1-3
0-1
2-2
1-1
2-1 | a ³ P _{-z} ³ D•
(38) | | 6306.047
6244.51
5349.702
5342.961
5301.936 | A
A
A | 20
(1)
15
10
2 | 0.00 | 1.98
1.98
2.33
2.31
2.33 | 31-12
12-2
31-12
12-2
12-12 | a ² D-z ² P° (4) | 6817.08
6737.87
6036.17
4573.993
4557.237 | A
B
A | (25)
(10)
(10)
(10nl)
6
5 | III
 | | | 5657.870
5667.164
5684.190
5669.030
5640.971
5658.334 | A
A
A
A | 25
10
15
12
15
8 | 1.50
1.49
1.50
1.49
1.49 | 3.68
3.67
3.67
3.67
3.68
3.67 | 2-2
1-1
2-1
1-0
1-2
0-1 | a ³ P-z ³ P°
(29) | | 4779.347
4753.152
4791.500 | A
A
A | 20
15
4 | 0.03 | 3.60
3.60
3.60 | 31-31
11-31
31-31 | a ² D-z ² F° (5) | <u>Sc II</u> I
3859.36 | P 12 | 8.8 An | | List A
3.22 | | 1940
a ³ D-z ¹ D° | 5357.195
5342.05
5334.228 | A
P
A | 3 | 1.50
1.49
1.49 | 3.80
3.80
3.80 | 2-1
1-1
0-1 | a ³ P-z ¹ P° (30) | | 4082.396
4054.555 | A | 40
35 | 0.00 | 3.04
3.04 | (登设 | a ² D_y ² Pe
(6) | 3843.000
3833.059 | A | 4
3 | 0.01 | 3.22
3.22 | 2-2
1-3 | (1) | 5526.809 | A | 75 | 1.76 | 3.99 | 4-3 | a ¹ G-z ¹ F° (31) | | 4023.688
4020.399
4047.792
3996.607 | A
A
A | 100
75
25
30 | 0.03 | 3.09
3.07
3.07
3.09 | 31-32
12-12
32-12
13-33 | a ³ D-y ³ D° (7) | 3613.836//
3630.740
3642.785
3645.311
3651.798 | A
A
A | 60
50
40
30
25 | 0.01 | 3.41
3.39
3.41
3.39 | 3-4
2-3
1-2
3-3
2-2 | a ³ D-z ³ F° (3) | 3157.44
3170.40
3176.70 | P
B
P | 1 | 3.22
3.22
3.22 | 7.13
7.11
7.10 | 2-3
2-2
2-1 | z ¹ D°-e ³ D
(32) | | 3911.810
3907.476
3933.381 | A
A | 100
75
20 | 0.02 | | | a ² D-y ² F° | 3666.537
3572.523 | A | 3
50
35 | 0.02 | | | a ³ D-z ³ D° | 3107.529
•2988.952§ | A | 6
10 | | 7.19
7.35 | | z ¹ D°-e ¹ D
(33)
z ¹ D°-e ¹ F | | 3273.619
3269.904
3255.678 | A | 20
15
6 | | 3.79
3.77
3.79 | 22-02
23-13
13-13
13-14 | a ³ D-x ³ Pe | 3576.340
3580.927
3590.475
3589.635
3558.538 | A
A
A | 30
30
30
30 | 0.00
0.03
0.01
0.01 | 3.45
3.46
3.45 | 2-2
1-1
3-3
2-1
2-3 | (3) | 3343.27
3331.07
3320.422 | A
A
A | 4
3
3 | | 7.13
7.11
7.10 | 4-3
3-2
2-1 | (34)
z ³ F°-e ³ D
(35) | | 3019.350
3015.364
3030.769 | A
A | 10
8
3 | 0.00 | 4.11
4.09
4.09 | 21-31
11-21
21-21 | a ² D-x ² F° (10) | 3567.701
3372.151
3368.946 | A
A
A | 20
20
15 | 0.00 | 3.46
3.68
3.67 | 1-3
3-3
3-1 | a ³ D_z ³ pe | 3316.79
3313.539
3299.41 | B
A
P | 17 | 3.41
3.39
3.39 | 7.13
7.11
7.13 | 3-3
2-2
2-3 | | | 2980.752
2974.006
2988.952 | | (6)
(5)
(10) | 0.00 | 4.16
4.15
4.15 | 23-23
13-13
23-13 | a ² D-x ² D• | 3361.935
3359.679
3361.270
3352.048 | A
A
A | 13
10
10
3 | 0.00
0.01
0.00 | | 1-0
2-3
1-1
1-3 | | 3108.511
3092.519
3082.56 | A
A | 3
2
3 | | 7.41
7.40
7.39 | 3-2
2-1 | z ³ F°-f ³ D
(36) | | 5671.805,
5686.826
5700.14
5711.754 | A
B | 200
150
100
100 | | | | a ⁴ F-z ⁴ G° (13) | 3251.32
3244.17
3107.387
3096.77 | A
P
A
P | 3
(1) | 0.01
0.00
0.02
0.01 | 3.80
3.99 | | a ³ D-z ¹ P° (5)
a ³ D-z ¹ F° (6) | 3065.106
3052.929
3045.714
3075.38
3060.531
3083.07 | A
A
B
A
P | 30
20
15
3
3 | 3.41
3.39
3.44
3.41 | 7.46
7.45
7.44
7.45
7.44
7.44 | 4-5
3-4
2-3
4-4
3-3
4-3 | z ³ F°-e ³ G
(37) | | 5708.600
5717.30
5724.073
5739.30
5741.36 | A
B
A
B | 15
15
15
2 | 1.44
1.43 | 3.60
3.59
3.58
3.59
3.58 | 41-43
31-35
31-35
41-37
31-32 | | 4246.829
3989.06
4014.489 | A
B
A | 100
2
5 | 0.31
0.31
0.31 | | 2-3
2-3
2-3 | a ¹ D-z ¹ D ^o
(7)
a ¹ D-z ³ F ^o
(8) | 3379.397
3378.209
3373.57
3394.29
3363.40 | A B B A | 3
2
17
1 | 3.45
3.48
3.46 | 7.13
7.11
7.10
7.11
7.13 | 2-3
1-1
3-2
2-3 | z ³ D°-e ³ D
(38) | | 5081.554
5083.713
5085.547
5086.951 | A
A
A | 125
80
40
40 | 1.44
1.43
1.43
1.42 | 3.86 | 41-41
31-31
31-31
31-31 | a ⁴ F-y ⁴ F° (13) | 3902.09
3923.503
3939.51 | P
A
P | | 0.31
0.31
0.31 | | 3-3
3-3
3-1 | a ¹ D-z ³ D°
(9) | 3366.46
3139.729
3133.096 | B
A
A | 1
10
8 | | 7.40 | 2-2 | z ³ D°-f ³ D
(39) | | 5101.121
5099.228
5096.716
5064.321
5070.249 | A
A
A | 30
40
30
10
40 | 1.44
1.43
1.43
1.43 | 3.86
3.85
3.85
3.87
3.86 | 21-21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | 3664.254
3675.265
3535.729 | A
A | 1
1
10 | 0.31
0.31
0.31 | 3.68
3.67
3.80 | 3-3
3-1
3-1 | (11) | 3128.286
3146.91
3138.46
3126.02
3122.954 | A
B
B
A | 5
1
1
3 | 3.48
3.46
3.46 | 7.39
7.40
7.39
7.41
7.40 | 1-1
3-2
2-1
2-3
1-2 | | | 5075.814
4743.814
4741.018
4737.642 | A
A
A | 10
40
30
20 | 1.44
1.43
1.43 | 4.04 | | a ⁴ F-y ⁴ D° (14) | 3353.734
4716.13 | A
P | 25 | 0.60 | 3.99 | 3–3
-
3–3 | a ¹ D-z ¹ F° (12)
a ³ F-z ¹ D° | 3580.71
3586.83
3594.13 | P
P
P | | 3.67
3.67 | 7.13
7.11
7.10 | 1-2
0-1 | z ^{3po} -e ³ p
(40) | | 4734.094
4728.769
4729.326 | Ā | 15
5
30 | 1.43
1.43 | 4.03
4.04
4.04 | 12 12
34 34
34 34
34 34
14 14
34 34
12 32 | | 4698.276
4374.455
4400.355 | A
A | (2)
40
30 | 0.59
0.62
0.60 | 3.22
3.44
3.41 | 3-3
4-4
3-3 | (13)
a ³ F-z ³ F°
(14) | 3597.39
3594.89
3605.50 | P
P | _ | 3.67
3.68 | 7.11
7.10
7.10 | 2-3
1-1
2-1 | 33- | | 4717.031
4720.830
5520.496 | A | 100 | 1.43 | | _ | a ³ ŗ-z ³ G° | 4415.559
4420.665
4431.369
4354.609
4384.813 | A
A
A | 30
3
5
6 | 0.59
0.62
0.60
0.60
0.59 | 3.39
3.41
3.39
3.44
3.41 | 2-2
4-3
3-2
3-4
2-3 | 7 7 | 3312.736
3311.708
3317.038
3320.709
3317.693
3326.74 | A
A
A
A
P | 5
3
1
1 | 3.67
3.67
3.68
3.67 | 7.41
7.40
7.39
7.40
7.39
7.39 | 2-3
1-2
0-1
2-2
1-1
2-1 | z ³ po_f ³ D
(41) | | 5514.215
5549.68
5481.989
5484.618 | A
A
A | 80
(3)
100
80 | 1.84
1.86
1.86
1.84 | 4.11
4.09 | $3\frac{1}{2}-3\frac{1}{2}$
$3\frac{1}{2}-3\frac{1}{2}$ | a ² F-z ² G° (15)
a ² F-x ² F° † (16) | 4314.084
4320.745
4325.010
4294.767
4305.715
4279.927 | AAAAA | 60
50
40
8
10 | 0.60
0.59
0.60
0.59 | 3.48
3.45
3.48
3.46 | 4-3
3-2
2-1
3-3
2-2 | a ³ F-z ³ D°
(15) | 3199.37
3191.005
3190.403 | A
A | 10
5
2 | | 7.54
7.54
7.54 | 2-1
1-1
0-1 | z ³ P°-e ³ S
(42) | | 5356.100
5349.294 | Å | 60
50 | 1.86 | | _ | a ³ F-x ³ D° †
(17) | 4008.41
4008.60 | P
P | • | 0.59
0.60
0.59 | 3.48
3.68
3.67 | 3-1 | a ³ F-z ³ P° (16) | 3379.18
2979.683 | A
A | 2
5 | 3.80
3.80 | 7.46
7.95 | | z ¹ P°-e ¹ P
z ¹ P°-f ¹ D | | 5591.323
5564.861
5541.030
5526.06 | A
A
B | 15
4
3
(4) | 1.95 | 4.19
4.18
4.17 | 41-41
31-31
21-21 | 2 ⁴ F°-e ⁴ F† (18) | 3995.49
3843.16 | P
P | | 0.59 | 3.68 | 3-2
3-1 | a ³ F-z ¹ P°
a ³ F-z ¹ F° | 3678.342 | A | a | 3.99 | 7.35 | | (44)
z ¹ F°-e ¹ F
(45) | | 5392.075
5375.346 | A | 30
30 | 1.93
1.98
1.96 | | | | 3653.62
3639.76
3629.10 | P
P | | 0.62
0.60
0.59 | 3.99
3.99
3.99 | 4-3
3-3
2-3 | (18) | 3122.542
3039.92 | A | 10 | 3.99 | 7.95
8.05 | | z ¹ F°-f¹D
(46)
z¹F°-e¹G
(47) | | 5355.753
5341.040
4165.184 | A | 8
8
12 | 1.95
1.93 | | | | 6604.60
6001.53 | B
P | 10 | 1.35 | 3.22
3.41 | | b ¹ D-z ¹ D°
(19)
b ¹ D-z ³ F° | 4748.12
4696.71
4671.94 | P
P
P | | 4.83 | 7.46
7.46
7.46 | 3-1
1-1
0-1 | y ³ P°_e ¹ P
(48) | | 4152.355
4140.304
4133.006 | A | 12
10
8 | 1.96 | 4.93
4.93
4.92 | | z ⁴ F°-e ⁴ G†
(30) | 6059.25
5806.77 | P
P | | 1.35
1.35 | 3.39
3.48 | 2-2
2-3 | (30)
b ¹ D-z ³ D° | 3995.48
3959.01 | P
P | | 4.86 | 7.95
7.95 | | y ³ pe_f ¹ D
(49) | | 3435.555
3431.358
3439.206 | A
A | 5
3
3 | 1.95 | 5.57
5.56
5.54 | 31-31
31-31 | z ⁴ F°-h ⁴ F
(31) | 5854.31
5890.02
5295.30 | P
P | | 1.35 | 3.46
3.45
3.68 | | (21) | | | | | | | | | 3429.483
3448.503
3443.989
3439.40 | A
A
A | 3
1
1 | 1.93
1.98
1.96 | | | | 531 8.337
5031.019 | Ã
A | 3
40 | 1.35 | 3.67
3.80 | 2-1 | (22)
b ¹ D-z ¹ P° | 4068.7 | A | | Anal C | List . | | n 1941
4 ² D-4 ² F°
(1) | | 3418.528
3416.674
3419.358 | A
A
A | (3)
3
(1) | 1.95
1.96
1.95
1.93 | 5.53
5.57
5.56
5.54 | 44 34 34 34 34 34 34 34 34 34 34 34 34 3 | | 4670.404 | A . | 15 | 1.35 | 3.99 | 2 – 3 | b ¹ D-z ¹ F° (34) | 4061.3 | A | (2n) | 13.86 1 | 16.90 | 1 2 -2 2 | (1) | | 26 | | | | | | | R E V | SE | D M U | JLTIP | LET | T | ABLE | | | | | | | | |---|---------------------------------|--|--|--|--|--|--|----------------------------|--|---|--|--
--|---|----------------------------|--|---|--------------------------------------|--|--| | La
I A | borator;
Ref | | Low | | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | E P
Low Hi | gh | J | Multiplet (No) | Labora
I A I | atory
Ref | | E P
Low High | | J | Multiplet (No) | | | I P 6.8: | | A L | 1st B | Nov | 1940
a ³ F-z ⁵ G• | <u>T1 I</u> cont | inue
E | d
8 | 0.05 3. | 57 | 4-5 | a ³ F-y ⁵ F° | <u>Ti I</u> cont: | inued
B | l
6 | 0.84 3.2 | | -4 | .5p5no | | *6295.25
6273.38
6257.72
6359.89
6325.22
6296.64
6413.13
6364.92 | 9 E
H
6 E
H | (3)
(6)
(2)
(8)
(10)
(12) | 0.03
0.00
0.05
0.03
0.00
0.05
0.05 | 1.99
1.97
1.99
1.97
1.96
1.97 | 3-4
2-3
4-4
3-3
2-2
4-3
3-2 | (1) | 3493.280
3483.010
3519.939
3503.760
3490.765
3530.580
3511.626
3495.960 | | (1)
1
1
1
1
3
3 | 0.02 3.
0.00 3.
0.05 3.
0.02 3.
0.00 3.
0.05 3.
0.02 3. | 55
54
55
54
54
54 | 3-4
2-3
4-4
3-3
2-2
4-3
3-3
3-2 | (23) | 5246.574
5250.95
5251.49
*5248.402
5211.32
5224.14
5233.817
5239.942 | EEEPPEE | 3
2
0
1
1
1
0
1
0
1
0
1 | 0.83 3.1
0.83 3.1
0.81 3.1
0.83 3.2
0.83 3.3
0.83 3.1
0.81 3.1 | 3 4-
3 3-
3 1-
3 4-
3 3- | -3
-2
-1
-0
-4
-3
-3 | a ⁵ F-y ⁵ D°
(37) | | 5940.68
5913.73
6031.68
5984.58
5944.65 | E
E
P | | 0.03
0.05
0.03
0.00 | 2.11
2.09
2.08
2.08 | 4-5
3-4
4-3
3-2
3-1
4-4 | a ³ F-z ⁵ pe (2) a ³ F-z ⁵ De (3) | 3385.944
3377.577
3370.436
3361.263
3358.271
3342.151 | A
A
A
E
A
E | 40r
30r
40r
40r
10
6 | 0.02 3.
0.00 3.
0.02 3.
0.00 3. | | 4-3
3-2
2-1
3-3
2-2
2-3 | a ³ F-w ³ D ^e
(23) | 4981.732//
4991.067
4999.504
5007.209
5014.377
5016.162 | A
A
A
A | 60
50
45
40
(25) | 0.84 3.3
0.83 3.3
0.82 3.2
0.81 3.2
0.81 3.2
0.84 3.3 | 4-
3-
3-
3-
7-1- | -6
-5
-4
-3
-3 | a ⁵ F-y ⁵ G°
(38) | | 5426.25
*5396.60
5490.84
*5446.59
5408.94
*5396.60
5376.59 | 6 B
0 E
0 B
3 B | 3
1
(0)
2
(1)
1 | 0.02 | 2.30
2.39
2.30
2.39
2.38 | 4-4
3-3
2-2
4-3
3-2
2-1
3-4
2-3 | (3) | 3371.447
3354.634
*3341.875§
3379.216
3360.990
3385.664 | A
A
E
E
E | 80R
60r
50r
15
10 | 0.05 3.
0.02 3. | . 70
. 69
. 70 | 4-5
3-4
2-3
4-4
3-3
4-3 | a ³ F-x ³ G°
(24) | 5030.038
5033.871
5034.843
5045.400
5043.578
5040.843 | A
A
B
B | 25
25
20
5
7
6 | 0.83 3.2
0.82 3.2
0.81 3.3
0.84 3.2
0.83 3.2
0.83 3.2 | 4-
3-
7-2-
5-
3-4- | -4
-3
-2
-4
-3 | | | 5210.38
5192.97
5173.74
5252.10
5219.69
5152.18
5147.48 | 1 A
2 A
5 B
7 B
5 B | 40
35
30
8
8
10 | 0.05
0.02
0.00
0.05
0.02
0.03 | 2.42
2.40
2.39
2.40 | 4-4
3-3
2-8
4-3
3-2
3-4
2-3 | a ³ F-z ³ F° (4) | 3369.054
3352.937
3342.707
3377.485
3361.835
3348.535
3344.62 | E E E E E P | 1
6
2
30
10
5 | 0.05 3.
0.02 3.
0.00 3.
0.02 3. | .70
.69
.70
.69
.69 | 4-4
3-3
2-3
4-3
3-3
2-1
3-4 | a ³ F-x ⁵ D ^o
(25) | 4953.37
4928.895
4941.322
4947.994
4909.105
4926.148
4937.719 | P
E
E
B
B
B | (0)
(1)
1
3
4
4 | 0.84 3.3
0.83 3.3
0.82 3.3
0.81 3.3
0.81 3.3
0.81 3.3 | 4-
3 3-
1 3-
1 3-
3 3- | -4
-3
-2
-4
-3 | a ⁵ F-x ³ F•
(39) | | 5064.65
5039.95
5014.18
5009.65
4997.09
4967.30 | 9 A
5 A
2 A
9 A | 25
22
(25)
7
8
(1) | | 2.47
2.46
2.48 | 4-3
3-2
2-1
3-3
2-2
2-3 | a ³ F_z ³ D° (5) | 3333.912
3243.803
3222.741
3205.848
3221.151
3205.168 | E | 2
4
3
5
2
2 | 0.05 3.
0.02 3.
0.00 3.
0.02 3. | .70
.85
.85
.85
.85 | 2-3
4-3
3-3
2-1
3-3
2-3 | a ³ F-▼ ³ D ^e
(36) | 4801.93
4801.90
4806.75
4787.64
4792.34
4816.47 | PPPPP | | 0.82 3.3
0.81 3.3
0.81 3.3
0.81 3.3
0.81 3.3 | 3-
3-
1-
3-
3-
1- | -3
-3
-3 | a ⁵ F-x ³ p°
(40) | | 4681.90
4667.58
4656.46
4715.29
4693.67 | 8 A
5 A
8 A
5 A | 30
25
25
4
5 | 0.05
0.02
0.00
0.05
0.03 | 2.68
2.67
2.65
3.67
2.65 | 4-5
3-4
2-3
4-4
3-3 | a ³ F-z ³ G° | 3203.58
3199.915
3191.994
3186.451
3214.240
3203.828 | G
A
A
A
E | 100R
80R
60r
13 | 0.00 3.
0.05 3.
0.02 3.
0.00 3.
0.05 3.
0.02 3. | .85
.90
.89
.87
.89 | 2 –3 | a ³ F-w ³ G°
(27) | 4781.718
4789.803
4812.906
4758.913
4771.103
4783.306 | B
E
B
B
E | 6
(1)
(0)
4
3
(2) | 0.84 3.4
0.83 3.4
0.84 3.4
0.83 3.4
0.82 3.4
0.81 3.3 | 4-
5-
3-
3- | -4
-5
-4
-3 | a ⁵ F-y ³ G ^a (41) | | 4562.63
4527.45 | 5 E | (4) | 0.00 | 2.73
2.73 | 3-2
3-3 | a ³ F-z ¹ D° (7) | 3236.240
3160.09 | E
G | 1
tr | 0.05 3. | .87
.93 | 4-3
3-2 | a ³ F-y ³ P° | 4533.238
4534.782
4535.574 | A
B
B | 80
60
50 | 0.84 3.5
0.83 3.5
0.83 3.5 | <u>.</u> 3- | -3 | a ⁵ F-y ⁵ F°
(42) | | 4540.48
4496.34
4462.09 | 5 E | 1
2
(3) | 0.05
0.02
0.00 | | 4-3
3-3
2-3 | a ³ F-z ¹ F° (8) | 3151.11
3143.16
3000.868 | G
P | tr
20 | | .93
.93 | 2-1
2-3 | (38)
a ³ F-w ³ F° | 4535.930
4536.051
4555.486 | B
B
A | 40
40
30
35 | 0.81 3.5
0.81 3.5
0.84 3.5 | 2-
3 1-
5 5- | -2
-1
-4 | | | 4112.70
4076.37 | | 30
4 | 0.03 | 3.05
3.05 | 4-4
3-4 | a ³ F-z ¹ G° (9) | 3983.306
3970.384
*3002.728 | E
E
E | 20
20
10
3 | 0.05 4.
0.00 4.
0.05 4. | .16
.15 | 4-4
3-3
2-2
4-3 | (39) | 4552.453
4548.764
4544.688
4512.734 | A
A
A | 35
35
30
40 | 0.83 3.5
0.82 3.5
0.81 3.5
0.83 3.5 | 3- | -3
-2
-1
-5 | | | 4011.53
4009.65 | 3 B | (3)
15 | | 3.10 | 3-1
3-2 | (10)
a ³ F-z ⁵ g• | 2985.477
2981.448
2968.231 | E
E
E | (3)
4 | 0.03 4.
0.03 4. | .15
.16 | 3-2
3-4
2-3 | | 4518.022
4522.798
4527.305 | A
A
A | 50
40
35 | 0.82 3.5
0.81 3.5
0.81 3.5 | 3-
1 2- | -4
-3
-2 | | | 3982.47
3998.63
3989.75
3981.76
4024.57 | 5 A
8 A
1 A
3 A | 30
100R
80r
70r
35 | 0.00
0.05
0.03
0.00
0.05 | 3.11
3.10
3.11 | 2-2
4-4
3-3
2-2
4-3 | (11)
a ³ F-y ³ F°
(13) | 2956.133
2967.225
2956.797 | A
E
E | 70R
35
35 | 0.05 4.
0.05 4.
0.03 4. | . 21
. 19 | 4-3
3-2 | a ³ F-v ³ Fo † (30) | 4314.801
4326.359
4334.840
4299.636
4314.74 | A
B
B
B | 25*
9
2
15
25* | 0.83 3.6
0.82 3.6
0.81 3.6
0.82 3.6
0.81 3.6 | 3-
3-
3-
3-
2- | -2
-1
-3
-2 | a ⁵ F-w ³ D° (43) | | 4008.92
3964.26
3962.85 | A B | 35
35
35 | 0.00 | 3.10
3.13
3.11 | 3-2
3-4
2-3 | | 10396.85
10496.14
10584.66 | 0000 | 35
30
35 | 0.84 2.
0.83 2.
0.83 1. | .01
.99 | 5-6
4-5
3-4 | a ⁵ F-z ⁵ G° (31) | 4326.986
*4288.161
4306.945 | B
B
E | 3 | 0.81 3.6
0.81 3.6
0.81 3.6 | i 1- | | | | 3958.20
3956.33
3948.67
3924.52
3929.87
3898.48 | 6 A
0 A
7 A
5 A | 80
60
60
50
40
8 | 0.05
0.02
0.00
0.03
0.00
0.00 | 3.14
3.13 | 4-3
3-2
2-1
3-3
3-3
2-3 | a ³ F-y ³ D° (13) | 10661.61
10736.33
10607.78
10677.04
10732.89
*10774.92
10792.59 | 00000000 | 30
18
10
10
8
13 | 0.81 1.
0.81 1.
0.84 2.
0.83 1.
0.82 1.
0.81 1. | .96
.01
.99
.97
.96 | 2-3
1-2
5-5
4-4
3-3
2-2
5-4
4-3 | | 4305.910
4301.089
4300.566
4298.664
4295.751
4287.405 | A
B
B
A
A
A | 60
50
50
40
33
32
35 | 0.84 3.7
0.83 3.7
0.82 3.6
0.81 3.6
0.81 3.6
0.83 3.7 | 4-
3-
3-
3-
1-
4- | -3
-2
-1 | a ⁵ F-x ⁵ D*
(44) | | 3947.77
3914.75
3921.42 | 1 B | 40
5
30 | 0.02
0.00
0.00 | 3.15
3.15 | 3-3
3-1
3-2 | a ³ F-z ³ pe
(14) | 10828.04
10847.72
9638.28
9675.55 | D D | 1
1
100
90 | 0.83 1.
0.83 1.
0.84 2.
0.83 2. | .96
.13 | 3-2
5-5
4-4 | a ⁵ F-z ⁵ F° (32) | 4286.006
4289.068
4290.933
4272.440
*4274.584 | A
B
B | 25
25
22
8
15 | 0.82 3.70
0.81 3.69
0.81 3.70
0.82 3.70 | 2-
1-
. 3- | -2
-1
-4 | | | 3914.33
3900.95
3889.94
3934.22
3915.87
*3899.66
3881.39 | 8 B
8 B
8 B
9 B | 35
13
6
9
3
(2) | | 3.18
3.17
3.18
3.17
3.16
3.20 | 4-4
3-3
2-3
4-3
3-2
3-1
3-4
2-3 | a ³ F-y ⁵ D° (15) | 9675.55
9705.64
9728.36
9743.60
9770.28
9783.30
9787.67
9783.59 | 000000 | 80
60
50
40
40
50
20 | 0.83 2.
0.81 2.
0.81 2.
0.84 2.
0.83 2.
0.83 2.
0.81 2. | .09
.08
.08
.11
.09
.08 | 3-3
2-2
1-1
5-4
4-3
3-2
3-1 | |
4281.371
•4291.214
4288.78
4287.71
4314.356
4299.17 | B
P
P
B
P | 10
5n
5 | 0.81 3.70
0.81 3.65
0.83 3.77
0.82 3.70
0.81 3.65
0.83 3.65
0.83 3.65 | 1-
4-
3-
2- | -3
-5
-4
-3 | a ⁵ F-x ³ G*
(45) | | *3875.26
3788.80
37 74.33 | 4 E | 30n
3
1n | 0.00 | 3.18
3.31
3.29 | 2-3
4-5
3-4 | a ³ F-y ⁵ G° (16) | 9546.07
9599.53
9647.40
9688.86 | D
D
D | 50
50
50
30 | 0.83 2.
0.83 2.
0.81 2.
0.81 3. | .11
.09 | 4-5
3-4
2-3
1-2 | | 3457.494
3458.020
3457.298 | e
e
e | 4
3
2 | 0.84 4.45
0.83 4.46
0.82 4.35 | 4- | -3 | a ⁵ F_w ⁵ D°
(46) | | 3752.86
3741.05
3729.80
3771.65
3753.62
3722.56 | 0 A
9 A
6 A
2 A
3 B | 80r
60r
50r
25
25 | 0.05
0.03
0.00
0.05
0.03
0.03 | 3.34
3.33
3.31
3.32
3.31 | 4-4
3-3
2-2
4-3
3-2
3-4 | a ³ F-x ³ Fe (17) | 8434.98
8435.68
8436.50
8413.36
8396.93
8364.24
8377.90 | D
D
D
D | 300
300
300
150 | 0.84 2.
0.83 2.
0.82 2.
0.81 2.
0.81 2.
0.83 2. | 31
30
29
28
28 | 5-4
4-3
3-3
3-1
1-0
4-4 | a ⁵ F-z ⁵ D°
(33) | 3455.755
3453.654
3445.566 | | 1
tr
1
1
2
1
tr | 0.81 4.30
0.81 4.31
0.83 4.42
0.83 4.44
0.81 4.30
0.81 4.30
0.81 4.30 | 3-
1-
4-
3-
2-
1- | -1
-0
-4
-3
-3 | | | 3717.39
3689.91
3668.96 | 6 A
5 A | 20
15
15 | 0.00
0.05
0.02 | 3.32
3.39
3.38 | 2-3
4-3
3-2 | a ³ F-x ³ D° (18) | 8382.54
8382.82
8307.41 | D
D
D
E | (3)
100
100
90
(1) | 0.83 2.
0.81 2.
0.82 2. | 30
29
38
31 | 3-3
2-2
1-1
3-4 | | 3240.84
3235.95
3244.53 | P
P
P | | 0.84 4.68
0.83 4.64
0.83 4.64 | 5-
3- | -5
-3 | a ⁵ F-y ³ G° (47) | | 3654.59
3660.63
3646.19
3637.96 | 1 A
8 A | 15
12
12
10 | 0.00
0.00
0.00 | 3.38
3.39
3.38
3.39 | 3-1
3-3
3-2
3-3 | | 8334.37
8353.15
7852.74 | E
E
P | (1)
(2)
(2) | 0.81 2.
0.81 2.
0.84 2. | . 29
. 42 | 3-3
1-3
5-4 | a ⁵ F-z ³ Fe | 6743.124 | A | 10 | 0.90 2.7 | | | a ¹ D-z ¹ D ⁰
(48)
a ¹ D-z ¹ F ⁰ | | 3653.49
3642.67
3635.46
3671.67
3658.09
3687.35 | 5 A
2 A
2 A
7 A | 100r
80r
80r
20
20 | 0.00
0.05 | 3.43
3.41
3.39
3.41
3.39
3.39 | 4-5
3-4
2-3
4-4
3-3
4-3 | a ³ F-y ³ G°
(19) | 7885.00
7895.50
5361.724
5384.634
5401.32
5338.336 | P
P
E
H
E | (1)
(1)
(1) | 0.83 2.
0.83 3.
0.83 3.
0.83 3.
0.81 3.
0.82 3. | 13
11
10 | 4-3
3-2
4-4
3-3
2-2
3-4 | (34)
a ⁵ F_y ³ F°
(35) | | E
E
B
P | 12
(3)
1 | 0.90 3.00
0.90 3.10
0.90 3.10 | 2-
2- | -1
-3 | a-D-Z-F-
(49)
a ¹ D-Z ³ S-
(50)
a ¹ D-Y ³ D-
(51) | | 3635.20
3626.08
3606.78 | 2 E
5 E
6 E | 8
4
4 | 0.05 | 3.44
3.43
3.44 | 4-3
3-2
3-3 | a ³ F-z ⁵ P° (30) | 5386.651
5389.180
5289.28 | B
B | 3 | 0.83 3.
0.81 3.
0.83 3. | 11 | 2-3
1-3 | 25 _{E-2} 3 ₂₀ | 4943.074
4958.26
4840.874 | E
P | (0)
3
35 | 0.90 3.38
0.90 3.38 | 2- | -2 | a ¹ D-x ³ D ^e
(52)
a ¹ D-y ¹ D ^e | | 3603.84
3604.28 | 5 E | ā
8 | 0.00 | 3.43 | 2-2 | a ³ F-y ¹ D° | 5323.958
5340.68
5366.4 9 | E
H
P | (1)
(1)
(1) | 0.83 3.
0.83 3.
0.81 3.
0.82 3. | 14 | 4-3
3-2
2-1
3-3 | a ⁵ F-y ³ D°
(36) | | A
B | 1 | 0.90 3.49 | 3- | -3 | a-D-y-D-
(53)
a ¹ D-w ³ D ⁶
(54) | | Labo
I A
T1 I con | | Int | | E P
Higi | J
h | Multiplet
(No) | Labo
I A
T1 I cor | Ref | Int | Low | E P
High | J | Multiplet
(No) | IA | | Int | E
Low | P
High | J | 27
Multiplet
(No) | |--|-----------------------|-------------------------------|--|--|--|--|---|-----------------------|---------------------------------|--------------------------------------|--|---|--|--|---------------------------------|--------------------------------|--------------------------------------|--|--|---| | 4174.088§
3904.785
3786.043
3610.154 | | (1)
40n
30
13 | 0.90
0.90
0.90 | 0 4.10 | 6 2-
6 2- | (56) | 3382.312
3390.682
3398.634
3403.369
3405.094
m3417.88 | E
E
E
E | 15
10
8
4
5
Fe | 1.00
1.00
1.00
1.00
1.00 | 5 4.69
4 4.67
6 4.69
5 4.67 | 1-2
7 0-1
9 2-2
7 1-1 | 3 (86)
3 | T1 I cor
5474.228
5453.646
5438.310
5494.726
5470.50 | B
B
B
B
B
J
B | 6
3
1
(1)
(2) | 1.45
1.44
1.43
1.45
1.44 | 3.71
3.70
3.69
3.70
3.69
3.69 | 4-5
3-4
2-3
4-4
3-3
4-3 | b ³ F-x ³ G° (108) | | 3598.714
3324.61
3341.554
3299.413 | A
G
E | 15
1
1 | 0.90
0.90
0.90 | 4.6 | 3 2-
1 2-
9 2- | (58)
3 a ¹ D-x ¹ D°
(59)
3 a ¹ D-w ³ P°
1 (60) | 3314.422
3309.501
3308.391
3321.588
3314.523
3326.639 | A
E
E
E
E | 10
15
10
8
8 | 1.00
1.00
1.00
1.00
1.00 | 5 4.78
4 4.77
6 4.78
5 4.77 | 1-2
0-1
3-2
1-1 | (87) | 5145.465
5113.448
5087.055
5109.427
5085.333
5081.39 | A
A
B
B | 12
10
8
4
4 | | 3.85
3.85
3.85
3.85
3.85
3.85 | 4-3
3-2
2-1
3-3
2-2
2-3 | b ³ F-v ³ D° (109) | | 3292.078
3278.922\$
3288.59 | A
E
P | 30
(12)
T1 ⁺ | 0.90 | 4.65 | 3 2-: | (62)
3 a ¹ D-u ³ F°
3 (63) | 3280.391
3268.61
3262.63
*3260.2598
*3248.6028 | E
G
E | 2
1
1
3
15 | 1.06
1.06
1.06 | 4.82
4.83
4.85 | 1-1
0-1
2-1 | (88)
a ³ P-w ¹ P° | 5035.908
5036.468
5038.400
5071.475
5065.985 | A
A
B
B | 25
25
25
7 | 1.45
1.44
1.43
1.45
1.45 | 3.90
3.89
3.87
3.89
3.87 | 4-5
3-4
2-3
4-4
3-3 | b ³ F-w ³ G° (110) | | 3267.41
3172.731
3179.291
3141.537 | E
E
E | tr
4
3
15 | 0.90
0.90
0.90 | 4.79 |) 2-:
3 2-: | (64)
3 a ¹ D-t ³ D°
3 (65)
4 a ¹ D-x ¹ P° | *3213.145§ 3204.870 3201.594 3216.203 3207.337 | EEE | 8
6
5
3 | 1.06 | 4.90
4.90
4.90
4.90 | 2-3
1-3
0-1
2-2 | a ³ P-s ³ D° (90) | 4742.32
4711.68
4687.82
4559.920
4535.87 | P
P
P | 6 | 1.44
1.48 | 4.06
4.06
4.06
4.16 | 3-3
2-3
4-4 | b ³ F-y ¹ F° (111) b ³ F-w ³ F° | | 3123.074
3675.38
3682.99
3692.34 | E
D | 150
125 | 1.06 | |
2-3
1-2 | (67)
3 a ³ p_z ³ p°
3 (68) | 3218.683
3137.352
3134.654
3145.515
*3136.028 | E
E
E | tr
(1)
1
2 | 1.06
1.05
1.06
1.05 | 4.90
5.00
4.99
4.99 | 3-1
3-3
1-1
3-1 | a ³ P_v ³ P° (91) | 4518.700
4564.216
4540.873
m4531.60
4513.715 | B
E
P
E | 8
1
1
Fe
1 | 1.42
1.45
1.44
1.44 | 4.15
4.16 | 3-3
2-2
4-3
3-2
3-4
2-3 | (112) | | 766.64
734.70
819.39
3126.217
3085.228 | D D D | 100
75
75
8
8 | 1.04
1.06
1.05
1.06
1.06 | 3.47
2.46
3.46
3.08 | 3-2
1-1
3-1
3-1 | . a ³ P-z ³ s° | *3100.666
3106.806
3112.482
3117.455
3117.899
*3138.640§ | E
E
E
E | 12
8
8
6
5 | 1.06
1.05
1.04
1.06
1.05 | 5.03
5.01
5.03
5.01 | 3-3
1-3
0-1
2-3
1-1
2-1 | a ³ P_r ³ D°
(92) | 4457.428
4455.321
4453.312
4482.688
*4474.852
4430.366 | A
A
A
A | 40
30
30
10
8
7 | 1.44
1.43
1.45
1.44
1.44 | 4.22 | 4-4
3-3
2-2
4-3
3-2
3-4 | b ³ F-v ³ F° (113) | | 0064.631
0058.76
0018.62
1918.548 | A
P
E
A | (0)
10 | 1.04
1.06
1.05 | 3.08
3.10
3.10 | 0-1
3-2
1-2 | a ³ p_z ⁵ s ^c (70) | *3100.666
3090.137
3084.819
2965.707 | E
E
E | 12
8
4 | 1.06
1.05
1.04 | 5.04
5.04
5.04 | 3-1
1-1
0-1 | a ³ p-x ³ s° (93) | *4434.003
4127.09
3789.293
3795.903 | A
P
B
B | 15
8
7 | 1.45
1.45
1.44 | 4.21
4.44
4.71
4.69 | 2-3
4-4
4-3
3-2 | b ³ F-y ¹ G°
(114)
b ³ F-u ³ D°
(115) | | 903.317
880.306
866.453
899.295
922.112 | A
A
A | 5.
5
35
25
18 | 1.06
1.05
1.06
1.05 | 3.15 | 3-1
1-3
3-3
1-3 | (71)
a ³ p_y ³ p°
(72) | 2965.231
2965.68
2974.934
2970.556
2980.296 | EEEE | 15
(6?)
8
4
4
tr | 1.06
1.05
1.04
1.06
1.05 | 5.21
5.20
5.21
5.20 | 2-3
1-3
0-1
3-3
1-1
2-1 | a ³ P-q ³ D°
(94) | 3798.276
3717.259
3715.795
3713.734
3728.676 | A
E
E
E | 6
1
1
1 | 1.45
1.44 | 4.76
4.75 | 2-1
4-4
3-3
2-2
3-3 | b ³ F-t ³ F* † (116) | | 937.806
941.755
980.89
814.00
809.75 | A
H
H |
6
12
(1)
(1)
(0) | 1.06
1.05
1.06
1.06 | 3.14
3.13
3.13
3.18 | 3-3
1-1
3-1 | | 10034.45
10048.78
10059.87
10189.26
10170.60 | DDDCC | 15
12
12
3
3 | 1.45
1.44
1.43
1.45 | 2.67
2.65
3.67 |
4-5
3-4
2-3
4-4
3-3 | b ³ F-z ³ G°
(95) | 3704.295
3694.445
3685.964
3651.90
3638.49 | B
A
B
P
P | 15
10
2 | 1.45 | 4.78
4.77
4.83 | 3-2
3-1
4-5 | b ³ F ₋ t ³ D° (117) | | 295.781
282.378
284.380
313.239
300.012 | A
B
B
B | 3
3
(1) | 1.06
1.05
1.04
1.06
1.05 | 3.38
3.38 | | a ³ P-x ³ D°
(74) | 7366.60
7344.72
7357.74
7364.11 | E
E
E | (1)
4
3
2 | 1.43
1.45
1.44 | 3.10 | | b ³ F-z ⁵ S°
(96)
b ³ F-y ³ F°
(97) | 3656.73
3487.80
3439.305
3443.644 | P
P
E
E | 8
5 | 1.45 | | 3-4
4-4
3-3
4-3
3-2 | (118) b ³ F_w ¹ F° (119) b ³ F_r ³ p° (120) | | 691.336
698.766
710.186
723.171
722.603
747.256 | A
A
B
B
E | 30
20
18
10
10 | 1.06
1.05
1.04
1.06
1.05
1.06 | 3.67
3.66 | 2-3
1-2
0-1
2-3
1-1
2-1 | | 7423.17
7271.41
7299.67
7216.20
7160.33
7138.05 | E
E
E
K
P | (a)
(o)
(a)
5
(a) | 1.44
1.43
1.44
1.43 | 3.15
3.15 | 3-3
3-4
2-3
3-2
3-2 | b ³ F-z ³ P°
(98) | 3444.403
3423.172
3430.874
3434.69 | E
E
P | 3
2
2 | 1.42 !
1.44 !
1.43 ! | 5.01
5.04
5.03 | 2-1
3-3
2-2
4-4 | b ³ F-w ¹ G°
(121)
b ³ F-v ⁵ D° | | 890.827
875.118
868.357
867.53
892.45
879.73 | B
A
E
P
P | 3
10
3
T1 | 1.06
1.05
1.04
1.06
1.05 | 3.69
3.70
3.69
3.69 | 2-3
1-3
0-1
2-3
1-1 | a ³ P-x ³ G°
(76)
a ³ P-x ⁵ D°
(77) | 7209.44
7244.86
7251.74
7138.91
7188.55
7084.25 | EEIEEP | 20
10
8
(1) T1? | 1.43
1.44
1.43 | 3.14
3.13 | 2-1
4-3
3-2
2-1
3-3
2-3
2-3 | b ³ F-y ³ D°
(99) | 3297.68
3309.32
3274.047
3270.562
3265.480
3259.42
3259.04 | PP EEEEd | (5)
3
2
2
1 | 1.45 5
1.45 5
1.44 5 | 5.22 | 4- 3 | b3F-q3De
(123)
b3F-q3De
(123) | | 422.823
404.397
394.855
425.840
405.694
427.12 | A
B
B
B
B | 10
5
(2)
3
2 | | 3.85
3.85
3.85
3.85
3.85 | 2-3
1-3
0-1
2-3
1-1 | a ³ P-v ³ D°
(78) | 7065.157
7130.34
•7007.81
6666.548 | J
P
H | (1)
(1)
(2n) | | 3.18
3.18
3.31 | | b ³ F _{-y} 5 _D e
(100)
b ³ F _{-y} 5 _G e
(101)
b ³ F _{-x} 3Fe | 9718.96
7949.17
4820.410 | D
E
A | 25
(3)
20 | 1.50 a
1.50 a
1.50 4 | 3.05 | 4-4 | a ¹ G-z ¹ F°
(124)
a ¹ G-z ¹ G°
(125)
a ¹ G-y ¹ F° | | 508.514
502.979
523.440
510.373 | B
E
B
B | 3
1n
1
1 | 1.06
1.05
1.06
1.05
1.05 | 3.85
3.93
3.92
3.93
3.91
3.93 | 3-1
3-3
1-1
3-1
1-0
1-3 | a ³ p_y ³ p°
(79) | 6556.066
6554.226
6594.276
m6592.91
6497.689
6508.135 | A
A
P
E | 25
20
20
Fe
3
3 | 1.44
1.43
1.44
1.44 | 3.34
3.31
3.31
3.34
3.38 | 4-4
3-3
2-2
3-2
3-4
2-3 | (102) | *4526.374
4427.098
4186.119 | E
A
A | 1
40
25 | 1.50 4 | | 4-5 | (126)
alg_v3re
(127)
alg_z1He
(128)
alg_y1ge
(129) | | 82.456
65.094
60.263 | E
A
B
A
A | 30
15
20
15
20 | 1.06
1.05 | 4.09
4.09
4.09
4.08
4.09 | 0-1
2-3
1-1
3-1
1-0
1-3 | a ³ P-x ³ P° (80) | 6366.354
6336.104
6318.027
6311.289
6293.00
6268.50 | A
E
E
P
H | 8
5
(1)
(2) | 1.44 | 3.39
3.38
3.38
3.39
3.38
3.39 | 3-2
2-1
3-3
2-2
2-3 | b ³ F-x ³ D°
(103) | 3919.822
3724.570
3702.942
3547.029 | B
A
B | 5
20
2
15 | 1.50 4
1.50 4 | .83 | 4-4
4-4 | a1 _{G-x} 1 _F °
(130)
a1 _{G-x} 1 _G °
(131)
a1 _{G-x} 3 _H °
(133) | | 189.581
178.130
163.354 | A
B
E
E | (0)
(0) | 1.04
1.06
1.05
1.04 | 4.16
4.16
4.16 | 0-1
3-1
1-1
0-1 | a ³ P_z ¹ P° (81) | 6258.706
6258.103
6261.101
6312.240
6303.754 | A
A
A
A | 50
40
35
10 | | 3.41
3.39 | 3-4
3-3
4-4
3-3 | b ³ F-y ³ G ^e
(104) | | E
P | 6 | 1.50 5
1.50 5 | .07 | 4-5 a | 1 G_w1F°
(133)
1 G_y1H°
(134)
2 G_u3G°
(135)
1 G_v1F° | | 86.445
25.155
09.963 | F
B
A
B | 30 | 1.06
1.05
1.06
1.05
1.04 | 4.33
4.37
4.37
4.37 | 3-3
1-3
3-1
1-1
0-1 | a ³ P-x ¹ D°
(83)
a ³ P-y ³ g°
(83) | 5514.536
5514.350 | P
P
A
B | 25
25
20 | 1.45 | 3.57
3.54
3.69
3.67
3.66 | 4-5
4-3
4-3
3-2
3-1 | b ³ F _{-y} ⁵ F°
(105)
b ³ F _{-w} ³ D°
(106) | 3119.725
9090.70 | E | 15
 | 1.74 3 | .10 | 4-5 a | (130)
11 _{G-x} 1 _H 0
(137)
15 _{P-z} 5 _S 0
(138) | | 95.754
67.260 | A
E
E
E
E | 8
6
6 | 1.05
1.06
1.05
1.05 | 4.61
4.59
4.59
4.58
4.61 | 2-3
1-1
2-1
1-0
1-3 | a ³ P-w ³ P° (84) | 5471.198
5481.862
5449.155
5440.53
5490.151 | B
B
P
A | 5
5
1 | 1.44
1.43
1.44
1.43
1.45 | 3.69
3.67
3.70
3.69
3.70 | 3-3
3-3
3-3
2-3
4-3 | b ³ F-x ⁵ D° (107) | 8989.44
8821.14
8761.44
8725.76 | D
D
D | 12
15
6 | 1.73 3
1.74 3
1.73 3 | .10
.14
.14
.14 | 1-3
3-2 &
3-3
1-3 | a ⁵ P-y ³ D•
(139) | | 76.452 | e
E | 3 | 1.04
1.06
1.05 | | 0-1
2-3
1-3 | a ³ P-y ⁵ 8°
(85) | 5472.696 | В | 3 | 1.44 | 3.69 | 3–2 | | | | 30
30 | 1.74 3
1.73 3 | | | ⁵ P _{-z} 3pe
(140) | | 28
Labor
I A | atory
Ref | | E P | High | J | Multiplet
(No) | Labor
I A | ator;
Ref | | E P
Low High | J | Multiplet
(No) | Laborator
I A Ref | ry
Int | E P
Low High | J | Multiplet
(No) | |--|--------------------------|-------------------------------------|--|--|---|--|--|-----------------------|-------------------------------|--|--|---|---|--------------------------------------|--|---|---| | Ti I cont | inued | | | | | | T1 I cont | inue | đ | | | | Ti I continue | | | | 5-a 5 | | 8457.10
8494.42
8531.36
8550.54
8565.45 | D
D
D
D | 40
30
15
25
25 | 1.73
1.73
1.74
1.73 | 3.18
3.17 | 2-3
1-2
3-3
2-2 | a ⁵ P_y ⁵ D°
(141) | 4263.134
*4274.584
4282.702
4251.618
4265.723 | A
A
B
B | 15
15
13
3 | 1.88 4.77
1.87 4.76
1.87 4.77
1.87 4.77 | 4-3
3-2
4-4 | (162) | 3143.350 E
3139.87 E
3135.069 E
3130.175 E
3127.684 E | 12N
10N
8N
8N
8N | 2.03 5.96
2.01 5.94
1.99 5.92
1.97 5.91
1.96 5.91 | 6-7
5-6
4-5
3-4
2-3 | z ⁵ G°-g ⁵ H
(180) | | 8578.40
8612.91
8600.98
7474.94
7466.44 | D D E P P | 15
7
25
(1p?) | 1.73
1.73
1.74
1.73 | 3.16
3.16
3.16
3.39
3.38
3.39 | 1-1
3-1
1-0
3-3
3-3
3-3 | a ⁵ P-x ³ D°
(143) | 4169.330
4166.311
4164.134
4177.357
4172.609 | B
B
E
E | 7
6
4
(2)
(2) | 1.88 4.84
1.87 4.83
1.87 4.83
1.88 4.83
1.87 4.83 | 4-5
3-4
5-5
4-4 | (163) | 3123.769 E
3118.130 E
3114.092 E
3111.283 E
3107.468 E
3105.220 E | 30n
15
30n
10n
13n
3n | 2.03 5.98
2.01 5.97
1.99 5.95
1.97 5.94
1.96 5.93
2.01 5.98 | 6-5
5-4
4-3
3-2
2-1
5-5 | z ⁵ g°j ⁵ F
(181) | | 7431.98
7253.76
7291.03 | I
P | (1p1) | 1.74
1.73 | 3.44
3.42 | 3-3
2-2 | a ⁵ P-z ⁵ P° (143) | 3895.59
3885.95
3878.61 | P
P
P | | 1.88 5.05
1.87 5.05
1.87 5.05 | 4-4 | , | 3103.517 E
3101.536 E
3101.77 G | 3n
4n
1n | 1.99 5.97
1.97 5.95
1.96 5.94 | 4-4
3-3
2-2 | | | 7305.87
7332.26
7330.97
7213.35 | H
I
E | (1)
(1p?)
(1p?)
(1)
(0) | 1.74
1.73
1.73 | 3.42
3.42
3.42
3.44 | 1-1
3-2
3-1
3-3 | | 3786.253
3801.093
3811.385 | B
B | 3
3
4. | 1.88 5.14
1.87 5.12
1.87 5.10 | 3 4-3 | (165) | 8518.05 D
8467.15 D
8434.41 D | 60
75
50 | 2.13 3.57
2.11 3.57
2.09 3.56 | 5-4
4-3
3-2 | z ⁵ F°-a ⁵ D
(182) | | 7266.29
6266.021
6264.825 | E
E | {1
(0) | 1.74
1.73 | 3.42
3.71
3.70
3.69 | 1-2
3-4
2-3
1-2 | a ⁵ P-x ⁵ D° (144) | 3733.767
3738.901
3748.101 | B
E
B | 4n
5n
6n | 1.88 5.18
1.87 5.19
1.87 5.16 | 7 4-5 | (166) | 8389.48 D
8417.54 D
8386.34 P
8363.58 P | 25
25 | 2.08 3.55
2.11 3.57
2.09 3.57
2.08 3.56 | 2-1
4-4
3-3
2-2 | | | 6277.525
6295.251
6295.949
6298.075 | E
E
E | (00)
(2)
(00) | 1.74 | 3.70
3.69
3.69 | 3-3
3-3
1-1 | | 3504.773
3516.838
3525.161 | E
E | 3
3 | 1.88 5.40
1.87 5.30
1.87 5.30 | 3 4-: | (167) | 5224.301 A
5224.928 A
5224.558 B |
15
8
6 | 2.13 4.49
2.11 4.47
2.09 4.46 | 5-5
4-4
3-3 | z ⁵ F°-e ⁵ F
(183) | | 4617.269
4623.098
4629.336 | A
A
A | 30
25
15 | 1.73 | 4.40
4.39 | 3-4
3-3
1-3 | a ⁵ p_w ⁵ D° (145) | 3428.955
3446.603
*3454.165 | E
E | 4
2
1 | 1.88 5.4
1.87 5.4
1.88 5.4 | 5 4-4 | (168) | 5223.623 B
5222.685 B
5263.483 B
5255.811 B | 6
6
3
5 | 2.08 4.45
2.08 4.44
2.13 4.47
2.11 4.46 | 3-3
1-1
5-4
4-3 | | | 4639.669
4639.369
4639.944
4656.048
4650.016
4645.193 | B
B
B
B | 15
18
15
6
10
13 | 1.73
1.73
1.74
1.73 | 4.40
4.39
4.39
4.39
4.39
4.38 | 3-3
2-3
1-1
3-3
3-1
1-0 | | 3352.43
3358.56
3364.10
3010.42 | P
P
P | | 1.88 5.5
1.87 5.5
1.87 5.5 | 5 4-3
3 3-3 | 3 (169) | 5347.293 B
*5238.560 B
5186.329 B
5194.043 E
5201.096 E
5207.852 B | 5
6
3
4
4
3 | 3.09 4.45
3.08 4.44
3.11 4.49
3.09 4.47
2.08 4.46
3.08 4.45 | 3-2
2-1
4-5
3-4
2-3
1-2 | | | 4481.261
4480.600
4479.724
4496.146
4489.089 | A
B
B
A | 30
5
9
20
20 | 1.73
1.74
1.73 | 4.50
4.49
4.48
4.49
4.48 | 3-3
2-2
1-1
3-3
3-1 | a ⁵ P_y ⁵ P°
(146) | *5054.070
3601.16 | В | 3
1 | 1.87 4.3 | | a 18-y1P°
(171) | 4503.763 A
4497.709 B
4493.540 B
m4488.27 P
4485.013 B | 4n
3
3
Ti+
1 | 2.13 4.87
2.11 4.85
2.09 4.84
2.08 4.83
2.08 4.83 | 5-5
4-4
3-3
2-2
1-1 | z ⁵ F°-f ⁵ F
(184) | | 4465.807
4471.238
4305.474 | A
A
B | 20
20
2 | 1.73
1.73 | 4.50
4.49
4.61 | 2-3
1-2
3-2 | a ⁵ P-w ³ P° | 5025.570
5013.284
5000.991 | A
B
B | 18
18
10 | 2.03 4.4
2.01 4.4
1.99 4.4 | 7 5-
6 4- | 4 (173)
3 | *4526.374 E
4515.610 B
4505.715 E | 1 1 1 | 2.13 4.85
2.11 4.84
2.09 4.83
2.08 4.83 | 5-4
4-3
3-2
2-1 | | | *4291.214
4299.229
4284.988 | B
E
B | 5n
15
8 | 1.73 | 4.61
4.61
4.61 | 3-2
3-2 | (147)
a ⁵ P-y ⁵ S°
(148) | 4989.140
4978.191
4977.731
4973.051 | B
B
B | 10
10
5
6 | 1.97 4.4
1.96 4.4
2.01 4.4
1.99 4.4 | 4 2-
9 5-
7 4- | 1
5
4 | 4496.75 P
4475.518 E
*4474.852 A
4475.19 P
4476.61 P | 1
8 | 2.11 4.87
2.09 4.85
2.08 4.84
2.08 4.83 | 4-5
3-4
2-3
1-2 | | | 9832.15
9937.35
9997.94 | B
D
D | 25
20
15 | 1.87
1.87 | 3.13
3.11
3.10 | 1-3
-
5-4
4-3
3-3 | a ³ G-y ³ F°
(149) | 4968.566
4964.713
4938.04
4941.015
4944.388 | B
B
H
E
E | 6
5
(On)
(1)
(0) | 1.97 4.4
1.96 4.4
1.99 4.4
1.97 4.4
1.96 4.4 | 5 2-
9 4-
7 3-
6 2- | 2
5
4
3 | 4030.512 A
4026.539 A
4021.812 B
4017.771 A
4015.377 A | 25n
25n
25n
15n
12n | 3.13 5.19
3.11 5.17
3.09 5.16
2.08 5.15
3.08 5.15 | 5-6
4-5
3-4
2-3
1-2 | z ⁵ F°-e ⁵ G
(185) | | 9879.41
8468.46
8518.37 | D
D
D | 3
100
100 | 1.87
1.88
1.87 | 3.11
3.34
3.32 | 3-3
5-4
4-3 | a ³ G-x ³ F° (150) | 4355.308
4340.018
3911.185 | E
E
B | 1
1
.8ņ | 2.01 4.8 | 15 5-
.9 6- | 4 (174)
6 z ⁵ g•_e ⁵ g | 4049.399 E
4040.310 B
4031.753 B | 2n
4n
3n | 2.13 5.17
2.11 5.16
2.09 5.15 | 5-5
4-4
3-3 | | | 8548.07
8423.10
8483.16 | D
D | 100
20
25 | 1.87
1.87 | 3.31
3.34
3.32 | 3–2
4–4
3–3 | 2 2 - | *3899.668
3888.020
3877.591
3869.275 | B
B
B | (3)
4n
3n
5n | 2.01 5.1
1.99 5.1
1.97 5.1
1.96 5.1 | .6 4-
.5 3-
.5 3- | 4
3
2 | 4016.264 B
4012.786 B
4013.24 P
3993.796 B | | 2.13 5.20
2.11 5.18
2.09 5.17
2.11 5.20 | 5-4
4-3
3-3
4-4 | (186) | | *7978.88
8024.84
8068.24
8066.05
7938.53 | EEEPP | (4)
(2)
(2) | 1.88
1.87
1.87
1.88
1.87 | 3.43
3.41
3.39
3.41
3.43 | 5-5
4-4
3-3
5-4
4-5 | a ³ G-y ³ G°
(151) | 3928.97
3912.589
3897.290
3884.090
3882.147
*3875.262 | P
B
B
B | 2
1
(0)
15n
30n | 2.03 5.1
2.01 5.1
1.99 5.1
1.97 5.1
2.01 5.1
1.99 5.1 | .6 5-
.5 4-
.5 3-
.9 5- | 4
3
2
6 | 3994.56 P
3975.69 P
3980.821 B | (0) | 2.09 5.18
2.09 5.20
2.08 5.18
2.13 5.20 | 3-3
3-4
2-3
5-6 | z ⁵ F°_e ⁵ H | | 6746.433
6748.43
6751.94 | E
H
H | (1)
(1)
(0) | 1.88
1.87
1.87 | 3.71
3.70
3.69 | 5-5
4-4
3-3 | a ³ G-x ³ G°
(153) | 3868.397
3862.823 | B
B | 10n
10n
20n | 1.97 5.1
1.96 5.1
2.03 5.2 | 16 3-
15 2- | 3 | 4008.046 B
4005.952 B
4007.195 B | 9n
6n | 2.11 5.19
2.09 5.17
2.08 5.16 | 4-5
3-4
3-3 | | | 6092.814
6121.008
6146.225 | E
E
E | 4
3
3 | 1.88
1.87
1.87 | 3.90
3.89
3.87 | 5-5
4-4
3-3 | a ³ G-w ³ G°
(153) | 3882.892
3866.446
3858.133
3853.719
3853.038 | B
A
B
B | 15n
15n
10n
10n | 2.03 5.2
2.01 5.2
1.99 5.1
1.97 5.1 | 30 5-
19 4-
17 3- | 6 (176) *
.5
.4 | 4003.789 B
4002.466 B
3999.336 B
3994.683 B | 9n
7n
4 n | 2.13 5.21
2.11 5.19
2.09 5.18
2.08 5.17 | 5-4
4-3
3-2
3-1 | (188) | | 5953.162
5965.828
5978.543
5988.560
5996.007 | A
A
E | 30
30
25
2 | 1.88
1.87
1.87
1.88
1.87 | 3.95
3.94
3.93
3.94
3.93 | 5-6
4-5
3-4
5-5
4-4 | a ³ G-z ³ H°
(154) | 3858.445
3853.719
3853.038
3895.243
3892.313
3873.203
3867.739
3911.362
3897.381 | A
B
B
E | 30n
10n
10n
3
(3) | 2.03 5.2
2.01 5.2
1.99 5.2
1.97 5.1
2.03 5.2 | 30 6-
19 5-
17 4-
16 3-
19 6- | .6
.5
.4
.3
.5 | 3990.184 E
3981.466 B
3984.313 B
3985.580 B | (1n)
(0)
3
(1) | 2.08 5.17
2.11 5.21
2.09 5.19
2.08 5.18 | 1-0
4-4
3-3
3-3
5-5 | "5 _m o_"" 5 .»+ | | 5409.609
5397.093
5389.996
5391.06 | A
A
A
P | 6
4
3 | 1.88
1.87
1.87 | 4.16
4.16
4.15
4.16 | 5-4
4-3
3-3
4-4 | (155) | 3720.384
3707.549 | B
E
B
E | (1n)
3
10n | 2.01 5.1
1.99 5.1
2.03 5.1
2.01 5.1
1.99 5.1 | 17 5-
16 4-
35 6-
34 5- | .4
.3
.5 z ⁵ G°-g ⁵ F
.4 (177) | 3828.180 B
3822.026 B
3817.639 B
3814.855 B
3813.261 B | (2)
5 | 2.13 5.35
2.11 5.34
2.09 5.33
2.08 5.32
2.08 5.31 | 4-4
3-3
2-3
1-1 | (189) | | 5382.96
5265.967
5283.441
5297.236
*5248.402
5269.93 | A | 10
8
6
(1)
(1) | 1.87
1.88
1.87
1.87
1.87 | 4.31
4.19
4.33 | 3-3
5-4
4-3
3-2
4-4
3-3 | a ³ Q-v ³ F°
(156) | 3696.885
3688.27
3681.272
3694.10
3685.47
3679.14
3674.92 | 1 P E P P P P | 1 | 1.97 5.
1.96 5.
2.01 5.
1.99 5.
1.97 5. | 32 3-
31 2-
35 5-
34 4-
33 3- | -2 | 3306.879 E
3309.730 E
3312.690 E
3315.237 E
3318.362 E
3325.155 E | 6
5
2
4
3 | 2.13 5.86
2.11 5.84
2.09 5.82
2.08 5.81
2.08 5.80
2.13 5.84 | 5-6
4-5
3-4
2-3
1-2
5-5 | (190) | | 4885.082
4899.910
4913.616
4915.236 | A
A
A
B | 20
20
20
5 | 1.88
1.87
1.87 | 4.41
4.39
4.38
4.39 | 5-6
4-5
3-4
5-5 | a ³ G-y ³ H° (157) | *3366.176
3361.50
3356.196
*3350.548 | E
G
E | 2 | 3.03 5.
3.01 5.
1.99 5.
1.97 5. | 70 6-
68 5-
67 4-
66 3- | -5 z ⁵ G°-h ⁵ F
-4 (178)
-3
-2 | 3325.229 E
+3324.754 E
3340.77 H
3337.40 G | (1)
in | 3.11 5.83
3.08 5.80
3.13 5.83
3.11 5.81
3.09 5.80 | 4-4
(3-3
2-2
5-4
4-3
3-2 | | | 4925.396
4811.074 | 3 B | 5,
4 | 1.87 | 4.38
4.44 | 4-4
5-4 | a ³ G_y ¹ G°
(158) | 3344.931
3344.630
3343.379
*3341.554 | E
E
E | tr
tr
1 | 1.96 5.
2.01 5.
1.99 5.
1.97 5. | 70 5
68 4
67 3 | -1
-5
-4
-3 | 3334.35 H
3199.43 G
3198.726 H | in
in | 2.13 5.98
2.11 5.97 | 5-5
4-4
3-3 | z ⁵ F°_j ⁵ F
(191) | | 4449.985
4440.345 | 5 A | 1
10 | 1.87 | 4.64 | 4-3
3-3 | (159) | 3339.54
3236.128
3223.519 | E | 1n | 1.96 5.
2.03 5. | 66 2
86 6 | -2
-6 -5aa5a | 3199.34 H
*3213.145\$ E
3211.07 E | 8 | 2.09 5.95
2.13 5.97
2.11 5.95 | 3-3
5-4
4-3 | ŀ | | 4449.143
4450.896
4453.708
4463.539
4463.391
4436.586
4441.272 | 8 A
8 A
9 B
1 B | 30
35
30
8
8
4 | 1.88
1.87
1.87
1.87
1.87
1.87 | 4.64
4.64
4.64
4.65 | 5-5
4-4
3-3
5-4
4-3
4-5
3-4 | (160) | 3233.519
3221.381
3219.212
3217.942
3243.513
3238.224
3232.791
3228.183 | E
E
E | 10
8
8
3
4
3 | 1.99 5. | 82 4
81 3
80 2
84 6
82 5
81 4 | -5 (179)
-4
-3
-3
-5
-4
-3 | 3141.670 H
3129.075 H
3128.640§ H
3125.656 H
3125.553 H | 8 (2) | 2.13 6.05
2.11 6.05
2.09 6.04
2.08 6.03
3.08 6.03 | 5-4
4-3
3-2
2-1
1-0 | (192)
: | | 4417.27
4426.05 | 4 A | 15
10 | 1.88 | | | | 3228.183
3206.344
3206.825 | : Е | ő | 1.97 5.
2.01 5.
1.99 5. | 86 5 | -2
-6
-5 | | | | | | | Lab
I A | orator
Ref | ry
Int | Low | P
High | J | Multiplet
(No) | Labo:
I A | | y
Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | ratory
Ref | | E : | P
High | J | Multiplet (No) | |---|-----------------------|-------------------------------------|--|--|---
--|---|-----------------------|--------------------------|--------------------------------------|--|--|---|--|--------------------------------------|---|--|--|---|---| | <u>T1 I</u> co | | | | - | | | Ti I con | | | | J | | •~-• | T1 I cont | | | | ****** | | (110) | | 0057.69
10003.02
10011.72
10120.90
10066.47
9941.33
9948.98 | D D D C D D D | 25
25
15
10
8
8
8 | 3.17
3.15
3.14
3.17
3.15
3.15
3.14 | 3.39
3.38
3.38
3.38
3.39
3.38 | 3-3
2-2
1-1
3-3
2-1
2-3
1-3 | a ³ D-z ⁵ P° | 4995.062
4848.41
4843.989
4839.251
4863.75
4854.727
•4404.276 | P
B
E
P
B | (0)
(1)
(00)
10 | 2.34
2.33
2.34
2.34
2.33 | 4.71
4.79
4.78
4.77
4.78
4.77 | 2-3
1-3
0-1
2-3
1-1
2-3 | | 5662.154
5675.413
5689.465
5703.666
5713.895
5708.199
5711.852
5716.450
5720.445 | A
A
B
B
B
B
B
B | 12
9
10
6
3
3
4
4
3 | 2.31
2.30
2.39
2.38
2.31
2.30
2.39
2.38 | 4.49
4.47
4.46
4.45
4.44
4.47
4.46
4.45 | 4-5
3-4
2-3
1-2
0-1
4-4
3-3
2-2
1-1 | z ⁵ D°-e ⁵ F
(249) | | 9690.62
8080.55
8098.50
8133.36 | P
P
P | 8 | 3.15
3.17
2.15
3.14 | 3.42
3.69
3.67
3.66 | 3-3
3-3
3-3
1-1 | (194)
a ³ D-w ³ D ^o
(195) | 4431.754
4431.284
4438.232
4444.267 | A
B
B
B | 6
4
2
(1) | 2.23
2.22
2.24
2.23 | 5.02
5.01
5.02
5.01 | 1-2
0-1
2-2
1-1 | (218) | 5739.08
4825.445
4827.597
4832.065 | P
B
B | 3
2
(0) | 2.30
2.31
2.30
2.29 | 4.45
4.87
4.85
4.84 | 3-4
2-3 | z ⁵ p°-f ⁵ f
(250) | | 6419.15
6381.416
6361.41 | H
E
H | (2)
(1)
(1) | 2.17
2.15
2.14 | 4.09
4.09
4.08 | 3-2
3-1
1-0 | a ³ D-x ³ P° † (196) | *4404.276
4388.077
4375.425 | B
E | 10
3
1 | 2.24
2.23
2.23 | 5.04
5.04
5.04 | 1-1
0-1 | (219) | 4837.42
4270.139
4273.312 | P
B
B | 7n
2 | 2.28
2.31
2.30 | 4.83
5.20
5.18 | 1-2
4-4
3-3 | z ⁵ D°-g ³ F
(251) | | 6186.14
6149.743
6138.38 | J
E
I | 3
2
1 | 2.17
2.15
3.14 | 4.16
4.16
4.15 | 3-4
2-3
1-2 | a ³ D-w ³ F° † (197) | 4203.465
4186.01
4200.752
4183.294 | B
P
B | 8
6
4 | 2.24
2.23
2.24
2.23 | 5.18
5.18
5.18
5.18 | 3-2
1-1
3-1
1-0 | b ³ P-u ³ P°
(220) | 4291.88
4251.769
4260.738 | J
B
B | (1)
2n
2 | 2.31
2.30
2.29 | 5.18
5.20
5.18 | 4-3
3-4
2-3 | (201) | | 5999.003
6002.640
6018.423 | F
E
L | (0)
(1) | 3.17
3.15
3.14 | 4.22
4.21
4.19 | 3-4
3-3
1-3 | a ³ D-v ³ F°
(198) | 4188.694
4174.473
4136.894 | B
B | 5
3
(1) | 2.23
2.22
2.24 | 5.18
5.18
5.22 | 1-3
0-1
2-3 | ъ ³ Р-q ³ D• | 4256.025
4261.609
4266.227
4268.928 | A
B
B
E | 8n
5n
3n
(1n) | 2.31
2.30
2.29
2.28 | 5.21
5.19
5.18
5.17 | 4-4
3-3
2-2
1-1 | z ⁵ D°-e ⁵ D
(252) | | 5052.879
5062.112
5069.351
5023.39
5048.208 | A
A
B
H
E | 8
7
5
(2)
(1) | 3.17
3.15
3.14
3.15
3.14 | 4.61
4.59
4.58
4.61
4.59 | 3-3
3-1
1-0
3-3
1-1 | a ³ D-w ³ P°
(199) | 4140.43
4139.48
4154.865
4150.809
3698.183 | P
H
E
B | (1)
2
(0)
3 | 2.23
2.22
2.24
2.23 | 5.21
5.20
5.21
5.30 | 1-2
0-1
3-3
1-1 | (231)
b ³ P-t ³ P° | 4280.069
4278.829
4276.657
4274.408
4237.786
4249.114 | B
B
B | 3n
3n
30
(0)
(0)
5n | 2.31
2.30
2.29
2.28
2.30
2.29 | 5.19
5.18
5.17
5.17
5.21
5.21 | 4-3
3-2
2-1
1-0
3-4
2-3 | | | 4921.768
4919.867
4928.342
4948.183 | A
A
A
B | 12
10
12
3 | 3.17
3.15
3.14
3.17 | 4.67
4.66
4.65
4.66 | 3-4
2-3
1-2
3-3 | a ³ D-u ³ F°
(300) | 3710.186
3705.53
3686.71
3689.671 | E
J
H
E | (0)
(1)
(0)
(0) | 2.23
2.23
2.23 | 5.57
5.56
5.58
5.57 | 3-1
1-0
1-3
0-1 | (333) | 4258.523
4265.273
4137.284
4143.048 | A
B
A
B | 4n
3n
10n
7n | 2.29
2.28
2.28
2.31
2.30 | 5.19
5.18
5.17
5.29
5.27 | 1-2
0-1
4-3 | z ⁵ D°-e ⁵ P† | | 4941.563
4848.487
4864.187
4880.922 | B
B
B | 3
8
4
3 | 3.15
3.17
3.15
3.14 | 4.65
4.71
4.69
4.67 | 3-3
3-3
3-2
1-1 | a ³ D-u ³ D°
(201) | 10460.07
10553.02
10565.97 | CCC | 10
8
5 | 2.25
2.24
2.23 | 3.43
3.41
3.39 | 6-5
5-4
4-3 | a ³ H_y ³ G°
(223) | 4150.557
4120.037
4131.244
4143.280 | B
B
B | 3
2
4
3 | 2.39
2.30
2.39
2.29 | 5.26
5.29
5.27
5.26 | 3-2
2-1
3-3
2-2
1-1 | (253) | | 4891.828
4893.90
4821.29
4731.172 | B
H
H | (1)
(1p?) | 2.17
2.15
2.15
2.17 | 4.69
4.67
4.71 | 3-2
2-1
2-3
3-4 | a ³ D-t ³ F° | 8438.93
8450.89
8416.97
8402.54 | D
D
D | 75
75
60
5 | 2.25
2.24
2.23
2.24 | 3.71
3.70
3.69
3.71 | 6-5
5-4
4-3
5-5 | a ³ H-x ³ G°
(224) | 4058.139
4057.612
4060.09
m4064.22
4068.661 | A
B
P
P | 7
5
T1
(1) | 2.30
2.29
2.28 | 5.35
5.34
5.33
5.32
5.31 | 4-5
3-4
2-3
1-2
0-1 | z ⁵ D°-g ⁵ F
(254) | | 4733.426
4742.129
4759.74
4754.38 | B
B
H
H | 6
3
(1p?)
(1p?) | 3.15
2.14
2.17
3.15 | 4.76
4.75
4.76
4.75 | 3-3
1-2
3-3
2-2 | (202) | 7440.60
7489.61
7496.12 | E
E
E | (2)
(3) | 2.25
2.24
2.23 | 3.90
3.89
3.87 | 6-5
5-4
4-3 | a ³ H-w ³ G°
(225) | 4074.356
4071.469
4071.211 | B
E
E | 3 2 2 | 2.31 | 5.34
5.33
5.32 | 4-4
3-3
2-2 | | | 4710.186
4698.86
4696.923
4724.679
4708.976 | A
P
B
E | 18
(67)
4
(2) | 3.17
3.15
3.14
3.17
3.15 | 4.79
4.78
4.77
4.78
4.77 | 3-3
2-2
1-1
3-2
2-1 | a ³ D-t ³ D°
(203) | 6745.56
5999.668
5715.123
5739.464 | P
A
A | 8
9
9 | 2.23
2.23
2.25
2.24 | 4.06
4.28
4.41
4.39 | 4-3
4-5
6-6
5-5 | a ³ H-y ¹ F°
(226)
a ³ H-z ¹ H°
(227)
a ³ H-y ³ H°
(228) | 3323.896
3323.660
3325.365
3328.326 | E
E
E | 2
2n
1n
1 | 2.31
2.30
2.29
3.28 | 6.03
6.01
6.00
5.99 | 4-5
3-4
2-3
1-2 | z ⁵ D°-k ⁵ F†
(255) | | 4684.484
4686.921
4360.487 | E
E | 2
4
4 | 2.15
2.14
2.17 | 4.79
4.78
5.00 | 3-3
1-3
3-2 | a ³ D-v ³ P° | 5739.975
5756.45
5597.92 | B
P | 4
(2n) | 2.23
2.25 | 4.38
4.39
4.44 | 4-4
6-5
5-4 | a ³ H-y ¹ G° | 7038.80
7008.35
7050.65
7010.94 | E
E
E
I | 6
1
1
1 | | 4.09
4.09
4.09
4.08 | 2-2
1-1
2-1
1-0 | c ³ P-x ³ P°
(256) | | 4354.064
4346.610
4338.476
4343.798 | B
B
B | 3
1
1
1 | 3.15
3.14
3.15
3.14 | 4.99
4.98
5.00
4.99 | 3-1
1-0
3-3
1-1 | (204) | 5565.476
5127.367
5132.931 | A
E
B | 9
{1
0 | 2.24 | 4.44
4.65
4.64 | 4-4
6-5
5-4 | (229)
a ³ H_v ³ G°
(230) | 6996.63
7004.60
6017.52 | E
J
P | {1
1
1
1
1 | | 4.09
4.09
4.37 | 1-2
0-1
1-1 | c ³ P-y ³ S°
(257) | | 4289.919
4300.52
4311.654 | B
P
B | 3
T1
3 | 3.17
3.15
3.14 | 5.04
5.03
5.01 | 3-3
3-3
1-1 | a ³ D-r ³ D°
(205) | 5133.083
4856.013
4870.139 | B
A
A | 30
30 | 2.25
2.24 | 4.64
4.79
4.77 | 5-6 | a ³ H-z ³ I° (231) | 5419.189
5429.139 | B
A | 1
.6 | 2.33
2.33 | 4.61 | 2-2
3-2 | c ³ p_y ⁵ s°
(258)
c ³ p_w ³ p° | | 4150.963
4159.634
4171.018
4179.860
4180.498 | A
A
B
B | 10
9
8
(00)
(00) | 3.17
3.15
3.14
3.17
3.15 | 5.14
5.13
5.10
5.13
5.10 | 3-4
2-3
1-2
3-3
3-3 | a ³ D-a ³ F° (206) | 4868.264
4882.326
4893.065
4778.259 | A
B
B | 18
2
3
10 | 2.25 | 4.76 | 4-5
6-6
5-5 | a ³ H-x ¹ G° | 5448.882
5474.449
5473.517
5404.023
*5446.593 | B
B
B
E
B | (0)
(1)
(1)
2
3 | | 4.59 | 1-1
2-1
1-0
1-3
0-1 | (259) | | 4099.166
4077.148
4065.595
4079.708
4068.144 | A
B
B
B | 8
4
(0)
6
3 | 2.17
2.15
2.14
2.15 | 5.18
5.18
5.18
5.18
5.18 | 3-2
3-1
1-0
3-3
1-1 | a ³ D-u ³ P° (207) | 4759.272
4758.120
4742.791
4769.775
4766.330
4747.680 | A
A
B
B | 25
25
20
4
4 | 2.23
2.25
2.25
2.24 | 4.83
4.83
4.83 | 6-6
5-5
4-4
6-5
5-4 | (232)
a ³ H-x ³ H°
(233) | 4805.416
4792.482
4796.210
4812.340
4797.983 | A
B
B
B | 12
10
6
5
5 | 2.32 | 4.90
4.90
4.90
4.90
4.90 | 2-3
1-3
0-1
2-2
1-1 |
c ³ P-s ³ D°
(260) | | 4035.828
4033.883
4034.884
4052.930
4043.775 | A
B
B
B | 10
6
5
2
2 | 3.17
3.15
2.14
3.17
2.15 | 5.22
5.21
5.20
5.21
5.20 | 3-3
3-3
1-1
3-2
3-1 | a ³ D-q ³ D°
(208) | 4734.682
4346.104
4318.631
4325.134 | B
A
A
A | 3
3
5
10n
9n | 2.23
2.23
2.25 | 4.84
4.83
5.07
5.10
5.09 | 6-5
5-4 | a ³ H-y ¹ H°
(234)
a ³ H-u ³ G°
(235) | 4637.887
4637.209
4655.712
4640.431
4619.525
4635.539 | B
B
E
E
E | 8
2
3
2
3
3 | 2.33
2.33
2.32
2.32 | 4.99
4.99
4.98 | 2-2
1-1
2-1
1-0
1-3
0-1 | c ³ P _{-V} ³ P°
(261) | | 4016.943
4025.07
8496.03 | B
P
D | 3
T1+
 | 2.14 | 5.22
5.21
3.69 | 3-3
1-3 | _р 3р_ _ж 3р• | 4321.655
4309.071
8598.18 | A
B | 8n
1
——— | 2.24 | 5.08
6.10
3.69 | 4-3
5-5
-
4-3 | b ¹ G-x ³ G° | *4558.092
4576.551
4598.99
4594.51 | B
E
P | (0) | 2.32
2.32 | 5.04
5.03
5.01
5.02 | 2-3
1-2
0-1
2-3 | c ³ P-r ³ D°
(262) | | 8539.36
8569.72
8600.98
8618.44 | D
D
D | 60
50
25
20 | 2.24 | 3.67
3.66
3.67
3.66 | 1-3
0-1
3-3
1-1 | (309) | 6861.47
6091.175 | E | 6 | 2.26 | 4.06 | 4-3 | (236)
bid_yiF°
(237)
bid_ziH° | *4558.092 | В | 2 | 2.33 | | 2-1 | c ³ P-x ³ S° (263) | | 8442.98
8495.51 | D
D | 20
15 | | 3.70
3.68 | | b ³ P-x ⁵ D°
(310) | 5823.679 | A
B | 3 | 2.26 | 4.38 | 4-4 | (238)
b ¹ G_y ³ H°
(239) | 6012.53
5982.52
5971.07 | H
H
H | {1}
{0}
0} | 2.42
2.40
2.39 | 4.47
4.46
4.45 | 4-5
3-4
2-3 | z ³ F°-b ³ G
(264) | | 7654.44
7614.50
7580.55 | E
E
H | (2)
(1p1)
(1) | | 3.85
3.85
3.85 | 3-3
1-3
0-1 | b ³ P-v ³ D° †
(311) | 5644.137
4836.125 | A
B | 18
6 | 2.26
2.26 | | 4_4 | big_yig•
(240)
big_xig•
(241) | 5477.695
5481.426
5488.210 | A
A
A | 8
6
5 | 2.40 | 4.67
4.65
4.63 | 4-4
3-3
2-2 | z ³ F°-e ³ F
(265) | | 7318.39
7361.56
7337.78 | E
P
P | (3) | 3.24
2.24
2.23 | 3.93
3.92
3.91 | 2-3
2-1
1-0 | b ³ P-y ³ P°
(213) | 4799.797
4424.401 | A
B | 13
2 | 2.26
2.26 | | 4-4 | (341)
b ¹ G-x ³ H°
(343)
b ¹ G-w ¹ G°
(343) | 5527.606
5518.11
5432.318
5451.965 | B
P
B
B | (1)
(0)
(1) | 2.42
2.40
2.40 | 4.65 | 4-3
3-2
3-4
2-3 | | | 7273.77
5678.60 | E
P | (0) | 2.23 | 3.93
4.09 | 1-2 | b ³ P ₋ x ³ Pe | 4393.925
4368.941 | A
B | 8
2 | 2.26
2.26 | | | biG-yiH°
(244)
biG-u3G°
(245) | 4563.427
4555.069
4570.906 | B
B
B | 5
3
3n | 2.42
2.40 | 5.13 | | z ³ F°-e ³ G
(266) | | 5780.778
5752.89
5212.371 | B
I
B | 3
1
3 | 2.23 | 4.37
4.37
4.61 | 2-1
1-1 | b ³ p_y ³ s° (214)
b ³ p_w ³ p° | 3938.005
3574.245 | B
E | 2n
8 | 2.26
2.26 | 5.39
5.71 | | b ¹ G_v ¹ G°
(246)
b ¹ G_u ¹ G°
(247) | 4586.95
4436.64 | P
H | (1) | 2.42
2.43 | 5.11
5.20 | 4-4 | z ³ Fe_g ³ F
(267) | | 5230.967
5189.61
5212.997 | B
P
B | (ŏ)
(o) | 2.23 | 4.59 | 1-1
1-2
0-1 | (215) | 9746.86
9717.00
9703.86 | D
D | 15
10 | 2.30 | 3.57
3.57 | 4-4
3-3
2-3 | | 4430.033
4433.578
3708.625 | B
B | 3
3
4n | | 5.18
5.17
5.74 | 2-2 | z ³ F°-h ³ F
(268) | | | | | | | | | 9702.86 | D | 3 | 2.29 | 3.56 | 3-3 | | | _ | | | | | (000) | | 30 | | | | | | <u>-</u> | REV | IS | E D M | ULTI | PLI | T T | ABLE | <u>-</u> | | | | | | <u></u> | |---------------------------------------|-------------|---------------------------|----------------------|----------------------|-------------------|---|---|-------------|------------------------|--------------------------|----------------------|---|---|--|-------------|----------------|----------------------|----------------------|---|---| | Labo:
I A | | y
Int | Low E | P
High | J | Multiplet (No) | Labo
I A | rato
Ref | ry
Int | Low E | P
High | J | Multiplet (No) | Labo
I A | | ry
Int | Low E | P
High | J | Multiplet (No) | | <u>Ti I</u> con | | | | - | | . - | Ti I cor | | | - | | | | <u>T1 II</u> 00 | | | | | | 1/ | | 5648.570
5662.891 | A
B | 5
4 | 3.48
3.47 | 4.67
4.65 | 3-4
2-3 | z ³ D°-e ³ F
(269) | 5832.47
5812.827 | H
B | <u>{1</u> } | 3.32
3.31 | 5.44
5.43 | 6-6
5-5 | y ⁵ G°-1 ⁵ H | 3088.027
3078.645 | A | 75
50 | | 4.05 | 41-31
31-31 | a4F-z4De | | 5679.908 | В | ž | 2.46 | 4.63 | 1-2 | | 5797.445
5785.67 | B | {1}
{1}
{1}
1 | 3.29
3.28 | 5.43
5.41 | 4-4
3-3 | cont | 3075.225
3072.971 | A
A
C | 40
40 | 0.03
0.01
0.00 | 4.04
4.03
4.03 | 39-29
39-19 | (5) | | 4548.094
4547.850
4557.857 | B
E
B | 3
2
3 | 2.48
2.47
2.46 | 5.20
5.18
5.17 | 3-4
3-3
1-3 | z ³ D°-g ³ F
(270) | 10896.10 | g | 8 | 3.34 | 4.47 |
4-5 | x ³ F°-b ³ G† | 3072.107
3066.220
3066.354 | 000 | 30
30
30 | 0.03
0.01
0.00 | 4.05
4.04
4.02 | 35-35
25-25
15-15 | | | 3481.675
3481.126
3472.793 | E
E
E | 3
3
2 | 2.48
3.47
2.46 | 6.03
6.03
6.03 | 3-3
2-3
1-1 | z ³ D°-e ³ D
(271) | 10820.31
10793.65 | G | 5
3 | 3.32 | 4.46
4.45 | 3-4
2-3
 | (310) | *3059.741
3057.395 | C | 10, | 0.00 | 4.05
4.04 | 35-35
15-35
- | | | B250 40 | | | | | - | .1= .1=0 | 5995.685 | E | | 3.45 | 5.50 | 2-2 | y ¹ D°-e ¹ D
(311) | 3 444.3 06
3 461.4 96 | A
A | 30
20 | 0.15
0.13 | 3.73
3.70 | 43-53
33-43 | b ⁴ F-z ⁴ G ^e (6) | | 7352.16
6716.679 | E
E | (1)
(1) | 2.48
2.48 | 4.16
4.31 | 1-1 | (272) | 9506.04
9508.49 | D | 25
20 | 3.57 | 4.87 | 5-5 | y5p0_f5p+ | 3477.181
3491.053 | A | 15
10 | 0.13 | 3.67
3.65 | 25-25
15-25 | | | 6677.25 | J | (0) | 2.48 | 4.33 | 1-2 | a ¹ P_y ¹ P°
(273)
a ¹ P_x ¹ D° | 9510.81
9511.80 | D
D | 13
8 | 3.55
3.54
3.54 | 4.85
4.84
4.83 | 4-4
3-3
3-3 | (312) | 3476.982
3489.739
3500.340 | 000 | tr
3
3 | 0.15
0.13
0.13 | 3.70
3.67 | 44-44
34-34
24-24 | | | *5511.795 | В | а | | 4.73 | 1-0 | (274)
alp_z1s* | 9511.55 | D | 10 | 3.53 | 4.83 | 1-1 | | 3505.45
3513.09 | ř
F | tr | 0.15 | 3.67
3.65 | 44-34
34-34 | | | 5206.059 | В | 5 | 2.48 | 4.85 | 1-1 | (275)
a ¹ p_w ¹ p°
(276) | *8496.03 | D | 60 | 3.68 | 5.13 | 3–3 | alr_vire | 3322.936 | A | 75 | 0.15 | 3.86 | 43-43
32-32 | b4F-z4F0 | | 4372.383 | A | 3 | 2.48 | 5.30 | 1-1 | aip_vipe
(277) | 7214.97 | H | (0) | 3.68 | 5.39 | 3-4 | (313)
alf_vlg*
(314) | 3329.455
3335.192
3340.344 | A | 70
40
35 | 0.13
0.12
0.11 | 3.84
3.82
3.81 | 35-35 | (7) | | 4227.654 | В | 5 | 2.48 | 5.40 | 1-3 | a ¹ P-w ¹ D°
(278) | 10147.09 | c | 4 | 3.90 | 5.13 |
5-5 | w ³ G°-e ³ G | 3343.770
3346.724 | A
C
D | 10
15 | 0.15 | 3.84
3.82 | 19-19
49-39
39-29 | | | 4211.729 | В | 4 | 2.48 | 5.41 | 1 -2
- | a ¹ P-v ¹ D• | 10119.20
10179.92 | C | 3
3 | 3.89
3.87 | 5.11
5.09 | 4-4
3-3 | (315) | 3348.844
3308.806 | Ç | 107 | 0.13 | 3.81
3.86 | 23-13
32-42 | | | 5741.192 | В | 1 | 2.49 | 4.64 | 2-3 | b ¹ D-x ¹ F° | 5341.492 | В | 1 | 4.31 | 6.62 | _
1_1 | y1p0_e1p | 3318.024
3326.762 | A | 10
20 | 0.13 | 3.84
3.82 | 25-35
15-25 | | | 5298.429 | A | 4 | 2.49 | 4.82 | 3-1 | b ¹ D-x ¹ P°
(381) | 30111100 | - | • | 4.02 | 0.00 | | (316) | 3302.096
3319.063 | Ċ | 0
(1) | 0.15
0.13 | 3.89
3.85 | 43-33
33-34 | b ⁴ F-z ² F* | | 5846.143 | В | 2 | 2.49 | 4.85 | 2-1 | b1D_w1P°
(382) | Strongest | Uno | lassific | ed Lines | of <u>T1</u> | I | | 3288.142
3307.717 | C | On
tr | 0.13 | 3.89
3.85 | 33-33
33-33 | , | | 4975.344
4237.889 | A
A | 10
7 | 2.49
2.49 | 4.98
5.41 | 2-3
2-2 | b ¹ D-w ¹ F°
(383)
b ¹ D-v ¹ D° | 11609.41
11539.50 | C | 3
5 | | | | | 3276.998
m3299.44 | C
P | tr
Ti | 0.13 | 3.89
3.85 | 25-25
15-25 | | | | | | | | - | (284) | 11403.89
11381.53 | 00 | 8
7 | | | | | 3231.315
3248.70 | C
P | 4 | 0.13
0.12 | 3.95
3.92 | 31-21
21-14 | b ⁴ F-z ² D° (9) | | 7189.89 | E | 2 | 2.57 | 4.28 | 5-5 | a ¹ H-z ¹ H°
(285) | 11230.91 | C | 5 | | | | | 3220.467
3240.71 | C | 1
1 | 0.12 | 3.92 | 19-19 | | | 6575.180
5503.897 | E
A | 3
8 | 2.57
2.57 | 4.44
4.81 | 5-4
5-4 | alH_ylG°
(288)
alH_xlG° | 101 45.4 8
9981.16
8641.47 | C
D | 8
5
40 | | | | | 3212.70
3168.519 | P | 40 | 0.11 | 3.95
4.05 | 1 2 2 2 | .4m -4m | | 5120.420 | A | 13 | 2.57 | 4.98 | 5-6 | (287)
a ¹ H-z ¹ I° | 8418.70
6565.62 | D
E | 10 | ٧ | | | | 3162.570
3161.755 | C
A | 35
30 | 0.13 | 4.04 | 31-21
31-11 | b ⁴ F-z ⁴ D° (10) | | 4938.283 | A | 8 | 2.57 | 5.07 | 5–5 | (388)
a ¹ H_y ¹ H°
(389) | 5369.635 | A | 4 | III | | | | 3161.205
3155.670 | C | 25
12 | 0.11
0.13 | 4.02 | $3\frac{1}{2} - 3\frac{1}{2}$ | | | 4369.682 | A | 5n | 2.57 | 5.39 | 5-4 | a1H_V1Ge
(290) | 4599.226
4539.096 | A
B | 5
3 | IA
IA | | | | 3152.251
3154.195 | 000 | 15
12 | 0.11 | 4.04 | 25-25
15-15 | | | 4278.231 | В | 7 | 2.57 | 5 .4 5 | 5–5 | a ¹ H-x ¹ H°
(291) | 4511.176
4495.006 | B | 3
4 | III | | | | *3145.402
m3144.74 | P | T1+ | 0.13 | 4.05
4.04
 25-35
15-25 | 7 | | 3926.319 | В | 10 | 2.57 | 5.71 | 5-4 | ai _{H-u} ige
(292) | 4129.166
4121.637 | B
B | 4 | III | | | | 3987.63 | P | | 0.60 | 3.70 | -
3]-4] | a ² F-z ⁴ G* | | 6215.212 | В | 30 | 2.68 | 4.67 | 5-4 | z ³ g°-e ³ F | 4027.426
3985.246 | B
B | 4 3 | III | | | | 3981.998
4025.136 | B | tr
3 | 0.57
0.60 | 3.67
3.67 | 21-31
31-31 | a ³ F-z ⁴ G [•] (11) | | 6220.460
6221.41 | B
E | 12
8 | 2.67
2.65 | 4.65
4.63 | 4-3
3-2 | (293) | 3861.079
3846.438 | В | 3n
6n | IA | | | | 4012.372
4056.212 | B
C | (1) | 0.57
0.60 | 3.65
3.65 | 35-35
35-35 | | | 5064.068
*5054.070 | B
B | 4
3 | | 5.13
5.11 | 5-5
4-4 | z ³ g°_e ³ g
(294) | 3836.763
3833.674 | B | 5
4 | IV
III | | | | 3786.33
3774.650 | P | (3n) | 0.60
0.57 | 3.86
3.84 | 31-41
21-31 | a ³ F-2 ⁴ F* | | 5068.332 | В | 3 | 2.65 | 5.09 | 3-3 | | 3833.186
3735.660 | B
B | 4
4n | IA | | | | 3813.390
3796.899 | B | 3
3n | 0.60
0.57 | 3.84 | 31-31
21-21
31-21
22-12 | ,, | | 4908.46
4900.625
4900.03 | P
E
P | (7) | 2.68
2.67
2.65 | 5.20
5.18
5.17 | 5-4
4-3
3-8 | z ³ G°-g ³ F
(295) | 3715.371
3700.055 | B
B | 3n
4n | IA
IA | | | | 3836.085
3814.580 | B | 4 | 0.60
0.57 | 3.82
3.81 | 34-24
25-15 | | | 4127.531 | A | 15 | 2.68 | 5.67 | 5-6 | z ³ G°-f ³ H | 3644.699
3633.458 | E | 4
5 | IV
IV | | | | 3759.291
3761.320 | A
A | 300
300 | 0.60
0.57 | 3.89
3.85 | 31-31 | a ² F-z ² F* | | 4123.559
4122.143 | B
A | 10
10 | 2.65 | 5.66
5.64 | 4-5
3-4 | (296) | 3631.999 | E | 3 | IV | | | | 3799.81
3721.632 | F
B | tr
15 | | 3.85
3.89 | 31-21
21-31 | (, | | 4149.445
4142.480 | B | (o) | 2.68
2.67 | 5.66
5.64 | 5-5
4-4 | | 3585.852
3556.184 | E | 3 | III? | | | | +3685.192 | A | 250 | (0.60 | 3.95 | | a ² F-z ² D* | | 4032.628 | В | 3n | 2.68 | 5.74 | 5-4 | z ³ G°-h ³ F
(397) | 3507.426
3459.431
3435.432 | E
E | 3
3
3 | III
III
I V | | | | 3649.01 | P | | 0.57 | 3.92
3.95 | | | | 5259.976 | В | 3 | 2.73 | 5.07 | -
2-3 | z ¹ D°-e ¹ F | *3130.804\$ | Ā | 157 | IV | | | | 3587.130
3561.575 | Q C | 12 | 0.60
0.57 | | 31-31
31-31
31-31 | a ³ F-z ⁴ D°
(15) | | 4068.981 | В | 4n | 2.73 | 5.76 | | 210°_f1F
(299) | 3007.487 | | .4N | IA | | | | 3596.048
3573.737
3552.85 | A
C
P | 60
20 | 0.57 | 4.04
4.03
4.05 | 33-23
23-13
23-33 | | | 5351.072 | В | 4 | 2.77 | 5.07 | -
3-3 | z1Fo_e1F | | | | | | | | 3349.035 | C | 75 | 0.57 | 4.29 | | a ² F-z ² G° | | 4224.795 | В | 5 | 2.77 | 5.69 | 3-4 | (300)
z ¹ F°_e ¹ G
(301) | | P 1: | | | List A | | 1940 | *3341.875§
3372.208 | A
C | 100 | 0.57 | 4.26
4.26 | 31-41
22-31
32-32 | (16) | | 4123.287 | В | 5n | 2.77 | 5.76 | 3-3 | z ¹ F°_f ¹ F
(302) | 3349.399/
3361.213
3372.800 | A G | 125
125
100 | 0.05
0.03
0.01 | 3.73
3.70
3.67 | 49-59
39-49
39-39 | a ⁴ F-z ⁴ G°
(1) | 4762.77 | r | (1) | 1.08 | 3.67 | _ | | | 3606.062 | E | 1 | 2.77 | 6.19 | 3 – 2 | z ¹ F°_f ¹ D
(303) | 3383.761
3380.278 | A | 125
30 | 0.00
0.05 | 3.65
3.70 | 15-25 | | 4798.535
4806.33 | CP | (a) | 1.08 | 3.65
3.65 | 1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ³ D-z ⁴ G°
(17) | | 6098.655 | В | 7 | 3.05 | 5.07 | -
4-3 | z ¹ G°-e ¹ F | 3387.834
3394.574 | A | 50
40 | 0.03
0.01 | 3.67
3.65 | 31-31
31-31
41-31
31-21 | | 4469.160 | σ | tr | 1.08 | 3.84 | 31-31
11-31 | a ² D-z ⁴ F | | 4808.531 | В | 5 | 3.05 | 5.62 | 4-5 | (304)
z1G°-e ¹ H
(305) | 3407.205
3409.809 | C | 3
4 | 0.05
0.03 | 3.67
3.65 | 44-3 1
32-22 | | 4493.53
4500.32 | C
P | (1) | 1.08 | | 25-25 | | | 4688.392 | В | 3 | 3.08 | 5.71 | -
1 -3 | z ³ g•_e ³ p | 3234.517
3236.573 | A
A | 75
70 | 0.05
0.03 | 3.86
3.84 | 43-43
33-33
33-33
33-33 | a ⁴ F-z ⁴ F° (3) | 4518.30
4525.21 | P
P | | 1.08
1.08 | 3.81 | 35-15
35-15 | | | | - | | | | - | (306) | 3239.037
3 241.984 | A | 60
60 | 0.01 | 3.82
3.81 | 23-25
13-15 | \~/ | 4395.031
4443.808 | A
A | 60
50 | 1.08 | 3.89
3.85 | 31-31
11-31 | a ² D-z ² F°
(19) | | 7069.11
7039.36
7035.86 | I
E
E | (2)
(2) | 3.17
3.14
3.13 | 4.91
4.89
4.88 | 3-4
2-3
1-2 | у ³ D°-f ³ F
(307) | 3254.250
3252.914
3251.911 | 000 | 30
40
30 | 0.05
0.03 | 3.84
3.82 | 44-34 | | 4450.487 | В | 10 | 1.08 | | | | | | | | | | _ | | 3217.056
3222.843 | A | 30
30
35 | 0.01
0.03
0.01 | 3.81
3.86
3.84 | 31-21
31-14
31-44
21-31
11-21 | | 4294.101
4337.916
4344.291 | A
A
B | 40
50
2 | 1.08
1.08
1.08 | 3.95
3.92
3.92 | 13-13 | a ² D-z ² D• | | 7996.53
•7978.88 | E | (3)
(4)
(2) | 3.32 | 4.85 | 6-5
5-4 | у ⁵ С° <u>-1</u> 5 _F
(308) | 3229.193 | C | 40 | 0.00 | 3.82 | | 4 2 | 4287.89 3 | В | និ | 1.08 | 3.95 | 15-02 | | | 7961.58
79 43.93
7926.37 | E
E | (2)
(in [†]) | 3.29
3.28
3.27 | 4.84
4.83
4.83 | 4-3
3-2
2-1 | | 3214.750
3226.771
3197.518 | C | 4
2 | | 3.89 | 41-31
31-31
31-31
21-31
21-31 | a⁴F-z²F° (3) | 4161.524
4167.67 | B
P | 1 | | 4.05 | 31-31
11-21 | a ³ D-z ⁴ D• | | 7909.34 | P | | 3.30 | 4.87 | 5-5 | | 3197.518
*3213.145§
3184.09 | | 2
1
2 | 0.01 | 3.89
3.85
3.89 | 23-34
23-23 | | 4173.537
4184.329
4190.29 | B
C
P | 1
0
(1) | 1.08 | | 31-31
11-11 | | | 5804.265
5785.979 | A
A | 5n
5n | 3.32
3.31 | | 6-7
5-6 | у⁵С°-1⁵Н
(309) | 3203.435 | Ċ | 3 | 0.00 | 3.85 | | | 4196.64 | P | (1) | 1.08 | 4.02 | 31-11
12- 1 | | | 5774.037
5766.330
5762.295 | A
A
B | 5n
4n
4n | 3.29
3.28
3.27 | 5.43
5.43
5.41 | 4-5
3-4
2-3 | | 3143.756
3157.397 | C | 10
3 | 0.01 | 3.95
3.92 | 31-21
21-11
21-21 | a ⁴ F-z ³ D°
(4) | 3480.897 | C | 0 | 1.38 | 4.62 | 1출- 호 | (32)
(32) | | 0100.000 | <i>D</i> | υæ | 3.27 | J. 41 | 2-3 | | *3130.804 | À | 15 | 0.01 | 3.95 | 3 } -3 } | | | | | | | | | | I A | rator;
Ref | | E P
Low High | J Multiplet (No) | Laborato
I A Rei | ory
Int | E P
Low Hig | J
1 | Multiplet
(No) | Labors
I A F | tory
lef Int | E P
Low High | J Multiplet (No) | |---|------------------|---------------------------------|--|--|--|----------------------|--|---|--|--|------------------------------|---|---| | <u>1 II</u> 601 | ntinu | | | | Ti II continu | | _ | | | Ti II cont | | 3- | , | | 352.94
375.293
378.922§
349.370 | P
C
C
C | T1 ⁺
3
35
2 | 1.08 4.87
1.08 4.84
1.08 4.84
1.08 4.87 | 21-21 a ³ D-y ³ D°
11-12 (23)
21-12 (23)
11-32 | m3218.26 P
3221.76 P
3228.36 P
m3234.50 P
3231.71 P | Ti ⁺ | 1.18 5.0
1.16 4.9
1.16 4.9
1.18 4.9
1.16 4.9 | 3-12
32-12 | a ⁴ P_y ⁴ D°
cont | 5454.05
5492.82
5490.65 | P
P
P
P | 1.57 3.84
1.56 3.82
1.57 3.82
1.56 3.81
1.57 3.81 | 13-13 | | 339.664
328.605
336.122 | 000 | 30
30
20 | | $3\frac{1}{2}-1\frac{1}{2} a^{3}D-z^{3}P^{0}$ $1\frac{1}{2}-\frac{1}{2}$ (34) $1\frac{1}{2}-1\frac{1}{2}$ | 3058.090 C
*3059.741 C
3063.502 C | 50
6
4 | 1.18 5.2
1.16 5.1
1.16 5.1 | 1 33-33
11-12 | a ⁴ P-z ⁴ P° (47) | 5336.809
5381.020 | B 4 B 1 B 0 | 1.57 3.89
1.56 3.85
1.57 3.85 | $3\frac{1}{2}-3\frac{1}{2}$ b ² D-z ² F° 1 $\frac{1}{2}-3\frac{1}{2}$ (69) | | 195.717
192.26
190.874 | C | 3
2
30 | 1.00 4.54 | 31-12 a ³ D-z ⁴ 5°
12-12 (35) | 3071.242 C
3066.514 C
3046.685 C | 15
3
30 | 1.18 5.1
1.16 5.1
1.16 5.2 | 9 25-15
3 15- 5
1 15-25 | | 5188.700
5226.534 | C 6
B 5 | 1.57 3.95
1.56 3.92 | $3\frac{1}{2}-3\frac{1}{2}$ $b^2D-z^2D^0$
$1\frac{1}{2}-1\frac{1}{2}$ (70) | | 302.535
305.990 | A
C | 40
1 | 1.08 4.93
1.08 4.93 | 31-31 a ² D-y ² F° 11-31 (36) 31-31 | 3056.740 C | (1) | 1.23 3.8 | _ ` ` | a ² P-z ⁴ F° | 5154.061
4995.89 | C 0
B 0
P | 1.57 3.92
1.56 3.95
1.57 4.05 | 12-32
3-3-3 b ³ D-z ⁴ D° | | 118.834
136.77
140.04
152.14
155.50 | C P P P | a
tr | 1.08 5.04
1.08 5.01
1.08 5.01
1.08 4.99
1.08 4.99
1.08 4.98 | 31-31 a3D-y4D°
11-32 (37)
31-32
11-12
32-14 | 4763.84 P
4792.39 P
4708.663 C
4533.966 B | tr
30 | | - 41 -1 | a ³ p_z ⁴ F° (48) a ³ p_z ³ F° (49) | 5013.718
5005.18
5037.81 | P
C tr
P
P
T1 | 1.56 4.04
1.57 4.04
1.56 4.02
1.57 4.03
1.56 4.03 | 1½-2½ (71)
2½-2½
1½-1½
3½-1½ | | 987.40
996.88
999.92 | F
P
P | 1 | | 32-32 a ³ D-z ⁴ P°
13-12 (38)
32-12
13-2 | 4563.761 A
4589.961 B | 30
3 | | | (49)
a ² P_z ² D ⁶
(50) | 3757.684
3776.062 | B 50
B 30
B 6 | 1.56 4.84
1.57 4.84 | $3\frac{1}{2}-3\frac{1}{2}$ b ² D-y ² D°
$1\frac{1}{2}-1\frac{1}{2}$ (72) $3\frac{1}{2}-1\frac{1}{2}$ | | 03.37
984.35 | P
P | | | -2 ~2
- | 4399.767 A
4394.057 B
4418.340 B
4407.678 C
4432.089 C | 35
2
1
1 | 1.23 4.00
1.23 4.00
1.23 4.00
1.23 4.00 | \$ 2-2 | a ³ P_z ⁴ D° (51) | 3724.106
3696.39 | C tr
C (1) | 1.56 4.87
1.57 4.89
1.56 4.90 | $3\frac{1}{2}-1\frac{1}{2}$ $b^{2}D-z^{2}P^{2}$
$1\frac{1}{2}-\frac{1}{2}$ (73) | | 732.96
767.30
794.84 | P
P | | 1.13 3.73
1.11 3.70
1.13 3.70 | 41-51 a ³ G-z ⁴ G°
31-41 (39)
41-42
32-31
44-30
32-32 | 3641.330 A
3624.826 A | tr
100
70 | 1.23 4.63
1.23 4.63
1.23 4.63 | | a ³ P-z ³ S°
(53) | 3666.11 | B 20
P
P | 1.56 4.89
1.57 4.94
1.56 4.94 | 3-1-1 b2p-z4s• | | 349.18
365.620 | PC | tr | 1.11 3.67
1.13 3.67
1.11 3.65 | 32-32
42-33
32-32 | 3388.755 C
3402.423 C
3416.957 C | 8
8
3 | 1.23 4.8
1.23 4.8
1.23 4.8 | | | 3662.237 | C 60
C 40
C (3) | 1.57 4.95
1.56 4.93
1.57 4.93 | $3\frac{1}{2}-3\frac{1}{2}$ b ² D-y ² F° 1 $\frac{1}{2}-3\frac{1}{2}$ (75) | | 506.74
520.37
545.144
552.25
182.40 | P
C
P
P | tr | | 41-41 a ³ G-E ⁴ F° 32-32 (30) 42-32 (30) 32-42 | 3374.352 C
3352.071 C
*3366.1769 C
3360.16 P | 8
5
8 | 1.23 4.89
1.23 4.99
1.23 4.99
1.23 4.89 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ³ P-z ³ P° (54) | 3565.326
3576.38
3593.093
3596.55 | C 3
F (On)
C 2
C tr | 1.57 5.04
1.56 5.01
1.57 5.01
1.56 4.99
1.57 4.99 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 468.493
501.270
444.559 | A
A
B | 50
40
1 | 1.13 3.89
1.11 3.85
1.11 3.89 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $a^{2}G-z^{2}F^{\circ}$ (31) $3\frac{1}{2}-3\frac{1}{2}$ | 3337.85 F
3326.68 P
3312.90 P | 3 | 1.23 4.9
1.23 4.9 | 1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ³ P_y ² F°
(55)
a ³ P_z ⁴ S°
(56) | 3608.89
3110.095 | P
C 8
C 2 | 1.56 4.98
1.57 5.54 | 1½-½
3½-3½ b ² D-x ² D° | | 341.369
327.34
318.18 | B
P
P | 1 | 1.11 3.95
1.13 4.05
1.11 4.04 | 3½-3½ a ³ G-z ³ D°
4½-3½ a ³ G-z ⁵ D°
3½-3½ (33)
3½-3½ (33) | 3266.43 F
3269.77 F
3283.14 P | {1
1} | 1.23 5.0
1.22 4.9
1.23 4.9 | 1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (57) | 3108.927
3097.626 | C 6 | 1.56 5.54 | | | 905.92
900.546
913.464 | P
A
A | 70
60 | 1.11 4.05
1.13 4.29 | 31-31 (30)
41-41 a ³ 0-2 ³ 0°
21-21 (34) | m3279.97 P
3293.48 P
m3101.52 P | T1 ⁺ | 1.23 4.99
1.23 4.99 | 12- 2 | | 3043.851 | C 5
C 1 | | $\begin{array}{ccc} 3\frac{1}{2} - 1\frac{1}{2} & b^{2}D - y^{2}P^{\bullet} \\ 1\frac{1}{2} - \frac{1}{2} & (78) \\ 1\frac{1}{2} - 1\frac{1}{2} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$ | | 32.007
382.28
379.995 | B
P
C | 4 | | 43-43 a ³ G-2 ³ G°
32-32 (34)
43-33
32-42
32-42 a ³ G-y ³ D° | 3103.975 C
3115.088 C
3109.92 P
3122.065 C | T1
3
1 | 1.23 5.2
1.23 5.1
1.23 5.1
1.23 5.1
1.23 5.1 | | a ³ P_z ⁴ P°
(58) | 5781.73
5814.62
5860.92 | P
P
P | 1.58 3.73
1.56 3.70
1.58 3.70
1.56 3.67 | 52-52 a ³ H-z ⁴ G°
42-45 (79)
53-45
44-35 | | 329.397
332.280
316.88 | A
C
P | 35
30 | 1.13 4.95
1.11 4.93
1.11 4.95 | 41-31 a ³ G-y ³ F ⁶
31-22 (36)
32-32 | 4657.210 C
4698.67 P | tr | | : : | b ⁴ P-z ² F ⁴
(59) | 5691.99
5396.3
5422.47 | P
F (1)
F (1) | 1.56 3.73 | | | 155.63
165.24
143.68 | P
P
P | | 1.13 5.04
1.11 5.01
1.11 5.04 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $\mathbf{a}^{3}\mathbf{G}-\mathbf{y}^{4}\mathbf{D}^{\circ}$ $3\frac{1}{2}-3\frac{1}{2}$ (37) | 4719.515 C
4544.009 C
4580.458 C | (1)
tr
(1) | 1.24 3.8
1.24 3.9
1.23 3.9 | 34-35
312-15 | b ⁴ P-z ³ D° (60) | | P
P | . = | .1 -1 2- 2 | | 329.29
36.345 | P
C | Ţ1
(1) | | | 4600.28 P
4524.732 C
4568.312 C | (17)
(1) | 1.24 3.93
1.23 3.93
1.22 3.93 | 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | b ⁴ P_z ³ D° (60) | | A 50n | 1.58 4.29
1.56 4.26
1.56 4.29 | 42-32 an -zor
(81)
51-42 an -zog
45-32 (82)
42-42 | | 55.75
682.74
682.71
689.46 | P
P
P | Ti | 1.16 3.81
1.18 3.82
1.16 3.81
1.18 3.81 | 21-32 a ⁴ P-z ⁴ F° 12-32 (38) 2-12-32 12-12 22-12 | 4395.848 B
4390.977 B
4398.314 C
4409.22 C | a
tr
(1)
tr | 1.34 4.01
1.33 4.01
1.34 4.01
1.33 4.01
1.33 4.01
1.34 4.01 | 34-34
11-34
3-14
1 35-34 | b*P-z*D*
(61) | 3224.241
3218.270 | C (O)
C 35
C 25 | 1.56 4.95
1.58 5.40
1.56 5.40 | 4½-3½ a ³ H-y ³ F° (83) 5½-4½ a ³ H-y ³ G° 4½-3½ (84) 4½-3½ | | 549.82
583.443
509.26 | P
C
P | (1) | 1.18 3.89
1.16 3.85
1.18 3.85 | 2-3 a4p_z2po
1-2 (39)
2-2 (39) | 4409.519 C
4411.936 C
4427.90 P
4423.22 P | tr
(1) | 1.23 4.03
1.22 4.03
1.24 4.03
1.23 4.03 | 11-11
1-11
1-11
11-11 | | 3314.14
3017.187
3029.730 | F 1
C 50
C 35 | 1.56 5.40
1.58 5.67
1.56 5.64 | 42-42
51-51 a ³ H-z ³ H°
41-41 (85)
51-41 | | 41.73
170.864
195.46 | P
B
P | tr | 1.18 3.95
1.16 3.93
1.18 3.93 | 21-21 a ⁴ P-z ³ D ⁶
11-11 (40)
21-12
12-25
1-11 | 3635.36 P
3627.71 C | (1) | 1.23 4.63
1.22 4.63 | 1 | | 3038.706 | C 6 2 | 1.50 5.67 | | | 117.718
164.458
190.052 | B
B
B | _ | | 22 | 3394.37 P
m3411.68 P
3422.661 C
3383.57 P
3404.97 C | Ti
(1)
(1) | 1.24 4.8°
1.23 4.8°
1.24 4.8°
1.23 4.8° | 21-21
11-11
12-11
12-11
11-21 | 63) | 5183.72 | B 1
E 2
C tr
P | 1.88 4.29
1.88 4.26
1.88 4.29 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 301.928
312.861
307.900
314.979 | B
A
A
B | 15
35
40
40 | 1.16 4.03
1.18 4.04
1.16 4.03
1.16 4.03 | 21-31 a4p-z4p°
11-22 (41)
21-12
22-32
11-12
2-12
12-12
14-14 | 3379.930 C
m3361.07 P
3369.212 C | in
Ti
2 | 1.24 4.8
1.23 4.9
1.23 4.8 | 2-12
3-14
12-1 | b ⁴ P_z ³ P°
(64) | 4028.332
4053.814
4039.64 | B 7
B 3
P | 1.88 4.95
1.88 4.93
1.88 4.95 | 43-3½ b ² G-y ² F°
33-3½ (87)
32-3½ | | 30.708
320.965
366.00 | B
B | 0
1
6 | | -2- 2 | 3354.54 P
3362.653 C | 1 | 1.22 4.89 | $\frac{2}{2} - 1\frac{2}{2}$ | | 3504.890
3510.840
3509.844 | A 60
C 3 | 1.88 5.40
1.88 5.40
1.88 5.40 | 41-41 b ³ G-y ³ G°
32-32 (88)
41-32
34-44 | | 61.910
36.998 | c
c | 1
tr | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3332.111 A
3321.700 C
3315.324 C | 25
10 | 1.24 4.94
1.23 4.94
1.23 4.94 | 23-14
13-14
12-12
1 2-12 | (65) | *3261.596
3287.657 | C tr
A 60
A 40 | 1.88 5.67
1.88 5.64 | $\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ b ² G-z ² H° 3 2 -4 2 (89) | | 550.548
564.30
523.39
546.91 | C
P
P | 1 | 1.10 4.84
1.18 4.84
1.16 4.87
1.16 4.84 | 21-21 a ⁴ P-y ² D°
12-12 (43)
22-14
13-25
2-12 | *3248.602\$ C
*3261.596 A
3272.080 C
3271.652 C | 50
60
25
25 | 1.34 5.04
1.33 5.03
1.33 4.99
1.34 5.03 | 34-34
14-24
1-14
32-34 | (66) | 3286.756
3103.804
3089.401 | C 50
C 15 | 1.00 0.01 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 322.98
301.71
309.53
398.21 | PFP | , , - , | 1.18 4.89
1.16 4.90
1.16 4.89
1.16 4.90 | 2-1 a ⁴ p-z ³ p°
1-1 (44)
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 3278.290 C
3282.329 C
3288.428 C
3288.575 C | 5 | 1.23 4.9 | 3-1-1 | | 6559.580 | P (2) | 2.05 3.95
2.04 3.92 | $\begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $ | | 906.053
176.774
163.686 | o
o | tr
5
4 | 1.16 4.89
1.18 4.94
1.16 4.94 | ½-1½
3½-1½ a ⁴ P-z ⁴ S*
1½-1½ (45)
½-1½ | 3106.234 C
3110.620 C
3112.050 C
3119.800 C | 35
20
10
15 | 1.24 5.2
1.23 5.1
1.23 5.1
1.24 5.1 | 31-21
15-15
3-15
31-15 | b*P_z*P°
(67) | 6607.02
4805.105 | P
B 2
B 1 | 8.05 0.55 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 360.259\$
195.994
305.64
318.44 | C
P
P | 3
tr | | 2-12
22-32 a ⁴ P-y ⁴ D*
12-32 (46)
2-12 | 3117.669 C
3097.186 C
3105.084 C | 20
25
20 | 1.23 5.10
1.23 5.20
1.22 5.10 | 12-2 | | 4374.825
m4400.63 | | 3.05 4.87
3.04 4.84
3.05 4.84 | $\begin{array}{ccc} 1 & -3 & b^{3} & p - y^{3} & p^{3} \\ 1 & -1 & (93) \\ 1 & 2 - 1 & 2 \end{array}$ | | .10. 94 | • | | 1.10 4.88 | 5 ─1호 | | | | | | | | | | | Labor
I A | rator
Ref | y
Int | E
Low | | J | Multiplet
(No) | Labor
I A | ator:
Ref | | E
Low | P
High | J | Multiplet
(No) | Labor
I A | | | E
Low | P
High | J | Multiplet
(No) | |---|------------------|------------------------------|------------------------------|------------------------------|--|--|---|--------------|-----------------------------------|------------------------------|--------------------------------------|--|---|---|-------------|--|--------------------------------------|--|---
---| | T1 II con
4350.834
4316.807
4337.33 | C
B
C | 1
1
(1) | 2.05
2.04
2.05 | 4.89
4.90
4.90 | 1 1 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | b ² P-z ² P°
(94) | T1 II con
3208.607
3175.66
3178.630 | 000 | 1n
2n
3n | 3.84
3.84
3.82 | 7.69
7.73
7.70 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | z ⁴ F°-e ⁴ F
cont | <u>V I</u> cont:
3867.602
*3847.323§
3844.438 | C | 15
20
20 | 0.04
0.03
0.00 | 3.23
3.22
3.21 | 3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ F-y ⁴ F°
cont | | 4330.264
4271.94
4252.05 | B
P
P | 0 | 2.05
2.04 | 4.94
4.94 | $\frac{1\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-1\frac{1}{2}}$ | b ² P-z ⁴ S° (95) | 3180.225
*3128.640\$
3127.883
3155.91 | C
C
P | 2n
10n
10n | | | | z ³ F°_e ³ F
(131) | 3876.086
3890.184
*3925.240
3841.890
3862.223 | 00000 | 30
35
10
5 | 0.07
0.04
0.07 | 3.25
3.21
3.21
3.25
3.21 | | a ⁴ F-z ² G* (8) | | 4173.05
4181.17
4200.40
4197.95 | P
P
P | | 2.04
2.05
2.04 | 4.99
4.99
4.98 | 12-12
12-12
12-12 | b ² P-y ⁴ D°
(96) | 3181.84 | c - | 8n | | | | z ² D°-e ² F
(132) | 3855.841
3840.752 | 000 | 60r
60r
60r | 0.07
0.04 | 3.27
3.25 | 41-31
31-21 | a ⁴ F-y ⁴ D° (9) | | 4217.34
3907.65
3912.32
3929.15
3923.39 | P
P
P
P | | 2.05
2.04 | 5.21
5.19
5.19 | 13-23
5-15
13-15 | b ² P-z ⁴ P°
(97) | 3182.57
2990.16
2979.199 | C
C | 6n
10
10 | 3.95
3.92 | 8.08 | 31-31
11-31
- | z ² D°-f ² F
(133) | 3828.559
3818.244
3822.009
3813.492
3808.521
*3794.964 | 000000 | 60
30
60
40
50 | 0.00
0.04
0.02
0.00 | 3.24
3.23
3.27
3.25
3.24
3.27 | 1 - 2
32-32
23-32
12-12 | | | 3940.32
3535.408
3520.253 | P
A
C | 40
20 | 2.05 | 5.18 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | b ² P-x ² D°
(98) | 3351.67
3364.9
3369.67 | C
F.
E | in
in
On | 4.05
4.04
4.03 | 7.73
7.70
7.69 | 31-41
21-31
11-31 | z ⁴ D°-e ⁴ F
(134) | 3793.614
3817.844
3803.902 | o o | 8
8
6 | 0.00 | 3.25
3.30
3.28 | 1출-3출 | a ⁴ F-y ⁶ D* † | | 3533.868
3456.390 | Č
C | 2
20 | 2.05 | 5.54 | 15-15 | <u>.</u> ' | 3483.80
3492.39
3459.03 | C
F | 4n
3n | 4.29 | 7.83
7.80 | —
4월-3월
3월-2월 | z ³ G°-e ³ F
(135) | 3791.326
•3781.393 | C C | 3 | 0.00 | 3.27
3.26 | | a ⁴ F_y ⁶ D [•] † (10) | | 3452.470
3465.562
3443.387 | 000 | 4
3
1 | 2.04
2.05
2.04 | 5.61 | 13- 3
13- 3
2-12 | b ² P-y ² P°
(99) | 3022.820
3023.86 | C
C | (On)
15
12 | 4.29
4.26 | 8.37
8.35 | 32-32
32-32 | z ² G•_e ² G
(136) | 3713.957
3721.358
3298.139 | Ċ
C | 3
15 | 0.07 | 3.36 | | a ⁴ F-z ³ F• † (11)
a ⁴ F-y ⁴ G• | | 8979.34
9252.67
9027.90
7214.78 | P
P
P | | 2.58
2.59
2.59
2.59 | 3.95
3.92
3.95 | 31-21
31-11
31-12
31-21 | b ² F-z ² D° (100) | 3414.03 | F | (0) | | | - | y ⁴ D°-f ⁴ F
(127) | 3283.311
3271.637
3263.238
3308.246
3291.676
3277.939 | 000000 | 15
12
15
3
4
5 | 0.00 | 3.79
3.78
3.80 | 31-41
21-31
11-21
41-41
31-31
21-31 | a ⁴ F-y ⁴ G°
(13) | | 7355.46
7323.20 | P
P | | 2.59
2.58 | 4.26 | 32-32
32-32 | b ² F-z ² G° (101) | Strongest
3194.76 | C | 6n? | d Lines | of <u>T</u> 1 | Ш | | 3249.566
3230.646 | C | 10
6 | | | | a ⁴ F-x ⁴ F°†
(13) | | 5379.19
5468.44
5396.59 | P
P
P | | 2.58
2.59
2.59 | 4.87
4.84
4.87 | 31-21
31-11
31-21 | b ² F-y ² D° (102) | 3174.80
3164.91
3045.085 | C
F
C | 5
8 V
5n | + 1 | | | | 3215.375
3204.196
•3254.773§ | C
E | 4
3
10 | 0.07 | 3.86 | $\frac{13-13}{42-32}$ | | | 5211.544
5268.62
5252.04
5227.87 | C
P
P | 0 | 2.58
2.59
2.58
2.59 | 4.95
4.93
4.95 | 31-31
31-21
31-21
31-31
32-32 | b ² F-y ² F° (103) | T1 IV I | P 43 | .06 | lnal A | | A De | | 3185.396
3183.96
3183.406
3183.982
3207.410 | C F C C C | 200R
(125R)
150R
(150R)
20 | 0.02 | 3.09 | 42-52
32-43
32-33
12-33
44-43 | a ⁴ F-x ⁴ G ^e
(14) | | 4367.657
4386.858
4375.35 | B
B
P | 15
10 | 2.58
2.59
2.58 | 5.40 | 31-41
21-31
31-32 | b ² F-y ² G°
(104) | 5398.82
5492.43 | A
A | 8
6 | 26.22 | 28.51
28.47 | 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 5 ² 8-5 ² P° | 3202.381
3198.012
3226.106 | 000 | 25
20
4 | 0.04
0.03
0.07 | 3.89
3.88
3.89 | 35-35
35-25
45-35
21 31 | | | 4163.644
4171.897
4174.088 | A
A
B | 40
30
(2) | 2.58
2.59
2.59 | 5.54
5.54
5.54 | 31-21
31-11
31-21
31-31 | b ² F-x ² D°
(105) | 3576.44
3541.44
4397.37 | A
A | 3 | 28.47
29.15 | 31.95
31.95 | 12-02
2-12
32-22 | 5 ² P°-5 ² D
4 ² F°-5 ² D | *3217.1219
3091.437
3091.552 | E
C
D | 10
20
15 | 0.04 | | 3½-3½
4½-3½
3½-3½ | a ⁴ F-x ⁴ D ⁶ (15) | | 4064.350
3761.866 | B
B | (1)
15 | 2.59
2.58 | 5.62 | 3}-1} | b ² F-y ² P° | 4403.54
*4647.40 | | 3 | | | |)5 ² G-6 ² H° | 3093.24
3090.40
3069.645
•3073.823 | F
C
C | 67
(1)
30r
60r | 0.00 | 4.01
3.99
4.06
4.03 | 25-15
15- 5
35-35
25-25 | | | 3748.010
3739.6
3770.412 | B
F
C | 10
tr
(1) | 2.59
2.58
2.59 | 5.88
5.88
5.86 | 31-31
31-31
32-31 | (106)
b ² F-x ² F°
(107) | | | | | | | | 3080.146
3052.194
3060.93 | 000 | 6
20
2 | 0.00 | 4.01
4.06
4.03 | 15-15
25-35
15-25 | | | 6212.30
5473.517 | F
B | (1) | | 4.62 |
 | a ² S-z ² S°
(108)
a ² S-z ² P°
(109) | <u>VI</u> IP
5632.469
*5592.962 | | Anal
1
1 | 0.07 | 2.26 | Nov 19 | 940
a ⁴ F_z ⁶ D° | 3063.734
3054.89
3050.890 | C
C | 12
1
35r | 0.00 | 4.05
4.04
4.05 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | a ⁴ F_Z ² P° (16) | | 5452.03
4822.39 | F
P | {1
1} | 2.63
2.63 | 4.90
5.19 | | (109)
a ³ S_z ⁴ P°
(110) | 5557.453
5527.72
5560.548 | A
C | 1
(1)
(3)
(1)
(4) | 0.02
0.00
0.04 | 3.24
2.23
2.26 | 25-15
15-3
35-35 | a ⁴ F_z ⁶ D ^e (1) | 3066.375
3060.460
3056.334 | 000 | 125R
125R
100R | 0.07
0.04
0.02 | 4.09
4.07
4.06 | 41-41
31-31
31-31
31-31 | a ⁴ F-w ⁴ F° (17) | | 4839.251
3144.730
3145.402 | CCC | (1)
1
0 | | 5.18
6.56
6.56 | | a ² S-x ² P° (111) | 5535.382
5515.371
5515.083 | A
B
A | 1 | 0.07 | 2.31 | 12-12
12-12
42-52 | a ⁴ F-z ⁶ F° † | 3053.65
3082.109
*3073.823
3066.51 | F
C
F | 80R
50r
60r
20 | 0.00
0.07
0.04
0.03 | 4.06
4.04 | 12-12-12-12-12-12-12-12-12-12-12-12-12-1 | | | 6717.911
6680.26 | C
F | (1n)
(1) | 3.11
3.08 | 4.95
4.93 | - | o ² D-y ² F° (112) | 5496.030
5483.471
4881.554 | B
B | (3)
(1)
50w | 0.02 | 2.29
2.27
2.60 | 31-41
32-32
41-31 | a ⁴ F-z ⁶ F° † (3) a ⁴ F-z ⁴ D° | 3044.936
3043.134
•3043.5559 | 000 | 50r
50r
50r | 0.04
0.03
0.00 | 4.07 | 15-05 | | | 6785.25
5072.30
5010.202
5069.12 | P
C
F | 3
tr
tr | 3.11
3.08
3.11 | 4.93
5.54
5.54
5.54 | 3 2 - 3 2
3 2 - 3 2
1 2 - 1 2
2 3 - 1 4 | c ² D-x ² D°
(113) | 4875.462
4864.741
4851.483
4827.458 | A
A
A | 40w
40w
40w
30
35 | 0.04
0.03
0.00
0.04 | 2.57
2.55
2.54
2.60
2.57 | 31-21
21-11
11-1
31-31
21-21 | a ⁴ F-z ⁴ D ⁰ (3) | 2977.539
2962.772
2954.332
2957.33 | 0000 | 35r
30r
30
101 | 0.07
0.04
0.03
0.04 | 4.21
4.19 | 42-32
32-32
32-12
32-32 | a ⁴ F_w ⁴ D ⁶ †
(18) | | 5013.38
4911.205
4874.025 | P
B
B | 0
tr | | | -2 -2 | c ² D_y ² P° (114) | 4831.642
4832.427
4784.480
4799.786 | A
A
A | 30
5
5 | 0.00 | 2.55
2.60
2.57 | 13-13
33-33
13-32 | | 6243.11
6251.83
6256.906 | A
A
A | 30
30
8 | 0.30 | 2.28
2.26
2.25 |
41-41
31-31 | a ⁶ D-z ⁶ D° (19) | | 4855.95
4488.319 | P
B | 15 | 3.11 | | | | 4586.364
4580.394 | A
A
A | 60w
50w
40w | 0.04 | 2.75
2.73
2.71 | 41-51
31-41
31-31 | a ⁴ F-z ⁴ G° (4) | 6258.595
6296.518
6292.858 | A
A
A | 8
15
20 | 0.36
0.30
0.39 | 2.26
2.25 | 43-33
33-23 | | | 4411.080
4456.650
3644.87 | B
C
P | 15
tr | 3.08
3.11
3.11 | 5.88 | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | c ² D-x ² F° (115) | 4635.176
4619.771
4606.146 | A
A
A | 40w
15
25
15 | 0.07 | 2.70
2.73
2.71
2.70 | 19-23
49-45
39-39
29-29 | | 6285.185
6274.670
6199.202
6216.368 | A
A
A | 20
15
30
30 | 0.27
0.29 | | 3 - 4 - 4 - 5 | | | 3633.99
3664.86
3635.64
3666.592 | P
P
C | (On) | 3.08
3.11
3.08
3.11 | 6.48
6.48
6.48 | 15-25
25-25
15-15
25-15 | c ² D-x ⁴ D°
(116) | | B
A
C | 15
(2)
1
50w | 0.07 | 3.71
3.70 | 43-33
32-22 | .4r4ro | 6230.736
6242.80 | A
A
A | 30
15
15 | 0.27 | 2.25
2.24 | | _6n6ro | | 3652.81
3578.687
3550.19 | P
C
P | (0) | 3.08 | 6.46 | 1½- ½ 3-1-1 | c ² D-x ² P° (117) | 4341.013
4332.823
4330.024 | 000 | 40w
30w
30w | 0.04 | 2.88
2.87
2.85 | 35-35
25-25
15-15 | (5) | 6170.340
6189.350
6207.251 | A
A
A | 8
3
(5) | 0.29
0.27
0.27 | 2.29
2.27
2.25 | 31-41
31-31
11-21 | a ⁶ D_z ⁶ F°
(30) | | 3549. 27
3524.87
3491.19 | P
C
P | tr | | | | | 4355.943
4309.795 | 000 |
125r
10
10
20 | 0.04
0.03
0.04 | 2.87
2.85
2.90 | 33-23
33-13
33-43 | a ⁴ F-z ⁴ F° (5) | 6224.507
6233.187 | P
A
A | 15
15
12 | 0.30
0.29
0.27 | 2.27
2.25 | 31-31
31-31
31-31 | | | 3519.67
3496.29 | P
P | | 3.11 | 6.62 | 21-13
12-22 | c ² D-w ² D°
(118) | 4307.184
*4234.000 | c
c | | | | 32-32
12-32
32-33 | a ⁴ F-z ³ D° | 6245.214
*6268.841 | A
A | 6
2
8 | 0.26
(0.30
0.29 | 2.27
2.25 | \$- 2 | | | 3090.051
3081.575
3072.54
3063.280 | CCEC | 8n
5n
(On)
3 | 3.73
3.70
3.67
3.65 | 7.73
7.70
7.69
7.68 | 51-41
41-31
31-31
31-31 | z ⁴ G°-e ⁴ F
(119) | 4259.312
4200.89
*4234.524\$
4176.793 | C
C
B | 8
1
8
(3) | 0.03 | 3.91
2.95
2.91
3.95 | 15-35 | a ⁴ F-z ² D° (6) | 6366.32
6361.236
4460.292
4459.760 | A
A
C | 7
5
50
30 | 0.27
0.27 | 2.24
2.24 | | a6p_z6pe | | 3194.56
3194.26
3192.68
3189.52
3213.59 | 00000 | 8n?
5n?
4n
5n
tr | | | _ | z ⁴ F°-e ⁴ F
(120) | 3902.250
3875.075
3864.862
3855.370
*3909.894
3892.859 | 000000 | 50r
35
35
30
20
25 | 0.04
0.03
0.00
0.07 | 3.23
3.21
3.20
3.22
3.21 | 41-41
31-31
21-11
11-11
41-31
31-21 | 24F_y4F°
(7) | 4457.479
4437.837
4441.683
4444.207
4419.935
4438.515 | 0000000 | 15
20
25
20
12 | 0.27
0.29
0.27
0.27
0.27 | 3.04
3.07
3.05
3.04
3.07
3.05 | 32-32
32-32
12-12
32-32
12-12
32-32 | a ⁶ D_z ⁶ P° (21) | | | atory
Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref | Int | E P | J
;h | Multiplet
(No) | | ratory
Ref Int | E
Low | P
High | J Multiplet (No) | |---|--|--|---|--|---------------------------------|--|--|--|--|---|--------------------------------------|--|--| | VI conti | | | | VI continued | | | | • | V I cont | | | | (NO) | | 4379.238// *4384.722 4389.974 4395.228 4400.575 4406.641 4407.637 | C 150rw
C 135r
C 100
C 80
C 60
C 80
C 70 | 0.26 3.07
0.30 3.10 | 41-53 a ⁶ D-y ⁶ F° 32-42 (22) 23-32 13-22 2-12 43-43 33-33 | 5743.438 A
5737.040 A
5727.662 A
•5782.601 A
5761.411 A | 18
35
30
2
3 | 1.08 3.1
1.06 3.1
1.05 3.1
1.08 3.1
1.06 3.1 | $3\frac{1}{2} - 3\frac{1}{2}$ | • | 4113.518
4092.407
4091.945
4124.072
4107.487
4093.497 | C 12
C 8
C 3
C 5
C 4
C 5 | 1.18
1.21
1.19 | 4.21
4.21
4.19
4.21
4.19
4.19 | 21-32 a ⁴ P-w ⁴ D°† 11-22 (52) 2-12 2-22 11-12 2-2 | | 4408.204
*4408.511
4429.796
4426.005
4421.573
4416.474 | C 70
C 90
C 15
C 20
C 20
C 20 | 0.27 3.07
0.26 3.06
0.30 3.09
0.29 3.07
0.27 3.06 | 31-31
32-32
11-11
12-12
41-32
32-32
31-12
12-2 | 5731.257 A
5776.670 A
5627.638 A
5624.605 A
5624.895 A
5626.014 A | 30
4
30
20
10
8 | 1.06 3.2
1.08 3.2
1.06 3.2
1.05 3.2
1.04 3.2 | 7 31-31
5 21-2 | a ⁴ D-z ² G° (36)
(36)
a ⁴ D-y ⁴ D° (37) | 3533.676
3529.735
3533.757
3553.271
3545.339
3543.500
3569.083 | C 10
C 10
C 6
C 6
C 8
C 8 | 1.19
1.18
1.21
1.19
1.18 | 4.71
4.69
4.67
4.69
4.67
4.66
4.67 | 2-3-2 a ⁴ P-t ⁴ D°
1-2-2 (53)
2-1-3
2-2-1
1-1-2
2-1-3
2-1-3 | | *4381.04
*4405.011
4363.525
4392.074
4209.857 | G 1
C 4
C 5
C 5 | 0.29 3.10
0.27 3.08
0.27 3.10
0.27 3.08 | 31-31 a ⁶ D-z ⁴ P° † 31-11 (23) 31-31 (23) 31-31 (23) 41-41 a ⁶ D-v ⁴ F° † | 5668.369 A
5657.449 A
5646.112 A
5584.490 A
5592.409 A
5604.943 A | 12
12
10
10
13
8 | 1.08 3.2
1.06 3.2
1.05 3.2
1.06 3.2
1.05 3.2 | 4 24-1
3 15-
7 25-3
5 15-2
4 2-1 | | 3555.142
3377.625
3376.057
3366.880
3397.580
3377.394 | C 15
C 8
C 4
C 6
C 10 | 1.19
1.21
1.19
1.18
1.21 | 4.66
4.87
4.85
4.84
4.85 | 1½-½ 2½-3½ a ⁴ P-w ⁴ P° 1½-1½ (54) ½-½ 3½-1½ | | 4198.611
4218.710
4219.51
4189.841
4182.591
4191.558 | C 4
C 4
C 2
C 12
C 10
C 10 | 0.29 3.22
0.30 3.22
0.29 3.21
0.29 3.23
0.27 3.22
0.27 3.21 | 4]-4½ a ⁶ D-y ⁴ F°† 3½-3½ (34) 4½-3½ 3½-2½ 3½-2½ 3½-3½ | 5547.080 A
5545.933 A
5544.865 C
4670.483 A
4646.396 A | 8
2
(1)
25w
15w | 1.08 3.3
1.06 3.3
1.05 3.3
1.08 3.3 | 0 31-41
8 21-3
7 11-2
2 31-2 | a ⁴ D-y ⁶ D° †
(38)
a ⁴ D-y ⁴ P° | 3356.352
3365.553
3329.855
3309.176
3299.086 | C 10
C 10
C 12
C 8
C 3 | 1.19
1.18
1.21
1.19 | 4.84
4.87
4.85
4.92
4.92 | 12-2
12-25
2-12
2-12 a ⁴ P-x ⁴ S°
12-12 (55)
2-12 | | 4179.419
4159.686
4136.386 | C 15
C 8 | 0.30 3.25
0.29 3.25 | 43-43 a ⁶ D-z ² G ^o † 33-43 (25) 33-33 a ⁶ D-y ⁴ D ^o † | 4640.062 A
4640.735 A
4624.404 A
4626.480 A
4618.800 A | 8
7w
8
7
(2) | 1.05 3.1
1.06 3.1
1.05 3.1
1.04 3.1 | 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁴ D-y ⁴ P° (39) | 3106.11
3103.60
3103.994
3121.749 | C 5 F 1 C 6 C 4 | 1.21
1.19
1.18 | | 3½-3½ a⁴P-v⁴P°
1½-1½ (56)
½- ½ | | 4142.66
4148.859
4153.328
4111.785 | G 2
C 2
C 3 | ****** | 3-3-2 a ⁶ D-y ⁴ D°† 3-3-3 (36) 1-1-1-2 2-2 4-4-4 a ⁶ D-y ⁶ D° | 4610.985 A
4483.818 C
*4406.147 C
4393.835 C | 8
6
4 | 1.04 3.5
1.08 3.6
1.06 3.6
1.05 3.6 | - 2-2 | a ⁴ D-x ⁴ F°†
(40) | 3112.925 | C 80
C 20 | 1.19
1.19
1.18 | 5.15
5.19
5.17 | 11-15
11-25
12-15
2-15 | | 4115.185
4116.470
4116.703
4116.60
4134.488
4132.017
4128.071 | C 60
C 50
C 4
P
C 60
C 60
C 60 | 0.26 3.26
0.30 3.28
0.39 3.27 | 41-41 a ⁶ D-y ⁶ D°
31-31 (27)
21-21 (27)
11-12 (27)
42-32 (27)
21-12 (27) | 4387.213 C
4090.579 C
4095.486 C
4102.159 C
m4109.81 P
4118.643 C | 3
25
25
20
V
8 | 1.04 3.8
1.08 4.0
1.06 4.0
1.05 4.0
1.04 4.0 | 9 31-4
7 31-3
6 11-3
4 1-1
7 31-3 | a ⁴ D-w ⁴ F°† | 3075.933 | C 8
C 12
C 25
C 25
C 15
B 5
C 5 | 1.18
1.21
1.19
1.18
1.21 | 5.20
5.18
5.20
5.18
5.18
5.18 | | | 4123.566
4092.594
4099.796
4105.167
4109.786 | C 60
C 50
C 60
C 60
C 50 | 0.27 3.27 | 35-15
15-5
35-45
35-45
35-35
15-35
2-15 | 4119.457 C
4120.538 C
3934.013 C
3922.431 C
3920.487 C | 8
8
20
12
5 | 1.06 4.0
1.05 4.0
1.08 4.2
1.06 4.2
1.05 4.3 | 4 19-12 | a ⁴ D-w ⁴ D°
(42) | 3016.16
2999.238
2990.948 | C 20
C 12
C 8 | 1.21
1.19
1.18 | 5.30
5.30
5.30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | *3794.964
3803.474
3809.597
m3813.45
3815.514 | C 50
C 25
C 15
P Y | 0.30 3.55
0.29 3.53
0.27 3.51
0.27 3.50
0.26 3.50 | 41-41 a ⁶ D-x ⁶ D°
31-31 (28)
31-31 (28)
11-11 | *3912.207 C
3943.864 C
3936.282 C
3921.905 C
3912.886 C | 10
12
5
6 | 1.04 4.1
1.08 4.1
1.06 4.1
1.05 4.1 | 1 3 - 2
9 3 - 1
9 1 - 1 | | 6558.02
6607.82
6106.967
6135.07 | A 5
A 3
A 2
A 2 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3819.963
3822.888
3823.213
3821.487
3778.684 | C 15
C 15
C 15
C 15
C 25 | 0.30 3.53
0.29 3.51
0.27 3.50
0.27 3.50
0.29 3.55 | 3-1
4-3-3
3-3-3
3-1-1
1-4
3-4-3
3-3-3 | *3906.748 C
3910.790 C
*3872.748 C
3875.426 C | 6
5
4n
3 | 1.05 4.2
1.04 4.2 | 9 1-1 | a ⁴ D-v ⁴ F° (43) | 4609.646
4585.94
4501.972 | A 4
G 2 | 1.37
1.34 | 4.05
4.04 | $\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-z ⁴ H ^o (61) | | 3790.334
3799.912
3807.505
3703.584 | C 20
C 25
C 20 | 0.26 3.50 | 19-29
3-13 | 3891.227 B
3902.558 C
•3896.155\$ E
•3906.748 C
•3912.207 C | 3
6
6 | 1.05 4.2
1.04 4.2
1.08 4.2
1.06 4.2 | 4 35-35 | (10) | 4449.573
4491.164
m4460.16
3930.023 | C 5
C 2
P V | 1.04 | 4.11 | | | 3704.699
3705.035
3688.069
3692.225
3695.865 | C 60
C 30
C 50
C 50 | 0.29 3.62
0.27 3.61
0.29 3.63
0.27 3.63
0.27 3.61 | 4-3; a ⁶ p_y ⁶ p°
33-3; (29)
34-1;
35-3;
35-3;
35-3;
12-1;
13-3;
13-3;
13-3; | m3840.44 P
3839.002 C
3836.054 C
3835.560 C | Fe
10
5
4 | 1.08 4.2
1.06 4.2
1.05 4.2
1.04 4.2 | | a ⁴ D-v ⁴ D°
(44) | *3909.894
3942.006
3898.143
3886.587 | C 20
C 6
B (4 | 1.34 | 4.51 | 4½-4½ a ² G-x ² G°
3½-3½ (63)
4½-3½
4½-3½ a ² G-w ⁴ G°†
3½-2½ (64) | | 3675.700
3683.126
3690.281
8116.80 | C 30
C 30
C 40 | | | 3859.341 C
3851.171 C
3844.892 C
3830.399 B
3823.990 C
3826.774 C | 6
5
4
(4)
5
6 | 1.08 4.2
1.06 4.2
1.05
4.2
1.05 4.2 | 6 25-15
6 15- 5
9 25-35
7 15-25 | | 3864.300
3885.770
3884.465 | B (3
C 2
C 4 | 1.37
1.34 | 4.55
4.52 | 4½-4½ a ² G-w ² G•† 3½-3½ (65) | | 8161.06
8186.73
8198.87
8253.51
8255.90 | A 150w
A 100
A 80
A 100w
A 100 | 1.06 2.57
1.05 2.55
1.04 2.54
1.08 2.57
1.06 2.55 | 32-32 a4D-z4D°
32-32 (30)
12-12 3-2
32-32
32-32
33-32
33-32
33-32
33-32 | 3826.774 C
3583.704 C
3540.530 C
3542.657 C
•3566.1779 E | 8
1
1 | 1.04 4.8
1.08 4.8
1.06 4.5
1.05 4.5
1.06 4.5 | 3 3 2 3 2 3 4 2 5 1 5 3 1 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | a ⁴ D-x ⁴ P°†
(45) | 3871.078
*3863.866§
3840.140
3828.836
3802.883 | C 8 6 C 4 C 2 | 1.34
1.34
1.37 | 4.56
4.54
4.56
4.59
4.59 | 41-31 a ² G-x ² F°
31-31 (66)
31-32 (66)
41-51 a ² G-y ² H°
31-41 (67) | | 8241.61
8027.36
8093.48
8144.58 | A 60
A 100w
A 100w
A 50 | 1.04 2.55 | | 3400.395 C
3402.571 C
3405.160 C
3406.837 C | 12
9
6
6 | 1.08 4.7
1.06 4.6
1.05 4.6
1.04 4.6 | | a ⁴ D-t ⁴ D°† | 3833.226
3806.796
3803.784 | C 8
C 6 | 1.37 | 4.59
4.61
4.59 | $\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-v ² G• † | | 6753.00
6766.49
6784.98 | A 60
A 40 | 1.08 2.90
1.06 2.88
1.05 2.87 | $3\frac{1}{2}-4\frac{1}{2}$ a ⁴ D-z ⁴ F° $3\frac{1}{2}-3\frac{1}{2}$ (31) | 3002.65 C
3004.824 C | 8
10 | 1.08 5.1
1.06 5.1 | 9 3] -2]
7 2] -1] | a ⁴ D-v ⁴ P°† | 3790.469
3779.648 | C 8
C 4 | 1.34 | 4.61 | $4\frac{1}{2}-3\frac{1}{2}$ $a^{2}G-w^{2}F^{\circ}$ † $3\frac{1}{2}-3\frac{1}{2}$ (69) | | 6812.40
6829.94
6832.44 | A 10
A 10 | | \$-1\frac{1}{2}
3\frac{1}{2}-3\frac{1}{2}
3\frac{1}{2}-1\frac{1}{2} | 6531.44 A | 15 | 1.21 3.1 | | | 3686.262
3671.205
3699.476 | C 8
C 10
C 3 | 1.37
1.34
1.37 | 4.72
4.71
4.71 | $4\frac{1}{2}-5\frac{1}{2} a^{2}G-x^{2}H^{\circ}$
$3\frac{1}{2}-4\frac{1}{2}$ (70)
$4\frac{1}{2}-4\frac{1}{2}$ | | 6841.89
6466.97
6578.96 | A 7
A 3
A 2 | 1.05 2.95 : | 1}-2} a ⁴ D-z ² D° †
1-1+ (32) | 6543.51 A
6565.88 A
6624.86 A
6605.98 A | 5
3
7
10 | 1.19 3.0
1.18 3.0
1.21 3.0
1.19 3.0 | 5 13-13
6 3-13
8 33-13
8 13-13 | a ⁴ P _{-z} ⁴ P° (48) | 3284.360
3273.027 | C 6 | 1.37 | 5.13
5.12 | $\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-t ² G°† (71) | | 6097.42
6090.54 | A (1) | 1.08 3.10 | 31-41 a ⁴ D-y ⁶ Fe † | 6452.354 A
6504.164 A | 10 | 1.19 3.1
1.18 3.0 | | | 3233.190
3218.869 | C 6
C 5 | | | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $\frac{a^2G-u^2F^{\circ}}{(72)}$ | | 6087.485
6089.473
•6151.509 | A (3)
B (1) | 1.05 3.07
1.04 3.07
1.06 3.07 | 31-41 a ⁴ p_y ⁶ F* † 31-32 (33) 11-32 (33) 11-12 (34) | 6003.273 A
5980.748 A
5984.602 A
6048.636 A | 3
3
1 | 1.21 3.2
1.19 3.2
1.18 3.2 | 7 23-33
5 13-23
4 3-13 | a ⁴ P-y ⁴ D°
(49) | 3212.434
3205.582 | C 15 | 1.34 | | $\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ $\frac{a^{2}G-u^{2}H^{2}}{(73)}$ | | 6128.30
6090.184
6119.505 | A 30
A 40 | 1.05 3.06 : | 1 g- g
3g-2g a ⁴ D-2 ⁴ P°
2g-1g (3A) | 6048.636 A
6017.90 A
6008.648 A
6086.55 A | tr
tr
(3) | 1.21 3.2
1.19 3.2
1.18 3.2
1.21 3.2 | 4 14-14
3 4-1 | | 3050.400
3031.007
3021.78 | C 25
C 10 | | 5.42
5.42
5.45 | $4\frac{1}{2}-3\frac{1}{2}$ a ² G-t ² F° $3\frac{1}{2}-3\frac{1}{2}$ (74) $4\frac{1}{2}-3\frac{1}{2}$ a ² G-t ² H° | | 6135.36
6039.690
6081.421 | A 15
A 25
A 25 | | 3}-3} a ⁴ D-z ⁴ P°
3}-1\$ (34)
19-3
32-3
12-1\$ | 4925.657 A
4886.821 A | 10 | 1.21 3.7
1.19 3.7
1.18 3.7
1.21 3.7 | | a ⁴ P_y ⁴ P° (50) | 3006.35 | C 6 | 1.34 | | $\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{5}{2}-4\frac{1}{2}}$ a ² G-t ² H° (75) | | 6111.622
6002.601
6058.113 | A 25
A 4
A 5 | 1.04 3.08
1.05 3.10
1.04 3.08 | 1 1 - 2
1 1 - 2
1 - 1 | 4882.183 A
4932.029 A
4904.285 A | 2
4
(8)
8 | 1.18 3.7
1.21 3.7
1.19 3.7
1.19 3.7
1.18 3.7 | | | 9865.44
10203.45
10193.66 | A 10
A 10
A 5 | 1.70
1.70
1.70 | 2.91 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 5727.024
5698.509
5703.562 | A 60
A 60
A 40 | 1.08 3.23
1.06 5.22
1.05 3.21 | 31-42 a ⁴ D-y ⁴ F°
21-02 (35)
12-22
2-12 | 4864.83 P
4758.742 A | .8 . | 1.18 3.7
1.21 3.8
1.19 3.8 | | | 5558.752
5561.670 | A 3 | 1.70 | | $ \frac{1\frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - \frac{1}{2}} a^{2}P - z^{2}S^{\circ} \frac{1}{2} - \frac{1}{2} (77) $ | | 5706.973 | A 30 | 1.04 3.20 | 1 -1 1 | 4716.644 A | (1-) | 1.19 3.8 | 1 1 1 -31 | 7 (51) | 4833.027
•4848.821 | A 3
A 1 | 1.70
1.70 | 4.26
4.25 | $\begin{array}{ccc} 1\frac{1}{2} - 2\frac{1}{2} & a^{2}P - y^{2}D^{e} \uparrow \\ \frac{1}{2} - 1\frac{1}{2} & (78) \end{array}$ | | 4 | | | | | | | REV | SE | D M C | J L.T I | PLI | T | ABLE | | | | | | | | |--|------------------|---------------------|-------------------------------|------------------------------|--|---|---|-------------|--------------------------|------------------------------|------------------------------|--|---|--|-------------|--------------------|----------------------|----------------------|--|--| | Labo:
I A
<u>I</u> cont | Ref | Int | E I | | J | Multiplet
(No) | Labor
I A
<u>V I</u> conti | Ref | Int | E
Low | P
H1gh | J | Multiplet
(No) | Labor
I A
<u>V I</u> cont | Ref | Int | Low | P
High | J | Multiplet (No) | | 365.745
422.477 | C | 3 | 1.70 | 4.53 | 1 2 - 3 2 | a ² P-x ² D° (79) | 4354.979
4342.832 | C
C | 5
6 | 1.88 | 4.73 | 5-3-5-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | a ² H-x ² H° (103) | 3571.037
3573.516 | G | 4
5 | 2.13
2.13 | 5.58
5.57 | 51-41
44-34 | a ⁴ G-q ⁴ F• † | | 798.661
834.22 | C
P | 2
Fe | | | | a ² P-v ² D° (80) | 3708.721
3706.035 | C | 6
4 | 1.88
1.86 | 5.21
5.19 | 51-51
42-42 | a ² H-u ² H°
(104) | 3571.653
3568.940 | C | 5
3 | | | - | a ⁴ G-q ⁴ F*†
(133) | | 832.835
505.690
487.008 | C
D | 4
6
2 | 1.70
1.70
1.70 | 5.22
5.24 | $ \begin{array}{c} 1\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \end{array} $ | a ² P-v ² P°
(81) | 3082.010
3075.269 | B
C | 6
10 | 1.88 | 5.89
5.88 | 51-51
42-42
- | a ² H-s ² H°
(105) | 5128.530
5138.431
5148.724 | A
A
A | 7
5
4 | 2.28
2.26
2.25 | 4.68
4.66
4.64 | $\begin{array}{c} 4\frac{1}{2}-5\frac{1}{2} \\ 3\frac{1}{2}-4\frac{1}{2} \\ 2\frac{1}{2}-3\frac{1}{2} \end{array}$ | z ⁶ D°-e ⁶ F†
(133) | | 485.867
506.843 | B
C | 6
3
 | | | _ | | 9611.60
9614.68
9691.58 | A
A
A | 80
50
40 | 1.95
1.94
1.94 | 3.23
3.22
3.21 | 41-41
32-32
32-32 | b ⁴ F-y ⁴ F° (106) | 5159.350
3741.504
*3755.701 | A
C | 3
6 | A. 04 | 4.03 | 15-05 | z ⁶ D°-g ⁶ D†
(124) | | 537.663
551.860 | A
A
C | 6
3
6 | | | | a ² D_y ² P°
(82) | 9738. 5 0
9582.28
9668. 9 | A
A
A | 15
6np
3p ? | 1.93 | 3.21 | 12-22 | | 5107 001 | A | 7 | | | - | | | 639.024
643.864 | Č. | <u></u> | | | _ | a ² D-u ² F° † (83) | 6430.471
6431.620
6433.17 | A
A
A | 5
4
3 | 1.95
1.94
1.94 | 3.87
3.86
3.86 | 41-41
31-31
31-31 | b ⁴ F-x ⁴ F°†
(107) | *5194.824
5195.394
*5194.824 | A
A
A | 10
5
10 | 2.29
2.27
2.25 | 4.66
4.64
4.63 | 42-42
32-32
32-32 | z ⁶ F°-e ⁶ F†
(135) | | 326.845
339.090
349.477
357.297 | A
A
A | 6
5
5
4 | 1.85
1.85
1.84 | 3.80
3.79
3.78 | 52-45
42-35
32-25 | a ⁴ H-y ⁴ G°†
(84) | 6435.148
4722.877
4721.524 | A.
A. | 8
6 | 1.00 | 0.00 | 15-15 | b ⁴ F-w ⁴ G° †
(108) | 3898.019
3901.152
3900.175 | 000 | 6
6 | 2.31
2.29
2.37 | 5.47
5.45
5.43 | 51-61
41-51
31-41 | z ⁶ F°-f ⁶ G†
(126) | | 584.738
586.007
504.205 | A
A
A | (3)
3
1 | 1.86
1.85
1.85 | 4.07
4.06
4.05 | 63-63
53-53
43-43 | a ⁴ H-z ⁴ H°†
(85) | 4730.394
4545.394
4560.710 | A
A
A | 3
25*
20 | 1.94
1.95
1.94 | 4.66
4.65 | 22-32
43-53
33-43 | b ⁴ F-v ⁴ G° (109) | 3897.075
5748.412 | C
A | 6
(1) | | | | | | 522.075
501.256 | A
B | (2)
1
5 | 1.85 | 4.59 | | a ⁴ H-y ² H°
(86) | | A
A
A | 15
15
6
7 | 1.00 | 4.64
4.63
4.65
4.64 | -22 | | 5656.895
*5782.601
5624.223 | A
A | (2) | 2.32
2.37
2.32 | 4.50
4.50
4.52 | $1\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ | b ² P_y ² P°
(137) | | 496.864
490.815
488.898 | A
A
A | 5
20 | 1.85
1.85
1.84 | 4.59
4.59 | 35-45 | | 4583.783
4474.045 | A
C | 5
10 | 1.94 | 4.63 | <u> </u> | | 4776.519
4742.631 | A | 5
5 | 2.37 | 4.95
4.92 | 1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | b ² P-v ² D°†
(128) | | 452.008
462.363
469.710
468.010 |
0000 | 20
20
15
8 | 1.86
1.85
1.85
1.84 | 4.63
4.63
4.61
4.60 | 63-73
53-63
43-53 | a ⁴ H-z ⁴ I°†
(87) | 4496.062
4514.191
4525.168
4464.747 | A
A
A | 8
6
5
2 | 1.94
1.94
1.93 | 4.69
4.67
4.66 | 34-34
35-14
14-4
21 21 | b ⁴ F-t ⁴ D° (110) | 5487.915
5507.753 | A
A | 10
8 | 2.36
2.35 | 4.61
4.59 | $5\frac{1}{2}-4\frac{1}{2}$ $4\frac{1}{2}-3\frac{1}{2}$ | b ² H-v ² G°
(129) | | 268.643
271.554 | C | 20
12 | | | 3½-4½
6½-6½
5½-5¾ | a ⁴ H-x ⁴ H°†
(88) | *4488.898
4509.287 | C
A
A | 20
3 | 1.53 | 4.07 | 15-15 | | 5415.277
*5401.945 | A
A | 10
8 | 2.36
2.35 | 4.64
4.63 | $5\frac{1}{2}-6\frac{1}{2}$ $4\frac{1}{2}-5\frac{1}{2}$ | b ² H-z ² I•†
(130) | | 276.958
284.055 | C | 12
15 | | | 4½-4½
3½-3½ | a ⁴ H-x ⁴ H°†
(88) | 4232.460
4232.952
*4234.000 | CCC | .15
13
13 | 1.95
1.94
1.94 | 4.86
4.86
4.85 | 41-41
31-31
31-31 | b ⁴ F-u ⁴ F° † (111) | 5240.878
5234.088 | A
A | 9
8 | | | | b ² H-x ² H°†
(131) | | 998.730
992.801
990.566 | C
C | 15
12
20 | 1.86
1.85
(1.85
1.84 | 4.94 | 63-53
53-43
42-33 | a*H-u*G* †
(89) | 4235.756
4104.778 | C
C | 10
15 | 1.93 | 4.85 | 1출-1출
4출-3출 | b4F-84D0 t | *5014.620
5002.320 | A | 5
4 | | | | b ² H-y ² I• †
(132) | | 988.833
984.600
984.335 | 000 | 5
6
6 | 1.85
1.85 | 4.95 | 35-25
55-55
45-45
31 31 | a ⁴ H-u ⁴ G°†
(89) | 4118.182
4123.188
4128.858 | 000 | 8
6
5 | 1.94
1.94
1.93 | 4.94
4.93
4.93 | 35-25
25-15
15- 5 | b ⁴ F-s ⁴ D°†
(113) | 4591.220
4553.056
3227.409 | A
A
C | 12
7
4 | | | | b ² H-w ² H° (133) | | 924.658
927.926 | C | 10
(3) | 1.86
1.85 | 5.00
4.99 | 63-63
53-53 | a ⁴ H-w ⁴ H°†
(90) | 4807.537
4796.930 | A
A | 25
20 | 3.13
3.09 | 4.68
4.66 |
65 | z ⁶ G°-e ⁶ F†
(113) | 3229.604 | В | <u>-</u> | | | - | b ² H-x ² I*
(134) | | 931.340
935.141
722.601 | o
o | 5
6
(3) | 1.84 | 4.98
4.98 | | | 4786.515
4776.364
4766.635
4757.50 | A
A
A | 20
10
10
8 | 2.07
2.05
2.03 | 4.64
4.63
4.62
4.61 | 44-34
34-24
24-14 | z ⁶ g°-e ⁶ F†
(113) | 5725.633
5734.004
4705.099 | A
A | 6 5 | 2.36
2.35
2.36 | | | a ³ F_x ³ G°
(135) | | 721.998
729.035
737.992 | 0000 | 4 4 5 | 1.85
1.85
1.84 | 5.17
5.16
5.14 | 51-41
41-31
31-21 | a ⁴ H-t ⁴ G°†
(91) | 4757.37
4753.957
4750.990 | A
A
A | 4
7
8 | 2.09 | 4.68
4.66
4.64 | 5-3-5-3
40-44 | | 4715.900
3645.596 | A
A
C | 5
3 | 2.35 | | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | a ² F_u ² D°
(136)
a ² F_5° | | 772.402 | A | 6 | | | | b ⁴ P-x ⁴ D° † | 4748.525
4746.638 | Ā | 7
5 | 2.03
2.02 | 4.63
4.62 | 2}-2}
1}-1} | | *3265.899\$
3256.779 | C | 5 | 2.36 | 6.13 | | a2F_t2De + | | 748.860
752.711
850.286
817.063 | A
A
A | 4
3
2
3 | 1.89 | 4.01 | N3-03 | b ⁴ P-x ⁴ D°†
(92) | 3695.335
3687.473
3680.113
3673.404 | 0000 | 30
127
15
12 | 2.12
2.09
2.07
2.05 | 5.46
5.44
5.43
5.41 | 63-73
53-63
43-53
33-43 | z ⁶ g°-e ⁶ H
(114) | 5266.118
*5401.945 | A
A | (4)
8 | 2.67 | 5.01
4.96 | -
41-31
31-21 | b ² G_v ² F°
(139) | | 788.549
797.973
729.544 | A
A
A | 3
2
6 | 1.86
1.92
1.89 | 3.99 | 출~ 호 | b ⁴ P-y ⁴ S° (93) | 3667.741
3663.594
3717.55
3705.83 | C
G | 15
15
1
1 | Ø • 10 | 5.40
5.39
5.44
5.42 | 02~02 | | 4373.230
4375.304 | C | 4 | | | | b ² G-s ² G*†
(140) | | 586.926
751.574 | A
A | 6
6 | 1.86 | | 2-12 | b ⁴ P-x ⁴ P° (94) | *3694.622
3684.332
3675.497 | C | 3
3
3 | 2.07 | 5.41
5.40
5.39 | 45-45 | | 5784.360
*5786.153 | A
A | 5
7 | 2.75 | 4.89
4.86 | 5-4-4-3-4-3-2-3-2-3-2-3-2-3-2-3-2-3-2-3-2 | z ⁴ G°-f ⁴ F
(141) | | 640.309
624.657
706.178
666.149 | B
B
A
A | (0)
(1)
8 | 1.86
1.92
1.89 | 4.53
4.54
4.53 | 23-13
13-13 | | 3676.684
3672.403
3665.142 | С | 10
8
8 | 3.12
2.09
2.07 | 5.47
5.45
5.43 | 63-63
53-53
43-43 | z ⁶ G°-f ⁶ G†
(115) | 5783.509 | A . | 2 | | | - | | | 591.991
529.301 | A
B
A | (3)
(0)
4 | 1.89 | 4.52 | 1 1 -21 | b ⁴ p_w ² F° (95) | 3656.706
*3648.966
3641.096 | C | 6
5
4 | 8.08 | 3.41 | 15-15 | | 5846.306
5830.719
5817.532 | A | 8
7
5 | 3.12
3.10
3.09 | 5.23
5.22
5.21 | 51-61
41-51
31-41 | y ⁶ F°-e ⁶ G†
(142) | | 071.541
042.635 | C | 8
5 | | | | b ⁴ P-s ⁴ D°†
(96) | 3006.24 | F
F | 15N
5N
5N | 2.12
2.09
2.07 | 6.21
6.19
6.17 | 61-71
51-61
41-51 | z ⁶ G°-f ⁶ H
(116) | 5807.14
5798.905
5797.352 | | 3
2
(1-) | 3.07
3.07
3.06 | 0.10 | 12-32
12-32
2-12 | | | 781.393 | c
c | 3 | 1.92 | 4.93
5.19 | \$-1\$
2\frac{1}{2}-2\frac{1}{2} | b ⁴ P-v ⁴ P° | 3001.90
2997.87
2997.08 | F
F
F | 10N
5N
3N | 2.05
2.03
2.02 | 6.16
6.15
6.14 | 3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | Strongest | | _ | | of V | <u>.</u> | | | 761.442
747.982
804.589
775.187 | CCC | 3
8n
3 | 1.86
1.92
1.89 | 5.17
5.15
5.17
5.15 | 13-13
3-13
23-13
12- 2 | b ⁴ P-v ⁴ P°
(97) | 7356 .51 | A
A | 30
20 | 2.13
3.13 | 3.81
3.80 |
55 | a ⁴ G-y ⁴ G°†
(117) | 4619.648
4549.644
4527.990
4265.170 | | 8
10
5
8n | IV
IV
III | | | | | 738.757
734.428
747.982 | C
C | 8
5
8n | | | 22 | | 7363.16
7361.39
4904.350 | A
A
R | 15
10
(9) | 2.11 | 3.79
3.78 | 31 31
51 61 | -40 v4v0+ | *3963.626§ 3898.278 3891.119 | С | 4
5 | II | | | | | 720.93
713.56
763.141
740.241 | ф
С
С | 1
1
6
6 | 1.89
1.86
1.92 | 5.20
5.18
5.20 | 1 1 2 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | b ⁴ P-r ⁴ D° †
(98) | 4904.447
4900.624
4894.218 | B
A | (9)
(7)
6
4 | 3.12
3.11
2.11 | 4.64
4.63
4.63 | 41-51
31-41
31-31 | a ⁴ G—y ⁴ H°†
(118) | 3849.324
3845.974
3425.070 | C | 4
6
3
6 | II
II | | | | | 723.324 | C . | 3 | 1.86 | 5.18 | - 2 2
- | | 4706.574
4710.566
4714.113 | A | 12
12
10 | 2.13
2.12
2.11 | 4.75
4.74
4.73 | 53-63
43-53
33-43 | a ⁴ G-x ⁴ H°†
(119) | 3261.081
3156.222
3153.549 | CCC | 6
10
5N | III
IV
IV | | | | | 524.218
529.589 | A
A | 15
8 | | | | a ² H-v ² G° †
(99) | 4717.692
4291.816 | A
C | 10
15 | | T. 15 | 2-05 | | 3150.568
3092.72 | G. | 5
8 | III | | | | | 515.558
540.014
474.714 | A
A
C | 2
6
12 | | | | a ² H-z ⁴ I°
(100)
a ² H-z ² I° | 4296.107
4297.681
4298.029 | C | 15
12
12 | 8.11 | 4.00 | <u> 55−55</u> | a ⁴ G-w ⁴ H°†
(120) | 3041.86
3002.442 | | 8
6 | IV
IV | | | | | 457.759
468.759 | č
c | 8
4 | | | | a ³ H-z ³ I°
(101)
a ³ H-w ³ F° | *4051.3529
*4050.9639
4057.074 | C | 12
10
10 | 3.13
2.12
2.11 | 5.17
5.17
5.16 | 51-51
41-41
31-31 | a ⁴ G-t ⁴ G° † (121) | | | | | | | | | | | | | | - | (102) | 4063.931 | С | 10 | 2.11 | 5.14 | 3 1 -31 | | | | | | | | | | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | |---|--|--|---|---|--|--|--|--| | <u>VII</u> I P 14.1 | Anal A List A | Jan 1941 | V II continued | | | <u>V II</u> continued | - | ••••• | | 3093.108// A 3500
3102.395 A 3000
3110.708 A 1500
3118.376 A 1000
3125.282 A 600
3121.138 A 80
3126.215 A 150 | R 0.37 4.34
R 0.35 4.31
R 0.33 4.29
R 0.32 4.27
0.39 4.34 | 5-6 a ⁵ F-z ⁵ G°
4-5 (1)
3-4
2-3
1-2
5-5
4-4 | m3844.48 P V 3865.72 A 5 3883.43 A 2 3875.67 A 5 3891.25 A 4 3901.33 P | 1.68 4.89
1.67 4.86
1.67 4.84
1.68 4.86
1.67 4.84
1.68 4.84 | 4-5 b ³ F-z ³ g° 3-4 (20) 2-3 4-4 3-3 4-3 | 4183.435 A 250
4205.080 A 250
4235.238 A 120
4164.015 A 15
4190.89 A 10
4150.08 P | 2.04 4.99
2.03 4.96
2.03 4.94
2.03 4.99
2.02 4.96
2.03 4.99 | 5-4 b ³ G-z ³ F°
4-3 (37)
3-2
4-4
3-3
3-4 | | 3130.362 A 100
3133.339 A 150
*3145.337 A 30
3145.971 A 30
*3145.337 A 30 | R 0.35 4.29
r 0.33 4.27
0.39 4.31
0.37 4.29
0.35 4.27 | 3-3
2-8
5-4
4-3
3-8 | 3727.351 A 1000 1
3750.88 A 600
3770.974 A 400
3760.24 A 140
3778.357 A 100
3718.159 A 60 | 1.68 4.99
1.67 4.96
1.67 4.94
1.68 4.96
1.67 4.94
1.67 4.99 | 4-4 b ³ F-z ³ F° 3-3 (31) 2-3 4-3 3-2 3-4 | *3217.121\$ A 400
3237.876 A 350
*3254.773\$ A 300
3249.617 A 40
3263.33 A 30 | 2.04 5.88
2.03
5.84
2.03 5.81
2.04 5.84
2.03 5.81 | 5-6 b ³ G-z ³ H°
4-5 (38)
3-4
5-5
4-4 | | 2953.07 A 150
2957.520 A 100 | 0.35 4.53
0.33 4.50 | 3-2 a ⁵ F-z ⁵ F°†
3-1 (2) | 3743.610 A 40
*2983.009 A 10 | 1.67 4.96
1.67 5.81 | 2-3
3-4 b ³ F-z ³ H°†
(22) | m3093.16 P V ⁺ 3094.196 A 100 3100.938 A 100 3104.906 A 25 | 2.04 6.03
2.03 6.02
2.02 6.00 | 5-5 b ³ G-y ³ G°
4-4 (39)
3-3 | | 3831.017 A 6
3829.655 A 5
3829.53 A 4
3852.10 A 4 | 1.12 4.34
1.09 4.31
1.07 4.39
1.07 4.27 | 4-5 a ³ F-z ⁵ G°
3-4 (3)
2-3
2-3 | 4270.64 A 2
4286.13 A 3
4316.258 A 2
4313.30 A 2 | 1.70 4.59
1.68 4.56
1.67 4.53
1.70 4.56 | 3-4 a ⁵ P-z ⁵ F°
2-3 (23)
1-2
3-3 | 3104.906 A 25
3108.704 A 30
3082.524 A 40
3086.507 A 30
3053.894 A 80 | 2.04 6.02
2.03 6.00
2.03 6.03
2.02 6.02
2.04 6.08 | 5-4
4-3
4-5
3-4
5-4 b ³ G-y ³ F° | | 3538.238 A 50
3531.48 A 10
3535.18 P
3563.71 A 3
3560.594 A 90
*3566.177§ A 200 | | 4-5 a ³ F-z ⁵ F° 3-4 (4) 3-3 4-4 3-3 3-2 | *4360.75 A 9n
4263.836 A 4n
4264.50 A 1
4234.351 A 7 | 1.68 1.53
1.70 4.59
1.68 4.57
1.67 4.56
1.68 4.59 | 3-3 a ⁵ P-z ³ D°
3-3 (34)
1-1 | 3048.891 A 70
3042.27 A 80
*3043.54\$ A 40
3041.42 A 60
3036.07 A 2 | 2.03 6.08
2.03 6.07
2.03 6.08
2.03 6.08
2.03 6.08 | 4-3 (40)
3-2
4-4
3-3
3-4 | | 3593.323 A 600
3592.012 A 800
3589.745 A 1000 | 1.12 4.56
1.09 4.53
1.07 4.50 | 4-3
3-3
3-1 | 4234.251 A 7
4248.820 A 4
4203.350 A 150 | 1.67 4.57
1.70 4.63 | 2-3
1-2
3-4 a ⁵ P-z ⁵ D° | 3023.882 A 20
3015.98 A 10 | 2.04 6.12
2.03 6.12 | 5-5 b ³ G-z ¹ H° (41) 4-3 b ³ G-z ¹ F° | | 3556.800 A 1500
3545.190 A 1000 | 1.12 4.59
1.09 4.57 | $\frac{4-3}{3-2}$ $a^{3}F-z^{3}D^{\circ}$ (5) | 4178.390 A 60
4190.40 A 15
4204.20 A 20 | 1.68 4.63
1.67 4.61
1.70 4.63 | 2-3 (25)
1-3
3-3 | 3012.020 A 30
3001.93 A 2 | 2.04 6.14
2.03 6.14 | (42)
5-4 b ³ G-z ¹ G°
4-4 (43) | | 3530.765 A 500
3534.713 A 200
3520.022 A 120
3499.823 A 20 | 1.07 4.56
1.09 4.59
1.07 4.57
1.07 4.59 | 2-1
3-3
2-2
2-3 | m4205.05 P V+
4209.74 A 10
4231.165 A 4
4224.51 A 10 | 1.68 4.61
1.67 4.60
1.70 4.61
1.68 4.60 | 2-2
1-1
3-3
2-1 | 2979.102 A 5 | 2.02 6.16 | 3-3 b ³ G-z ¹ D° (44) | | 3516.00 A 5
3485.916 A 250
3479.837 A 80 | 1.12 4.63
1.09 4.63
1.07 4.61 | $\begin{array}{ccc} 4-4 & a^3F-z^5D^{\circ} \\ 3-3 & (6) \\ 3-3 & \end{array}$ | 4220.047 A 10
3029.56 A 7
3020.65 A 6 | 1.67 4.59
1.70 5.77
1.68 5.76 | 1-0
3-2 a ⁵ P-z ³ P° | 4606.59 P
4651.42 P
4688.45 P | 2.21 4.89
2.21 4.86
2.21 4.84 | 4-5 a ¹ G-z ³ G°
4-4 (45)
4-3 | | 3517.298 A 800
3504.432 A 400
3493.163 A 150 | 1.13 4.63
1.09 4.61
1.07 4.60 | 4-3
3-8
3-1 | 3022.57 A 40
3016.14 A 15
3013.102 A 80 | 1.67 5.75
1.68 5.77 | 3-1 (36)
1-0
3-3
1-1 | 4439.42 A 1
3401.997 A 2 | 2.21 4.99
2.21 5.84 | 4-4 a ¹ G-z ³ F° (46)
4-5 a ¹ G-z ³ H° | | 3484.65 A 3
3481.580 A 5 | 1.09 4.63
1.07 4.63 | 3-4
2-3 | 3008.610 A 70
3001.203 A 200 | 1.67 5.76
1.67 5.77
1.70 5.81 | 1-3
3-3 a ⁵ p-z ⁵ p°
3-3 (37) | 3230.919 A 4
3243.74 P | 3.21 6.03
3.21 6.02 | 4-5 a ⁻ G-2 ⁻ C | | 3276.12 A 1500
3271.124 A 1200
3267.709 A 1000 | R 1.09 4.86
R 1.07 4.84 | 4-5 a ³ F-z ³ G°
3-4 (7)
3-3 | 3003.461 A 80
3007.296 A 15
3016.775 A 120 | 1.68 5.79
1.67 5.77
1.70 5.79 | 2-2 (27)
1-1
3-2 | 3259.684 A 3
3188.10 A 30 | 2.21 6.00
2.21 6.08 | 4-3
4-4 a ¹ G-y ³ F° | | 3298.738 A 130
3289.391 A 100
3317.295 A 2 | 1.12 4.86
1.09 4.84
1.13 4.84 | 4-4
3-3
4-3 | 3014.822 A 100
2988.027 A 80
2995.999 A 60 | 1.68 5.77
1.68 5.81
1.67 5.79 | 2-1
2-3
1-3 | *3193.97§ A 10?
3157.900 A 40 | 3.21 6.08
2.21 6.12 | 4-3 (49)
4-3 a ¹ G-z ¹ F°
(50) | | 3190.686 A 500
3188.522 A 300
3187.717 A 200 | R 1.09 4.96 | 4-4 a ³ F-z ³ F°
3-3 (8)
3-3 | 2968.373 A 200
2976.517 A 100
2976.197 A 60 | 1.70 5.85
1.68 5.82 | 3-4 a ⁵ p-y ⁵ D°
2-3 (28)
1-3 | 3155.409 A 60
3143.484 A 150 | 3.21 6.12 | 4-5 a ¹ G-z ¹ H° (51) | | 3214.750 A 130
3208.345 A 100
3164.82 A 40 | 1.13 4.96
1.09 4.94
1.09 4.99 | 4-3
3-2
3-4 | 2976.197 A 60
2989.594 A 40
2983.558 A 80n
2975.650 A 50 | 1.67 5.81
1.70 5.82
1.68 5.81
1.67 5.82 | 3-3
3-3
3-2
1-1 | 3142.484 A 150
 | 2.21 6.14
 | 4-4 a ¹ G-z ¹ G°
(53)
3-4 a ³ D-z ⁵ F° | | 3168.127 A 40 | 1.07 4.96 | 2–3
– | 2996.70 A 3
*2983.009 A 10
2982.75 A 40 | 1.70 5.81
1.68 5.82
1.67 5.81 | 3-3
3-1
1-0 | 5367.53 P
5432.09 A 2
5384.89 A 8 | 2.26 4.56
2.26 4.53
2.27 4.56 | 2-3 (53)
1-2
3-3 | | 3997.126 A 200
3973.642 A 300
3968.11 A 150
4036.779 A 60 | 1.47 4.56
1.42 4.53
1.39 4.50
1.47 4.53 | 2-3 a ³ P-z ⁵ Fe
1-2 (9)
0-1
2-3 | 4799.94 P
4844.31 P | 1.81 4.38 | 5-6 a ³ G-z ⁵ G° | 5439.30 A 15
5487.00 A 8
5457.10 A 4 | 2.26 4.53
2.26 4.50
2.27 4.53 | 2-2
1-1
3-2 | | 4002.940 A 80
4067.03 A 5 | 1.42 4.50
1.47 4.50 | 1-1
3-1 | 4880.30 P
4867.79 P
4902.89 P | 1.80 4.34
1.79 4.31
1.81 4.34
1.80 4.31 | 4-5 (29)
3-4
5-5
4-4 | 5494.35 P
5303.26 A 40
5332.65 A 9 | 2.26 4.50
2.27 4.59
2.26 4.57 | 2-1
3-3 a ³ D-z ³ D°
2-2 (54) | | 3951.968 A 500
3916.418 A 200
*3896.155\$ A 60
3977.732 A 60
3929.734 A 50
3991.47 A 3 | 1.47 4.59
1.43 4.57
1.39 4.56
1.47 4.57
1.43 4.56
1.47 4.56 | 3-3 a ³ P-z ³ D°
1-3 (10)
0-1
3-3
1-1
3-1 | 4938.63 P
4936.94 P
4951.66 P
4966.08 P | 1.79 4.29
1.81 4.31
1.80 4.29
1.79 4.27 | 4-4
3-3
5-4
4-3
3-2
5-5 a ³ Q-z ⁵ F° | 5350.37 A 5
5349.75 A 3
5357.35 A 2
5366.42 P
5325.71 P | 2.26 4.56
2.27 4.57
2.26 4.56
2.26 4.59
2.26 4.57 | 1-1
3-2
2-1
2-3
1-2 | | 3903.27 A 250
3866.744 A 60 | 1.47 4.63
1.43 4.61 | 3-3 a ³ P-z ⁵ D°
1-2 (11) | 4434.63 P
4451.61 P
4444.30 P | 1.80 4.59
1.79 4.56
1.81 4.59 | 5-5 a ³ G-z ⁵ F°
4-4 (30)
3-3
5-4 | 5213.08 P
5199.68 A 4
5234.28 P | 3.27 4.63
3.26 4.63
2.26 4.61 | 3-4 a ³ D-z ⁵ D°
2-3 (55)
1-2 | | 3850.409 A 7
3926.497 A 10
3883.208 A 5
3943.48 P | 1.39 4.60
1.47 4.61
1.42 4.60
1.47 4.60 | 0-1
3-3
1-1
3-1 | 4470.39 P
4500.86 P
4385.45 P
4406.22 P | 1.80 4.56
1.79 4.53
1.80 4.61
1.79 4.59 | 4-3
3-2
4-5
3-4 | 5215.928 A 25
5240.97 P
5264.49 P
5257.51 P | 2.27 4.63
2.26 4.61
2.26 4.60
2.27 4.61 | 3-3
2-2
1-1
3-2 | | 3891.98 P
3534.14 A 2 | 1.43 4.59
1.47 4.96 | 1-0
2-3 a ³ P-z ³ F°
(12) | 4370.27 A 3 | 1.81 4.63 | 5-4 a ³ 6-z ⁵ D° (31) | 5271.26 P
5280.62 P | 2.26 4.60
2.26 4.59 | 2-1
1-0 | | 4389.13 P
4429.11 P
4462.76 P
4445.77 P
4478.03 P | 1.57 4.38
1.56 4.34
1.55 4.31
1.57 4.34
1.56 4.31 | 6-6 a ³ H-z ⁵ G°
5-5 (13)
4-4
6-5
5-4 | 4005.712 A 800
4023.388 A 600
4035.631 A 400
4039.574 A 20
*4051.06\$ A 20
3989.803 A 15
4008.17 A 20 | 1.81 4.89
1.80 4.86
1.79 4.84
1.81 4.86
1.80 4.84
1.80 4.89
1.79 4.86 | 5-5 a ³ G-z ³ G°
4-4 (32)
3-3
5-4
4-3
4-5
3-4 | 4528.51 A 300
4564.592 A 200
4600.19 A 150
m4577.13 P V
4605.352 A 15
4618.12 P | 2.27 4.99
2.26 4.96
2.26 4.94
2.27 4.96
2.26 4.94
2.37 4.94 | 3-4 a ³ D-z ³ F° 2-3 (56) 1-2 3-3 2-2 3-2 | | 4503.13 P
4372.88 P
4414.17 P | 1.55 4.29
1.56 4.38
1.55 4.34 | 4-3
5-6
4-5 | 3878.715 A 300
3899.140 A 200
3914.333 A 250 | 1.81 4.99
1.80 4.96 | 5-4 a ³ G-z ³ F°
4-3 (33) | 3531.836 A 90
3530.547 A 15
3530.45 A 10 | 2.27 5.77
2.26 5.76
2.26 5.75 | 3-2 a ³ D-z ³ P°
2-1 (57)
1-0 | | 4056.270 A 7
4075.66 A 3 | 1.57 4.61
1.56 4.59 | 6-5 a ³ H-z ⁵ F°
5-4 (14) | 3914.333 A 250
*3863.81\$ A 60
3884.847 A 50
3849.758 A 3 | 1.79 4.94
1.80 4.99
1.79 4.96
1.79 4.99 | 3-2
4-4
3-3
3-4 | 3514.422 A 20
3517.53 P
3511.42 A 3 | 2.26 5.77
2.26 5.76
2.26 5.77 | 2-3
1-1
1-2 | | 3715.476 A 1200
3732.760 A 800
3745.806 A 800
3703.832 A 7
*3722.16§ A 10 | | 6-5 a ³ H-z ³ G°
5-4 (15)
4-3
5-5
4-4 | 3033.821 A 300
3053.39 A 300
3067.104 A 200
3062.702 A 20
3076.016 A 25 | 1.81 5.88
1.80 5.84
1.79 5.81
1.81 5.84
1.80 5.81 | 5-6 a ³ G-z ³ H° 4-5 (34) 3-4 5-5 4-4 | 3477.614 A 40
3469.528 A 50
3476.252 A 20
3470.263 A 20
3466.59 A 30
3467.33 A 2 | 3.27 5.81
3.26 5.82
3.26 5.81
2.26 5.81
3.26 5.82
3.26 5.81 | 3-2 a ³ D-y ⁵ D°
2-1 (58)
1-0 2-2
1-1 1-2 | | 4737.59 A 1 | 1.67 4.27 | 2-2 b ³ F-z ⁵ G° | 3085.47 A 1 | 1.81 5.81 | 5-4 | 3333.608 A 2 | 2.26 5.96 | 1-0 a ³ D-z ¹ S° | | 4388.78 A 5
4333.03 A 4
4346.89 A 3 | 1.67 4.53
1.67 4.50 | (16)
4-3 b ³ F-z ⁵ Fe
3-2 (17)
3-1 | 4810.17 A 17
4331.55 A 6n
4349.97 A 6n | 2.03 4.59
2.04 4.89
2.03 4.86 | 4-3 b ³ G-z ³ D° (35)
5-5 b ³ G-z ³ G° 4-4 (36) | 3291.04 A 5
3300.905 A 6
3307.445 A 2 | 2.27 6.02
2.26 6.00
2.27 6.00 | (59)
3-4 a ³ D-y ³ G°
2-3 (60)
3-3 | | 4236.82 A 4
4254.41 A 15
4260.75 A 9 | 1.67 4.56 | 4-3 b ³ F-z ³ D°
3-2 (18)
3-1 | 4366.91 A 5n
4371.17 P
4382.33 P
4310.72 P | 2.02 4.84
2.04 4.86
2.03 4.84
2.03 4.89 | 3-3
5-4
4-3
4-5 | 3233.772 A 80
3233.546 A 40
3231.952 A 80
3239.833 A 8 | 2.27 6.08 | 3-4 a ³ D-y ³ F°
2-3 (61)
1-2
3-3 | | 4179.062 A 3 | 1.68 4.63 | 4-4 b ³ F-z ⁵ D° | 4334.77 P | 2.02 4.86 | 3-4 | 3234.504 A 10 | 2.26 6.07 | 2-3 | | 36 | | | | | | | R E V | 1 8 | E D M | ULT | PLE | T 1 | FABLE | | | | | | | |
--|--------------|-----------------|----------------------|----------------------|-------------------|--|-----------------------------------|-------------|------------------|----------------------|-------------------------------|-------------------|---|-----------------------------------|-------------|-----------------|----------------------|----------------------|-------------------|---| | Labo
I A | rato:
Ref | ry
Int | Low
Low | P
High | J | Multiplet (No) | Labo
I A | | ry | E
Low | P
High | J | Multiplet (No) | Labor
I A | | ry
Int | E
Low | P
High | J | Multiplet
(No) | | VII con | tinu | ed | | | | | V II con | tinu | ıeđ | | | | | V II cont | inue | ed. | | | | ••• | | 3202.711
3196.574 | A
A | 30
3 | 2.27
2.26 | 6.12
6.12 | 3–3
2–3 | a ³ D-z ¹ F°
(62) | 5928.86
5897.54
5951.45 | A
A
A | 100
50
4 | 2.51
2.48
2.49 | 4.59
4.57
4.56 | 3-3
1-3
0-1 | o ³ P-z ³ D°
(98) | 5916.364
5967.77 | A. | 15
6 | 2.55 | 4.63 | 2-2 | b ³ D-z ⁵ D ^e
(126) | | 3186.86 | A | 10 | 2.27 | 6.14 | 3-4 | $a^{3}D-z^{1}G^{\circ}$
(63)
$a^{3}D-z^{5}S^{\circ}$ | 5819.93 | A | 80 | 2.45 | | 2-3 | c ³ P-z ⁵ D° | 5914.28
•5047.308§ | A
A | 5
10 | 2.55
2.55 | 4.63
4.99 | 2-3
3-4 | b ³ D-z ³ F° | | 3186.10
3169.21 | A
A | 1
2 | 2.27 | 6.14
6.16 | 3-2
3-21 | (64)
R a ³ D-z ¹ D° | 3787.235
*3758.22§ | A
A | 150
40 | 2.51
2.48 | 5.77
5.76 | 3-3
1-1 | (99)
c ³ P_z ³ P°
(100) | 5106.233
5132.19
5157.28 | A
A
A | 5
2
21 | 2.55
2.53
2.55 | 4.96
4.94
4.94 | 3-3
1-3
3-3 | (127) | | 3160.781 | A
A | 15
15 | 2.26 | 6.16 | 1-2
3-2 | (65)
a ³ D-y ³ P° | 3794.366
3772.962
3751.222 | A
A
A | 50
80
150 | 2.51
2.48
2.48 | 5.76
5.75
5.77 | 3-1
1-0
1-3 | | 3826.968
3813.12 | A | 30
3 | 2.55
2.53 | 5.77
5.77 | | b ³ D-z ³ P°
(128) | | 3081.254
3086.210
3078.948 | A
A
A | 25
10
5 | 2.26
2.26
2.26 | 6.26
6.25
6.26 | 2-1
1-0
1-1 | (66) | 3767.720
3731.64 | Ä | 40 | 2.49
2.48 | 5.76 | 0-1 | c ³ P-z ⁵ P° | 3774.678
3773.80 | A | 15
5 | 2.55 | 5.81 | 2-2 | ь ³ р_у ⁵ р• | | 3054.24
3048.65 | A | 7n
4 | 2.27 | 6.31 | 3-3 | a ³ D-y ³ D° | 3724.984 | A | 2 | 2.51 | 5.82 | 2-3 | (101)
c3p_y5pe | 3761.20 | * | 1 | 2.55 | 5.82 | 3-1 | (129) | | 3075.474 | A
A | 2 | 2.26 | 6.31 | 2-3
1-8 | (67) | 3700.96
3709.335
3736.017 | A
A
A | 30
40
70 | 2.48
2.49
2.51 | 5.81
5.82
5.81 | 1-2
0-1
3-2 | (103) | 3604.375
3489.947 | A | 4
20 | 2.53
2.55 | 5.96
6.08 | 3-4 | b ³ D_z ¹ g°
(130)
b ³ D_y ³ F° | | 4968.50 | Ä | 1 | 2.36 | 4.84 | 4-3 | b ¹ G_z ³ G°
(68) | 3700.126
3735.158
3711.118 | A
A
A | 40
30
50 | 2.48
2.51
2.48 | 5.82
5.82
5.81 | 1-1
3-1
1-0 | | 3496.27
m3485.82
m3497.00 | P
P | A+
A+ | 2.55
2.53
2.55 | 6.08
6.07
6.08 | 2-3
1-2
3-3 | (131) | | 3547.07
3577.644 | A
A | 5
3 | 2.36
2.36 | 5.84
5.81 | 4-5
4-4 | b ¹ G-z ³ H°
(69) | 3549.030 | A | 3 | 2.48 | 5.96 | 1-0 | c ³ p_z ¹ g°
(103) | 3497.39
3498.12 | Ā | 4 | 2.55
2.55 | 6.07 | 3-2
3-2 | | | 3361.506
3392.659 | A
A | 60
50 | 2.36
2.36 | 6.03
6.00 | 4-5
4-3 | b ¹ G _y ³ G°
(70) | 3463.079
3434.024 | A | 4 | 2.51
2.48 | 6.08 | 2-3
1-2 | 03P_y3r°
(104) | 3453.78
3453.087 | A
A | 90 | 2.55
2.55 | 6.13
6.13 | 3-3
2-3 | b ³ D-z ¹ F° (132) | | 3315.176
3321.539 | A
A | 50
150 | 2.36
2.36 | 6.08
6.08 | 4-4
4-3 | b ¹ G-y ³ F°
(71) | 3464.17
3420.709 | A | .6
5 | 2.51
2.51 | 6.07 | 2-2
2-3 | c ³ P-z ¹ r° | 3435.38 | A | 7 | 2.55 | 6.14 | 3-4 | b ³ D-z ¹ G* | | 3282.534 | A | 150 | 2.36 | 6.12 | 4-3 | b ¹ G_z ¹ F° | 3401.740
3372.666 | A
A | 1 3 | 2.51
2.48 | 6.14
6.14 | 2-2
1-2 | (105)
c ³ p_z ⁵ g•
(106) | 3434.46
3433.767 | A | 1
3 | 2.55
2.55 | 6.14
6.14 | 3-2
2-2 | (133)
b ³ D-z ⁵ g•
(134) | | 3279.844
3265.893 | A
A | 300
100 | 2.36
2.36 | 6.12 | 4-5
4-4 | b ¹ G-z ¹ H°
(73)
b ¹ G-z ¹ G° | 3382.529
3353.776 | A | 30
30 | 3.51
3.48 | | 3-3 | c ³ P-z ¹ D° | 3414.879
*3414.192\$ | A
A | 3
10 | 2.55
2.55 | 6.16
6.16 | 3-2
3-2 | b ³ D-z ¹ D°
(135) | | 3025.68 | A | 1 | 2.36 | 6.44 | 4-5 | (74)
b ¹ G-y ³ H° | 3251.869 | A | 200 | 2.51 | 6.31 | 1-3
2-3 | (107)
c ³ p_y ³ p• | 3403.159
3281.755 | A
A | 3
10 | 2.53 | 6.16 | 1-2
3-3 | b ³ D-y ³ D° | | 3032.187 | A | | 2.36 | 6.43 | 4-4
 | (75) | 3257.893
3297.528
3285.022 | A
A
A | 100
20
50 | 2.48
2.49
2.51 | 6.27
6.23
6.27 | 1-3
0-1
3-3 | (108) | 3314.862
m3337.76
3315.53 | A
P
A | 50
γ+
5 | 2.55
2.53
2.55 | 6.27
6.23
6.27 | 2-2
1-1
3-2 | (138) | | 3621.203
3632.126
3627.713 | A
A
A | 150
15
60 | 2.36
2.37
2.36 | 5.77
5.76
5.76 | 2-2
1-1
3-1 | b ³ P-z ³ Pe
(76) | 3290.240
3317.912 | A
A | 50
20 | 2.48
2.51 | 6.23 | 1-1
3-1 | | 3348.372
3281.120
3304.474 | A
A | 40
40 | 2.55
2.55
2.53 | 6.23
6.31
6.27 | 2-1
2-3 | | | 3645.905
3625.608
3631.482 | A
A
A | 30
50 | 2.37
2.37 | 5.75
5.77 | 1-0
1-3 | | 3247.908
3261.80 | A
A | 4
5 | 3.51
3.48 | 6.26 | 2-3
1-1 | о ^З Р_у ^З Р°
(109) | 3277.71 | A | 30 | 2.55 | 6.31 | 1-2
3-3 | b ³ D-y ³ P* | | 3607.30 | A | 10 | 2.37 | 5.76 | 0-1 | _b 3p_z5pe | 3288.985
3221.380 | A | 7
2 | 2.51
2.48 | 6.26
6.31 | 3-1
1-3 | | 3318.907
3316.873
3277.082 | A
A
A | 20
20
10 | | 6.26
6.25
6.31 | 3-1
1-0
3-3 | (137) | | 3623.03
3574.340 | A
A | 1
60 | 2.36 | 5.77
5.81 | 0-1
3-3 | (77)
ъ ³ Р–у ⁵ р° | 3119.32
3115.16 | A | 4 2 | 2.51
2.48 | 6.4 <u>7</u>
6.44 | 2-3
1-1 | 0 ³ P_x ³ F°
(110)
0 ³ P_z ³ S° | 3308.480
3266.91 | A | 20
17 | 2.53
2.53 | 6.26 | 1-1
1-3 | | | 3577.857
3573.557
3588.13 | | 20
50
15 | 2.37
2.36
2.37 | 5.82
5.82
5.81 | 1-1
2-1
1-0 | (78) | 3083.208
3065.61 | A | 40 | 2.51 | 6.51 | 2-3 | (111)
03P_x3D° | 3120.726
3146.226 | Ā | 50
40 1 | 2.55 | | 3-4
2-3 | b ³ D-x ³ F°
(138) | | 3578.636
3577.220 | A
A | 15
10 | 2.37 | 5.81 | 1-3 | | 3081.01
3089.633 | A
A
A | 50
30
4 | 2.48
2.49
2.51 | 6.51
6.49
6.51 | 1-3
0-1
3-3 | (112) | 3151.319
3146.818
*3160.781 | A
A
A | 100
10
15 | 2.53
2.55
2.55 | | 1-2
3-3
2-2 | | | 3436.393 | A | а | 2.37 | 5.96 | | b ³ P-z ¹ s°
_(79) | 3074.66
3079.75 | A
A | 13
1 | 2.48
2.51 | 6.49
6.52 | 1-1
3-1 | o ³ P_z ¹ P° | 3110.07
3116.02 | A
A | 31
3 | 2.55
2.55 | 6.51
6.51 | 3-3
2-2 | b ³ D-x ³ D°
(139) | | 3394.92
3323.731 | A
A | 1
3 | 2.36
2.36 | 6.00 | 2-3
2-3 | b ³ P _{-y} ³ G°
(80)
b ³ P _{-y} ³ F° | 3062.178 | A | 3
15 | 2.49
2.51 | 6.52 | 0-1
3-3 | (113)
o ³ P-w ³ D°† | 3116.11
3106.829 | Ā | 3 | | 6.49
6.51 | 1-1 | (100) | | 3249.464 | A | 4 | | 6.16 | 2-2 | (81)
b ³ P-z ¹ D° | 2992.378 | Ã | 3 | 2.51 | 6.64 | 2-1
- | (114) | 3105.973 | A | 5 | | 6.52 | | b ³ D-z ¹ Pe
(140)
b ³ D-w ³ De | | 3128.686
3162.714 | A
A | 20
30 | 2.36 | 6.31
6.27 | 2-3
1-2 | (82)
b ³ P_y ³ D°
(83) | 5193.43
5227.70 | P
A | 2 0 | 2.51
2.50 | 4.89
4.86 | 6-5
5-4 | b ³ H-z ³ G°
(115) | 3001.754
3006.502
3008.508 | A | 30
20
15 | 2.55
2.55
2.53 | 6.66
6.65
6.64 | 3-3
3-2
1-1 | (141) | | 3192.699
3159.365
3193.200 | A
A
A | 15
20
20 | 2.37
2.36
2.37 | 6.23
6.27
6.23 | 0-1
2-2
1-1 | | 5263.99
5171.13
5217.36 | A
P
P | 15 | 2.50
2.50
2.50 | 4.84
4.89
4.86 | 4-3
5-5
4-4 | | 3007.035
2997.945 | A | 6 | 2.55
2.53 | 6.65
6.65 | 3-2
1-2 | | | 3189.76
3125.01 | A
A | 3
20 | 2.36
2.36 | 6.23 | 3-1
3-2 | _b 3p_y3pe | 3669.410
3700.337 | A | 300
200 | 3.51
3.50 | 5.88 | 6-6
5-5 | b3H-23He | 5202.94 | A . | 8 | 2.59 | 4.96 | 2-3 | a ¹ D-z ³ F° | | 3166.39
3163.024
3174.077 | A
A
A | 8
30
30 | 2.37
2.36 | 6.26
6.26 | 1-1
3-1 | (84) | 3728.335
3711.751 | A
A | 200
10 | 2.50
2.51 | 5.84
5.81
5.84 | 4-4
6-5 | (116) | 3881.04 | A | 8 | 2.59 | 5.77 | | (142)
a ¹ D-z ³ P°
(143) | | 3128.288
3165.89 | A
A | 10
30 | 2.37
2.37
2.37 | 6.25
6.31
6.26 | 1-0
1-3
0-1 | | 3733.607
3658.266
*3695.158 | A
A
A | 10
8 | 2.50
2.50
2.50 | 5.81
5.88
5.84 | 5-4
5-6
4-5 | | 3622.289
3541.341 | A
A | 10
50 | 2.59
2.59 | 6.00 | 2-3
2-3 | a ¹ D-y ³ G ^o
(144)
a ¹ D-y ³ F ^o | | 3024.981
3028.042 | A
A | 50
50 | 2.36
2.37 | 6.44
6.44 | 3-1
1-1 | b ³ P_z ³ S ^e
(85) | 3509.024
3513.877 | A
A | 40
15 | 3.51
2.50 | 6.03 | 6-5
5-4 | b ³ H-y ³ G° (117) | 3542.480
3497.031 | A | 4
200 | 2.59
2.59 | 6.07 | 2-3 | (145)
a ¹ D-z ¹ F° | | 3027.600
3005.813 | A
A | 15
30 | 2.37
2.36 | 6.44 | 0-1
2-3 | b ³ P-x ³ F° | 3527.867
3498.83
3509.20 | A
P
P | 10 | 2.50
2.50 | 6.00
6.03 | 4-3
5-5 | (227) | 3457.153 | A | 300 | 2.59 | 6.16 | | (146)
a ¹ D-z ¹ D ⁰
| | 3022.146
3019.09 | A
A | 4 3 | 2.37
2.36 | 6.45
6.45 | 1-3 | (86) | 3448.69 | A | 1 | 2.50
2.50 | 6.08 | 4-4
5-4 | ь ³ н-у ³ г• | 3359.50 | A | , 2 | 2.59 | 6.26 | | (147)
a ¹ D-y ³ P•
(148) | | 2972.263
2981.200 | A
A | 80
70 | 2.36
2.37 | 6.51
6.51 | 2-3
1-2 | b ³ P-x ³ D°
(87) | 3451.048
3420.15 | A | 12
2 | 2.50
2.51 | 6.08 | 4-3
6-5 | (118)
b ³ H-z ¹ H° | | A | 20 | 2.59
2.59 | 6.31
6.27 | 2-3
2-3 | a ¹ D-y ³ D°
(149) | | 2989.306
2978. 2 26
2989.74 | A
A
A | 15
20
10 | | 6.49
6.51
6.49 | 0-1
2-2
1-1 | | 3410.46
3406.06 | Ā | 7 | 2.50
2.50 | 6.12 | 5-5
4-5 | (119) | | A
A | 2 0
7 | | 6.47
6.45 | 3-3
3-3 | a ¹ D-x ³ F°
(150) | | 3370.40 |
A | | 2.37 | 6.03 | -
6-5 | a ⁱ I-y ³ G° | 3408.955 | A | 15 | 2.50 | 6.13 | | b ³ H- z¹F°
(130)
b ³ H- z¹G° | 3161.313 | A | 30 | 2.59 | 6.49 | | a ¹ D-x ³ D ^o
(151) | | 3288.324 | A | 30 | 2.37 | 6.12 | 6-5 | a ¹ I-z ¹ H° | 3391.01
3134.928 | A | 200 | 2.50
2.51 | | 4-4
6-6 | (131)
b ³ H-y ³ H• | 3141.486
3039.767 | A | 40
2 | 2.59
2.59 | 6.52
6.65 | | a ¹ D-z ¹ P°
(152)
a ¹ D-w ³ D° | | 6027.23 | A | 8 | 2.46 | 4.50 | 0-1 | (89)
a ¹ 5-z ⁵ F° | 3136.503
3139.733
3144.700 | Ā
A
A | 160
160
20 | 2.50
2.50
3.51 | 6. 44
6. 4 3 | 5-5
4-4
6-5 | (122) | 2963.249 | A | 9 | | 6.75 | | a ¹ D-w ³ D°
(153)
a ¹ D-x ³ P°
(154) | | 5862.80 | A | 15+p? | | 4.56 | 0-1 | (90)
a ¹ 8-z ³ p°
(91) | 3143.477
3126.79 | A
A | 15
2 | 2.50
2.50 | 6.43
6.45 | 5-4
5-6 | | 4038.545 | A - | 3 | 2.75 | 5.81 | | a ¹ P-y ⁵ D° | | 3731.983 | A | 20
20 | | 5.76 | 0-1 | a ¹ 8_z ³ p°
(92) | 3132.793
3033.445 | A
A | 3
300 | 2.50
2.51 | 6.58 | 4-5
6-7 | b3H-z3I° | *3847.323\$ | A | 100 | 2.75 | 5.96 | 1-0 | (155)
alp_zls* | | 3674.691
3270.115 | A
A | 30
10 | 2.46
2.46 | 5.82
6.23 | 0-1
0-1 | a ¹ g_y ⁵ D°
(93)
a ¹ S_y ³ D° | 3048.214
3063.247
3055.942 | A
A
A | 200
200
7 | 2.50
2.50
2.51 | 6.55
6.53 | 5-6
4-5
6-6 | (123) | | A
A | 8 8 | | 6.07 | | (156)
alp_y3pe
(157)
alp_z1pe | | 3057.08 | A | 2 | 2.46 | 6.49 | 0-1 | (94)
a ¹ 8-x ³ D°
(95) | 3066.80 | Â | 4 | 2.50 | 6.53 | 5-5
- | | 3618.924
3507.534 | A
A | 3 0 | | 6.16
6.27 | | (158)
a ¹ P-y ³ D° | | 3038.520 | A | 30 | 2.46 | 6.53 | 0-1 | a ¹ S-z ¹ p°
(96) | 6226.29 | A | 10n | 2.55 | 4.53 | 3 –2 | b ³ D-z ⁵ F° (134) | 3465.25 | A | 4 | 2.75 | 6.31 | | (159)
alp_y3pe
(160) | | 6031.07
6028.26 | A
A | 40
40 | 2.51
2.48 | 4.56
4.53 | 2-3
1-2 | c ³ P-z ⁵ F°
(97) | 6028.98
6086.93
6083.82 | A
A
A | 30
15n | 2.55
2.55 | 4.59
4.57 | 3-3
2-2 | (134)
b ³ D-2 ³ D ^e
(135) | | A | 10 | | 6.45 | | a1p_x3pe
(161) | | 6120.98 | A | 5 | | 4.50 | 0-1 | 1217 | 0000.00 | A. | 10n | 2.53 | 2.05 | 1-1 | | 3285.672 | Å | 3 | 2.75 | ช.51 | 1-2 | a ¹ P-x ³ D ^e | | Labora
I A I | atory
Ref | | E : | P
High | J | Multiplet
(No) | Labor
I A | ator;
Ref | | Low E | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | | E I | High | J | Multiplet
(No) | |--------------------------------|--------------|--------------|----------------------|----------------------|-------------------|--|-----------------------------------|--------------|--------------------|----------------------|----------------------|-------------------|---|----------------------------------|--------------|-------------------|----------------------|----------------------|-----------------------------|--| | V II cont | | | | | | (jace) | | inue | | | | | (4.07) | V II con | | | | | | (210) | | 3274.50 | A | 10 | 2.75 | 6.52 | 1-1 | a ¹ P-z ¹ P° | 6080.11 | A | 6 | 3.78 | 5.81 | 4-4 | d3F-z3H° | 3035.14 | A | 3N | 4.89 | 8.96 | 5-4 | z ³ G°-e ⁵ H | | 3081.30 | A | 10 | 2.75 | 6.75 | 1-1 | (163)
a ¹ p_x ³ p° | *5290.74 \$ | A | 6 | 3.79 | 6.12 | 2-3 | (206)
d3F_z1F°
(207) | 3038.00 | A | 2N? | 4.94 | 9.00 | 2-3 | (245)
z3F°-e5p
(246) | | 3926.32 | A - | 5 | 2.89 | 6.03 | -
5-5 | (164)
a ¹ H-y ³ G° | 5191.59 | A | 2 | 3.78 | 6,16 | 3–2 | d3F_z1D°
(208) | 5530.10 | A | 4 | 5.44 | 7.68 |
3-4 | c ³ D-w ³ F° | | 3945.27 | P | | 2.89 | 6.02 | 5-4 | (165) | 4883.415
4965.40 | A
A | 100
40 | 3.78
3.78 | 6.31 | 4-3
3-3 | (309)
₄₃ F- ³ 3D ₆ | 5562.02 | A | 4np? | 5.45 | 7.67 | 2-3 | (247)
35 350 | | 3815.38 | A . | 200 | 2.89 | 6.12 | 5-5 | a ¹ H-z ¹ H°
(166)
a ¹ H-z ¹ G° | 5048.91
4973.16 | A
A | 15
2 | 3.79
3.79 | 6.23
6.27 | 2-1
2-2 | | m4875.49
4842.50
4813.00 | P
A
A | V
2n
17 | 5.44
5.45
5.45 | 7.98
8.00
8.02 | 3-3
2-2
2-1 | c ³ D_v ³ D°
(248) | | *3796.48 § | A | 10
4 | 2.89 | 6.45 | 5-4
5-6 | (167)
a1H_y3H° | 4535.215
4596.37 | A
A | 3n
5n | 3.78
3.78 | 6.50
6.47 | 4-4
3-3 | d ³ F-x ³ F°
(310) | 3148.738 | A | 15 | 5.44 | 9.36 | 3-3 | c ³ D-t ³ D° | | 3484.38 | Ā | 2 | 2.89 | 6.43 | 5-4 | (168) | 4634.21
4590.505 | Ä
A | 3n
7n | 3.79
3.78 | 6.45
6.47 | 2-2
4-3 | | 3163.76
3172.230 | A | 10
7 | 5.46 | 9.35
9.35 | 2-2 | (249) | | 3415.91 | A | 2 | 2.89 | 6.50
6.55 | 5-4 | a ¹ H-x ³ F°
(169)
a ¹ H-z ³ I° | 4627.48
4517.35 | A | 1
3n | 3.78
3.79 | 6.45
6.52 | 3–2
3–1 | d ³ F-z ¹ P° | 3154.80
3071.77 | A
A | 1
2n | 5.45
5.44 | 9.36 | 2-3
3-4 | c ³ D-u ³ F° | | 3367.666
3250.775 | A | 300 | 2.89 | 6.68 | 5-6
5-4 | (170)
alH-yigo | 4512.72 | A | 60n | 3.78 | 6.51 | 4-3 | (211)
d ³ F-x ³ D° | 0012111 | • | | | | | (250) | | 3142.183 | A | 30 | 2.89 | 6.82 | 55 | (171)
a ¹ H-x ³ G° | 4532.188
4558.46 | A
A | 40n
20 | 3.78
3.79 | 6.51
6.49 | 3-2 | (212) | 5016.60 | A . | 4 | 5.51 | 7.97 | 2-2 | (251) | | 3122.887 | A | 100 | 2.89 | 6.84 | 5-6 | (173)
a ¹ H-z ¹ I°
(173) | 4518.38
4538.64 | A
A
P | 3
3n | 3.78
3.79
3.79 | 6.51
6.51
6.51 | 3–3
2–2
2–3 | | 4618.52 | A | 3 | 5.51 | 8.19 | 2 – 3
- | c ¹ D-x ¹ F°
(252) | | 3113.560 | A | 100 | 2.89 | 6.85 | 5-5 | a ¹ H-y ¹ H° (174) | 4524.81
4304.15 | A | 3 | 3.78 | 6.65 | 3-2 | d3F-w3De | Strongest | Uncl | assified | l Lines | of V I | <u> </u> | | | 4162.073 | A - | 2 | 3.11 | 6.08 | -
2-3 | b ¹ D-y ³ F° | 4080.44 | A | 2 | 3.78 | 6.81 | 3-3 | (213)
d3F-y1F0 | 5791.47 | Ā | 15 | | | | | | 4163.655 | A . | ,3 | 3.11 | 6.07 | 2-2 | (175)
b ¹ D-z ¹ F° | 4085.67 | A . | 10n
100 | 3.79 | 6.81 | 2-3
4-5 | (214)
d ³ F-x ³ G° | 3611.58
3301.66
3206.16 | A
A
A | 10n
10
15N1 | | | | | | *4101.00 \$
4046.269 | A | 8
50 | 3.11 | | 2-3
2-2 | (176) | 4065.070
4053.59
*4051.34 § | A
A
A | 60 1
100 | 3.78
3.79 | 6.83
6.83 | 3-4
2-3 | (215) | 3201.58
3195.50 | Ā | 15N1
15N1 | | | | | | 3907.52 | A | 3 | 3.11 | | 3-3 | b ¹ D-z ¹ D°
(177)
b ¹ D-y ³ D°
(178) | 4049.03 | Ā | 3 | 3.78 | 6.83 | 4-4 | .3 1 | | | | | | | | | •3 6 95.158 | A | 8 | 3.11 | 6.45 | 2-2 | b ¹ D_x ³ F° (179) | 4017.29
3167.420 | A | 15n
40 | 3.78
3.78 | 6.85
7.68 | 4-5
4-4 | d ³ F-y ¹ H°
(216)
d ³ F-w ³ F° | <u>Cr I</u> I | P 6.7 | '4 A na: | 1 A T. | ist B | Ward | h 1941 | | 3634.13
3646.848 | A
A | 1 7 | 3.11
3.11 | 6.51
6.49 | 3-3
3-1 | b ¹ D-x ³ D°
(180) | 3174.531
3182.59 | A
A
A | 60
20 | 3.78
3.79 | 7.67
7.66 | 3-3
2-2 | (217) | 4254.346/ | | 1000R | 0.00 | 2.90 | 3-4 | a7S-z7pe | | 3620.496 | A | 30 | 3.11 | 6.52 | 3-1 | B ¹ D-z ¹ P° | 3171.739
3179.416 | A
A | 9
8 | 3.78
3.78 | 7.67
7.66 | 4-3
3-3 | | 4274.803
4289.721 | C | 800R
700R | 0.00
0.00 | 2.89
2.88 | 3-3
3- 2 | (1) | | 3478.961 | A | 6 | 3.11 | 6.66 | 2–3 | (181)
b ¹ D-w ³ D° | 3170.208
3177.696 | A
A | 8
6 | 3.78
3.79 | 7.68
7.67 | 3-4
2-3 | | 3732.032
3730.807 | C | 50
40 | 0.00 | 3.31
3.31 | 3-3
3-2 | a ⁷ S-z ⁵ P° (2) | | 3385.790 | A | 3 | 3.11 | 6.75 | 3-1 | 182)
b1D-x3p°
(183) | 2973.975
2985.184 | A
A | 40
60n | 3.78
3.78 | 7.93
7.92 | 4-5
3-4 | d ³ F-w ³ G°†
(218) | 3615.645 | à | 30 | 0.00 | 3.41 | 3-4 | a7s-z7D° | | 3337.845 | A | 300 | 3.11 | | 2–3 | (184) | 2994.540 | A | 60 | 3.79 | 7.91 | 2–3
– | | 3635.281 | C | 10
1000R | 0.00 | 3.39 | 3-3 | (3)
a ⁷ S-y ⁷ P° | | 3226.924 | A . | 40 | 3.11 | | 2-1
2-2 | b ¹ D-y ¹ P°
(185)
b ¹ D-y ¹ D° | 6801.16 | A | 5 | 3.96 | 5.77 | 2-2 | d ³ P-z ³ P°
(219) | 3578.687
3593.488
3605.333 | 000 | 900R
750R | 0.00
0.00 | 3.45
3.43
3.42 | 3-4
3-3
3-2 | (4) | | 3109.375 | A . | 30 | 3.11 | 7.08 | -a-a | (186) | 5249.22 | A | 17 | 3.96 | 6.31 | 2–3 | (330)
q3b-y3De | 3351.966 | С | 13 | 0.00 | 3.68 | 3-3 | a75-y5pe | | 4398.52 | A | 4n | 3.31 | | 3–3 | alf_zlf°
(187) | 4963.75 | A | 3 | 3.96 | 6.44 | 3-1 | d ³ P_z ³ S°
(221)
d ³ P_x ³ F° | 3379.171 | C | 15 | 0.00 | 3.65 | 3 -2
- | (5) | | 4368.67
3960.37 | P
A | 1 | 3.31 | 6.14 | 3-4
3-4 | a ¹ F_z ¹ G°
(188)
a ¹ F_y ³ H° | 4912.38
4823.396 | A | 2
6 | 3.96
3.96 | 6.47
6.51 | 2-3
2-3 | (222)
d3p-x3pe | 6330.101
6362.874 | C | 40
30 | 0.94
0.94 | 2.89
2.88 | 2-3
2-2 | a ⁵ S-z ⁷ P°
(6) | | 3690.70 | A | 1 | 3.31 | 6.66 | 3-3 | (189)
alr_w3D° | 4839.08 | Ā | 3 | 3.96 | 6.51 | 3-3 | (223) | 5208.436 | C | 500R | 0.94 | 3.31 | 2-3 | a ⁵ S-z ⁵ p° | | 3661.383 | A |
200 | 3.31 | 6.68 | 3-4 | (190)
a ¹ F_y ¹ G° | 4408.92
4440.41
4483.50 | A | 40N?
5n | 3.96
3.99
4.00 | 6.75
6.77
6.75 | 2-2
1-0
0-1 | d ³ P-x ³ P°
(224) | 5206.039
5204.518 | C | 300R
200R | 0.94
0.94 | 3.31
3.31 | 2-2
2-1 | (7) | | 3532.285 | A | 30 | 3.31 | 6.81 | 3–3 | 3-0-1 | 4232.065 | A | 80n | 3.96 | 6.87 | 3-1 | d ³ P-y ³ s• | 5021.903
5051.900 | C | 25
40 | 0.94 | 3.39
3.38 | 2-3
2-2 | a ⁵ S-z ⁷ D°
(8) | | 3512.13
3506.57 | A
A | 3
7 | 3.31 | 6.83
6.83 | 3-4
3-3 | a ¹ F_x ³ G°
(193) | 4278.893
4301.130 | A
A | 60n
4 0n | 3.99
4.00 | 6.87
6.87 | 1-1
0-1 | (225) | 5072.920
4942.495 | c | 60
200 | 0.94 | 3.37
3.43 | 2-1
2-3 | a ⁵ S-y ⁷ P° | | 3277.448 | A | 15 | 3.31 | 7.08 | 3–2 | a ¹ F-y ¹ D°
(194) | *4143.90 | A | 6 | 3.96 | 6.93 | 2-1 | d ³ P-y ¹ P°
(226) | 4964.928 | č | 100 | | 3.42 | 2-2 | (9) | | *5275.65 | A - | 10 | 3.74 | 6.08 | 4-4 | o ³ F-y ³ F° | *3991.965 | A | 3 | 3.99 | 7.08 | 1-2 | d ³ P-y ¹ D°
(227) | 4496.862
4545.956 | C | 100
50 | 0.94 | 3.68
3.65 | 2-3
2-2 | a ⁵ 5-y ⁵ P°
(10) | | 5288.31
5280.00 | A
A | 5
31 | 3.74
3.74 | 6.08
6.07 | 3-3
2-2 | (195) | 3070.12
3075.58 | A | 25 1
5 | 3.96
3.99
4.00 | 7.98
8.00
8.03 | 2-3
1-2
0-1 | (338)
d3P-A3De | 4580.056
3833.49 | C
B | 40
4 | 0.94 | 3.63
4.16 | 2 -1
2 - 3 | a5s-z5D° | | 5151.87 | A | 3 | 3.74 | 6.14 | 4-4 | c ³ F_z ¹ G°
(196) | 3075.043
3051.308 | A | 3
3 | 3.96 | 8.00 | 3-3 | | 3852.58
3870.267 | B | 15
25n | 0.94 | | 2-37
2-1 | (11) | | 4813.952
4884.06 | A
A | 50
50 | 3.74
3.74 | 6.27 | 4-3
3-3 | (196)
o ³ F-y ³ D°
(197) | 6672.84 | A | 3n | 4.23 | 6.08 | -
3-3 | b ¹ F-y ³ F°
(229) | 3758.72 | В | 4 | 0.94 | 4.22 | 2-2 | a ⁵ 8-z ³ P° | | 4947.58
4811.14
4874.805 | A
A
A | 40
6
4 | 3.74
3.74
3.74 | 6.23
6.31
6.27 | 2-1
3-3
2-2 | | 6517.27 | A | 15n | 4.23 | 6.13 | 3–3 | blr_z1re
(230) | 3192.12
3210.62 | B
B | 5
2 | 0.94
0.94 | 4.80
4.78 | 2-3
2-2 | (12)
a ⁵ 8-z ³ D°
(13) | | 4475.24 | Ā | 1 | 3.74 | | 4-4 | | 6380.11 | A | 40n | | 6.16 | 3-2 | b ¹ F-z ¹ D°
(231) | 2988.549 | σ | 25r | 0.94 | 5.07 | 2-3 | a5s_x5p° | | 4529.08
4556.765 | A | 51
4 | 3.74
3.74 | 6.47
6.45 | 4-3
3-2 | (198) | 5019.855 | A | 100n | 4.23 | 6.68
7.08 | 3-4
3-2 | b ¹ F_y ¹ G°
(232)
b ¹ F-y ¹ D° | 2994.069
2998.787 | C | 18
20 | | 5.06
5.05 | 2-2
2-1 | (14) | | 4453.35
4464.32 | A
A | 30n
40n | 3.74
3.74 | 6.51
6.51 | 4-3
3-2 | c ³ F-x ³ D°
(199) | 4325.22
3343.312 | A
A | 9n
2 | 4.23 | 7.92 | 3-4 | (233) | 2984.82
2995.10 | B
B | 8
25 | 0.94 | 5.07
5.06 | 2-3
2-2 | a ⁵ S-y ⁵ F°
(15) | | 4475.70
4456.53 | Ä | 30n
3n | | 6.49 | 3-1
3-3 | ,, | 3351.53 | A. | 1 | 4.23 | 7.91 | 3–3 | (234) | 2500 00 | _ | | 4.07 | | - | a ⁵ D-z ⁷ P° | | *4234.55 \$ | Ā | 40n | 3.74
3.74 | 6.66
6.65 | 4-3
3-3 | c ³ F_w ³ D°
(200) | 3293.146
3167.49 | A
A | 50
30 | 4.23 | 7.97
8.12 | 3-2
3-4 | b ¹ F-x ¹ D°
(235)
b1F-x1G° | 6580.96
6537.921
6501.212 | B
D
D | 8
30
15 | 1.00 | 2.90
2.89
2.88 | 4-4
3-3
2-2 | (16) | | 4242.894
4257.02 | A | 30n
15n | 3.74 | | 3-1
2-1 | • | 3116.78 | A | 40 | 4.23 | 8.19 | 3-3 | b1F_x1G°
(236)
b1F_x1F° | 6630.015
6572.900 | 200 | 25
15 | | 2.89 | 4-3
3-2 | | | 4027.30
4019.05 | A
A | 1
7n | 3.74
3.74 | 6.81
6.81 | 4-3
2-3 | o ³ F-y ¹ F°
(201) | | | | | | | (237) | 5798.46 | В | 25 | | 3.15 | 4-5 | a ⁵ D-z ⁷ F° | | 4016.82
3999.195 | A | 20n
30n | 3.74
3.74 | | 4-5
3-4 | °3 ^{k−x} 3 [©] • | 5642.01
5341.22 | A
A | 60n
2 | 4.50 | 6.68
6.81 | 4-4
4-3 | c ¹ G_y ¹ G°
(238)
c ¹ G_v ¹ F° | 5790.59
*5785.86 | P
F | (5a?) | .0.98 | 3.13
3.11
3.10 | 3-4
3-3
1-2 | (17) | | 3985.783
4001.17 | A
A | 30n
30 | 3.74 | | 2-3
4-4 | (202) | 5322.81 | A | 5 | 4.50 | 6.82 | 4-5 | c1G_y1F°
(239)
c1G_x3G° | 5409.791 | C | 500 | 1.03 | 3.31 | 4-3 | a ⁵ D_z ⁵ P° | | *3991.965 | A | 3 | 3.74 | 6.83 | 3–3 | o ³ F-y ¹ H° | 5241.19 | A | 100n | 4.50 | 6.85 | 4-5 | (240)
c(341) | 5345.807
5296.686
5348.319 | 0.00 | 500
100
350 | 0.98 | 3.31
3.31
3.31 | 3-2
2-1
3-3 | (18) | | 3970.15
3 69 7.72 | A | 5
1 | 3.74
3.74 | 6.85
7.08 | 4-5
3-2 | (203) | 3608.32 | A | 1 | 4.50 | 7.92 | 4-4 | o¹G_₩ ³ G°
(242) | 5298.269
5264.152 | Ċ | 100
200 | 0.98
0.96 | 3.31
3.31 | 2-2
1-1 | | | 3138.05 | A | 20 | 3.74 | 7.68 | 4-4 | (204)
c3F_w3F° | 3404.43 | A | 801 | 4.50 | 8.12 | 4-4 | c ¹ G_x ¹ G°
(243) | 5300.749
5265.722 | 200 | 75
100 | 0.96 | 3.31
3.31 | 2-3
1-2
0-1 | | | 3141.07 | | 8 | 3.74 | 7.67 | 3 – 3
– | (205) | 3345.899 | A | 70 | 4.50 | 8.19 | 4 -3
- | olG-xlF°
(344) | 5247.564 | C | 150 | 0.96 | 3.31 | V-1 | REVISED M | ULTIPLE | TT | ABLE | | | | | | |---|--|--|--|---|---|---|---|---|---|---|--| | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory I A Ref Int | E P
Low High | J | Multiplet (No) | Laboratory
I A Ref | | E P
Low High | J | Multiplet (No) | | I continued | | | Cr I continued | | | | <u>Cr I</u> continued | | | | | | 23.121 C 30
12.490 C 25
07.70 B 7
68.63 B 8
51.83 B 12
38.71 B 10 | 1.00 3.41 3
0.98 3.39 2
1.03 3.41 4
1.00 3.39 3 | -5 a ⁵ D-z ⁷ D°†
-4 (19)
-3
-4
-3 | *9394.17 A 30
*9447.00 A 50
9571.76 A 25
9667.30 A 35
*9394.17 A 30
9444.36 A 5 | 2.53 3.86
2.53 3.84
2.53 3.82
2.53 3.81
2.53 3.86
2.53 3.84 | 5-5
4-4
3-3
2-2
4-5
3-4 | a ⁵ G-z ⁵ ye
cont | 3777.32 B
3789.49 B
*3777.93 B
3796.99 B | 5
2
3
5 | 2.53 5.80
2.53 5.79
(2.53 5.80
2.53 5.80
2.53 5.78 | 5-4
5-5
4-5
2-3 | a ⁵ G-z ³ G° (41) | | 83.41 B 10
93.41 B 7
68.290 C 35
48.752 C 25
23.465 C 35 | 1.00 3.38 3
1.03 3.45 4
1.00 3.43 3
0.98 3.42 3
1.03 3.43 4 | -2
-4 a ⁵ D-y ⁷ P°
-3 (30)
-2
-3 | 9568.58 A 4 4872.02 B 18 4885.776 C 75 4789.354 D 75 | 3.53 3.82
3.53 5.07
3.53 5.06
3.53 5.11 | 2-3
4-3
3-2
6-5 | a ⁵ G-x ⁵ P° † (30) a ⁵ G-y ⁵ P° (31) | *3767.431 C
*3768.08 B
3769.00 B
*3768.08 B
3768.62 B | 13
18
7
18 | 2.53 5.81
2.53 5.81
2.53 5.81
(2.53 5.81
(2.53 5.81
2.53 5.81 | 4-3
5-5
4-4
3-3 | م5 _{4_y} 3 ₆ ه
(43) | | 91.890 C 30
38.897 P
25.54 B 10
19.20 B 30
46.174 C 100
52.158 C 100
52.158 C 75
500.752 C 75 | 1.00 3.45 3
0.98 3.43 2
0.96 3.42 1
1.03 3.68 4
1.00 3.65 3
0.98 3.63 3
1.00 3.68 3 | -3
-3
-3
-3
-3
-3 a ⁵ D-y ⁵ P°
-3 (31)
-1 | *4889.376 C 100d?
4861.842 C 75
4888.530 C 40
4903.239 C 70
*4790.337 C 20
*4829.376 C 100d?
4861.205 C 35
4887.73 B 25
*4790.337 C 20 | 3.53 5.09
3.53 5.07
3.53 5.05
3.53 5.05
3.53 5.09
3.53 5.09
3.53 5.09
3.53 5.06
3.53 5.06 | 5-4
4-3
3-3
3-1
5-5
4-4
3-3
3-3
4-5 | (31) | *3768.08 B 3743.884 C *3743.578 C *3748.998 C 3768.240 C 3768.240 C 3742.968 C *3748.998 C | 50
45
50
50
50
35
18
50 | 2.53 5.81
2.53 5.83
2.53 5.83
2.53 5.83
2.53 5.83
2.53 5.83
2.53 5.83
2.53 5.83 | 4-5
6-6
5-5
4-4
3-3
3-8
6-5
5-4 | a ⁵ G-x ⁵ G°
(43) | | 16.137 C 75
26.188 C 65
65.512 C 50
91.394 C 60
13.373 C 60 | 0.96 3.63 1
0.98 3.68 2
0.96 3.65 1
0.96 3.63 0 | -8
-1
-3
-3
-1
-5 • ⁵ n-• ⁵ r• | 4838.66 B 8
4860.37 B 7
4571.676 C 40
4601.021 C 30
4621.893 C 45*
4637.182 C 40 | 2.53 5.09
2.53 5.07
2.53 5.23
2.53 5.28
2.53 5.30
2.53 5.19 | 3-4
2-3
6-7
5-6
4-5
3-4 | a ⁵ G-z ⁵ H°
(32) | 3758.044 C
3768.734 C
3744.490 C
*3743.578 C
3748.614 C
3757.174 C | 15
15
18
45
12
18 | 2.53 5.83
2.53 5.81
2.53 5.83
2.53 5.83
2.53 5.83
2.53 5.83 | 4-3
3-2
5-6
4-5
3-4
2-3 | | | 44.507 C 100
39.450 C 75
37.566 C 75
39.718 C 60
84.977 C 75
71.279 C 75 | 0.98 3.83 2
0.96 3.81 1
0.96 3.80 0
1.03 3.84 4
1.00 3.83 3 | -5 a ⁵ D-z ⁵ F°
-4 (33)
-3 -3
-1
-4 | 4648.126 C 25
4600.104 C 40
4621.963 C 45
*4637.772 C 40
4648.868 C 35
4621.00 B 4 | 2.53 5.19
2.53 5.22
2.53 5.20
2.53 5.19
2.53 5.19
2.53 5.20 | 2-3
6-6
5-5
4-4
3-3
6-5 | | 3685.548 C
*3686.803 C
3687.353
C
*3686.18 B
*3686.803 C
*3686.18 B | 50w
45w
50w
5w
45w
5w | 2.53 5.88
2.53 5.88
2.53 5.88
2.53 5.88
2.53 5.88
2.53 5.88 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ⁵ G _{-v} 5 _F - (44) | | 59.631 C 75
51.051 C 75
13.250 C 40
91.753 C 40
73.254 C 35 | 0.96 3.80 1
1.03 3.83 4
1.00 3.81 3
0.98 3.80 3 | -2
-1
-3
-3
-2
-1
-4 a ⁵ D-z ⁵ D°
-3 (23) | *4637.772 C 40
4649.461 C 45
4526.466 C 75
4530.755 D 100*
*4535.731 C 60
4540.502 C 50 | 3.53 5.19
3.53 5.26
3.53 5.26
3.53 5.25
3.53 5.25 | 5-4
4-3
6-6
5-5
4-4
3-3 | a ⁵ G_z ⁵ G°
(33) | 3679.070 C
3688.11 B
*3694.12 B
3687.545 C
*3694.12 B
3693.56 B | 8
7
4
30
4
3 | 8.53 5.89
2.53 5.88
3.53 5.87
3.53 5.88
3.53 5.87
2.53 5.87 | 6-7
5-6
4-5
6-6
5-5
6-5 | a ⁵ G-2 ³ I°
(45) | | 08.755 C 100 02.915 C 50 03.164 C 25 41.490 C 60 21.022 C 50 16.243 C 25 86.789 C 50 85.218 C 40 | 0.98 4.14 2
0.96 4.13 1
1.03 4.16 4
1.00 4.14 3
0.96 4.12 1
1.00 4.17 3
0.96 4.12 1
0.96 4.14 1 | -3
-3
-3
-1
-1
-0
-4
-3
-3 | 4544.619 C 50
4529.851 C 25
*4535.721 C 60
4541.071 C 30
4545.335 C 25
*4527.339 C 40
4530.688 D 100*
4535.146 C 35
4539.788 C 30 | 2.53 5.25
2.53 5.25
2.53 5.25
2.53 5.25
2.53 5.26
2.53 5.26
2.53 5.26
2.53 5.25
2.53 5.25 | 2-3
6-5
5-4
4-3
3-2
5-6
4-5
3-4
2-3 | | *3656.261 C
3663.206 C
3666.642 C
3668.029 C
*3656.261 C
3668.19 B
3665.19 B
3665.39 P | 50
40
35
15
50
15
8 | 2.53 5.91
2.53 5.90
2.53 5.90
2.53 5.90
2.53 5.90
2.53 5.90
2.53 5.90
2.53 5.91
2.53 5.90 | 5-4
4-3
3-3
3-1
4-4
3-3
3-4
3-4 | а ⁵ дү ⁵ р°
(46) | | 94.035 C 40 31.032 C 12 49.534 C 40 52.218 C 30 06.55 B 5 89.723 C 15 23.522 C 12 | 0.96 4.13 0 1.00 4.22 3 0.98 4.18 2 0.96 4.17 1 0.98 4.22 3 0.96 4.18 1 0.96 4.23 1 | -1 -3 a ⁵ D-z ³ P° -1 (34) -0 -2 -1 -3 -1 | m4466.13 P Cr
*4518.63 B 6
4561.30 B 3
4186.531 C 30
*4153.816 C 35
*4163.635 D 30
4191.371 C 35
4303.590 C 18
4163.067 C 9 | 3.53 5.30
3.53 5.26
3.53 5.26
3.53 5.50
3.53 5.50
3.53 5.48
3.53 5.47
3.53 5.50 | 3-2
6-6
5-5
4-4
3-3 | a ⁵ G_x ⁵ D° † (34) a ⁵ G_y ⁵ G° (35) | | 100
50
50
50
45
20
50
15 | 2.53 5.92
2.53 5.93
2.53 5.92
2.53 5.92
2.53 5.92
2.53 5.93
2.53 5.93
2.53 5.92
2.53 5.92 | 6-5
5-4
4-3
3-2
3-1
5-5
4-4
3-3
2-2 | a ⁵ G-u ⁵ p*
(47) | | 86.634 C 7
63.25 P
59.60 B 1
44.115 C 7
45.485 C 10
47.274 C 4
26.55 B 4
33.234 C 7 | 1.00 4.78 3
0.98 4.76 2
1.00 4.80 3
0.98 4.78 2
0.96 4.76 1
0.98 4.80 3
0.96 4.78 1 | -3 a ⁵ D-z ³ D°
-3 (35)
-1
-3
-3
-1
-3 | *4163.625 D 20
4191.750 C 10
4204.19 B 8
4127.302 C 7
*4153.816 C 25
4163.16 P
4190.66 B 4 | 2.53 5.50
2.53 5.48
2.53 5.52
2.53 5.50
2.53 5.50
2.53 5.50
2.53 5.48 | 6-5
5-4
4-3
3-2
5-6
4-5
3-4
2-3 | | *3640.39 B
3636.21 B
3641.01 B
3619.460 C
3646.161 C
*3665.980 C
3679.819 C | 15
30
2
3+g?
10
13
13 | 2.53 5.92
2.53 5.93
2.53 5.92 | 4-5
3-4
2-3
6-7
5-6
4-5
3-4 | a ⁵ G-x ⁵ H°
(48) | | 40.951 C 6 53.880 C 50r 39.780 C 7 39.164 C 18 34.190 C 25 34.350 C 40r 18.496 C 10r | 0.96 4.76 0.
1.03 5.07 4.
1.00 5.06 3.
0.98 5.05 3.
1.00 5.07 3.
0.98 5.06 3. | -3 a ⁵ D-x ⁵ P°
-3 (26)
-1 -3
-3 -3 | 4033.263 C 6
*4037.284 C 10
4042.246 C 8
4046.760 C 6
4050.02 B 4
*4033.95 B 3
*4037.284 C 10
4041.79 B 6 | a.53 5.59
a.53 5.59
a.53 5.58
a.53 5.58
a.53 5.59
a.53 5.59
a.53 5.59 | 5-4
4-3
3-2
2-1
5-5
4-4
3-3 | | 3688.457 C
3645.59 B
*3665.980 C
*3680.19 B
3665.43 B
*3680.19 B | 10
5
12
7
4
7
8 | 3.53 5.88
3.53 5.92
3.53 5.90
3.53 5.89
3.53 5.89
3.53 5.89
3.53 5.88 | 3-3
6-6
5-5
4-4
6-5
5-4
4-3 | | | 18.821 C 10r
13.713 C 20r
13.030 C 15
21.558 C 50r
17.569 C 35r
14.915 C 20r
14.760 C 18r | 0.98 5.07 2-
0.96 5.06 1-
0.96 5.05 0-
1.03 5.11 4-
1.00 5.09 3-
0.98 5.07 3- | -3
-2
-1
-5 a ⁵ D-y ⁵ F°
-4 (27) | 4046.19 B 3
*4033.95 B 3
4036.80 B 1
4027.103 C 20
*4026.166 C 18
4025.012 C 15
*4026.166 C 18 | 3.53 5.58
3.53 5.59
3.53 5.60
3.53 5.60
3.53 5.60
3.53 5.60 | 3-2
4-5
3-4
5-6
4-5
3-4
5-5 | a ⁵ G-z ³ H°
(37) | *3632.839 C
m3805.41 P
3609.479 C
3610.052 C
*3633.839 C
3605.05 P
3609.04 B
3632.46 B
*3604.54 B | 40
Cr
18
10
40 | 2.53 5.95
2.53 5.95
2.53 5.95
2.53 5.95
3.53 5.96
3.53 5.96
3.53 5.95
2.53 5.93 | 4-3
3-3
3-1
4-4
3-3
2-2
3-4 | a ⁵ G-u' 5p• (49) | | 15.194 C 18r
37.044 C 15
30.245 C 25r
35.40 P
30.673 C 8
49.883 C 3
40.846 C 10r
31.353 C 7 | 0.98 5.06 1.
0.96 5.05 0.
1.03 5.09 4.
1.00 5.07 3.
0.98 5.06 1.
1.03 5.07 4.
1.00 5.06 3.
0.98 5.05 3. | -3
-1
-3
-3
-1 | *4025.44 B 5 3963.690 C 100 3969.748 C 70 *3976.665 C 100 3983.907 C 100 3991.123 C 80 *3969.061 C 18 | (3.53 5.60
(3.53 5.65
2.53 5.64
2.53 5.64
2.53 5.63
2.53 5.63 | | a ⁵ G-y ⁵ H°
(38) | *3604.54 B 3536.89 B *3565.55 B *3537.25 B *3565.55 B *3565.15 B | 1
2
4d?
3 | a.53 5.96
a.53 6.02
a.53 5.99
a.53 6.02
a.53 5.99
a.53 6.03
a.53 5.99 | 3-3
6-5?
5-4
5-5
4-4
4-5
3-4 | a ⁵ G-x ³ G*
(50) | | 86.473 C 30r
85.995 C 35r
85.849 C 8r
86.137 C 3
05.057 C 25r
00.890 C 25r
96.580 C 15r
91.886 C 15
97.642 C 15 | 0.98 5.10 2
0.96 5.09 1 | -2
-1
-3
-3
-1 | *3969.061 C 18
*3976.665 C 100
*3984.338 C 25
3991.673 C 25
3976.01 B 5
*3984.338 C 25
3992.11 B 4 | a.53 5.63
a.53 5.63
a.53 5.64
a.53 5.64
a.53 5.63
a.53 5.63
a.53 5.63
a.53 5.63
a.53 5.73 | 6-5
5-4
4-3 | а ⁵ G-w ⁵ D°
(39) | 3445.10 B *3455.603 C 3465.57 B *3445.618 C *3455.602 C 3465.245 D *3445.618 C 3455.281 C | 7
35
5
40
35
15
40 | 2.53 6.12
2.53 6.11 | 5-4
4-3
5-5
4-4
3-3
4-5
3-4 | a ⁵ G_₩ ³ G•
(51) | | 71.112 C 30
75.483 C 30
80.791 C 35 | 0.98 5.13 2
0.96 5.11 1
0.96 5.10 0 | -3
-2
-1 | 3817.844 C 10
*3816.173 C 30
3830.874 C 7
3832.10 B 5 | 2.53 5.77
2.53 5.77
2.53 5.76
2.53 5.76 | 6-5
5-4
4-3
3-2 | (39)
a ⁵ G_w ⁵ pe
(40) | 3433.598 C
*3436.187 C
*3441.439 C
3447.430 C | 50
50
35
30 | 3.53 6.09
3.53 6.13
3.53 6.13
2.53 6.13
3.53 6.11 | 5-5
4-4
3-3 | a ⁵ G⊷w ⁵ G●
(52) | | 90.44 A 50
47.00 A 50
74.25 A 50
70.48 A 50
34.52 A 50 | 2.53 3.82 4
2.53 3.81 3 | -5 a ⁵ G-r ⁵ r°
-4 (39)
-3
-3
-1 | *3818.481 C 25
*3818.173 C 20
3821.582 C 8
*3818.481 C 25
3819.97 B 5 | | 5-5
4-4
2-3
4-5
3-3 | | 3453.328 C
3435.679 C
*3441.439 C
3447.760 C
3453.743 C
3434.112 C
*3436.187 C | 35
10
35
30
12
30
50
9 | 2.53 6.12 | 3-2
5-6
4 -5 | | | Laboratory
I A Ref Int | E P J
Low High | Multiplet
(No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | |---|--|------------------------------------|--|--|---|---|--|--| | Cr I continued | 0.57. 0.47. 5.4 | a ⁵ (Lx ³ F° | Cr.I continued | 2.70 5.91 | 3-4 a ⁵ p-v ⁵ p° | <u>Cr I</u> continued
7462.37 B 100 | 2.90 4.55 | 4-3 z ⁷ P°-e ⁷ S | | *3435.819 C 6d
3432.31 B 8
3431.69 C 4
*3435.819 C 6d | 3.53 6.13 5-4
3.53 6.13 4-3
3.53 6.13 3-8
3.53 6.13 4-4 | (53) | 3841.277 C 50
3850.042 C 50
3855.571 C 30
3848.983 C 40 | 2.70 5.90
2.70 5.90
2.70 5.90
2.70 5.90 | 2-3 (69)
1-3
3-3 | 7400.23 B 150
7355.94 B 200 | 3.89 4.55
3.88 4.55 | 3-3 (93)
2-3 | | 3431.995 D 7
3431.284 C 10 | 2.53 6.13 4-4
2.53 6.13 3-3
2.53 6.13 2-2
2.53 6.13 3-4 | | 3854.220 C 50
3857.631 C 20
3853.176 C 12 | 2.70 5.90
2.70 5.90
2.70 5.90 | 3-3
1-1
3-3 | 5328.339 C 200w
5297.360 C 60w
5275.171 C 75w | 2.90 5.22
2.89 5.22
2.88 5.22 | 4-5 z ⁷ P°-e ⁷ D
3-4 (94)
2-3 | | 3435.488 C 3
3431.59 C 3
3362.213 C 20 | 2.53 6.13 2-3
2.53 6.20 6-5 | | 3856.281 C 15
3855.286 C 12 | 2.70 5.90
2.70 5.90 | 3-1
1-0 | 5329.12 D 65w
5297.976 C 40w
5275.689 C 50w | 2.90 5.22
2.89 5.22
2.88 5.22 | 4-4
3-3
2-2 | | *3367.53 C 15w
*3379.825\$ C 8
3384.65 B 10w | 2.53 6.20 5-4
2.53 6.19 4-3
2.53 6.18 3-2 | (54) | 3819.564 C 40
3826.425 C 40
3836.070 C 12 | 2.70 5.93
2.70 5.92
2.70 5.92 | 3-4 a ⁵ P-u ⁵ F* 2-3 (70) 1-2 | 5329.719 C 25w
5298.44 P
5276.03 D 75w | 2.90 5.22
2.89 5.22
2.88 5.22 | 4-3
3-2
2-1 | | 3388.71 B 10
*3362.70 B 8
*3367.53 C 15w | 2.53 6.17 2-1
2.53 6.20 5-5
2.53 6.20 4-4 | | 3825.390 C 20
3834.735 C 15
3842.03 B 10 | 2.70 5.92
2.70 5.92
2.70 5.91 | 3-3
2-2
1-1 | 4514.531 C 40
4491.678 C 30 | 2.90 5.63
2.89 5.63 | 4-3 z ⁷ P°-f ⁷ S
3-3 (95) | | 3379.564 C 3w
3384.24 B 3w
*3362.70 B 8 |
2.53 6.19 3-3
2.53 6.18 2-2
2.53 6.20 4-5 | | 3833.71 B 3
3840.70 B 4 | 2.70 5.93
2.70 5.91 | 3-3
3-1
5 5 5 - | 4475.345 C 50
4261.354 C 25 | 2.88 5.63
2.90 5.80 | 2-3
4-5 z ⁷ P°-f ⁷ D | | 3061.652 C 5
3067.22 P | 2.53 6.56 6-5
2.53 6.56 5-4 | | 3815.433 C 30
3786.22 2 8
3792.42 B 3 | 2.70 5.93
2.70 5.96
2.70 5.95 | 3-4 a ⁵ P-u ¹⁵ F*†
3-3 (71)
1-3 | 4272.910 C 12
4284.725 C 12
4293.565 C 20 | 2.89 5.78
2.88 5.76
2.90 5.78 | 3-4 (96)
2-3
4-4 | | 3071.69 P
3074.47 B 3
3076.58 B 3 | 2.53 6.55 4-3
2.53 6.55 3-2
2.53 6.54 2-1 | | 3755.81 B 7
3756.83 B 2 | 2.70 5.98
2.70 5.98 | 3-2 a ⁵ P-x ³ P°†
3-2 (73) | 4299.718 C 20
4305.453 C 30
*4320.592 C 30 | 2.89 5.76
2.88 5.74
(2.90 5.76
(2.89 5.74 | 3–3
2–2
4–3
3–2 | | 8348.28 A 20 | 2.70 4.17 3-4 | | 3726.85 B 4 | | 1-1 a ⁵ P-x ³ D° (73)
3-3 a ⁵ P-t ⁵ P° | 4319.641 C 40
4129.21 E (20n) | 2.88 5.73
2.90 5.89 | 2-1
4-5 z ⁷ P°-g ⁷ D | | 8455.24 A 12
8555.54 A 5
8450.26 A 15 | 3.70 4.16 2-3
3.70 4.14 1-3
3.70 4.16 3-3
3.70 4.14 2-3 | | *3574.039 C 15
3602.574 C 13
3604.95 P
3601.666 C 40 | 2.70 6.15
2.70 6.12
2.70 6.12
2.70 6.12 | 3-3 a ⁵ P-t ⁵ P*
2-3 (74)
1-1
3-2 | 4110.87 E (8)
4097.65 E (5)
4129.96 P | 2.89 5.89
2.88 5.89
2.90 5.89 | 3-4 (97)
2-3
4-4 | | 8548.83 A 12
8643.03 A 12
8543.73 A 10
8636.26 A 10 | 2.70 4.14 2-2
2.70 4.13 1-1
2.70 4.14 3-2
2.70 4.13 2-1 | | *3603.745 C 12
3574.935 C 10
*3603.745 C 12 | 3.70 6.13
2.70 6.15
2.70 6.13 | 3-1
2-3
1-3 | 4111.36 E (6)
4097.96 E (7)
4130.47 P | 2.89 5.89
2.89 5.89
2.90 5.89 | 3-3
3-2
4-3 | | 8636.26 A 10
8707.42 A 7
8296.90 A 4 | 2.70 4.13 1-0
2.70 4.18 2-1 | . 7 - | 3572.748 C 13
3573.643 C 18 | 2.70 6.15
2.70 6.15 | 3-2 a ⁵ P-y ⁵ S°
2-2 (75) | 4111.67 E (3)
4098.18 E (7) | 2.89 5.89
2.88 5.89 | 3-3
2-1 | | 8397.04 A 6
8303.19 A 6 | 3.70 4.17 1-0
3.70 4.18 1-1 | (57) | 3574.805 C 12
3548.731 C 2 | 2.70 6.15
2.70 6.17 | 1-3
2-1 a ⁵ p-t ⁵ r• | 8224.09 A 8
8261.95 A 8 | 2.97 4.47
2.95 4.45 | 5-4 a ³ H-z ³ F°
4-3 (98) | | 5225.821 C 50
5227.75 B 25
5230.228 C 40 | 2.70 5.06 3-2
2.70 5.06 2-3
2.70 5.06 1-3 | (58) | 3481.303 C 20
3473.612 C 15 | 2.70 6.24
2.70 6.25 | 3-4 a ⁵ p-u ⁵ p•
2-3 (77) | 4727.153 C 40
4693.949 C 45 | 2.99 5.60
2.97 5.60 | 6-6 a ³ H-z ³ H°
5-5 (99) | | m5306.15 P Cr
*5224.541 C 45 | 3.70 5.07 3-3
3.70 5.06 3-3 | (59) | 3471.49 B 7
3472.764 C 12
3470.401 C 10 | 3.70 6.35
3.70 6.35
3.70 6.35 | 1-2
3-3
2-2 | 4666.215 D 25
4725.95 B 7
4692.97 B 10
4695.153 C 30 | 2.95 5.60
2.99 5.60
2.97 5.60
2.97 5.60 | 4-4
6-5
5-4
5-6 | | 5241.458 C 30
5222.676 C 30
5238.971 C 65 | 2.70 5.05 1-1
2.70 5.06 3-2
2.70 5.05 3-1 | | 3470.529 C 7
3470.72 B 4
3307.755 C 8 | 2.70 6.25
2.70 6.25
2.70 6.43 | 1-1
1-0
3-4 a ⁵ P-t ⁵ D ^o † | 4667.181 D 30
4543.74 C 30 | 2.95 5.60
2.97 5.69 | 4-5
5-4 a ³ H-y ³ F° | | m5308.07 P Cr
5237.10 B 30
5013.316 C 100 | 2.70 5.07 2-3
2.70 5.06 1-2
2.70 5.16 3-4 | E- E- | 3312.06 B 3
•3315.19 B 1 | 2.70 6.43 | 2-3 (78)
1-27 | *4518.63 B 6 | 2.95 5.69
2.95 5.70 | 4-4 (100)
4-3 a ³ H-y ³ D° | | 5013.316 C 100
5067.714 C 75
5113.130 C 45
5065.910 C 50 | 2.70 5.16 3-4
2.70 5.13 2-3
2.70 5.11 1-2
2.70 5.13 3-3 | (60) | 3196.37 P
3201.97 P
m3201.24 P Cr | 2.70 6.56
2.70 6.55
2.70 6.55 | 3-4 a ⁵ p-s ⁵ r°
2-3 (79)
3-3 | 4442.268 C 30
4410.967 C 25 | 2.99 5.77
2.97 5.77 | (101)
6-5 a ³ H-w ⁵ F°
5-4 (102) | | 5110.751 C 40
5144.672 C 50
5108.93 B 12 | 3.70 5.11 3-3
3.70 5.10 1-1
3.70 5.11 3-3 | ! | 3204.55 P | 2.70 6.55 | 3- 3 | 4393.534 C 12
4387.496 C 30 | 2.95 5.76
2.99 5.80 | 4-3
6-5 a ³ H-z ³ G° | | 5143.263 C 20
5161.765 C 25 | 3.70 5.10 3-1
3.70 5.09 1-0 | j | 9900.87 A 15
9626.30 A 4
10197.05 A 3 | 2.97 4.32
2.90 4.18
2.97 4.18 | 3-3 a ³ P-z ³ P°
1-1 (80)
3-1 | 4375.333 C 30
4363.134 C 12 | 2.97 5.79
2.95 5.78 | 5-4 (103)
4-3
6-5 a ³ H-y ³ G° | | 4745.308 C 30
4806.255 C 25
4857.34 B 18 | 2.70 5.26 2-3
2.70 5.24 1-2 | } | 9752.84 A 4
9362.06 A 10
9313.55 A 8 | 2.90 4.17
2.90 4.22
2.86 4.18 | 1-0
1-3
0-1 | 4374.158 C 40
4346.833 C 30
4325.075 C 40 | 2.99 5.81
2.97 5.81
2.95 5.81 | 5-4 (104)
4-3 | | 4804.64 B 15
4855.146 C 15
4891.97 B 18 | 2.70 5.26 3-3
2.70 5.24 2-2
3.70 5.22 1-1 | | 4619.551 C 40
4501.788 C 35
4622.761 C 35 | 2.97 5.65
2.90 5.64
2.97 5.64 | 3-3 a ³ P-y ³ P°
1-1 (81)
3-1 | 4255.502 C 25
*4240.705 C 30
4226.76 P | 2.99 5.89
2.97 5.88
2.95 5.87 | 6-7 a ³ H-z ³ I°
5-6 (105)
4-5 | | 4853.52 P
4889.73 B 30
4909.87 B 6 | 2.70 5.24 3-2
2.70 5.22 2-1
2.70 5.21 1-0 | .7 | 4622.761 C 25
4501.112 C 35
4498.730 C 35
4432.175 C 40 | 2.90 5.64
2.90 5.65
2.86 5.64 | 1-0
1-2 | 4266.82 B 8
4248.73 B 10 | 2.99 5.88
2.97 5.87 | 6-6
5-5 | | 4697.062 C 40
*4698.615 C 50
4700.608 C 40 | 2.70 5.32 3-2
2.70 5.32 2-2
2.70 5.32 1-2 | (62) | *4527.339 C 40
4424.075 C 10 | 2.97 5.70
2.90 5.69 | 3-3 a ³ P-y ³ D°
1-3 (83) | 4175.945 C 15
4185.345 C 10
4189.96 B 5 | 2.99 5.94
2.97 5.92
2.95 5.90 | 6-7 a ³ H-x ⁵ H°
5-6 (106)
4-5 | | 4459.34 B 18w
4475.30 P | 2.70 5.46 3-3
2.70 5.45 2-2 | a ⁵ P-w ⁵ P* | *4362.95 § B 7 | 2.86 5.69
2.97 5.72 | 0-1
2-3 a ³ P-w ⁵ D* | 4210.77 B 5
4237.27 B 1
4230.29 B 4 | 2.99 5.92
2.99 5.90
2.97 5.89 | 6-6
6-5
5-4 | | 4473.782 C 40
4487.46 B 5w
4480.769 C 18 | 3.70 5.45 3-2
3.70 5.45 3-1
3.70 5.46 3-3 | }
L
5 | 4377.549 C 30
4321.238 C 20 | 2.90 5.72
2.86 5.72 | 0-1 | 4220.45 B 5
4167.80 B 3 | 2.95 5.88
2.97 5.93
2.95 5.93 | 4-3
5-4 a ³ H-u ¹ 5 F°
4-4 (107) | | 4477.02 B 35w
4295.757 C 25 | 3.70 5.45 1-2
3.70 5.57 3-3 | a 5p_v 5p• | 4387.380 C 10
*4262.133 C 12
4190.16 B 15 | 2.97 5.79
2.90 5.80
2.86 5.80 | | 4146.695 C 6
4123.387 C 10
4121.817 C 10 | 2.99 5.98
2.97 5.96 | 6-6 a ³ H-y ³ H°
5-5 (108) | | 4341.48 B 7
4382.853 C 80
4340.130 C 18
4381.112 C 35 | 3.70 5.54 2-2
3.70 5.51 1-1
3.70 5.54 3-2
3.70 5.51 2-1 | 3 | 4118.45 P
3886.94 P | 2.90 5.90
2.97 6.15 | "(85 <u>)</u> | 4104.867 C 10
4146.47 B 4
4099.016 C 6 | 2.95 5.96
2.99 5.96
2.97 5.98 | 4-4
6-5
5-6 | | 4381.112 C 35
4297.050 C 15
4343.163 C 18 | 3.70 5.51 3-1
3.70 5.57 3-3
3.70 5.54 1-3 | 3 | 3843.64 B 3 | 2.97 6.19 | (86)
2-3 a ³ p_t ⁵ p° | 4101.163 D 8 | 2.95 5.96
2.99 6.50 | 4-5
6-7 a ³ H-y ³ I° | | 4108.400 C 6
4130.613 C 13
4137.643 C 8 | 2.70 5.70 3-3
2.70 5.69 2-2
2.70 5.69 1-1 | 3 (65) | m3819.57 P Cr
3748.18 B 2
3710.60 B 4 | | 2-3 a ³ P-w ³ D•↑
1-2 (88) | 3494.967 C 15
3488.453 C 10
3512.70 B 2n | 2.97 6.50
2.95 6.49
2.99 6.50 | 5-6 (109)
4-5
6-6 | | 4119.44 B 3w
4126.099 C 6
4109.584 C 8 | 3.70 5.69 3-2
3.70 5.69 2-1
3.70 5.70 2-3 | 3
1
3 | *3676.33 B 18
*3604.54 B 3 | 2.97 6.33
2.90 6.33 | 1-1 (89) | *3503.38 § B 1
3481.536 C 18 | 2.97 6.49
2.99 6.53 | 5-5
6-6 a ³ H-x ³ H ^o †
5-5 (110) | | 4066.938 C 6 | 2.70 5.69 1-2
2.70 5.73 3-4 | 5p_w5ne | *3681.691 C 12
3613.669 C 8
3599.395 C 10 | 2.97 6.33
2.90 6.32
2.90 6.33 | 1-0
1-3 | 3467.715 C 18
3443.790 C 10
3472.906 C 10 | 2.97 6.53
2.95 6.54
2.95 6.51 | 4-4 a ³ H-1° | | 4077.089 C 12
4081.737 C 5
4075.92 B 6 | 3.70 5.73 3-3
3.70 5.73 1-2
3.70 5.73 3-3 | 3 | 3559.781 C 10 | 2.86 6.33
2.97 6.55
2.97 6.55 | 3-3 a ³ p-s ⁵ pe | 3346.018 C 12
3346.71 B 10 | 2.99 6.68
2.97 6.66 | (111)
6-5 a ³ H-v ³ G ^o †
5-4 (112) | | 4080.221 C 5
4090.305 C 6
3992.845 C 30 | 2.70 5.72 2-2
2.70 5.72 1-1
2.70 5.79 3-3 | l | 3453.84 P
3388.88 B 1
3198.112 C 7 | 2.90 6.54 | 1-1
2_3 a ³ p_v ³ po | 3346.78 B 9
3257.822 C 12 | 2.95 6.64
2.99 6.78 | 4-3
6-6 a ³ H-w ³ H• † | | 3979.798 C 10
3972.688 C 7
3978.677 C 18 | 2.70 5.79 3-3
2.70 5.80 2-2
2.70 5.80 1-1
2.70 5.80 3-2 | L | 3188.011 C 20
3159.59 C 20 | 2.97 6.85
2.90 6.81 | 2-3 a ³ P-v ³ D°
1-3 (92) | 3251.836 C 15
3245.542 C 12 | 2.97 6.76
2.95 6.76 | 5-5 (113)
4-4 | | 3971.255 C 20
3993.968 C 15
3981.233 C 15 | 3.70 5.80 2-1
2.70 5.79 2-3
2.70 5.80 1-2 | L
3 | 3144.409 C 8
3218.70 B 5
3179.283 C | 3.86 6.78
2.97 6.81
3.90 6.78 | 0-1
2-3
1-1 | 3259.975 C 10
3238.087 C 8
3237.729 C 10 | 2.99 6.77
2.97 6.78
2.95 6.77 | 6-6 a ³ H-v ³ H ^o 5-5 (114) 4-4 | | 3960.763 C 5
3962.19 B 3 | 2.70 5.81 2-1
2.70 5.81 1-1 | a ⁵ P-z ³ 8° | 3239.14 B | 2.97 6.78
—————— | 3-1
 | 3253.26 B 4
3250.58 B 4
3244.69 B 1 | 2.99 6.78
2.97 6.77
2.97 6.77 | 6–5
5–4
5–6 | | | | | | | | | | | 10. | | | | | | | | | | | | - | | | | | | | | | |--|-----------------------|--------------------------|---|---------------------------------|---|---|------------------|----------------------------|---|----------------------|---------------------------------|---|---|-------------|-----------------------|------------------------------|------------------------------|--------------------------
---| | I A | | Int | E P
Low High | J | Multiplet
(No) | Labo
I A | | ry
Int | E P
Low Hi | gh | J | Multiplet
(No) | IA | | Int | Low E | P
High | J | Multiplet (No) | | <u>ir I</u> con | tinue | d | | | | <u>Cr I</u> cor | t1nu | | | | | | <u>Cr I</u> con | tinue | d | | | | | | 3163.756
3155.149
3148.445
3169.58
3160.61 | C
C
C
B
B | 15
12
10
3
4 | 2.99 6.89
2.97 6.88
2.95 6.87
2.99 6.88
2.97 6.87 | 6-7
5-6
4-5
6-6
5-5 | a ³ H-x ³ I°
(115) | 4217.626
4216.365
4222.732
4230.481
4235.98 | CCCCB | 30
15
20
25
15 | 3.00 5.
3.00 5.
3.00 5.
3.00 5.
3.00 5. | 93 3
92 3
92 3 | 4-5
3-4
3-3
1-2
0-1 | b ⁵ D-u ⁵ F° (132) | 4540.719
4511.903
4500.295
4513.21 | CCB | 50
60
40
8+g | 3.09
3.07
3.07
3.07 | 5.81
5.81
5.81
5.81 | 4-4
3-3
4-3 | a ³ G-y ³ G°
(150) | | 3152.881
3141.891 | D
D | 5
5 | 2.99 6.90
2.97 6.90 | 6-6
5-5 | a ³ H-u ³ H°
(116) | 4223.47
4232.866
4237.710 | BCC | 7
10
13 | 3.00 5.
3.00 5.
3.00 5. | 92 2
92 2 | 3-3
3-2
1-1 | | 4505.22
4484.68 | B
B | 8 | 3.09
3.07 | 5.83
5.82 | 5–5
3–3 | a ³ G-x ⁵ G°
(151) | | 039.74
031.486 | P
C | Cr
4 | 2.99 7.05
2.97 7.04 | 6-5
5-4 | a ³ H-u ³ G° (117) | 4211.349
4177.17 | C
B | 15
3 | 3.00 5.
3.00 5. | 95 (| 0-1 | b ⁵ D-u' ⁵ F° (133) | 4425.129
4406.26 | C
B | 12
18 | 3.09
3.07 | 5.88
5.87 | 4-5 | a ³ G-z ³ I•
(153) | | 3024.681 | C | a | 2.95 7.03 | 4- 3
- | | 4207.51
3945.968 | B | 2
10 | 3.00 5.
3.00 6. | | 4-4
4-5 | _D 5 ը_ w5g• | 4364.87
4366.33 | B
B | 10
4 | 3.09
3.07 | 5.92
5.90 | 56
45 | a ³ G-x ⁵ H° †
(153) | | 0486.24
0672.17
0816.91
0647.66 | A
A
A | 20
18
8
12 | 3.00 4.17
3.00 4.16
3.00 4.14
3.00 4.16 | 3-3
2-2
4-3 | b ⁵ D-z ⁵ D°
(118) | 3945.495
3944.25
3943.21 | C
B
B | 9
2
3 | 3.00 6.
3.00 6.
3.00 6. | 13 3 | 4-4
3-3
3-2 | (134)
b ⁵ D-x ³ F* †
(135) | 4271.061
4269.951
4262.38 | C
C
B | 15
12
8 | 3.09
3.07
3.07 | 5.98
5.96
5.96 | 5-6
4-5
3-4 | (154) | | 9821.62
957.19
.044.64 | A
A | 13
13
5 | 3.00 4.14
3.00 4.13
3.00 4.13 | 3-2
3-1
1-0 | | 3915.843
3952.399 | C
C | 40
15 | 3.00 6.
3.00 6. | 12 3 | 4-3
3-2 | b ⁵ D-t ⁵ P* (136) | 4209.756
4224.514
•4221.572 | 000 | 15
18
25 | 3.07 | 6.02
5.99
5.99 | 5-5
4-4
3-3 | a ³ G-x ³ G°
(155) | | 509.96
667.53
801.37 | A
A
A | 10
15
12 | 3.00 4.17
3.00 4.16
3.00 4.14 | 3-4
2-3
1-2 | | 3953.163
m3919.15
3951.765 | C P | 18
Cr
8 | 3.00 6.
3.00 6.
3.00 6. | 12 2 | 8-1
3-3
8-2 | | 4249.81
4184.895
4213.179 | P
C
C | 12
10 | 3.09
3.07
3.07 | 5.99
6.02
5.99 | 5-4
4-5
3-4 | | | 929.90
712.778
788.389 | A
C
C | 100
20 | 3.00 4.13
3.00 5.16
3.00 5.13 | 0-1
4-4
3-3 | b ⁵ D-y ⁵ D°
(119) | 3951.097
3918.54
•3949.64 | C
P
B | 10 | 3.00 6.
3.00 6.
(3.00 6. | 15 2
13 1 | 1-1
3-3
1-2
0-1 | | 4080.56
4057.19
4060.62 | B
B
B | 2
3
847 | 3.09
3.07
3.07 | 6.12
6.13
6.11 | 5-5
4-5
3-4 | a ³ G-w ³ G• †
(156) | | 843.24
781.195
844.606
884.452 | ВССС | 25
40
40
25 | 3.00 5.11
3.00 5.13
3.00 5.11
3.00 5.10 | 2-2
4-3
3-2
2-1 | | 3917.596
3916.980
3914.96 | C
C
B | 15
10
4 | 3.00 6.
3.00 6.
3.00 6. | 15 2 | 3-2
3-2
1-2 | b ⁵ D-y ⁵ s° (137) | 3586.23
3571.97
3553.968 | B
P
C | 4
5 | 3.09
3.07
3.07 | 6.53
6.53
6.54 | 5-6
4-5
3-4 | a ³ G-x ³ H ^e
(157) | | 902.182
719.821
787.036 | 000 | 25
40
20 | 3.00 5.09
3.00 5.16
3.00 5.13 | 1-0
3-4
2-3 | | 3849.365
3858.90 | C
B | 50
15w | 3.00 6.
3.00 6. | 30 3 | 4-5
3-4 | b ⁵ D-t ⁵ F° (138) | 3442.58
3425.96 | B
B | 1 4 | 3.09
3.07 | 6.68
6.68 | 5-5
4-5 | a ³ G_v ³ G°
(158) | | 838.66
876.55
556.19 | B
B | 25
25
10 | 3.00 5.11
3.00 5.10
3.00 5.22 | 1-3
0-1
4-4 | | 3874.570
3879.222
3883.660
m3855.65 | D
C
C
P | 40w
50
20
Cr | 3.00 6.
3.00 6.
3.00 6. | 18 1
17 0
30 4 | 3-3
l-2
)-1
l-4 | | *3349.322§
3343.342
3343.227 | CCC | 8
5
5 | 3.09
3.07
3.07 | 6.78
6.76
6.76 | 5-6
4-5
3-4 | a ³ G-w ³ H°†
(159) | | 574.41
512.69
556.19 | B
B
B | 10
10 | 3.00 5.21
3.00 5.24
3.00 5.23 | 3-2
3-3
2-1 | (130)
b ⁵ D-x ⁵ D°
(131) | 3875.14
3881.214
3885.084
3881.856 | BCCC | 10n
40
20
10 | 3.00 6.
3.00 6.
3.00 6. | 18 a
17 1 | 3-3
3-2
1-1
3-2 | | 3351.596
3328.80
3334.925 | C
B
C | 8
4
6 | 3.09
3.07
3.07 | 6.77
6.78
6.77 | 5-6
4-5
3-4 | a ³ G-v ³ H° (160) | | 004.38
028.00 | B
B | 35w
15w | 3.00 5.46
3.00 5.45 | 4-3
3-2 | b ⁵ D-w ⁵ P° †
(133) | 3804.798
3797.716 | 000 | 50
40 | 3.00 6.3
3.00 6.3 | 35 3 | 3-3 | b ⁵ D-u ⁵ D°
(139) | 3344.50
3313.721 | B | 4
3 | 3.09 | 6.78 | 5-5
5-4 | | | 981.30
998.55
980.30 | P
B
P | 4 | 3.00 5.48
3.00 5.47
3.00 5.48 | 3-3
2-2
2-3 | b ⁵ D-y ⁵ G°
(123) | 3793.289
3790.228
3794.608
3793.879 | 0000 | 30
8
35
30 | 3.00 6.3
3.00 6.3
3.00 6.3 | 35 1
35 4
35 3 | 3-2
1-1
1-3
3-2 | | 3309.82
3298.318
3302.86 | B
C
B | 4
7
6 | 3.07
3.07
3.07 | 6.80
6.82
6.80 | 4-3
4-4
3-3 | (161) | | 755.137
764.643
770.670 | 000 | 8
20
12 | 3.00 5.59
3.00 5.59
3.00 5.59 | 4-5
3-4
2-3 | b ⁵ D-x ⁵ F° (124) | 3792.137
3790.454
3807.926 | 000 | 30
18
15 | 3.00 6.3
3.00 6.3 | 35 1
34 3 | 3-1
1-0
3-4 | | 3238.50
3227.23 | B | 4
3 | 3.09
3.07 | 6.90
6.90 | 5-6
4-5 | a ³ G-u ³ H•
(162) | | 774.557
759.74
771.57 | C
B
B | 8
8
10 | 3.00 5.58
3.00 5.59
3.00 5.59 | 1-2
4-4
3-3 | | 3797.126
3791.376
3788.864 | 000 | 30
30 | 3.00 6.2
3.00 6.2
3.00 6.2 | 35 1 | 3-3
1-2
1-1 | | 3119.246
3110.860
3109.336 | 000 | 5
5
8 | 3.07
3.07 | 7.05
7.04
7.03 | 5-5
4-4
3-3 | a ³ G_u ³ G°
(163) | | 777.57
779.87
766.66 | B
B
P | 7
3
Cr | 3.00 5.58
3.00 5.58
3.00 5.59 | 3-3
1-1
4-3 | | m3602.61
3607.92
3608.58 | P
P
P | Cr | 3.00 6.4
3.00 6.4 | 123 | -2 | b ⁵ D-t ⁵ D° (140) | 3115.51
3105.57
3104.70 | B
B
B | 1
2
3 | 3.07
3.07
3.07 | 7.03
7.05
7.04 | 4-3
4-5
3-4 | | | 778.50
566.60 2 | B | 3
7 | 3.00 5.58
3.00 5.70 | 3-2
4-3 | _հ 5 _Դ -3 _Դ - | 3607.25
3460.430 | P
C | 25 | 3.00 6.4
3.00 6.4 | 13 1 | -1
-0 | _D 5 _{D—8} 5 բ • ϯ | *3060.63
3058.17 | B
B | 2
3 | 3.07 | 7.13
7.11 | 4-4 | a ³ g_t ³ g• †
(164) | | 584.75
590.69
571.105 | B
B
C | 12
8
25 | 3.00 5.69
3.00 5.69
3.00 5.70 | 3-2
2-1
3-3 | b ⁵ D-y ³ D°
(135) | 3469.590
3474.87
3477.161 | B | 15
8
7 | 3.00 6.5
3.00 6.5
3.00 6.5 | 6 3
5 2 | -4
-3 | (141) | 3047.455
3052.229 | 0 - | 6 | | 7.12 | 4-5
3-4 | | | 583.89
587.86
570.30 | B
B
B | 15
8
6 | 3.00 5.69
3.00 5.69
3.00 5.70 | 2-2
1-1
2-3 | | 3479.14
*3467.022
3475.36 | B
C
P | 5
13 | 3.00 6.5
3.00 6.5
3.00 6.5 | 64 0
6 4 | -1
-4
-3 | | 9059.74
9148.45
9208.29 | A | 5
6
25 | 3.11
3.10
3.11 | | 4-4
3-3
4-3 | a ³ F-z ³ Fe
(165) | | 515.440
519.83 | C
B
P | 25
7 | 3.00 5.73
3.00 5.73 | 4-4
3-4 | b ⁵ D-w ⁵ D°†
(136) | 3478.77
3480.28 | B | 4 | 3.00 6.5
3.00 6.5 | i5 a | -2
-1 | | 9263.97
4954.811 | Ã
C | 20
80 | 3.10 | 4.43
5.60 | 3-2
4-5 | a ³ F-z ³ H° | | 530.12
458.538
459.738
465.357 | CCC | 45
25 | 3.00 5.72
3.00 5.77
3.00 5.77 | 3-4 | b ⁵ D-w ⁵ F° (127) | 8947.20
8976.88
9035.86 | A | 35
25
20 | 3.09 4.4
3.07 4.4
3.07 4.4 | 5 4 | -4
-3
-2 | a ³ G-z ³ F°
(143) | 4936.334
4953.714
4880.06 | D
B | 150
25
25 | | 5.60
5.60 | 3-4
4-4 | (166) | | 463.337
464.907
462.774
455.45 | C
C
B | 35
25
30
7 | 3.00 5.76
3.00 5.76
3.00 5.76 | 3-3
1-3
0-1 | | 8835.67
8925.75
8786.28 | A
A
P | 10
10 | 3.07 4.4
3.07 4.4
3.07 4.4 | 5 3 | -4
-3
-4 | | 4874.651
4787.74 | C
B | 20
5 | 3.10 | 5.63 | 3-4 | (167)
a ³ F-y ³ F* | | 466.165
467.561
464.669 | 000 | 25
30
25 | 3.00 5.77
3.00 5.76
3.00 5.76 | 4-4
3-3
3-3 | | 4922.267
4887.013 | C | 300
150 | 3.09 5.6
3.07 5.6 | | -6
-5 | a ³ G-z ³ H°
(143) | 4784.70
4754.743
4801.030 | P
C
C | 20
75 | 3.10
3.08
3.11 | 5.68
5.67 | 3-3
2-2
4-3 | (168) | | 468.38
403.372 | B | 7
35 | 3.00 5.76
3.00 5.76
3.00 5.80 | 1-1
3-2
4-5 | _b 5 _{D-z} 3գ- | 4870.796
4920.945
4885.957 | 000 | 100
50
50 | 3.07 5.6
3.09 5.6
3.07 5.6 | 05. | -4
-5
-4 | | 4792.513
4747.00 | B | 75
4 | 3.10 | | 3-2
2-3 | | | 423.318
433.968
419.10 | C
B | 12
20
10 | 3.00 5.79
3.00 5.78
3.00 5.79 | 3-4
2-3
4-4 | (128) | 4836.857
4814.265
4810.733 | O O O | 40
35
35 | 3.09 5.6
3.07 5.6
3.07 5.6 | 4 4 | -6
-5
-4 | a ³ G-y ⁵ H ^o
(144) | 4761.242
4759.907
4729.723 | CCC | 10
10
35 | 3.10 | 5.70
5.69
5.69 | 4-3
3-2
3-17 | a ³ F-y ³ D* | | 434.75
430.51 | B
P | 10
Cr | 3.00 5.78
3.00
5.78 | 3–3
4–3 | | 4847.177
4825.51
4822.06 | C
B
B | 18
10
5 | 3.09 5.6
3.07 5.6
3.07 5.6 | 4 5-
3 4- | -5
-4
-3 | | 4717.688
4706.103
4680.870 | 000 | 10
25
35 | 3.10 | 5.72
5.72 | 3-2 | a ³ F_w ⁵ D°
(170) | | 424.281
411.093
399.823 | 0000 | 40
40
30 | 3.00 5.79
3.00 5.80
3.00 5.80 | 4-3
3-2
3-1 | b ⁵ D-u ⁵ P°
(139) | 4756.113
4737.350 | C | 100
75 | 3.09 5.6
3.07 5.6 | 9 5- | | а ³ д_у ³ г•
(145) | 4701.92
4669.67 | B
B | 5
10 | 3.10 | 5.72
5.72
5.72 | 2-1
3-3
2-2 | | | 428.501
410.304
397.251
427.71 | 000 | 35
40
30 | 3.00 5.79
3.00 5.80
3.00 5.80 | 3-3
2-2
1-1 | | 4730.711
4724.416
4723.03 | C | 50
35
15 | 3.07 5.6
3.07 5.6
3.07 5.6 | 7 3.
9 4 . | -2
-4
-3 | (110) | 4640.55
4632.180
4599.25 | B
C
B | 35
1 | 3.10 | 5.77
5.76 | 3-3 | a ³ F-w ⁵ F°
(171) | | 407.72
395.417 | B
C | 10
4047
18 | 3.00 5.79
3.00 5.80
3.00 5.80 | 2-3
1-2
0-1 | | 4710.24
•4698.615 | B
C | -6
50 | 3.07 5.6
3.07 5.7 | 9 3- | -4 | a ³ G_y ³ D● | 4634.59
4599.00
4625.30 | B
B
B | 5
8
3 | 3.10
3.08 | 5.76
5.76
5.76 | 3-2
3-1 | | | 356.760
368.252
379.782 | 000 | 30
30 | 3.00 5.83
3.00 5.83
3.00 5.82 | 4-5
3-4
2-3 | b ⁵ D-x ⁵ G ^e
(130) | 4698.947
4684.605 | 0 | 20
12 | 3.07 5.6
3.07 5.7 | 9 3-
0 3- | -2
-3 | (146) | 4596.90
4584.095 | В | 3 | 3.08 | 5.77
5.76
5.80 | 3-4
2-3
4-5 | a3 _{F-z} 3ge | | 392.26
364.14
380.55
394.83 | B
B
B | 10
10
10 | 3.00 5.81
3.00 5.83
3.00 5.82 | 1-2
4-4
3-3 | | 4656.189
4646.495
4614.15 | C
C
B | 30
15
12 | 3.07 5.7
3.07 5.7
3.09 5.7 | 3 - | -2 | a ³ G_w ⁵ D ⁶ †
(147)
a ³ G_w ⁵ F° | 4586.138
4563.657
4601.15
4598.441 | CCCBC | 20
25
20
20 | 3.10
3.08
3.11 | 5.79
5.78
5.79
5.78 | 3-4
2-3
4-4
3-3 | (172) | | 338.957
352.243 | C | 8
35
10 | 3.00 5.81
3.00 5.91 | 2-3
4-4 | b ⁵ D-v ⁵ D• | 4581.063
4574.45
4576.76 | C
B
B | 10
6
6 | 3.07 5.7
3.07 5.7
3.07 5.7 | 7 4 -
8 3- | -4 | (148) | 4569.530
4554.830 | CC | 20
25 | 3.11 | 5.81 | 4-5 | a ³ F-y ³ G* | | 356.620
348.344
357.368 | 0000 | 8
13
12 | 3.00 5.90
3.00 5.90
3.00 5.90
3.00 5.90 | 3-3
2-2
4-3 | (131) | 4555.09
•4542.621 | B | (101)
35 | 3.09 5.8
3.07 5.7 | 5 - | | _k 3 _{G-2} 3 _G e
(149) | 4532.00
4569.644
4556.169 | BCC | 12
30
40 | 3.10
3.08
3.11
3.10 | 5.81 | 3-4
3-3
4-4
3-3 | (173) | | 359.15
342.82 | B
B | 10
10 | 3.00 5.90
3.00 5.91 | 3-2
3-1
3-4 | | 4541.513 | C | 25 | 3.07 5.7 | | | ,/ | 4570.98 | В | 30 | 3.11 | | 3-3
4-3 | Labora
I A R | tory
lef | | E P | High | J | Multiplet
(No) | Labor
I A | | y
Int | E F
Low | High | J | Multiplet
(No) | Labor | ator;
Ref | | E P | High | J | Multiplet (No) | |---|------------------|----------------------------|------------------------------|--------------------------------------|---------------------------------|---|--|------------------|------------------------------|--------------------------------------|--|--|---|---|------------------|----------------------------|------------------------------|------------------------------|---------------------------------|--| | Cr I conti | nued | | | | | | Cr I cont | inue | đ | | | | | Cr I cont | inue | a | | | | | | 4527.471 | C
B | 30
3 | | 5.80
5.81 | 3-17
3-1 | a ³ F_u ⁵ pe
(174)
a ³ F_z ³ 8° | 4761.73
4752.87 | B
B | 5
10 | | 5.95
5.95 | 1-1 | b ³ p_u ¹ 5 p• † (194) | 3293.81
3277.86
3270.70 | B
B
B | 5
4
3 | | 7.18
7.19
7.18 | 5-4
4-3
3-2 | b ³ G-u ³ F•
(219) | | 4332.569
4325.65 | C
B
B | 15
8
8
10 | 3.11
3.10
3.08 | 5.96
5.95
5.95
5.93 | 4-3
3-3
3-1
3-4 | (175)
a3p_u:5pe
(176) | 4707.754
4725.67
4736.13
4749.25
4697.395 | C
B
B
C | 15
5
1w
15 | 3.36
3.35
3.36
3.35
3.35 | 5.98
5.97
5.97
5.95
5.98
5.97 | 2-3
1-1
2-1
1-0
1-3
0-1 | b ³ P _{-x} ³ P•
(195) | 3229.204
3219.616
3211.309 | C
D
C | 10
8
8 | 3.42 | 7.26
7.25
7.25 | 5-6
4-5
3-4 | b ³ G-t ³ H• ↑
(220) | | 4321.617
4312.469 | C | 8
5 | | 5.96
5.96 | 4-5
3-4 | a ³ F_y ³ H° (177) | 4722.741
4526.108
4575.121 | D
C
C | 10
40
25 | 3.36
3.35 | 6.09
6.05 | 2-3
1-2 | b ³ P-x ³ D ^e
(196) | 11157.03
11015.63
11905.83 | A
A
A | 25
30
25 | 3.43 | 4.55
4.55
4.55 | 4-3
3-3
2-3 | y ⁷ P°-e ⁷ S
(221) | | 4234.515
*4262.133
*4240.705 | CCC | 12
12
30 | 3.11
3.10
3.08 | 6.02
5.99
5.99 | 4-5
3-4
2-3 | a ³ F_x ³ G°
(178) | 4584.934
4492.312
4482.878 | C | 15
40
40 | 3.36
3.36
3.35 | 6.05
6.11
6.11 | 3-3
3-1
1-1 | b ³ P_y ³ S* | 6978.46
6924.13
6881.64 | B
C
B | 300
200
100 | 3.43 | 5.22
5.22
5.22 | 4-5
3-4
2-3 | y ⁷ P°-e ⁷ D
(222) | | 4142.47
•4179.257 | B
C | 5
30 | | 6.09
6.05 | 4-3
3-2 | a ³ F-x ³ D° (179) | 4483.878
4480.263
4338.799 | Ċ
G | 30
15 | 3.35
3.36 | 6.11 | 0-1
2-3 | _b 3p_w ³ p• | 6979.82
6925.24
6882.48 | C
D
D | 150
150
75 | 3.45
3.43
3.42 | 5.22
5.22
5.22 | 4-4
3-3
2-2 | | | 4103.85 7
4106.05
4092.174 | B
B
C | 4
4
6 | 3.10 | 6.12
6.11
6.09 | 4-5
3-4
2-3 | a ³ F_w ³ G° †
(180) | 4345.085
4357.525
4353.983 | COAG | 15
15
15 | 3.35
3.35
3.36
3.35 | 6.20
6.19
6.20
6.19 | 1-3
0-1
3-3
1-1 | (198) | 6980.91
6926.04
6883.04 | B
B
D | 50
100
150 | 3.43 | 5.22
5.22
5.22 | 4-3
3-2
2-1 | | | 3374.93
3373.96
3382.07 | B
B
B | 4
2
3 | 3.10 | 6.76
6.76
6.76 | 4-5
3-4
4-4 | a ³ F_w ³ H° (181) | 4359.992
4368.89
4266.44 | C
B
B | 30
8
3w | 3.36 | 6.19 | 3-1
3-2 | b ³ P-u ⁵ De | 5609.19
5580.51 | B
B | 35
25 | 3.42 | 5.63
5.63 | 2-3 | y ⁷ P°-f ⁷ g
(223) | | 3329.053
3332.879 | 000 | 8
7
10 | 3.11
3.10
3.08 | 6.82
6.80
6.79 | 4-4
3-3
3-2 | a ³ F-w ³ F* (182) | 3153.54
3164.06 | B
B | 5
1 | 3.36
3.35 | 7.27
7.26 | 2-2
1-1 | (199)
b3p_t3pe
(200) | 5508.88
5255.132
5272.010 | P
C
C | 125
50 | 3.45 | 5.67
5.80
5.78 | 3-2
4-5
3-4 | y ⁷ P°-f ⁵ g
(224)
y ⁷ P°-f ⁷ D
(225) | | 3326.590
3321.19
m3314.56 | B | Cr+ | 3.10
3.08 | 6.82
6.80 | 3-4
2-3 | 3 2:- | 5224.941
5225.032 | g) | 150* | (3.44 | 5.80
5.78 | 5-5
4-4 | z ⁷ D°-f ⁷ D
(201) | 5287.188
5304.211
5312.878 | 0000 | 40
40
50 | 3.42
3.45
3.43 | 5.76
5.78
5.76 | 2-3
4-4
3-3 | | | 3132.830
3131.211
3119.706
3138.203
3135.91 | ССССВ | 8
8
5
4
3 | | 7.05
7.04
7.03
7.04
7.03 | 4-5
3-4
2-3
4-4
3-3 | a ³ F-u ³ G°
(183) | 5234.082
5220.912
5273.439
5265.160
5254.918 | 00000 | 40
40
25
60
100 | | 5.76
5.78
5.76
5.76 | 3-3
1-1
5-4
4-3
3-2 | | 5318.775
m5345.61
5344.761
5340.437 | C
C
C | 40
Cr
20
35 | 3.45
3.43 | 5.74
5.76
5.74
5.73 | 2-2
4-3
3-2
3-1 | | | 3073.679
3077.831
3065.067
3084.59 | C
C
B | 10
10
10 | 3.11 | 7.12
7.11
7.11
7.11 | 4-5
3-4
3-3
4-4 | a ³ F-t ³ G°
(184) | 5243.395
5177.430
5184.590
5192.000
5200.188 | 00000 | 75
75
100
100
50 | 3.38
3.41
3.39
3.38
3.37 | 5.73
5.80
5.78
5.76
5.74 | 2-1
4-5
3-4
2-3
1-2 | | 9730.32
9949.06
10080.32 | A
A | 25
20
15 | 3.54
3.54 | 4.80
4.78
4.76 | 3-3
2-2
1-1 | a ³ D-z ³ D• † (326) | | 3080.72 | В - | 5 | 3.10 | 7.11 | 3 – 3
- | z ⁷ F°-e ⁷ D | 5027.66
4948.64 | P
P
P | | 3.44
3.39
3.37 | 5.89
5.89
5.89 | 5-5
3-3
1-1 | z ⁷ D°-g ⁷ D
(202) | 5738.554
5772.676
m5783.15 | C
C
P | 30
25
Cr | 3.54 | 5.69
5.68
5.67 | 3-4
3-3
1-2 | a ³ D-y ³ F°
(227) | | 6062.75
5982.84
5916.73
5863.96 | B
B
B | 50
40
30
25 | 3.18
3.15
3.13
3.11 | | 6-5
5-4
4-3
3-2 | z'F°-e'D
(185) | 4900.83
4983.63
4947.91
4900.50 | P
P
P | | 3.41
3.39
3.37 | 5.89
5.89
5.89 | 1-1
4-5
3-4
1-3 | | *5700.514
5736.632
m5746.32 | C
C
P | 40
15
Cr | | 5.70
5.69
5.69 | 3-3
2-2
1-1 | a ³ D-y ³ D°
(228) | | 5981.96
5915.93
5798.00
5797.53 | B
B
P
P | 25
25 | | 5.22
5.22
5.22
5.22 | 5-5
4-4
1-1
1-2 | | 5702.307
5664.040
5628.645 | COC | 60
40
50 | 3.43
3.42
3.41 | 5.60
5.60
5.60 | 5-6
4-5
3-4 | b ³ G-z ³ H°
(203) | 4835.68
4775.141 | B | 10
10 | | 6.09 | 3-3
3-47 | | | 4718.429
4708.040 | C | 75
60 | 3.18
3.15 | 5.80
5.78 | 6-5
5-4 | z ⁷ F°-f ⁷ D
(186) | *5700.514
5480.502 | Č
C | 40
45 | 3.43
3.43 | 5.60 | 5-5
5-4 | b ³ (L-y ³ pe | 4797.69
4809.32 | B
| 15
10 | 3.54
3.54 | 6.11
6.11 | 2-3
1-2 | (230) | | 4698.456
4689.374
4680.49
4669.336
4666.513 | CCBCC | 60
65
50
50
55 | 3.15 | | 4-3
3-2
3-1
5-5
4-4 | | 5463.974
5442.413
5446.76
5432.347 | CCBC | 40
35
25
25 | 3.42
3.41
3.42
3.41 | 5.68
5.67
5.69
5.68 | 4-3
3-2
4-4
3-3 | (304) | 4764.294
4767.860
4766.63
4757.591
4767.280 | CCBCD | 50
30
35
18
25 | 3.54 | 6.13
6.13
6.13
6.13 | 3-4
3-3
1-2
3-3
3-3 | (231) | | 4664.798
4663.832
4663.328 | CCC | 60
55
40 | 3.11
3.10
3.09 | 5.76
5.7 <u>4</u>
5.73 | 3-3
3-3
1-1 | | 5292.865
5257.07
5236.63 | C
B
B | 10
10
10 | | 5.77
5.77
5.76 | 5-5
4-4
3-3 | b ³ G—w ⁵ ≱°
(205) | 4731.14
4633.491 | В | 8w
35 | 3.54
3.54 | 6.15 | | a ³ D_t ⁵ P°
(232)
a ³ D_w ³ D° | | 4628.473
4633.286
4639.538
4646.808 | COACC | 10
30
35
20 | 3.11
3.10
3.09 | 5.80
5.78
5.76
5.74 | 4-5
3-4
2-3
1-2 | | 5215.29
5206.52
5193.488 | B
P
C | 35
35 | 3.43
3.42
3.41 | 5.80
5.79
5.78
5.79 | 5-5
4-4
3-3
5-4 | b ³ G-z ³ G°
(206) | m4649.54
4665.902 | P
C | 35
Cr
35 | 3.54
3.54 | 6.20
6.19
6.33 | 3-3
1-1
3-3 | (233)
a ³ D-w ³ P• | | 4654.736
9009.95
9017.10 | C . | 35
100
75 | 3.31
3.31 | 5.73
4.68
4.68 | 0-1
-
3-2
2-3 | | *5237.35
5222.39
*5177.83
5196.443 | B
B
B | 10
10 | 3.43
3.42
3.41
3.43 | 5.79
5.78
5.79
5.81 | 4-3
3-4
5-5 | p3G-y3G• | 4430.486
4443.707
4422.697
4429.938 | 00000 | 30
30
10
20 | 3.54
3.54
3.54
3.54 | 6.33
6.33
6.33
6.33 | 3-1
1-0
3-2
1-1 | (234) | | 9021.69
5791.005 | A
C | 50
100 | 3.31
3.31 | 4.68
5.44 | 1-2
3-4 | z ⁵ P°-e ⁵ D | 5166.227
5139.654
5196.57 | C
C
B | 150
100
100* | 3.42
3.41
3.43 | 5.81
5.81
5.81 | 4-4
3-3
5-4 | (207) | 3520.55 | В | 0 | 3.54 | 7.04 | | a ³ D-u ³ G°
(235)
a ³ D-u ³ F° | | 5787.99
5785.820
5785.002
5783.934
5783.112 | 00000 | 75
50
50
50
50 | | | 2-3
1-2
3-3
2-2
1-1 | (188) | 5167.96
5137.94
4346.29
4851.465 | B
B
C | 30
13
40
35 | 3.42
3.41
3.43
3.42 | 5.81
5.81
5.98
5.96 | 4-3
3-4
5-6
4-5 | (308)
р ₃ с–ў ³ н• | 3385.31
3386.50
3390.77
3391.11 | B
B
B | 8
5
5 | 3.54
3.54
3.54
3.54 | 7.19
7.18 | 3-4
2-3
1-2
2-2 | (236) | | 5780.97
•5781.195
5781.806 | B
C
C | 10
40
40 | 3.31
3.31
3.31 | 5.44
5.44
5.44 | 3-2
3-1
1-0 | | 4831.627
4626.81 | Č
B | 15
8 | 3.41 | 5.96 | 3-4
4-3 | b ³ G-x ³ D• | 5361.754
5340.468
5307.281 | 000 | 50
60
30 | 3.68
3.65
3.68 | 6.03
6.01
6.01 | 3-4
2-3
3-3 | y ⁵ p•_f ⁵ D†
(237) | | 5313.37
5314.64
5316.17 | B
B
B | 18w
15w
12w | 3.31
3.31
3.31 | 5.67
5.67
5.67 | 3-2
3-3
1-3 | z ⁵ P°-f ⁵ 8
(189) | 4602.51
4596.38 | B
B | 7
6 | 3.43
3.42 | 6.13
6.11 | 5-5
4-4 | (309)
b3G-w3G•+ | 3902.108 | C | 10 | 3.65 | 6.82 | 3-3
2-3 | y ⁵ p°_e ³ D
(238) | | 4536.55
*4572.16
*4595.05 | B
B
B | 4
7w
5w | 3.31
3.31
3.31 | | 3-4
3-3
1-3 | z ⁵ p•_f ⁵ D
(190) | 4585.72
4560.26
•4595.05 | B
B | 3
1
5w | 3.43
3.41
3.43 | 6.13
6.11
6.13 | 5-5
3-3
5-4 | b ³ G_w ⁵ G°
(211) | 5698.330
5694.730
5682.483 | 000 | 100
75
75 | 3.86
3.84
3.82 | 6.03
6.01
5.99 | 5-4
4-3
3-2 | z5F°-f5D
(239) | | *4570.30
4593.84
4604.58 | B
B
B | 6
8v
5w | 3.31
3.31
3.31 | 6.01
5.99
5.99 | 3-3
2-2
2-1 | | 4585.088
4555.30
4532.75 | C
B
B | 18
15
10 | 3.43
3.42
3.41 | 6.13
6.13
6.13 | 5-4
4-3
3-2 | 7 (212) | 5642.362
5649.371
5648.18
5597.87 | C
C
F
B | 50
50
(1)
18 | 3.84
3.82
3.81
3.82 | 6.03
6.01
5.99
6.03 | 4-4
3-3
2-2
3-4 | | | 5400.608
•5391.350
5405.004
5390.394 | 0000 | 50
35
35
40 | 3.36
3.35
3.36
3.35 | 5.65
5.64
5.64
5.64 | 3-3
1-1
3-1
1-0 | (191) | 3983.237
3970.07
•3941.15 | C
B
B | 7
7
3 | 3.43
3.43
3.41 | | 5-6
4-5
3-4 | (213) | 5615.54
4275.973
4260.19 | P
C
B | 15
5w | | 6.74 | 2-3
5-5
4-4 | z ⁵ F°-e ⁵ F† | | 5386.978
5387.573
m5275.11 | C
C
P | 75
35
Cr | 3.35
3.35
3.36 | 5.65
5.64
5.70 | 1-3
0-1
3-3 | | 3806.829
3812.250
3814.622 | 000 | 10
12
13 | 3.43
3.42
3.41 | 6.68
6.66
6.64 | 5-5
4-4
3-3 | (214) | 4291.964
*4269.02
4244.33 | C
B
B | 15
5w
3w | 3.86
3.82
3.84 | 6.71 | 5-4
3-2
4-5 | _ | | 5280.289
5285.63
5293.383
5289.27 | C
B
C
B | 30
15
15 | 3.35
3.35
3.36
3.36 | 5.69
5.69
5.69
5.69 | 1-3
0-1
3-3
1-1 | (193) | 3736.45
3693.09
3689.63 | B
B
B | 4
5
6 | 3.43
3.42 | 6.74
6.78
6.76 | 5-4
5-6
4-5 | (315)
b ³ (Lw ³ H• †
(316) | 4148.52
4163.94
4174.795 | B
C | 2
2
10 | 3.84
3.83
3.81 | 6.82
6.79
6.77 | 4-3
3-2
3-1 | (241) | | 5221.753
5214.127 | CCC | 50
30
45 | 3.36 | 5.72
5.72 | 2-3
1-2
0-1 | _b 3p_w5 _D •
(193) | 3683.67
369 5.86 | B
B
B | 4n
5 | 3.41 | | 3-4
5-6
4-5 | b ³ G−v ³ H• | 6029.28
6047.665 | B
D | 18
18 | 3.83
3.83 | 5.88
5.87 | 6-6
5-5 | a ³ I-z ³ I°
(242) | | *5224.541
5226.891
5228.082
5240.94 | CCB | 50
50
20 | 3.36
3.35 | 5.72
5.72
5.72
5.72 | 3-3
1-1
3-1 | | 3671.94
3673.59
3345.14 | B
B | 1
2
5 | 3.41 | 6.77
7.18 | 3-4
5-5 | b ³ G-t ³ G• ↑ | 5746.432
5791.791
5801.14 | C
C
B | 25
20
30 | 3.83
3.83
3.83 | 5.98
5.96
5.96 | 7-6
6-5
5-4 | (243) | | | | | | | | | 3345.36 | В | 4 | 3.42 | 7,11 | 4-4 | | | | | | | | | | 42 | | | | | | | RLV | | _ | OLTI | | | TABLE | | | | | | | | |---|----------------------------|-----------------------------------|--|--------------------------------------|--|--|---|------------------|------------------------------|--|--|--|--|---|-----------------------|----------------------------------|--------------------------------------|--------------------------------------|--|---| | Labo
I A | ratory
Ref | | Low | P
High | J | Multiplet
(No) | Labo
I A | | ry
Int | Low | P
High | J | Multiplet
(No) | I A | rato
Ref | ry
Int | Low | P
High | J | Multiplet
(No) | | <u>Cr I</u> con | ntinued | 1 | | | | | <u>Cr I</u> con | tinu | eđ | | | | | <u>Cr I</u> con | tinu | eđ | | | | | | *4621.963
4625.925
4642.011
4625.65
4640.67 | C
C
B
B | 45*
20
10
1 | 3.83
3.83
3.83
3.83
3.83 | 6.49 | 7-7
6-6
5-5
7-6
6-5 | a ³ I-y ³ I°
(344) | 3989.986
4001.444
•4012.49 \$
4022.263
4031.130
4003.921 | C C B C D D | 15
25
20
18
7 | 3.88
3.87
3.87
3.87
3.87
3.88 | 6.97
6.96
6.95
6.94
6.93
6.96 | 5-6
4-5
3-4
3-3
1-3
5-5 | a ⁵ F_v ⁵ G [•] †
(268) | 8163.22
8235.89
8287.38
8322.06
8338.83
*8166.66 | A
A
A | 35
30
25
20
5 | 4.37
4.38
4.39
4.40
4.40 | 5.88
5.88
5.88
5.88
5.88 | 4-5
3-4
2-3
1-2
0-1
4-4 | o ⁵ D-v ⁵ F°
(298) | | 4614.523 | С | 12 | 3.83 | | 5-4 | a ³ I-1°
(245)
a ³ I-x ³ H° | 4014.668
4023.739 | ç | 10
8 | 3.87
3.87 | 6.95
6.94 | 4-4
3-3 | | 8238.29
8290.62 | Ã | 12
10 | 4.38
4.39 | 5.88
5.88 | 3-3
2-2 | | | 4571.83
4578.334
4563.245
•4572.16
4579.59
4573.38 | B
C
C
B
B
B | 12
12
15
?w
2
1gn? | 3.83
3.83
3.83
3.83
3.83
3.83 | 6.53
6.54
6.53
6.53
6.53 | 7-6
6-5
5-4
6-6
5-5
5-6 | a31-x3H°
(346) | 3716.531
3714.39
3712.50 | C
B
B | 10w
4w
1w | 3.88
3.87
3.87 | 7.20
7.20
7.20 | 5-4
4-4
3-4 | (269) | 8323.44
8018.04
8119.13
8185.69
8235.67 | A
A
A | 5
3
5
3 | 4.40
4.37
4.38
4.39
4.40 | 5.88
5.91
5.90
5.90
5.90 | 1-1
4-4
3-3
3-3
1-1 | e ⁵ D_v ⁵ D•†
(299) | | 4263.141
4280.405 | C | 35
25 | 3.83
3.83 | 6.73
6.73 | 7-8
6-7 | a ³ I-z ³ K°†
(247) | 4481.44
4268.788 | B | 18
10 | 3.96
3.96 | 6.73
6.85 | 6-7
6-6 | (270)
a1 _{I-z} 1 _I e | 8084.98
*8166.66
8216.28 | A | 10
7
5 | 4.38
4.39
4.40 | 5.91
5.90
5.90 | 3-4
3-3
1-3 | | | 4297.738
4193.662 | C
C | 30
40 | 3.83 | 6.71
6.78 | 5–6
7–6 | a ³ I-w ³ H° | 4304.471 | C | 13 | 3.96 | 6.90 | 6-5 | (271)
a ¹ I-u ³ H°
(272) | 7942.02
7989.36 | A | 25
12 | 4.37
4.38 | 5.92
5.93 | 4-5
3-4 | c ⁵ p_u 5p• †
(300) | | 4209.368
*4221.572
4193.89
4194.951 | C
C
B
C |
20
25
3
20 | 3.83
3.83
3.83
3.83 | 6.76
6.76
6.78
6.78 | 6-5
5-4
6-6
5-6 | (248) | 4192.103
3527.08 | ,C
B | 15
3N | 3.96 | 6.91
7.46 | 6–5
6–6
– | a ¹ I-z ¹ H°
(273)
a ¹ I-y ¹ I°
(274) | 8061.27
8128.28
8169.80 | A
A
B | 10
8
5 | 4.39
4.40
4.40 | 5.92
5.92
5.91
6.20 | 2-3
1-2
0-1
4-5 | c ⁵ D-t ⁵ F• | | 4197.234
*4186.359 | CC | 20
15 | 3.83 | 6.77
6.78 | 7–6
6–5 | a ³ I-v ³ H°
(249) | *4542.621
4495.275 | O | 35
12 | 4.09 | 6.80
6.83 | 4-4
4-3 | b ³ F_v³F ●
(275) | | _ | | | | - | (301) | | 4208.357
4197.47
4198.525 | C
B
C | 15
2
35 | 3.83
3.83
3.83 | 6.77
6.77
6.77 | 5-4
6-6
5-6 | | 4531.82
4524.841 | B | 2
15 | 4.08 | 6.80 | 3-4
4-4 | b ³ F-w ³ F• ↑ | *5373.715
*5391.350 | C | 30
35 | 4.44
4.43 | 6.73
6.72 | 6-5
5-4 | b ³ H-r ⁵ F°
(302) | | 4179.05
*4179.257 | B | 7
30 | 3.83
3.83 | 6.79
6.79 | 7-7
6-7 | a ³ I-z ¹ K° (250) | *4535.731
4553.949
*4521.141 | o
o | 60
18
25 | 4.08
4.08 | 6.80
6.79
6.81 | 3-3
3-3
3-3 | (276)
_b 3 _{F−v} 3 _D • | 4592.54
4606.375
4609.894 | B
C
C | 15
15
8 | 4.44
4.43
4.43 | 7.13
7.11
7.11 | 6-5
5-4
4-3 | b ³ H-t ³ G• †
(303) | | 4039.100
4048.780
4058.772 | CC | 20
20
20 | 3.83
3.83
3.83 | 6.89
6.88
6.87 | 7-7
6-6
5-5 | a ³ I-x ³ I°
(251) | 4561.54
4169.838 | B | 10w | 4.08 | 6.78 | 3-1 | (277) | 4376.798
m4371.28 | C
P | 25
Cr | 4.44 | 7.26
7.25 | 6-6
5-5 | b ³ H-t ³ H [•] †
(304) | | 4048.56
4057.81 | P
B | 8 | 3.83
3.83 | 6.8 8
6.87 | 7-6
6-5 | | 4170.202
4174.941 | 000 | 1
15
8 | 4.08
4.08 | 7.05
7.04
7.03 | 4-5
3-4
2-3 | (278) | 4373.656
4161.415 | C | 15
15 | 4.43 | 7.25
7.40 | 4-4
6-7 | _b 3 _{H−w} 3 _I • | | 4039.30
4049.783
m3605.52 | B
C
P | 5
5
Cr | 3.83
3.83
3.83 | 6.89
6.88
7.26 | 6-7
5-6
7-6 | a ³ I-t ³ H° | 4065.716
4076.061
4077.677 | 000 | 12
10
10 | 4.09
4.08
4.08 | 7.13
7.11
7.11 | 4-5
3-4
3-3 | b ³ F-t ³ G°
(279) | 4165.519
4142.193
4174.15 | C
B | 15
7
.3 | 4.43
4.43
4.44 | 7.39
7.41
7.39 | 5–6
4–5
6–6 | (305) | | 3608.401
3612.609
3458.090 | o
o | 10
4
10 | 3.83
3.83
3.83 | 7.25
7.25
7.40 | 6-5
5-4
7-7 | (353) | 3990.16
3976.30
3979,324 | B
B
C | 8
5
7 | 4.09
4.08
4.08 | 7.18
7.19
7.18 | 4-4
3-3
3-3 | b ³ F-u ³ F• †
(280) | 4043.696
4056.793
4071.000 | 000 | 7
5
5 | 4.44
4.43
4.43 | 7.49
7.47
7.46 | 6-7
5-6
4-5 | b ³ H-v ³ I•†
(306) | | *3467.022
3453.23
3376.397 | C
B
C | 12
10
10 | 3.83
3.83
3.83 | 7.39
7.41
7.49 | 6-6
5-5
7-7 | (253)
a ³ I-v ³ I° | 3564.30
3562.48
•3565.55 | B
B
B | 7
4
3 | 4.09
4.08
4.08 | 7.55
7.55
7.54 | 4-5
3-4
2-3 | b ³ F-s ³ G°
(381) | 3958.08
3979.22
3998.85 | B
B
B | 5
6
4 | 4.44
4.43
4.43 | 7.55
7.53
7.51 | 6-6
5-57
4-4 | b ³ H−s ³ H•
(307) | | 3391.372
3403.59 | C
B | 10
8 | 3.83
3.83 | 7.47
7.46 | 6 -6
5 -5 | (254) | 3569.14 | В | 5 | 4.09 | 7.55 | 4-4 | | 3562.29
3564.953
•3574.039 | B
C
C | 5
5
15 | 4.44
4.43
4.43 | 7.90
7.89
7.88 | 6-6
5-5 | ъ ³ н–q ³ н•
(308) | | 3316.503
3336.97
3353.026 | C
B
C | 5
4
6 | 3.83
3.83
3.83 | 7.55
7.53
7.51 | 7-6
6-5
5-4 | a ³ I-s ³ H°
(255) | 6661.076
6669.257 | CC | 50
40 | 4.17
4.16 | 6.03 | 4-4
3-3 | z ⁵ D°-f ⁵ D
(282) | | | | | | 4-4 | 7 7 - | | 6643.023
6677.24 | C
B | 15
10 | 3.83
3.83 | 5.69
5.68 | 3-4
2-3 | b ³ D_y ³ F°
(256) | 6657.54
6734.16
6715.38
6680.19
6597.556 | B
B
B
C | 30w
30
35
35w
40 | 4.14
4.17
4.16
4.14
4.16 | 5.99
6.01
5.99
5.99
6.03 | 2-2
4-3
3-2
2-1
3-4 | | 5263.750
5278.262
5287.62 | D
C
B | 40
40
10w | 4.47
4.45
4.43 | 6.82
6.79
6.77 | 4-3
3-2
3-1 | z ³ F°-e ³ 9
(309) | | 6701.64
5729.203 | B
C | 10
20 | 3.83
3.83 | 5.67
5.98 | 1-2
3-2 | b ³ D-x ³ P° | 6612.17
4796.169 | B | 40
-40w | 4.14 | 6.01
6.75 | 2-3
4-5 | z ⁵ D°-e ⁵ F † | 4503.05 | В | 13 | 4.68 | 7.43 | 2-1 | e ⁵ 8-x ³ 8•
(310) | | 5777.77
5371.48 | B
B | 25
50 | 3.83
3.83 | 5.97
6.13 | 3-1
3-4 | (257)
b ³ D-x ³ F° | 4783.06
4775.53 | E
B | 15w
10w | 4.16 | 6.74 | 3-4
2-3 | (283) | 4656.837 | Þ | 10 | | 7-41 | | a ¹ H-w ³ I [•] (311) | | 5368.546
*5373.715 | C | 35
30 | 3.83
3.83 | 6.13
6.13 | 2-3
1-3 | (258) | *4769.80
4816.41 | B
B | 4w
10w | (4.13
(4.12
4.17 | 6.70
6.74 | 1-3
0-1
4-4 | | 4564.166
3926.649 | C | 40
10 | | 7.46
7.90 | | a ¹ H-y ¹ I ^e
(312)
a ¹ H-q ³ H ^e | | 5362.98
5 367.78 | B
B | 25
10 | 3.83
3.83 | 6.13
6.13 | 3-3
2-2 | | 4805.24
4796.84 | B
B | 15w
12w | 4.16
4.14 | 6.73
6.71 | 3-3
2-2 | | 6135.759 | С | 25 | 4.80 | 6.82 | • | (313)
z ³ D°-e ³ D | | 4930.183
4944.59
4966.80 | C
B
B | 30
22
25 | 3.83 | 6.33
6.33
6.32 | 3-2
3-1
1-0 | b ³ D_w ³ P°
(259) | 3566.10
3568.36 | B
B | 25n
3w | 4.17
4.16 | 7.64
7.62 | 4-3
3-2 | z ⁵ D°-f ⁵ P
(284) | | | | | | • | (314) | | 4934.89
4949.58 | B
B | 15
12 | 3.83 | 6.33 | 2-2
1-1 | | 5285.38 | В | 7 | 4.17 | 6.50 | | b ¹ I-y ³ I° | *6762.41
6757.78
6751.28 | C
B
B | 40
25
40 | 5.26
5.25 | 7.08
7.08
7.08 | 6-6
5-5
4-4 | z ⁵ G°-e ⁵ G†
(315) | | 4146.20
4109.98 | B
B | 6
1 | 3.83 | 6.80
6.83 | 3-4
3-3 | b ³ D-v ³ F°
(260) | 5309.47
4595.590 | B | 8
45 | 4.17 | 6.49
6.85 | 6–5
6–6 | (285)
b ¹ .I-z ¹ .I° | 6744.66
6738.81 | B
B | 15
18 | 5.25
5.25 | 7.08
7.08 | 3-3
2-2 | | | 4093.06
4106.71
4089.63 | B
B
B | 4
0
2 | | 6.85
6.83
6.85 | 1-2
3-3
2-2 | | 4514.373
•4521.141 | C | 20
25 | 4.17
4.17 | 6.90
6.90 | 6-6
6-5 | (286)
b ¹ I-u ³ H°
(287) | 7908.30
7910.50 | A
A | 20
18 | | 7.16
7.16 | 6-5
5-4 | 2 ³ H°-e ³ G | | 4131.360
4152.775 | C | 10
10 | 3.83
3.83 | 6.82
6.80 | 3-4
2-3 | b ³ D-w ³ F° (261) | 4506.853 | c | 30 | 4.17 | 6.91 | 6-5 | b1 I-z1H0 | 7917.85 | Ã | 18 | | 7.16 | 4-3 | (316) | | 4175.227
4149.45
4171.675 | C
B | 8
5 | 3.83
3.83 | 6.79
6.80 | 1-2
3-3 | ,, | 3747.264 | C | 7 | 4.17 | 7.46 | 6-6 | (389)
(389) | Strongest | Uncl | | ed Lines | of <u>Cr</u> | I | | | 4171.675
4168.31
3907.778
3890.82 | C
B
C
B | 12
2
7
4 | | 6.79
6.79
6.99
7.00 | 3-2
3-3
3-2
3-1 | _{р3} р_ _v 3р• | 4757.326
4743.112
*4751.04 | C
C
B | 15
12w
5w | 4.22
4.18
4.17 | 6.82
6.79
6.77 | 2-3
1-2
0-1 | z ³ p•_e ³ D† | 7771.74
6789.17
5854.27
5796.757
5753.692 | A
C
B
C
C | 15
18
75
40
25 | v | | | | | 3510.40
3521.53 | B
B | 5
3 | 3.83 | 7.34
7.34 | 3-4
3-3 | b ³ D_t ³ F° (263) | 8167.94 | A | 4 | 4.19 | 5.70 | 3–3 | o ³ D-y ³ D° | 5712.635 | C | 10 | V | | | | | 3531.44
7185.50 | B — | 4
20 | 3.83 | 7.33 | 1 -2
- | | 4699.589
4723.18
4741.089 | C
B
D | 25
8
12 | 4.19
4.19
4.19 | 6.82
6.80
6.79 | 3-4
2-3
1-2 | (391)
c3D-w3F* †
(393) | 5681.198
5385.28
5370.356
5078.711 | C B C C | 60
20 ∀
40
40 | ٧ | | | | | 7188.06
7196.83 | B
B | 18
18 | 3.87
3.87 | 5.59
5.59
5.59 | 5-5
4-4
3-3 | a ⁵ F-X ⁵ F° †
(264) | 4488.051 | C. | 30 | 4.19 | 6.94 | 3–3 | c ³ D_v ⁵ G•
(393) | 4884.949
4752.084 | G | 25
50 | IIIA | | | | | 7207.85
7218.57 | B
B | 10 | 3.87 | 5.58 | 2-2
1-1 | E_ = | 4232.222
4000.59 | C
B | 15
4 | | 7.11
7.27 | 3-3
3-2 | c3p_t3g•
(294)
c3p_t3p• | 4614.73
4611.968
4594.403 | BCC | 10
15
8 | | | | | | 6529.197
6516.026 | D
D | 18
13 | 3.88
3.87 | 5.77
5.77 | 5-5
4-4 | a ⁵ F_₩ ⁵ F°
(265) | 8707.95 | A | 13 | 4.37 | 5.79 | | (295)
o ⁵ D_u ⁵ P° † | 4586.99 | В | 8 | *** | | | | | m4836.18
4840.22
4841.52
4841.73
4832.54 | P
F
P
B | Cr+
(1)
13 | 3.88
3.87
3.87
3.87
3.87 | 6.42
6.42 | 5-4
4-3
3-3
1-07 | a ⁵ F_t ⁵ D°
(266) | 8718.70
8732.17
8786.96
8773.56 | A
A
A | 8
3
4
5 | 4.38
4.39
4.38
4.39 | 5.80
5.80
5.79
5.80 | 4-3
3-2
3-1
3-3
2-2 | (396) | 4489.471
4403.498
4323.523
4301.178 | 0000 | 5 w
40
30
35 | IA
IA
IA | | | | | 4465.15
4490.56
4507.95 | B
B
B | 30
8w
4N | 3.88
3.87 | 6.64
6.62
6.61 | 5-4
4-3
3-2 | a5 _{F-8} 5 _{D° †} (267) | 8297.58 | A | 3 | 4.39 | 5.88 | 2–3 | c ⁵ D-x ⁵ H°
(297) | 4261.615
4206.899
4200.103
4126.925
3999.679 | 00000 | 13
10
13
6
7 | III
A
IA | Labore
I A | atory
Ref | | E P | ligh | J | Multiplet
(No) | Labor
I A | atory
Ref | | E P | | J | Multiplet
(No) | Labora
I A I | atory
Ref Int | E P
Low Hi | .gh | Multiplet
(No) | |---|------------------|---------------------------------|--|--|--
---|---|-----------------------|----------------------------------|--|--|---|--|--|--|---|--|--| | r I cont | inued | | | | | | Cr II con | tinue | đ | | | | | Cr II cont | tinued | | | | | 911.95
830.032
584.366
574.38 | B
C
D
B | (10n)*
50w
30w
3N | III
A
A
III
III | | | | *3180.73 \$ 3197.12 3209.21 3217.44 3181.428 3196.96 3208.62 | A
A
B
A | 75
75
50
50
20
20 | 2.53 6
2.53 6
2.53 6 | 5.37
5.41
5.39
5.38 | 42-43
33-33
23-23 | a ⁴ G-z ⁴ F° (9) | 5626.60
5497.86
•5419.36
5671.62
5525.90
5701.46 | P
P
A 1
P
P | 3.74 5.
3.70 5.
3.81 5.
3.74 5.
3.81 5. | 99 13-2
97 3-1
99 23-2
97 13-1 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 559.21
558.60
552.953
550.635
547.98 | C B C C B C C | 2N
7w
4w
10w
3n | IV
V
III
V
IV
IV? | | | ı | *3196.40
3935.18
3964.64
3985.96
3964.35
3986.03 | A PPPPPP | 3 | 2.69 5
2.69 5
2.69 5
2.69 5 | 5.83
5.83
5.81
5.79
5.81
5.79 | 2 2 -3 2
- | a ⁴ P_z ⁶ F° (10) | 5407.62
5346.54
5318.41
5510.68
5430.90
5249.40
5246.75 | A 10
A 5
A 4
A 7
A 10
A 10
A 15 | 3.81 6. 3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.74 6. 3.70 6. | 05 13-
02 3-
05 23-
02 13-
09 13-
05 3- | 13
13
13
13
15
15 | | 525.44
508.81
508.09
474.379
3411.01
3409.36 | B
B
C
B | 4N
5n
5
12
8n
7n | IA
III
III
III | | | | 3999.00
3985.74
3999.07
3748.68
•3761.90 | P
P
P
A | 7
8 | 2.69 5
2.69 5
2.69 5 | 5.78
5.79
5.78 | $ \begin{array}{c} \frac{1}{2} - \frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - \frac{1}{2} \end{array} $ | a ⁴ p_z ⁶ p° (11) | 5322.78
5153.49
5097.29
5305.85
5191.46
5116.06 | P 15 A 7 A 25 A 2 A 2 | 3.81 6.
3.74 6.
3.70 6.
3.81 6.
3.74 6.
3.70 6. | 12 ½-1
14 2½-2
13 1½-1 | 3 .
1.
1. | | 408.01
407.22
376.18 | B
B
E | 4n
5n
3n | IA
IA | | | | 3761.69
*3761.90
3631.49 | A
A | 7
8
50 | 2.69 5
2.69 5 | 5.97
5.97
6.09 | 2-12 | | 5346.12
5210.87
4777.78 | P
A 7
P | 3.81 6.
3.74 6. | 11 1 2 - | 1
2
3
3
5
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | 349.072
346.09
334.690
333.605
387.70 | C
C
C
B | 20w
5w
20w
15w
2M | A
III
III
III | | | | 3677.93
3712.97
3677.69
3713.04
3631.72
3677.86 | AAAAAA | 30
35
40
15
40
50 | 2.69 6
2.69 6
2.69 6
2.69 6 | 6.05
6.02
6.05 | 12-12
2-12
22-12
12-22
2-12 | a ⁴ P-z ⁴ P° (13) | 4679.87
4621.41
4805.18
4698.64
4824.97 | P
P
P
P | 3.74 6.
3.70 6.
3.81 6.
3.74 6.
3.81 6. | 37 1 -1
38 2 1 -2
37 1 1 -1
37 2 1 -1 | 14
14
14
14 | | 3254.95
5180.701
5096.531
5095.859
3963.73
3957.28 | B C C C B B | 2N
?
5w
?w
3w
3w | A
III
III
III
A | | | | 3593.02
3585.54
3603.80
3585.31
3603.86
3613.21
3603.61 | P
A
A
A
A | 40
40
60
30
30 | 2.69 | 6.13
6.14
6.13
6.14
6.13
6.11
6.13 | 23-32
12-22
2-12
23-22
12-12
23-12 | a ⁴ p _{-z} 6 _p ° (13) | 4179.43
*4111.01
4072.56
4207.35
4133.41
4086.14
4229.81 | A 12
A 18
A 4
A 7
A 8
A 1 | 3.81 6. 3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.78 6. | 74 12-2
73 2-1
74 22-2
73 12-1
72 2-1
73 22-1 | to the state of th | | rII I | P 16. | 6 Ana | 1 B L | | _ | | 3613.26
3336.16
3349.68 | A
A
P | 15
2 | 2.69 | 6.11
6.39
6.38 | 12- 2 | a ⁴ P-z ⁴ F* | 2976.718
*2961.732
2953.358
3011.42 | B 35
B 50
B 35
A 7 | 3.81 7.
3.74 7.
3.70 7.
3.81 7. | .88 1-
.91 2 1 -: | 3 b ⁴ P-y ⁴ D ⁶ †
1 (27) | | 5643.22
5644.70
5647.40
5651.68 | A
A
A | 10
10
8
12 | 3.44
3.43
3.41 | 5.86
5.83
5.81
5.79 | 33-43
23-33
13-23
13-23 | a ⁴ D-z ⁶ F° (1) | 3032.927
3047.76
•3059.521 | B
A
B | 30
25
25 | 2.69
2.69 | 6.76
6.74
6.73 | | a ⁴ P-z ⁴ D ^o (15) | 2984.69
2971.906 | A 10
B 75 | 3.74 7. | .88 1 1 - | 2 | | 675.00
669.69
665.48
662.62
5700.42
5688.01
5676.50 | P | | 3.44
3.43
3.41
3.47
3.44 | 5.79
5.78
5.81
5.79
5.78 | 3-3-3-3-3-3-3-3-3-3-1-1-1-1-1-1-1-1-1-1 | | 3047.63
*3059.521
3067.18
3059.41
m3067.23 | A
B
A
P | 25
20
10
Cr | 2.69
2.69
2.69
2.69 | 6.73
6.73
6.73 | 13-13
3-13
35-13
12-2 | | 2979.741
2985.325
2989.194
2988.056
2992.40
2994.737
2972.64 | B 80
B 75
B 70
C 12
A 10
B 30
A 10 | 3.74 7.
3.73 7.
3.72 7.
3.75 7.
3.74 7.
3.73 7.
3.73 7. | 85 3 2 -1
88 6 2 -1
86 5 2 -1
85 4 2 -1 | 5 a 4H-z 4H°
5 (28)
4 (28)
5 (28)
6 (28)
6 (28) | | 5494.52
5484.15
5475.13 §
5511.84
5495.37
5467.09 | A
A
A
A | 4
20
20
35
25 | 3.47
3.44 | 6.00
5.99
5.97
5.99
5.97
6.00 | 31-31
21-31
11-11
31-21
21-11 | a ⁴ D-z ⁶ P* (2) | 4458.84
4507.19
4544.70
4571.24
4504.52
4545.49
4572.83 | P P P P P P | | 3.09 | 5.86
5.83
5.81
5.79
5.83
5.81
5.79 | 35-45
35-35
15-35
35-35
35-35
15-15 | b ⁴ D-z ⁶ F° (16) | 5369.25
5410.39
5378.07
5409.28
5425.29 | P
P
P
P | 3.85 6
3.85 6
3.84 6
3.84 6
3.85 6 | • TO 15- | 4½ a ⁴ F-z ⁶ D [•]
3½ (29)
3½
1½ | | 8464.02
8462.73 | A
A
B
B | 4
6
150
125
75 | 2.43
3.41 | 3.3. | 2-+5 | a ⁴ D-z ⁴ P° (3) | 4588.40
4542.77
4573.63
4590.00
4236.33 | P
P
P | | 3.09
3.09
3.09
3.09 | 5.78
5.81
5.79
5.78 | 33-23
33-13
13-13 | | 5392.95
*5419.36
5430.41
5354.66
5395.41
5368.10 | P
A 1
P
P
P | 3.85 6
3.84 6
3.84 6 | .14 3]
.13 3] -
.11 1] - | 3 1
1 1
41 | | 3383.683
3403.323
3421.20
3363.71
3391.434 | B
B
A
B | 60
100
75
12
35 | 3.41
2.42
3.41 | 6.02
6.09
6.05 | 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | 4364.19
4380.33
4361.80
4381.03
4338.69
4363.49 | P
P
P
P | | 3.09
3.09
3.09
3.09
3.09
3.09 | 5.99
5.97
5.99
5.97
6.00
5.99 | 23-23
13-13
33-23
23-13
23-33
13-23 | b ⁴ D-z ⁶ P* (17) | 4834.13
4848.34
4864.33
4876.41
4860.30
4876.48 | A 75
A 60
A 50
A 50
A 30 | 3.85 6
3.85 6
3.84 6
3.84 6
3.85 6 | .41 4½-
.39 3½-
.38 3½-
.37 1½-
.39 4½- | 4 | | 3353.12
5349.34 \$
3324.060
3328.351
5374.95
5342.51 | A
B
B | 20
6
25
20
3
50 |
3.47
3.44
3.43
3.41
2.47 | 6.15
6.13
6.14
6.13
6.13 | 31-41-31-31-31-31-31-31-31-31-31-31-31-31-31 | a ⁴ D-z ⁶ D°
(4) | 4378.94
*4111.01
4173.60
4317.07
4113.34 | P
A
A
A | 18
2
1
5 | 3.09
3.09
3.09
3.09 | 6.09
6.05
6.02
6.09 | 31-21
21-12
11-2
21-21 | b ⁴ p-z ⁴ p•
(18) | 4884.57
4812.35
4836.22
4856.19 | P 10 A 25 A 25 A 20 | | .38 32-
.37 22-
.41 32-
.39 22-
.38 12- | 12
14
44
34
34 | | 3339.804
3336.330
3368.054
3358.501
3347.837 | B
B
B | 50
40
150
75
40 | 3.41
3.47
3.44
3.43 | 6.14
6.12
6.11 | 35-25
25-15
15- 5 | | 4171.92
4315.77
4113.59
4170.58 | A
A
P | 3
2
1 | | | | b ⁴ p_z ⁶ p ⁶ (19) b ⁴ p_z ⁴ F ⁶ (20) | 4242.38
4261.92
4275.57
4284.21
4233.25
4252.62 | A 30
A 30
A 30
A 10
A 10 | 3.85 6
3.85 6
3.84 6
3.85 6
3.84 6 | .73 2 2 -
.72 1 2 -
.76 3 2 -
.74 2 2 - | 3 2
3 2
2 2 | | 3133.058
3134.978
3130.371
3118.652
3147.237 | B
B
B | 125
100
75
60
50 | 3.47
3.44
3.43
3.41
3.47
3.44 | 6.39
6.38
6.37
6.39 | 14_24 | a ⁴ D_z 4F*
(5) | 4063.94
4053.45
4075.63
4061.77
4054.11 | P
P
P | 1 | 3.09
3.09
3.09
3.09 | 6.14
6.12
6.13
6.14 | 11-21
12-21
2-11
31-31
21-21 | (19) | 4269.28
4234.09
4246.41
3063.84 | A 10
P
A 3
A 7 | 3.84 6
3.84 6
3.85 7 | .76 2 3 -
.74 1 2 - | 3 }
2 } | | 3136.680
3128.699
3159.10
3145.10 | B
B
A | 40
40
5
10 | 2.44
2.43
2.47
2.44 | 6.38
6.37
6.38
6.37 | 25-25
15-15
35-25
25-15 | | 4076.87
4087.63
4051.97
4077.50 | A
A
A | 3
3
13
4 | 3.09
3.09
3.09
3.09 | 6.13
6.11
6.14
6.13 | 13-13
3-3
33-3
33-13 | | *3073.47
2966.051
3003.924 | A 8
B 40
B 35 | 3.85 7
3.85 8
3.85 7 | | 5½ a ⁴ F-z ⁴ H° 4½ (32) 3½ a ⁴ F-y ⁴ D° 3½ (33) 1½ | | 3670.16
3710.22
3742.99 | P
P
P | | 2.53
2.53 | | - | a ⁴ G-z ⁶ F*
(6) | 4088.90
3715.19
3738.38
3754.59 | A
A
A | 1
20
25
20 | | 6.11
6.41
6.39
6.38 | 31-41
32-31
11-21 | b ⁴ D-z ⁴ F° (30) | 3034.54
3055.44
2999.30 | A 15
A 12
A 8 | 3.84 7
3.84 7
3.84 7 | .96 4 5 - | 4 5 | | 3768.57
3709.25
3743.20
3769.37
3787.89
3671.12 | P
P
P
P | | 2.53
2.53
2.53
2.53
2.53
2.53 | 5.81 | 23 - 43 - 43 - 43 - 43 - 43 - 43 - 43 - | | 3765.62
3736.56
3755.13
3766.65
3753.26
3767.18 | A
A
A
P
P | 8
1
3
4 | 3.09
3.09
3.09
3.09
3.09
3.09 | 5.37
8.39
6.38
6.37
6.38
6.37 | 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | b ⁴ D-z ⁴ F° (20) | 5553.81
5721.02
5663.58
5806.31
5610.01 | P
P
P | | | | | 3710.01
3742.20
3556.130 | P
P
B | (1) | 2.53
2.53 | 6.00 | 42-32 | a ⁴ G_z ⁶ p•
(7) | 3360.295
*3379.825§
3393.86 | B
B | 100
60
30 | 3.09
3.09
3.09 | 6.76
6.74
6.73 | 31-31
31-31
31-31
11-11 | b ⁴ D-z ⁴ D°
(31) | 5464.36
5500.61
5446.57
5543.86 | P
P
P
P | 3.87 6 | .14 25- | 1 5 | | 3408.96
3432.32
3425.09
3441.14 | P
A
P
P | 3 | 2.53
2.53 | 6.15
6.13
6.14
6.12 | 51-41
41-31
31-31
31-31 | a ⁴ G-z ⁶ D ⁶
(8) | 3402.43
3378.337
3394.32
m3403.29
3361.770 | A
B
A
P
B | 25
25
35
Cr+
30 | 3.09
3.09
3.09
3.09
3.09 | 6.74
6.73
6.73
6.76 | 31-21
21-11
11-11
21-31 | b ⁴ D-z ⁴ D°
(31) | 5488.97
5566.06
4891.55
4964.34 | P
P
P | 3.87 6
3.89 6
3.87 6
3.89 6 | .11 1½-
.39 2½-
.38 1½- | 3½ a ² D-z ⁴ F°
3½ (36) | | 3409.79
3432.12
3434.43
3409.60
3431.45 | PPP | | 2.53
2.53
2.53
2.53 | 6.15
6.13
6.14
6.15
6.13 | 42-42
31-31
31-31
31-41
31-42
32-31 | a ⁴ G _{-z} ⁶ D ⁶
(8) | 3379.371
3393.00 | | 30
35 | 3.09 | 6.74
6.73 | 11-21
1-11
1-11
- | | 4930.28
4985.46
4941.03 | P
P | 3.87 6
3.89 6
3.87 6 | $.37 \frac{2}{12}$ | 07 | | 44 | | | | | | | HEV | 1 8 | ED. | MULT | IPL | ET T | RABLE | | | | | | | | |---|----------------------------------|---|--|--|--|--|--|---------------------------|--------------------------------|--|--|---|--|--|-------------------------------------|--------------------------------------|--|--|---|--| | IA | | Int | Low | P
High | J | Multiplet
(No) | IA | | Int | Low | P
H1gh | J | Multiplet
(No) | IA | | Int | Low E | P
High | J | Multiplet
(No) | | <u>Cr II</u> 4266.23 4328.91 4295.37 4352.68 4318.77 4368.20 | continu
P
P
P
P
P | | 3.87
3.89
3.87
3.89
3.87
3.89 | 6.76
6.74
6.74
6.73
6.73 | 13-25
23-25
13-15
23-13 | a ² D-z ⁴ D° (37) | 2985.02
2970.66
2968.67
2963.46
2956.60 | ontir
A
A
A
A | 7
3
15
20
10 | 4.13
4.16
4.15
4.14 | 8.32
8.31
8.31 | 3½-1½ 5½-5½ 4½-4½ | b ⁴ G-z ² D°
(56)
b ⁴ G-z ² P°
(57)
b ⁴ G-y ⁴ G°
(58) | Gr II o
3529.73
3540.28
3552.50
3558.22
3570.57
3571.64 | ontin
A
P
P
P
P
P | 3 | 4.41
4.40
4.41
4.40
4.41
4.40 | 7.90
7.88
7.88
7.86
7.86
7.85 | 52-52
42-42
53-42
42-32 | ь ³ н- г⁴н•
(89) | | 5104.03
m5210.88
5144.47
5243.50
5176.26
5267.10
4539.62 | P
P
P
P
P
A | Cr*+ 4 2 | 3.99
4.02
3.99
4.02
3.99
4.02 | 6.41
6.39
6.39
6.38
6.38
6.37 | 25-25
35-25
25-15 | a ² F-z ⁴ F° (38) | *2965.19
2955.71
*2961.732
2959.97
2951.95
2955.12
2951.40 | A
B
A
A | 50
18
10
10 | 4.15
4.14
4.15
4.14
4.15
4.14 | 8.33
8.33
8.33
8.33 | 41-31
32-32
51-41
42-33
42-42 | b ⁴ G-y ⁴ F°†
(59) | 3339.90 | A
A
A
A | 5
0
10
15
30
20 | 4.41
4.40
4.41
4.40
4.41
4.40 | 8.05
8.07
8.07
8.06
8.11
8.09 | 44-44
54-44
42-32 | b ² H-z ⁴ I° (90) b ² H-z ² G° (91) | | 4565.78
3177.90
3026.85
3061.59
3038.52 | A
A
A
A | 10
1
20
8
3 | 4.03
4.03
3.99
4.02
3.99 | 6.73
7.91
8.07
8.06
8.06 | 3½-1½ | a ² F-z ⁴ D°
(39)
a ² F-y ⁴ D°
(40)
a ² F-z ⁴ G°
(41) | *3421.62
3460.03
3450.84
3270.14 | A
A
A | 4
1
3
40 | (4.30
(4.38
4.30
4.38
4.30 | 7.88
7.86
7.85 | 42-32 | | 3384.67
3157.52
3147.84
3135.74
3134.33
3143.91 | P
A
A
A | 1
1
30
25
7 | 4.40
4.41
4.40
4.41
4.40
4.41 | 8.11
8.32
8.32
8.34
8.33
8.33 | 52-52
42-52 | b ³ H-y ⁴ G ⁶
(93)
b ³ H-z ³ I ⁶
(94) | | 3071.03
2999.96
3034.99
3012.34
5237.34 | A
A
A | 25
10
2
 | 4.02
3.99
4.02
3.99 | 8.04
8.11
8.09
8.09 | 31-41
21-31
31-31
-
-
41-41 | a ³ F-z ³ G° (43) | 3264.26
3250.79
3245.31
3247.01
3268.48
3288.04 | AAAA | 35
10
5
4
10
15 | 4.28
4.30
4.28
4.30
4.38 | 8.06
8.07
8.10
8.08
8.05 | 53-63
43-53
43-43
53-42 | a ² H-z ⁴ G [•] (61) a ² H-z ⁴ I [•] (62) | 3026.647
3041.74
3050.75
3017.80 | B
A
D
A | 80
50
4
5 | 4.41
4.40
4.41
4.40 | 8.49
8.45
8.45
8.49 | 52-52
42-42
52-42
42-52 | b ² H-z ² H• (95) b ² H-y ⁴ H• | | 5274.99
5313.59
5334.88
5279.92
5308.44
5337.79
5232.50
5280.08 | A
A
A
A
A | 20
25
40
15
20
12
15 | 4.05
4.05
4.06
4.05
4.06
4.05
4.06 | 6.39
6.38
6.37
6.39
6.38
6.37
6.41
6.39 | 32-32-32-32-32-32-32-32-32-32-32-32-32-3 | (43) | 3238.77
3234.06
3219.79
3053.65
3050.137
3040.92 | A
A
A
B | 50
50
10
10 | 4.38
4.38
4.38
4.38 | 8.11
8.09
8.11
8.33 | 4 } _5 | a ² H-z ² G*
(63)
a ² H-y ⁴ G*
a ² H-z ² I*
(65) | 3625.30
3621.51
3644.12
3635.43 | A
P
D
P | (1) | 4.41
4.48
4.48
4.48 | 7.88
7.86
7.86
7.85 | -
41-51
31-41
42-41 | b ² H-x -y-
(97)
(97)
a ² G-z ⁴ H-
(98) | | 5310.70
4558.659
4588.217
4618.83
4634.11
4555.02
4592.09 | A
B | 12
100
75
35
25
20
20 |
4.05
4.06
4.05
4.06
4.05
4.05
4.05 | 6.38
6.76
6.74
6.73
6.72
6.76
6.74 | 1] -3 | b ⁴ F-z ⁴ D ⁶ (44) | 3057.86
2953.706
2969.67
3400.08 | A
B
A | 13
45
15
——— | 4.30
4.28
4.30 | 8.33
8.33
8.45
8.45 | 4}-4} 5½-4½ | a ² H-z ² H• † (66) a ² P-y ⁴ D• | *3658.19
3428.94
3399.54
3395.62
3415.47 | A
A
A
D | 20
7
18
20
1 | 4.48
4.48
4.46
4.48 | 7.85
8.06
8.11
8.09
8.09 | 41-41
31-31
42-31 | a ² G-z *G*
(99)
a ² G-z ² G*
(100) | | 4616.64
4558.83
4589.89
3225.44
3117.28
3162.46 | A
P
A
A | 18
3
8
15 | 4.05
4.06
4.05
4.06 | 6.73
6.76
6.74
7.88
8.01 | 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | b ⁴ F-z ⁴ H° (45)
b ⁴ F-y ⁴ D° | 3482.58
3430.42
3369.05
3291.75
3186.75
3154.10 | AAAAA | 12
3
18
40
18
3 | 4.36
4.38
4.36
4.38
4.36
4.38 | 7.91
7.88
8.03
8.03
8.24
8.19 | 12- 2
12- 2
2- 2 | | 3199.87
3079.34
3087.90
3104.29
3077.24
3077.79 | A
A
A | 10
15
20
3
18
25 | 4.48
4.48
4.48
4.48
4.48 | 8.31
8.49
8.45
8.45
8.47 | 41-51
31-41
41-42 | a ² G-y ⁴ G ⁹ (101) a ² G-z ² H ⁹ (102) a ² G-z ² F ⁹ (103) | | 3203.53
3229.38
3115.65
3164.28
3042.79
3071.58 | A
A
A
A | 15
8
20
4
25
7 | 4.05
4.06
4.05
4.05
4.06
4.06 | 7.96
7.91
7.88
8.01
7.96
8.11
8.07 | 31-21
21-1
31-31
32-31
41-51
31-41 | (46) b ⁴ F-z ⁴ G [•] | 3163.93
3159.03
3125.02
3194.63 | A
A
A | 10
20
15
10 | 4.28
4.36
4.28
4.36 | 8.18
8.27
8.23
8.23 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ² P-z ² D° (70) | 3061.14
3954.67
*3957.56 | P
D
A | 10 5 | 4.46
4.48
4.46
 | 8.65
8.63
6.76 | 4½-4½
3½-3½ | a ² G_y ² G*
(104) | | 3085.36
3093.97
3073.25
3083.62
3094.94
3045.53
3056.68 | A
A
A
A | 10
15
15
10
10 | 4.06
4.05
4.06
4.05
4.06 | 8.06
8.04
8.07
8.06
8.04 | 22-32
12-32
42-43
32-32
22-32 | | 3103.48
3172.08
3084.46
3121.05
3121.84
3074.91 | A
A
A | 30
40
15
8
10 | | | 12-12
12-12
12-12
12-12 | (71)
a ² P-y ⁴ F°
(73) | 6139.23
6195.18
6239.77
6112.26
6176.95
6226.66
6070.08
6147.15 | A A A A A A A | 7
3
1
2
2
1
2
3 | 4.73
4.74
4.74
4.73
4.73
4.74
4.73 | 6.76 | 15-15
35-35
35-15
15-5
25-35 | (105) | | 3043.90
3058.38
2958.20
5478.35 | A
A
A | 8w
18
12
1 | 4.06 | 8.23 | 2 1 -11 | b ⁴ F-z ² G ⁶ (48) b ⁴ F-z ² D ⁶ (49) b ⁴ G-z ⁴ F ⁶ | 3074.67
3034.05
3008.67
3557.85 | A
A
A | 3
5
3 | 4.36 | 8.43 | 1½-1½
1½-3½ | a ² P-x ⁴ D ⁶
(73)
a ² P-z ⁴ S ⁶
(74)
a ² P-z ² F ⁶
(75) | 6308.18
3895.16
3513.03
3565.31
3584.01 | A
A
A
P | 3
2
10
5 | 4.74
4.74
4.73
4.73
4.74 | 7.91 | 13-25
2-12
2-12
33-23
23-13
12-2 | c ⁴ D-y ⁴ D ⁶
(106)
c ⁴ D-y ⁴ P ⁶
(107) | | 5502.05
5508.60
5503.18
5455.80
5472.63
5477.45 | A
A
A
P | 12
8
8
1
3 | 4.15
4.14
4.13
4.15
4.14
4.13 | 6.39
6.38 | 32-32
32-32
32-32 | b ⁴ G-z ⁴ F°
(50) | 3566.37
•3466.25
3508.67
3376.27 | A
P
A | 1 2 | 4.40
4.39
4.40
4.39
4.40 | 7.96
7.91 | 31-21
21-11 | b ² F-z ⁴ H° (76)
b ² F-y ⁴ D° (77)
b ² F-z ⁴ I° (78) | 3518.62
3571.37
3588.30
3524.54
3575.69 | A
A
P
P | 3
3
2 | 4 84 | 8.18
8.24
8.19 | 12-23
12-23
2-12 | 4- 2 | | 3295.427
3307.044
3311.929
3312.18
3315.29
3322.69
3323.53 | C | 50
50
40
40
12
13
8 | 4.15
4.14
4.13
4.16
4.15 | 7.85 | $3\frac{2}{2} - 3\frac{2}{2}$ | b ⁴ G-z ⁴ H [•]
(51) | 3357.40
3367.42
3324.346
3335.28
3212.53 | A
A
B
A | 40
13
50
40
20 | 4.40
4.39
4.40 | 8.11
8.09
8.24 | 31-41
21-31 | b ² F-z ⁴ I° (78) b ² F-z ⁴ G° (79) b ² F-z ² G° (80) b ² F-y ⁴ P° (81) | 3478.17
3528.23
•3489.45
3438.46
3445.04 | A
A
A | 3
1
2
0
5 | 4.72
4.73
4.74
4.72
4.73 | 8.31
8.31 | 34-34
32-32 | (108)
(108)
(109)
(109)
(109) | | 3193.41
3131.54
3143.68
3154.04
3122.596 | A
B | 3
5
7
5d
30 | 4.16
4.15
4.14 | | | b ⁴ G-y ⁴ D ⁰
(53)
b ⁴ G-z ⁴ I ⁰
(53)
b ⁴ G-z ⁴ G ⁰ | 3247.33
3183.325
3216.55
3179.45 | B
A
A | 8
40
20
8
15 | 4.40
4.39
4.39 | 8.23 | 31-21
31-11
31-21
31-11 | b ² F-z ² D•
(82) | 3426.13
3437.93
3444.34
3449.28
*3376.72
3382.79 | D A A A P | 8
2
4
2
5 | 4.73
4.74
4.74
4.73 | 8.38
8.38 | 구-1호
3출-3출 c
3출-2출 | 04D_y4F°
(111)
04D_x4D°
(112) | | 3147.19
3150.11
3149.83
3154.66
3159.86
3160.11
3115.28
3137.55
3139.91 | P
A
A
P
A
A
A | 20
20
5
31
12
8 | 4.15
4.14
4.13
4.16
4.15
4.14
4.15
4.14 | 8.06 | 43-34-43-54-43-43-33-43-33-33-33-33-33-33-33-33-33 | b ⁴ G-z ⁴ G•
(54) | 3149.12
3145.77
3142.74
3098.16
3095.22
3098.88
*3094.94 | A A A A A | 15
10
18
3
3 | 4.40
4.39
4.40
4.39
4.40 | 8.38
8.38
8.38 | 31-21
21-11 | (83)
b ² F-y ⁴ G ⁶
(84)
b ² F-y ⁴ F ⁶
(85)
b ² F-x ⁴ D ⁶
(86) | 3387.98
3278.79
3201.26
3205.11
3212.91
3229.89
3200.45 | A A A A A A | 3
25
25
25
18
10 | 4.72 | 3.49
3.58
3.58 | 1 2 -12
3 2 -32 c | 4 _{D-z} 2 _F • (113) 4 _{D-x} 4 _F • (114) | | 3125.46
3131.54
3118.14
3121.97
3108.66
3111.95 | A
A
A
A | 7
5
10
7
10
15 | | 8.11
8.09
8.11
8.09
8.11 | | ₀ 4 _{G—z} 2 _G •
(55) | 3015.510
3028.125
3031.63
3012.01
3004.47 | B
B
A
A | 10
50
40
1
1 | | 8.49
8.47
8.47
8.49 | 3 1 - 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | b ³ F_z ³ F•
(87)
b ³ F_y ⁴ H•
(88) | 3208.02
3226.36
3164.48
*3196.40
*3072.47
3102.58 | A A A A | 8
4
1
3
8 | 4.74 8
4.74 8
4.74 8 | 3.64
3.60 | 13-23 c
13-13 | 4 _{D-y} 2 _D 0
(115)
4 _{D-y} 2 _F 0
(116) | | | | | | | | | | | | | | _ | • | | re- | | | | | | | Lab
I A | oratory
Ref | Int | E : | P
High | J | Multiplet (No) | Labor
I A | ator;
Ref | | E F | | J | Multiplet (No) | | atory
Ref I | int | Low E P | High | J | Multiplet (No) | |---|------------------|--|--------------------------------------|--------------------------------------|---|--|--|------------------|----------------|------------------------------|--------------------------------------|---|--|--|------------------|-----------------------|------------------------------|--------------------------------------|--|--| | Cr II | ontinue | à | | | | | Cr II cor | tinu | ed | | | | | <u>Cr II</u> cor | tinued | | | | | | | 3727.37
3737.55
3751.60 | A
A
A | 40
10
3
Irl | 4.76
4.75
4.75 | 8.07
8.06
8.04 | | b ² G-z ⁴ G° (117) | 3461.28
*3466.25
m3482.56
3445.20 | A
A
P
P | 3
2
Cr+ | 4.92 | 8.49
8.47
8.47
8.49 | 31-31
21-21
31-21
21-31
21-31 | c ² F-z ² F°
(148) | 4127.08
4170.86
4181.50
4116.66 | A
A
A | 3
1
1
2 | 5.65
5.64
5.65
5.64 | 8.64
8.60
8.60
8.64 | $\begin{array}{c} 2\frac{1}{2} - 2\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 2\frac{1}{2} \end{array}$ | e ² D-y ² D•
(181) | | 3686.67
3698.00
3705.40
3679.34 | A
P
P | 20
35 | 4.76
4.75
4.76
4.75 | 8.11
8.09
8.09
8.11 | 35-45 | b ² G-z ² G°
(118) | 3374.99
3377.36
•3376.72 | A
A
A | 8
5
5 | 4.92 | 8.58
8.58
8.56 | | c ² F-x ⁴ F° (149) | 4048.02
4056.07
4066.16 | P
A
P | 4 | 5.64 | 8.68 | 25-25 | c ² D-x ⁴ G°
(182) | | 3313.08
3335.93
3341.98 | Å
A
A | 20
4
5 | 4.76
4.75
4.76 | 8.49
8.45
8.45 | 41-51
31-42
42-42 | b ² G-z ² H° (119) | 3306.95
3314.57
3329.45 | A
A | 50
35
4 | | 8.65
8.63
8.63 | | c ² F-y ² G°
(150) | 3979.51
*4012.50 \$
4022.36 | A
A
A | 20
30
3 | 5.64 | 8.75
8.71
8.71 | | c ² D-y ² F° (183) | | 3310.65
3324.10
3304.73 | A
A
A | 35
20
5 | 4.76
4.75
4.75 | 8.49
8.47
8.49 | 42-32
32-22
32-32 | b ² G-z ² F* | 3275.92
3258.01
m3269.75 | A
A
P | 10
3
Cr+ | | 8,69
8.69
8.68 | 3½-4½ 3½-3½ 3½-3½ | c ² F-y ² H°
(151)
c ² F-x ⁴ G°
(152) | 3528.13
m3484.16
*3489.45 | A
P
A | 7
3r+
2 | 5.65 | 9.15
9.19
9.17 | 23-33 | c ² D-x ² F°
(184)
c ² D-w ⁴ F°
(185) | | 3266.25
3279.54 | A
A | 8
5 | 4.76
4.75
4.76 | 8.54
8.52
8.58 | 42-52
32-42 | b ² G-y ⁴ H° (121) | 3227.48
3241.38
3255.62 | A
A
A | 3
4
3 | 4.93
4.91 | 8.75
8.71
8.71 | | c ² F-y ² F•
(153) | 3125.79
3113.59 | A
A | 5
5 | | | | c ² D-y ² P° (186) | | 3231.64
3169.20
3184.36
3189.85 | A
A
A | 8
25
15
12 | 4.76
4.75 | 8.65
8.63
8.63 | | (122)
b ² G-y ² G*
(123) | 3213.46
3044.24
3038.04 | A
A | 3
10
6 | 4.91
4.93
4.91 | 8.75
8.98
8.97 | <u> 25−05</u> | c ² F-x ² G°
(154) | 6089.69
6179.17
6188.00 | A
A
P | 15
10 | 6.46
6.46
6.46 | 8.49
8.45
8.45 | -
4½-5½
3½-4½
4½-4½ | d ² G-z ² H° (187) | | n3163.77
3140.21 | P
A
A | 0r
25
20 | 4.75 | 8.65
8.69
8.69 | 25-45 | b ² G-y ² H°
(124) | 4227.73 | A | 1 | 4.96 | 7.88 |
6출-5출 | b ² I-2 ⁴ H° | 6081.51
6138.77 | A
A | 3 | 6.46
6.46 | 8.49
8.47 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-2\frac{1}{2}}$ | d ² G-z ² F°
(188) | | 3135.35
3140.67
3093.48 | A
A | 1
40
50 | 4.76
4.76
4.75 | 8.69
8.75
8.73 | 44-51 | b ² G-x ⁴ G°
(125) | 3650.37
3664.95
3661.44
3653.85 | A
A
A
P | 40
30
3 | 4.96
4.97
4.96
4.97 | 8.34
8.33
8.33
8.34 | 63-63
53-53
63-53
53-63 | b ² I-z ² I°
(156) | 5620.63
5678.42
4901.65 | A
A | 12
10
15 | 6.46
6.46 | 8.65
8.63
8.98 | | d ² G-y ² G°
(189)
d ² G-x ² G°
(190) | | 3107.58
3112.81
m3132.12
3142.97 | A
P
P
A | Cr*+
8 | 4.76
4.75
4.75 | 8.73
8.69
8.68 | 43-4
33-3
32-2 | | *3503.36 \$
3539.00
*3506.61 | A
A
A | 3
4
1 | 4.96
4.97
4.97 | 8.49
8.45
8.49 | | b ² I-z ² H° (157) | 4912.49
4465.78
4511.82 | A
A
P | 12
4 | 6.46 | 9.22
9.19 | 41-51
31-41 | (190)
d ² G-x ² H•
(191) | | 3096.11
3116.76
3090.94 | A
A
A | 35
20
2w | 4.76
4.75
4.75 | 8.75
8.71
8.75 | 32-3 | b ² G-y ² F° (126) | *3310.65
3314.06 | A
A | 35
18 | 4.96
4.97 | 8.69
8.69 | 6)-5)
5)-4) | b ² I-y ² H° (158) | 4516.56
4256.16
4268.93 | P
A
A | 5
1 | 6.46
6.46
6.46 | 9.19
9.36
9.35 | 45-45 | d ² G−w ² G°
(192) | | 4161.27
4161.56
4186.08 | P
P
P | egican agramatica di della | 4.92
4.90
4.92 | 7.88
7.86
7.86 | 43-5
33-4
43-4 | c ² G-z ⁴ H°
(127) | 3258.77
3283.04
3261.56 | A
A | 30
20
4 | 4.96
4.97
4.97 | 8.75
8.73
8.75 | | b ² I-x ⁴ 6°
(159) | 4070.90
4049.14
4067.05 | A
A
P | 10
18 | | 9.49
9.50
9.49 | 41-31
31-21
31-31 | d ² G-w ² F•
(193) | | 4179.92
4204.66
3905.88 | P
P | | 4.90
4.92 | 7.85 | 42-3 | 2 _{0-z} 4 ₁ • | •3965.19
4195.41 | A | 10 | 5.30 | 9.13 | _ | b ² I-1°
(160)
b ² D-y ⁴ P°
(161) | 4038.03
4003.33
4007.04 | A
A
P | 25
25 | 6.46 | 9.52
9.54
9.54 | | d2G-w2He | | 3915.30
3936.95
3862.17 | P
A
P | 1 | 4.90
4.92
4.92 | 8.05
8.05
8.11 | 42-4 | (128) | 4278.10
4145.77
4224.85 | A
A | 1
25
30 | 5.31
5.30
5.31 | 8.19
8.27
8.23 | 12-12
23-21
12-12 | (161)
b ² D-z ² D•
(162) | 3089.75 | A - | 1 | | | | d ² G-u ² F°
(195) | | 3889.90
3911.32
3909.25
3930.88
3924.65 | P
A
P
P | 3 | 4.90
4.93
4.90
4.93
4.90 | 8.07
8.07
8.06
8.06
8.04 | 3-4
43-4
33-3
43-3
32-3 | c ³ G-z ⁴ G•
(139) | 4209.03
4161.05
4135.77
4185.50 | A
A
P
P | 3 2 | 5.31 | 8.23
8.27
8.28
8.26
8.28 | 15-05 | b ² D-z ² P°
(163) | 6418.87
6271.83
6168.46
6415.59
6282.92
6274.94 | A
A
A
A | 7
5
2
1
2 | 6.61
6.58 | 8.58
8.58
8.58
8.58
8.58 | 32-33-33-33-33-42- | c ⁴ F-x ⁴ F ⁶
(196) | | 3866.54
3866.01 | A
A | 7
5 | 4.92
4.90 | 8.11
8.09 | 41-4
32-3 | c ² G-z ² G•
(130) | 4151.00
4089.49 | A
A | 5
2 | 5.31
5.30 | 8.31 | a <u>}</u> −a | b ² D-y ⁴ G° | 6068.00
6069.69 | A | 7 | 6.66
6.66 | 8.69
8.69 | | c ⁴ F-y ² H° (197) | | 3696.78
3614.26 | A
A | 8
2 | 4.90
4.90 | 8.34
8.31 | 21 2 | c ³ G-y ⁴ P°
(131)
c ³ G-y ⁴ G°
(132) | 4081.21
4082.30
4098.44 | A
A | 10
8 | 5.30
5.30
5.31 | 8.32
8.32
8.32 | 21-3
23-2
13-1 | b ² D_y ⁴ F ⁶
(165) | 5895.90
5841.86
5827.24 | A
A
A | 4
5
5 | | 8.75
8.73
8.69 | 41-51
31-42 | c ⁴ F-x ⁴ G [•] (198) | | 3608.66 | A | 3 | 4.90 | 8.32 | 3 } _2 | (133)
(133) | 4002.48
4017.96 | A | 5
3 | 5.30
5.31 | 8.38
8.38 | 3-3
1-3 | b ² D-x ⁴ D°
(166) | 5110.43 | A
A | 2 | 6.66 | | 2½-3½
4½-3½ | c ⁴ F-w ⁴ D°
(199) | | 3563.92
3547.10
3546.15 | A
P | 5 3 | 4.90 | 8.38
8.38 | 44-3
34-2
32-3 | (133)
(133)
(134) | 3865.59
3905.64
3892.14 | A
A
A | 75
25
4 | 5.30 | 8.49
8.47
8.47 | 23-3
13-2
22-2 | b ² D-z ² F*
(167) | 4857.60
5137.09 | A - | 2
 | 6.66 | | _ | (200) | | 3457.62
3472.07
3489.07 | A
A
A | 30
25
2 | 4.92
4.90
4.92 | 8.49
8.45
8.45 | 45-5
35-4
45-4 | c ² G-z ² H° (135) | 3701.90
3694.98 | A | 4 | 5.30
5.30 | 8.63
8.64 | 01 71 | b ² D-y ² G°
(168)
b ² D-y ² D° | 5091.14
5076.15 | A
A
A | 2
4 | 6.80
6.79 | 9.22 | $1\frac{1}{2} - 1\frac{1}{2}$ $2\frac{1}{2} - 1\frac{1}{2}$ | c ⁴ P-x ⁴ P°
(201) | | 3454.98
3459.29 | A
A | 35
25 | 4.92 | 8.49
8.47 | $\frac{4\frac{1}{2}-3}{3\frac{1}{2}-3}$ | cag_zar•
(136) | 3707.13
m3631.48 | A
A
P | 3
Cr+ | 5.31 | 8.64 | 15-03 | i (109) | Strongest | Uncla | ssified | l Lines | of C | · II | | | 3301.21
3308.15
3285.96 | A | 18
18
20 | | 8.65
8.63
8.65 | 41-4
31-3
32-4 | c ² G-y ² G•
(137) | 3576.23
3622.45 | A
P
A | 1 | 5.31
5.30 | 8.68
8.75
8.71 | | b ³ D-x ⁴ G°
(170)
b ² D-y ² F°
(171) |
6305.60
5913.87
4952.78
3814.00 | A
A
A | 4
3
10
12 | | | | | | 3269.77
3255.30 | A
A | 15
15 | 4.92
4.90 | 8.69 | | c ² G-y ² H°
(138) | 3610.85
3276.28 | P
A | 1 | 5.30 | 8.71 | | | 3801.21
3778.69 | A
A | 10 Cr : | I? | | | | | 3235.26
3219.13 | | 4
18 | 4.90
4.92 | 8.71
8.75 | 3 1 -2-2- | 1 c2d_y2F°
(139)
1 c2d_x4d° | *3286.34 \$ | | ō
15 | 5.31 | | 11-3 | b ² D-w ⁴ D°
(172)
b ² D-x ² F° | 3750.56
3711.29
3495.56 | A
A
A | 12
7
20 | | | | | | 3225.39
3240.07 | A | 12 | 4.90 | 8.73
8.73 | 3 1 - 4
4 2 - 4 | 2 c ² G_y ² F°
(139)
1 c ² G_X ² G°
(140) | 3178.79
3169.85 | Ā | 7
2w | 5.31 | 9.19 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | b ² D-x ² F• (173) | 3198.00 | A | 15 | | | | | | * 29 57.56 | A | 5 | 4.90 | 9.07 | 3 } -3 | 2 c ² G-w ⁴ D°
(141) | 3190.69
3141.80 | A | 6
4 | 5.31
5.30 | 9.17 | 12-3
32-1 | b ² D-w ⁴ F°
(174)
b ² D-x ⁴ P° | Mn I I | P 7.40 |) Ana: | 1 B I | ist B | Мау | 1941 | | 3945.11
3874.41 | | (1) | 4.93 | 8.05
8.11 | 3 2 -4
33-4 | 2 c ² F-z ⁴ I°
(142)
3 c ² F-z ² G° | 4761. 43 | A | | 5.65 | 8.24 | | (175)
c ² D-y ⁴ P°
(176) | 5394.674
5432.548 | B
B | 10
4 | 0.00 | 2.29
2.27 | 21-3 | a ⁶ S-z ⁸ P° | | 3874.76
3895.12 | P | 1 | 4.91
4.92 | 8.09
8.09 | 2 1 -3
3 1 -3 | 2 c ² F-z ² I ² (143)
2 c ² F-z ² G ² (143) | 4832.97
4697.63 | P
A | 2 | 5.64
5.65 | | | | 4030.755
4033.073 | В | 300R
150R | 0.00 | 3.06
3.06 | $2\frac{1}{2} - 3$ | a ⁶ S-z ⁶ P° (2) | | 3723.40
3756.55 | | 15
3 | 4.50 | 8.24
8.19 | 2 2 -1 | 2 (144) | 4684.77
4715.12 | A
D | 1 | 5.65
5.64 | 8.28
8.26 | 21-1
12- | c ² D-z ² D°
(177)
c ² D-z ² P°
(178) | 4034.490
3224.761 | В | 100R
10 | 0.00 | 3.06
3.83 | 23-23 | a ⁶ S-z ⁴ P° | | 3684.25
3715.45
3666.02 | A | 25
20 | 4.91 | 8.27
8.23
8.27 | | c ² F-z ² D° (145) | 4671.36
4341.09
•4362.93 | | 7
3 | 5.64
5.65
5.64 | 8.49
8.47 | 21-3 | c ² D_z ² F° | 3216.946
5341.065 | B - | 20 | | 4.43 | | | | •3658.19
3625.92 | | 30 | 4.91 | 8.28 | 3}1
314 | 121c ² F-z ² P°
(146)
1 c ² F-v ⁴ F° | 4374.61 | P
P | | 3.03 | 0.41 | 25-2 | 2 | 5420.362
*5481.396
5407.424 | B
B
B | 10
4
5 | 2.15
2.13 | 4.41
4.41
4.43 | 32-3
32-3 | a ⁶ D_y ⁶ P•
(4) | | 3615.45
3633.16
3616.29
3634.04
3617.32 | P
P
P | 10
7 | 4.91
4.92
4.91
4.93 | 8.32
8.32
8.32
8.32 | 32-3
32-3
32-3
32-3
32-3 | (146)
(146)
(2F_y4F**
(147) | 4199.02
4209.84
4223.00
4232.96 | P
P
A
P | 1 | | 8.58
8.58
8.56
8.56 | | | 5470.638
5516.771
5457.471
5505.869
5537.756 | B
B
B | 8
7
1
2
5 | 2.15
2.17
2.15
2.17 | 4.41
4.42
4.41
4.41 | 21-3
11-1
21-3 | R E V | 1 8 E | D M | ULTIPL | e T | ABLE | | | | | | | | |----------------------------|-------------|-----------------|-------------------------------------|---|--|--------------|---------------------------------|---|--|--|-----------------------------------|-------------|--|----------------------|----------------------|---|--| | Labo:
I A | | Int | E P
Low High | J Multiplet (No) | Labo:
I A | rator
Ref | | E P
Low High | J | Multiplet
(No) | Labor
I A | | ry
Int | Low | P
High | J | Multiplet
(No) | | I con | _ | | | | Mn I con | tinue | a | | | | Mn I con | tinu | .eđ | | | | | | 41.361
55.543
63.528 | B
B
B | 50r
20
8 | 3.11 5.16
3.13 5.18
3.15 5.19 | $\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ⁶ D-z ⁶ D° (5) | 4762.376
4766.430
4765.859 | B
B
B | 30
20
10 | 2.88 5.47
2.91 5.50
2.93 5.52 | 31-41
21-31
11-21 | a ⁴ D-z ⁴ F° (31) | 4147.532
4131.430
4123.543 | B
B
B | (3)
(1) | 3.36
3.36
3.36 | 6.33
6.35
6.35 | 21-21
13-1
21-1 | a ⁴ P-x ⁴ P°
(37) | | 68.003
70.279
18.102 | B
B
B | (2)
5
20 | 2.18 5.21
2.11 5.18 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4761.536
4709.715
4727.476 | B
B
B | 10
10
10 | 2.94 5.53
2.88 5.50
2.91 5.52 | 31 31 | | *4110.903
4155.525
4137.257 | B
B | (3)
(1)
(1)
(2)
(2)
(3) | 3.36
3.36
3.37 | 6.37
6.33
6.35 | 15-2
15-2 | | | 35.728
48.755
58.930 | B
B
B | 15
15
10 | 2.13 5.19
2.15 5.20
2.17 5.21 | 19- 9 | 4739.108
4671.688
4701.159 | B
B | 8
3
3 | 2.93 5.53
2.88 5.52
2.91 5.53 | 1 3 -13 | | 3115.465
3108.635 | ВВ | 6 | | | 21-31
21-31 | a ⁴ P-x ⁴ F° (38) | | 79.241
83.628
82.944 | B
B
B | 12
12
13 | 2.13 5.16
2.15 5.18
2.17 5.19 | 31-41
21-31
12-21 | 4451.586
4464.677 | B
B | 15
8 | 2.88 5.65
2.91 5.67 | | a ⁴ D-z ⁴ D ⁶ (22) | 3107.774 | B | {i}
 | | | _ | | | 79.422
06.719 | B
B | 10
20r | 2.18 5.20
2.11 5.35 | 2-12 | 4470.138
4472.792
4414.879 | B
B
B | 6
5
10 | 2.93 5.69
2.94 5.70
2.88 5.67 | 13-13 | (88) | 6491.712
6440.974
6384.669 | B
B | 15
8 | 3.75
3.76 | 5.65
5.67 | 3}-3}
2}-3 | b ⁴ D-z ⁴ D ⁶
(39) | | 23.513
34.364
41.082 | B
B
B | 20r
12
10 | 2.13 5.36
2.15 5.37
2.17 5.38 | 43-52 a ⁶ D-z ⁶ F°
32-42 (6)
23-32
13-32 | 4436.352
4453.005
4502.220 | B
B | 8
6 | 2.91 5.69
2.93 5.70 | 25-15
15- 5 | • | 6356.057
6413.92 | BCC | (2)
(3) | 3.13 | 5.67 | ა _ | Ī | | 43.983
90.215
09.592 | B
B
B | 7
10
10 | 2.18 5.39
2.11 5.36
2.13 5.37 | *-1* | 4498.897
4490.081 | B
B
B | 7
7
5 | 3.91 5.65
3.93 5.67
3.94 5.69 | 12-32
12-32
2-12 | | 6382.169
6349.748
6519.371 | B
C
B | (2)
(3)
(1)
(3)
(2)
(1) | 3.76
3.76
3.76 | 5.69
5.70
5.65 | 23-1
13-
23-3 | | | 23.893
33.862
39.777 | B
B
B | 10
8
8 | 2.15 5.38
2.17 5.39
2.18 5.39 | 45-45
35-35
25-25
15-15 | 4235.290
4235.140 | ВВ | 8
6 | 2.88 5.79
2.91 5.82 | $3\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 1\frac{1}{2}$ | a ⁴ D-y ⁴ P°
(23) | 6443.492
6391.214 | C | | 3.76
3.76 | 5.67
5.69 | 2 -1} | • | | 76.527
99.259 | ВВ | (1)
4 | 2.11 5.37
2.13 5.38 | 2- 1
42-3 2
3 1 -2 1 | 4239.725
4281.099
4265.924 | B
B | 5
6
6 | 2.93 5.82 | 1\$- \$
2\$-2\$
1\$-1\$ | | 4431.922
4436.025 | В | (1)
(2n) | | | | b ⁴ D-v ⁶ P°
(40) | | 16.753
29.680 | B
B | 5
5 | 2.15 5.39
2.17 5.39 | 12-12
12- 2 | 4357.659
4312.550
4384.084 | B
B
B | 5
3
(4) | 2.94 5.84
2.93 5.79
2.94 5.82 |
12-32
12-32
2-12 | | 3462.748
3455.04 | C | {1
2} | 3.76
3.76 | 7.32
7.33 | $3\frac{1}{2} - 3\frac{1}{2}$ | (41) | | 70.517
69.838
69.399 | B
B | 5
4
(1) | 2.11 5.47
2.13 5.50
2.15 5.52 | $4\frac{1}{2}-4\frac{1}{2}$ $a^{6}D-z^{4}F^{\circ}$ $3\frac{1}{2}-3\frac{1}{2}$ (7) $a_{2}^{2}-a_{2}^{2}$ | 3696.568
3728.889 | B
B | 8 (1) | 2.88 6.21
2.91 6.22
2.93 6.23 | | a ⁴ D-y ⁴ F° (24) | 5377.628
5399.489 | ВВ | 6 | 3.83
3.84 | 6.13 |
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | z ⁴ P°-e ⁴ 8
(42) | | 39.14
01.730
92.812 | P
B
B | {1
{1}} | 2.11 5.50
2.13 5.47
2.15 5.50 | 45-35 | 3750.763
3763.377
3694.115 | B
B
B | (1)
(2)
(3)
(1)
(1) | 2.93 6.22
2.94 6.22
3.88 6.22 | 22 | | 5413.687
4844.315 | В | a
(a) | 3.84 | 6.13 | 2-12 | ,4po_e4p | | 85.212
78.46 | B
P | (1) | 2.17 5.52
2.18 5.53 | <u> </u> | 3726.931
3601.782 | B
C | | 3.91 6.22 | 3 1 _3 | | 4843.19
4838.244
4825.593 | B
B
B | (2)
(in)
(i)
(1) | 3.84
3.84 | 6.38 | 15-15 | z ⁴ P ^e -e ⁴ P
(43) | | 77.880
86.543
95.119 | B
B
B | 40
30
20 | 2.11 5.55
2.13 5.57
2.15 5.59 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a^{6} D- x^{6} P° a^{6} D- $a^{$ | 3605.691
3583.676
3589.973 | B
B
C | (1)
(2)
(1) | 2.91 6.33
2.93 6.35
2.91 6.35
2.93 6.37 | 13-13
23-13 | (25) | 4826.896
4862.054
4854.604 | B
B
B | (2)
(3)
(2) | 0.04 | 6.39
6.37
6.38 | 11-21 | | | 07.537
08.494
10.299 | B
B
B | 20
20
20 | 2.13 5.55
2.15 5.57
2.17 5.59 | 35-35
35-25 | 3407.960 | С | (1) | 2.91 6.53 | | | 3926.467 | В | 10 | | | 3 2 - 2 2 | z ⁴ P°-1 | | 29.741
23.792
19.284 | B
B
B | 13
15
15 | 3.15 5.55
2.17 5.57
2.18 5.59 | 15-15
25-35
15-25 | 6021.802
6016.637 | ç
C | 50
40 | 3.06 5.11
3.06 5.11
3.06 5.11 |
31-21 | | 3800.552
3785.421 | В | {1/1} | 3.83
3.84 | 7.07 | 21-31
11-21 | (44)
z ⁴ P°-e ⁴ D
(45) | | 30.668
43.731 | B
B | 8
4 | 2.15 5.86
2.17 5.86 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6013.498 | В | 30 | | 12-32 | -6ne -6n | 3774.645 | В | | | | | | | 51.424
80.756 | Č
B | (1)
5 | 2.18 5.86 | | 4458.262
4455.821
4461.085 | B
B
B | 20
12
6 | 3.06 5.83
3.06 5.83
3.06 5.83 | 23-32
13-22 | z ⁶ p•_e ⁶ D
(38) | 9243.29
9172.09
9114.02 | A
A | 150
100
50 | 4.31
4.33
4.33 | 5.65
5.67
5.69 | 45-35
35-25
25-15 | a ⁴ F-z ⁴ D•† (46) | | 11.905
96.027 | B
B | 6 | | 3½-3½ a ⁶ p-2°
1½-3½ (10) | 4457.549
4455.318
4460.377 | B
B | 8
8
6 | 3.06 5.83
3.06 5.83
3.06 5.83 | 23-23
23-23
13-13 | | 9084.29 | A
B | (a) | | | -2- 2 | | | 08.785
16.324 | B
B | (3)
4 | 2.17 5.90
2.18 5.90 | $3\frac{1}{2}-1\frac{1}{2}$ $a^{6}D-4^{\circ}$ $1\frac{1}{2}-1\frac{1}{2}$ (11) | 4457.045
4455.013 | B
B
B | 3
5
5 | 3.06 5.83
3.06 5.83
3.06 5.83 | 33-13
12- 3 | | 4123.757
4123.279
4105.365 | C
B
B | (2)
(1)
(3)
(3) | 4.33
4.31 | 7.33
7.33
7.32 | 31-31
21-21
41-31 | a ⁴ F-x ⁴ F•
(47) | | 54.039
78.553
96.882 | B
B
B | 5
5
6 | 2.11 5.90
2.13 5.90
2.15 5.90 | 42-32 a ⁶ D-3°
32-32 (12)
32-32 | 4061.742
4059.392 | | 5
5 | 3.06 6.10
3.06 6.10
3.06 6.10 | 31-21
21-21 | z ⁶ P°_f ⁶ s
(39) | 4113.876 | В | 4* | | | | | | 40.399
64.711 | B
B | 7
10 | 2.11 5.91
2.13 5.91 | | 3317.305 | В | 10n | 3.06 6.78
3.06 6.78 | | | 4048.999
4052.472
4055.214 | C
B
B | (2)
(2)
(1) | 4.33
4.34 | 7.37
7.38
7.38 | 3 2 - 4 2
2 2 - 3 2
1 2 - 3 2 | a ⁴ F-y ⁴ G* (48) | | 28.090
36.778 | B
B | 30
20 | 2.11 5.93
2.13 5.95 | 3½- (13)
4½-5½ a ⁶ D-y ⁶ F° | 3314.876
*3313.524 | B | 6n
(4/4) | 3.06 6 .7 8 | 1 2 -32 | (30) | 8740.93 | A | 1000w | 4.43 | 5.83 | -
3-1-4-1 | y ⁶ P°_e ⁶ D | | 48.516
56.137
50.231 | B
B | 15
12 | 2.15 5.95
2.17 5.96 | 43-53 a ⁶ D-y ⁶ F°
33-43 (14)
33-33
13-34 | 3316.440
3314.393 | C
C | 5n
6n | 3.06 6.78
3.06 6.78 | 3 2 -3 2
2 2 -2 2 | | 8703.76
8673.97
8737.32 | A
A
A | 500w
200w
300w | 4.41
4.41
4.43 | 5.83
5.83
5.83 | 21-31
11-21
31-31 | y ⁶ P°-e ⁶ D
(49) | | 12.884
30.719 | B
B
B | 10
15
12 | 2.11 5.95
2.13 5.95 | 45-45
35-35 | 5504.21
*5481.396 | B
B | (2)
4 | 3.12 5.36
3.12 5.37
3.12 5.38 | 5-4-4-3
4-3-3- | a ⁴ G-z ⁶ F° (31) | 8701.05
8672.06
8734.60 | A
A
A | 300w
300w
30w | | | | | | 43.780
52.948
58.413 | B
B | 12
12
10 | 2.17 5.96
2.18 5.96 | 35-35
15-15
2-2 | 5460.644
5444.096
5510.174 | | (1)
(1n)
(1) | 3.12 5.38
3.12 5.39
3.12 5.36 | 32-22
22-12
42-42 | | 8699.13
8670.92 | A
A | 100w
200w | 4.41 | | 12- 2 | | | 06.908
36.034
40.616 | B
B | 5
6
5 | 2.15 5.96 | 42-32
32-22
32-12 | 5255.325
5196.591 | B
B | 4 3 | 3.12 5.47
3.12 5.50 | 51-41
41-31 | a ⁴ G-z ⁴ F° (32) | 7326.51
7302.89
7283.80 | A
A
A | 400 1
300 1
250 1 | 4.43
4.41
4.41 | 6.10
6.10 | 31-21
21-21 | y ⁶ p ° _ f ⁶ g
(50) | | 51.135
44.567 | В | 5
50 | 2.17 5.96 | 12- 2 | 5150.890
*5117.937
5260.771 | B
B
B | 3
3
(3) | 3.12 5.52
3.12 5.53
3.12 5.47 | 35-25
25-15 | ** * | 6605.546
6586.343 | D
B | 6n | | | | y ⁶ P°-g ⁶ 8
(51) | | 54.362
52.119
56.019 | B
B | 40
20
20 | 2.13 6.17
2.15 6.18
2.13 6.16 | 4-3; a ⁶ D-w ⁶ P° 32-3; (15) 32-3; 32-3; 32-3; 32-3; 1 | 5197.216
5149.13 | B
B | (1) | 3.12 5.50
3.12 5.52 | 3 3 -3 3
2 2 -2 2 | | 6570.834
4565.73 | B
B | (1)
(1n) | | | | y ⁶ P°-e ⁴ D | | 70.266
73.126
32.052 | B
B
B | 30
(2) | 2.15 6.17
2.17 6.18
2.15 6.16 | 22-22
12-12
22-32 | 3986.826
3987.098
3985.241 | В | (1)
3 | 3.12 6.21
3.12 6.22
3.12 6.22 | 51-41
41-31
31-21 | a ⁴ G-y ⁴ F° (33) | 8431.20 | A | 20Ns | | | - | (52) | | 31.330
79.627 | ВВ | 10
15 | 2.17 6.17
2.18 6.18 | 1½-3½
½-1½ | 3982.583
3989.958
3987.464 | B
C | (a) | 3.12 6.23
3.12 6.21
3.12 6.22 | 28-1* | | 8409.88
8395.87 | A
A | 15Ns
10Ns | 5.11 | 6.58
6.58 | 22-22
22-22
22-12 | e ⁶ 8-u ⁶ P°
(53) | | 33.516
33.420 | B
B | 50
50 | 2.31 4.87
2.29 4.87 | | 3984.177
3986.395 | В | (1)
(2)
(1)
(2) | 3.12 6.22
3.13 6.22 | 21-21
22-32 | | 7764.72 | A | 250nl | | | - | | | 54.042
70.875 | В | 50 | | | 3047.035
3045.593
3043.356 | В | 15
12
9 | 3.12 7.17
3.12 7.17 | 51-51
41-42 | a ⁴ G-z ⁴ G°
(34) | 7733.24
7709.98
7706.52 | A
A | 150nl
40Nl
10Nl | 0.00 | 0.00 | 02-12 | z ⁶ F°-f ⁶ D†
(54) | | 89.493
17.802 | B
B | 60
50 | 2.31 5.77
2.29 5.77 | (17) | 3043.356
3040.603
3043.770 | B
B | 12
(3)
(3) | 3.12 7.18
3.12 7.18
3.13 7.17 | 35-35
35-25
55-45 | | 7677.46 | A . | | 5.39 | | | | | 81.848
89.804 | B
B | 30
40 | 2.29 5.77
2.27 5.77
2.31 5.77 | 32-45 (18)
32-32
42-42
32-32 | 3043.143
3041.224
3048.864
3045.808 | В | (3)
4
5 | 3.12 7.17
3.13 7.18
3.12 7.18
3.12 7.17 | 42-35
32-25
42-55 | | 7680.22
7712.42
7734.43 | A
A | 300
100n
50n | 5.47
5.50
5.52 | 7.07
7.10
7.11 | 42-32
32-32
32-13 | z ⁴ F°-e ⁴ D†
(55) | | 18.029
31.998
70.041 | B
B | 40
50
30 | 2.31 5.77 | 25-25
45-35 | 3042.733 | В | 5
4 | 3.12 7.17
3.12 7.18 | $3\frac{1}{2} -
4\frac{1}{2}$
$3\frac{1}{2} - 3\frac{1}{2}$ | | 7755.15 | Ā | 20N1 | | | -
15 - 5 | | | 18.202
32.121 | B | 30
50 | 2.29 5.77 | 32-32
32-12 | 3022.749
3016.454
3011.376 | В | 10
8
7 | 3.12 7.20
3.12 7.21
3.12 7.22 | 51-61
41-51
31-41 | a ⁴ G-z ⁴ H ^o
(35) | 8929.72
8926.06
8901.0 | A
A
A | 60n
15n
3p? | 5.55
5.57 | 6.94
6.96
6.97 | $3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$ | x ⁶ P°-f ⁶ D†
(56) | | 78.495
51.039
18.179 | B
B
B | 15
15
15 | 2.31 6.19
2.29 6.19
2.27 6.19 | 41-31 z ⁸ P°-f ⁸ S
31-31 (19)
32-32 | 3007.655
3014.668
3011.162 | B
B | 6
5
5 | 3.12 7.23
3.12 7.21 | 23-33
53-53 | | | | | | | -
15–95 | | | 55.881 | В - | 3 | | _ | | B - | 4 | 3.12 7.18
3.13 7.17
3.13 7.18
3.13 7.20
3.13 7.21
3.13 7.23
3.13 7.23
3.13 7.23
3.13 7.23
3.13 7.23
3.13 7.23 | $\frac{32-42}{32-32}$ | | 9429.58
9476.57
9535.72 | A
A
A | 30n
4n
5n | 5.67
5.69 | 6.96
6.98 | 33-35
35-35
15-15 | z ⁴ D°- f ⁶ D†
(57) | | 04.907
89.812
42.589 | B
B
B | (1)
(1) | 2.91 5.37
2.93 5.38
2.94 5.39 | 3½-4½ a ⁴ D-z ⁶ F°
3½-3½ (20)
1½-3½ | 53 48.069 | ВВ | (3)
(1)
(2)
(1) | 3.36 5.65
3.36 5.67
3.37 5.69
3.36 5.67 | $3\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ | a ⁴ P-z ⁴ D°
(36) | 9336.47
950 3. 12 | A
A | 40n
8n | | | | z ⁴ D°-1
(58) | | 42.418 | В | (ā) | 2.88 5.37 | $3\frac{1}{2} - 3\frac{1}{2}$ | 5317.095
5334.804 | B
C | \2\
1) | 3.37 5.69
3.36 5.67 | 3-1 1
2-2-2-2 | | 9633.03 | Ā | 4p? | 5.69 | 6.97 | 1 1 2-21 | 17-7 | | Laboratory
I A Ref Int | E P J
Low High | Multiplet
(No) | Labor
I A | atory
Ref Int | E P
Low High | J | Multiplet
(No) | Laboratory
I A Ref 1 | | J
High | Multiplet
(No) | |--|--|--|--|---|---|---|---|--|--|---|---| | Mn I continued | | | Mn II con | tinued | | | | Mn II continue | đ. | | | | 9608.56 A 100n
9676.50 A 40
9684.9 A 15 | 5.79 7.07 21-32
5.83 7.10 12-32
5.84 7.11 2-12 | y ⁴ P°-e ⁴ D†
(60) | 3474.037
3482.905
3488.676
3496.814
3497.536 | A 50
A 40
A 40
A 30
A 35 | 1.80 5.35
1.83 5.37
1.84 5.38
1.82 5.35
1.84 5.37 | 3-3
2-2
1-1
3-3
1-2 | a ⁵ D_z, ⁵ pe
cont | 6123.438 A
6125.855 A
6128.725 A
6130.794 A
6131.917 A | 40 10.14 1
25 10.14 1
30 10.14 1
15 10.14 1
15 10.14 1 | 2.16 3-
2.16 2-
2.16 1-
2.16 0- | 4 (13)
3
2 | | Strongest Unclassifie | d Lines of Mn I | | 3495.831 | A 40 | 1.85 5.38 | 0-1 | | 6122.799 A
6126.210 A | 8 10.14 1
10 10.14 1 | 2.16 3- | .3 | | 9686.3 A 15
8380.77 A 40
8312.43 A 40nl
7942.91 A 25
7347.82 A 15 | | | 7415.78
7369.73
7347.72
7353.52 | P
P
P
P | 3.69 5.35
3.69 5.37
3.70 5.38
3.69 5.37
3.69 5.38 | 3-3
2-3
1-1
3-3
2-1 | a ⁵ p_ z ⁵ p°
(4) | 6129.022 A
6131.005 A
6123.164 A
6126.516 A
6129.255 A | 10 10.14 1
5 10.14 1
-1 10.14 1
0 10.14 1
0 10.14 1 | 2.16 1-
2.16 4-
2.16 3- | 1
3
2
1 | | 5816.844 B (5)
5780.189 B (6)
5738.286 B (6)
5551.985 B (3)
4626.544 B 4 | III | | 7330.54
7432.27
7387.10
4755.728 | P
P
—————————————————————————————————— | 3.69 5.35
3.70 5.37 | 2-1
2-3
1-2
-
5-6 | a ⁵ F_z ⁵ G° | 3800.240 A
3801.633 A
3802.958 A
3803.881 A
3804.476 A | 2 10.14 1
3 10.14 1
0 10.14 1
0 10.14 1
0 10.14 1 | 3.39 3-
3.39 2-
3.39 1- | .5 e ⁵ D- v ⁵ F° .4 (14) .3 .3 | | 4605.363 B 4
4411.878 B 3
4045.206 B 4 | A
A | | 4764.7
4738.29
4730.361
4727.9 | P
B —
B —
P | 5.37 7.96
5.36 7.96
5.35 7.96
5.35 7.96 | 4-5
3-4
2-3
1-2 | (5) | 3134.819 A
3135.507 A
3136.315 A | 1 10.14 1
0 10.14 1
0 10.14 1 | 4.08 3 | -5 e 5D- r 5F°
-4 (15)
-3 | | 4026.435 B 4 3924.075 B 3 3801.907 B 4 \$731.932 B 5 3718.930 B 5 3693.667 B 6 | V
IV
V
V
V | | 4343.987
4326.756
4292.246
4283.772
4284.425
4325.1
4345.6 | A 2N
B (3)
A ON
A O
A O
P | 5.37 8.21
5.37 8.23
5.36 8.23
5.35 8.23
5.35 8.23
5.37 8.23
5.37 8.21 | 5-5
4-4
3-3
2-2
1-1
5-4
4-5 | a ⁵ F_z ⁵ F°
(6) | 6105.381 A
6050.446 A
6008.395 A
6107.393 A
6051.860 A
6009.398 A | 5 10.31 1
3 10.29 1
0 10.28 1
1 10.31 1
1 10.29 1
1 10.28 1 | 2.33 3.
2.33 2.
2.33 4.
2.33 3.
2.33 3. | -5 y ⁷ p°- f ⁷ D
-4 (16)
-3
-4
-3 | | 3676.959 B 4 | v
V | | 4300.197 | B (1) | 5.36 8.23 | 3-4 | | 6108.8 P
6052.892 A | 0 10.31 1 | 2.33 3 | -3
-2 | | 3680.404 B 5
3420.795 B 4
3345.352 B 4
3320.693 B 4 | IA
IA
A
Ā | | 4206.375
4259.203
4253.02
4244.26 | A ON
A On
C (2)
C (1) | | 5-4
4-3
3-2
3-1 | (7) | 6009.962 A -
4530.034 A
4510.210 A | 1 10.28 1
5 10.62 1
3 10.61 1 | .3.35 4 | -1
-3 x ⁷ P°- g ⁷ S
-3 (17) | | 3303.278 B 3 | <u>v</u> | | 3685.049 | A -1X | | 5-5
4-4 | | 4496.989 A | 2 10.60 | | -3 | | 3298.224 B 5
3270.351 B 3
3268.723 B 3
3267.794 B 4 | A
A
A
A | | 3708.06
3709.88
3717.53
3724.81
3706.91
3729.49 | C (1)
C (1)
C (1)
C (1)
C (1)
C (1)
C (1) | 5.37 8.70
5.36 8.68
5.35 8.67
5.35 8.66
5.37 8.70
5.37 8.68 | 3-3
2-2
1-1
5-4
4-3 | | 4639.150 A
4647.585 A
4652.816 A | 3 10.73 1
2 10.73 1
1 10.74 1 | 3.39 2 | -2 w ⁵ pe_g 5 g
-2 (18) | | 3237.414 B 30n
3235.003 B (10n
15n | IA
IA
IA | | 3725.29
3686.20 | č {i} | 5.36 8.67
5.37 8.72 | 3-2
4-5 | | -
6446.281 A | 50N 12.15 1 | 4.06 6 | z ⁷ F°- f ⁷ G | | 3233.968 B 15n
3142.670 B 4 | ĬŸ
V | | *3509.971 | A .0. | 5.37 8.89 | 5-4 | a ⁵ F-y ⁵ D° (9) | - | | | (19) | | 3101.557 B 5
3097.063 B 8 | III; | | 3483.06
3457.809
3449.5
3446.0 | C (1)
A Or
P
P | 5.37 8.92 | 4-3
3-2
3-1
1-0 | | 6463.637 A
6463.195 A
6462.799 A
6462.454 A
6462.210 A | 13 13.16 1
10 13.16 1
7 13.16 1
5 13.16 1
3 13.16 1 | 4.06 4
4.06 3
4.06 2 | -6 x ⁵ F°- f ⁵ G
-5 (30)
-4
-3
-3 | | <u>Mn II</u> I P 15.6 A
3438.978 A 30 | 1.17 4.76 2-3 | g 1941
a ⁵ g_ z ⁷ p°
(1) | 3029.041
3039.551
3046.266 | A 50
A 40
A 30 | 5.35 9.43
5.37 9.43
5.38 9.43 | 3-2
2-3
1-3 | z ⁵ pe_ e ⁵ 8
(10) | 3050.661 A
3043.132 A
3034.810 A | 25 †
6 †
6 † | 7 1 | 3p_ 3pe
-1 (21) | | 3460.039 A 8 | 1.17 4.74 2-3 | (1) | 5302.320 | A 30 | 9.82 12.15 | 5- | e ⁷ D- z ⁷ F° | 3033.591 A
3059.064 A | 4 7
10 7
8 7 | 7 1 | -0
-2
-1 | | 4083.67 P
4174.31 P
4238.79 P | 1.77 4.79 4-4
1.80 4.76 3-3
1.83 4.74 3-3 | a ⁵ D-z ⁷ P° | 5299.278
5296.968
5295.292
5294.216 | A 25
A 20
A 15
A 10 | 9.82 12.15
9.82 12.15
9.82 12.15
9.82 12.15 | 4-
3-
3-
1- | (11) | 3049.027 A Measures inadeq strongest uncls | quate for prepa | ration o | f list of | | 4128.14 B (27)
4205.37 P
4128.87 P | 1.77 4.76 4-3
1.80 4.74 3-2
1.80 4.79 3-4 | | 3466.336
3465.037 | A 9 | 9.82 13.38
9.82 13.38 | 5-
4- | e ⁷ D_ y ⁷ F° | PAT OTBERR MICTO | | mi ii | | | 4128.87 P
4207.23 P
4260.47 P | 1.83 4.76 2-3
1.84 4.74 1-3 | | 3463.330
3463.330
3463.878 | A 7
A 6
A 5 | 9.82 13.38
9.82 13.38
9.82 13.38 | 3-
2-
1- | /10/ | | | | | | 3441.983 A 100
3480.312 A 75
3474.124 A 40 | 1.77 5.35 4-3
1.80 5.37 3-2
1.82 5.38 2-1 | a. ⁵ Dz ⁵ p° | | | | _ | | | | | | | | ratory | E P | J Multiplet | Laboratory | E P | J Multiplet | Laboratory | E P | J Multiplet | |---|--|---|---|--|---|---|---|---
---| | IA
Fe I I | Ref Int
P 7.858 Ana | Low High | (No)
Feb 1943 | IA Ref In | t Low High | (No) | IA Ref Int Fe I continued | Low High | (No) | | 5166.286
5221.43
5247.052
5254.956
5250.212
5110.414
5168.901
5204.582
5225.533
•5060.079
5127.68 | J 4 P 1 V 1 V 1 B 10 B 4 J 2 V 1 T (1) P P | 0.00 2.39
0.05 2.41
0.09 2.44
0.11 2.46
0.12 2.47
0.00 2.41
0.05 2.46
0.11 2.47
0.00 2.44
0.05 2.46 | 4-5 a ⁵ D-z ⁷ D° 3-4 (1) 1-2 0-1 4-4 3-3 3-3 3-2 1-1 4-3 3-3 3-2 3-1 3-3 | 8304.10 P
8310.98 P
8382.23 P
8485.89 P
7912.866 E
8075.13 O
8304.93 P
8307.61 P | 5 0.86 2.39
0 0.91 2.41
0.95 2.44
0 0.99 2.46
6 1.01 2.47
6 0.86 2.41
4 0.91 2.44
0 0.95 2.46
0 0.99 2.27
0 0.91 2.39
0 0.95 3.41 | 5-5 a ⁵ F-z ⁷ D° 4-4 (13) 3-3 3-2 1-1 5-4 4-3 3-2 2-1 4-5 3-4 | 3850.820 B 12
3814.526 J 5
3876.043 J 4
3581.195/ B 250R
3647.844 B 100R
3631.464 B 125R
3618.769 B 125R
3608.861 B 100r
3589.107 B 8
3585.708 J 20
3585.320 B 30 | 0.99 4.19 1.01 4.24 1.01 4.19 0.86 4.30 0.91 4.35 0.99 4.43 0.86 4.29 0.91 4.43 0.86 4.29 0.91 4.35 | 2-2 a ⁵ F-z ³ P° 1-1 cont 1-2 5-6 a ⁵ F-z ⁵ G° 4-5 (23) 3-4 2-3 1-2 5-5 4-4 3-3 | | 4375.932
4427.312
4481.654
4482.171
4347.239
4405.02
4445.48
4471.68
n4325.74
4389.244
4435.151
n4466.57 | B 9 10 B 8 J 4 4 B 7 (1) P (1) P Fe J 2 2 J Fe | 0.00 3.83
0.05 2.84
0.09 3.85
0.11 2.86
0.12 2.87
0.00 3.85
0.09 2.86
0.11 3.87
0.00 3.85
0.09 3.86
0.11 3.87 | 4-5 a ⁵ D-z ⁷ F° 3-4 (2) 2-3 1-2 1-3 1-3 3-3 2-2 1-1 4-4 3 3-3 2-1 1-0 | m6462.72 P F 6551.68 P 6609.68 P 6260.625 I 6400.335 V (6574.238 V 6625.04 V 6221.661 U (6353.84 P 6551.68 P | 3 0.86 2.80 0.91 2.82 0.95 2.84 0 0.99 2.85 2.86 2.82 2) 0.91 2.86 5 0.95 2.86 1 1.01 2.87 0.91 2.87 0 0.91 2.85 0.92 2.86 0.91 2.85 0.92 2.86 0.99 2.87 | 5-6 a ⁵ F-2 ⁷ F° 4-5 (13) 3-4 2-3 1-2 5-5 4-4 3-3 3-2 1-1 5-4 4-3 3-2 2-1 | 3586.985 | 0.99 4.43
0.86 4.35
0.91 4.40
0.95 4.43
0.86 4.37
0.91 4.42
0.95 4.45
0.86 4.42
0.91 4.45
0.91 4.45
0.91 4.37 | 2-2
5-4
4-3
3-2
5-5 a ⁵ F-z ³ G°
4-4 (24)
3-3
5-4
4-3
4-5
3-4
2-3 | | 4216.186
4206.702
4199.97
4134.343
4149.76
4291.466
4258.320 | B 8 3 W 1 V (1) P (1) 1 4 J 2 | 0.00 2.93
0.05 2.99
0.09 3.03
0.00 2.99
0.05 3.03
0.05 2.93
0.09 2.99 | 4-4 a ⁵ D-z ⁷ P°
3-3 (3)
2-2 R
4-3
3-2
3-4
2-3 | 5956.702 J (
*5949.35 V (
*5958.23 P | | 1-0 5-4 a ⁵ F-z ⁷ P° 4-3 (14) 3-3 4-4 5-4 a ⁵ F-z ⁵ D° 4-3 (15) | 3359.496 | 0.86 4.53
0.91 4.59
0.95 4.53
0.91 4.53
0.95 4.59
0.99 4.63
0.95 4.53
0.99 4.63 | 5-4 a ⁵ F-y ³ F° 4-3 (25) 3-2 4-4 3-3 3-4 2-3 | | 3859.913
3886.284
3899.709
3906.482
3824.444
3856.373
3878.575
3895.658
3922.914
3930.299
3927.922 | B 300R
B 40R
B 30R
B 8
B 50r
B 100r
B 25r
B 25R
B 25R
B 30R | 0.00 3.20
0.05 3.23
0.09 3.25
0.11 3.27
0.00 3.23
0.05 3.25
0.09 3.27
0.11 3.28
0.05 3.20
0.09 3.23 | 4-4 a ⁵ D-z ⁵ D°
3-3 (4)
3-2 1-1
4-3 3-2
3-1 1-0
3-4 2-3 | 5371.493 B 55
5405.778 B 4
5434.527 B 3
5397.131 B 4
5429.699 B 4
5446.920 B 4
5556.613 B 4
5501.469 B 1
5506.782 B 1
5497.519 B 1 | 0 0.95 3.25
0 1.91 3.28
0 0.91 3.20
0 0.95 3.23
0 0.99 3.25
0 1.01 3.27
2 0.95 3.20
8 0.99 3.23 | 3-2
2-1
1-0
4-4
3-3
2-3
2-1
1-1
3-4
1-2 | 3401.521 A 6 3396.978 A 4 3397.642 V 2 3442.672 J 3 3427.002 J 2 3417.373 J (1gn) 3473.497 V 1 3446.947 U 1 | 0.91 4.54
0.95 4.59
0.99 4.62
0.95 4.54
0.99 4.59
1.01 4.62
0.99 4.54
1.01 4.59 | 1-2
4-3 a ⁵ F-y ⁵ P°
3-2 (26)
2-1
3-3
2-2
1-1
2-3
1-2 | | 3920.260
3719.935
3737.133
3745.561
3748.264
3745.901
3679.915
3705.567 | B 30R
B 20r
B 250R
B 150R
J 100R
B 60R
J 40r
B 40r
B 100r | 0.11 3.25
0.12 3.27
0.00 3.32
0.05 3.35
0.11 3.40
0.12 3.42
0.00 3.35
0.05 3.38 | 1-2
O-1
4-5 a ⁵ D-z ⁵ F°
3-4 (5)
2-3 (5)
0-1
4-4
3-3 | 5107.452 J (5123.723 B (4939.690 B 4994.133 B (| | 5-5 a ⁵ F-z ⁵ F°
4-4 (16)
3-3 a-2
1-1
5-4
4-3
3-a
3-1 | 3245.984 V (2) 3230.09 P (2) 3223.853 V (1) 3283.430 V (1) *3287.244 V 2 3241.50 P (1) 3311.451 V (1) 3275.24 P | 0.91 4.71
0.95 4.77
0.99 4.81
0.95 4.71
0.99 4.77
1.01 4.81
0.99 4.71
1.01 4.77 | 4-3 a ⁵ F-y ³ D° 3-2 (27) 3-1 3-3 2-2 1-1 2-3 1-3 | | 3722.564
3733.319
3649.304
3683.054
3707.828
3440.610
3440.989
3443.878
3490.575
3475.450 | B 50r
B 40r
J 5
G 10
V 30
J 150R
J 75R
A 50r
A 100r
G 70r | 0.09 3.40
0.11 3.43
0.00 3.38
0.05 3.40
0.09 3.42
0.00 3.59
0.05 3.64
0.09 3.67
0.05 3.59 | 2-2
1-1
4-3
3-2
2-1
4-3 a ⁵ D-z ⁵ P°
3-2 (6)
2-1
3-3 | 5147.363 B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 5 0.91 3.32
0.95 3.35
8 0.99 3.38
4 1.01 3.40
e 0.91 3.59
0.95 3.64
0.99 3.67
0.95 3.59
0.99 3.64 | 4-5
3-4
2-3
1-2
4-3 a ⁵ F-z ⁵ P°
3-3 (17)
3-1
3-3
2-3 | 3057.446 A 40R
3067.244 A 30r
3075.721 A 25r
3083.742 A 20
3091.578 A 20
3099.968 V 15
3100.666 G 20
3100.304 G 20
3099.898 V 20
3134.111 A 10
*3125.653 C 15 | 0.86 4.89
0.91 4.93
0.95 4.97
0.99 4.99
1.01 5.00
0.91 4.89
0.95 4.93
0.99 4.97
1.01 4.99
0.95 4.89 | 5-4 a ⁵ F-x ⁵ D°
4-3 (28)
3-2 (28)
3-1 (1-0)
4-4 (3-3)
3-2 (1-1)
3-4 (2-3) | | 3465.863
3526.039
3497.843
3476.704
3193.214
3184.896
3180.756
3143.242
3151.867
3236.223 | V 10
A 70
A 40
A 40
V 10
A 7
G 5
V 2
V (1)
A 8 | 0.09 3.64
0.11 3.67
0.09 3.59
0.11 3.64
0.12 3.67
0.00 3.86
0.05 3.93
0.09 3.97
0.00 3.93
0.05 3.93
0.05 3.93 | 2-2
1-1
2-3
1-2
0-1
4-4
4-5
3-3
2-2
4-3
3-3
3-3
3-3 | 4690.38 P 4100.745 J 34092.512 V (14096.21 P 4177.597 J 4139.933 J 24239.847 J 2 | 1) 0.91 3.93
0 0.95 3.97
4 0.91 3.86
1 0.95 3.93
3 0.99 3.97
3 0.95 3.86 | 1-1
3-3
1-2
5-4 a ⁵ F-z ³ F°
4-3 (18)
4-4
3-3
2-3
3-4 | *3116.633\$ A 12 *3984.785\$ V 10 3045.077 G 5 3092.785 V 2 3025.283 V 3 3078.014 G 4 3117.63 W 1 3057.80 P 0 3102.64 P 0 3102.64 P Fe | 1.01 4.97
0.86 4.99
0.91 4.96
0.95 4.94
0.91 4.99
0.95 4.96
0.99 4.99
0.99 4.96
1.01 4.94 | 1-8 5-4 a ⁵ F-y ⁷ P° 4-3 3-3 4-4 3-3 3-4 2-3 1-2 | | 3214.396
3191.659
3197.00
3200.790
3234.614
3226.727
3219.77
3265.046
3246.005
3229.123 | G 8 7 (2) Y 2 2 F Fe G 8 8 G 4 | 0.09 3.93
0.00 3.87
0.05 3.91
0.09 3.94
0.05 3.87
0.11 3.94
0.09 3.87
0.11 3.91
0.11 3.94 | 4-3 a ⁵ D-z ³ D°
3-2 (8)
3-3 (8)
1-1 2-3
1-2 0-1 | 4197-10 P 6 4169.09 P 6 4174.917 J 5 4172.749 J 4 4173.926 J 2 4237.085 M (2 4218.12 P 4203.570 V (1 4283.87 P 6 4248.40 P 6 | 1.01 3.97
0.91 3.87
1.01 3.91
1.01 3.94
1.01 3.94
1.01 3.94
1.01 3.94 | 2-3
1-3
4-3 a ⁵ F-z ³ D ⁶
3-3 (19)
2-1
3-3
3-3
2-2
1-1
2-3
1-2 | 3999.512 A 30R
3009.570 C 35r
3018.983 G 15r
3036.462 G 15
3031.638 G 15
3969.474 G 10
3987.392 A 10
3003.031 C 10
3016.186 G 12
3040.428 C 15
3041.745 V 15 | 0.86 4.97
0.91 5.01
0.95 5.04
0.99 5.06
1.01 5.08
0.86 5.01
0.91 5.06
0.99 5.08
0.91 4.97
0.95 5.01 | 5-5 a ⁵ F-x ⁵ F° 4-4 (30) 3-3 3-2 1-1 5-4 4-3 3-2 4-5 4-5 | | 3020.643
3021.074
3020.495
3017.628
2983.574
2994.427
3000.950 | V 200R
G 150R
V 100R
G 15r
G 125R
G 100R*
G 100R | 0.00 4.09
0.05 4.14
0.09 4.17
0.11 4.30
0.00 4.14
0.05 4.17
0.09 4.30 | 4-4 a ⁵ D-y ⁵ D°
3-3 (9)
2-2
1-1
4-3
3-1 | 3820.428 I 250
3835.884 B 200
3834.225 B 100
3840.439 B 80
3849.969 B 40
3887.051 B 15
3878.021 B 60 | R 0.91 4.14
r 0.95 4.17
r 0.99 4.20
1.01 4.31
0.91 4.09
0.95 4.14 | 5-4 a ⁵ F-y ⁵ D°
4-3 (20)
3-2 2-1
1-0
4-4
3-3 | 3041.745 V 15
3042.686 Q 15
3042.020 G 15
3014.176 V 3
3037.782 V 2
*3053.443 U (2) | 0.99 5.04
1.01 5.06
0.95 5.05
0.99 5.05 | 3-4
2-3
1-2
3-2 a ⁵ F-z ⁵ 8*
2-2 (31) | | 3008.139
3059.086
3047.605
3037.388
3025.843 | G 60R
A 100R
A 100R
A 80R
K 50R | 0.11 4.21
0.05 4.09
0.09 4.14
0.11 4.17
0.13 4.20 | 1-0
3-4
2-3
1-3
0-1 | 3872.504 B 60
3865.526 B 30
3940.882 B 5
3917.185 B 8
3898.012 K 10
3734.867 B 300 | 1.01 4.20
0.95 4.09
0.99 4.14
1.01 4.17 | 3-3
1-1
3-4
2-3
1-3 | 8916.26 F 1 7180.020 V 1 7494.73 P 0 | | 3-3 a ³ F-z ⁷ Pe (32)
4-4 a ³ F-z ⁵ De 3-4 (33) | | 2966.901
2973.236
2973.137
2970.106
2965.255
2953.940
2957.365
2981.446
2970.106
2969.364 | V 60R
V 60R
G 40R
A 20
A 50R
A 30R
A 20r
G 40R | 0.12 4.28
0.09 4.26
0.11 4.38
0.05 4.19
0.09 4.24 | 4-5 a ⁵ D-y ⁵ Fo † 3-4 (10) 3-3 1-2 0-1 2-2 1-1 3-2 a ⁵ D-z ³ Po 3-1 (11) | 3749.487 B 2001
3758.235 B 1501
3763.790 B 1001
3767.194 B 801
3687.458 B 401
3709.246 G 751
3727.621 B 501
3743.364 G 201
3798.513 B 401
3799.549 B 50 | R 0.91 4.30
R 0.95 4.34
r 0.99 4.36
r 1.01 4.38
r 0.86 4.30
r 0.91 4.34
r 0.95 4.36
0.99 4.38
0.91 4.16
0.95 4.30 | 5-5 a5F-y5F° 4-4 (31) 3-3 3-3 3-3 1-1 5-4 4-3 3-2 3-1 4-5 3-4 | 6710.31 V 2
6844.67 P 1
6929.96 P
5581.22 V 2
6739.54 V 1
6851.64 P 1
6483.95 P ©
6865.43 P ©
6801.87 P © | 1.55 3.35
1.60 3.38
1.48 3.35
1.55 3.38
1.60 3.40
1.48
3.38
1.55 3.40
1.60 3.42 | 4-5 a3r-z5p° 3-4 (34) 2-3 4-4 3-3 3-2 3-2 4-3 3-2 4-3 4-3 4-3 4-3 4-3 | | 3007.284
2926.456
3024.033
2994.50 | V 12r
G 3
C 15r | 0.09 4.19
0.11 4.24
0.11 4.19 | 1-0
3-3
1-1
1-3
0-1 | 3795.004 B 60
3787.883 B 50
3812.964 G 40
3790.095 B 12
3786.678 J 8 | 0.99 4.24
1.01 4.26
0.95 4.19
0.99 4.24 | 2-3
1-2
3-2 a ⁵ F-z ³ P°
3-1 (22)
1-0 | 5171.599 B 20
5194.943 I 10
5216.278 B 10
5041.759 B 10
5107.645 J 8
5332.903 T | 1.48 3.86
1.55 3.93
1.60 3.97
1.48 3.93 | 4-3 (35)
4-4 (35)
3-3 (36)
3-2 (36) | | Labor
I A | atory
Ref | | E P
Low High | J | Multiplet
(No) | Laborat
I A Re | | | E P
Low H | ligh | J | Multiplet
(No) | I.Abor | | | E P
Low H | lgh | J | Multiplet
(No) | |--|----------------------------|---------------------------------------|---|--|--|--|---------------------------------|-------------------------------------|--|--|--|--|---|---|--|--|--|---|--| | <u>I</u> cont | inued | | | | 3_ 7 | Fe I contin | | | 4 40 - | : 60 | 4.7 | a ³ F-x ³ D° | Fe I cont
4282.406 | inued
B | 13 | 2.17 5 | .05 | 3-2 | a ⁵ P-z ⁵ S° | | 67.491
327.192
370.360
328.534 | В
В
В | 40
40
30
15 | 1.48 3.87
1.55 3.91
1.60 3.94
1.55 3.87 | 2-1
3-3 | a ³ F-z ³ D°
(37) | 3068.175
3060.984 | V
C
G
G
V | 8
12
8
4
3 | 1.48 5
1.55 5
1.60 5
1.55 5
1.60 5 | .59
.62
.58 | 4-3
3-2
2-1
3-3
2-2 | (55) | 4315.087
4352.737
4001.666 | B
B | 10
9
5 | 2.19 5
2.21 5
2.17 5 | .05
.05
.25 | 2-2
1-2
3-3 | (71)
a ⁵ p-x ⁵ p° | | 341.026
146.87
733.596
772.817
798.736
343.20 | B
P
B
B
V
P | 20
Fe
4
3
(1)
© | 1.60 3.91
1.60 3.87
1.48 4.09
1.55 4.14
1.60 4.17
1.48 4.14 | 2-2
4-3 | a ³ F-y ⁵ D°
(38) | 3000.452
3041.639
3067.123
2988.468
3029.237 | G
V
V
G | 8
10
8
2
3 | 1.48 5
1.55 5
1.60 5
1.48 5
1.55 5 | 5.59
5.61
5.62
5.61
5.63 | 4-5
3-4
2-3
4-4
3-3 | a ³ F_y ³ G°
(56) | 3977.743
3974.766
3949.954
3943.339
4030.194
4009.714 | I
V
I
J
V
I | 12
(1)
10
2
(3)
10 | 2.19 5 | .29
.32
.29
.32
.25 | 2-2
1-1
3-2
2-1
2-3
1-2 | (72) | | 68.38
67.53
602.944
854.501
880.297 | P
P
B
J | 9
5
(2) | 1.55 4.09
1.60 4.14
1.48 4.16
1.55 4.20
1.60 4.24 | 3-4
2-3
4-5
3-4
2-3 | a ³ F-y ⁵ F°
(39) | 2962.11
3004.62 | P
W
W | (1)
(2)
(1)
(2n) | 1.48 5
1.55 5
1.60 5 | 5.64
5.66 | 4-3
4-5
3-4
2-3? | a ³ F-x ⁵ G°
(57) | 3852.574
3816.340
3807.534
*3790.756
3778.697 | I
J
G
J | 6
4
7
1
(1) | 2.21 5
2.17 5
2.19 5 | .42
.45
.42
.45 | 2-3
1-2
3-3
2-2 | a ⁵ P-w ⁵ D°
(73) | | 531.153
592.655
532.915
472.52
547.022 | B
B
J
P
J | 28
5 20
(28) | 1.48 4.30
1.55 4.34
1.60 4.36
1.48 4.34
1.55 4.36
1.60 4.38 | 4-4
3-3
2-2
4-3
3-2
3-1 | | 11882.80
11884.12
11638.25 | D
D
D
D | 8
7
3
7 | 3.17 3
3.19 3
2.31 3
3.17 3
3.19 3 | 3.23
3.25
3.23 | 3-4
2-3
1-2
3-3
2-3 | a ⁵ P-z ⁵ D°
(58) | 3774.823
3753.610
3746.486
3768.030
3776.454 | G
G
G
G | 5
8
1
3 | 2.21 5
2.17 5
2.19 5
2.21 5 | .45
.48
.49 | | a5p_w5F° | | 802.005
674.65
672.83
765.485 | J
P
V | ©
©
(1) | 1.55 4.19
1.60 4.24
1.60 4.19 | 3-2
2-1
2-2 | a ³ F-z ³ P° (40) | 11689.98
11374.02
11422.30
11593.55 | D
D
D | 8
3
6
5 | 2.21 3
2.17 3
2.19 3
2.21 3 | 3.27
3.25
3.27
3.28 | | a ⁵ P_z ⁵ F° | 3781.188
3792.834
3756.069
3764.21
3779.486
3739.317 |]
V
J
P
J
V | (1)
1
0
2 | 2.19 5
2.21 5
2.17 5
2.19 5
2.21 5
2.17 5 | .47
.45
.47 | 2-3
1-2
3-3
2-2
1-1
3-2 | (74) | | 383.547
404.752
415.125
294.128
337.049
367.906 | B
B
B
B
B | 45r
30
20
15
10 | 1.48 4.29
1.55 4.35
1.60 4.40
1.48 4.35
1.55 4.40
1.60 4.43
1.48 4.40 | 4-5
3-4
2-3
4-4
3-3
2-2
4-3 | (41) | 10340.77
10379.01
10155.18
10167.4
10265.23 | FFPPFPP | 8
4
0
0
1
0 | 2.17
2.19
2.21
2.17
2.19
2.21
2.17 | 3.38
3.40
3.38
3.40
3.42 | 3-4
3-3
1-3
3-3
3-2
1-1
3-3 | (59) | 3751.09
*3721.278
m3726.89
3739.120
*3702.500 | P
V
P
J
J | ©
3
Fe
1 | 2.19 5
2.17 5
2.19 5
2.21 5
2.17 5 | .48
.50
.51 | 2-1
3-4
2-3
1-2
3-3 | a ⁵ P-v ⁵ D°
(75) | | 229.760
291.466
271.764
307.906 | J
I
B | (1)
4
35
35 | 1.55 4.43
1.48 4.37
1.55 4.42 | 3-2 | a ³ F-z ³ G° (42) | 10058.28
8688.633
8514.075 | P | 500
150
300 | 3.19
3.17
3.19
3.31 | 3.42
3.59
3.64 | 3-3
3-3
3-3
1-1 | a ⁵ p_z ⁵ p°
(60) | 3711.30
3725.65
3687.100
3698.03 | P
P
J
P | а
© | 2.17 5
2.19 5 | 5.53
5.51
5.53 | 2-2
1-1
3-2
2-1 | F. F | | 325.765
202.031
250.790
147.673 | B
B
B | 35
30
25
10 | 1.60 4.45
1.48 4.43
1.55 4.45
1.48 4.45 | 4-4
3-3
4-3 | 3- 3-0 | 8387.781
8327.063
8824.227 | E | 1300
1300
350
600 | 2.17 | 3.64
3.67
3.59 | 3-3.
3-1
3-3
1-3 | | 3707.918
3732.399
3760.534
*3612.940 | G
B
G | 8
10
6 | | | 2-2
1-2 | a ⁵ P-x ³ D° | | 045.815
063.597
071.740
969.261
005.246
143.871 | B
H
H
B
B | 60r
45
40
30
25
30 | 1.48 4.53
1.55 4.59
1.60 4.63
1.48 4.59
1.55 4.63
1.55 4.53 | 4-4
3-3
3-2
4-3
3-2
3-4 | a ³ F-y ³ F°
(43) | 7101.28
7037.04
6430.851 | P
P
P | ©
©
©1
300 | 3.17
2.19
2.31
3.17 | 3.93
3.97
4.09 | 2-3
1-2 | a ⁵ P _{-z} ³ F° (61) a ⁵ P _{-y} ⁵ D° (62) | 3628.094
3618.96
3604.96
3592.881
*3636.186 | V
P
D
U
V | (1) | 2.19 5
2.21 5
2.17 5
2.19 5
2.19 5 | 5.59
5.62
5.59 | 2-2
1-1
3-2
2-1
2-3 | (77) | | 133.060
032.636
064.46
090.34
130.035
132.94
200.78 | B
W
P
U
P | 25
(2)
(0)
(1)
Fe | 1.60 4.59
1.48 4.54
1.55 4.59
1.60 4.63
1.55 4.54
1.60 4.59
1.60 4.54 | 2-3
4-3
3-2
3-1
3-3
2-2
2-3 | a ³ F-y ⁵ pe
(44) | 6297.800
6265.140
6219.290
6213.438
6151.624
6136.999 | B
B
I
L
J
J | 10
5
6
6
5
(2)
23 | 3.19
3.21
2.17
3.19
2.21
2.17
2.19
3.21 | 4.17
4.14
4.17
4.20
4.17
4.30 | 2-3
1-2
3-3
2-2
1-1
3-2
2-1
1-0 | | 3654.66
3497.110
3497.15
3509.870
3475.651
3485.342
3518.86 | J
A
₩ | (1)
10
(1)
(1)
6
7
(2) | 2.17 5
2.19 5
2.21 5
2.17 5
2.19 5
2.19 5 | 5.70
5.72
5.73
5.72
5.73 | 3-3
2-2
1-1
3-2
2-1
2-3
1-2 | a ⁵ p-w ⁵ pe
(78) | | 815.842
827.825
841.051
902.948
888.517
966.066 | B
B
B
B | 100r
75r
80r
20
20 | 1.48 4.71
1.55 4.77
1.60 4.81
1.55 4.71
1.60 4.77
1.60 4.71 | 4-3
3-2
3-1
3-3
2-2
2-3 | | *6021.82
6015.25
5958.34
5943.58 | V
W
P
P
P | | 2.17
2.19
2.21
2.17
2.19
2.21 | 4.24
4.26
4.24
4.26 | 1-2
3-3
2-2
1-1 | a ⁵ P-y ⁵ F°
(63) | 3521.833
3462.353
3486.556 | J
U | 2 (1) | 2.19
2.21 | 5.75
5.75 | 2-1
1-1 | a ⁵ P-z ³ S° (79) | | 615.66
647.427
666.944
571.228
612.940
643.82
693.78 | WJUVJPP | (1)
3
(1)
2
1
(1)
© | 1.48 4.89
1.55 4.93
1.60 4.97
1.48 4.93
1.55 4.97
1.60 4.99
1.55 4.89 | 4-4
3-3
2-8
4-3
3-2
3-1
3-4
2-3 | a ³ F-x ⁵ D°
(46) | 5881.76
5892.80
6097.08
6009.45
m6012.21
6163.560
6082.718 | P
P
P
P
V
V
I | © N1 (1) (1) (2) | 3.17
3.19
2.31
2.19
3.21 | 4.26
4.28
4.19
4.24
4.27
4.19
4.24
4.19 | 3-2
3-1
3-2
3-1
1-0
3-3
1-1
1-3 | a ⁵ P-z ³ P°
(64) | 3487.121
3445.151
3451.915
3424.284
3428.192
3417.842
3407.53
3394.583 | A
G
G
G
G
G
G
G | 20
20
10
10
8
12
© | 2.21 5
2.17 5
2.19 5
2.21 5
2.17 | 5.77
5.79
5.79
5.79
5.79
5.82
5.79
5.82 | 2-3
1-2
3-3
2-2
1-1
3-2
2-1 | a ⁵ P- ¹ ⁵ D ^c
(81)
E | | 5702.500
514.48
5541.22
636.50
588.23 | J
P
P
P | 1
0
0
0 | 1.60 4.93
1.48 4.99
1.48
4.96
1.55 4.94
1.55 4.99
1.60 4.96 | 4-4
4-3
3-2
3-4
2-3 | (47) | m5224.30
5143.73
5102.24 | P
P
P | T1
© | 2.17
2.19 | 4.53
4.59
4.63 | | a ⁵ P-y ³ F° (65) a ⁵ P-y ⁵ P° | *3426.383
3426.637
3477.850
3447.278
3450.328
3471.27 | 7
1
1 | 5d
(2)
8
10
5 | 2.19 S | | 3-2
2-1
1-0
2-2
1-1
1-2 | a ⁵ P-y ³ P°
(82) | | 534.914
5493.29
534.914
564.11
564.3305
5513.065 | P U W U W V U | © (1) (1) (1) (1) (2) (1) (2) (1) | 1.60 4.96
1.48 4.97
1.48 5.01
1.55 5.06
1.48 5.04
1.55 5.06 | | a ³ F-x ⁵ F° (48) | 5145.105
5131.475
5098.703
5079.226
5250.650
5198.714 | T
J
J
B
B | (-)
(2)
8
6
6
4 | 2.19
2.31
2.17
2.19
2.19
2.21 | 4.59
4.62
4.59
4.63
4.54
4.59 | 2-3
1-1
3-2
2-1
2-3
1-3 | (66) | 3407.461
3404.357
3415.530
3383.981
3392.304
3372.070 | A & & & & & & & & & & & & & & & & & & & | 20d
6
4
8
8
3 | 2.19
2.21
2.17 | 5.79
5.81
5.83
5.81
5.83 | 3-4
2-3
1-2
3-3
2-2
3-2 | a ⁵ P-x ³ F° (83) | | 549.868
5271.693
5299.511
5335.513
5231.599 | J
V
V
V | (2)
(1)
(1) | 1.60 5.08
1.48 5.35
1.55 5.39
1.55 5.25
1.48 5.30 | 2-1
4-3
3-2
3-3
4-5 | a ³ F-y ⁵ G° | 4745.129
4731.77
4700.42
*4889.009 | PJUPPUU | (1)
(1)
(1)
(1) | 2.19
2.31
3.17
2.19
2.19 | 4.71
4.77
4.81
4.77
4.81
4.71
4.71 | 3-3
2-2
1-1
3-2
2-1
2-3
1-2 | (67) | 3382.403
3392.652
3399.336
3406.803
3379.017 | G
A
J | 3
15
15
6
6 | 2.17
2.17
2.19
2.21
2.17 | 5.80
5.82
5.84
5.82 | 3-4
3-3
2-2
1-1
3-2 | a ⁵ P-z ³ H° (84) a ⁵ P-w ³ D° (85) | | 281.83
313.723
3223.273 | P
V
V
P | (1)
(1) | 1.55 5.31
1.60 5.33
1.48 5.31
1.55 5.32 | 3-4
2-3
4-5
3-4 | a ³ F-z ⁵ H° | | B
B
J
B | 18
13
6
10 | 2.19
2.21 | 4.89
4.93
4.97
4.93 | 3-4
2-3
1-2
3-3 | | *3383.692
3413.135
3422.656
3327.961 | G
A
G | 5
15
7
(1) | | 5.80
5.82 | 2-1
2-3
1-2
3-4 | a ⁵ P- w⁵G° | | 3272.60
3293.146
3171.353
3187.68 | V
V
P | (1)
5 | 1.60 5.35
1.48 5.37
1.55 5.42 | 2-3
4-4
3-3 | a ³ F-w ⁵ D° | 4442.343
4447.722
4407.714
4408.419 | B
J
B | 13
9
5
6 | 2.19
2.21
2.17
2.19 | 4.97
4.99
4.97
4.99
5.00 | 2-3
1-1
3-3
2-1
1-0 | | 3346.942
3366.870
3389.748 | V
V
V | 1
5
2 | 2.17
2.19
2.21 | 5.85
5.85 | 3-2
2-2
1-2 | (86)
a ⁵ P-1°
(87) | | 8202.66
8129.334
8161.370
8179.479 | . U | ©
5
4
(1) | 1.60 5.45
1.48 5.42
1.55 5.45
1.60 5.48 | 2-2
4-3
3-2
2-1 | | 4430.618
4371.00
4447.134
4518.58 | B
P
J
P | (3) M n
© | 2.17
2.19
2.21 | 4.99
4.96
4.94 | 3-4
2-3
1-2 | a ⁵ P-y ⁷ P°
(69) | 3343.243
3351.529
3374.221 | v
v | (1)
2
(1) | 2.17
2.19
2.21 | | | a ⁵ P-z ¹ G ^e
(88)
a ⁵ P-y ³ S ^e
(89) | | 3068.927
3138.40
3081.83
3125.03
3154.11 | 5
P
P
P | (-)
0 0 0 0 | 1.48 5.50
1.55 5.48
1.48 5.48
1.55 5.50
1.60 5.51 | 4-3
3-4
4-4
3-3
2-2 | (53) | 4412.43
4478.040
4442.835
4338.260 | PUJ | (2)
(1) | 2.19
2.17
2.17 | 4.96
4.94
4.94
5.01 | 3-3
2-2
3-2
3-4 | _a 5 _{P-x} 5 _F e | 3286.755
3284.588 | A
A | 20
5 | | 5.95 | 3-3
2-2 | a ⁵ P-v ⁵ P°
(91) | | 3128.901 | U | 1 | 1.55 5.49 | 3-2 | a ³ F-y ⁵ S° (54) | 4324.961
4329.54
4292.13 | V
P
V
P
P | (1)
©
©
(1)
Fe
© | 2.19
2.21
2.17 | 5.04
5.06
5.04
5.06
5.08
5.08 | 2-3
1-2
3-3
2-3
1-1
3-2
3-1 | (70) | 3292.590
3265.616
3271.002
3305.971
3306.356 | G A C C | 8
15
15
20
20 | 2.17
2.19
2.19 | 5.96
5.95
5.96
5.92
5.95 | 1-1
3-2
2-1
2-3
1-2 | | | 50 | | | | | | | | REV | ΙS | ED M | ULT | IPLI | T | TABLE | | | | | | | | |---------------------------------------|-------------------------|-------------|-----------------|----------------------|----------------------|----------------------------|---|-----------------------------------|-------------|--|----------------------|----------------------|--------------------|---|-----------------------------------|--------------|-----------------|----------------------|----------------------|-------------------|---| | I | Labo
A | | ry
Int | Low | P
High | J | Rultiplet
(No) | Labo
I A | rato
Ref | ry
Int | Low | P
High | J | Multiplet
(No) | I A | rato:
Ref | ry
Int | Low | P
High | J | Multiplet
(No) | | | <u>I</u> con | | | 0.45 | F 00 | | a ⁵ p_v ⁵ re | Fe I cor | | | 0.05 | E 77 | | -3n -5an | Fe I cor | | | | | | a ³ P_v ³ F° | | 3288 | 0.722
3.972
3.133 | V
V
A | (2)
2
6 | 2.17
2.19
2.21 | 5.94 | 3-4
3-3
1-2 | (90) | 4037 . 725
4225 . 79 | Y
P | (1)
© | 3.41 | 5.33
5.33 | 2-3
1-2 | (118) | 3030.61
2976.126 | P | ⊙
5 | 2.27 | 6.42 | 2-3
2-3 | (145)
a3P_u3p° † | | 3276 | 9.964
3.477 | V
V | (1)
4
3 | 2.17
2.19 | 5.96 | 3-3
2-2 | | 4007.233 | V | (1gn) | 2.27 | 5.35 | 2-3 | a ³ P_z ⁵ H°
(119)
a ³ P_w ⁵ D° | 3053.065
3078.436 | G. | 5 3 | 2.41
2.47 | 6.46
6.48 | 1-3 | (146) | | 3257 | 3.026
7.594
4.522 | A
V | 8
5 | 2.21
2.17
2.19 | 5.96 | 1-1
3-2
3-1 | | 3913.635
4058.766
4101.684 | J
V | 3
(1) | 3.27
3.41
3.47 | 5.45
5.48 | 2-3
1-2
0-1 | (130) | 3033.104
3063.939 | v
v | (1)
(2) | 2.41
2.41 | 6.48
6.44 | 1-1 | a ³ P_t ³ D° † | | 3251 | 1.236 | G- | 8 | 2.19 | 5.98 | 2-3 | a ⁵ p_w ³ Ge
_(93) | 3874.053
*4021.622
3840.20 | V
V
P | (1)
(1)
(1)
(0) | 2.27
2.41
2.27 | 5.45
5.48
5.48 | 2-2
1-1
2-1 | | 2996.386
2960.303 | G
V | 5 | 3.41
2.47 | 6.53
6.64 | 1-2
0-1 | (147)
a3p_w3pe +
(148) | | 3246 | 0.634
3.973 | A
A | 4
6 | 2.17
2.19 | 5.99 | 3-3
3-1 | а ⁵ р-х ³ р•
(95) | 4013.89 | P | | 2.41 | 5.49 | 1-0 | 7 5 | | | | | | - | | | 3274
3269
3268 | | P
P
G | ⊙
⊙
5 | 2.21
2.19
2.21 | 5.98
5.96
5.99 | 1-0
2-2
1-1 | | 3876.671
3819.62 | U
P | (1) | 2.27
2.27 | 5.45
5.50 | 2-3
2-3 | a ^{3p} _w ⁵ F°
(121)
a ³ P_w ⁵ D° | 10191.51
5871.04 | P
V | ©7
(1) | 2.41
2.46 | 3.63
4.56 | 43
2-2 | z ⁷ D°-b ³ D
(149)
z ⁷ D°-d ³ F | | 3290 | .988 | G- | 5 | 2.31 | 5. 96 | 1-3 | 5- 1 | 3981.106
4043.69 | V
P | (1)
© | 2.41
2.47 | 5.51
5.53 | 1-3
0-1 | (123) | 5908.24 | V | (1)
(2) | 2.47 | 4.56 | 1-2 | (150) | | | 0.115
1.872 | V | (1)
4 | 2.17
2.21 | 6.01 | 3-4
1-3 | a ⁵ P-y ¹ G°
(97)
a ⁵ P-2° | 3803.24
3965.83 | P | 0 | 3.27
3.41 | 5.51
5.53 | 2-2
1-1 | | 4260.479
4235.942
4222.219 | H
I
J | 35
25
12 | 2.39
2.41
2.44 | 5.29
5.33
5.36 | 5-5
4-4
3-3 | z ⁷ D°-e ⁷ D
(152) | | 3167
*3172 | | P
V | ⊙
2 | 2.17
2.19 | | 3-4 | 45P_w3Fe | 3825.404
4005.38 | J
P | (1gn)
© | 3.27
3.41 | 5.49
5.49 | 3-3
1-3 | a ³ P_y ⁵ S°
(123) | 4210.358
4198.310 | j | 15
20 | 2.47
2.39 | 5.40
5.33 | 1-1
5-4 | | | *3153 | 3.064 | S | (-) | 2.19 | 6.10 | 2-3
2-2 | (99) | 3724.380
3885.512 | B | 8
5 | 3.27
3.41 | 5.58
5.59 | 2-3
1-2 | a ³ P-x ³ D° (124) | 4187.802
4187.044
4191.436 | J
J
J | 20
20
15 | 3.41
3.44
3.46 | 5.36
5.39
5.40 | 4-3
3-2
3-1 | | | 3165
m3172
3186 | 3.11 | P
P | ©
Fe | 2.17
2.19
2.21 | | 3-3
2-2
1-1 | a ⁵ P_v ³ D°
(100) | 3918.319
3715.911
3845.170 | J
G
K | 3
4
(5) | 2.47
2.27
2.41 | 5.62
5.59
5.62 | 0-1
3-3
1-1 | | 4299.242
4271.159
4250.125 | I
J
J | 18
20
25 | 2.41
2.44
2.46 | 5.29
5.33 | 4-5
3-4 | | | 3154
3166 | 1.41
3.59 | P
P | (1)
© | 2.17
2.19 | 6.08
6.09 | 3-2
2-1 | | 3678 .9 8 | W | (5)
(1) | 2.27 | 5.62 | 2-1 | | 4233.608 | I | 18 | 2.47 | 5.36
5.39 | 2-3
1-2 | | | *3192 | 3.970
3.417 | Ŭ | (1) | 2.19
2.21 | 6.07
6.08 | 2–3
1–2 | | 3677.477
3630.67 | V
P | (2)
⊚† | 2.27 | 5.62
5.67 | 2-3
2-3 | a ³ P-y ³ G•
(135)
a ³ P-x ⁵ G• | 3947.393
3920.645
3908.68 | V
U
P | (1)
(1)
© | 2.39
2.41
2.44 | 5.52
5.56
5.60 | 5-4
4-3
3-2 | z ⁷ D°-e ⁵ D
(153) | | | .663 | V | (3r) | 2.19 | | 2-3 | a ⁵ p_3°
(101) | 3601.42 | P | • | 2.27 | 5.70 | 2-3 | (126)
a3p_w5po | 3905.66
3908.90 | P
P | • | 3.46
3.47 | 5.62
5.63 | 3-2
3-1
1-0 | | | 3063
3093
3121 | | S
P
W | (1)
(1) | 2.17
2.19
2.21 | 6.20
6.18
6.17 | 3-2
2-1
1 - 0 | a ⁵ P _{-w} ³ P°
(103) | 3735.71
*3790.756
m3578.67 | P
J
P | o
1
Cr | 2.41
3.47
3.27 | 5.73
5.73
5.72 | 1-3
0-1
3-3 | (127) | 3980.65
3950.78
m3932.59 | ₩
P
P | (1)
©
Fe | 3.41
3.44
3.46 | 5.58
5.56
5.60 | 4-4
3-3
3-3 | | | 3079 | | P | 0 | 2.19 | 6.30 | 2-2 | a ⁵ P-x ¹ G° | 3722.24
3566.31 | P | 0 | 3.41
3.27 | 5.73
5.73 | 1-1
3-1 | | 3922.08
4011.71 | ₽
₩ | (1)
(1) | 2.47
2.44 | 5.62
5.52 | 1-1
3-4 | | | 2981 | .852 | G- | (-)
6 | 2.17
2.17 | | 3-4
3-4
| (103)
a ⁵ P ₋ t ⁵ D ^o † | 3542.243
3696.03 | W
W | (1) | 2.27
2.41 | 5.75
5.75 | 2-1
1-1 | a ³ P-z ³ S° (128) | 3975.21
3949.23 | ₩
P | (1)
© | 2.46
2.47 | 5.56
5.60 | 2-3
1-2 | | | 2972
2966 | 3.277
3.26 | Ū. | (2) | 2.19
2.21 | 6.34
6.37 | 2-3
1-2 | (104) | 3763.57 | P | ⊙ | 2.47 | 5.75 | 0-1 | a ³ P-u ⁵ D° | 3615.01
3594.10 | P
P | 00 | 2.39
2.41 | 5.80
5.85 | 5-5
4-4 | z ⁷ D°-e ⁵ F
(154) | | 3004 | . 48 | P | • | 2.31 | 6.32 | 1-3 | a ⁵ P-v ³ F°†
(105) | 3524.236
3657.143
*3683.616 | V
V | 1
(1) | 3.27
3.41
2.47 | 5.77
5.79
5.82 | 2-3
1-2
0-1 | (130) | 3570.60
3554.65
3544.88 | P
P
P | 000 | 2.44
2.46
2.47 | 5.90
5.93
5.95 | 3-3
2-2
1-1 | | | 9362
10081 | 370
.40 | E
P | 4. | 2.27
3.41 | 3.59
3.64 | 2-3
1-2 | a ³ P-z ⁵ P°
(106) | 3506.498
3618.91
3471.350 | G
P
U | 6
©
6 | 2.27
2.41
2.27 | 5.79
5.82
5.82 | 3-3
1-1
3-1 | | 3225.789
3196.930 | À
A | 25
20 | 2.39
2.41 | 6.21
6.28 | 5-6
4-5 | z ⁷ D°-e ⁷ F
(155) | | 10311
9013 | .88 | P
F | o
1 | 2.47
2.27 | 3.67
3.64 | 0-1
2-2 | (20-) | 3619.66 | P | 0 | 2.41 | 5.82 | 1-0 | 3- 3 | 3180.223
*3200.475 | Ğ
A | 20
15 | 2.44
2.46 | 6.32 | 3-4
2-3 | (155) | | | .624 | P
E | 10 | 2.41
2.27 | 3.67
3.67 | 1-1
2-1 | | 3526.465
3655.35
3504.866 | J
P
V | 4
0
3 | 3.27
3.41
3.27 | 5.77
5.79
5.79 | 2-3
1-1
2-1 | a ³ P_y ³ P°
(131) | 3192.799
3175.447
3160.658 | G
A
A | 8
12
10 | 2.47
2.39
2.41 | 6.34
6.28
6.32 | 1-2
5-5
4-4 | | | m7445
m7945 | | P
P | Fe
Fe | 2.27
2.41 | 3.93
3.97 | 2-3
1-2 | a ³ p_z ³ F°
(107) | 3686.260
3678.863
3721.396 | J
J
V | 3 | 3.41
3.41 | 5.76
5.77 | 1-0
1-3 | | *3184.631
*3181.922 | V
U | 3
(2) | 2.44
2.46 | 6.31
6.34 | 3-3
2-2 | | | | .130 | O
E | 4
8 | | 3.87
3.91 | 3-3
1-3 | a ³ p_z ³ p° (108) | 3481.558 | v | 1
{1
1} | 2.47 | 5.79
5.81 | 0-1
3-3 | a ³ P-x ³ F° | 3205.400
3139.661
3165.005 | A
U
V | 15
(1)
3 | 2.47
2.39
2.41 | 6.32
6.32
6.31 | 1-1
5-4
4-3 | | | 8 4 01
7 512
8072 | .12 | P
P | 2
0
0 | 2.27 | 3.94
3.91
3.94 | 0-1
2-2
1-1 | | 3616.326
m3490.74 | U
P | (1)
Co | 3.41
3.27 | 5.83
5.80 | 1-3
2-3 | (132)
a ³ P-w ³ D° | 3166.24
3194.422 | P
V | ©
3 | 2.44
2.46 | | 3-2
2-1 | | | 7373 | .07 | P | 0 | 2.27 | 3.94 | 2-1 | 3- 5 | 3624.30
3670.810 | ¥ | (1) | 3.41
2.47 | 5.82
5.84 | 1-3
0-1 | (133) | 3222.069
3199.530 | A
G | 20
15 | 2.39
2.41 | | 5-5
4-4 | z ⁷ D°-f ⁷ D
(156) | | 6608
7016
7151 | .075 | V
V
V | 20
1 | | 4.14
4.17
4.30 | 2-3
1-2
0-1 | a ³ P-y ⁵ D°
(109) | *3476.336
3606.53
m3459.95 | V
P
P | (2w)
©
Fe | 2.27
3.41
2.27 | 5.82
5.84
5.84 | 3-3
1-1
3-1 | | *3214.044
3215.940
3221.936 | V
A
V | 20
12
2 | 2.44
2.46 | 6.28
6.30 | 3-3
2-2 | , | | 6 4 81
6 9 11 | .878
.52 | I
V | 20
1 | 2.27
2.41 | 4.17
4.20 | 2-2
1-1 | | 3442.364 | v | 5 | 2.27 | 5.85 | 3-2 | a ³ P-1° | 3178.015
3194.03 | A
P | 10 | | 6.30
6.27
6.28 | 1-1
5-4
4-3 | | | 6392
6861 | .93 | V
V | (1) | 2.27
2.41 | 4.20
4.21 | 2-1
1-0 | | 3587.424
3426.337 | J
U | 2
(2) | 2.41 | 5.85
5.87 | 1-3
2-1 | (134)
a ³ P-y ³ S° | 3199.93
3210.830
3244.190 | P
G
A | 10
15 | 2.44
2.46
2.41 | 6.30 | 3-2
2-1
4-5 | | | 6267
6667
6822 | .17 | P
P
P | ©?
1 | | 4.24 | 2-3 | a ³ P-y ⁵ F°
(110) | 3569.99
3632.979 | ₩
J | (2)
(1)
3 | 2.41 | | 1-1
0-1 | (135) | 3219.581
3230.16 | G
P | 12 | 2.44
2.46 | 6.27
6.28 | 3-4
2-3 | | | 6421 | . 355 | В | 200 | 2.27 | 4.28 | 0-1
2-2 | a3p_z3po | 3393.915 | V | (1) | 2.27 | 5.91 | 2-3 | a ³ P-x ³ G°
(136) | 3227.067
3217.380 | V
A | 3
10 | 2.47
2.39 | 6.30 | 1-2
5-4 | z ⁷ D°-f ⁵ D | | 6750
6254
6663 | . 262 | I
I
B | 100
6
80 | | 4.24
4.24
4.27 | 1-1
2-1
1-0 | (111) | m3378.73
3494.15
3538.55 | P
W
W | Fe (1) | 2.27
2.41
2.47 | 5.92
5.95
5.96 | 2-3
1-2
0-1 | (136)
a ³ p_v ⁵ pe
(137) | 3227.798
3230.963 | G- | 15
10 | 2.41
2.44 | 6.24
6.26 | 4-3
3-2 | (157) | | 6945
6978 | .208 | Ĭ | 150
100 | 2.41 | | 1-3 | | 3356.407
34 78.78 8 | H
V | (1) | 2.27
2.41 | 5.95
5.96 | 2-2
1-1 | | 3228.262
3228.900
3239.436 | V
G
A | 5
3
15 | 2.46
2.47
2.41 | 6.28
6.29
6.22 | 2-1
1-0
4-4 | | | 5322
5563 | . 69 | V
P | ⊙
(3) | | 4.59
4.63 | 2-3
1-2 | a ³ P-y ³ F° (113) | 3342.225
3347.927 | V
A | 5
6 | 2.27 | 5.96
5.96 | 2-1
2-2 | a ³ P_v ⁵ F° | 3248.206
3247.297
m3239.46 | G
V
P | 10
3 | 2.44
2.46 | 6.24 | 3-3
2-2 | | | 5222
5436 | . 4 0 | P
V | ĕ
(2) | 2.27 | 4.63 | 2-2 | a ³ p_y ⁵ p° | 3484.97 | W | (1) | 2.41 | 5.96 | 1-2 | (138)
a ³ P-x ³ P° | 3259.991
3264.716 | A
G | Fe
6
(2) | 2.44
2.46 | 6.28
6.22
6.24 | 1-1
3-4
2-3 | | | 5678
5754 | . 60
. 89 | P
P | 00 | 2.41 | 4.54
4.59
4.62 | 2-3
1-2
0-1 | (113) | 3340.566
3451.628
3317.121 | J
G | 6
2
3 | 2.27
2.41
2.27 | 5.96
5.99
5.99 | 2-2
1-1
2-1 | (139) | 3258.62
3211.989 | P
G | ©
10 | 2.47
2.39 | 6.26 | 1-2
5-4 | z ⁷ D°-e ⁷ P | | 5323
5598
5253 | . 47 | P
P
P | (1)
© | 2.41 | 4.59 | 2-2
1-1
2-1 | | 3458.304
3477.007 | J
V
V | (1)
(2) | 2.41
2.41 | 5.98
5.96 | 1-0
1-2 | | 3219.806
m3214.07 | G
P | 10
Fe | 2.41 | | 4-3
3-2 | (158) | | 5049 | .825 | В | 15 | | 4.63 | | a ³ P-y ³ D° | 3510.443
3388.81 | v
P | (1) | 2.47
2.41 | 5.99
6.06 | 0-1 | a ³ P-2° | 3233.967
3240.11
3230.210 | G
P
V | 12
©
6 | 2.44 | 6.23 | 3-3 | | | m5227
5273
4924 | . 379 | P
J
B | Fe
4
3 | 2.47 | | 1-2
0-1 | (114) | *3239.029 | V | {1
{1} | 2.27 | 6.08 | 2-3 | (140)
a ³ P-w ³ F° | 3254.46
3256.52 | P
P | 00 | 2.44 | 6.28
6.23
6.25 | 2-2
3-4
2-3 | | | 5141
4848 | . 750 | V
V | (3)
(1) | 2.41 | 4.77
4.81
4.81 | 2-2
1-1
2-1 | | 3345.679
*3250.400 | v | | 2.41 | 6.10 | 1-3 | (141)
a ³ p_v ³ D° | 3241.43
3207.092 | P
V | 2 | 2.47
2.39 | 6.28
6.24 | 1-2 | z ⁷ D°-e ⁵ G | | 4630
4834 | . 125 | J
V | (2)
(1) | | 4.93
4.97 | 2-3
1-2 | a ³ P-x ⁵ D° (115) | 3367.161
3416.688 | V
V | {i}
}i} | 2.41
3.47 | 6.08
6.09 | 1-2
0-1 | (142) | 3210.230
3201.891 | Ģ
S | 8
(-) | 2.41
2.44 | 6.26
6.29 | 4-5
3-4 | (159) | | 4908
4574 | .61
.724 | P
J | (S)
© | 2.47
2.27 | 4.99
4.97 | 0-1
2-2 | (110) | *3239.029
3360.935
3233.304 | A
A
A | (2)
(1)
(1)
(1)
(1)
(1) | 2.27
2.41
2.27 | 6.08
6.09
6.09 | 2-2
1-1
2-1? | | 3193.314
3188.819
3188.567 | V
G
G | 8
7
4 | 2.46
2.47 | 6.32
6.34
6.26 | 2-3
1-2
5-5 | | | 4794
4538 | . 764 | P
V | (1) | 2.41
2.27 | 4.99
4.99 | 1-1
2-1 | | 3214.624 | V | (1) | | 6.11 | 2-2 | a ³ P-z ¹ D° | *3182.076
m3177.52 | V
P | 3
Fe+ | 2.41
2.44 | 6.29
6.32 | 4-4
3-3 | | | 4439
4138 | | J
U | (2) | 2.27 | | 2-2 | a ³ P-z ⁵ g°
(116)
a ³ P-x ⁵ P° | 3142.888
*3278.741 | V
V | 5
4 | 2.27
2.41 | 6.20
6.18 | 2-2
1-1 | (143)
a ³ P-w ³ P°
(144) | m3177.96
3160.77
3157.992 | P
P
U | Fe
(2) | 2.39 | 6.34
6.29
6.32 | 2-2
5-4
4-3 | | | 4289
4338 | . 29
. 84 | P
P | (1)
© | | 5.25
5.29
5.32 | 2-3
1-2
0-1 | a ³ P _{-X} ⁵ P°
(117) | 3157.15
3288.660
3263.378 | V
V | (3)
(3)
© | 3.27
3.41
2.41 | 6.18
6.17
6.20 | 2-1
1-0 | | *3162.335 | ŭ | 2n | 2.44 | | 3-2 | | | 4083
4249
•4047 | .32 | V
P
V | (1)
©
(1) | | 5.29 | 3-2
1-1
2-1 | | 3331.778 | Ÿ | (ã) | 3.47 | 6.18 | 1-2
0-1 | | | | | | | | | | Labor
I A | ator
Ref | | E P | | J | Multiplet
(No) | Labor
I A | atory
Ref | | E I
Low | P
High | J | Multiplet
(No) | Labor
I A | atory
Ref | | E P
Low High | J | Multiplet
(No) | |---|---------------------------------|--|--|--|--|---|---|-------------------------------------|---|---|--|---|---|---|----------------------------|--------------------------------------|--|--|---| | 6 I
cont
161.949
157.040
165.860
168.86
171.659
136.08
146.475 | GA
GB
W
V
P
U | 8 8 4 2 2 0 (1) (1) | 3.41
3.44
2.46
3.47
2.39
2.41 | 6.29
6.32
6.34
6.35
6.36
6.32 | 5-6
4-5
3-4
2-3
1-2
5-5
4-4
3-3 | z ⁷ D°-e ⁷ G
(160) | Fe I cont
3623.187
3650.280
3659.516
3619.76
3637.251
3653.763
3672.69 | inued
J
G
W
V
V
V | 8
5
8
(1)
1
1 | 3.43
2.44
2.39
3.43 | 5.80
5.82
5.80
5.82
5.80
5.82 | 5-5
4-4
6-5
5-4
5-6
4-5 | a ³ H-z ³ H° (180) | Fe I cont
7069.54
6950.82
6860.29
6839.828
6783.71
6746.96
m6677.96
6672.88 | PPVVPPP | 1
1
4
3
©
Fe | 2.55 4.29
2.58 4.35
2.60 4.40
2.55 4.35
2.58 4.40
2.60 4.43
2.55 4.40
2.58 4.43 | 4-5
3-4
8-3
4-4
3-3
2-8
4-3
3-8 | b ³ F-z ⁵ G•
(205) | | 153.322
160.92
168.94
125.653
134.08
145.46
158.21 | U
P
C
P
P | (1)
©
15
Fe | 2.46
2.47
2.39
2.41
2.44
2.46 | 6.35
6.36
6.37
6.34
6.35
6.36
6.37 | 2-3
1-1
5-4
4-3
3-3
3-1 | 7 . 5. | 3573.842
3596.30
3595.87
3566.59
3574.37
3582.56
3603.572 | W W P W U | 3
{1
{1}
{1}
{1} | 3.39
3.42
3.44
3.43 | 5.85
5.85
5.87
5.85
5.89
5.89 | 5-5
4-4
6-5
5-4
4-3
5-6 | a ³ H-w ⁵ G°
(181) | 6783.27
6712.68
6646.98
6609.116
6575.022
6475.632 | P
P
V
I
I | ©
(1)
30
30
12 | 2.55 4.37
2.58 4.42
3.60 4.45
3.55 4.42
3.58 4.45
3.55 4.45 | 4-5
3-4
2-3
4-4
3-3
4-3 | b ³ F-z ³ G•
(206) | | 148.46
133.96
139.10
144.488
150.20
113.31
120.03
129.18 | P
P
P
P
P
P
P | ©
©
6n | 3.41
3.44
3.46
3.47
3.39
3.41 | 6.31
6.35
6.37
6.38
6.39
6.35
6.37 | 5-5
4-4
3-3
2-2
1-1
5-4
4-3
3-2 | z ⁷ D°-f ⁵ F
(161) | 3617.97
3543.09
3531.43
3528.24
3572.32
3552.42
3593.80 | P
W
P
U
P | © (1) © (1) © | 3.44
3.39
3.43
3.44
3.44
3.44 | 5.85
5.88
5.92
5.94
5.88
5.92
5.88 | 4-5
6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-v ⁵ F°
(182) | 6230.728
6137.696
6065.487
6051.00
•6005.53
6322.693
6200.323 | B
B
P
V
I | 25
18
15
©
(1)
5 | 2.55 4.53
2.58 4.59
2.60 4.63
2.55 4.59
2.58 4.63
2.58 4.53
2.60 4.59 | 4-4
3-3
2-2
4-3
3-2
3-4
2-3 | b ³ F-y ³ F•
(207) | | 139.60
169.58
153.200
154.510
155.12 | P
G
V
P | 5
2
(1)
3 | 2.46
3.41
3.44
3.46
3.47 | 6.39
6.31
6.35
6.37
6.38 | 3-1
4-5
3-4
2-3
1-3 | z ⁷ p°-e ⁵ s | 3514.62
3546.21
3564.56
3543.39
3567.36
3564.51 | W
U
P
W
P | (1)
(1)
(1)
(1)
(1)
(0) | 3.39
3.43
3.44
3.43
3.44 | 5.91
5.90
5.91
5.91
5.90
5.91 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-x ³ G° (183) | 6199.475
6139.65
6106.84
6290.55
6203.31
6356.293 | U
P
P
P
U | (1)
©
©
© | 2.55 4.54
2.58 4.59
2.60 4.62
2.58 4.54
2.60 4.59
2.60 4.54 | 4-3
3-2
3-1
3-3
2-2
3-3 | b ³ F_y ⁵ p°
(308) | | 200.475
211.494
164.308
123.353
142.445 | V
U
V | 15
4
(1)
(1)
6 | 3.47
2.44
3.41
3.44 | | 3-4
4-3
3-3
3-3 | (162)
z ⁷ D°-g ⁵ D
(163)
z ⁷ D°-e ⁷ S
(164) | 3466.279
3478.382
3484.84
3494.25
3448.19
*3475.867 | V
W
P
P | (1)
(1gn)
(1)
(0) | 2.39
2.42
2.44
2.42
2.39
2.42 | 5.95
5.97
5.98
5.95
5.97 | 6-5
5-4
4-3
5-5
6-5
5-5 | a ³ H-w ³ G° (185) | 5701.553
5615.308
5567.401
5778.47
5667.67
5833.93 | J
V
V
P
P | (2)
(2)
(1)
© | 3.55 4.71
3.58 4.77
2.60 4.81
3.58 4.71
3.60 4.77
3.60 4.71 | 4-3
3-2
3-1
3-3
2-2
3-3 | p ₃ F-3 ₂ p _o | | 157.88
1097.49
1094.08
113.67
116.250
1109.05
1124.08 | R
P
P
U
W | 6
©
©
(1)
(1)
(1) | 3.41
2.44
2.46
2.44
3.46 | 6.40
6.43
6.43
6.40
6.43
6.43 | 4-3
3-2
3-1
3-3?
3-3
1-1 | z ⁷ p°-e ⁵ p
(165) | 3496.19
3437.631
3457.512
3390.25
3394.085 | V
V
P
V | (1)
(1)
(1)
(1) | 2.44
2.42
2.44 | 5.97
6.01
6.01
6.06
6.08 | 4-5
5-4
4-4
5-4
4-3 | a ³ H-y ¹ G°
(187)
a ³ H-w ³ F°
(188) | 5265.94
*5235.392
5172.21
5164.70
m5162.38
5331.48
5280.91 | P
V
P
P
P | (2)
©
Fe | 2.55 4.89
2.58 4.93
2.55 4.93
2.58 4.97
2.60 4.99
2.58 4.89
2.60 4.93 | 4-4
3-3
4-3
3-2
2-1
3-4
2-3 | b ³ F-x ⁵ D°
(210) | | 8667.37
8988.530
8933.628
8875.45
7103.15 | P
I
L
V
P | ©7
5
6
1 | 2.42
3.44 | 3.87
4.16
4.20
4.24
4.16 | 4-3
6-5
5-4
4-3
5-5 | a ³ H-z ³ D°
(166)
a ³ H-y ⁵ F°
(167) | 3395.90
3327.498
3334.223
*3339.202
3308.75
3320.650 | Y
V
Y
Y | ©1
(2)
(3)
2
0
(3) | 2.44
2.39
2.42
2.44
2.39
2.43 | 6.08
6.10
6.13
6.14
6.13
6.14 | 4-3
6-6
5-5
4-4
6-5
5-4 | a ³ H-3°
(189)
a ³ H-y ³ H°
(190) | 5069.60
5010.30
5006.72
5003.85
4566.68 | P
P
P | 0000 | 2.58 5.01
2.55 5.01
2.58 5.04
2.60 5.06
2.55 5.25 | 3-4
4-4
3-3
2-2
4-3 | b ³ F-x ⁵ F° (211) b ³ F-x ⁵ P° (213) b ³ F-y ⁵ G° | | 7014.99
3469.12
3593.878
3462.731
3494.985
3393.605
3318.022 | O PIIBBBB | (1)
Fe
60
30
1000
400
10 | 3.44
2.39
2.42
2.44
2.39
2.42 | 4.30
4.39
4.35
4.39
4.35
4.40 | 4-4
6-6
5-5
4-4
6-5
5-4
4-3 | a ³ F-z ⁵ G°
(168) | 3353.268
3352.929
3324.541
3331.616
3325.468
*3350.284 | A
A
A
A | (3)
(1)
(1)
4
3
4
(3) | 2.42
2.44
3.39
3.42
3.44
(2.43
3.44 | 6.10
6.13
6.11
6.13
6.15
6.11
6.13 | 5-6
4-5
6-5
5-4
4-3
5-5
4-4 | a ³ H-v ³ G° (191) | *4488.917
4513.72
4509.13
*4373.563
4337.52
4319.45
4294.04 | JPP JPPP | (3)
(3)
(3) | 2.55 5.30
2.58 5.31
2.60 5.33
2.55 5.37
2.58 5.42
2.60 5.45
2.55 5.42 | 4-5
3-4
2-3
4-4
3-3
2-2
4-3 | b ³ F-w ⁵ D° (214) | | 3567.22
3667.42
3252.561
3191.562
3136.620
3344.154
3256.370 | P
P
B
B
B
I
I | 1
30
30
30
30
2 | 2.42
3.44
2.39
3.42
2.44
2.43
2.44 | 4.30
4.39
4.37
4.43
4.45
4.37
4.42 | 5-6
4-5
6-5
5-4
4-3
5-5
4-4 | a ³ H-z ³ G°
(169) | 3369.14
*3235.607
3243.118
3160.342
3178.970
3155.80 | U
V
V
P | © (1) (2) (2) 3 | 2.44
2.43
2.44
2.39
2.43
2.39 | 6.11
6.25
6.25
6.30
6.30
6.30 | 4-5
5-4
4-4
6-6
5-5
6-5 | a ³ H-x ¹ G°
(192)
a ³ H-x ³ H°
(193a) | 4288.962
4277.41
4235.65
4318.81
4322.70
4275.72
4270.31 | P
P
P
P
U
P | ©
(1)
© | 2.58 5.45
2.60 5.48
2.55 5.46
2.58 5.43
2.60 5.45
2.55 5.43
2.58 5.47 | 3-2
3-1
4-5
3-4
3-3
4-4
3-3 | b ³ F_w ⁵ F°
(215) | | 8412.20
5858.27
5753.97 | P
P
P
V | ©1
©
©
(3) | 3.43
3.44 | 4.37
4.53
4.59
4.53 | 4-5
5-4
4-3
4-4 | a ³ H-y ³ F° (170) | 3183.58
3155.293
•3172.067 | A
A
B | ©
2
3 | 2.43
2.43
3.44 | 6.33 | 5-6
5-4
4-4 | a ³ H-\ ³ F° (193) | 4283.40
4246.79
4251.88 | P
P
P | ©
© | 2.60 5.48
2.58 5.48
2.60 5.50 | 3-4
2-3 | b ³ F- v ⁵ D o | | 5916.250
4315.95
4323.37
4271.95
4281.60 | P
P
P | (3)
0
0
0
0 | 2.42
3.44
2.43
3.44 | 5.28
5.30
5.31
5.33 | 5-6
4-5
5-4
4-3 | a ³ H-y ⁵ G° (171) | m3125.68
3119.495
3120.435
3148.430
3135.863
3165.08 | P
G
U
U
P | 6
6
(2)
(1)
© | 3.44
3.43 | 6.38 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-u ³ G°
(194) | 4067.275
4095.975
4078.365
4106.266
*4123.748
4134.19 | B
J
V
J
P | 4
4
(1)
(1)
© | 3.55 5.58
2.58 5.59
3.60 5.62
3.58 5.58
3.60 5.59
3.60 5.58 | 4-3
3-2
2-1
3-3
2-3
2-3 | b ³ F-x ³ D°
(317) | | 4177.52
4277.68
4235.84
4256.32
4247.31
4218.21
4022.45 | PUPPP | (1)
0
0
0
0
(1) | 2.39
2.42
2.39
2.42
2.44
2.43 | 5.35
5.31
5.32
5.35
5.35
5.46 | 6-6
5-5
6-5
5-4
4-3
5-6
6-5 | a ³ H-w ⁵ F° | 3144.92
3161.55
3100.838
*3106.542§ | P
V
U | ©
(2)
(1) | 2.42
2.44
2.39
2.44 | 6.35 | 4-4
6-5 | (196a)
a3H-u3D° | 4055.046
4071.52
4076.498
4033.19
4049.336
4011.416 | V
V
P
V | 3
(1)
(1)
(1)
(1)
(1) | 3.55 5.59
3.58 5.61
3.60 5.63
3.55 5.61
3.58 5.62
3.55 5.62 | 4-5
3-4
2-3
4-4
3-3
4-3 | • • | | 4096.96
4100.91
4125.23
3859.214
3873.763
3878.663 | P
P
I
B
V | 10
8
(8)
(3) | 2.42
2.44
3.44
2.39
2.42
2.44 | 5.43
5.45
5.43
5.59
5.61
5.62 | 5-4
4-3
4-4
6-5
5-4
4-3 | (173)
a ³ H-y ³ G°
(175) | 3083.152
3025.638
3030.149
3031.213
3009.098
3015.913 | T C G | (1)
15
15
12
3 | 2.39
2.42
2.44
2.39
2.42 | 6.50
6.51
6.50
6.51 | 4-3
6-6
5-5
4-4
6-5
5-4 | (197) | 3985.32
4005.49
4019.05
3968.38
3993.64
*4010.77
3955.77
3984.46 | PP UP PW PP | ©
(1)
©
(1)
© | 3.55 5.64
3.58 5.66
3.60
5.67
3.55 5.66
3.58 5.67
3.60 5.67 | 4-5
3-4
2-3
4-4
3-3
3-2
4-3 | (319) | | 3893.924
3899.037
3813.07
3796.00
3813.94
3826.63
3846.949 | J
P
U
P
P | Fe (1) © (1) | 2.42
2.44
2.39
2.39
2.43
2.44
2.43 | 5.59
5.61
5.63
5.64
5.66
5.67
5.63 | 5-5
4-4
6-6
6-5
5-4
4-3
5-6 | a ³ H-X ⁵ G°
(176) | 3048.929
3045.594
3005.302
3039.322
3019.291
3018.134
3004.119 | V
G
V
V | (1)
(2)
(3)
(1)
(1)
(2) | 2.42
2.44
2.39
2.44
2.39
2.42 | 6.50
6.48
6.53
6.48 | 5-6
4-5
6-7
5-6
4-5
6-6
5-5 | a ³ H-y ³ 1°
(199) | 3921.27
3833.311
3864.31
3867.45
3829.771 | U
J
P
P | © (1) 5 0 (2) (3) | 2.58 5.67
2.55 5.70
2.55 5.77
2.58 5.77
2.60 5.79
2.55 5.77 | 3-3
4-5
4-4
3-3
2-3 | b ³ F-z ³ I°
(230)
b ³ F-u ⁵ D°
(331) | | 3760.052
3785.950
3794.340
3753.154
3770.405 | B
J
J
V | 8
6
8
(1gn) | 2.39
2.42
2.44
2.39
2.42 | 5.68
5.68
5.70
5.68
5.70 | 6-7
5-6
4-5
6-6
5-5 | a ³ H-z ³ I°
(177) | *2986.655\$
2980.60 | V
P | (1)
© | 3.43
3.44 | | 4-4
 | (201) | 3842.975
3824.73
3867.925
3808.731
3813.059 | U
V
J
J | (1)
1
4
57 | 2.58 5.79
2.60 5.82
2.58 5.77
2.55 5.79
2.58 5.81 | 3-2
2-1
3-4
4-4
3-3 | b ³ F-x ³ F° | | 3689.02
3708.602
3711.92 | P | (1)
(1)
© | | 5.77
5.77
5.77 | 5-4
4-3
4-4 | a ³ H-u ⁵ D°
(178) | 9373.900
9146.11
9010.55 | e
F
F | 6
3
2 | 2.55
2.58
2.60 | 3. 9 3
3. 9 7 | 3-3
2-2 | 7 7 | 3821.834
3779.424
3797.948
3842.90 | J
V
J
P
J | 3
3*
(1)
© | 2.60 5.83
2.55 5.81
2.58 5.83
2.58 5.79 | 2-2
4-3
3-2
3-4 | | | 3666.24
3661.36
3688.877 | V
₩ | (1)
(1) | 2.43
3.44
3.44 | | 5-4
4-3
4-4 | a ³ H-x ³ F°
(179) | 9359.420
9246.54
9173.20
7461.534 | E
F
P | 3
2
0
(1) | 2.55
2.58
2.60
2.55 | 3.91
3.94
4.20 | 4-3
3-2
3-1
4-4 | (303)
_b 3 _{F-y} 5 _F 0 | 3837.138
3791.504
*3811.05
3777.448 | 1
1
1 | 1
(1)
(1)
2 | 3.60 5.81
3.55 5.80
3.58 5.83
2.55 5.83 | 2-3
4-5
3-4
4-4 | b ³ F-z ³ н
(223) | | | | | | | | | 7430.58
7400.87 | M
P | 1
© | 2.58
2.60 | 4.24
4.26 | 3-3
3-3 | (204) | | | | | | | | 52 | | | | | | | REV | | | | PLE
- | | | | | | _ | _ | _ | ******* | |---------------------------------|---------------|-------------------|----------------------|----------------------|--------------------|---|----------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--|-----------------------------------|---------------|---|----------------------|----------------------|--------------------|--| | Labor
I A | ratory
Ref | | E
Low | P
High | J | Multiplet
(No) | Labo:
I A | | 'y
Int | Low E | P
High | J | Multiplet
(No) | I A | ratory
Ref | | Low | P
High | J | Multiplet
(No) | | Fe I con | tinue | 1 | | | | | Fe I con | t1nue | eđ. | | | | | Fe I con | tinue | 1 | | | | | | m3790.24 | P | Fe | | 5.80 | 4-3 | b ³ F-w ³ D° | 3253.954 | v | (3) | 2.60 | 6.39 | 2-2 | b ³ F-x ¹ D° | 3971.82 | W | (1) | 2.75 | 5.85 | 3-2 | a ³ G-1°
(281) | | m3806.76
3810.90 | P
P | Fe
⊙ | 2.58 | 5.82 | 3-2
2-1 | (224) | 3191.11 | W | (1) | 2.55
2.58 | 6.42
6.46 | 4-3
3-2 | (257)
b ³ F-u ³ D°
(258) | 3884.359
3927.61 | J
P | 3
© | 2.68
2.72 | 5.86
5.86 | 5-4
4-4 | a ³ G-z ¹ G•
(282) | | 3824.074
3830.757 | J
J | 1 | 2.58 | 5.80
5.82 | 3-3
2-2 | | 3181.522
3176.366
3198.266 | V
U | 4
2
(1) | 2.60 | 6.48
6.46 | 2-1
2-2 | (200) | *3966.630 | Ĵ | 10n | 2.75 | 5.86 | 3-4 | (202) | | 3848.29
3733.20 | P
P | ©
© | 2.60
2.55 | 5.80
5.85 | 2–3
4–5 | b ³ F-w ⁵ G° | 3232.16 | P | `o′ | 2.60 | 6.42 | 2-3 | | *3861.341
3855.329 | J
V | 2
(1w) | 2.68 | 5.88
5.92 | 5-5
4-4 | a ³ Gv ⁵ Fe
(283) | | 3742.07
3750.677 | ₩
V | | 2.58 | 5.87
5.89 | 3-4
2-3 | (225) | 3166.435
3190.02 | G-
W | 6
(1) | 2.55
2.58 | 6.45
6.45 | 4-3
3-3 | b ³ F-t ³ D°
(259) | 3813.638
3826.836 | J
J | 2 | 2.68 | 5.92
5.94 | 5-4
4-3 | • | | 3709.665
3727.67 | Ŭ
P | (1)
⊙ | 2.55
2.58 | 5.87
5.89 | 4-4
3-3 | | 3159.25 | P | `ō´ | 2.60 | 6.50 | 2-2 | | 3892.898 | ٧ | (1) | 2.75 | 5.92 | 3-4 | | | 3731.374
*3695.507 | J
V | 2 | 2.60 | 5.90
5.89 | 2-2
4-3 | | 3126.84
3111.686 | P
U | (S)
© | 2.55
2.55 | 6.50
6.51 | 4-5
4-4 | b ³ F-w ³ H°
(260) | 3827.572
3872.923 | J | 1 | 2.68
2.72 | 5.91
5.90 | 5-5
4-4 | a ³ G−x ³ G•
(284) | | *3708.602 | ٧ | {1
1 | 2.58 | 5.90 | 3-2 | . 7 | 3093.888 | <u>v</u> | (214) | 2.55 | 6.54 | 4-3 | b ³ F-s ³ D° | 3907.464
3830.850 | J
J | (1)
1 | 2.75
2.68 | 5.91
5.90 | 3-3
5-4 | | | 3766.092
3789.570 | V
J | $\binom{1}{1}$ | 2.58
2.60 | 5.85
5.85 | 3-2
2-2 | b ³ F-1°
(336) | 3116.39 | P
_ | • | 2.58 | 6.54 | 3-3 | (261) | 3869.590
3869.562 | K. | 3*
3* | 2.72 | 5.91
5.91 | 4-3
4-5 | | | 3728.668 | J | 1 | 2.55 | 5.86 | 4-4 | | 3052.78
3007.75 | P
P | 0 | 2.55
2.58 | 6.59
6.68 | 4–3
3–2 | b ³ F-t ⁵ P°
(262) | 3910.845
3770.305 | J
V | (3) | 2.75 | 5.90
5.95 | 3-4
5-5 | _a 3 _{G_w} 3 _G • | | 3761.416
3676.314 | J
B | 1
6 | 2.58
2.55 | 5.86
5.91 | 3-4
4-5 | (227)
b ³ F-x ³ G° | 3018.25
3054.949 | P
S | (-) | 2.55
2.60 | 6.64
6.64 | 4-3
2-3 | b ³ F-x ¹ F°
(263) | 3792.156
3811.892 | j
J | 3*
2
2 | 2.68
2.72
2.75 | 5.97
5.98 | 4-4
3-3 | (287) | | 3711.225
3730.945 | J
J | 3 | 2.58
2.60 | 5.90
5.91 | 3-4
2-3 | (538) | 3054.545 | 5 | | | | _ | (200) | 3751.820
3775.860 | J
J | | 2.68 | 5.97
5.98 | 5-4
4-3 | | | 3679.33
3708.18 | W
P | (<u>î</u>)
© | 2.55 | 5.90
5.91 | 4-4
3-3 | | 10422.99
10195.11 | D | 0 | 2.68
2.72 | 3.86
3.93 | 5-4
4-3 | a ³ G-z ³ F°
(264) | *3811.05
3828.510 | Ŭ | (1)
(1n) | 2.72 | 5.95
5.97 | 4-5
3-4 | | | *3663.458 | v | 1 | 2.55 | 5.92 | 4-4 | b3F-v5F° | 10113.86 | F | 3 | 2.75 | 3.97 | 3–2 | | 3748.91 | P | • | 2.68 | 5.97 | 5-5 | a ³ G-z ¹ H° | | 3668.893
3675.44 | U
P | (1)
O | 2.58
2.60 | 5.94
5.96 | 3-3
2-2 | (339) | 8345.20
8303.11 | P
P | 0 | 2.68
2.72 | 4.16
4.20 | 5-5
4-4 | a ³ G—y ⁵ F°
(265) | 3789.178 | J | 3 | 2.72 | 5.97 | 4–5 | (289) | | 3637.73
3653.35 | W
P | (1)
© | 2.55
2.58 | 5.94
5.96 | 4-3
3-2 | | 8112.17
8108.33 | P | 0 | 2.68
2.72 | 4.20 | 5-4
4-3 | | 3704.463
3743.78 | B
P | 10
(0)
(1) | 2.68
2.72 | 6.01
6.01 | 5-4
4-4 | a ³ (Ly ¹ G°
(290) | | 3660.41
*3695.054 | P
B | 0
8 | 2.60
2.58 | 5.97
5.92 | 2-1
3-4 | | 8129.32 | P | 0 | 2.75 | 4.26 | 3–2 | a ³ G-z ⁵ G° | 3779.213 | U
D | | 2.75 | 6.01 | 3-4 | a ³ G_w ³ F° | | 3691.18 | P | ©
(1) | 2.60 | 5.94 | 2-3 | b ³ F-v ⁵ P° | 7650.95
7540.44 | P
P
P | 0 | 2.68 | 4.29 | 5-5
4-4
3-3 | (266) | 3649.508
3669.523 | B | 12
10 | 2.68 | 6.06 | 5-4
4-3 | (291) | | 3658.55
*3663.458 | U
V
P | (1) | 2.55
2.58
2.60 | 5.92
5.95
5.96 | 4-3
3-2
3-1? | (231) | 7481.74
7382.63
7344.18 | P
P | 000 | 2.75
2.68
2.72 | 4.40
4.35
4.40 | 5-4
4-3 | | 3677.630
3687.656
*3703.556 | B
J
J | 12
4
5 | 2.75
2.72
2.75 | 6.10
6.06
6.08 | 3-2
4-4
3-3 | | | 3668.58
3690.095
3685.66 | S
P | (1)
(-)
© | 2.58
2.60 | 5.92
5.95 | 3-3 | | 7347.16 | P | ŏ | 2.75 | 4.43 | 3-2 | | 3722.028 | Ĵ | (1) | 2.75 | 6.06 | 3-4 | | | *3623.440 | G. | 1 | 2.55 | 5.95 | 4-5 | b ³ F-₩ ³ G° | 7316.77
7261.00 | P
P | 0 | 2.68 | 4.37
4.42 | 5-5
4-4 | a ³ G-z ³ G°
(267) | 3684.108
*3703.556 | G
J | 15
5 | 2.72
2.75 | 6.07 | 4-3
3-2 | (393)
a ³ G−v³D∘ | | 3636.995
3643.716 | J
V | 2 | 2.58
2.60 | 5.97
5.98 | 3-4
2-3 | (233) | 7228.70
7114.55 | O
P | 1
© | 2.75
2.68 | 4.45
4.42 | 3-3
5-4 | | 3718.407 | J. | 3 | 2.75 | 6.07 | 3-3 | _ | | 3606.38
m3622.00 | P
P | ⊙
Fe | 2.55
2.58 | 5.97
5.98 | 4-4
3-3 | | 7100.20
7471.75 | P
P | © ?
© | 2.72
2.72 | 4.45
4.37 | 4-3
4-5 | | 3705.71 | P | • | 2.75 | 6.08 | 3–3 | (293) | | 3644.58 | P | • | 2.58 | 5.96 | 3-2 | b3F-x3Pe | 6677.993 | В | 600 | | 4.53 | 5-4 | a ³ G-y ³ F° | 3606.679
3621.463 | G
B | 20
15 | 2.72 | 6.10 | 5-6
4-5 | а ³ G-у ³ Н°
(294) | | 3562.60 | P | , <u>o</u> , | 2.55 | 6.01 | 4-4 | (235)
b ³ F-y ¹ G° | 6592.919
6546.245 | B
B | 300
200 | 2.72 | 4.63 | 4-3
3-2 | (268) | 3638.296
3584.663 | G
B | 12
8 | 2.75
2.68
2.72 | 6.14 | 3-4
5-5 | | | 3592.486 | U
" | (1)
(1) | 2.58 | 6.01 | 3-4 | (237)
b ³ F-w ³ F° | 6806.851
6703.573 | L | 10
10 | 2.73
2.75 | 4.53
4.59 | 4-4
3-3 | | 3605.450
3568.977 | G
J | 15
4 | 2.68 | 6.14
6.14 | 4-4
5-4 | | | 3511.748
m3524.04
3520.85 | U
P
W | Fe (1) | 2.58
2.60 | 6.08
6.10 | 4-4
3-3
2-2 | (238) | 6180.216
6085.267 | V
V | (2) | 2.72
2.75 | 4.71
4.77 | 4-3
3-2 | a ³ G-y ³ D°
(269) | 3603.205
*3618.392 | G
J | 10
2 | 2.68
2.72 | 6.11
6.13 | 5-5
4-4 | a ³ G-v ³ G°
(295) |
 3495.285
3500.564 | G
G | 8 | 2.55 | 6.08 | 4-3
3-2 | | 5391.78 | P | · · · | 2.68 | 4.97 | 5-5 | a ³ G-x ⁵ F° | 3622.001
3581.645 | Ğ.
J | 12 | 2.75
2.68 | 6.15 | 3-3
5-4 | (2) | | 3508.52 | w | (1) | 2.55 | 6.07 | 4-3 | b ³ F-v ³ D° | 4432.90 | P | 0 | 2.72 | 5.50 | 4-3 | (270)
a ³ G-v ⁵ D° | 3589.456
3640.388 | Ğ. | 3
15 | 2.72
2.73 | 6.15
6.11 | 4-3
4-5 | | | 3524.075
3537.729 | J
J | 3 | 2.58
2.60 | 6.08
6.09 | 3-2
2-1 | (239) | 4460.13 | P | 0 | 2.75 | 5.51 | 3–2 | (271) | 3651.469 | В | 30 | 2.75 | 6.13 | 3-4 | 7 4 - | | *3537.4918
3544.631 | n
1 | (3) | 2.60 | 6.07
6.08 | 3–3
3–2 | | 4305.13
*4340.49 | P | (1) | 2.72
2.75 | 5.58
5.59 | 4–3
3–2 | a ³ G-x ³ D°
(272) | 3527.90 | P | ©
(a) | | 6.24 | 3-3 | (296) | | 3558.21 | P
 | 0 | 2.60 | 6.07 | 2–3 | b ³ F-3° | *4239.847 | J | 8 | 2.68 | 5.59 | 5-5 | a ³ G-y ³ G° | 3459.429
3493.69 | V
₩ | (s)
(s) | 2.68
2.72 | 6.25
6.25 | 5-4
4-4 | a ³ G-x ¹ G°
(297) | | 3526.016
m3451.66 | V
P | 1
Fe | 2.58
2.55 | 6.08 | 3-3
4-5 | (240)
b3F_y3H° | 4266.968
4288.148
4215.975 | J
V | (3)
(1)
(1) | 2.72
2.75
2.68 | 5.61
5.63
5.61 | 4-4
3-3
5-4 | (273) | 3411.88 | P | 0 | 2.68 | 6.30 | 5-5 | a ³ G-u ⁵ F• | | 3464.914 | v | (1) | 2.58 | 6.14 | 3-4 | (241) | 4242.588
m4291.44 | V
P | (1)
Fe | 2.72
2.73 | 5.62
5.59 | 4-3
4-5 | | 3411.134
3439.050 | V
V | (1)
(1)
(2) | 2.68
2.72 | 6.30
6.30 | 56
45 | (298)
a ³ G-x ³ H•
(299) | | 3468.849
3476.853 | V
J | 4
(2) | 2.55
2.58 | 6.11
6.13 | 4-5
3-4 | b ³ F-v ³ G°
(242) | 4313.04 | P | ő | 2.75 | 5.61 | 3-4 | | 3405.83 | Ŵ | (2) | 2.68 | 6.30 | 55 | (200) | | 3469.834
3448.869 | V
V | (1) | 2.60 | 6.15
6.13 | 2-3
4-4 | ,, | 4184.22
4213.42 | U | (1)
© | 2.68
2.72 | 5.63
5.64 | 5-6
4-5 | a ³ G-x ⁵ G°
(274) | 3404.923
3404.755 | V
V | $\binom{1}{1}$ | 2.68
2.72 | 6.31
6.34 | 5-4
4-3 | a ³ G-t ⁵ D°
(300) | | 3450.14 | P | 0 | 2.58 | 6.15 | 3–3 | . 7 1 | 4239.01
*4163.676 | P
V | (1) | 2.75
2.68 | 5.66
5.64 | 3-4
5-5 | | 3438.10
3434.029 | P
V | ⊙
(1₩) | 2.72
2.75 | 6.31
6.34 | 4-4
3-3 | | | 3515.41 | P | 0 | 2.60 | 6.11 | 2-2 | b ³ F-z ¹ D°
(243)
b ³ F-w ³ P° | 4194.50
4224.63 | P
P
V | O. | 2.72 | 5.66
5.67 | 4-4
3-3 | | 3378.676 | G. | 6 | 2.68 | 6.33 | 5-4 | a3G_v3re | | 3410.56
3446.791
3429.80 | P
V
P | (1)
© | 2.58
2.60
2.60 | 6.20
6.18 | 3-3
3-1
3-2 | (344) | 4145.209
4180.41
*4215.430 | y
P
J | (1)
© | 2.68
2.72
2.75 | 5.66
5.67
5.67 | 5-4
4-3
3-2 | | *3404.301
3453.022 | y
J | (2)
3 | 2.72
2.75 | 6.34
6.32 | 4-3
3-2 | (301) | | 3364.639 | v | | 2.58 | 6.20 | 3-3 | b ³ F-z ¹ Fe | 4113.17 | P | 2
© | 2.68 | 5.68 | 5-6 | a ³ G-z ³ I° | 3411.353
3440.74 | G
P | Õ | 2.72
2.75 | 6.33
6.33 | 4-4
3-4 | | | 3383.387 | Ÿ | {1
1 | 2.60 | 6.24 | 2-31 | (245) | 3998.054 | I | 10 | 2.68 | 5.77 | 5-4 | (275)
a ³ G-u ⁵ D° | 3366.790
3399.230 | V
V | 5
(1) | 3.68
3.72 | 6.35
6.35 | 5-4
4-4 | a ³ Q-4°
(303) | | 3335.403 | V | (1) | | 6.25 | 4-4 | b ³ F-x ¹ G°
(246) | 4039.94
•4043.901 | ₩
V | (1)
5n | 2.72
2.72 | 5.77
5.77 | 4-3
4-4 | (276) | 3428.41 | P | °o† | 2.75 | 6.35 | 3-4 | _ | | 3252.12
3227.17 | P
P | ,
(0) | 2.55
2.55 | 6.34
6.37 | 4-4
4-3 | (246)
b ³ F-u ⁵ F°
(247) | 4085.26 | P | 0 | 2.75 | 5.77 | 3-4 | 2 2 | 3341.906
3373.874 | A
G | 5
(1) | 2.68
2.72 | 6.37
6.37 | 5-5
4- 5 | a ³ G-6°
(303) | | 3229.78 1 | | (1) | 2.58 | 6.40 | 3-2 | . 3_ 2 - | 3971.325
3983.960 | I
J | 9
10 | 2.68
2.72 | 5.79
5.81 | . 5-4
4-3 | a ³ G-x ³ F°
(277) | 3370.786 | Ā | 10 | a.68 | 6.34 | 5-5 | a3G_u3Ge | | 3285.54 | P
" | ©
(4) | 2.55 | 6.30 | 4-5 | b ³ F-x ³ H°
(248) | 4007.277
4016.54 | W | (1)
(1) | 2.75
2.73 | 5.83
5.79 | 3-2
4-4 | | 3369.549
3380.111 | G
C | 8 | 2.72
2.75 | 6.38
6.40 | 4-4
3-3 | (304) | | 3254.261
3260.276 | v
v | (1)
4 | | 6.34 | 4-3 | b ³ F_t ⁵ D°
(249)
b ³ F_v ³ F° | 4024.109
4057.356 | y
V | (1) | 2.75
2.75 | 5.81
5.79 | 3-3
3-4 | | 3337.666
3351.750 | Ç
V | 6
/3
/2\ | 2.68
2.72 | 6.38
6.40 | 5-4
4-3 | | | *3278.741
3314.450 | V
V | 4 | 2.58
2.60 | 6.34
6.32 | 4-4
3-3
2-2 | (350) | 3956.681
3997.394 | В | 12 | 2.68
2.72 | 5.80
5.80 | 5-6
4-5 | a ³ G-z ³ H°
(278) | 3403.299
3398.226 | V
V | (a) | 2.72
2.75 | 6.34
6.38 | 4-5
3-4 | | | 3253.839
3296.467 | v
U | (2)
(1)
(1) | 2.55
2.58 | 6.34 | 4-3
3-2 | | 4021.869
3952.606 | I
I
I | 15
12
8 | 2.75
2.68 | 5.80
5.82
5.80 | 4-5
3-4
5-5 | (010) | *3393.609 | V | (1w) | 2.75 | 6.38 | 3-2 | a ³ G-y ¹ D ^e | | 3252.928 | v | 4 | 2.55 | 6.34 | 4-5 | b ³ F-u ³ G° | 3981.775
3937.329 | j
J | 7
3 | 2.72
2.68 | 5.82
5.82 | 4-4
5-4 | | 3387.410 | V | 2 | 2.75 | 6.39 | 3-2 | (305)
a ³ G-x ¹ D°
(306) | | 3246.492 | V | 3 | 2.58 | 6.38 | 3-4 | (252) | 3995.996 | J | 4 | 2.72 | 5.80 | 4-3 | a ³ G_w ³ D° | 3335.72
3363.815 | P
V | ©?
(1) | 2.72
2.75 | 6.42 | 4-3
3-3 | (306)
a ³ G-u ³ D•
(307) | | 3249.204 | V. | 3 | 2.55 | | 4-4 | b ³ F-4°
(253)
b ³ F-u ⁵ P° | 4017.096
4036.37 | V
P | (1)
© | 3.75
2.75 | 5.82
5.80 | 3-2
3-3 | (279) | 3254.734 | V | (2) | 2.68 | 6.47 | 5-6 | a ³ G-w ³ H° | | m3219.60
3217.53 | P
P | Fe
© | 2.55
2.58 | 6.38
6.41 | 4-3
3-2 | (254) | 3897.896 | J | 8 | 2.68 | 5.85 | 5-6 | a ³ G_w ⁵ G° | 3265.55
3275.685 | A
A | (1) | 2.75 | 6.50
6.51 | 4-5
3-4 | (308) | | 3242.268 | V | (1) | 2.58 | 6.38 | 3–2 | b ³ F-y ¹ D° | *3932.629
3945.119 | J
J | 4 4 | 2.72 | 5.85
5.87 | 4-5
3-4 | (280) | 3235.592
3249.037 | U
V | $\begin{Bmatrix} 1 \\ 1 \\ 1 \end{Bmatrix}$ | 2.68
2.72 | 6.51 | 5-5
4-4 | | | 3237.234 | A | (1) | 2.58 | 6.39 | 3-2 | (255)
b ³ F ₋₇ °
(256) | 3939.114
3863.745
3890.844 | J
V
J | (1)
3
3 | 2.75
2.68 | 5.89
5.87 | 3-3
5-4 | | 3219.37 | P | 0 | 2.68 | 6.51 | 5-4 | | | | | | | | | ,, | 3907.937 | В | 4 | | 5.89
5.90 | 4-3
3-2 | RE | VISED M | ULTIPLE | : : | LYRLE | | | | 53 | |---------------------------|-----------------|---|-------------------|-------------|--------------------|-----------------|-----|-------------------|---------------------------|-----------------|---|-------------------| | Laboratory
I A Ref Int | E P
Low High | J | Multiplet
(No) | Labo
I A | oratory
Ref Int | E P
Low High | J | Multiplet
(No) | Laboratory
I A Ref Int | E P
Low High | J | Multiplet
(No) | | IA Ref Int | Low High | (NO) | | | LITE | row urgu | | (NO) | 1 A | | 1110 | LOW RIGH | | (NO) | |--|--|--|--|---|--|---|---|--|--|-----------------------|------------------------------------|--|--|---| | <u>e I</u> continued
246.05 P Fe
235.33 P © | 2.68 6.48 5-6
2.72 6.53 4-5 | a ³ G-y ³ I°
(309) | Fe I cont
3618.30
3620.23 | P
W | ©
(1) | 2.82 6.23
2.84 6.25 | 5-4
4-3 | z ⁷ F°-e ⁷ P
(324) | Fe I cont
5835.58
5747.85 | P
P | 0 | 2.82 4.93
2.82 4.97 | 2-3
2-2 | b ³ P-x ⁵ D°
(343) | | 162.335 U 21 | 2.68 6.58 5-4 | a ³ G-9°
(310) | *3602.534
3638.16
3635.28 | G
P
P | 3
⊙ | 2.85 6.28
2.84 6.23
2.85 6.25 | 3-2
4-4
3-3 | • | 5552.85
5532.13
5529.80 | P
P
P | •
• | 2.82 5.04
2.83 5.06
2.85 5.08 | | b ³ P-x ⁵ F° (344) | | 151.353 G 10
172.30 P © | 2.72 6.63 4-5
2.75 6.64 3-3 | (311)
a ³ G-x ¹ F° | 3613.15
3653.35
3646.10
3620.00 | W
P
P | (1)
©
© | 2.86 6.28
2.85 6.23
2.86 6.25
2.87 6.28 | 2-2
3-4
2-3
1-2 | | 5536.59
5570.06 | P
P | 0 | 2.82 5.05
2.83 5.05 | | b ³ P-z ⁵ S°
(345) | | 098.191 V 6
101.003 V (2)
090.209 V (1)
073.982 V (1)
066.487 V 3 | 3.68 6.66 5-5
3.73 6.70 4-4
3.75 6.74 3-3
3.68 6.70 5-4
2.72 6.74 4-3 | (313) | 3586.75
3588.615
3572.60
3556.68
3563.61 | P
G
U
W
P | (2)
3
(1)
(1)
© | 2.80 6.24
2.82 6.26
2.84 6.29
2.85 6.32
2.80 6.26 | 6-6
5-5
4-4
3-3
6-5 | z ⁷ F°-e ⁵ G
(325) | 4741.533
4707.487
4680.475
4683.565
4657.598 | B
J
V
J | 3
(2)
(1)
(2)
(2) | 2.82 5.42
2.83 5.45
2.85 5.48
2.82 5.45
2.83 5.48 | 3-3
1-2
0-1
2-3
1-1 | b ³ P-w ⁵ D° (346) | | 095.270 V (2) 122.665 R (-) 067.952 V (1) 094.870 U (1) 119.04 P © | | (314)
a ³ G-13°
(315a) | 3612.068
*3608.146
3587.253
3567.045
3554.50 |
G
V
V
W | 8
3
2
3
3 | 2.82 6.24
2.84 6.26
2.85 6.29
2.86 6.32
2.87 6.34 | 5-6
4-5
3-4
2-3
1-2 | | 4687.387
4685.03
4687.67
4661.33
4664.71 | J
P
P
P | (1)
©
©
© | 2.82 5.45
2.83 5.47
2.85 5.48
2.82 5.47
2.83 5.48 | 2-3
1-3
0-1
2-3
1-1 | b ³ P-w ⁵ F° (347) | | 046.819 S (-) 959.992 C 10 990.392 C 6 011.482 G 7 | | a ³ G-w ¹ G°
(315)
a ³ G-v ³ H°
(316) | 3570.243
3554.922
3541.083
3542.076
3536.556
3533.201 | V
G
G | 30
40
15
15
15 | 2.80 6.25
2.82 6.29
2.84 6.32
2.85 6.34
2.86 6.35
2.87 6.36 | 6-7
5-6
4-5
3-4
2-3
1-2 | z ⁷ F°-e ⁷ G
(326) | 4641.22
4604.23
4603.34
4605.10
4580.46 | P
P
P
P | 0 000 | 2.82 5.48
2.82 5.50
2.83 5.51
2.85 5.53
2.82 5.51 | 2-1
2-3
1-3
0-1
2-2 | b ³ P-v ⁵ D°
(348) | | 965.25 P Fe
988.942 S (- | 2.68 6.84 5-5
2.72 6.84 4-4 | | 3533.008
3530.385
3522.268
3527.792 | G
G | 5
2
(3) | 2.87 6.37
2.80 6.29
2.82 6.32 | 0-1
6-6
5-5 | | 4582.941
4612.64 | Ŭ
P | (1)
© | 2.83 5.53
2.82 5.49 | 1-1
2-2 | b ³ P-y ⁵ 5° | | 980.532 G 5
 | 2.75 6.89 3-3
2.80 5.29 6-5
2.82 5.33 5-4
2.84 5.36 4-3
2.85 5.39 3-3 | (318) | 3527.792
3526.377
3526.673
3529.818
3498.18
3509.12
3512.239 | A
A
A
A
A
A
A
A
A
A
A
A
A | 4
4
5
6
0
(1) | 2.84 6.34
2.85 6.35
2.86 6.36
2.87 6.37
2.80 6.32
2.82 6.34
2.84 6.35 | 4-4
3-3
2-2
1-1
6-5
5-4
4-3 | | 4635.846
4466.554
4476.021
4443.197
4454.383
4432.570 | J
B
I
B
B | (1)
12
10
7
5 | 2.83 5.49
2.83 5.58
2.83 5.59
2.85 5.62
2.82 5.59
2.83 5.62 | 1-2
2-3
1-2
0-1
2-2
1-1 | (349)
b ³ P-x ³ D°
(350) | | 859.748 B 15
006.126 I 20
957.302 J 20
918.999 B 30
1890.762 J 25
1872.144 I 20 | 2.86 5.40 2-1
2.82 5.29 5-5
2.84 5.33 4-4
2.85 5.36 3-3
2.86 5.39 3-3
2.87 5.40 1-1 | | 3516.55
3523.30
3513.59
3493.57
3537.896 | W
W
P
P | (1)
(1)
(1)
(1)
(1)
(0)
(0)
4 | 2.85 6.36
2.86 6.37
2.80 6.31
2.82 6.35
2.83 6.31 | 3-3
3-1
6-5
5-4
5-5 | z ⁷ F°-f ⁵ F
(327) | 4401.447
4290.870
4278.38
4279.864
4258.619 | V
J
P
J
J | (1)
(1)
(1)
(1) | 2.82 5.62
2.82 5.70
2.83 5.72
2.85 5.73
2.82 5.72 | 2-1
2-3
1-2
0-1
2-2 | b ³ P-w ⁵ P°
(351) | | 044.221 T (2
985.553 J 7
1938.820 J 10
1903.317 B 12
1878.218 B 12 | 3.84 5.29 4-5
3.85 5.33 3-4
2.86 5.36 2-3
2.87 5.39 1-3
3.87 5.40 0-1 | | 3512.08
3506.23
3506.58
3556.877
3526.23
3518.68 | ₩
₩
P
G
₩ | (1)
(1)
(0)
7
(3)
(1) | 3.84 6.35
2.86 6.38
2.87 6.39
2.84 6.31
2.85 6.35
2.86 6.37 | 4-4
3-3
1-1
4-5
3-4
3-3 | | 4360.73
4241.113
4307.130
4236.426
4245.258 | P
V
J
J | (1)
4
3
6 | 2.83 5.73
2.83 5.73
2.82 5.75
2.83 5.75
2.85 5.75 | 2-1
2-1
2-1
0-1 | b ³ P-z ³ g° (352) | | 579.344 V (1
611.19 P ©
1554.467 V (1
1515.17 P (1
490.34 P ©
1635.62 P © | 3.84 5.52 4-4
3.85 5.56 3-3
3.86 5.60 2-2
2.87 5.62 1-1 | (319) | m3512.68
3509.73
*3565.583
*3575.976
3582.69 | P
P
G | 3
2
(3) | 2.87 6.38
2.87 6.39
2.85 6.31
2.86 6.31
2.87 6.31 | 1-3
0-1 | z ⁷ F°-e ⁵ S
(328) | 4181.758
4175.640
m4143.83
4156.803
4125.884 | J
B
P
B
J | 15
10
Fe
12
(2) | 2.82 5.77
2.83 5.79
2.85 5.82
2.82 5.79
2.83 5.82 | 2-3
1-2
0-1
2-2
1-1 | _b 3 _{P-u} 5 _D •
(354) | | 571.44 P ©
525.875 V (1
495.386 V (1 | 2.86 5.56 2-3 | | 3525.856
3540.121 | U
G | (1)
3 | 2.84 6.34
2.85 6.34 | | z ⁷ F°-g ⁵ D
(329) | 4107.492
4126.88 | B
U | (1) | 2.82 5.82
2.83 5.82 | 2-1
1-0 | ,3_ 3 | | 104.77 P
1010.77 W (1
1994.27 P ©
1137.97 P © | 2.86 5.95 2-1
2.82 5.80 5-5
2.84 5.85 4-4 | (320) | 3512.80
3522.896
3490.04 | P
U
P | ©
(1)
©7 | 2.85 6.37
2.86 6.37
2.86 6.40 | 3-3
2-3
2-3 | z ⁷ F°-e ⁷ S
(330)
z ⁷ F°-e ⁵ P
(331)
z ⁷ F°-e ³ G | 4184.895
4173.323
4154.502
4213.650
4203.987
4191.685 | B
J
B
B | 10
2
12
5
10
(2) | 2.82 5.77
2.83 5.79
2.82 5.79
2.83 5.76
2.83 5.77
2.85 5.79 | 2-3
1-1
2-1
1-0
1-3
0-1 | b ³ P_y ³ P•
(355) | | 056.53 U (1
1003.665 V (1
119.66 P ©
1032.46 W (1
1006.768 V (1 | 2.85 5.85 3-4
) 2.87 5.93 1-2 | | 3315.637
*3309.397
3196.147
*3183.076
3173.608 | V
G
V
U | (3)
6
2
3
(1) | 2.82 6.63
2.80 6.64
2.83 6.68
2.84 6.72
2.85 6.74 | 5-5
6-5
5-4
4-3
3-2 | z ⁷ F°-e ³ G
(338)
z ⁷ F°-g ⁷ D
(333) | 4131.806
4132.532
•4104.133
4134.681 | B
J
K | 5
4
3 | 2.82 5.81
2.83 5.83
2.82 5.83 | 2-3
1-2
2-2 | b ³ P _{-x} ³ F° (356) | | 610.159 | 2.80 6.21 6-6
2.82 6.28 5-5
2.84 6.32 4-4
2.85 6.31 3-3
2.86 6.34 2-2
) 2.87 6.32 1-1 | (321) | 3181.85
3183.40
3187.16
3175.97 | ₩
₩
P | (1)
(3)
(1)
©
(1) | 2.86 6.74
2.87 6.76
2.87 6.74
2.87 6.76 | 3-3
1-1
1-3
0-1 | z ⁷ F°-1 † | 4133.903
4137.612
4114.449
4109.808
4091.561 | J
B
B
J | 8
7
5
9
(1) | 2.83 5.82
2.85 5.84
2.83 5.84
2.83 5.84
2.83 5.84 | 1-3
0-1
2-2
1-1
2-1 | (357) | | 8547.203 J (2
8526.78 P
8551.11 P © | 2.82 6.32 5-4
2.84 6.31 4-3 | | 2976.922
2990.33
2974.78 | U
P
W | (1)
©
(1) | 2.82 6.97
2.84 6.97
2.82 6.97 | 5-5
4-5
5- | (334)
z ⁷ F°-3 | 4066.979
4085.011 | B
J | 6
4 | 2.82 5.85
2.83 5.85 | 1-2 | b ³ P-1° (358) | | 5542.56 P ©
5568.423 U (1
5635.82 P ©
5591.345 U (1 | 2.85 6.34 3-2
) 2.86 6.32 2-1
2.82 6.21 5-6 | | 11149.34
10881.65 | D
D | 2 1 | 2.82 3.93
2.83 3.97 | 2-3
1-2 | (335)
b ³ P-z ³ F°
(336) | 4044.614
4062.446
4079.848 | J
J
J | 6
10
4 | 2.82 5.87
2.83 5.87
2.85 5.87 | 2-1
1-1
0-1 | b ³ P-y ³ s•
(359) | | 5560.07 P © 5575.976 Q 2 3 5559.45 P © 5578.380 U (1 3605.50 P Fe 5575.249 J 2 3 5587.69 P | 2.85 6.32 3-4
2.86 6.31 2-3
2.87 6.34 1-2
3.87 6.32 0-1
2.80 6.22 6-5
2.82 6.37 5-4 | z ⁷ F°-1 ⁷ D
(322) | 11783.28
11439.06
11251.09
11298.83
11119.80
10987.22 | D
D
D
D
D | 6
15
3
3
10
© | 2.82 3.87
2.83 3.91
2.85 3.94
3.82 3.91
2.83 3.94
2.83 3.94 | 2-3
1-3
0-1
2-3
1-1
2-1 | b ³ P-z ³ D° (337) | 4000.02
3978.466
3964.522
3961.147
*3947.533
3944.748 | ₩
V
J
J
J | (1)
(1)
3
(2)
5
(2) | 2.82 5.90
2.82 5.92
2.83 5.95
2.85 5.96
2.82 5.95
2.83 5.96 | 2-3
2-3
1-3
0-1
2-3
1-1 | b ³ P- w ⁵ G•
(360)
b ³ P- v 5 p •
(361) | | 3584.790 J 1
36831.103 J 7
3594.632 G 8
3602.46 W 2
3595.294 V 2
3595.66 U (1 | 2.86 6.30 2-1
2.82 6.23 5-5
2.84 6.27 4-4
2.85 6.28 3-3
2.86 6.30 2-2 | | 9370.57
9210.030
9117.10
9118.888
9030.67
8943.00
8946.25 | PEFEFF | 6
2
25
1
2 | 2.82 4.14
2.83 4.17
2.85 4.20
3.83 4.17
2.83 4.20
3.82 4.20
2.83 4.21 | 2-3
1-3
0-1
2-3
1-1
2-1
1-0 | _b 3p _{-y} 5 _D °
(338) | m3927.93
3953.863
3952.704
3935.815
3935.31
3918.58 | P
V
B
W
P | Fe (1) (1) 8 (2) © | 3.82 5.96
3.83 5.96
3.83 5.96
3.83 5.97
3.83 5.97 | 1-2
2-2
1-1
2-1 | b ³ P- v 5 F°
(362) | | 8609.46 P © 8613.08 P © 8602.10 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.85 6.27 3-4
7 2.86 6.28 2-3
2.87 6.30 1-2
3.87 6.30 0-1
3.83 6.22 5-4 | | 8999.561
8757.193
8674.751
8611.807
9088.326
8838.433 | | 300
35
60
40
50 | 2.83 4.19
2.83 4.24
2.83 4.24
2.83 4.27
2.83 4.19
2.85 4.34 | 3-3
1-1
3-1
1-0
1-3
0-1 | b ³ P-z ³ P°
(339) | 3925.646
3909.830
3893.316
3918.418
3942.443
3925.946 | J
V
J
B | 4
3
(1)
4
6
6 | 2.82 5.96
2.83 5.99
2.82 5.99
2.83 5.98
2.83 5.96
2.85 5.99 | 2-2
1-1
2-1
1-0
1-3
0-1 | b ³ P _{-X} 3pe
(364) | | 3630.353 J 4
3683.772 U 8
3610.703 J 8
3604.383 U (1 | 3.84 6.24 4-3
3.85 6.26 3-2
2.86 6.28 2-1 | (323) | 6979.17
6859.49
6808.80 | P
P
P | 000 | 2.82 4.59
2.83 4.63 | 2-3
1-3
2-3 | b ³ P-y ³ F° (340) | *3829.458
3801.681 | V
J | 3 | 2.83 6.06
2.82 6.07 | 2-3 | b ³ p ₋₂ °
(366)
b ³ p _{-v} ³ p° | | 3645.090 V 2
3645.494 V 1
3634.52 P C | 2.84 6.22 4-4
2.85 6.24 3-3
2.86 6.26 2-2 | .
! | 6912.43
6860.96 | P
P | ©
1 | 2.83 4.63
2.83 4.62
2.82 4.62 | 1-1
2-1 | b ³ p_y ⁵ pe
(341) | 3801.804
3809.043
3786.176
3793.872 | J
J
J | (1)
4 | 2.83 6.08
2.85 6.09
2.82 6.08
2.83 6.09 | 1-3
0-1
3-3
1-1 | (367) | | 3817.53 P
3660.33 W (1
3656.35 P ©
3641.45 P ©
3640.88 P © | 2.86 6.24 2-3
2.87 6.26 1-2 | •
•
• | 6518.376
6355.038
6270.238
6311.506
6229.234
6187.41 | I
J
V
V
P | 30
4
(3)
(1)
(1)
© | 3.83 4.71
3.83 4.77
3.85 4.81
3.83 4.81
3.83 4.81 | 3-3
1-3
0-1
3-3
1-1
3-1 | b ³ P-y ³ D°
(342) | 3778.320
3768.23 | Ŭ
₩ | (1) | 3.83 6.09
3.83 6.11 | 2-1 | b ³ P-z ¹ p°
(368) | | 54 | | | REVI | SED | MULTI | PLET | TABLE | | | | | | | |--|--------------------------
--|-----------------------------------|----------------------------------|-----------------|-------------------------------|---|-----------------------------------|---------------|---|----------------------------------|----------------|---| | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Labor
I A | atory
Ref Int | E F
Low | High | Whiltiplet (No) | Labor
I A | ratory
Ref | | E P
Low Hi | | Multiplet | | Fe I continued | | | Fe I cont | inued | | | | Fe I con | tinued | ı | | | | | 3655.465 J 4
*3689.457 G 12 | | 3-2 b ³ P-w ³ P°
1-1 (369) | 3649.70
3664.537 | G 3 | | 6.31 4-
6.35 3- | -5 z ⁷ P°-f ⁵ F
-4 (391) | 4365.902
4385.260 | V
V | {1
1} | 2.98 5.
3.00 5. | | .3 b ³ G–w ³ D°
-2 (415) | | 3674.766 J 2
3702.033 J 3 | 2.82 6.18
2.83 6.17 | 2-1
1-0 | 3689.37
*3602.534 | P © G 3 | 3.03
2.93 | 6.37 2-
6.35 4- | -3
-4 | 4239.735 | U | 3 | 2.94 5. | | -6 b ³ 0-w ⁵ 0∙ | | 3670.035 V 3
3703.824 J 3 | | 1-3
0-1 | *3645.494
*3707.048 | V 1 | | | -3
-2 z ⁷ P°-e ⁵ 5 | 4290.382
4299.65
*4229.516 | J
W
J | (2)
(1)
(1gn) | 2.98 5.
3.00 5.
2.94 5. | 37 3- | -5 (416)
-4
-5 | | 3602.77 P ©7 | 2.82 6.24 | 3-3 b ³ P-z ¹ F° (370) | *3752.420 | j (1 | | | -8 (392) | 4259.34
4280.63 | P
P | 01 | 2.98 5.
3.00 5. | 37 4-
39 3- | - 4
-3 | | 3504.455 U (1) | | (370)
8-3 b ³ P-v ³ F°
(371)
8-3 b ³ P-u ³ G° | 3623.51
*3679.53 | P © |) 2. 99 | 6.34 3 | -3 z ⁷ P°-g ⁵ D
-4 (393) | 4199.37
4255.499 | P
V | (1) | 2.94 5.
3.00 5. | | -4
-2 | | 3448.786 V (1)
3462.808 V (1) | | 2-3 b3P-u3G°
(372)
2-3 b3P-y1D° | 3666.85
3588.52 | P 0 | | | -3
-3 z ⁷ P°-e ⁷ 8 | 4223.73
4284.415 | P
U | ©
(1) | 2.94 5.
2.98 5. | | -4 b ³ G-z ¹ G°
-4 (417) | | *3475.867 V (1) | 2.83 6.38 | 1-2 (373) | 3650.031
3694.005 | J 4
G 20 | 2.99 | 6.37 3 | -3 (394)
-3 | 4196.533 | V | {1
1} | 2.94 5. | 3 8 5. | -5 b ³ G-v ⁵ F° | | *3457.090 V (3w) 3469.390 V (1) | | 3-2 b ³ P-7°
(374)
1-2 b ³ P-x ¹ D° | 3554.44
*3584.960 | P © | | | -3 z ⁷ P°-e ⁵ P
-2 (395) | 4203.30
4140.24
4164.80 | U
P
U | (1)
©!
(1) | 3.00 5.
2.94 5.
2.98 5. | 92 5 | -3 (418)
-4
-3 | | 3469.390 V (1)
*3431.815 J 3 | | (375)
2-3 b ³ p-u ³ p° | 3633.64
3614.77 | P © | 3.03 | 6.43 2-
6.40 3- | -1
-3 | 4237.67 | P | • | 3.00 5. | 92 3 | -4 | | 3406.17 P ©
3393.382 V (1) | 2.85 6.48 | 1-3 (376)
0-1 | 3627.35
365 7.8 9 | P © | | | -2
-3 | 4156.670
4219.41
*4254.938 | V
P
V | (1)
© | 2.94 5.
2.98 5.
3.00 5. | 90 4 | -5 b ³ G-x ³ G [®]
-4 (419)
-3 | | *3393.609 V (1w) *3381.340 V (2) 3368.983 V (1) | 2.83 6.48 | 2-2
1-1
2-1 | 3322.474
3338.643 | G 5 | | | -5 z ⁷ P°-g ⁷ D
-4 (396) | 4160.561
•4215.430 | V
J | (1)
2 | 2.94 5.
2.98 5. | 90 5 | -3
-4
-5 | | 3403.29 P | 2.82 6.45 | 2-3 b ³ P-t ³ D° | 3342.76
3287.117 | P © | 3.03
w) 2.93 | 6.72 2
6.68 4 | -3
-4 | 4258.956 | J
- | (1) | 3.00 5. | | -4
-5 ъ ³ 0,w ³ 0,• | | 3361.959 V (1)
3432.023 V (1)
3349.739 V (1)
3419.706 V (1) | 2.85 6.44 | 1-3 (377)
0-1?
2-3 | 3306.703
3320.800
3285.20 | S (-
V (2)
U (1 | n,gn)3.03 | 6.74 2 | -3
-2
-3 | 4089.225
*4123.748
4141.862 | J
V | (1)
(1)
(1) | 2.94 5.
2.98 5.
3.00 5. | 97 4. | -5 b ³ G-w ³ G°
-4 (422)
-3 | | 3419.706 V (1)
3407.06 P ©? | 2.83 6.44 | 1-1?
2-1? | 3256.52 | P 0 | 2.99 | 6.77 3 | -2 z ⁷ P°-e ³ P | 4067.49
4104.46 | P
P | 0 | 2.94 5.
2.98 5. | 97 5.
98 4. | - 4
-3 | | 3342.298 V 4
3354.068 V 3 | | 1-1 b ³ P-8°
0-1 (378) | 3238.535
*3053.443 | s (- | | | -1 (397)
- z ⁷ P°-2 | 4146.071
4161.488 | A | (2) | 2.98 5.
3.00 5. | | -5
-4 | | 3323.737 C 7 | | 2-2 b ³ p-√3p• | *3053.443 | | | | (398) | 4064.07
4130.311 | P
J | ⊚
5 | 2.94 5.
2.98 5. | 97 5-
97 4- | -5 b ³ G- z¹H°
-5 (423) | | 3239.35 P
3228.003 V (2) | 2.82 6.64 | 1-1 (379)
3-1 | 10086.27 | P 0 | | | _5 b ³ G_y ⁵ F° (399) | 4011.89 | P
V | (°) | 2.94 6.
2.98 6. | | -4 b ³ G-y ¹ G°
-4 (424) | | 3335.776 V 4
*3250.400 V (2) | | 1-3
0-1 | 9038.84
9375.14
9156.23 | P ©
P © | 2.98 | 4.29 4 | -6 b ³ G-z ⁵ G*
-5 (400)
-4 | 4066.597
4045.139 | v | (1)
(1) | 3.00 6. | | -а ъ ³ с–а• | | 3289.443 V (2)
3301.227 V (2) | | 3-1 b ³ p-z ¹ p•
1-1 (380) | 9089.413
8975.408 | E 30
E 10 | 2.94
2.98 | 4.29 5
4.35 4 | -5
-4 | *3947.533 | J | 5 | 2.94 6. | 06 5 | (425)
4 b30-w3F• | | *3243.406 V 3 | 2.82 6.62 | 2-3 b ³ P-y ¹ F° (381) | 8868.42
*8713.19
8698.71 | F 3
F (10
P © |) 2.94 | 4.35 5 | -3
-4
-3 | 3979.12
3983.83
4000.466 | P
P
J | 0
0 | 2.98 6.
3.00 6.
2.98 6. | 10 3 | -3 (426)
-2
-4 | | 3207.649 V (1w) | | 2-3 b ³ P-11°
(382) | 8621.612 | E 10 | 2.94 | 4.37 5 | -5 b ³ G-z ³ G• | *4014.28
4035.98 | ₩
P | (<u>1</u>) | 3.00 6.
3.00 6. | 08 3 | -3
-4 | | 3047.301 S (-) | 2.83 6.88 | 1-2 b ³ P-w ¹ D° (382a) | 8582.267
8515.08
8342.21 | E 15
0 20
P © | 3.00 | 4.45 3 | -4 (401)
-3
-4 | 3996.28
•4014.28 | P
W | ©
(1) | 2.98 6.
3.00 6. | | -3 b ³ G- √³pe
-3 (427) | | 5232.946 I 40
5266.562 I 30 | | 4-5 z ⁷ P°-e ⁷ D
3-4 (383) | 8358.53
8878.26 | P 0 | 2.98 | 4.45 4 | -3
-5 | 4031.73 | P | 0 | 3.00 6. | 07 3 | -3 | | 5281.796 I 10
5139.468 J 20 | 2.93 5.33 | 2-3
4-4 | 8747.32 | F 3 | | | -4
-4 b ³ G-y ³ F° | 3981.62
4016.81 | P
P | © † | 2.98 6.
3.00 6. | | -3 b ³ G-3°
-3 (428) | | 5193.350 I 30
5236.868 J 15
5068.774 J 10 | 3.03 5.39 | 3-3
2-2
4-3 | 7748.281
7664.302
7583.796 | E 125
E 80
E 50 | | 4.59 4 | -4 b ³ G-y ³ F°
-3 (402)
-2 | 3897.449
3922.68 | J
P | (2)
© | 2.94 6.
2.98 6. | | -6 b ³ G-у ³ н°
-5 (429) | | 5139.260 J 10
5191.460 J 20 | 2.99 5.39 | 3-2
3-1 | 7954.94 | P © | 2.98 | 4.53 4 | -4 | 3871.750
3903.902 | J
J | 5 | 2.94 6.
2.98 6. | 14 4 | -5
-4 | | 4768.397 V 3n
4787.84 V (1) | 2.93 5.52
2.99 5.56 | 4-4 z ⁷ P°-e ⁵ D
3-3 (384) | 7904.12
7798.90 | P O | 3.98
3.00 | 4.54 4.
4.59 3 | -3 b ³ G-y ⁵ p°
-2 (403) | 3853.462
3893.391 | V | (1)
7 | 2.94 6.
2.94 6. | | -4
-5 b ³ G-v ³ G• | | 4800.14 V (1)
4682.58 W (1) | 3.03 5.60
2.93 5.56 | 2-2
4-3 | 7112.176
6971.95 | I 3
V 1 | | | -3 b ³ G-y ³ D°
-2 (404) | 3919.069
3918.644 | J
J | 3
6 | 2.98 6.
3.00 6. | 13 4-
15 3- | -4 (430)
-3 | | 4736.165 V (1)
4760.07 P ©
4877.61 P © | 3.03 5.62 | 3-2
2-1
3-4 | 6310.543
6539.72 | U (1 |) 2.94
3.00 | | -4 b ³ G-x ⁵ D°
-4? (405) | 3868.243
3885.154
3944.890 | V
V
J | $\begin{Bmatrix} 1 \\ 1 \\ 3 \end{Bmatrix}$ | 2.94 6.
2.98 6.
2.98 6. | l5 4. | -4
-3
-5 | | 4863.78 P © | 3.03 5.56 | 2-3 | 5261.49 | P o | 2.94 | 5.28 5 | -6 b ³ G-y ⁵ G• | 3953.156 | J | 4 | 3.00 6. | 13 3- | .4 | | 3685.998 | 2.99 6.32 | 4-5 z⁷P°-e⁷F
3-4 (385)
2 -3 | 5226.42
5288.38
5318.04 | P 0
P 0
P 0 | 2.98 | 5.31 4- | -5 (406)
-4
-3 | *3976.865
3777.061 | J
J | (1)
(1) | 3.00 6.
2.98 6. | | -2 b ³ G-z ¹ D°
(431)
-3 b ³ G-z ¹ F° | | 3637.862 J 3n
*3707.048 I 8 | 2.93 6.32
2.99 6.31 | 4-4
3-3 | 5318.04
5196.24 | P © | 2.94 | 5.31 5- | -4 | 3726.06 | P | · - / | 2.94 6. | | (432)
.4 b ³ G-x ¹ G• | | 3736.937 J 6
3643.637 J 3
3682.17 P © | 2.93 6.31 | 2-2
4-3
3-2 | *5326.154
5265.25
5204.95 | V (1
P ©
P © | 3.00 | 5.35 3- | -4 b ³ G-z ⁵ H°
-3 (407)
-3 | 3716.71
3696.81 | P
P | 0 | 2.98 6.
3.00 6. | | (433)
-5 b ³ G-u ⁵ F°
-4 (434) | | 3744.105 J 4 | 3.03 6.32 | 8-1 | 4773.52 | Р 0 | 7 3.00 | 5.59 3- | 2 b ³ G-x ³ D° | 3670.071 | J | 3 | 2.94 6. | 50 5- | 6 b ³ G-x ³ H• | | 3748.969 J 5
3754.506 J 1
3793.28 P | 2.99 6.27 | 4-5 z⁷P°-f⁷D
3-4 (386)
2-3 | 4787.50 | P © | | 5.58 3-
5.59 5- | -3 (408) | 3709.535
3663.95 | J
₩ | $\binom{1}{1}$ | 2.98 6.
2.94 6. | | -5 (435)
-5 | | *3689.457 G 12
3746.931 J 6 | 2.93 6.27
2.99 6.28 | 4-4
3-3 | 4647.437
4691.414
4710.286 | B 6
B 5 | 2.98
3.00 | 5.61 4-
5.62 3- | -4 (409) | 3662.90
3669.68 | P
P | • | 2.94 6.
2.98 6. | 31 5-
34 4- | 4 b ³ G-t ⁵ D* | | 3773.699 J 1
3682.15 P ©
3727.809 J 3 | 2.93 6.28 | 2-2
4-3 | 4618.765
4661.975
•4720.997 | J (3)
J (3)
J (1)
J (1) | 2.94
2.98 | 5.61 5-
5.62 4- | -3 | 3708.45
3699.55 | P
P | 0 | 2.98 6.
3.00 6. | 31 4- | -4 | | 3766.665 V 1 | | 3–2
3–1 | 4740.343 | J {1 | 2.98
3.00 | 5.59 4-
5.61 3- | -4 | 3632.558
3669.151 | J
J | 3
3 | 2.94 6.
2.98 6. | | 4 b ³ G_y ³ Fe | | 3742.621 J 4
3793.478 J (1)
3816.92 P © | 2.99 6.24 | 4-4 z ⁷ p•_f ⁵ D
3-3 (387) | 4626.758
*4556.129 | S (-) | n 2.94 | 5.64 4-
5.64 5- | .5 (410) | 3721.606 | V | (1) | 3.00 6. | 3- | -2 | | 3816.92 P ©
3727.096 J 4
3769.995 V 4 | 2.93 6.24 | 2 -2
4-3
3-2 | 4603.956
4633.764 | V (1) | 3.98
3.00 | 5.66 4-
5.67 3- | | *3623.440
3628.82
3637.05 | G
P
P | 1
©
© | 2.94 6.1
2.98 6.1 | 8 4- | 4 (438) | | 3790.656 J (1) | 3.03 6.28 | 3-1 | 4494.47
4472.57 | P © P | | 5.68 5-
5.70 5- | | 3585.193
*3608.146 | V
J | (2)
3 | 3.00 6.
2.94 6.
2.98 6. | 8 5- | 4 | | 3735.325 J 6
3782.450 J 1
3793.354 V 1 | 2.99 6.25 | 4-4 z ⁷ P°-e ⁷ P
3-3 (388)
3-2 |
4358.505
4418.432 | B 3 | | 5.77 5-
5.77 4- | | *3667.999
3658.02 | V
P | 1
© | 2.98 6.3
3.00 6.3 | | | | *3716.442 G 12
3747.00 P © | 2.93 6.25 | 4-3
3-2 | 4433.39
4423.145 | P © V (1) | 3.00
2.98 | 5.79 3-
5.77 4- | 2
4 | 3663.25
3693.008 | ₩
J | (1)
1 | 2.98 6.3
3.00 6.3 | 5 4-
5 3- | | | 3703.697 J 3
m3730.46 P Co | | 4-5 z ⁷ P°-e ⁵ G
3-4 (389) | 4461.80 | P © | 3.00 | 5.77 3- | 3 7 7 | 3590.08 | W | (1) | 2.94 6.3 | 7 5- | 5 b ³ G-6° | | 3742.56 P ©
*3666.24 W 1 | 3.03 6.32 2
2.93 6.29 | 3-3
4-4 | 4326.762
4351.549
•4373.563 | V (2)
J 3
J (2) | 2.98 | 5.79 5-
5.81 4-
5.83 3- | 3 (413) | 3633.837
*3645.494 | v
v | 1 | 3.00 6.3 | | - 4 | | 3697.426 | 2.99 6.32 3
3.03 6.34 | 33
32 | 4390.460 | V (1) | 2.98 | 5.79 4- | 4 | 3489.670 | J | 4 | 3.94 6.4 | 7 6- | (441)
6 b ³ G-w ³ H ^o | | 3676.879 V (1) | 2.99 6.34 | 4-3
3-2 | 4309.382
4367.581
4390.954 | V 4
J 5
B 4 | 2.98
3.00 | 5.80 5-
5.80 4-
5.82 3- | 5 (414) | 3508.494
3516.403
3449.06 | J
G
P | 5
5
© | 3.98 6.5
3.00 6.5
3.94 6.5 | 1 7 | 5 (442)
4 | | 3633.07 P (1)
3681.64 W (1) | 2.99 6.34 | 4-5 z ⁷ P°-e ⁷ G
3-4 (390) | 4304.552
4348.939 | J (1) | 3.94
3.98 | 5.80 5-
5.82 4- | 5
4 | *3479.683 | V | (1) | 3.94 6.4 | | | | 3709.03 P ©
3664.69 W (1) | 3.03 6.35 2 | 3-3 | 4286.440 | V (1) | 2.94 | 5.82 5- | | | | | | | 6 b ³ G_ y³I°
(443) | | Labor
I A | atory
Ref | | E P
Low Hi | gh | J | Multiplet
(No) | Labor
I A | ratory
Ref | | E l | P
High | J | Multiplet (No) | Labor
I A | atory
Ref | | Low E | | J | Multiplet (No) | |--------------------------------------|--------------|--------------------------|-------------------------------|----------------------|--------------------------|---|--|--------------------|---------------------------------|----------------------|----------------------|--------------------------|---|---------------------------------|--------------|----------------|----------------------|----------------------|-------------------|--| | I cont | inue | 1 | | | | | Fe I cont | inued | l | | | | | Fe I cont | inued | | | | | | | 83.692
22.499
48.478 | A
2
G | 5
3
(1) | 2.94 6.
2.98 6.
3.00 6. | .58 | 5-4
4-4
3-4 | b ³ G-9°
(444) | 4464.773
4517.530
4430.197
4564.832 | V
B
V
V | (2)
(2)
(2)
(1) | | | 3-3
1-1
3-1
1-0 | c ³ p-y ³ p°
(472) | 3426.09
3388.966
3339.588 | y
V | (1w)
(1w) | 3.10
3.06
3.00 | 6.70
6.70
6.70 | 0-1
1-1
2-1 | c ³ P-t ⁵ Pe
(502) | | 09.40 | P | © | 3.00 6. | 62 | | b ³ G-y ¹ F°
(445) | 4553.48
4583.72 | P
P | (1 <i>)</i> | 3.06 | 5.77
5.79 | 1-2 | | 3397.221 | V | (1) | 3.00 | 6.64 | 2-3 | c ³ P-x ¹ F° (503) | | 39.202 | ٧ | 2 | 2. 94 6. | | | (445)
b ³ G_y ¹ H°
(446) | 4393.03 | P | .0 | 3.00 | 5.81 | 2-3 | | *3181.922 | U | (3) | 3.00 | 6.88 | 2-2 | (503)
c ³ P-w ¹ D°
(505)
c ³ P-t ³ F° | | 72.359
97.560 | V
V | $\binom{1}{1}$ | | | 4-3
3-3 | b ³ G-x ¹ F°
(447) | 4372.994
4384.682 | v
v | (1)
(1) | 3.00 | 5.83 | 2-2
2-3 | (473)
c ³ P-w ³ D° | 3001.66
3035.25 | P
P | (1)
© | 3.00
3.06 | 7.12
7.12 | 2-3
1-2 | (506) | | 57.82 | P | © | 2.98 6. | 65 | | b ³ G-10°
(448) | 4330.81 | P | 0 | 3.00 | 5.85 | 2-2 | (474)
c ³ P-1° | 8931.78 | P - | •
• | 3.03 | 4.42 | 4-4 | a ¹ G-z ³ G° | | 10.347
19.258
03.574
82.725 | V
V
V | (2)
(1)
(2)
(2) | 2.98 6.
3.00 6. | 70
74 | 5-5
4-4
3-3
5-4 | (448)
b ³ G-t ³ G°
(449) | 4414.23
4305.455
4387.897 | P
B
J | ⊙
3
3 | 3.06
3.00
3.06 | 5.85
5.87
5.87 | 1-3
3-1
1-1 | (475)
e ³ P-y ³ S ^o
(476) | 8689.71
8254.34
7941.84 | P
P
P | 0
0 | 3.03
3.03
3.03 | 4.45
4.53
4.59 | 4-3
4-4
4-3 | (507)
a ¹ G-y ³ F°
(508) | | 79.743
47.507 | V
V | (a'1)
(1)
(1) | 2.98 6.
2.98 6. | 74
66 | 4-3
4-5 | | 4450.320 | J | (3) | 3.10 | 5.87 | 0-1 | c ³ p_v ⁵ F° | 7350.55 | P | • | 3.03 | 4.71 | 4-3 | a ¹ G-y ³ D° | | 43.678
07.015 | v
v | (1) | 3.00 6.
2.94 6. | | 3-4
5-5 | b ³ G-13° | *4202.755
4260.135
4298.21 | V
V
P | (1)
(1) | 3.00
3.06
3.10 | 5.94
5.96
5.97 | 3-3
1-3
0-1 | (476a) | 5038.81 | P | ©? | 3.03 | 5.48 | | (509)
a ¹ G-v ⁵ D°
(510) | | 44.09 | P | © | 2.98 6. | 67 | 4-5 | (450)
b ³ G-13° | 4182.384
4239.95 | J
P | 4 | 3.00
3.06 | 5.96
5.97 | 2-2 | | 4842.19
4793.96 | P
P | ⊙î
(+) | | 5.58 | | a ¹ G-x ³ D°
(511)
a ¹ G-y ³ G° | | 75.848
12.232
36.54 | V
V
P | (1)
(1)
(0) | 2.94 6.
2.98 6.
3.00 6. | 70 | 5-4
4-4
3-4 | (450a) | 4162.93
•4254.938
4335.46 | P
V
P | ©
(1)
© | 3.00
3.00
3.06 | 5.97
5.90
5.90 | 3-1
3-3
1-3 | c ³ P-w ⁵ G°
(477) | 4636.66 | P | (1)
© | | 5.61
5.70 | | (513)
a ¹ G-z ³ I°
(513) | | 22.05
57.244 | P
V | Fe
2 | 2.94 6.
2.98 6. | 77 | 4-4 | b ³ G-w ¹ G°
(451) | 4230.584 | r
U | {1
1} | 3.00 | 5.92 | 2-3 | o ³ P-v ⁵ P° | 4514.189
*4509.306 | J
U | (2) | 3.03
3.03 | 5.77
5.77 | 4-4
4-3 | alg_u5p•
(514) | | 80.763
53.064 | V
q | (1)
(-) | 3.00 6.
2.94 6. | | 3-4
5-6 | b ³ G−v ³ H° | 4273.87
4309.46
4195.615 | W
P
J | (1)
©
(3) | 3.10 | 5.95
5.96
5.95 | 1-3
0-1
3-3 | (478) | 4480.142
4439.643 | J
V | $\binom{3}{1}$ | 3.03
3.03 | 5. 79
5.81 | 4-4
4-3 | a ¹ G-x ³ F° (515) | | 92.84
13.771 | P | Fe | 2.98 6.
3.00 6. | 84
84 | 4-5
3-4 | (452) | 4250.90 | P | 0 | 3.06 | 5.96 | 1-1 | 3- 3 | 4456.331 | J | (1)
(2) | 3.03 | 5.80 | 45 | a ¹ G-z ³ H° | | 58.99
91.180 | ₩
S | {1
2
-} | 2.94 6.
2.98 6. | | 5-51
4-4 | | 4141.352
4170.906 | U
B | (1)
5 | 3.00 | 5.98
5.96 | | c ³ P-w ³ G°
(480)
c ³ P-x ³ P° | 4436.931
4343.699 | V
J | (2) | 3.03 | 5.82 | 4-4
4-4 | (516)
a ¹ G-w ⁵ G• | | 49.50 | P | • | 2.94 6. | | 5–5 | b ³ G-x ¹ H°
(453)
b ³ G-w ¹ F° | 4210.39
*4134.433 | P
V | (1) | 3.06
3.00 | 5.99
5.99 | 1-1
3-1 | (482) | 4369.774 | В | 7 | 3.03 | 5.86 | 4-4 | (517)
a ¹ G-z ¹ G• | | 56.464
78.545 | A
A | (1) | | | 4-3
3-3 | (454) | 4230.347
4248.228
4267.830 | J
J
B | 4
4
5 | 3.06
3.06
3.10 | 5.98
5.96
5.99 | 1-0
1-3
0-1 | | 4298.040
4302.191 | B
J | (2) | 3.03
3.03 | 5.91
5.90 | 4-5
4-4 | (518)
a ¹ G-x ³ G°
(520) | | 13.079
45.057 | A
A | (2)
(1) | 2.98 6. | 90 | 5-5
4-4 | b ³ G-s ³ G°
(455) | m4044.64 | P
U | Fe | 3.00
3.06 | 6.06 | 2-2 | c ³ P-2°
(484) | 4225.956
*4202.755 | J
V | 3
(1) | 3.03 | 5.95
5.97 | | a ¹ G-w ³ G° (521) | | 47.792
66.98 | V
P | ©Î | 3.00 6. | .90 | 3-3
3-4 | | 4117.32
4013.798 | V | (1)
(1) | 3.00 | 6.06 | 1-3
2-3 | c ³ P-w ³ F° | 4199.098 | V
J | 20 | 3.03 | 5.97 | | a ¹ G-z ¹ H° | | 66.69
62.872 | P
S | ©?
(1) | | | 5–5
5–4 | b ³ G-u ³ H°
(456) | 4053.82
3983.35 | W
U | ${1 \atop 1} \atop {1 \atop 1}$ | 3.06
3.00 | 6.10
6.10 | 1-3
3-3 | (485) | 4143.418 | J | 15 | 3.03 | 6.01 | 4-4 | (522)
a ¹ G-y ¹ G•
(523) | | 47.047
60.545 | V
V | (1)
(1)
(2) | 2.98 7. | .01 | 5-4
4-3 | b ³ G-u ³ F°
(457) | 4031.243
4085.38 | V
P | (3) | 3.00
3.06 | 6.07
6.08 | 3-3
1-3 | c ³ P-v ³ D°
(486) | 4074.794
4052.664 | J
V | 5
(1) | 3.03
3.03 | 6.06
6.08 | 4-4
4-3 | alg_w3re
(524) | | 74.157
14.120? | v
s | (2) | 3.00 7.
2.94 7. | | 3-2
5-4 | b ³ G-v ¹ G° | *4130.035
4013.822
4076.232 | յ
Մ | (1)
2
(1) | | 6.09
6.08
6.09 | 0-1
3-3
1-1 | | 4070.45 | P | © 7 | 3.03 | 6.07 | | (525) | | 30.757 | s | (-) | 2.98 7. | .05 | 4-5 | (458)
b ³ G-x ³ I°
(459)
b ³ G-t ³ F°† | *4004.976
3976.392 | J
V | {\frac{1}{1}}
{\frac{1}{1}} | 3.00 | 6.09 | 3-1
3-3 | c ³ P-z ¹ De | 3994.117
3974.65 | J
P | ©
© | 3.03
3.03 | 6.12
6.14 | 4-4 | aig_y3H°
(526) | | 82.2349
95.838
90.34 | U
U
P | (1)
(1) | 3.00 7. | 12 | 4-3
3-2
4-4 | b ³ G-t ³ F* †
(460) | 4046.629
3867.219 | V
B | (1)
7 | 3.06
3.00 | 6.11 | 1-3
3-3 | (487)
c ³ p_w ³ p° | 4017.156
3990.379
3955.22 | J
J
P | 6
2
0 | 3.03
3.03
3.03 | 6.11
6.13
6.15 | 4-5
4-4
4-3 | a ¹ G-v ³ G°
(527) | | | • | | 3.00 4. | | | 3n -3ne | 3955.956
3888.825 | J | 3 | 3.06
3.00 | 6.18
6.18 | 1-1
3-1 | (488) | 3843.259 | В | 8 | 3.03 | | | a ¹ G-z ¹ F° | | 01.72
23.65
70.26 | P
D
P | 3
⊙ | 3.06 4. | . 24 | 3-3
1-1
3-1 | (461) | 3970.391
*3933.606
4006.631 | J
J | (2)
2 | 3.06
3.06
3.10 | 6.17
6.20
6.18 | 1-0
1-3
0-1 | | 3839.259 | В | 7 | 3.03 | 6.25 | | (528)
a ¹ G-x ¹ G•
(529) | | 18.36
96.30 | F | 3
3 | 3.06 4.
3.06 4. | . 27
. 19 | 1-0
1-2 | | 3808.286 | J | (1) | 3.00 | 6.24 | 2-3 | 03p_z1F0 | 3729.34 | P | ©
(4) | 3.03 | 6.34 | | a ¹ G-u ⁵ F° (530)
a ¹ G-x ³ H° | | 83.09
12.95 | D
P | 3
© | | | 0-1
2-3? | o ³ P-z ³ G* | 3699.147
3722.23 | J
P | 1
© | 3.00
3.06 | 6.34
6.37 | 2-3
1-3 | (489)
c ^{3p_t5} p°
(490) | 3773.364
3732.13 | V
P | (1)
©† | 3.03 | 6.30 | 4-3 | (531)
a1G-t5D° | | 23.668 | ï | 13 | 3.00 4. | .71 | 2-3 | (462)
c ³ P_y ³ D•
| 3662.73
3693.79 | P | 0 | 3.00
3.06 | 6.37
6.40 | 3-3 | | *3740.061 | Ţ | (1) | 3.03 | 6.33 | 4-4 | (532)
a1G_V3F° | | 89.17
90.12
70.48 | V
P
P | 3
©
© | 3.10 4. | . 81 | 1-3
0-1
3-3 | (463) | 3635.19
•3679.53 | ¥ | (1) | 3.00
3.06 | 6.40
6.41 | 3-1
1-0 | | 3730.386
3689.897 | G
V | 3
(1w) | 3.03
3.03 | 6.34
6.38 | 4-5
4-4 | (532a)
a ¹ G-u ³ G•
(533) | | 28.58
19.42 | P
P | 0 | | | 1-1
2-1 | | 3698.611
3782.608 | յ
յ
V | (1)
(1) | 3.00
3.06 | 6.34 | 2-3
1-2 | o ³ p_v ³ F°
(491) | 3725.498 | J | (1) | 3.03 | 6.35 | 4-4 | a ¹ G-4°
(534) | | 93.850
27.07 | T
P | (0) | | | 2-3
1-2 | o ³ P-x ⁵ P°
(464) | 3721.189
3636.650 | v | 1 | 3.00 | 6.32 | 2-2
2-3 | ₀ 3p_u ³ G• | *3695.054 | В | 8 | 3.03 | 6.37 | 4-5 | a ¹ G-6°
(534a)
a ¹ G-t ³ D° | | 57.90
96.90
60.909 | P
P
U | 0
0
(1) | 3.10 5.
3.00 5. | . 32
. 29 | 0-1
3-3
1-1 | | 3652.26
3711.411 | P
J | 0 | 3.00
3.06 | 6.38
6.38 | 2-2
1-2 | (493)
c ^{3p_y1} D°
(494) | 3617.09
3545.832 | ₩ | (1)
(1) | 3.03 | 6.45
6.51 | | a ¹ G-t ³ D°
(535)
a ¹ G-w ³ H° | | 33.77 | P | © | 3.00 5. | .32 | 2-1 | 3. E - | *3645.090 | V. | .2 | 3.00 | 6.39 | 2-2 | e3p-x1pe | 3529.531 | ט | (1) | 3.03 | | | (536)
a ¹ G-y ³ I° | | 04.038
36.931§
79.84 | T
R
P | (-)
a
© | 3.00 5. | . 45 | 2-3
2-2
3-1 | o ³ P_w ⁵ D°
(465) | 3704.010
3617.788 | V
B | (1)
13 | 3.06
3.00 | 6.39
6.42 | 1-2
2-3 | (495)
c ³ P-u ³ D° | 3522.73 | P | Q | 3.03 | 6.54 | 4-3 | (537)
alg-s3p•
(538) | | 45.29 | P | 0 | 3.00 5. | . 50 | 2-3 | c3pv5pe | 3632.042
3645.822 | J
J | 10
6 | 3.06
3.10 | 6.46
6.48 | 1-2
0-1 | (496) | 3437.046 | G. | 3 | 3.03 | 6.62 | | a ¹ G_y ¹ F°
(539) | |)25.73
)82.68 | P
P | 0 | | | 1-3
0-1 | (466) | 3575.374
3603.828
3548.037 | J
J
U | 4
1
(3) | 3.00
3.06
3.00 | 6.46
6.48
6.48 | 3-3
1-1
3-1 | | 3429.82
3425.009 | P
G | ⊙
4 | 3.03 | 6.63
6.64 | | a ¹ G-y ¹ H°
(540)
a ¹ G-x ¹ F° | | 786.810
374.35 | B
P | 5
© | 3.06 5. | . 59 | 3-3
1-3 | e ³ P-x ³ D*
(467) | m3586.10 | P | Fe | 3.00 | 6.45 | 2-3 | 03P_t3D* | 3410.031 | ט | (1) | 3.03 | 6.65 | | (541)
a ¹ G-10° | | 86.17
772.817
811.04 | P
B
V | ©
3
(1) | 3.00 5. | . 59 | 0-1
3-3
1-1 | | 3581.916
*3690.450
m3526.69 | U
V
P | (1)
(1)
Fe | 3.06
3.10
3.00 | 6.50
6.44
6.50 | 1-3
0-17
3-3 | (497) | 33 29 .532 | V | (8) | 3.03 | 6.74 | 4-3 | (543)
a1G-t3G*
(543a) | | 713.104 | V | {1
1} | 3.00 5. | . 62 | 3-1 | -3n 5-a | m3647.43
3590.29 | P
P | Fe
©î | 3.06
3.00 | 6.44 | 1-17 | | 3395.87 | P | ©
F• | | 6.67 | | a ¹ G-12°
(543) | | 585.59
520.13
528.82 | P
P
P | 000 | 3.06 5. | | 3-3
1-1
3-1 | c ³ P_₩ ⁵ P°
(468) | 3505.065
3559.506 | y
J | a
a | 3.00
3.06 | 6.53
6.53 | 3-1
1-1 | c ³ P_8°
(498) | m3306.35 | P
U | Fe (1) | 3.03 | 6.77 | 4-5 | a ¹ G-w ¹ G•
(544)
a ¹ G-v ³ H• | | 490.084
579.825 | J
V | (2)
(1) | | .75
.75 | 3-1
1-1 | c ³ P_z ³ g°
(469) | 3600.48
m3497.89 | P
P | ⊙î
Fe | 3.10 | 6.53
6.53 | 0-1
2-2 | c ³ P_v ³ Pe | 3238.32
3229.994 | P
U | ⊚
(3) | 3.03 | 6.84 | 4-4
4-5 | (545)
a ¹ G-x ¹ H° | | 461.205 | v
P | | 3.00 5 | .77 | 2-3 | o ³ P_u ⁵ D° | *3442.979
3392.018 | A
A | (1)
3 | 3.06 | 6.64
6.64 | 1-1
3-1 | (499) | 3202.562 | V | а | 3.03 | 6.89 | | (546)
alg_wire
(547) | | 520.24 §
526.563
432.80 | P
J
P | (2)
(1)
(2) | 3.10 5 | . 79
. 82
. 79 | 1-3
0-1
3-3 | (471) | 3552.112
•3507.39 § | V
W | 1 (1) | 3.06
3.06 | 6.53
6.58 | 1-2 | o ³ P-s ³ D° | 3190.651
3190.825 | U
V | (a) | 3.03
3.03 | 6.90
6.90 | 4-5
4-4 | a ¹ G-8 ³ G°
(548) | | 461.989
376.782 | J
♥
P | (4)
(1) | 3.06 5
3.00 5 | .82
.82 | 1-1
3-1 | | 3459.911 | G. | 4 | 3.00 | 6.57 | 3-1 | (500)
c ³ P_z ¹ P°
(501) | *3171.353
3073.244 | v
s | 5
(_) | 3.03 | 6.93
7.05 | 4-3
4-5 | a ¹ G-x ³ I° | | 463.14 | | w | 3.06 5 | .82 | 1-0 | | 3512.95 | * | (1) | 3.06 | 6.57 | 11 | (501) | JUI 10 - 10 TT | - | \-/ | | | 5 | (549) | I A Ref Int. Low High (No) I A Ref Int Low High (No) I A Ref Int Low High | J Multiplet (No) | |--|--| | Fe I continued Fe I continued Fe I continued Fe I continued 6831.44 P ○? 3.20 5.00 4-3 z ⁵ p°-a ¹ F 3911.00 P (1) 3.20 6.35 4-4 z ⁵ p°-f ⁵ F 5920.520 V (2) 3.22 5.33 (5677.54 P ○ 3.20 5.05 4-3 z ⁵ p°-X 3941.283 J (3) 3.25 6.38 2-2 cont 6109.318 V (1) 3.29 5.33 (6677.90 P ○ 3.23 5.08 3-2 (551) 3955.352 J (3) 3.27 6.39 1-1 | 5-6 (581)
4-5 cont | | 6786.41 P 0 3.23 5.05 3-3 3889.33 P 3.20 6.37 4-3 5587.36 P 0? 3.25 5.46 6737.29 P 0 3.25 5.08 2-3 3910.52 P 0 3.23 6.38 3-2 5675.08 P 0? 3.29 5.46 6879.59 P 0 3.25 5.05 2-3 *3933.606 J (2) 3.25 6.39 2-1 6801.31 P 0? 3.27 5.08 1-2 509.99 P 0 3.27 5.08 1-2 509.99 P 0 3.28 5.56 509.99 P 0 3.25 5.65 P 0 3.29 5.65 509.99 P 0 3.25 5.65 P 0 3.29 5.65 F 0 F 0 0 3.29 F 0 0 3.29 F 0 0 3.29 F 0 0 3. | 4-5 (583)
6-5 b ³ H-y ³ G°
5-4 (584) | | 5872.73 P 3.23 5.33 3-4 (552) 4052.466 V (1) 3.27 6.31 1-2 5277.32 P © 3.25 5.56 *5848.09 W (2n) 3.25 5.36 2-3 5317.394 V (1) 3.29 5.61 5827.89 P © 3.27 5.39 1-2 3936.79 P © 3.20 6.33 4-3 z ⁵ D°-e ³ D 5807.79 P © 3.28 5.40 0-1 3905.18 P © 3.23 6.39 3-2 (564) *5030.7844 R 5 3.22 5.66 | 5-5
4-4
6-7 b ³ H-z ³ I [•]
5-6 (585) | | •5780.83 V (1) 3.25 5.39 2-2 m3935.86 P Fe 3.25 6.39 2-2 m5018.43 P Fe+ 3.22 5.66 5714.88 P © 3.23 5.39 3-2 3911.18 P 3.27 6.42 1-1 5052.97 P © 3.25 5.70 4006.16 P © 3.25 6.33 2-3 5324.185 I 30 3.20 5.52 4-4 z ⁵ D°-e ⁵ D 3957.62 W (1) 3.27 6.39 1-2 4975.415 U (1) 3.29 5.77 | 6-6
5-5
4-4 b ³ H-u ⁵ D° | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | (587)
6-6 b ³ H-z ³ H ⁶
5-5 (588)
4-4 | | *5829.857 J 5n 3.27 5.63 1-0 3864.30 P © 3.20 6.39 4-3 4782.79 P © 3.23 5.85 5.93.174 I 10 3.23 5.52 3-4 3858.48 P © 3.23 6.43 3-2 4816.67 P © 3.25 5.85 5.339.935 I 12 3.25 5.56 2-3 3863.70 P © 3.25 6.45 2-1 *4845.656 V (2) 3.25 5.85 5.85 5.85 5.85 5.85 5.85 5.85 5 | 5-4
5-6
4-3 b ³ H-w ³ D ⁶
(589) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4-4 (590)
6-5 b ³ H-x ³ G ^e
5-4 (591) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6-5 b ³ H-v ⁵ F°
(592)
6-5 b ³ H-w ³ G°
5-4 (593) | | *4531.633 J (2) $3.20 ext{ 5.92} ext{ 4-4 } ext{ } ext{ } ext{ 5} ext{ p^{\bullet}} = ext{ a} ext{ } ext{ } ext{ 3906.97} ext{ P} ext{ O} ext{ $0.92} ext{ } ext{ $0.92} $ | 5-5
6-5 b ³ H-z ¹ H ^o
5-5 (594) | | 4504.838 J (2) 3.25 5.99 2-3 3668.214 U (1) 3.23 6.59 3-4 (568) 4009.54 P © 3.20 6.28 4-5 z ⁵ D°-e ⁷ F 3598.93 ? W (1) 3.27 6.70 1-2 4528.76 P © 3.29 6.01 3990.55 P © 3.23 6.32 3-4 (556) 3591.485 U (1) 3.28 6.71 0-1 •4029.640 V 3n 3.25 6.31 2-3 *3636.186 V 3 3.20 6.59 4-4 4446.90 P © 3.29 6.06 •4022.744 U (1) 3.27 6.34 1-2 3582.34 P © 3.27 6.71 1-1 | | | 3997.49 P © 3.23 6.31 3-3 4280.00.266 J (1) 3.25 6.34 2-2 *3667.999 V 1 3.20 6.56 4-4 z ⁵ p°-h ⁵ p m4299.25 P Fe 3.25 6.16 4042.75 P © 3.27 6.32 1-1 m3647.84 P Fe 3.23 6.61 3-3 (569) 4327.92 W (2) 3.29 6.14 3959.46 P © 3.25 6.32 2-1 3615.19 W (1) 3.25 6.66 2-2 4330.962 V (1) 3.25 6.16 4020.05 P © 3.25 6.32 2-1 3615.19 W (1) 3.27 6.68 1-1 3616.15 P (1) 3.20 6.61 4-3 4280.53 U (1) 3.22 6.16 4084.17 P © 3.20 6.22 4-5 z ⁵ p°-t ⁷ D 3592.68 W (1) 3.23 6.66 3-2 4294.939 V (1w) 3.25 6.15 | 6-6 b ³ H-y ³ H°
5-5 (597)
4-4 | | 4052.73 P © 3.23 6.27 3-4 (557) 3597.05 W 3n 3.25 6.68 2-1
4304.87 P © 3.29 6.15 4076.810 J (1w) 3.25 6.28 2-3 3700.61 P © 3.23 6.56 3-4 4325.95 P © 3.25 6.11 4080.886 V (1w) 3.28 6.30 0-1 4013.641 J (2) 3.20 6.27 4-4 3667.252 G 3n 3.20 6.56 4-3 z ⁵ D ⁰ -z ⁵ P | 5-47 (598)
4-3
5-5
4-4 | | *4043.901 V 5n 3.23 6.28 3-3 3644.798 Ü (1) 3.23 6.61 3-2 (570) 4167.862 V (2) 3.29 6.26 4054.18 W (1) 3.25 6.30 2-2 3624.08 P © 3.25 6.66 2-1 4069.08 U (1) 3.27 6.30 1-1 3671.51 W (1) 3.25 6.61 2-2 *4038.622 Q (-) 3.29 6.36 *4004.976 J (1) 3.20 6.28 4-3 *3690.450 V (1) 3.27 6.61 1-2 *4099.08 U (1) 3.29 6.30 *4021.622 V (1) 3.23 6.30 3-2 4046.07 P © 3.25 6.30 3-1 3651.03 P © 3.20 6.58 4-5 \$\frac{5}{2}\$P^*-\$\frac{5}{2}\$G 4012.16 W (1) 3.22 6.30 \$\frac{5}{2}\$G 3618.392 J 2 3.23 6.64 3-4 (571) 4004.832 J (1) 3.23 6.30 | 4-4 b ³ H-x ¹ G° (599)
4-4 b ³ H-u ⁵ F° (600)
6-6 b ³ H-x ³ H° | | *3618.398 J 2 3.23 6.64 3-4 (571) 4004.832 J (1) 3.23 6.30 4076.636 J 8n 3.20 6.22 4-4 z ⁵ D°-r ⁵ D 3593.33 W (1) 3.25 6.69 2-3 4098.183 J 4n 3.23 6.24 3-3 (558) 3565.83 P © 3.25 6.71 2-2 4041.911 S (-) 3.29 6.34 *4104.132 K 3 3.25 6.36 2-2 4097.099 J (1) 3.27 6.28 1-1 3558.08 P © 3.23 6.70 3-4 z ⁵ D°-e ⁵ H 4006.314 J 3 3.25 6.33 4058.227 K 4n 3.20 6.24 4-3 3496.60 P © 3.20 6.73 4-3 (572) *4041.288 V (1) 3.29 6.34 | 6-5 (601)
4-3 b ³ H-t ⁵ p*
(602)
5-4 b ³ H- v³F *
4-3 (603) | | 4070.766 J 5n 3.23 6.26 3-2
4073.760 K 4n 3.25 6.28 2-1 3590.99 W (1) 3.20 6.63 $4-5$ $z^5p^0-e^3q$ 3956.459 J 9 3.22 6.34
4080.226 J 2n 3.27 6.29 1-0 3579.83 P © 3.23 6.67 3-4 (573) 3948.779 B 10 3.25 6.38
4116.97 U (1) 3.23 6.23 3-4 396.42
4131.97 P © 3.25 6.24 2-3 3621.19 P © 3.23 6.64 3-3 $z^5p^0-z^5p$ 3995.199 J (1w) 3.25 6.34 | 6-5 b ³ H-u ³ G ^o 5-4 (604) 4-3 5-5 | | 4109.070 J (1) 3.28 6.28 0-1 3583.337 J 2 3.28 6.72 0-17 3989.60 P © 3.25 6.35 4067.984 J 8n 3.20 6.23 4-4 $z^5 p^6 - e^7 P$ 3518.23 P © 3.23 6.73 3-4 $z^5 p^6 - e^3 H$ 3916.733 I 6 3.22 6.37 4076.89 P (1) 3.25 6.28 2-2 3473.23 P © 3.20 6.75 4-4 $z^5 p^6 - z^5 F$ 3954.715 U (1) 3.25 6.37 | 5-4 b ³ H-4°
(605)
6-5 b ³ H-6°
5-5 (606) | | 4045.59 P © 3.20 6.25 4-3 3419.157 V (1) 3.23 6.84 3-2 (576) 3998.46 P © 3.29 6.37 4043.98 P © 3.23 6.28 3-2 3503.46 P © 3.23 6.75 3-4 4108.13 P © 3.23 6.23 3-4 3473.01 P © 3.25 6.81 2-3 3797.517 B 12 3.22 6.47 4118.904 V (1) 3.25 6.25 2-3 3459.29 P © 3.27 6.84 1-2 3808.697 G 10 3.25 6.50 4030.499 J (6) 3.20 6.26 4-5 z ⁵ p°-e ⁵ G 3418.176 U (2w) 3.27 6.88 1-0 z ⁵ p°-e ³ P 3771.50 P © 3.22 6.50 | 4-5
6-6 b ³ H-w ³ H°
5-5 (607)
4-4
6-5 | | 4024.735 J 6n 3.23 6.29 3-4 (560) 3502.85 P © 3.25 6.77 2-2 (577) 3784.27 P © 3.25 6.51 4018.282 J (4) 3.25 6.33 2-3 3459.61 P © 3.27 6.84 1-1 3765.542 B 20 3.22 6.50 m3986.18 P Fe 3.20 6.39 4-4 3143.990 C 8 3.20 7.12 4-4 z ⁵ D°-1 ⁵ D 3821.181 I 10 3.25 6.48 3986.30 P © 3.23 6.32 3-3 3156.275 G 5n 3.23 7.14 3-3 (578) 3805.345 B 12 3.29 6.53 3994.00 P 3.25 6.34 2-2 3160.200 V (2n) 3.25 7.16 2-2 3785.708 J (1) 3.22 6.48 3948.48 P © 3.20 6.33 4-3 3132.514 V 4n 3.20 7.14 4-3 3765.70 W (1) 3.25 6.53 | 5-4
6-7 b ³ H-y ³ I•
5-6 (608)
4-5
6-6 | | 3962.43 P © 3.23 6.34 3-2 3140.385 V 5n 3.23 7.16 3-2 3167.907 V (1) 3.23 7.12 3-4 3704.336 V (1) 3.22 6.55 3967.964 J 4n 3.23 6.34 3-4 (561) 3967.964 J 4n 3.23 6.34 3-4 (561) | 5-5
6-6 b ³ H-z ¹ I°
5-6 (609) | | 3979.65 W (1) 3.25 6.35 2-3 3150.301 V (2n) 3.27 7.19 1-2 z ⁵ D ⁰ -4 3705.70 P © 3.25 6.58 399.24 P © 3.27 6.36 1-2 (578a) (578a) 3996.26 P © 3.28 6.37 0-1 3596.26 P © 3.28 6.37 0-1 3596.26 P © 3.28 6.37 1-1 10780.71 P © 3.22 4.37 6±5 b ³ H-z ⁵ C ⁰ 3584.960 J 4 3.25 6.70 3984.93 P © 3.27 6.37 1-1 10618.75 P © 3.29 4.45 5-4 (579) 3573.896 G 4 3.29 6.70 5.70 10618.75 P © 3.29 4.45 4-3 3620.87 P © 3.29 6.70 | 5-4 b ³ H-9° (610)
6-5 b ³ H-t ³ G°
5-4 (611)
4-3 | | *3966.630 J 10n 3.20 6.31 4-5 z^5 pe_ z^5 p 3948.105 J 6n 3.23 6.35 3-4 (562) 9673.16 F 1n 3.25 4.53 5-4 b^3 H- y^3 Fe 3582.201 J 5 3.22 6.67 3957.027 J 4n 3.25 6.37 2-3 3963.108 J 6n 3.27 6.38 1-2 5807.22 P © 3.22 5.35 6-8 b^3 H- z^5 He *3966.532 V (1n) 3.28 6.39 0-1 6007.75 P © 3.25 5.31 5-5 (581) 3576.760 B 2 3.25 6.70 6085.81 P © 3.29 5.32 4-4 3612.51 P © 3.29 6.70 | 6-5 b ³ H-12°
5-5 (612)
5-4 b ³ H-13°
4-4 (613a) | | Labo
I A | rator
Ref | 'y
Int | | P
High | J | Multiplet
(No) | Labo
I A | orato
Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | ry
Int | E : | P
High | J | | |--|--------------|-------------------------------|----------------------|----------------------|-------------------|---|-----------------------------------|--------------|--------------------|----------------------|----------------------|--------------------|---|-----------------------------------|--------------|--|----------------------------|------------------------------|--------------------------|--| | <u>re I</u> con | | | | | | | Fe I com | | | | | | 1-1-7 | Fe I con | | | TOM | uran | | (No) | | 3512.74
3547.203 | P
J | (3)
© | 3.25
3.29 | 6.77
6.77 | 5-4
4-4 | | 4611.05
4521.65
4565.324 | P
P
V | ©
©
(2n) | 3.29
3.26
3.26 | 5.96
5.99
5.96 | 2-2
1-1
1-2 | (641) | 3368.25
3391.84 | P
P | 0 | 3.24
3.29 | 6.90
6.93 | 3-4
2-3 | a ³ D-a ³ G•
(678) | | 3402.256
3437.958
3469.012 | A
A
G | (2)
(3) | 3.22
3.25
3.29 | 6.84 | 66
55
44 | (614) | 4414.47 | P | (1) | 3.26 | 6.06 | 1-8 | a3D-20 | 3310.496 | V | (3) | 3.24 | 6.97 | 3-4 | a ³ D-u ³ H• (679) | | 3409.20
3436.045
3430.88 | W
V
P | (2)
(2)
(3)
(1)
© | 3.22
3.25
3.25 | 6.84
6.84 | 6-5
5-4
5-6 | ;
: | 4368.66
4419.78 | P
P | 0 | 3.24
3.29 | 6.06
6.08 | 3-4
2-3 | (644) | 3292.022
3314.742
3282.891 | o co | 8
7
(2) | 3.29 | 6.99
7.01
7.02 | 3-4
2-3
1-2 | (679)
a3D-u3F•
(680) | | 3398.12 | P
P | 0 | 3.22 | 6.85 | 6-5 | ь ³ н-х ¹ н° | 4341.57
4343.22 | P | 0
0 | 3.26
3.24 | 6.10 | 1-2
3-3 | | 3271.498
3306.495
3263.45 | V
V
P | (2)
(2)
(1)
© | 3.24
3.29 | 7.01
7.02
7.03 | 3-3
2-2
3-2 | | | 34 26.67
34 28.01 | P | 0 | 3.25
3.29 | 6.85
6.89 | 55
43 | b ³ H-w ¹ Fe | 4343.257
4409.123
4440.972 | J
J
♥ | (2)
(31)
(3) | 3.24
3.29
3.29 | 6.08
8.09
6.07 | 3-2
3-1
3-3 | (645) | 3253.610 | V | 4 | | 7.03 | 3-4 | a ³ D-v ¹ G° (681) | | 3307.234
3328.867 | œ c | 5 | 3.25 | 6.96 | 6-6
5-5 | (617) | 4377.796
4422.882 | v
v | (1)
(in) | 3.26
3.29 | 6.08 | 1-3
2-3 | | 3191.41
3223.08
3193.74 | P
P
P | 000 | 3.29 | 7.10
7.13
7.13 | 3-4
2-3
1-2 | a3D_t3pe
(682) | | 3355.228
3301.927
3324.372 | V
V | 6
(1)
(2)
(1)
(2) | 3.29
3.22
3.25 | 6.97
6.96
6.97 | 4-4
6-5
5-4 | | 4304.15
4231.525 | P
V | ©
(1gn) | 3.29
3.24 | 6.15
6.15 | 2-3
3-3 | | 3216.06 | P | <u> </u> | | 7.13 | 3-3
- | | | 3334.278
3359.814 | V
V
P | | 3.25
3.29 | 6.95
6.96 | 5-6
4-5 | _ | 4299.49
4374.495 | P
V | ©
(1) | 3.24
3.29 | 6.11
6.11 | 3-2
2-2 | | 7478.87
7340.78 | P
P | 0 | 3.35
3.40 | 5.00
5.08 | 4-3
3-2 | z ⁵ F°-a ¹ F
(683)
z ⁵ F°-X | | 3305.75
3315.17
33 36.262 | P
V | ©
(3) | 3.25
3.29
3.29 | 6.99
7.01
6.99 | 4-3
4-4 | | 4172.126
4268.744 | J
J | 5
2 | 3.29 | 6.20
6.18 | 3-2
3-1 | | 7398.78
6271.289 | P | ©
(1) | 3.42 | 5.08 | 1-2
5-5 | (684)
25F0_e ⁷ D | | 3296.806\$ | v
c | (1) | 3.29 | 7.03 | 4-4 | (619) | 4246.02
4242.730
•4229.516 | P
J
J | ©
(2)
(1gn) | 3.26
3.29
3.26 | 6.17
6.20
6.18 | 1-0
3-3
1-1 | | 6249.65
6232.735
6219.54 | P
Q
P | (-)
(-) | 3.35
3.38 | 5.33
5.36
5.39 | 4-4
3-3
2-2 | (685) | | 3233.053
3254.363
3280.261 | d C C | 8
10
8 | 3.22
3.25
3.29 | 7.04
7.05
7.05 | 6-7
5-6
4-5 | (620) | 4103.62
4171.904 | P
V | (3)
© | 3.24
3.29 | 6.24
6.24 | 3-3
2-3 | a ³ D-z ¹ F°
(650) | 6137.51
6145.42
6388.41 | P
P
P | 000 | 3.32
3.35 | 5.33
5.36
5.29 | 5-4
4-3
4-5 | | | 0145.00 | P . | © † | 3.24 | 4.45 |
33 | a3D-z3Ge | *4099.08 | U | (1) | 3.24 | | | a ³ D-x ¹ G° | 6339.96
5615.652 | P
B | ŏ
50 | 3.38 | 5.33 | 3-4 | z ⁵ F°_e 5 p | | 9556.56
9485.93 | F
P | 1 | 3.24
3.29 | 4.53 | 3-4
3-3 | (622) | *3932.629
*3966.532
3914.42 | J
V
P | (in)
© | 3.26
3.29
3.26 | 6.40
6.40
6.41 | 1-3
3-3
1-1 | (651)
a ³ D-u ⁵ F°
(652) | 5586.763
5572.849
5569.625 | B
B
B | 40
30
20 | 3.35
3.38 | 5.56
5.60
5.62 | 5-4
4-3
3-2
3-1 | (686) | | 8 994. 62
91 4 0.15
91 7 3.83 | P
U | ©
(1) | 3.26
3.24
3.29 | 4.63
4.59
4.63 | 1-2
3-3
2-2 | | 3948.00
•4022.744 | P
U | ©
(1) | 3.29 | 6.41 | 3-1
3-4 | a3D-t5D° | 5576.097
5709.378
5658.826 | J
K
B | 10
10
10 | 3.42
3.35 | 5.63
5.52 | 1-0
4-4 | | | 3365.642
3293.527 | E | 25
20 | 3.24
3.29 | 4.71
4.77 | 33
22 | (623) | *4041.288
3963.43 | V
P | | 3.29
3.26 | 6.34 | 3-3
1-3 | (654) | 5624.549
5602.955
5784.69 | B
J
V | 10
10 | 3.40
3.42 | 5.56
5.60
5.62 | 3-3
2-2
1-1 | | | 7941.09
3027.96
3080.668 | O
P
E | 10
©
10nd? | 3.26
3.24
3.29 | 4.81
4.77
4.81 | 11
32
21 | | 3986.176
4040.650
4031.968 | J
J
V | 5
4
4
 3.24
3.29
3.26 | 6.33
6.34
6.32 | 3-4
2-3
1-2 | a ³ D_ y 3 p°
(655) | 5712.150
5658.542 | v
V | (1)
(2)
(1) | 3.40 | 5.52
5.56
5.60 | 3-4
2-3
1-2 | | | 3654.40
3146.67 | P
P | ©
© | 3.29
3.26 | 4.71
4.77 | 2-3
1-2 | | 3976.564
4067.60
*4003.665 | V
P
V | (1)
©
(1) | | 6.34
6.32
6.32 | 3-3
3-3
3-3 | | 4966.096
4946.394
4910.027 | B
J
J | 8
4
(2) | 3.35 | 5.80
5.85 | 4-4 | z ⁵ F°-e ⁵ F
(687) | | 130.37
157.41
9 96.22 | P
P | (1)
©
© | 3.24
3.29
3.26 | 5.25
5.29
5.32 | 3-3
2-3
1-1 | a ³ D-x ⁵ P°
(624) | 3969.628 | J | (1) | | 6.35 | | a ³ D_4° | 4882.151
4863.653
4875.89 | J
J | (2)
(2)
(2)
(1)
(3)
(3) | 3.40
3.42 | 5.90
5.93
5.95 | 3-3
3-2
1-1 | | | 3009.83
384.00 | P
P | 0 | 3.24
3.29 | 5.29
5.25 | 3-2
2-3 | | 3965.446
3929.208 | V
J | (1)
(1) | | 6.35
6.38 | 3-
3-4 | (657)
a3p_5°
(658)
a3p_u3g° | 4855.683
4843.155
4838.519 | J
J | | 3.35
3.38 | 5.85
5.90
5.93 | 5-4
4-3
3-2 | | | 787.27
623.64
648.90 | P
P
P | 0 0 | 3.24
3.26
3.24 | 5.37
5.45
5.42 | 3-4
1-2
3-3 | a ³ D-w ⁵ D°
(625) | 3966.824
3925.55 | J
P | {1}
(1)
© | 3.29 | 6.40 | 3-3
3-3 | (659)
a3p_u5pe | 5039.266
5002.800
4950.112 | V
J | (2n)
(2)
(6) | 3.35
3.38 | 5.95
5.80
5.85 | 2-1
4-5
3-4 | | | 566.82
617.22 | P
W | ⊙
{ <u>1</u> } | 3.24 | | 3-2
3-4 | | 38 89.38
3914.50 | P | 0 | 3.26 | 6.43
6.41 | 1-1 | (660) | 4907.743
4741.081 | J
K
J | (2)
(1) | 3.42 | 5.90
5.93 | 2-3 | 5 3 | | 562.712
535.419 | y
J | (1)
(2)
(2) | 3.24 | | 1-1
3-2 | (626) | 3923.03
3985.393
3951.164 | P
J
I | ©
3
9 | 3.24
3.29
3.26 | | 3-2
3-3
1-3 | a ³ D-y ¹ D°
(661) | 4679.229
4642.58
4807.725 | V
P | (1)
(1)
(2) | 3.35 S | 5.04 | 4-3
3-2 | z5 F°_{-e}3F
(688) | | 455.09
541.58
262.89 | P
P | 00 | 3.24 | 5.51 | 3-3
2-2 | (627) | 3914.73
*3976.865 | ₩
J | {1
1} | 3.24 | 6.39
6.39 | 3-2 | a ³ D-x ¹ D°
(663) | 4739.699
4678.41
4860.98 | V
P
P | (2)
(1)
©
(1) | 3.38 :
3.40 (| 5.92
5.99
3.04 | 4-4
3-3
2-2 | | | 358.10
221.75 | P
P
P | ©
(1) | 3.24
3.29
3.26 | 5.58
5.59
5.63 | 3-3
3-2
1-1 | a ³ D-x ³ D°
(628) | 3883.282
3894.005 | J
J | (4)
(2) | 3.24 | 6.48 | 3-3 | a ³ D-u ³ D° (683) | 4766.87
4701.90 | P
P | 0 | 3.40 | 5.92
5.99
5.04 | 3-4
3-3
1-3 | | | 246.00
020.67
021.894 | P
V | ©
(4) | 3.24 | | 3-3 | a ³ D-w ⁵ Pe | *3829.458
3834.46
3861.60 | V
P
U | 1
©
(1) | | 6.48
6.46 | 1-1
3-2
3-1 | (000) | 4259.988
4234.176
4200.930 | V
J
J | (2)
6n
3n | 3.35 | 3.21
3.28 | 4-5 | z ⁵ F°-e ⁷ F
(689) | | 871.94
813.11 | P
V | (1)
© | 3.24 | 5.72 | 1-2
3-3 | (629)
a ³ D-u ⁵ D° | *3861.341
3846.803 | J
B | 'a'
8 | 3.26 | 6.46 | 1-3
3-3 | a ³ D-t ³ D° | *4238.027
4224.509
4172.641 | J
V
V | 4
3n | 3.40 6
3.42 6 | 3.32
3.31
3.34 | 3-4
2-3
1-2 | | | 838.09
876.19 | P
P | (1)
© | | 5.79 | 1-1
3-2 | (630) | 3836.332
3878.726
3778.509 | I
V
J | (2)
4 | 3.29
3.26
3.24 | 6.50
6.44
6.50 | 2-2
1-17
3-2 | (664) | 4161.080
•4208.610
4205.546 | V
J
J | (1)
(1)
3n
(2) | 3.35 6
3.38 6 | 3.28
3.32
3.31
3.34 | 5-5
4-4
3-3 | | | 930.04
972.90
919.73 | P
P
P | 9000 | 3.29 | 5.79
5.77 | 3-2
2-1
2-2 | a ³ D-y ³ P°
(631) | 3911.699
3906.748 | J | (1)
2 | 3.29
3.29 | 6.44
6.45 | 2-17
2-3 | | 4346.59
4111.06
4168.635 | P
P
V | }1
}1
(1w) | 3.42 6
3.32 6 | 32 | 2-2
1-1
5-4 | | | 790.75
859.31 | P
P | 0 | 3.24 | 5.77
5.81
5.83 | | a ³ D-x ³ F° | 3810.759
3779.444 | У | 3* | 3.26 | 6.53
6.53 | 1-1 | a ³ D-8°
(665) | m4176.57
m4327.43 | P
P | Fe
Fe | 3.38 6
3.40 6 | | 4-3
3-2
3-1 | | | 808.155
873.74 | V
P | (1)
© | 3.24 | 5.80
5.82 | 3-3
3-3 | (632)
a ³ D-w ³ D° | 3802.283
3740.247 | J
J | (1) | 3.24 | | 3-3 | a ³ D_v ³ P°
(666)
a ³ D_s ³ D° | 4253.52
4238.71
4177.07 | P
P
P | ©
(1) | 3.32 6
3.35 6
3.32 6 | | 44 | ₂ 5 _{F°…f} 7 _D
(690) | | 791.250
780.81
841.65 | V
P
P | (1)
0
0 | | 5.84
5.82 | 2-2
1-1
3-2 | (633) | 3751.059
3796.90 | J
U | (i) | 3.29
3.29 | 6.58
6.54 | 2-2
2-3 | (667) | 4356.313
4307.08
4369.87 | V
P
P | (1)
(3)
© | 3.40 6
3.35 6 | .30 | 54
2-1
45 | | | 822.66
716.85 | P
P | 0 | 3.26 | 5.82 | 3-1 | -3n -a | 3757.459
3727.03 | J
P | 1
© | 3.26 | 6.57
6.57 | 2-1
1-1 | (888) | 4245.358
4278.234 | M
J | tri | 3.32 6
3.35 6 | . 22 | | 5 F°_f 5p | | 807.243
757.582 | s
J | { = } | 3.29 | 5.85
5.85
5.85 | 3-2
3-2
1-2 | a ³ D-1°
(634) | 3688.476
3643.80 | V
P | (1W)
(1) | 3.24 | 6.62 | 3-4
3-3 | a ³ D-9°
(669)
a ³ D-y ¹ F° | 4320.36
4320.52
4306.58 | P
U
P | (1)
(1)
(1)
(1) | 3.38 6
3.40 6 | .24
.26 | 4-3
3-3
3-2 | (691) | | 776.075
737.01 | Y
P | (1)
© | | 5.87
5.87 | 2-1
1-1 | a ³ D-y ³ s•
(635) | 3697.510
*3683.616 | v
v | (1w)
(1) | 3.29 | 6.62
6.64 | 2-3
2-3 | (670)
a ³ D-x ¹ F° | 4341.23
4351.37
*4340.51 | P
P
P | (1)
©
(1) | 3.38 6
3.40 6 | . 22
. 34 | 1-1
3-4
2-3 | | | 326.36
327.02 | P
P | 0
0 | | 5.91 | 3-3 | a ³ D-x ³ G•
(636) | 3613.45
3666.29 | P
P | 0 | 3.24 | 6.65
6.65 | 3-3
2-3 | (671)
a ³ D-10°
(672) | m4235.96 | P
J | Fe (2) | 3.32 6 | . 23 | | 5 _{Fe_e} 7 _p | | 556.939
514.216 | J
J | {1}
{1} | | 5.95 | 3-2 | a ³ D_w ⁵ G ⁶
(637)
a ³ D_w ⁵ pe | 3568.828
3573.403 | Ā | (a) | 3.24 (
3.29 (| 6.70
6.74 | 3-4
2-3 | 23D-t3Ge
(673) | 4336.86 | P
J | ©
30 | | . 25 | 2-3 | (692)
5 _{F°-e} 5g | | 594.959
516.08 | V
P | (2,g?)
© | 3.26 | 5.96
5.95
5.97 | 3-1 | (638) | 3523.18
3598.71 | P
W | ©
,1 | 3.24 | 6.74
6.67 | 33
33 | a ³ D-i1° | 4247.432
4238.816 | I
I
J | 13
10n
6n | 3.35 6
3.38 6
3.40 6 | . 26
. 29 | | (693) | | 192.98
579.07 | P
P | 0 | 3.24 | 5.98 | 3~3 | a ³ Dw ³ Ge
(639) | *3651.10
3560.705 | A. | (1)
5 | 3.29 | 8.67
8.70 | 2-3
3-4 | (674)
a ³ D-13° | 4195.337 | J
J
V | 7n
5
(1) | 3.42 6
3.32 6
3.35 6 | .34
.26 | 4-3
1-2
5-5
4-4 | | | 555.75
527.796 | P
V | © | 3.26 | 5.96
5.97 | 1-2 | a ³ D√5≱•
(640) | *3431.815
3406.442 | J
J | 3
3 | 3.29 | 8.88
8.88 | 2-3
1-2 | (675)
a ³ D_w ¹ D°
(676) | 4196.218
4198.645 | J
J
P | 4n
0 | 3.38 6
3.40 6
3.32 6 | . 32
. 34 | 3-3
3-2 | | | 566.520
533. 143 | J
¥ | (1)
(3)
(in,g?) | 3.29 | 5.96
5.99
5.98 | 3-2
3-1
1-0 | a ³ D-x ³ P°
(641) | *3381.340 | V | (3) | 3.24 | | | a ³ D-w ¹ pe
(677) | 4156.460 | V
V | (1)
(1) | 3.35 6
3.38 6 | .32 | 5-4
4-3
3-2 | | | | | | | | | | | | | | | | (5/7) | | | | | | | | | 8
Labors | | | EP | | J | Multiplet
(No) | Labore | | 7 | E I | High | J | Multiplet
(No) | Labora
I A 1 | atory
Ref | Int | E F | High | J | Multiplet
(No) | |-----------------------------------|--------------|---------------------------------|----------------------|----------------------|-------------------|---|-----------------------------|--------|-----------------|--------------|--------------|------------|---|-----------------------------|--------------|------------|--------------|--------------|-------------------|---| | | Ref] | Int | Low | High | | (110) | Fe I cont: | | | | | | • • | Fe I cont | inued | | | | | | | <u>e I</u> cont: | J | 5n | | 6.29 | 5-6 | 25F°-e7G | 8978.17
8729.12 | P
P | ⊚
2 | 3.40
3.40 | 4.77
4.81 | 1-3
1-1 | a ¹ P-y ³ D° (713) | 4112.09
*3966.532 | P
V | ©
(in) | 3.53
3.53 | 6.53
6.64 | 2-2
2-1 | a ¹ D-y ³ P°
(766) | | 154.812
175.89
182.790 | J
P
V | 9n
©
(Sþ,gn) | 3.38 | 6.32
6.34
6.35 | 4-5
3-4
3-3 | (694) | 5551.29 | P | °
© | 3.40 | 5.62 | 1-1 | a1p-x3pe | 4059.726 | v | 3 | 3.53 | 6.57 | 3-1 | a ¹ D-z ¹ Pe
(767) | | 187.59
104.97 | ₩
U | {1
1 | 3.42 | 6.36
6.32 | 1-2
5-5 | | 5245.72 | P | • | 3.40 | 5.75 | 1-1 | (714)
a1p_z3s•
(715) | 3989.859 | J | (34) | 3.53 | 6.62 | | a1D_y1F°
(768) | | 1136.512
1154.109
1168.942 | J
V | (1)
(1w) | 3.38 | 6.34
6.35
6.36 | 4-4
3-3
3-3 | | 5226.06 | P | (1) | 3.40 | 5.76 | 1-0 | aip_y3pe
(716) | 3973.655 | J | 3
© | 3.53
3.53 | 6.64
6.65 | 2-3
2-3 | aiD_xiF°
(769)
aiD_10° | | 1087.099
1140.441 | J
V | {1
1 | 3.32 | 6.34
6.36 | 5-4
3-2 | | 5167.70
50 91. 73 | P
P | 0 | 3.40
3.40 | 5.79
5.82 | 1-2
1-1 | a1p_u5p°
(717) | 3953.50
3845.693 | P
J | (1) | 3.53 | 6.74 | 2-3
2-3 | (770)
a1D_t3G* | | 1164.24
1126.192 | P
J | ⊙
3n | - | 6.37 | 2-1
5-5 | _z 5 _{F°-f} 5 _F | 5029.623 | V | (1) | 3.40 | 5.85 | 1-2 | a ¹ P-1° (718) | 3682.226 | J | 20 | 3.53 | 6.88 | 2-2 | (771)
a ¹ D-w ¹ D°
(772) | | 4114.957
4129.46 | J
P | (1₩)
⊙ | 3.35 | 6.35
6.37 | 4-4
3-3 | (695) | 4818.66
4815.22 | P
P |
•
• | 3.40
3.40 | 5.96
5.96 | 1-1 | a1 _{P-V} 5pe
(719)
a1 _{P-X} 3pe | 3677.309 | J | 3 | 3.53 | 6.89 | 2–3 | a1D_w1F0
(773) | | 4140.441
4150.258
4066.02 | V
J
P | (1)
(4)
© | 3.42 | 6.38
6.39
6.35 | 2-2
1-1
5-4 | | 4779.444 | Ĵ | (1) | 3.40 | 5.98 | 1-0 | (720) | 3636.23 | ₩ | (1) | 3.53 | 6.93 | 2-3 | a1 _{D-8} 3 _G •
(774)
a1 _{D-u} 3 _F • | | 4090.984
4112.35 | V
V | (1w)
(1) | 3.35
3.38 | 6.37
6.38 | 4-3
3-2 | | 4804.59 | P
P | (1)
© | 3.40
3.40 | 5.97
6.06 | 1-1 | a ¹ P-v ⁵ Fe
(721)
a ¹ P-2° | 3538.31
*3442.979 | w
v | (1)
(1) | 3.53
3.53 | 7.02 | 2-2
2-3 | (775)
alp_t3re | | 4131.94
4176.571
4153.906 | P
J | ©
7n
10n | 3.40
3.35
3.38 | 6.39
6.31
6.35 | 2-1
4-5
3-4 | | 4647.78
4566.990 | v | (1) | 3.40 | 6.10 | 1-3 | (722)
a1P_w3F° | 3434.95 | P _ | `ó | 3.53 | 7.12 | 3 –3 | (776) | | 4153.906
4157.788
4158.798 | J
J | 8n
5n | 3.40
3.42 | 6.37 | 2-3
1-2 | | 4607.08 | P | © | 3.40 | 6.08 | 1-3 | (723)
a ¹ P-V ³ D°
(724) | 7094.30 | P | 0 | 3.56 | 5.30 | 5-5 | a ¹ H-y ⁵ G°
(778) | | 4208.610 | J
J | 3n
4 | 3.38
3.40 | 6.31
6.31 | 3-2
3-2 | z ⁵ F°-e ⁵ g
(696) | 4461.37 | W | (1) | 3.40 | 6.17 | 1-0 | a ¹ P_w ³ P°
(725) | 6019.36 | P | • | 3.56 | 5.61 | | a ¹ H-y ³ G ^e
(780) | | 4238.007
4143.50 | P | 0 | 3.35 | 6.33 | 4-3 | z5F0_e3D | 4137.002 | J | 7 | 3.40 | 6.38 | 1-3 | a ¹ P_y ¹ D°
(736) | 5913.35
5584.768 | P
V | ©
(1) | 3.56
3.56 | 5.64
5.77 | 5-5
5-4 | a ¹ H-x ⁵ G ^o
(781)
a ¹ H-u ⁵ D ^o | | 4106.437
4083.780 | V
J | (1)
(1)
(1)
(1) | 3.38
3.40 | 6.39
6.42 | 3-2
3-1 | (697) | *4127.807
*4038.622 | J
Q | 3n
(-) | 3.40 | 6.39 | 1-3 | a ¹ P-x ¹ D°
(727)
a ¹ P-u ³ D° | 5532.752 | v | (1) | 3.56 | 5.79 | 5-4 | (782)
al _{H-X} 3Fe | | 4183.035
4134.433
4212.06 | V
V
P | {1}
0 | 3.38
3.40
3.40 | 6.33
6.39
6.33 | 3-3
2-2
2-3 | | 4003.764 | Ĵ | `a' | 3.40 | 6.48 | 1-1 | (728) | •5466.993 | ٧ | (1) | 3.56 | 5.82 | 5-4 | (783)
a1 _{H-z} 3 _H • | | 4084.498 | J | 6 | 3.32 | 6.22 | 5-4 | z ⁵ F°-g ⁵ D | 3976.615
4057.66 | J
P | 4
© | 3.40
3.40 | 6.50
6.44 | 1-3 | a ¹ P_t ³ D°
7 (729) | 5374.78
•5326.154 | P
V | ©
(1) | 3.56
3.56 | 5.85
5.87 | 5-5
5-4 | (784)
a ¹ H-w ⁵ G•
(785) | | 4063.286
4054.833
4054.883 | Y
V | (3)
(1)
3 | 3.35
3.38
3.40 | 6.24
6.26
6.28 | 4-3
3-2
3-1 | (698) | 3949.14 | W | (1) | 3.40 | 6.53 | 1-1 | (730) | 5365.403 | J | 3 | 3.56 | 5.86 | 5-4 | a1H-z1G° | | 4065.402
4133.869 | v
J | (8)
(8) | 3.42
3.35 | 6.29
6.22 | 1-0
4-4 | | 3940.044
3806.203 | J
A | (1)
2 | 3.40
3.40 | 6.53
6.64 | 1-3
1-1 | a ¹ p_√3pe
(731) | 5231.41 | U | (1) | 3.56 | 5.92 | 5-4 | (786)
a1H_ v 5 p•
(787) | | 4101.272
4082.125 | J
J
V | (3)
(3)
(1)
(1)
(2) | 3.38
3.40
3.42 | 6.24
6.26
6.28 | 3-3
2-2
1-1 | | 3885.07 | P | ⊙7 | 3.40 | 6.58 | 1-3 | (732) | 525 7.65
5263.874 | P
V | (1) | 3.56
3.56 | 5.91
5.90 | 5-5
5-4 | (787)
a ¹ H-x ³ G*
(788) | | 4072.518
4173.18
4129.22 | P
U | (2)
(1) | 3.38
3.40 | 6.22 | 3-4
2-3 | | 3891.928 | J | 3 | 3.40 | 6.57 | 1-1 | a ¹ P_z ¹ P°
(733) | 5150.19
5115.788 | P
T | ©
(1) | 3.56
3.56 | 5.95
5.97 | 5-5
5-4 | a ¹ H-w ³ G*
(789) | | 4099.99 | P
•• | 0 | 3.42
3.40 | 6.26 | 1-3
3-3 | _z 5 _{F°-e} 7g | 3543.669
3410.171 | J
G | (4)
3 | 3.40
3.40 | 6.88
7.02 | 1-2 | (734) | m5110.36 | P | Fe | 3.56 | 5.97 | 5-5 | a ¹ H-z ¹ H ^o | | 4163.676 | V
J | (1)
(1) | | 6.37 | 4-3 | (699)
z5ro_e5p | *3314.070 | v | (1) | 3.40 | 7.13 | 1-3 | (735)
alp_t3re | 5028 129 | J | 4 | 3.56 | 6.01 | 5-4 | (790)
a ¹ H-y ¹ G ^e
(791) | | 4051.923
4090.085 | J
V | (1)
(2)
(1) | 3.38
3.38 | 6.43
6.40 | 3-2
3-3 | (700) | 0004 55 | | • | 3.53 | 4.77 | -
2-2 | (736)
a ¹ D-y ³ D° | 4927.42 | W | (1) | 3.56 | 6.06 | 5-4 | a1 _{H-w} 3 p≎
(792) | | 4079.18
4105.06
4117.872 | P
P
V | ©
(1) | 3.40
3.42
3.40 | 6.43
6.43
6.40 | 2-2
1-1
2-3 | | 9924.35
9620.93 | P | 0 | 3.53 | 4.81 | 3-1 | (737) | 4849.67
4809.94 | P
V | (1) | 3.56
3.56 | 6.10
6.13 | 5-6
5-5 | a ¹ H_y ³ H°
(793) | | 4097.03 | P | ·ø′ | 3.42 | 6.43 | 1-2 | e | 6016.66 | # | (2) | 3.53 | | 2-3 | [738] | 4843.39
4804.529 | P
V | (1) | 3.56
3.56 | 6.11
6.13 | 5-5
5-4 | a ¹ H-v ³ G°
(794) | | 3817.64
3811.80 | W
P | 3n
©
© | | 6.55
6.59
6.55 | 5-5
4-4
4-5 | z ⁵ F°-g ⁵ F
(701) | 5614.58
5555.17 | P
P | © †
⊚ | 3.53
3.53 | 5.73
5.75 | 3-1
3-1 | (739) | 4587.132 | ,
J | (2) | | 6.25 | 5-4 | a ¹ H-x ¹ Ge | | 3860.74
3845.21 | P
P | o
o | | 6.59 | 3-4 | | 5467.76 | P | 0 | 3.53 | 5.79 | 2-2 | (740)
alp_u5pe | 4502.592 | y | {1
1} | | 6.30 | 5-6
5-5 | | | 3804.013
3789.82 | J
P | (2)
© | 3.32
3.35 | 6.56
6.61 | 5-4
4-3 | z ⁵ F°-h ⁵ D
(702) | 5382.750
5275.30 | T
P | (-)
© | 3.53 | 5.82
5.87 | 2-1
2-1 | | 4493.37
4432.572 | P
J | (3) | 3.56 | 6.30 | 5-5 | a ¹ H-u ³ G° | | 3846.001
3819.50 | V
P | (1w)
⊙ | 3.35
3.38 | 6.56
6.61 | 4-3
3-2 | z ⁵ F°_f ⁵ P
(703) | 5198.843 | v | (1) | 3.53 | | 2-3 | (743)
a ¹ D-x ³ G° | 4375.48 | P
., | 0 | 3.56
3.56 | 6.38 | 5-4
5-4 | (797)
a ¹ H-4° | | 3791.73
3843.72 | U
P | (1)
© | 3.40 | 6.66
6.61 | 2-1
2-2 | | 5078.53 | P | © 1 | 3.53 | 5.96 | 3-1 | (743)
a ¹ D_v ⁵ pe
(744) | 4425.662
4382.777 | v | (1)
(2) | 3.56 | | 5-5 | (798) | | 3905.01
3801.975 | P
J | ⊙
(3w) | | 6.56
6.56 | 2-3
5-6 | z5r0_f5G | 5121.96
5091.72 | P
P | ©ୀ
© | 3.53
3.53 | | 2-3
2-2 | a ¹ D-v ⁵ F° | 4201.73 | W | {i} | 3.56 | | 5-5 | | | 3758.11
3742.937 | P
V | (0) | 3.40
3.42 | 6.69
6.71 | 3-3
1-3 | (704) | *5031.030 | R | 3 | 3.53 | 5.98 | 2-3 | a ¹ D-w ³ G°
(746) | 4174.419
4219.364 | U
B | (1) | 3.56
3.56 | | 5-4
5-6 | | | 3785.78
3717.19
3703.43 | P
P
P | 000 | 3.32 | 6.58
6.64
6.69 | 5-5
5-4
4-3 | | 5020.819 | U | (1) | 3.53 | 5. 99 | 3-1 | a ¹ D-x ³ P° (748) | 4118.549 | В | 15 | 3.56 | | 5-6 | (800)
alH-zlI• | | 3705.26 | P | 0 | 3.38 | 6.71 | 3-2 | . 5 - 7 | *4889.009 | U | (1) | | 6.06 | a-a | (749) | 4014.534 | В | 10 | 3.56 | 6.63 | 5–5 | (801)
a ¹ H-y ¹ H°
(802) | | 3721.278
3716.442 | V
G∙
V | 2
13
(1) | 3.32
3.35
3.35 | 6.63
6.67
6.63 | 5-5
4-4
4-5 | z ⁵ F°-e ³ G
(705) | 4844.016
4869.45 | V
P | (a)
© | | 6.08 | 2-3
2-3 | (750) | 3972.920 | V | (1) | 3.56 | 6.66 | 5-5 | a1H-t3G*
(803) | | 3762.205
3727.53 | P | ·6′ | 3.40 | 6.71 | 2-3 | | 4705.464 | -
J | (1) | | 6.15 | 2-3 | (751)
a1D-v3Ge | 3846.412 | J
 | 3 | 3.56 | | 5-4
5-6 | (804) | | 3761.06
3717.84 | P
P | 0 | 3.35
3.40 | 6.64
6.72 | 4-3
3-1 | z ⁵ F°_f ³ D
(706) | 4789.654 | В | 7 | 3.53 | 6.11 | 2-2 | (752)
a ¹ D-z ¹ D°
(753) | *3748.492§
3756.939 | J | 7
4 | 3.56
3.56 | | 5-5 | (805) | | *3695.507
3691.53 | V
P | (1)
© | 3.40
3.42 | 6.74
6.76 | 3-3
1-1 | z ⁵ F°-g ⁷ D
(707) | 4632.14
4663.183 | P
J | ©
(1) | 3.53
3.53 | 6.20
6.18 | 2-2
2-1 | a ¹ D-w ³ Pe | 3743.468 | J | 6 | 3.56 | | 5-5 | (806) | | *3740.061
3788.77 | V
P | (i)
© | 3.38 | 6.68
6.72 | 3-4
3-3 | • | 4547.851 | В | 4 | 3.53 | 6.24 | 2-3 | a ¹ D-z ¹ Fe
(755) | 3690.730
3627.05 | J
₩ | 4 | 3.56
3.56 | | 5-5
5-5 | (807) | | 3416.52 | P | • | 3.35 | 6.97 | 4-5 | z5F0_1
(708) | 4343.86
4304.87 | P
P | 0 | 3.53
3.53 | 6.37
6.40 | 2-3
2-2 | alD-u5F° | 3621.718 | Ÿ | (2) | 3.56 | 6.97 | 5-4 | (808) | | 3380.004 | Y | (1) | | 6.97 | 5- | (708)
z ⁵ F°-3
(709)
z ⁵ F°-1 ⁵ D | 4392.31 | P | .⊙. | 3.53 | 6.34 | 2-3 | a ¹ D-v ³ F° | 3599.624 | G
G | 3
6 | 3.56
3.56 | | 5-4
5-4 | (809) | | *3243.406
3262.009
3269.240 | V
V
V | (2)
(1w) | 3.35 | 7.13
7.14
7.16 | 5-4
4-3
3-2 | (710) | 4424.194
4378.73 | V
P | (1)
© | | 6.32
6.35 | 2-2
2- | (757)
a ¹ D-5° | 3553.741
3538.77 | G-
₩ | | 3.56 | 7.05 | 5-6 | (810)
a ¹ H-x ³ I° | | 3274.452
3286.463 | V
V | (3w) | 3.35
3.38 | 7.12
7.14 | 4-4
3-3 | | 4305.20 | U | (1) | | 6.40 | 2-3 | (759)
alp_u3ge | 3534.52 | W | {1}
(1) | 3.56 | 7.05 | 5-5 | (811) | | 3299.079
3304.36 | V
P | (1w)
© | 3.38 | 7.12
7.14 | 3-4
3-3 | | 4337.100 | J | 3 | 3.53 | 6.38 | 2-2 | (760)
a ¹ D-y ¹ D*
(761) | *3479.683
3169.09 | V
P | (1)
© | 3.56
3.56 | | 5-4
5-6 | (812) | | 3211.693
•3214.044 | V
V | 8
20 | 3.32
3.35 | 7.16
7.19 | 5-6
4-5 | (711) | 4317.04 | P | (1) | | 6.39 | 3-2 | 3 a ¹ D-x ¹ D°
(762) | | | | | | _ | (813) | | •3211.872
•3209.297 | V
G- | 4
6 | 3.38
3.40 | 7.22
7.25 | 3-4
2-3 | | 4219.59
4181.55 | P
P | 0 | 3.53
3.53 | | 2-2
2-1 | aip_u3pe | 8461.41
8767.65 | P
P | 0 | 3.59
3.64 | | 3-3
2-3 | | | 3208.470
•3192.417
3197.53 | G-
₩ | $\binom{4}{1}$ | 3.42
3.38
3.40 | 7.26
7.25
7.26 | 1-2
3-3
2-2 | | 4151.957
4240.372 | V
J | (1)
(3) | 3.53
3.53 | | 2-2
2-1 | | *7086.76
7158.502 | V
V | 3
1 | 3.59
3.64 | 5.33
5.36 | 3-4
3-3 | (815) | | 3261.332 | v | (2) | 3.40 | 7.19 | 2-2 | | 4133.00 | P | (°) | | 6.53 | | a ¹ D-8° | 6953.01
7057.96 | P | 0 | 3.59
3.64 | 5.36
5.39 | 3-3
2-2 | • | | 3272.71 | บ . | (1) | 3.42 | 7.19 | 1-3
- | (712) | | | | | | | (765) | 7125.00 | P
| © ? | 3.67 | 5.40 | 1-1 | | | Lábo:
I A | rator
Ref | y
Int | Low E | P
High | J | Multiplet
(No) | | rator
Ref | y | Low E | | J | Multiplet
(No) | Laborat
I A Re | ory
f Int | E
Low | P
High | J | Multiplet | |--|------------------|---------------------------------|--------------------------------------|------------------------------|---------------------------------|--|---|------------------|------------------------|--------------------------------------|--------------------------------------|---------------------------------|---|---|--------------------------|------------------------------|------------------------------|--------------------------|--| | Fe I con | | | 201 | 11284 | | (10) | Fe I con | | | 10* | uren | | (10) | Fe I contin | | LOW | нідл | | (No) | | 6400.010
6411.658
6408.031
6246.334
6301.515 | I
I
K
K | 800
400
60
15
15 | 3.59
3.64
3.67
3.59
3.64 | 5.58
5.60
5.60
5.60 | 3-4
2-3
1-2
3-3
2-2 | _z 5pe_e ⁵ D
(816) | 3490.47
3526.96
*3476.336
3507.14
*3457.090 | P
P
V
P | ©
(2w)
©
(3w) | 3.59
3.64
3.59
3.64
3.59 | 7.12
7.14
7.14
7.16
7.16 | 3-4
2-3
3-3
2-2
3-2 | (835) | 5280.364 V
5217.927 T
5223.191 V
5207.95 F | (1) | 3.63
3.62
3.62
3.62 | 5.96
5.99
5.98
5.99 | 3-3
3-1
1-0
1-1 | b ³ D-х ³ Р°
(880) | | 6336.835
6141.734
6232.661
6302.507 | K
K
K | 12
4
5
6 | 3.67
3.59
3.64
3.67 | 5.62
5.62
5.63 | 1-1
3-3
3-1
1-0 | | 3428.746
3477.98
3510.18 | Y
P
P | (a)
© | 3.59
3.64
3.67 | 7.19
7.19
7.19 | 3-2
2-3
1-3 | (836) | 5066.28 F
5065.201 V
5027.212 V
4970.496 V | (2)
(1) | 3.63
3.63
3.62
3.62 | 6.06
6.08
6.10 | 1-3
3-4
2-3 | b ³ D- 3°
(883)
(883) | | 5456.48
*5466.993
5461.80
5346.34 | W
V
P
P | (1)
(1)
(0)
(0) | 3.59
3.64
3.67
3.59 | 5.85
5.90
5.93
5.90 | 3-4
2-3
1-2
3-3 | _z 5pe _{—e} 5 _F
(817) | 5981.38
5649.66 | P
V | ©
(1) | 3.62 | |
66
65 | (837)
a ¹ I-z ³ H° | *5031.030 F
4979.58 W | (1)
(1) | 3.63
3.63
3.63 | 6.08
6.10
6.07 | 1-2
3-3
2-3
3-3 | _b 3 _{D_v} 3 _D • | | 5384.22
5331.20
5288.24 | P
P
P | <u>0</u>
0 | 3.64
3.64
3.59 | 5.93
5.95
5.92 | 3-3
3-1
3-4 | _z 5pe_e3r | *5538.54
5521.14 | Y
P | {1
1 | 3.62
3.62 | 5.85
5.85 | 6-6
6-5 | | 5054.647 T
5018.03 F | ō | 3.62
3.62 | 6.07
6.08 | 2-3
1-2 | (884) | | 5133.22 | P | ō | 3.59 | 5.99 | 3-3 | (818) | 5465.04 | P | (1) | 3.62 | 5.88 | 6–5 | a ¹ I-v ⁵ F° (840) | 5035.025 F | . 3
· • | 3.63
3.63 | 6.08 | 3-3
3-4 | b ³ D-3°
(885)
b ³ D-√3g° | | 4516.27
m4611.29
4628.69 | P
P
P | ©
F•
© | 3.59
3.64
3.67 | 6.32
6.31
6.34 | 3-4
3-3
1-3 | z ⁵ pe_e ⁷ r
(819) | 5397.60
5284.416 | W
T | (1)
(-) | 3.62 | 5.91
5.95 | 6-5
6-5 | (841) | 4968.709 V | (1) | 3.62 | 6.11 | 3-3 | (886)
b3D-z1pe | | #4525.15
4572.86
4488.140 | P
P
J | Fe
(1)
(3n) | 3.59
3.64
3.59 | 6.31
6.34
6.34 | 3-3
2-2
3-2 | | 5242.495 | В | .4 | | 5.97 | 6-5 | (843)
a ¹ I-z ¹ H° | *4802.883 J
*4832.734 J | (3)
(2)
(3) | 3.63
3.62 | 6.20
6.18 | 3-2
3-1 | (887)
b ³ D_w ³ P°
(888) | | 4598.74 | P | ` © . | 3.64 | 6.32 | 2-1 | E . 7 | 4926.82 | P | • | 3.62 | 6.13 | 6-5 | (843)
a ¹ I-y ³ H°
(844) | *4845.656 V
4799.412 V
4824.162 V | {2}
{1}
{1} | 3.62
3.62
3.62 | 6.17
6.20
6.18 | 1-0
3-3
1-1 | | | 4596.059
4673.169
4701.052 | K
J
J | (3n)
(4)
(1) | 3.59
3.64
3.67 | 6.27
6.28
6.30 | 3-4
3-3
1-3 | (820) | 4961.908
4604.85 | U
P | (1)
© | 3.62
3.62 | 6.11 | 6–5
6–6 | (845) | 4708.973 V | | 3.62 | 6.24 | | b ³ D-z ¹ F• | | 4584.732
4643.468 | J
Ā | (1)
(2) | 3.59
3.64 | 6.28 | 3-3
2-2 | | 4595.21 | P | • | 3.62 | 6.30 | 6-5 | (846) | 4706.31 F | | 3.63 | 6.25 | 3-4 | (889)
b ³ D-x ¹ G•
(890)
b ³ D-u ⁵ F• | | 4690.146
*4556.129
4632.83 | J
J
P | (3)
4n
© | 3.67
3.59
3.64 | 6.30
6.30
6.30 | 1-1
3-2
3-1 | | *4531.633
*4479.612 | J
J | (3)
(3) | 3.62
3.62 | 6.34 | 6-5
6-5 | (847) | 4490.63 F
4448.97 F | | 3.62
3.62 | 6.37
6.40 | 3-3
3-3 | _b 3 _{D-u} 5 F•
(891) | | 4678.852
•4745.806 | B
B | 7
3n | 3.59
3.64 | 6.22
6.24 | 3-4
2-3 | z ⁵ P°-f ⁵ D
(821) | 4309.036
4238.61 | J
P | (3) | 3.62
3.62 | 6.48
6.53 | 6-6 | (848)
a ¹ I- y ³ I° | 4605.99 F
4543.22 F
4481.04 F | 0 | 3.63
3.62 | 6.31
6.34 | 3-4
3-3 | b ³ D-t ⁵ D°
(893) | | 4768.334
•4654.628
4709.092 | J
J | (1) | 3.67
3.59 | 6.26
6.24 | 1-2
3-3 | (001) | 4203.953 | v | (1) | 3.62 | 6.55 | 6-5
6-6 | a ¹ I-z ¹ I° | 4419.30 F | • | 3.62
3.62 | 6.37
6.41 | 1-8
1-0 | | | 4727.405
4619.294 | j | (3)
3n
3n | 3.64
3.67
3.59 | 6.26
6.28
6.26 | 2-2
1-1
3-2 | | 4095.63 | P | • | 3.62 | 6.63 | 6–5 | (850)
a ¹ I-y ¹ H ^o
(851) | *4558.108 J
4542.422 V
4568.842 V | (1)
(2)
(1) | 3.63
3.62
3.62 | 6.33
6.34
6.32 | 3-4
3-3
1-3 | b ³ D- v ³ F•
(894) | | 4669.174
4704.958 | J
J | (4)
(5) | 3.64
3.67 | 6.28
6.29 | 3-1
1-0 | | *4052.312
*4047.315 | J
V | (1)
(1) | 3.62
3.62 | 6.66 | 6-5 | a ¹ I-t ³ G•
(852) | 4545.54 P
4579.68 P | `ó | 3.63
3.63 | 6.34 | 3-3
3-2 | | | 4667.459
4728.555
4638.016 | B
J
J | 6
3n | 3.59
3.64 | 6.23 | 3-4
3-3 | z ⁵ pe_e ⁷ p
(822) | 3813,891 | v | 3 | 3.62 | 6.85 | 6-5
6-5 | (853)
a ¹ I-x ¹ H° | 4536.509 U | (1) | 3.63 | 6.35 | 3-4 | b ³ D-4°
(896) | | 4673.28
4584.82,4 | P
K | (3)
©
3 | 3.59
3.64
3.59 | 6.25
6.28
6.28 | 3-3
3-2
3-2 | | 3759.155 | ¥ | (1) | 3.62 | 6.90 | 6-5 | (854)
a ¹ I-s ³ G°
(855) | 4527.90 P
4483.78 P | (1)
© | 3.63
3.63 | 6.35 | 2-
3-4 | b ³ D-5 ⁶
(897)
b ³ D-u ³ G ⁶ | | 4560.096
4596.433 | J
U | (2)
(1) | 3.59
3.64 | 6.29
6.32 | 3-4
3-3 | _z 5 _{P*_e} 5 _G
(823) | 3597.24 | P | • | 3.62 | 7.05 | 6–5
 | a ¹ I-x ³ I°
(856) | 4452.32 P | ŏ | 3.63 | 6.40 | 3-3 | (898) | | 4510.82
4564.715 | P | (1) | 3.59
3.64 | 6.32
6.34 | 3-3
2-2 | (080) | 11355.97
10725.19 | D
P | 1
© | 3.63
3.62 | 4.71
4.77 | 3-3
2-2 | b ³ D-y ³ D•
(858) | 4479.01 P
4425.79 P
4386.6 W | ⊙
⊙
(1w) | 3.63
3.62
3.62 | 6.38
6.41
6.43 | 3-3
3-3
1-1 | b ³ D-u ⁵ P°
(899) | | 4480.27
4487.36 | P
P | 0 | 3.59 | 6.34 | 3-2
3-4 | z5pe_e'7g | 10332.33
7323.38 | P
P | ©
©1 | 3.62
3.63 | 4.81
5.31 | 1-1
3-4 | ь ³ D-у ⁵ G° | 4428.74 P
4393.70 P
m4475.99 P | ©
©
F• | 3.63
3.62
3.62 | 6.41
6.43
6.38 | 3-2
2-1
2-3 | | | 4462.20
•4461.989 | P
J | ⊙
(4) | 3.59
3.59 | 6.35 | 3–3
3–4 | (824)
_Z 5pe_f5p | 7262.46
6749.52 | P
P | ©1
© | 3.63
3.63 | 5.33
5.45 | 3-3
3-2 | (859) | 4418.60 P
*4473.731 J | (a)
© | 3.62 | 6.41 | 1-3 | .3- 1-4 | | 4516.45
4433.793
4495.986 | P
J
J | (3n) | 3.64
3.59
3.64 | | 2-3
3-3
2-2 | (825) | 6603.67 | P
V | • | 3.62 | 5.49 | 1-0 | (860) | 4466.183 V | (1) | | 6.38
6.39 | | b ³ D_у¹р•
(900)
b ³ D_7• | | 4414.03
4485.97 | P
P | `o´ | 3.59
3.64 | 6.38
6.39 | 3-2
3-1 | | 6474.61
6603.20 | V
P | (1)
© | 3.63 | 5.53
5.49 | 3-2 | b ³ D_ y ⁵ D•
(861)
b ³ D_ y ⁵ 8• | 4463.16 P
*4461.989 J | ⊙
(4) | 3.62
3.62 | 6.39 | 3-3
3-3 | (901)
b ³ D-x ¹ D ⁰ | | 4525.142
4611.285 | I | 5n
5n | 3.59
3.64 | 6.31
6.31 | 3-2
3-2 | z ⁵ pe_e ⁵ g
(836) | 6307.85
6301.86 | P
P | © | 3.63
3.62 | 5.58
5.58 | 3-3
2-3 | (862)
b ³ D-x ³ D°
(863) | 4454.655 J
4360.813 V | {4}
1 | 3.62 | 6.39 | 1-3 | (903) | | 4668.07
4495.566 | P
J | ©
(1) | 3.67
3.59 | 6.31 | 1-8
3-3 | _z 5pe_e3p | 6043.738 | ד
ד | (1) | 3.63 | 5.67 | 3-3 | b ³ D-x ⁵ G° | *4376.782 V | (1)
(1)
(1) | 3.63
3.63 | 6.46
6.45 | 3-2
3-3 | b ³ D-u ³ D•
(903)
b ³ D-t ³ D• | | *4488.917
4481.621 | J
J | (1)
(2)
(2)
(3)
(1) | 3.64
3.67 | 6.39
6.42 | 2-2
1-1 | (827) | 5762.434
5754.41 | V
V | ${1 \atop 1 \atop 1}$ | 3.63
3.63 | 5.77
5.77 | 3-4
3-3 | (864)
b ³ D_u ⁵ D°
(866) | 4285.832 V
4373.90 P | (1)
© | | 6.50
6.45 | 2-3
2-3 | (904) | | 4580.600
4542.730 | A
K | (1) | 3.64
3.67 | 6.33
6.39 | 2-3
1-2 | | 5702.434
5707.25
5609.97 | U
P
P | (1)
0
0 | 3.62
3.63
3.62 | 5.79
5.79
5.82 | 3-21
3-2
3-1 | | 4253.93 P
4247.29 P | © | 3.62
3.62 | 6.53
6.53 | 3-1
1-1 | b ³ D_8•
(905) | | 4484.227
4482.750
*4479.612 | I
V
J | (2)
(3)
(5) | 3.59
3.64
3.67 | 6.34
6.39
6.43 | 3-4
2-3
1-2 | z ⁵ pe_g ⁵ D
(828) | *5600.242
5760.351 | V | (1) | 3.62 | 5.82 | 1-0 | . 7 . 7 | 4246.090 J
4088.567 V | 3
(1) | 3.63
3.62 | 6.53
6.64 | 3-2
3-1 | b ³ D- y 3pe
(906) | | 4401.293
m4427.30 | J
P | Fe | 3.59
3.64 | 6.39
6.43 | 3-3
2-2 | |
5698.05
5761.27 | V
W | (1)
(1)
(1) | 3.63
3.62
3.62 | 5.77
5.79
5.76 | 3-3
3-1
1-0 | b ³ D_у ³ ре
(867) | 4243.368 V
4082.44 W
4236.76 U | (1)
(2)
(2)
(1) | 3.62
3.62
3.63 | 6.53
6.64
6.53 | 3-3
1-1
1-3 | , , | | 4446.842
4347.854
4395.288 | Ā | (a)
(a)
(a) | 3.64 | 6.45
6.43
6.45 | 1-1
3-2
3-1 | | 5707.068
5636.708 | A
A | {1}
1 | 3.63
3.62 | 5.79
5.81 | 3-4
2-3 | ь ³ D-х ³ г•
(868) | 4239.36 P
4236.66 P | 0 | 3.63 | 6.54 | 3-3 | b ³ D-8 ³ De | | 4438.353
4440.479 | K
V | | 3.67
3.59 | 6.45
6.37 | 1-0
3-3 | _z 5 _{pe_e} 7 _g | 5568.81
5660.79 | U | {1
{1} | 3.62 | 5.84 | 1-1 | b ³ D-w ³ D• | 4181.20 P | ©
© | 3.62 | 6.54
6.57 | 2-3
1-1 | (907)
b ³ D-z ¹ P° | | 4523.403
4388.412 | J
J | (1)
(2) | 3.64 | 6.37 | 2-3 | (829)
₂ 5 _{P9_6} 5 _P | 5611.35 | P | 0 | 3.62
3.62 | 5.80
5.82 | 2-3
1-2 | (869) | 4172.97 P | 0 | 3.63 | 6.58 | 3-4 | (908)
b ³ D-9•
(909) | | 4423.858
4485.679 | Ĭ
J | (31) | 3.64
3.67 | 6.40
6.43
6.42 | 3-3
3-2
1-1 | (830) | 5487.49
5452.119
5411.39 | P
U
P | (1)
(0) | 3.63
3.62
3.62 | 5.87
5.89
5.90 | 3-4
3-3
3-3 | 5 _{0−ա} 5 _ն ∙
(870) | 4115.89 P
4096.118 V | ©
(4) | | 6.62 | | b ³ D_ y 1 F • (910) | | 4433.223
4469.381
4476.082 | J
I
Q | 3n
5n
(4) | 3.64 | 6.43
6.40
6.43 | 2-1
2-3
1-2 | | 5539.28
•5534.68 | ¥ | {1}
{1} | 3.63 | 5.85 | 3-2 | | 4074.70 P | (1)
© | | 6.64
6.65 | | b ³ D-x ¹ F°
(911)
b ³ D-10° | | 4107.75
4103.61 | P
P | 0 | 3.59 | 6.59 | 3-4 | z ⁵ p•_g ⁵ r | 5529.15 | w | (2) | 3.62
3.63 | 5.85
5.86 | 2-2
3-4 | (871)
b ³ D-z ¹ G* | 4030.490 V
3960.284 J | {i} | 3.63
3.62 | 6.70
6.74 | 3-4
2-3 | (912)
b ³ D-t ³ G•
(913) | | 4035.25 | P | 0 | 3.59 | 6.65
6.65 | 2-3
3-3 | (831) | 5493.33
5482.26 | P
P | 0 | 3,62
3,62 | 5.87
5.87 | 3-1
1-1 | (872)
b ³ D_y ³ s•
(873) | 3962.65 P | 0 | 3.63 | 6.74 | 3–3 | | | 4147.49
4148.27
4087.79 | P
P
P | 000 | 3.64 | 6.56
6.61
6.66 | 3-3
2-2
3-1 | ₂ 5 _P e_f5 _P
(832) | 5431.40
5414.91 | P
P | 0 | 3.63 | 5.90 | 3-4 | b ³ D-x ³ G• | 4058.46 P
4055.98 W | (1) | 3.62 | 6.67
6.67 | 2-3 | b ³ D-11•
(914) | | 4319.74
4117.71 | P
U | ©
(4) | 3.64 | 6.56 | 2-3 | -5ma -3m | 5386.958 | T | ©
(1) | 3.63
3.63 | 5.91
5.92 | 3-3
3-4 | (874)
b ³ D-y ⁵ F° | 4010.18 ₩
3787.164 J | (1)
(1) | 3.63
3.62 | 6.70
6.88 | | b ³ D-13°
(915)
b ³ D-w ¹ D° | | 4108.31 | P | (1)
© | 3.67 | 6.64
6.67 | 1-3 | (833) | 5327.25
5284.27
5294.555 | P
P
T | (-) | 3.62
3.62 | 5.94
5.96
5.96 | 2-3
1-2
2-3 | (875) | 3781.938 J | (1) | | 6.89 | | (916)
b3D_w1pe | | 3901.0 3
389 6.6 3 | P
P | ©†
© | | 6.75
6.81 | 3-4
2-3 | ₂ 5pe_ ₁ 3p
(834) | 5253.25
5298.789 | P
V | (1) | | 5.97
5.96 | 1-1
3-3 | | 3767.73 P
3738.51 P | 0 | 3.63
3.62 | 6.90
6.93 | 3-4
2-3 | (917)
b ³ D_s ³ G•
(918) | | | | | | | | | 5315.78
5370.06 | P
P | (0) | | 5.95
5.96 | 3-3
1-1 | b ³ D_√ ⁵ p•
(877) | | | | | | • | | | | | | | | | 5320.048
5305.41 | V
P | (1)
• | | 5.95
5.95 | 3-2
1-2 | | | | | | | | | 60 | | | | | | | REV 1 | SE | ט אג ס | LTI | PLE | T T | ABLE | | | | | | _ | | |------------------------------------|--------------|--------------|----------------------|-------------------------------|--------------------|---|-------------------------------------|--------------|--|----------------------|----------------------|-------------------|---|--------------------------------|-------------|---------------|-------------------------------|----------------------|-------------------|--| | Labor
I A | atory
Ref | | E
Low | P
High | J | Multiplet (No) | | atory
Ref | | E I | P
High | · J | Multiplet
(No) | Labor
I A | | Int | E 1 | P
H1gh | J | Multiplet
(No) | | Fe I cont | | | | | | | Fe I con | tinued | | | | | | Fe I cont | inued | | | | | ~ = | | 3635.08 | P | ⊙7 | 3.62 | 7.02 | 2-2 | b ³ D-u ³ F°
(919)
b ³ D-r ³ G° | 5050.13
5085.93 | P
P | <u>o</u> | 3.86
3.93 | 6.31
6.35 | 4-5
3-4 | z ³ F°-f ⁵ F
(963) | 4905.15
4978.11 | ₩
X
P | (1)
© | | 6-43
6-42
6-48 | 2-2
1-1
2-1 | ₂ 3p∘ _{-e} 5p
(986) | | 3245.80
3224.05 | P
P | ,
(0, | 3.63 | 7.43
7.45 | 3-4 | _{p3D-r3} g•
(920) | 5168.18 | P | © | 3.93 | 6.31 | 3-2 | z ³ F°-e ⁵ S
(964) | 4916.67
4966.30 | P | ©
© | | 6.43 | 1-2 | | | *3225.607 | υ
- | (1) | 3.63 | 7.45 | 3 –3
– | | 5001.871
5014.950 | B
J | 12
10 | 3.86
3.93 | 6.33
6.39 | 4-3
3-2 | z3Fe_e3D
(965) | 4529.562
4479.00 | V
P | (1)
© | 3.87
3.94 | 6.5 9
6.70 | 3-6
1-8 | z ³ p•_ლ ⁵ ლ
(987) | | 6451.58
6396.39 | V
P | (2)
© | 3.68
3.68 | 5.59
5.61 | 4-5
4-4 | b ¹ G—у ³ G °
(921) | 5022.244
5129.658 | J
T | 6
(1)
(1) | 3.97
3.93 | 6.42 | 2-1
3-3 | | 4441.56
4429.20 | P
P
P | 000 | 3.87
3.91
3.87 | 6.65
6.70
6.70 | 3-3
2-2
3-2 | | | 5849.67 | P | ,©, | 3.68 | 5.79 | 4-4 | b ¹ G-x ³ F°
(922) | 5099.091
5217.69 | T
P | (1)
© | 3.97
3.97 | 6.39
6.33 | 2-2
2-3 | | 4358.95
4404.10 | P | Õ | 3.91 | 6.71 | 3-1 | | | *5780.83
5619 .23 | V
P | (1)
⊙î | 3.68 | 5.81
5.87 | 4-3
4-4 | . 1 5 | 4987.83
*5007.289 | P
J | ©
(3n) | 3.86
3.93 | 6.34
6.39 | 4-4
3-3 | z ³ F°-g ⁵ D
(966) | 4579.05
4498.54 | P
P | 0 0 | 3.87
3.87 | 6.56
6.61 | 3-4 | z ³ p°-h ⁵ p
(988) | | 5662.94 | v | (1) | 3.68 | 5.86 | 4-4 | (923)
big_zig• | 5019.74
4885.435 | P
J | ©
2
(2) | 3.97
3.86
3.93 | 6.43
6.39
6.43 | 2-2
4-3
3-2 | | 4487.01
4504.23 | P
P | <u>o</u> | 3 .91
3 . 94 | 6.66
6.68 | 2-2
1-1 | | | 5513.86 | P | ⊙ | 3.68 | 5.92 | 4-4 | (924)
b1G-v ⁵ F°
(925) | 4938.183
4978.606 | K
J | (2) | 3.97 | 6.45 | 3-1 | | 4568.62
4546.68 | P
P | 0 0 | 3.91
3.94 | 6.61
6.66 | 11 | z ³ D°-f ⁵ p
(989) | | 5543.04
5549.94 | P
U | (2)
(2) | 3.68
3.68 | 5. 91
5. 9 0 | 4-5
4-4 | blo_x3g•
(926) | 5058.00 | W | (1) | | 6.37 | 3-3 | z ³ F°-e ⁷ S
(967)
z ³ F°-e ⁵ P | 4621.63
4377.330 | P
U | ©
(1) | 3.94
3.87 | 6.61
6.69 | 1-2
3-3 | z ³ D°-f ⁵ G | | 5543.184 | V
P | (2)
© | 3.68
3.68 | 5.91
5.95 | 4-3
4-5 | b ¹ G-w ³ G° | 4933.878
5027.34
5015.30 | Q
P
P | (1)
©
© | 3.93
3.97
3.97 | 6.43
6.43
6.43 | 3-2
3-1
3-3 | (968) | 4336.60 | Þ | ·©′ | 3.87 | 6.71 | 3-8 | (990) | | 5423.73 53 85.58 | P | o
o | 3.68 | 5.97 | 4-4 | (927) | 4630.785 | U | (1) | 3.93 | 6.59 | 3-4 | z ³ F°-g ⁵ F | *4395.514
4405.40 | V
P | (1₩)
⊙ | 3.87
3.91 | 6.67
6.71 | 3-4 | z ³ D°-e ³ G
(991) | | 5379.580 | J | (2) | 3.68 | 5.97 | 4-5 | b ¹ G-z ¹ H°
(928) | *4607.655
4526.40 | J
P | 3n
© | 3.97
3.86 | 6.65
6.59 | 2-3
4-4
3-3 | (969) | 4335.89
4458.101 | U
V | (1)
(3) | 3.87
3.87 | 6.71.
6.64 | 3-3
3-3 | z ³ p°-f ³ p | | 5288. 533 | V
T | (2)
(-) | 3.68
3.68 | 6.01
6.06 | 4-4
4-4 | b1g_y1g°
(929)
b1g_w3F° | 4538.84
4438.53
4452.62 | W
P
P | (a)
©
© | 3.93
3.86
3.93 | 6.65
6.65
6.70 | 4-3
3-2 | | 4466.939
4440.840 | V
V | (2)
(1) | 3.91
3.94 | 6.67
6.72 | 2-2
1-1 | (992) | | 5141.55 | P | , <u>o</u> , | 3.68 | 6.08 | 4-3 | (930) | 4492.693 | V | (1n) | 3.97 | 6.71 | 3-1 | -3-a 15a | *4395.514
4391.87 | V
P | (1w)
© | 3.87
3.91 | 6.67
6.72 | 3-2
2-1
2-3 | | | 5145.73 | P | 0 | 3.68 | | 4-3
4-5 | b ¹ G-3°
(931)
b ¹ G-v ³ G° | *4575.80
4598.37
*4495.386 | U
P
V | (1)
©
(1) | 3.86
3.93
3.86 | 6.56
6.61
6.61 | 4-4
3-3
4-3 | z ³ F°-h ⁵ D
(970) | *4531.633
4517.60 | J
P | (a)
⊙ | 3.91
3.94 | 6.64
6.67 | 1-2 | | | 5084.55
4809.14 | P
V | ©
(1) | 3.68
3.68 | | 4-5
4-3 | (932)
b1G-z1F0 | 4511.04
4544.50 | P
P | (1)
(0) | 3.93
3.97 | 6.66
6.68 | 3-3 | | 4279.480
*4265.260 | V
J | (1)
(2) | 3.87
3.91 | 6.75
6.81 | 3-4 | z ³ D° <u>-f</u> 3 _F
(993) | | •4802.883 | J | (3) | 3.68 | 6.25 | 4-4 | (933)
bld-xld• | 4593.544 | U
P | (1) | 3.93
3.97 | 6.61
6.66 | 3-2
2-1 | z ³ F°-f ⁵ P
(971) | 4264.743
4200.09 | U
P | (1)
© | 3.94
3.87 | 6.84
6.81 | 1-2
3-3 | | | 4700.171 | J | (2n) | 3.68 | 6.30 | 4-5 | (934)
b ¹ G-x ³ H°
(935) | 4587.73
4551.667 | U | ©
(1) | 3.93 | 6.64 | 3-4 | z3F0_f5G | 4243.786
4220.05 | V
P | (1₩)
⊙ | 3.87
3.91 | 6.77
6.84 | 3-2
2-1 | z ³ D°-e ³ P
(994) | | •4579.344 | V | (1) | 3.68 | 6.37 | 4-5 | ъ ¹ G-6°
(936) | 4538.58
4450.77 | P | 0 | 3.97
3.86 | 6.69
6.64 | 2-3
4-4 | (972) | 4310.37
•4265.260 | P
J
P | (2) | 3.91
3.94 | 6.77
6.84 | 2-2 | | | *4509.306 | U
D | (1)
© | 3.68
3.68 | 6.42
6.50 | 4-3
4-5 | b ¹ G-u ³ D°
(937)
b ¹ G-w ³ H° | 4471.81
4429.32 | P
U | $\begin{Bmatrix} 1 \\ 1 \end{Bmatrix}$ | 3.93
3.93 | 6.6 9
6.71 | 3-3
3-2 | | 4357.53
3839.614 | V | ⊙
(S#) | 3.94 | 6.77
7.16 | 1-2 | z ³ D°-1 ⁵ D | | 4382.02
4248.72 | P
P | ©
©î | 3.68 | | 4-4 | (938)
b10-9° | 4456.63
•4490.773 | P
J | (2n) |
3.86
3.93 | 6.63
6.67 | 4-5
3-4 | z ³ F°-e ³ G
(973) | 3675.76 | P | · · | 3.87 | 7.22 | 3-4 | (995)
z ³ D°-g ⁵ G | | 4189.564 | U | (2) | 3.68 | 6.6 2 | 4-3 | (939)
b1G-y1Fe | 4494.05
4392.58 | P
U
P | (1)
(0) | 3.97
3.86
3.93 | 6.71
6.67
6.71 | 2-3
4-4
3-3 | | 3699.41
3683.77 | P
P | 0 | 3.91
3.91 | 7.25
7.26 | 2-3
2-3 | (996) | | 4171.696 | J | (3) | 3.68 | 6.64 | 4-3 | (940)
big_xire
(941) | 4428.57
4455.032 | r
J | (2) | 3.86 | 6.64 | 4-3 | z ³ Fo-f ³ D | 3717.73 | P | • | 3.87 | 7.19 | 3-8 | z ³ D°-4
(997) | | 4149.49 | P | • | 3.68 | | 4-3 | b ¹ G-10°
(942) | *4490.773
4479.97 | J
P | (2n)
© | 3.93
3.97 | 6.67
6.72 | 3-2
2-1 | (974) | 9959.18 | P | <u>o</u> | 4.06 | 5.30 | 4-5 | с ³ F_у ⁵ ф
(998) | | 4090.75
4030.90 | P
P | 0 | 3.68
3.68 | | 4-4
4-3 | b ¹ G_t ³ G°
(943) | *4556.129
*4558.108
4625.44 | J
J
P | 4n
(1)
© | 3.93
3.97
3.97 | 6.64
6.67
6.64 | 3-3
2-2
2-3 | | 8096.874
8422.95 | E
O | 10
2 | 4.06
4.13 | 5.58
5.59 | 4-3
3-2 | 63F_x3p•
(999) | | 4080.08 | P | 0 | 3.68 | 6.70 | 4-4 | b ¹ G-13°
(944) | 4354.28 | P | 0 | 3.86 | 6.70 | 4-5 | z ³ F°-e ³ H | 8481.96
8466.54 | P
P | 0 | 4.17
4.12 | 5.62
5.58 | 2-1
3-3 | • | | 399 6.968 | J
- | 2 | | 6.77 | 4-4 | (945) | 4394.31
4300.21 | P
P | 0 | 3.93
3.86 | 6.73
6.73 | 3-4
4-4 | (975) | 8680.77
8727.10 | P
P | 0 | 4.17
4.17 | 5.59
5.58 | 2-2
2-3 | | | 38 85.93
3846. 29 | P
P | o
o | 3.68
3.68 | | 4-5
4-3 | b ¹ G-x ¹ H°
(946)
b ¹ G-w ¹ F° | 4276.684
4286.976 | J
V | {1}
{1}
{1} | 3.86
3.93 | 6.75
6.81 | 4-4
3-3 | z ³ F°_f ³ F
(976) | 7537.44
7967.03 | P
P | ©1
©1 | 4.06
4.17 | 5.70
5.78 | 4-3
2-2 | c ³ F_w ⁵ P°
(1000) | | 3829.125 | J | (1) | 3.68 | | 45 | (947)
b ¹ G-8 ³ G° | 4300.828
4197.38 | V
P | • | 3.97
3.86 | 6.84
6.81 | 2-3
4-3 | • | 7219.686 | ï | 5 | 4.06 | 5.77 | 4-4 | c ³ F-u ⁵ p•
(1001) | | 3754.89 | P | • | 3.68 | 6.97 | 4-4 | (948)
b1G-u3H°
(949) | 4369.73
3975.85 | P
W | ©
(1) | 3.93
3.86 | 6.75
6.97 | 3-4
4- | z ³ F°-2 | 7498.56
7617.97
7207.123 | V
P
V | 1
©
6 | 4.12
4.17
4.06 | 5.77
5.79
5.77 | 3-3
2-2
4-3 | (1001) | | 3731.15
3704.80 | P
P | 00 | 3.68
3.68 | | 4-4
4-3 | (949)
b ¹ G-u ³ F°
(950) | 3742.14 | P | • | 3.93 | 7.22 | 3-4 | (977)
z3F°-g5G | 7418.674
7454.02 | E
V | 5
(1) | 4.12
4.17 | 5.79
5.82 | 3-2
3-1 | | | 3681.87 | W | (1) | 3.68 | 7.03 | 4-4 | | 3673.68
3648.22 | P
P | 0 | 3.86
3.86 | 7.22
7.25 | 4-4
4-3 | (978) | 7512.17
7132.989 | P
I | ©
8 | 4.13 | 5.77
5.79 | 3-4
4-4 | c3 F−x 3 F • | | 3661.25 | P | • | 3.68 | 7.05 | 4-5 | (951)
b ¹ G-x ³ I°
(952) | 10469.59 | D . | 30 | 3.87 | 5.05 | -
3-3 | z ³ D°-X | *7307.938§
7443.031 | L
L | 8
2 | 4.13 | 5.81
5.83 | 3-3
2-2 | (1002) | | 3590.66 | W | (1) | 3.68 | | 4-3 | b1G-t3F°
(953) | 10532.21
10143.59 | D
P | 10
© | 3.91
3.87 | 5.08
5.08 | 2-2
3-2 | (979) | 7418.32
7501.25 | P
P | 00 | 4.13
4.17 | 5.79
5.81 | 3-4
2-3 | | | 3291.44
3270.69 | P
P | ©
© | 3.68
3.68 | | 4-4
4-3 | b1q_r3g•
(954) | 10884.30
10818.36 | D
D | 3
3 | 3.91
3.94 | 5.05
5.08 | 2-3
1-2 | | 7072.82
7300.59 | P
P | o | 4.06 | 5.80
5.82 | 45
34 | с ³ F- z ³ н•
(1003) | | 10452.70 | D - | 5 | 3.86 | 5.05 |
4-3 | z ³ F°-X | 7486.13
7474.60 | P
P | 0 | 3.87
3.91 | 5.52
5.56 | 3-4
3-3 | z ³ D°-e ⁵ D
(980) | 7024.084 | v | 5 | 4.12
4.06 | 5.82 | 4-4 | | | 8686.79 | P | © | 3.86 | 5 .29 | 4-5 | (955)
z ³ F°-e ⁷ D | 7325.33 | P | 0 | 3.91 | 5.60 | 3-3 | z ³ p•_e ⁵ F | 7068.415
7284.843 | ŗ
I | 40
4 | 4.06 | 5.80
5.82 | 4-3
3-2 | c ³ F-w ³ D°
(1004) | | 8801.78
74 77.52 | P
P | o | 3.93
3.86 | | 3-4
4-4 | (956)
z ³ F°-e ⁵ D | 6226.77
6221.40
6209.73 | V
V
P | (1)
0 | 3.87
3.91
3.94 | 5.85
5.90
5.93 | 3-4
2-3
1-2 | (981) | 7401.689
7348.51
7476.92 | E
P
P | 4
©
© | 4.17
4.13
4.17 | 5.84
5.80
5.88 | 2-1
3-3
2-2 | | | 754 1.61
75 73.76 | U
P | (1)
© | 3.93
3.97 | 5.56
5.60 | 3-3
3- 3 | (957) | 6083.67
6114.41 | P
P | 000 | 3.87
3.91 | 5.90
5.93 | 3-3 | | 6793.26 | v | 2 | 4.06 | 5.87 | 4-4 | ç3 <u>F_₩</u> 5 @ | | 7268.58
7474.50
7766.72 | P
P
P | 000 | 3.86
3.97
3.93 | 5.62 | 4-3
2-1
3-4 | | 6008.577
5934.658 | K
K | 9
5 | 3.87
3.91 | 5.92
5.99 | 3-4
3-3 | z ³ D°-e ³ F
(982) | 7000.633
7107. 4 61 | V
I
P | 3
4 | 4.13 | 5.89
5.90 | 3-3
2-2 | (1005) | | 6220.78 | ٧ | (1) | 3.86 | 5. 85 | 4-4 | z3re_e5r | 5883.838
5809.249 | K
K | 4 | 3.94
3.87 | 6.04
5.99 | 1-2
3-3 | (908) | 6745.96
*6933.628 | L | ⊙
6 | 4.06
4.12 | 5.89
5.90 | 4-3
3-8 | | | 6419.65 | P | ©
8 | 3.93 | | 3-4 | (958)
-370 -37 | 5 798.194
56 78.38 | V
P | (a)
(a) | 3.91
3.87 | 6.04
6.04 | 2-2
3-2 | | 6857.25
7120.56 | V
P | 4
⊙ | 4.06
4.12 | 5.86
5.86 | 4-4
3-4 | c ³ F-z ¹ G*
(1006) | | 6003.033
5976.799
5952.749 | K
K
V | 5
3 | 3.86
3.93
3.97 | 5.99 | 4-4
3-3
2-2 | z ³ F°_e ³ F
(959) | 5304.11
5277.59 | P
P | {1} | 3.91
3.94 | 6.24
6.28 | 3-3
1-1 | z ³ D°-f ⁵ D
(983) | 6785.88
6963.02 | P
P | <u>o</u> | 4.06
4.17 | 5.88
5.94 | 4-5
2-3 | o ³ F_v ⁵ F* | | 5804.06
5838.418 | Ŭ | {1
1} | 3.86
3.93 | 5.99
6.04 | 4-3
3-2 | | 5005.720 | j | 10 | 3.87 | 6.33 | 3-3 | z ³ D°-e ³ D | 6639.90
6796.11 | P
V | (§) | 4.06
4.13 | 5.93
5.94 | 4-4
3-3 | (1007) | | 6188.037
6096.689 | A
A | (21d)
(1) | 3.93
3.97 | | 3-4
2-3 | | 4985.261
4973.108 | J | 7
3 | 3.91
3.94 | 6.39
6.42 | 2-2
1-1 | (984) | 6555.87 | P | • | 4.06 | 5.94 | 4~3 | 7 . 7 | | 5119.90
5027.51 | P
P | ©
© | 3.86
3.86 | | 4-5
4-4 | z ³ F°_e ⁷ F
(960) | 4896.437
4911.786
5098.594 | U
U
K | (1)
(1)
(3)
(2) | 3.87
3.91
3.91 | 6.39
6.42
6.33 | 3-2
2-1
2-3 | | 6682.23
6942.82
7105.90 | P
P
P | 000 | 4.06
4.13
4.17 | 5.91
5.90
5.91 | 4-5
3-4
2-3 | c ³ F-x ³ G ⁶
(1008) | | 5168.1 9 | P | • | 3 .9 3 | 6.31 | 3–3 | | 5048.454 | V | | 3.94 | 6.39 | 1-3 | _ | 6623.78 | P
P | 0 | 4.06 | 5.93 | a-3 | c ³ F_v ⁵ pa | | 5126.598
5285.60 | U
P | {1}
(1) | 3.86
3.97 | | 4-4
3-1 | z ³ F°-f ⁷ D
(961) | 4977.653
4970.66
4889.113 | U
P
U | (1)
(2) | 3.91
3.94 | 6.39
6.43 | 2-3
1-2 | z ³ D°-g ⁵ D
(985) | *6777.44 | v | 1 | 4.12 | 5.95 | 3-8 | (1010) | | 5213.80
5238.25 | P
P | 0 | 3.93
3.97 | 6.32 | 3-4
2-3 | z ³ F°_e ⁵ G
(962) | 4889.113
4909.387
4930.331 | J
K | (2)
(1)
(2) | 3.87
3.91
3.94 | 6.39
6.43
6.45 | 3-3
2-2
1-1 | | 6509.56 | v | (1) | 4.06 | 5.95 | 4⊶5 | c ³ F_ w³g * | | 5 081.86 | P | 0 | 3.86 | | 4-4 | | 4870.05 | P | `ǿ | 3.91 | 6.45 | 2-1 | | | | | | | | (1012) | | Labo
I A | rator;
Ref | | E
Low | P
High | J | Multiplet
(No) | Labor
I A | | y
Int | E l | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | | E : | P
High | J | Multiplet
(No) | |--|------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|---|-----------------------|--|--------------------------------------|--------------------------------------|---------------------------------|--|---|-----------------------|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---| | Fe I con | | | | • | | | <u>Fe I</u> cont | inue | đ | | | | | | tinue | | | - | | | | •6713.14
•6777.44
6875.98 | V
V | 6d
1
1 | 4.12
4.17
4.17 | 5.96
5.99
5.96 | 3-2
3-1
3-3 | o ³ F-x ³ P°
(1013) | 8632.42
8652.50
8355.16
8950.20 | P
P
P | 0000 | 4.09
4.14
4.09
4.14 | 5.52
5.56
5.56
5.52 | 4-4
3-3
4-3
3-4 | y ⁵ D°-e ⁵ D
(1050) | 5088.16
5063.296
5011.24 | P
T
P | {1
0 | 4.14
4.17
4.30 | 6.56
6.61
6.66 | 3-4
2-3?
1-2 | y ⁵ De-h ⁵ D
(1066)
cont | | 6315.814
6157.734 | V
J | (2)
4
(3) | 4.06
4.06
4.12 | 6.01
6.06
6.08 | 4-4
4-4
3-3 | c ³ F_y ¹ G°
(1014)
c ³ F_w ³ F°
(1015) | 8878.76
8834.04
8779.13 | P
P
P | 000 | 4.17
4.20
4.21 | 5.56
5.60
5.62 | 2-3
1-2
0-1 | | 4982.507
4983.258
4967.899 | J
J | 8n
5n
(3) | 4.09
4.14
4.17 | 6.56
6.61
6.66 | 4-3
3-2
2-1 | y ⁵ D°-f ⁵ P
(1067) | | 6315.316
6380.748
6107.32
6240.266 | J
P
U | (3)
©
(1) | 4.17
4.06
4.12 | 6.10
6.08
6.10 | 3-3
4-3
3-3 | (1015) | 7187.341
7307.406
7164.469 | E
E
E | 800
500
350 | 4.09
4.14
4.17 | 5.80
5.85
5.90 | 4-5
3-4
2-3 | y ⁵ D°-e ⁵ F
(1051) |
5086.77
*5057.49
5021.68 | P
W
P | (1)
© | 4.14
4.17
4.20 | 6.56
6.61
6.66 | 3-3
2-2
1-1 | | | 6147.85
6315.42
6436.43 | V
P
V | (-)
©
(1) | 4.06
4.13
4.17 | 6.07
6.08
6.09 | 4-3
3-2
3-1 | o ³ F_v ³ D°
(1016) | 7130.943
7090.404
6999.902
7016.436 | I
I
I | 150
40
30
60 | 4.20
4.21
4.09
4.14 | 5.93
5.95
5.85
5.90 | 1-3
0-1
4-4
3-3 | | •4952.646
4934.023
4910.328
4910.570 | V
K
J
J | (1n)
(2n)
(1w)
(1w) | 4.09
4.14
4.17
4.20 | 6.58
6.64
6.69
6.71 | 4-5
3-4
2-3
1-2 | y ⁵ D°-f ⁵ G
(1068) | | •5975.355
•6127.913
5931.89 | J
J
P | (3)
© | 4.06
4.12
4.06 | 6.12
6.14
6.14 | 4-5
3-4
4-4 | c ³ F-y ³ H°
(1017) | 7022.976
7038.251
6819.60
6880.65
6933.04 | L
P
V
U | 50
40
(1)
2 | 4.17
4.20
4.09
4.14
4.17 | 5.95
5.95
5.90
5.93
5.95 | 2-2
1-1
4-3
3-2
3-1 | | 4835.862
4840.329
4859.12
•4745.806
4790.56 | K
V
W
B
P | (3)
(1n)
(1)
3n
© | 4.09
4.14
4.17
4.09
4.14 | 6.64
6.69
6.71
6.69
6.71 | 4-4
3-3
2-2
4-3
3-2 | | | 6027.057
6165.366
6215.152
6081.85 | B
J
J
P | (2)
(2)
© | 4.06
4.13
4.17
4.13 | 6.11
6.13
6.15
6.15 | 4-5
3-4
2-3
3-3 | 0 ³ F-v ³ G°
(1018) | 6725.39
6653.88
6916.702 | V
V
I | (1)
60 | 4.09
4.14
4.14 | 5.92
5.99
5.92 | 4-4
3-3
3-4 | y ⁵ D°-e ³ F
(1052) | 4842.78
4862.60
4858.24 | V
P
P | (1)
©
© | 4.09
4.14
4.17 | 6.63
6.67
6.71 | | y ⁵ D°-e ³ G
(1069) | | 6362.889 | V | (2) | 4.17 | 6.11 | 2-2 | $6^{3}F-z^{1}D^{0}$ (1019) | 6786.88
6704.48 | V
P | (1) | 4.17
4.20 | 5.99
6.04 | 2-3
1-2 | | m4840.89
4862.54 | P
P | Ti
© | 4.09
4.14 | 6.64
6.67 | 4-3
3-2 | y ⁵ D°-f ³ D
(1070) | | 5959.878
5643.94
5943.11 | U
P
P | (1)
©
© | 4.13
4.06
4.17 | 6.24
6.24 | 3-2
4-3
2-3 | (1020)
c3F_z1F°
(1021) | *5666.837
5703.09
5815.42
5737.71 ? | U
P
P | (1)
©
(1) | 4.14
4.17
4.20
4.09 | 6.31
6.34
6.32
6.31 | 3-3
2-2
1-1
4-3 | y ⁵ D°-e ⁷ F
(1053) | 4841.80
*4939.244
4933.19
4892.86 | W
J
P
W | (1)
(2)
©
(1) | 4.17
4.14
4.17
4.20 | 6.72
6.64
6.67
6.72 | 3-1
3-3
2-3
1-1 | | | 5811.93
5510.23 | V
P | (1)
© | 4.12
4.06 | 6.25 | 3-4
4-5 | c ³ F-x ¹ G°
(1022)
c ³ F-u ⁵ F° | 5859.96
5760.53
5813.33 | P
P
P | 0 | 4.17
4.14 | 6.28
6.28 | 2-3
3-3 | y ⁵ D°-f ⁷ D
(1054) | 5012.16
4986.24
4918.03 | P
W
W | (1)
(1)
(1) | 4.17
4.20
4.21 | 6.64
6.67
6.72 | 2-3
1-2
0-1 | | | 5563.69
5333.15 | P | 0 | 4.12
4.06 | 6.34
6.37 | 3-4
4-3 | (1023) | 5715.47
5796.67 | P | 000 | 4.17
4.14
4.17 | 6.30
6.30
6.30 | 3-3
3-3
3-1 | | 4631.03
4538.20
*4720.997 | P
P
J | ©
©
(1) | 4.09
4.09
4.14 | 6.75
6.81
6.75 | 4-4
4-3
3-4 | y ⁵ D°-f ³ F
(1071) | | 5494.468
5487.747 | v
K | (1)
(8) | 4.06
4.13 | 6.30
6.37 | 4-5
3-3 | c ³ F-x ³ H°
(1024)
c ³ F-t ⁵ D° | 5871.289
5928.50
5732.86 | U
P
P | (1)
©
.0 | 4.14
4.20
4.09 | 6.24
6.28
6.24 | 3-3
1-1
4-3 | y ⁵ D°-f ⁵ D
(1055) | 4688.38
4679.96 | P
P | 0 | 4.17
4.20 | 6.81
6.84 | 2-3
1-2 | | | m5424.15
5568.71 | P
P
P | Fe
© | 4.06 | 6.33
6.34 | 4-4
3-3 | (1025)
c ³ F-v ³ F°
(1026) | 5815.16
5893.24
5974.62 | V
P
P | (1)
©
© | 4.14
4.30
4.17 | 6.26
6.29
6.24 | 3-21
1-0
2-3 | 1 | 4677.59
4742.93 | P
P | ©
© | 4.14
4.17 | 6.77
6.77 | 3-2
3-3 | y ⁵ D°-e ³ P
(1072) | | 5406.36
•5630.04
5587.583
5680.26 | W
V
W | | 4.06
4.13
4.13
4.17 | 6.34
6.33
6.34 | 4-3
3-2
3-4
2-3 | 3 | 5844.879
5707.70
5760.71
5947.30 | U
P
P | (1)
©
©
© | 4.14
4.09
4.14
4.17 | 6.25
6.28
6.25 | 3-3
4-3
3-2
2-3 | у ⁵ р°-е ⁷ р
(1056) | 4135.77
4044.49
4085.98
4163.35
4172.97 | U
P
P
P | (1)
©
(1)
©
© | 4.17
4.09
4.14
4.17
4.20 | 7.16
7.14
7.16
7.14
7.16 | 2-2
4-3
3-2
2-3
1-2 | y ⁵ D°-1 ⁵ D
(1073) | | 5329.994
5403.823 | J
V | (2)
(1) | 4.06 | 6.37 | 4-5 | c ³ F-6°
(1038)
c ³ F-u ³ G° | 5677.68
5721.70 | P | 0 | 4.09
4.14 | 6.26
6.29 | 4-5
3-4 | y ⁵ D°-e ⁵ G
(1057) | 3970.99
3996. 79 | P
P | o | 4.09
4.14 | 7.19
7.22 | 4-5
3-4 | y ⁵ D°-g ⁵ G
(1074) | | 5476.298
•5535.419
5319.22
5429.43 | J
P
P | (1)
(2)
(2)
(0) | 4.13
4.17
4.06
4.13 | 6.38
6.40
6.38
6.40 | 3-4
2-3
4-4
3-3 | (1039) | 5739.78
5761.08
5644.35
5516.29 | P
P
P | 0000 | 4.17
4.20
4.14
4.09 | 6.32
6.32
6.32 | 2-3
1-2
3-3
4-3 | | 4046.46
4095.27
4131.75 | P
P
P | 0 0 0 | 4.14
4.17
4.20 | 7.19
7.19
7.19 | 3-2
2-2
1-2 | y ⁵ D°-4
(1075) | | 5275.00
5464.286
•5235.392 | W
V | (1n)
(1)
(2) | 4.06 | 6.40
6.38
6.42 | 4-3
3-2
4-3 | c ³ F_y ¹ D°
(1030)
c ³ F_u ³ D° | 5607.66
5705.32
5481.252
5568.44 | P
P
V
P | 0
(2)
0 | 4.14
4.20
4.09
4.14 | 6.34
6.36
6.34
6.35 | 3-4
1-3
4-4
3-3 | y ⁵ D°-e ⁷ G
(1058) | 9103.64
•9070.42
9084.20 | F
F
P | 1
2
1 | 4.16
4.20
4.24 | 5.52
5.56
5.60 | 5-4
4-3
3-2 | y ⁵ F°-e ⁵ D
(1076) | | 5293.973
5332.673
5387.51
5394.682
5491.84 | V
V
R
T | {1}
3
(-)
2} | 4.13
4.17
4.12
4.17
4.17 | 6.46
6.48
6.43
6.46
6.43 | 3-2
2-1
3-3
2-2
2-3 | (1031) | 5636.00
5551.77
5568.07 | P
P
P | 0 0 0 | 4.17
4.09
4.14 | 6.36
6.31
6.35 | 2-2
4-5
3-4 | y ⁵ D°-f ⁵ F
(1059) | 7511.045
7495.088
7445.776 | E
E
E | 800
400
200 | 4.16
4.20
4.24 | 5.80
5.85
5.90 | 5-5
4-4
3-3 | y ⁵ F°_e ⁵ F
(1077) | | 5169.30
5187.922 | P
V | (3)
© | 4.06
4.12 | 6.45
6.50 | 4-3
3-2 | c ³ F-t ³ D° (1032) | 5652.01
5443.41
5524.25
5583.97 | P
P
P | 0
(1)
0 | 4.20
4.09
4.14
4.17 | 6.38
6.35
6.37
6.38 | 1-2
4-4
3-3
2-2 | | 7411.178
7389.425
7306.61
7288.760 | E
V
I | 100
80
3
10 | 4.26
4.28
4.16
4.20 | 5.93
5.95
5.85
5.90 | 2-2
1-1
5-4
4-3 | | | 5438.71
5317.53
5284.62 | P
P
P | 000 | 4.17
4.13
4.17 | 6.44
6.45
6.50 | 2-17
3-3
2-2 | | *5666.837 | U | (1) | | 6.31 | 3-2 | y ⁵ D°-e ⁵ S
(1060) | 7293.068
7311.101
7710.390 | I
I
E | 15
12
25 | 4.24
4.26
4.20 | 5.93
5.95
5.80 | 3-2
2-1
4-5 | | | 5164.922
5236.189 | s
v | (-)
(1) | 4.13
4.17 | 6.51
6.53 | 3-4
3-1 | c ³ F-w ³ H°
(1033)
c ³ F-8° | 5493.508
5483.111
5481.451 | V
V
T
V | (1)
(3)
(1)
(1)
(2)
(1) | 4.17 | 6.33
6.39
6.42 | 4-3
3-2
2-1 | y ⁵ D°-e ³ D
(1061) | 7661.223
7568.925
7491.678 | E
E
L | 30
30
12 | 4.24
4.26 | 5.85
5.90
5.93 | 3-4
2-3
1-2 | | | 4978.70
5124.17 | P
P | ©
(1) | 4.06
4.17 | 6.54
6.58 | 4-3
2-2 | (1034)
c3F_g3D•
(1035) | 5620.527
5573.10
5547.00
*5715.107 | V
W | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4.17
4.20 | 6.33
6.39
6.42 | 3-3
2-2
1-1 | | 7008.014
6898.31 | V
V | 5 3 | 4.20 | 5.92
5.99 | 4-3 | y ⁵ F°-e ³ F
(1078) | | 5136.09 | W | (1) | 4.17 | 6.57 | 2-3
2-1 | c3F-z1pe | 5579.34 | P | (1)
©
10 | 4.21 | 6.33
6.42 | 2-3 | y ⁵ D°-g ⁵ D | 6847.60
7181.222
7038.818 | P
L
V | (1)
10
2 | 4.20
4.24 | 6.04
5.92
5.99 | 3-2
4-4
3-3 | | | 4887.37
4829.68 | P
P | ©
©1 | 4.06 | 6.58
6.68 | 4-4
3-2 | (1036)
c ³ F-9°
(1037)
c ³ F-t ⁵ P° | 5476.571
5473.908
5478.48
*5493.850 | J
J
V
T | (3)
(1)
(0)
(2)
(1) | 4.14
4.17 | 6.34
6.39
6.43
6.45 | 4-4
3-3
3-2
1-1 | (1062) | 6951.62
7333.62
*7148.69
7022.39 | P
V
R
P | (1)
1n
(-)
© | 4.24
4.26 | 6.04
5.92
5.99
6.04 | 2-2
3-4
2-3
1-2 | | | 4875.32
4809.26 | P
P | ©
(1) | 4.17
4.06 | 6.70
6.62 | 2-1
4-3 | (1038)
c ³ F_y ¹ F°
(1039) | 5353.386
5391.493
5429.52
5480.872 | V
V
P
V | • | 4.09
4.14
4.17 | 6.39
6.43
6.45 | 4-3
3-2
2-1 | | *6005.53
*6021.82 | V
W | (1)
(2n) | 4.16
4.26 | 6.21
6.31 | 5-6
2-3 | у ⁵ г° -е ⁷ г
(1079) | | 4912.52
4999.114 | P
T | ©₹
(1) | 4.13
4.17 | 6.64
6.64 | 3-3
2-3 | c ³ F _{-X} ¹ F•
(1040) | 5602.788
5563.604 | v
I
J | (2)
(2)
(3) | 4.14
4.17 | 6.45
6.34
6.39
6.43 | 1-0
3-4
2-3 | | 6008.35
5992.65
5961.91 | P
P | ©
©î | 4.16 | 6.34 | | y ⁵ F°-f ⁷ D | | 4881.726
4735.846 | J
J | (a) | 4.12
4.06 | 6.65
6.66 | 3–3
4–5 | c ³ F-10°
(1041)
c ³ F-t ³ G° | 5543.930
5525.552
*5534.68 | v
W | (2)
(1) | 4.21 | 6.45 | 1-2
0-1
3-3 | y ⁵ D°-e ⁷ S | 5961.91
6060.81
6107.09 | P
P
P | ©
(1) | 4.20 | 6.24 | | (1080)
y ⁵ F°-f ⁵ D | | 4800.652
4798.269 | y
V | (2)
(2)
(1) | 4.13
4.17 | 6.70
6.74 | 3-4 | (1042) | 5334.38
5386.341 | P
V | (1)
©
(1) | 4.09 | 6.40
6.43 | 3-3
4-3
3-2 | (1063)
y5D°_e5p
(1064) | 6032.67
*6127.913 | V
J | (1)
(1)
(2) | 4.20 | 6.25 | | (1081)
y ⁵ Fe_e ⁷ p | |
4854.89
4939.46 | V
P | (1n)
© | 4.17 | 6.67
6.67 | 3-3
2-3 | c ³ F-11°
(1043) | 5487.52
5453.98
5473.18 | P
P
P | 000 | 4.17
4.14
4.17 | 6.42
6.40
6.43 | 2-1
3-3
2-2 | (1004) | 5940.972
5996.49 | V
P | (2)
© | 4.16 | 6.28
6.24
6.32 | 2-2
5-6
2-3 | y ⁵ F°-e ⁵ G
(1083) | | 4729.028
4785.963
4665.56 | J
V
P | (1)
(1)
© | | 6.67
6.70
6.70 | 4-5
3-4
4-4 | c ³ F-12°
(1043a)
c ³ F-13°
(1044) | 5553.22
5543.03
*5538.54 | P
P
V | ©
(1) | 4.20
4.17
4.20 | 6.42
6.40
6.43 | 1-1
2-3
1-2 | | 5877.770
5901.53
5918.93 | U
P
P | (1)
©
(1) | 4.16 | 6.26
6.29 | 5-5
4-4
3-3 | | | 4672.02 | P | 0 | | 6.77 | | c ³ F-w ¹ G°
(1045) | *5007.289
5027.136
4991.277 | J
J | (3n)
5n
(3)
(2) | 4.14 | 6.55
6.59
6.65 | 3-4
2-3 | y ⁵ D°-g ⁵ F
(1065) | 5742.95
5738.22
5786.99 | P
P
P | (1)
©
© | | 6.31
6.35
6.37 | 5-5
4-4
3-3 | y ⁵ F°_f ⁵ F
(1084) | | 4413.40
4546.47 | P
P | o
o | | 6.85
6.88 | 2-2 | c ³ F-x ¹ H°
(1046)
c ³ F-w ¹ D° | *4939.244
4933.348
4925.28 | J
K
W | (2)
(3n)
(1)
(-) | 4.20
4.21
4.09 | 6.70
6.71
6.59 | 1-2
0-1
4-4 | | 5826.64
5859.20
5627.08 | P
V
P | (1)
© | 4.26
4.28
4.16 | 6.38
6.3 9
6.35 | 2-2
1-1
5-4 | | | 4467.446
4538.95 | U
P | (1)
© | | 6.89
6.89 | 3-3
2-3 | (1047)
c ³ F_w ¹ F°
(1048) | 4983.855 | K
J | 6n | 4.09 | 6.70
6.56 | | y ⁵ D°-h ⁵ D | 5691.69
5753.38
5809.88 | P
P | 000 | 4.20
4.24
4.26 | 6.37
6.38
6.39 | 4-3
3-2
2-1 | | | 4152.07 | P _ | <u> </u> | 4.06 | 7.03 | 4-4 | c ³ F_v ¹ G°
(1049) | 4988.963
4957.68
4969.927
4888.651
4886.335 | J
P
J
V
J | (6)
(3)
(1)
(1) | 4.17 6 | 6.61
6.66
6.68
6.61
6.66 | 3-3
2-3
1-1
4-3
3-2 | (1066) | 5858.77
5835.10
5861.11
5876.27 | P
P
P | 0000 | 4.20
4.24
4.26 | 6.31
6.35
6.37
6.38 | 4-5
3-4
2-3
1-2 | | | 62 | | | | | | | REV | ISE | D M | ULTI | P. L E | T T | ABLE | | | | | | | | |-----------------------------|----------------|--|----------------------|----------------------|-------------------|--|----------------------------------|-------------|---------------------------------|----------------------|----------------------|--------------------|--|----------------------------------|-------------|------------------------|----------------------|----------------------|----------------------------|---| | I A | aborato
Ref | r y
Int | Low | P
High | J | Multiplet
(No) | Labo: | | 'y
Int | Low | P
High | J | Multiplet
(No) | Labor
I A | | ry
Int | Low | P
High | J | Multiplet (No) | | Fe I | continu | eđ | | | | | Fe I con | tinue | d | | | | | Fe I cont | tinu | eđ | | | | | | 5943.6
•6021.8 | | (2n) | 4.24
4.26 | 6.31
6.31 | 3-2
2-2 | y ⁵ F°-e ⁵ S
(1085) | 4112.972
4125.622 | J
J
P | 3n
(1)
© | 4.16
4.20
4.34 | 7.16
7.19
7.22 | 5-6
4-5
3-4 | y ⁵ F°-g ⁵ G
(1103) | 8509.63
8496.51
8401.68 | P
P
P | 000 | 4.35
4.40
4.43 | 5.80
5.85
5.90 | 4-5
3-4
2-3 | z ⁵ Ge_e ⁵ F
(1136)
cont | | 5793.9
5741.8 | | (2)
(2) | 4.20 | | 4-3
3-2 | у ⁵ F°-е ³ D
(1086) | 4132.54
4137.42
4142.628 | P | (1N) | 4.26 | 7.25
7.26 | 2-3
1-2 | | 7586.044 | E | 150 | 4.29 | 5.92 | 5-4 | z ⁵ Ge ³ F | | *5715.1
5892.7 | 07 ¥ | (2)
(2)
(1)
(2)
(1) | 4.24 | 6.33 | 2-1
3-3 | • | 4067.85
4083.71
4100.35 | P
P
P | `© `
© | 4.16
4.20
4.24 | 7.19
7.22
7.25 | 5-5
4-4
3-3 | | 7531.171
7507.300
7869.65 | E
L
O | 60
8
4 | 4.35
4.40
4.35 | 5.99
6.04
5.92 | 4-3
3-2
4-4 | (1137) | | 5814.8
5762.8
5969.5 | 4 P | • | 4.26
4.28
4.26 | 6.42 | 2-2
1-1
2-3 | | *4117.872 | v | (1) | 4.26 | 7.26 | 2-2 | _ | 7737.67
7647.83 | P | 0 | 4.40
4.43 | 5.99
6.04 | 3-3
2-2 | | | 5864.2
5662.5 | | (2)
6 | 4.28
4.16 | | 1-2
5-4 | y ⁵ F°-g ⁵ D | 4185.66
4234.30 | P
P | 0 | 4.24
4.26 | 7.19
7.19 | 3-3
2-3 | y ⁵ F°-4
(1104) | 6428.80 | v | (1) | 4.35 | 6.27 | 4-4 | z ⁵ G°-1 ⁷ D | | 5638.2
5641.4 | 66 I | (a) | 4.20 | 6.39 | 4-3
3-2 | (1087) | 7239.885 | I | 6 | 4.19 | 5.90 | -
2-3 | z ³ P°-e ⁵ F | 6543.98 | U | (1) | | 6.24 | | (1138).
z ⁵ Ge_f ⁵ D
(1139)
z ⁵ Ge_e ⁵ G | | 5658.6
5691.5 | 7 P
609 V | (1) | 4.26
4.28
4.20 | 6.45 | 3-1
1-0
4-4 | | 7311.26
7095.425
7213.84 | P
I
P | ©
3
© | 4.34
4.19
4.34 | 5.93
5.93
5.95 | 1-2
3-3
1-1 | (1105) | 6376.22
6303.46
6351.29 | P
V
P | (1n)
© | 4.30
4.30
4.29 | 6.24
6.26
6.24 | 6-6
6-5
5-6 | z ⁵ G ⁶ -e ⁵ G
(1140) | | 5775.0
5731.7
5711.8 | 71 J | (3) | 4.24 | 6.39 | 3-3
2-2 | | 5955.682 | U | (1) | | 6.31 | 1-3 | z ³ P°-e ⁵ s | 6472.15 | P | © 1 | 4.35 | 6.26 | 4 5 | 5 - 5 | | 5705.4
5873.2
5804.4 | 11 V | (1)
(5)
(3)
(3)
(1)
(3)
(1)
(3) | 4.28
4.24
4.26 | 6.34 | 1-1
3-4
2-3 | | 5762.992
5753.136 | K
J | 10
5 | 4.19
4.24 | 6.33
6.39 | 2-3
1-2 | (1106)
z ^{3p•} _e ³ D
(1107) | 6148.65
6034.04 | P
P | (a) | 4.30 | 6.31 | 6-5
5-4 | z ⁵ G°_f ⁵ F
(1141)
z ⁵ G°_g ⁵ D | | *5759.5 | 6 P | • | 4.28 | 6.43 | 1-3 | | 571 7.84 5
5618.646 | Ľ | (3)
(1) | 4.27
4.19 | 6.42
6.39 | 0-1
2-2 | (2201) | 6054.100
6081.72 | U
P | (a)
(a) | 4.35
4.40 | 6.39
6.43 | 4-3
3-2 | (1142) | | 5617.1
5635.8
5721.7 | 5 V | (1)
© | 4.20
4.24
4.26 | 6.43 | 4-3
3-2
3-1 | y ⁵ F°_e ⁵ P
(1088) | *5655.506
m5525.48 | V
P | 4
Fe | 4.24
4.19 | 6.43
6.43 | 1- 1
2-1 | | 6212.04
5361.637 | V
U | (1)
(1) | 4.35
4.40 | 6.34
6.70 | 4-4
3-2 | z ⁵ G°_g ⁵ F | | 5709.9
5706.1 | 3 P | 00 | 4.24 | 6.40 | 3-3
3-2 | | 5608.98
5652.32 | P
V | (1) | | 6.39
6.43 | 2-3
1-2 | z ³ p°-g ⁵ D
(1108) | 5395.25
5 469.29 | ₩
P
V | (1)
(1n)
© | 4.43
4.29 | 6.71
6.55 | 2-1
5-5 | (1143) | | 5162.2
5165.4 | | 10n
(4) | 4.16
4.20 | | 5-5
4-4 | y ⁵ F°_g ⁵ F
(1089) | 5661.36
5522.46
*5600.242 | V
V | (1)
(1)
(2)
(1)
(1) | 4.27
4.19
4.24 | 6.45
6.43
6.45 | 0-1
2-2
1-1 | | 5512.277
5487.16
5432.950 | V
V
U | (1)
(1)
(2n) | 4.35
4.40
4.43 | 6.59
6.65
6.70 | 4-4
3-3
2-2 | | | 5126.2
5072.0 | 18 T | (4)
(1)
(1)
(2) | 4.24 | 6.65 | 3-3
2-2 | ,, | 5472.720 | ٧ | (1) | 4.19
4.19 | 6.45 | 2-1
2-3 | _z 3pe_e5p | 5615.18
5441.321 | P | 0 | 4.35 | 6.55
6.56 | 4-5
5-4 | z ⁵ G°-h ⁵ D | | 5076.2
5075.1
5051.2 | .7 P | (8)
© | 4.28
4.16
4.20 | 6.59 | 1-1
5-4
4-3 | | 5588.07
5646.70
5724.445 | P
P
U | (1) | 4.19
4.24
4.27 | 6.40
6.43
6.42 | 1-3
0-1 | (1109) | 5441.321
5466.404
5446.58 | J
P | {1
3} | 4.35 | 6.61
6.66 | 4-3
3-2 | (1144) | | 5016.4
5255.6 | 8 P
8 P | 0 | 4.24 | 6.55 | 3-2
4-5 | | 5517.08
5661.97 | ₩
₽ | (in) | 4.19
4.24 | 6.43
6.42 | 2-2
1-1 | | 5470.17
5520.19 | W
P | (1)
©? | 4.43
4.43 | 6.68
6.66 | 2-2
2-3 | | | 5243.7
5184.2
5109.6 | 192 U | (1)
(3n)
(2) | 4.24
4.26
4.28 | 6.65 | 3-4
2-3
1-2 | | 5027.785
5025.08 | T
P | (-)
© | 4.19
4.24 | 6.65
6.70 | 2-3
1-2 | z ^{3pe} _g ⁵ F
(1110) | 5455.433
m5404.12 | K
P | (5)
Fe | 4.30
4.29 | 6.56
6.58 | 6-6
5-5 | z ⁵ g°_f ⁵ g
(1145) | | 5137.3 | 88 J | 6n | 4.16 | 6.56 | 5-4 | y5ro_h5D | 5041.33
4922.18 | P | 000 | 4.27
4.19 | 6.71
6.70 | 0-1
2-2 | • | 5400.509
5389.461
5398.285 | J
K
V | (5)
(5)
(1) | 4.35
4.40
4.43 | 6.64
6.69
6.71 | 4-4
3-3
2-2 | | | 5125.1
5090.7
5104.4 | 87 K | 6n
(6n)
(1) | 4.20
4.24
4.26 | 6.66 | 4-3
3-2
3-1 | (1090) | 4992.80
4993.687 | P
U | © (1) | 4.24 | 6.71
6.66 | 1-1
2-2 | z ^{3po} _h ⁵ D | 5422.15
5265.42 | P | 0 | 4.30
4.29 | 6.58
6.64 | 6-5
5-4 | | | *5229.8
5202.2 | 57 J | 5n | 4.20 | 6.61 | 4-4
3-3 | | 5056.856
*4952.646 | A
A | (1)
(1n) | 4.24
4.19 | 6.68
6.68 | 1-1
3-1 | (1111) | 5327.86
5437.19
5546.512 | P
P
V | © ?
©
(1) | 4.40
4.29
4.35 | 6.71
6.56
6.58 | 3-2
5-6
4-5 | | | 5148.0
*5142.5 | | (1)
(3)
(3w) | 4.26
4.28 | | 2-2
1-1 | | 5205.31
5004.034 | P
T | (1) | 4.24
4.19 | 6.61
6.66 | 1-3
3-1 | z ³ P°-f ⁵ P
(1112) | 5505.893
5461.54 | T
W | (1)
(-)
(1n) | 4.40 | 6.64
6.69 | 3-4
2-3 | | | 5228.4
5196.1
5159.0 | .00 V | (in)
(2w)
(3w) | 4.20
4.24
4.26 | 6.61 | 4-3
3-2
3-1 | y ⁵ F°-f ⁵ P
(1091) | 4945.65
4995.41 | ₩
P | (1)
© | 4.19
4.24 | 6.69
6.71 | 3-3
1-3 | z ³ P°-f ⁵ G
(1113) | 5424.072
5383.374 | I | 45n
35n | 4.30
4.29 | 6.58
6.59 | 6-7
5-6 | z ⁵ G°-e ⁵ H
(1146) | | 5308.7
5255.7 | 1 P | (2#/
© | 4.24 | 6.56
6.61 | 3-3
2-2 | | 4893.70 | P | O | 4.19 | 6.71 | 2-2 | | 5369.965
5367.470 | I | 35n
30n | 4.35
4.40 | 6.65
6.70 | 4-5
3-4 | 1 .=, | | 5197.9
5133.6 | | ©
20n | 4.28 | | 1-1
5-6 | y ⁵ F°-f ⁵ G | 4720.56
4775.87 | P
P | ⊙† | 4.19
4.19 | 6.81
6.77 |
2-3
2-2 | z ³ pe <u>-f</u> 3F
(1114)
z ³ pe_e ³ p | 5364.874
5401.27
5236.38 | I
P
P | 15n
©
© | 4.43
4.30
4.29 | 6.73
6.59
6.65 | 2-3
6-6
5-5 | | | 5195.4
*5142.5 | 71 K
41 J | (8)
(3w) | 4.20 | 6.58
6.64 | 4-5
3-4 | (1092) | *4757.583
4665.24 | J
P | (a) | 4.24
4.19 | 6.84
6.84 | 1-1
2-1 | (1115) | 5267.28
5295.316 | P
U | (1) | 4.35
4.40 | 6.70
6.73 | 4–4
3–3 | | | 5096.9
5079.0
5104.2 | 02 V | (6)
(1n)
(1)
(1)
(2) | 4.26
4.28
4.16 | 6.71 | 2-3
1-2
5-5 | | 4872.69
4801.63 | P | 0 | 4.24
4.27 | 6.77
6.84 | 1-2
0-1 | • • | 5290.79
5184.17 | P
P | © | 4.30
4.29 | 6.63
6.67 | 65
5- 4 | z ⁵ G°-e ³ G
(1147) | | 5067.1
*5040.9 | 63 V | (1)
(2) | 4.20 | 6.64
6.69 | 4-4
3-3
3-2 | | 4160.78 | P | <u> </u> | 4.19 | 7.16 | 2-2
- | z ³ P°-1 ⁵ D
(1116) | 5273.62
5315.07
5326.793 | P
₩
T | (1)
(1) | 4.29
4.35
4.40 | 6.63
6.67
6.71 | 5-5
4-4
3-3 | | | 4986.9
5085.6 | | 0 | 4.24 | | 5-6 | y ⁵ F°-e ⁵ H | 8356.07 | P | © | 4.28 | 5.75 | 2-1 | b ¹ D-z ³ S° (1117) | 5409.125 | V | { - } | 4.35 | 6.63 | 4-5 | 5-9-3- | | 5040.2
5021.6 | 5 P | 000 | 4.20
4.24
4.26 | 6.65
6.70 | 4-5
3-4
2-3 | (1093) | 7820.80 | P | 0 | 4.28 | 5.85 | 3-3 | b ¹ D-1°
(1118) | 5406.77
5417.03
5512.40 | P
W
P | (1)
© | 4.35
4.40
4.40 | 6.64
6.67
6.64 | 4-3
3-2
3-3 | z ⁵ G°-f ³ D
(1148) | | 5012.6
4954.3
4866.7 | 0 P | ⊙
⊙† | 4.16
4.16 | 6.65 | 5-5
5-4 | | 6756.56 | P | • | 4.28 | 6.10 | 2-2 | b1p_w3re | 5489.85 | P | 0 | 4.43 | 6.67 | 8-8 | _z 5 _G •_e3 _H | | 4987.6
4991.8 | | 0 | 4.16
4.20 | | 5-5
4-4 | y ⁵ F°-e ³ G
(1094) | 6571.22 | U | (1) | 4.28 | 6.15 | 2-3 | (1130)
b ¹ D-v ³ G°
(1131) | 5262.61
5130.91
5056.00 | P
P
W | ©
©
(1) | 4.30
4.29
4.29 | 6.65
6.70
6.73 | 6-6
5-5
5-4 | (1149) | | 4985.9
5074.7 | 8 P
57 J | 0
10n | 4.24 | 6.71
6.63 | 3-3,
4-5 | (1001) | 6736.56 | P | 0 | 4.28 | 6.11 | 2-2 | b ¹ D-z ¹ D°
(1122) | 5245.62
5259.09 | P
P | 0 | 4.29
4.35 | 6.65
6.70 | 5-6
4-5 | | | 5065.0
*5040.9 | 03 A
02 A | (3) | 4.24
4.26 | | 3-4
2-3 | _ | 6267.845
5883.06 | U
P | (1)
⊙? | 4.28
4.28 | 6.24 | 2-3
2-2 | b ¹ D-z ¹ F°
(1123)
b ¹ D-t ⁵ D° | 5277.31
5023.476 | P
T | ⊚
(_) | 4.40 | 6.73
6.75 | 3-4
5-4 | z ⁵ G°-f ³ F | | 5072.6
5064.9 | 5 P | (1)
,© | | 6.67 | 4-3
3-2 | y ⁵ F°-f ³ D
(1095) | 6035.34 | P | ©Î | 4.28 | 6.32 | 2-2 | (1124)
b ¹ D-v ³ F° | 5031.901
•5057.49 | R
₩ | (1)
© | 4.35
4.40 | 6.81
6.84
6.75 | 4-3
3-2 | (1150) | | 5023.2
5148.2
5121.6 | 34 U
46 V | (3)
(3)
(2n) | 4.26
4.24
4.26 | 6.72
6.64
6.67 | 2-1
3-3
2-2 | | 5976.18 | P | 0 | 4.28 | 6.34 | 2-3 | (1125) | 5146.30
5123.28
5120.89 | P
P
P | 0 | 4.35
4.40
4.43 | 6.81
6.84 | 4-4
3-3
3-2 | | | *5060.0
5206.8 | 79 T
0 P | (1)
© | 4.28
4.26 | 6.72
6.64 | 1-1
2-3 | | 5816.07 | P
V | ⊙ †
(2) | 4.28 | 6.40 | 2-3
2-2 | b ¹ D-u ³ G°
(1137)
b ¹ D-y ¹ D° | 5241.90
4618.568 | P | (i)
(a₩) | 4.40 | 6.75
6.97 | 3-4
5-5 | z ⁵ G°-1 | | 5159.9
4972.3 | 9 P | ©
(1) | 4.28 | 6.64 | 1-2
5-5 | y ⁵ F°-g ⁷ D | 5856.084
5837.709 | V | (2)
(1) | 4.28
4.28 | 6.38 | 2-2 | (1128)
b ¹ D-x ¹ D° | 4631.49 | W | (1) | | 7.03 | | (1151)
z ⁵ G°-3 | | 4893.5
4906.8 | 9 P | 0 | 4.16
4.20 | 6.68 | 5-4
4-3 | (1096) | 5539.831 | U | (1)
(2) | 4.28 | 6.50 | 2-2 | (1129)
b1p_t3pe
(1130) | 8598.79 | 0 | | 4.37 | 5.80 | -
5–5 | (1152)
z ³ G°-e ⁵ F | | 4962.5
4942.5 | 9 P | (1)
© | 4.16
4.24 | 6.73 | 5-6
3-4 | y ⁵ r°-e ³ H
(1097) | 5698.37
5469.09 | ₩
P | (2)
© | 4.28
4.28 | 6.44 | 2-1
2-2 | b ¹ D-v ³ P° | 8610.62
8562.13 | P
P | 4
©
© | 4.42 | 5.85
5.90 | 4-4
3-3 | (1153) | | 4872.9 | 1 P | 0 | 4.20 | 6.73 | 4-4 | y ⁵ F°-1 ³ F | 5376.849 | บ | (3) | 4.28 | 6.57 | 2-1 | (1131)
b1D-z1po | 8331.941
8339.431 | E
E
E | 200
80
8 | 4.37
4.42 | 5.85
5.90 | 5 -4
4 -3 | | | 4749.2
4842.7
*4807.2 | 1 P | ⊙
(~) | 4.20 | 6.84
6.75
6.81 | 3-2
4-4
3-3 | (1098) | 4734.100 | J | (1) | 4.28 | 6.88 | 2-2 | (1133)
b ¹ D-w ¹ D°
(1133) | 8360.822
8896.00
8848.25 | P
P | ° ° | 4.45
4.42
4.45 | 5.93
5.80
5.85 | 3-2
4-5
3-4 | | | 4799.0
4911.5 | 6 P | 0 | 4.26
4.24 | 6.8 4
6.75 | 2-2
3-4 | | 4725.94 | V | (1n) | 4.28 | 6.89 | 2-3 | bip_wife
(1134)
bip_t3re | 7945.878 | E
E | 600
400 | 4.37
4.42 | 5.92
5.99 | 5-4
4-3 | z ³ G°-e ³ F
(1154) | | 4858.2
*4832.7 | 34 J | (a)
(a) | 4.26
4.28 | 6.84 | 2–3
1–2 | _ | 4333.06 | P | <u> </u> | 4.28 | 7.12 | 2-2
- | (1135) | 7832.224
7780.586
8198.951 | E | 300
80 | 4.45
4.43 | 6.04
5.92 | 3-2
4-4 | (1134) | | 4465.3
4460.5 | | (1)
⊙î | 4.20 | | 4-5 | y ⁵ F°-1
(1099)
y ⁵ F°-2 | 8220.406
7937.166 | E | 1500
700 | 4.30 | 5.80
5.85 | 6-5
5-4 | z ⁵ G°_e ⁵ F
(1136) | 8028.341
8414.08 | E
P | 50
⊙ | 4.45
4.45 | 5.99
5.92 | 3-3
3-4 | | | 4384.1 | | ©1 | 4.20 | | 4-
4-4 | (1100)
y5F°-3 | 7998.972
8046.073
8085.200 | E
E
E | 700
600
500 | 4.35
4.40
4.43 | 5.90
5.93
5.95 | 4-3
3-2
2-1 | | 6681.34
6635.68 | P
P | 0 0 | 4.37
4.43 | 6.21
6.28 | 4-5 | z ³ G°-e ⁷ F
(1155) | | 4225.7 | 1 P | (1) | 4.20 | 7.12 | 4-4 | (1101)
y5F°_15D | 81 79.0 3
8248.151 | O
E | (1)
30 | 4.29
4.35 | 5.80
5.85 | 5-5
4-4
3-3 | | 6615.03 | P
P | 0 | 4.45 | 6.32 | 3-4 | z ³ G°-f ⁷ D | | 4256.7
4278.0 | | (1)
© | 4.24 | 7.14
7.12 | 3–3
3–4 | (1102) | 8232.347
8207.767 | E
E | 50
40 | 4.40
4.43 | 5.90
5.93 | 3-3 | | 6665.42
m8646.90
6700.89 | P
P | ©
Fe
© | 4.37
4.43
4.45 | 6.22
6.27
6.30 | 5-5
4-4
3-2 | (1156) | | Laborato
I A Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | | y
Int | E P
Low 1 | High | J | Multiplet
(No) | Labor
I A | ratory
Ref | | E Low | P
High | J | Multiplet (No) | |---|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|---|-------------------------|------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|--|---------------|------------------------|---------------------------------------|------------------------------|---------------------------------|--| | <u>Fe I</u> continu | eđ | | | | | Fe I con | tinue | | | | | | Fe I con | tinued | | | | | | | 6622.41 P
6735.00 P
6879.51 P
6438.775 U | ©
©
©
(1) | 4.37
4.42
4.45 | 6.23
6.25
6.25
6.33 | 5-4
4-3
3-3
4-3 | z ³ G°-e ⁷ P
(1157)
z ³ G°-e ³ D | 5816.36.
5855.126
5891.16
5696.10
5769.31 | V
V
P
P | (3d)
(1)
©
©
(1) | 4.63 6
4.53 6 | 6.65
6.70
6.73
6.70
6.73 | 4-5
3-4
3-3
4-4
3-3 | y ³ F°-e ⁵ H
(1179) | 6100.29
6100.23
*5958.22
5947.50
5978.17 | P)
P
P | (1)
(2)
(1)
© | (4.54
4.59
4.54
4.59
4.62 | 6.56
6.61
6.66
6.68 | 3-4
2-3
3-3
2-2
1-1 | y ⁵ p°-h ⁵ D
(1199) | | 5653.889 U
5631.72 U
5549.55 P
5499.60 P | (1w)
(2)
© | 4.37
4.45
4.37
4.45 | 6.55
6.65
6.59
6.70 | 5-5
3-3
5-4
3-3 | (1158)
z ³ G°-g ⁵ F
(1159) | 5862.357
*5914.16
5930.173
5752.043 | K
V
K
J | 8
8
8
(2) | 4.59 6 | 3.63
6.67
6.71
6.67 | 4-5
3-4
3-3
4-4 | y ³ F°-e ³ G
(1180) | 6098.28
6091.74
5950.13 | P
P
P | 0 0 0 | 4.54
4.59
4.54 | 6.56
6.61
6.61 | 3-3
2-2
3-2 | y ⁵ P°- f ⁵ P
(1200) | | 5780.83 V
5624.056 V
5589.00 P | (1)
(1)
©? | 4.42
4.37
4.45 | 6.55
6.56
6.66 | 4-5
5-4
3-2 | z ³ G°-h ⁵ D
(1160) | 5806.727
5650.31
5859.608 | P
K | (2)
(2)
©
5 | 4.59 6
4.53 6 | 6.71
6.71
6.64 | 3-3
4-3
4-3 | y ³ F°-f ³ D | 5880.00
5879.49
5892.46 | V
P
P | (2wd)
©
© | 4.54
4.59
4.62 | 6.64
6.69
6.71 | 3-4
3-3
1-2 | y ⁵ p°-f ⁵ G
(1201) | | 5749.65 P
5723.66 P
5619.60 V | (1)
(1)
(1) | 4.42
4.45
4.37 | 6.56
6.61 | 4-4
3-3
5-6 | z ³ G°-f ⁵ G | *5914.16
5905.673
5686.532 | V
K | 8
3n
(3) | 4.63 6 | 6.67
6.72
6.70 | 3-2
2-1
4-5 | (1181)
y ³ F°-e ³ H | 5640.46
5887.46
5867.01 | W
P
P | (1n)
©
© | 4.54
4.54
4.62 | 6.64
6.72 | 3-3
3-3
1-1 | y ⁵ pe _{-e} 5H
(1202)
y ⁵ pe _{-f} 3D
(1203) | | 5708.109 V
5651.47 P
5553.586 V
5528.89 P
5436.299 U | (1)
(1)
(1)
(1) | 4.42
4.45
4.42
4.45
4.37 | 6.58
6.64
6.64
6.69
6.64 | 4-5
3-4
4-4
3-3
5-4 | (1161) | 5747.95
5594.661
5554.895
5565.708 | V
I
I | (1)
(2)
4
4 | 4.53 6 | 6.73
6.73
6.75
6.81 | 3-4
4-4
4-4
3-3 | y ³ F°_f ³ F
(1183) | 5778.81
*5759.57
5727.75 | P
U | ©
(2)
(1) | 4.54
4.59 |
6.67
6.68
6.74 | 3-2
3-4
2-2 | y ⁵ pe-g ⁷ D
(1304) | | 5435.17 P
5562.12 P
5521.28 P | (e)
(e)
(c) | 4.42
4.37
4.42 | 6.69
6.59
6.65 | 4-3
5-6
4-5 | z ³ G°-e ⁵ H
(1162) | 5598.303
5421.85
5488.14
5705.988 | J
P
V | 4
0
0
2
2
2 | 4.63 6
4.53 6
4.59 6 | 6.84
6.81
6.84
6.75 | 2-2
4-3
3-2
3-4 | (1163) | *5620.04
4776.34
4839.77 | W
V
P | (1)
(1n)
© | 4.54
4.54
4.59 | | 3-4
3-4
2-3 | y ⁵ P°-e ³ H
(1205)
y ⁵ P°-1 ⁵ D
(1206) | | 5505.75 P
5405.35 P
5412.80 P
5429.83 P
5301.33 P | 00000 | 4.45
4.37
4.42
4.45
4.37 | 6.70
6.65
6.70
6.73
6.70 | 3-4
5-5
4-4
3-3
5-4 | | 5679.023
5642.75
5759.270 | V
P
U | (2)
©
(1) | 4.59 | 6.81
6.77
6.77 | 3-2
3-2
3-3 | у ³ F°-е ³ Р
(1184) | 4749.93
4802.53
4714.074 | V
V
J | (1)
©
(1n) | 4.54
4.59
4.54 | 7.14
7.16
7.16 | 3-3
2-2
3-2 | y ⁵ p°_4 | | 5339.40 P
5445.045 J | ⊙
15n | 4.42 | 6.73 | 4-3
5-5 | z ³ G°-e ³ G | 5057.83 | P | <u> </u> | 4.53 | 6.97 | 4 - | y ³ F°_2
(1185) | 4661.538 | Р | (2n) | 4.54 | | - | (1207) | | 5463.282 J
5462.970 J
5349.742 T | 10n
(2)
(3) | 4.42
4.45
4.37 | 6.67
6.71
6.67 | 4-4
3-3
5-4 | (1163) | 6930.35
*7145.317
*6951.261 | P
V
I | ©
5
25 | 4.59 | 6.32
6.31
6.31 | 3-4
2-3
3-3 | y ⁵ p°-e ⁷ F
(1186) | 10333.24
10307.48
10156.50 | P
P | 0 0 | 4.57
4.57
4.57 | 5.77
5.77
5.79 | 4-4
4-3
4-4 | d ³ F-u ⁵ D°
(1808)
d ³ F-x ³ F° | | 15371.43 P
15562.712 V
5557.954 V | Fe
(2)
(1) | 4.43
4.42
4.45 | 6.71
6.63
6.67 | 4-3
4-5
3-4 | -3.00 +3.0 | 7053.48
6864.31
7115.25 | P
P
P | ©
©1 | 4.59 6
4.54 6
4.59 6 | 6.34
6.34
6.32 | 2-2
3-3
2-1 | 5-2 -7- | 9881.51
9747.24
9950.70
10084.42 | P
F
P | 1
2
0
0 | 4.56
4.56
4.57
4.56 | 5.81
5.83
5.81
5.79 | 3-3
2-2
4-3
3-4 | (1209) | | 5560.230 V
5557.90 P | (1)
© | 4.42 | 6.64
6.67 | 4-3
3-2 | z ³ G•_f ³ D
(1164) | 7120.01
7295.00
7356.81 | P
V
P | 0
1
0 | 4.59 6 | 6.27
6.28
6.30 | 3-4
3-3
1-2 | y ⁵ P°-f ⁷ D
(1187) | 9937.10 | P | • | 4.57 | 5.82 | | d ³ F-z ³ H° (1210) | | 5415.201 I
5404.144 I
5410.913 I
5293.03 P
5321.106 V | 35n
30n
15n
©
(1) | 4.37
4.42
4.45
4.37
4.42 | 6.65
6.70
6.73
6.70
6.73 | 5-6
4-5
3-4
5-5
4-4 | z ³ G°-e ³ H
(1165) | *7222.88
7330.16
7024.649 | V
P
V
L | (1)
©
10n
5n | 4.62 6
4.54 6 | 6.30
8.30
6.30 | 3-3
1-1
3-3 | y5p o _£5D | 10026.10
9839.38
9771.06
9955.85 | P
P
P | 1
©
© | 4.57
4.56
4.56
4.56 | 5.80
5.82
5.84
5.80 | 4-3
3-2
3-1
3-3 | d3F_w3pe
(1211) | | 5213.35 P
5178.798 U | `ē´
(1n) | 4.37 | 6.73 | 5-4
5-4 | z ³ G•_f ³ F | 7473.56
7261.54
7382.99 | o
V
V | (1)
3n
1n | 4.59 6
4.54 6 | 6.24
6.24
6.26 | 2-3
3-3
2-2 | (1188) | 9636.69
9225.55 | Y
O | (1)
(1) | 4.57
4.56 | 5.85
5.90 | 4-5
3-4 | d ³ F-w ⁵ G°
(1212)
d ³ F-x ³ G° | | 5164.56 W
5180.065 T
5285.12 P | {1
- | 4.42
4.45
4.42 | 6.81
6.84
6.75 | 4-3
3-2
4-4 | (1166) | 7421.60
7175.937
7285.286 | O
V
V | 1
3
1 | 4.62 6 | 6.28
6.26
6.28 | 1-1
3-2
3-1 | | 8848.46 | P | © | | 5.96 | 2-2 | (1213)
d3F-y5F° | | 5249.099 U
5373.704 V | (1n)
(1) | 4.45
4.45 | 6.81
6.75 | 3-3
3-4 | | 7366.37 | ŏ
v | 1
3n | 4.62 | 6.29
6.23 | 1-0 | y ⁵ p°_e ⁷ p | 8576.50
8525.04 | P
P | ⊙ | 4.57
4.56 | 6.01
6.01 | 4-4
3-4 | (1214)
d ³ F-y ¹ G°
(1215) | | 4838.81 P
4744.13 P | ⊙?
⊙î | 4.42 | 6.97 | 4-5
5- | z ³ G°-1
(1167)
z ³ G°-2 | 7430.90
7431.94
7231.22 | M
P
V | 1
©
2n | 4.59 6 | 5.25
5.28
5.25 | 2-3
1-2
3-3 | (1189) | 8253.78
*8149.59 | P
O | ©
3 | | 6.06 | 2-2
3-3 | d ³ F-2°
(1216)
d ³ F-w ³ F° | | 4534.62 F
4566.03 P | ©
© | 4.42
4.45 | 7.14
7.16 | 4-3
3-2 | (1168)
z ³ G°-1 ⁵ D
(1169) | 7295.27
7093.10 | P | 0 | 4.59 6
4.54 6 | 5.28
5.28 | 2-2
3-2 | | 8002.55
8196.52 | P
P | 0 | | 6.10 | 2-2
4-3 | (1217) | | 4367.07 P
4320.13 P
4357.50 P | ©
©1
© | 4.37
4.37
4.42 | 7.19
7.22
7.25 | 5-5
5-4
4-3 | z ³ G°-g ⁵ G
(1170) | 7034.06
7109.67
7161.04 | P
P | 000 | 4.59 6
4.62 6 | 5.29
5.32
5.34 | 3-4
2-3
1-2 | y ⁵ P°-e ⁵ G
(1190) | 8269.66
•8149.59 | P
0 | ©
3 | 4.57
4.56 | 6.07
6.08 | 4–3
3–2 | d ³ F_v ³ D°
(1218) | | 9786.62 F | 2 | 4.59 | 5.85 | -
3-4 | _y 3r•_e5r | 6917.52
7034.08
6845.93 | P
P
P | <u>o</u> | 4.59 | 3.32
3.34
3.34 | 3-3
2-2
3-2 | | 7129.30 | P
P | ⊙
⊙ | 4.57 | 6.30 | 4-4 | d ³ F-x ³ H°
(1219)
d ³ F-t ⁵ D° | | 9350.46 E
9437.91 F | 10
3 | 4.53
4.59 | 5.85
5.90 | 4-4
3-3 | (1171) | 6862.481
6989.64
6803.34 | V
P
P | 4n
©
© | 4.59 | 3.34
3.35
3.35 | 3-4
2-3
3-3 | y ⁵ P°-e ⁷ G
(1191) | 6949.37
6805.72
6983.53
6822.00 | P
P
P | ©
©
1 | 4.56
4.56
4.57
4.56 | 6.34
6.37
6.34
6.37 | 3-3
2-2
4-3
3-2 | (1220) | | 8866.961 E
8793.376 E
8764.000 E
8439.603 E
8497.00 0 | 150
120
100
20
8 | 4.53
4.59
4.63
4.53
4.59 | 5.93
5.99
6.04
5.99 | 4-4
3-3
2-2
4-3
3-2 | y ³ F°-e ³ F
(1172) | 6803.30
6920.16
6838.08 | P
P
V | ©
©
4nl | 4.54 6
4.59 6
4.54 6 | 3.35
3.37
3.37 | 3-4
2-3
3-3 | y ⁵ p°_f ⁵ F
(1192) | 6711.24
7089.73
6932.49 | P
P
P | 0 0 0 | 4.56
4.56
4.56 | 6.40
6.31
6.34 | 2-1
3-4
2-3 | | | 9258.30 E
9079.599 E | 20
8 | 4.59
4.63 | 6.04
5.92
5.99 | 3-4
2-3 | 3 3 | 6692.47
6848.86
•6951.261 | P
P
I | 1
©
25 | 4.59 6 | 3.38
3.39
3.31 | 3-2
2-1
3-2 | y ⁵ p•_e ⁵ s | 7011.364
*6947.501
7010.362
7027.60 | V
V
V | 3
3
2
(1) | 4.57
4.56
4.56
4.56 | 6.33
6.34
6.32
6.32 | 4-4
3-3
2-2
3-2 | d ³ F-v ³ F°
(1221) | | 6843.671 I
6858.164 K
6885.773 L
7074.45 P | 60
40
20
© | 4.53
4.59
4.63
4.59 | 6.33
6.39
6.42
6.33 | 4-3
3-2
3-1
3-3 | y ³ F°-e ³ D
(1173) | *7145.317
6881.74
6855.74 | V
M
V | 5
1
3 | 4.54 6 | 3.31
3.33
3.39 | 3-3
2-2 | (1193)
y ⁵ p°_e ³ D
(1194) | 6976.934
6930.64
6960.334 | V
V | 3
1
2 | 4.56 | 6.33
6.34
6.35 | 3-4
2-3
4-4 | d ³ F-4° | | 7031.03 P
6881.07 P
6627.558 L | ©
©
5 | 4.63
4.63
4.53 | 6.39
6.43
6.39 | 2-2 | y ³ F°-g ⁵ D | 6833.24
6676.86
6717.556 | V
P
V | 1
©
3 | 4.54 6
4.59 6 | .42 | 1-1
3-2
2-1 | | 6926.40
*6947.501 | P
V | ©
3 | 4.56 | 6.35
6.35 | 3-4 | (1222)
a ³ F-5° | | 6715.410 V
6804.020 V | 5
5 | 4.59
4.63 | 6.43
6.45 | 4-3
3-2
2-1 | (1174) | 7071.88
6976.306 | ۷
۷ | 1 | 4.62 6 | 3.33
3.39 | 2-3
1-2 | 5 5 _ | 6854.82 | V | 2 | | 6.37 | | (1224)
d ³ F-6°
(122 <u>4</u> a) | | 6105.15 P
6159.409 U
5983.704 K | (in) | 4.53
4.59
4.53 | 6.55
6.59
6.59 | 4-5
3-4
4-4 | y ³ Fe-g ⁵ F
(1175) | 6855.176
6841.349
6828.610
6663.26 | I
I
V | 150
80
50
(1) | 4.54 6
4.59 6
4.62 6
4.54 6 | 3.39
3.43 | 3-4
2-3
1-2
3-5 | y ⁵ P°-g ⁵ D
(1195) | 6977.445
6804.27
6716.24
6837.00 | V
V
O | 4
3
3
3 | 4.56
4.56 | 6.34
6.38
6.40 | 4-5
3-4
2-3 | d ³ F-u ³ G°
(1225) | | 5997.808 V
5973.37 P
5848.09 W | (1)
©
(2n) | 4.59
4.63
4.59 | 6.65
6.70
6.70 | 3-3
3-2
3-3 | | *6713.14
6752.724
6541.49 | V
L
P | `6d
10 | 4.59 6
4.62 6
4.54 6 | 3.43
3.45 | 3-3
1-1
3-3 | | 6732.06
6764.13 | V
P | 1 | 4.56 | 6.38
6.40
6.40 | 4-4
3-3
4-3 | | | 5927.798 V
6079.02 V | (2w,d)
(1) | 4.63 | 6.71 | 2-1
2-2 | y ³ F°-h ⁵ D | 6639.71
6733.164 | P
L | 4
6 | 4.59 6
4.62 6 | 3.45
3.45 | 3-1
1-0 | | 6785.76
6769.66 | P
P | <u>o</u> | | 6.38
6.38 | 3-2
2-2 | d ³ F-y ¹ D°
(1236) | | 5929.700 U
5949.35 V
6018.34 P
6251.26 P | (1)
(1)
(2)
0 | 4.53
4.59
4.63 | 6.61
6.66
6.68 | 4-3
3-2
3-1 | (1176) | 6753.45
6936.48 | P
P | 0 | | 3.37 | 3-3
2-3 | y ⁵ p°_e ⁷ s
(1196) | 6761.07
6745.11 | P
V | ©
1 | | 6.39
6.39 | 2-2 | d ³ F-x ¹ D°
(1227) | | 6251.26 P
6093.66 V
6094.419 U | ©
(1)
(1) | 4.59
4.59 | 6.56 | 3-4 | y ³ F°-f ⁵ P | 6633.764
6705.117
6842.668 | K
I
V | 50
15n
6n | 4.62 6 | .43 | 3-3
3-2
1-1 | y ⁵ p°_e ⁵ p
(1197) | 6699.14
6667.73 | V
V | (1) | | 6.42
6.42 | 3-3 | d ³ F-u ³ D•
(1228) | | 6024.419 U
6024.066 K
6020.173 K | 15
10n | 4.63
4.53
4.59 | 6.66
6.58
6.64 | 2-1
4-5
3-4 | (1177)
y ³ F°-f ⁵ G
(1178) | 6533.97
6726.668
6810.28 | V
V | 8n
20n
20n | 4.59 6 | . 42 | 3-3
2-1
3-3 | | 6591.32
6364.717 | V
V | (1) | 4.56 | 6.45
6.50 | 3-2 | d ³ F_t ³ D° (1229) | | 6007.961 K
5852.19 W
5981.28 P | (3n)
(2n)
© | 4.63
4.53
4.59 | 6.69
6.64
6.69 | 2-3
4-4
3-3 | (1110) | 6820.43
6012.75
5995.93 | O
P
P | 8n
©
© | | 5.43
5.59
5.65 | 1-2
3-4
2-3 | y ⁵ p•_g ⁵ F
(1198) | 6306.19
6271.52
5926.83 | P
P
P | 0 0 0 | 4.56 | 6.53
6.53 | 3-2 | d ³ F_y ³ I°
(1230)
d ³ F_y ³ P° | | 5720.89 P
5807.97 P | 0 | 4.53
| 6. 69
6.71 | 4-3
3-2 | | 5933.80
5715.80 | P
P | 0 | | 3.70 | 1-2
3-2 | (1100) | 6016.95
5991.58 | P
P | 0 0 0 | | 6.64
6.62 | 2-1
4-3
3-3 | (1231)
d ³ F-y ¹ F°
(1232) | | | | | | | | | | | | | | | | - | ~ | | ۵۰۰۵ | U-U | (1000) | | Labo | ratory
Ref | | E
Low | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | | E
Low | P
H1gh | J | Multiplet
(No) | Labo
I A | rato
Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | |--|--------------------|------------------|------------------------------|------------------------------|-----------------------------|--|---|------------------|----------------------|------------------------------|------------------------------|--------------------------|--|--|------------------|----------------------|------------------------------|------------------------------|----------------------------|--| | <u>Fe I</u> con | tinued | L | | | | | Fe I con | tinue | đ | | | | | <u>Fe I</u> con | tinu | eđ | | | | | | 5955.12
5942.71
5902.52 | P
P
V | ©
©
(1) | 4.56
4.56
4.57 | 6.64
6.64 | 3-3
2-3
4-5 | d ³ F-x ¹ F° (1233)
d ³ F-t ³ G° | 5984.805
5987.057
*5975.355
6170.492 | K
K
J
K | 8
6
4
4n | 4.77
4.81
4.77 | 6.77
6.84
6.88
6.77 | 3-2
2-1
1-0
2-2 | y ³ D°-e ³ P
(1260) | 7386.394
7351.56
7300.47
7495.67 | L
V
O
P | 8n
4
1n
© | 4.89
4.93
4.97
4.97 | 6.56
6.61
6.66
6.61 | 4-3
3-2
2-1
2-2 | x ⁵ D°- f ⁵ P
(1275) | | 5791.53
5661.03
5815.23
5672.28 | P
P
P | ©
(1)
(1) | 4.56
4.56
4.57
4.56 | 6.70
6.74
6.70
6.74 | 3-4
2-3
4-4
3-3 | (1334) | 6103.190
6293.92
m8920.02 | K
P | 3
©
Fe | 4.81 | 6.84 | 1-1
1-3
-
4-5 | x ⁵ D°-e ⁷ F | 7320.694
7244.86
7176.886
7155.64 | V
V
V | 5n
2n
2n
3n | 4.89
4.93
4.97
4.99 | 6.58
6.64
6.69
6.71 | 4-5
3-4
2-3
1-3 | x ⁵ D°-f ⁵ G
(1276) | | 5895.007
5870.65
5891.89 | U
P
P | (1)
©
(1) | 4.57
4.56
4.57 | 6.67
6.67 | 4-3
3-3
4-5 | d ³ F-11°
(1235)
d ³ F-12° | *9157.08
9328.64
8643.29
9006.72 | P
P
F | (2)
©
0
1 | 4.97
5.00
4.89
4.97 | 6.31
6.32
6.34 | 2-3
0-1
4-4
2-2 | (1361) | 7068.60
7044.60
7068.02 | P
O
P | (1)
© | 4.89
4.93
4.97 | 6.64
6.69
6.71 | 4-4
3-3
3-3 | | | 5793.70
5770.17 | P
P | ©
© | 4.57
4.56 | 6.70
6.70 | 4-4
3-4 | (1236)
d ³ F-13°
(1236a) | 9253.72
9298.05
9178.57 | P
P
F | ©
©
1n | 4.99
4.89
4.93 | 6.32
6.22
6.28 | 1-1
4-5
3-3 | x ⁵ D°- f ⁷ D
(1363) | 7083.396
7091.91
7066.15 | V
P
P | (1)
© | 4.89
4.93
4.97 | 6.63
6.67
6.71 | 4-5
3-4
2-3 | x ⁵ D°-e ³ G
(1277) | | 5438.04
5412.56 | P
P | ⊙ | 4.57
4.56 | 6.84
6.84 | 4-5
3-4 | d ³ F-v ³ H°
(1237) | 9392.77
9242.32 | P
F | S
© | 4.99
4.97 | 6.30
6.30 | 1-1
2-1 | (1222) | 7079.32
7091.83 | P
0 | (1) | 4.89
4.93 | 6.64
6.67 | 4-3
3-2 | x ⁵ D°-f ³ D
(1278) | | 5 313.839 | T | (-) | 4.56 | 6.88 | 2-2 | d ³ F-w ¹ D°
(1238)
d ³ F-w ¹ F° | 9259.05
9462.97 | F
F | 15
2 | 4.89
4.93 | 6.22
6.24 | 4-4
3-3 | x ⁵ D°-f ⁵ D
(1263) | 7031.42
7256.13
7225.82 | P
P
P | (1)
© | 4.97
4.93
4.97 | 6.72
6.64
6.67 | 3-1
3-3
2-2 | | | 5313.41
5300.41 | P
P | ©
© | 4.56 | 6.89
6.90 | 3-3
4-5 | 1239)
d3F-83G° | 9550.90
9164.51
9318.13 | F
U
F | (1)
3 | 4.97
4.89
4.93 | 6.26
6.24
6.26 | 2-2
4-3
3-2 | | 7118.12
7396.50
7317.40 | P
P
P | 0 0 0 | 4.99
4.97
4.99 | 6.72
6.64
6.67 | 1-1
2-3
1-2 | | | 5281.18
5218.51 | P
P | 00 | 4.56
4.56 | 6.90
6.93 | 3-4
2-3 | (1240) | 9388.28
*9452.45 | F
F | 3n
2 | 4.97 | 6.28 | 2-1
1-0 | | 7162.37 | P
P | Ō | 5.00 | 6.72 | 0-1 | x ⁵ D°-f ³ F | | 5170.08 | P | • | 4.57 | 6.96 | 4-5 | d ³ F-u ³ H°
(1241) | 9214.45
9394.71 | F
F | 6
3n | 4.89
4.93 | 6.23
6.25 | 4-4
3-3 | x ⁵ D°-e ⁷ P
(1264) | 6794.60
6713.44 | P
P | 0 0 0 | 4.89
4.93
4.97 | 6.75
6.75
6.81 | 4-4
3-4
2-3 | (1279) | | 5114.52
5047.14
5019.18
5096.17 | P
P
P | 0000 | 4.57
4.56
4.56
4.56 | 6.99
7.01
7.02
6.99 | 4-4
3-3
2-2
3-4 | d ³ F-u ³ F•
(1242) | 9404.80
9100.50
9024.47
*9080.48 | P
F
F | ©?
5n
15
3n | 4.97
4.89
4.89
4.93 | 6.28
6.25
6.26
6.29 | 2-2
4-3
4-5
3-4 | x ⁵ D°-e ⁵ G
(1265) | m6705.13
6601.13
6524.76
6824.82 | P
P
P | Fe | 4.93
4.97
4.99
4.97 | 6.77
6.84
6.88 | 3-2
3-1
1-0 | x ⁵ D°-e ³ P
(1280) | | 4875.72
4837.65 | P
P | 0 | 4.57
4.56 | 7.10 | 4-4
3-3 | d ³ F-t ³ F°
(1243) | 9116.89
8 8 05.21 | P
P | 0 | 4.99
4.89 | 6.34
6.29 | 1-2
4-4 | (1505) | 6677.49 | P | Ō | 4.99 | 6.77
6.84 | 2-2
1-1 | | | 4813.72
4854.18 | P
P | 0 | 4.56
4.57 | 7.12
7.12 | 2-2
4-3 | 7 7 | 8887.10
8616.27 | P
P | ©
© | 4.93
4.89 | 6.32 | 3-3
4-5 | x ⁵ D°-e ⁷ G | 5531.949
5602.54
5634.53 | U
P
P | (1)
©
© | 4.89
4.93
4.97 | 7.12
7.14
7.16 | 4-4
3-3
2-2 | x ⁵ D°-1 ⁵ D
(1381) | | 4369.29
4253.55 | P
P | ©
© | 4.57
4.57 | 7.40
7.47 | 4-5
4-5 | d ³ F-r ³ G°
(1244)
d ³ F-t ³ H° | 8796.42
8902.94
8978.04 | F
P
P | 2
0
0 | 4.93
4.97
4.99 | 6.34
6.35
6.36 | 3-4
2-3
1-2 | (1266) | 5496.57
5552.70
5685.86 | P
P
P | 000 | 4.89
4.93
4.97 | 7.14
7.16
7.14 | 4-3
3-2
2-3 | | | 4203.67 | P - | Č | 4.56 | 7.50 | 3 -4
- | (1245) | 8538.02
8700.34 | P
P
P | 0 0 | 4.89
4.93 | 6.34
6.35 | 4-4
3-3 | | 5690.07 | P | 0 | 4.99 | 7.16 | 1-3 | 5 | | 10863.60
11013.27
10435.38 | D
D
P | 5
1
© | 4.71
4.77
4.71 | 5.85
5.90
5.90 | 3-4
2-3
3-3 | y ³ D°-e ⁵ F
(1246) | 8956.26
8447.41
8819.42 | P
P | 000 | 4.99
4.89
4.97 | 6.37
6.35
6.37 | 1-1
4-3
3-1 | | 5479.95
5559.64
5613.70 | P
P | 000 | 4.93
4.97
4.99 | 7.19
7.19
7.19 | 3-2
2-2
1-2 | x ⁵ D°-4
(1382) | | 10216.351
10145.601 | E
E | 100
80 | 4.71 | 5.92
5.99 | 3-4
2-3 | y ³ D°-e ³ F
(1247) | 8710.29
8699.43
8790.62 | F
O
F | 20n
(4n)
10n | 4.89
4.93
4.97 | 6.31
6.35
6.37 | 4-5
3-4
2-3 | x ⁵ D°-f ⁵ F
(1267) | 9602.07
8863.64 | F
F | 2
1p7 | 4.99 | 6.28 | -
4–5
2–2 | y ⁷ P°-e ⁷ F
(1283) | | 10065.080
9653.143
9753.129 | E
E
E | 60
20
10 | 4.81
4.71
4.77 | 6.04
5.99
6.04 | 1-2
3-3
2-2 | (2007) | 8846.82
8876.13
8446.56 | F
F
P | 5
2 | 4.99
5.00
4.89 | 6.38
6.39
6.35 | 1-3
0-1
4-4 | | 9382.93 | P | 3n | 4.96 | 6.28 | 3-3 | y ⁷ P°-f ⁷ D | | 9297.14 | P
P | °° | 4.71 | 6.04 | 3–2 | y ³ D°-e ⁵ S | 8592.97
*8713.19 | O
F | (2n)
10 | 4.93
4.97 | 6.37
6.38 | 3-3
2-2 | | 9944.13
9608.89 | F | 3n
© 7 | 4.99
4.96 | 6.23 | 4-4
3-3 | (1284)
y [?] pe_e [?] p
(1285) | | 7620.538 | E | 25 | 4.71 | 6.33 | 3-3 | (1249)
y ³ D°-e ³ D | 8808.17
8519.05 | P
P | 4n
⊙ | 4.99
4.93 | 6.39
6.38 | 1-1
3-2 | | 9248.80
9811.36
9383.40 | P
F
P | 0
2
0 | 4.94
4.99
4.96 | 6.28
6.25
6.28 | 2-2
4-3
3-2 | | | 7653.783
7664.15
7370.16 | L
P
O | 6
©
1 | | 6.39
6.42
6.39 | 2-2
1-1
3-2 | (1250) | •9157.07
8567.78 | P
P | (a)
© | 4.97
4.89 | 6.31
6.33 | 2-2
4-3 | x ⁵ D°-e ⁵ S
(1268)
x ⁵ D°-e ³ D | 8967.53
8798.05 | P
P | 0 | 4.99
4.96 | 6.37
6.37 | 4-3
3-3 | y ⁷ P°-e ⁷ 8
(1386) | | 7481.93
7924.14
7844.55 | P
P
P | (1)
©
2 | 4.77
4.77
4.81 | 6.42
6.33
6.39 | 2-1
2-3
1-2 | | 8493.79
8466.10
8828.08 | P
P
P | 000 | 4.93
4.97
4.93 | 6.39
6.42
6.33 | 3-2
2-1
3-3 | (1269) | 8679.61
7909.60 | P
P | o
o₁ | 4.94 | | 2-3
4-5 | y ⁷ P°-g ⁵ F | | 7353.528
7476.40 | V
P | 1
(1) | 4.71
4.77 | 6.39
6.43 | 3-3
2-2 | y ³ D°-g ⁵ D
(1251) | 8686.77
8592.10
9036.74 | P
P
P | ©
©
(1) | 4.97
4.99
4.97 | 6.39
6.42
6.33 | 2-2
1-1
2-3 | | 6813.55 | P | © 1 | | 6.77 | 3-2 | (1287)
v [?] p°_e3p | | 7563.03
7205.51
7385.54 | О
Р
Р | 1n
0
0 | 4.81
4.71 | 6.45
6.43 | 1-1
3-2 | (2252) | 8819.48
8656.67 | P
P | 00 | 4.99
5.00 | 6.39
6.42 | 1-2
0-1 | | 6245.84 | V | (1) | 4.99 | 6.97 | 4-5 | (1288)
y [?] P°-1
(1289)
y [?] P°-15D | | 7196.37 | P | 0 | 4.77
4.71 | 6.43 | 2-1
3-2 | y ³ D°-e ⁵ P | 8526.685
8471.75 | E
O | 8
2 | 4.89
4.93 | 6.34
6.39 | 4-4
3-3 | x ⁵ D°-g ⁵ D
(1270) | 5678.04
5748.15 | P
P | ©?
⊙? | 4.96
4.99 | 7.14
7.14 | 3-3
4-3 | y ⁷ P°-15D
(1290) | | 6569.231
6597.607 | I
V | 50n
15n | 4.71
4.77 | 6.59
6.65 | 3-4
2-3 | (1252)
y ³ D°-g ⁵ F
(1253) | 8459.01
8465.23
8275.91 | P
P
O | 0
0
4n | 4.97
4.99
4.93 | 6.43
6.45
6.43 | 2-2
1-1
3-2 | | 5720.79 | P | (1n) | 4.99 | 7.15 | 4-5 | y ⁷ P°-h ⁷
D
(1291) | | 6385.74
n6416.94
6495.779 | P
P
U | ©
Fe+
3 | 4.77 | 6.65
6.70
6.71 | 3-3
2-2
1-1 | | 8342.95
8434.51
8784.44 | R
P
F | (_)
©
5 | 4.97
4.99
4.93 | 6.45
6.45
6.34 | 3-1
1-0
3-4 | | 9913.19
9763.913 | P
E
F | ©
15 | 4.97
5.01 | 6.28 | 5-6
4-5 | x ⁵ F°-e ⁷ F
(1292) | | 6364.384
6673.84 | V
P | (1)
© | 4.77 | 6.71 | 2-1 | y ³ D°_h ⁵ D | 8663.73
8584.82 | P
P | 00 | 4.97
4.99 | 6.39
6.43 | 2-3
1-2 | | 9658.94
•9868.09
9800.79 | F
P | 3
3
© | 5.08 | 6.32
6.31
6.34 | 3-4
2-3
1-2 | | | 6604.67
6330.856 | U. | (1)
(1n) | 4.81
4.71 | 6.56
6.68
6.66 | 3-4
1-1
3-2 | (1254) | 85 27.88
8369 .87 | P
P | ©
© | 5.00
4.89 | 6.45
6.37 | 0-1
4-3 | x ⁵ D°-e ⁷ S | *9452.45
9433.29
*9699.70 | F
F | 2
©
6n | 5.01 | 6.28
6.32
6.31 | 5-5
4-4
3-3 | | | 6468.86
6671.43 | P
P | © | 4.77
4.71 | 6.68
6.56 | 2-1
3-3 | y ³ D°_1 ⁵ P | 8816.86
8186.80 | P
O | ⊙
10nd? | 4.97
4.89 | 6.37
6.40 | 2-3
4-3 | (1271)
x ⁵ D°-e ⁵ P | 9693.69
9920.46
9531.22 | F
P
P | 1
©
© | 5.06
5.08 | 6.34
6.32
6.34 | 2-2
1-1
3-2 | | | 6713.76
6696.30
6494.52 | V
P
P | 3n
©
© | | 6.61
6.66
6.61 | 2-2
1-1
3-2 | (1255) | 8263.86
8480.63
8424.14 | P
P
O | ©
©
2n | 4.93
4.97
4.93 | 6.43
6.42
6.40 | 3-2
2-1
3-3 | (1272) | 9878.18 | P | • | 4.97 | 6.22 | 5-5 | x ⁵ F°-f ⁷ D | | 6556.79
6860.13 | U
P | (1)
© | 4.77 | 6.66
6.61 | 3-1
1-3 | | 8 446.4 2
8607.08 | P
P | • | 4.97
4.99 | 6.43
6.42 | 2-2
1-1 | | 9977.52
10016.67
10080.44
9967.32 | F
P
P | 1
©
0 | 5.06 | 6.38
6.30
6.30 | 3-3
2-2
1-1 | (1293) | | 6411.10
6456.87
6253.82 | P
P
P | 1n
©
© | 4.77 | 6.64 | 3-4
2-3 | y ³ D°-f ⁵ G
(1256) | 8613.93
8571.84
8671.86 | P
P
P | 000 | 4.97
4.99
5.00 | 6.40
6.43
6.42 | 2-3
1-2
0-1 | | 9967.32
9834.04 | P
F | ©
3n | | 6.30
6.22 | 2-1
5-4 | x ⁵ F°_f ⁵ D | | 6171.01 | P | © | 4.71 | 6.69 | 3-3
3-2 | 7 . 5 | 7440.98
7447.43 | V
V | 2n
1 | 4.89
4.93 | 6.55
6.59 | 4-5
3-4 | x ⁵ D°-g ⁵ F
(1273) | 10057.64
10142.82
10137.06 | F
F
P | 3
2
© | 5.01
5.04 | 6.24
6.26
6.28 | 4-3
3-2
2-1 | (1294) | | 6224.23
6419.982 | P
K | ©7
30n | 4.71
4.71 | 6.64 | 3 -4
3 - 3 | y ³ D°-e ⁵ H
(1257)
y ³ D°-f ³ D | 7351.160
7216.68
7194.92 | V
P
O | 2n
©
1 | 4.97
4.99 | 6.65
6.70
6.71 | 3-3
1-3
0-1 | - · -• | 10149.09 | P | 0 | 5.08 | 6.29 | 1-0 | -5me -7m | | 6496.456
6469.214
6290.968 | K
I
I | 20n
15n
3n | 4.77
4.81 | 6.67
6.72
6.67 | 2-2
1-1
3-2 | (1258) | 7261.29
7212.47 | P
V | ©
1n | 4.89
4.93 | 6.59
6.65 | 4-4
3-3 | | 9783.96
9980.55
10117.81 | F
P | 3
2n
© | 5.01 | 6.23
6.25
6.23 | 5-4
4-3
4-4 | x ⁵ F°-e ⁷ P
(1295) | | 6338.896
6634.10
6633.44 | V
P
M | (1n)
4n
4n | 4.77
4.77 | 6.72
6.64
6.67 | 2-1
2-3
1-2 | | 7127.58
6997.13
7062.80 | P
P
P | 000 | 4.93 | 6.70
6.70
6.71 | 2-2
3-2
2-1 | | 9738.624
9889.082 | E
E | 200
40 | 5.01 | 6.24
6.26 | 5-6
4-5 | x ⁵ F°-e ⁵ G
(1296) | | 6055.987
6078.496 | K | 4 | 4.71 | 6.75 | 3-4 | y ³ D°-f ³ F | 7389.34
7363.96 | P
O | 1n | | 6.56
6.61 | 4-4
3-3 | x ⁵ D°-h ⁵ D
(1274) | 9861.793
9800.335
9763.450 | E
E
E | 30
20
15 | 5.04
5.06 | 6.29
6.32
6.34 | 3-4
2-3
1-2 | • | | 6102.178
5898.212 | K
K
U | 4n
5
(1) | 4.81 | 6.81
6.84
6.81 | 2-3
1-2
3-3 | (1259) | 7278.48
7282.39
7181.93 | P
V
V | o
1n | 4.97
4.99 | 6.66
6.68 | 2-2
1-1 | ·=-·*/ | 9569.960
96 2 6.562 | E
E | 40n
30n | 4.97
5.01 | 6.26
6.29 | 5 -5
4 -4 | | | | | | | | | | 7142.522
7191.66 | 0 | 1n
4n
(1) | 4.93
4.97 | 6.61
6.66
6.68 | 4-3
3-2
2-1 | | 9634.22
9657.30
9409.55 | F
F
P | 5
4
⊙ | | 6.32
6.34
6.32 | 3-3
2-2
4-3 | | | | | | | | | | 7582.15
750 8 .53 | P
P | ©
© | | 6.56
6.61 | 3-4
2-3 | Labo | ratory
Ref | | E
Low | P
High | J | Multiplet
(No) | Labo: | rator
Ref | y
Int | E
Low | P
H1gh | J | Multiplet
(No) | | atory
Ref Int | E
Low | P
High | J | Multiplet
(No) | |--|-----------------------|--|--|--|--|---|---|---------------------|---|--|--|--|--|--|--|--|--|---|--| | Fe I con | tinue | ı ı | | | | | Fe I con | tinue | đ | | | | | Fe I cont | inued | | | | | | 9333.94
9401.09
9527.73
9573.65
9112.25
9307.94
9415.04
9024.78 | F F P P F P P | 2
10n
1
©
©
2 | 4.97
5.01
5.04
5.06
4.97
5.01
5.04
4.97 | 6.29
6.32
6.34
6.35
6.32
6.34
6.35 | 5-6
4-5
3-4
2-3
5-5
4-4
3-3
5-4 | x ⁵ F°-e ⁷ G
(1297) | 5732.29
5805.76
5835.41
5845.27
5890.48
5952.19
5633.970 | P
P
P
P | (1)
(0)
(0)
(0)
(2) | 4.97
5.01
5.04
5.01
5.04
5.06 | | 5-4
4-3
3-2
4-4
3-3
2-3
5-6 | x ⁵ F°-1 ⁵ D
(1313)
x ⁵ F°-g ⁵ G | 10353.85
10388.73
10283.87
9951.15
9953.45
10348.16
10364.13 | P (3 P © P © P © P © P © P © P © P © P © P | 5.42
5.48
5.37
5.42
n 5.37 | 6.56
6.61
6.68
6.61
6.66
6.56 | 4-4
3-3
1-1
4-3
3-2
4-3
3-2 | w ⁵ D ^e -h ⁵ D
(1346)
w ⁵ D ^e -f ⁵ P
(1347) | | 9217.54
9189.52
9289.39
9410.15
8922.66
*9080.48
9203.10
9513.24
9414.14
9443.98
9454.24 | ************* | 5n
2n
0
1n
0
3n
0
10n
20n
10n | 4.97
5.01
5.08
4.97
5.01
5.04
5.01
5.06
5.08 | 6.31
6.35
6.37
6.39
6.35
6.37
6.38
6.37
6.38 | | x ⁵ F°-f ⁵ F
(1298) | *5655.506
5655.179
5650.01
5650.01
5549.66
5577.03
5595.06
5614.29
5474.09
5518.57 | V V V P P P P P P P | 4 2 1 1 0 0 0 0 0 0 0 | 5.01
5.04
5.06
5.08
4.97
5.01
5.04
5.06
4.97
5.01 | 7.19
7.22
7.25
7.26
7.19
7.22
7.25
7.36
7.36
7.36 | 4-5
3-4
2-3
1-5
4-4
3-3
2-4
4-3 | (1314)
(1314) | 10153.30
10019.77
10032.84
9764.40
6943.67
10925.80
7430.73 | P | 5.42
5.45
5.48
5.43
7 5.37
5.46 | 6.64
6.69
6.71
6.69
7.15
6.59 | 3-4
2-3
1-2
3-3
4-5 | w ⁵ D°-1 ⁵ G
(1348)
w ⁵ D°-h ⁷ D
(1349)
w ⁵ F°-g ⁵ F
(1350)
w ⁵ F°-1 ⁵ D | | •9699.70 | F | 6n | 5.04 | 6.31 | 3-2 | | 11479.87 | P | © † | 5.00 | 6.08 | | a ¹ F_v ³ D°
(1315) | 7526.72 | P 6 | 5.48 | 7.12 | 4-4 | (1351)
v ⁵ D°-1 ⁵ D | | *9868.09
9343.40
9173.63
*9070.42
9324.07
9423.07 | F
P
F
O
P | 3
4nd
2
(1)
© | 5.06
5.01
5.04
5.06
5.06
5.08 | 6.31
6.33
6.39
6.42
6.39
6.39 | 2-3
4-3
3-3
2-1
2-3
1-2 | (1299)
x ⁵ F°-e ³ D
(1300) | 10875.00
9917.93
8852.30
9482.82 | P
F
P | ©
2
©1
©1 | 5.00 | 6.14
6.25
6.40
6.31 | 3-4
3-4
3-2
3-4 | (1316)
alf-x10°
(1317)
alf-u5F°
(1318)
alf-t5D° | 7537.97
7461.38
7448.00 | P 6 | 5.48 | 7.14
7.14
7.16 | 3-3
4-3
3-2 | (1352) | | 9012.098
8945.204
8919.95
8929.04
8984.87
9294.66
9147.800
9062.24
9019.84
9155.67 | EEFFFFFFF | 30
30
10
5
3
5
5
2
2 | 4.97
5.01
5.04
5.06
5.08
5.01
5.04
5.06
5.08
5.08 | 6.34
6.39
6.43
6.45
6.34
6.39
6.43
6.45 | 5-4
4-3
3-3
2-1
1-0
4-4
3-3
2-3
1-1
1-2 | x ⁵ F°-g ⁵ D
(1301) | 8959.88
8559.98
8171.30
7846.47
7107.30 | P
W
P
P | ©† (1) © ©† 0 | 5.00
5.00
5.00
5.00
5.00 | 6.38
6.45
6.51
6.58
6.74 | 3-3
3-3
3-4
3-3 | (1320)
alf-t3po
(1321) | Additions
4232.724
m3199.50
3418.507 | to Multi
V 1
P Fe | 0.11
0.11 | 2.99
3.97
5.82 | 1-2
1-3
1-0 | a ⁵ D-z ⁷ Pe
(3)
a ⁵ D-z ³ Fe
(7)
a ⁵ P-u ⁵ De
(81) | | 8892.13 | P | • | 5.01 | 6.40 | 4-3 | x5Fe_e5p | 6552.77 | W | (2) | 5.00 | 6.89 | 3-3 |
a ¹ F-w ¹ F°
(1325) | Strongest | Unclassi | fied Lines | of Fe | Ī | | | 8905.99
7807.97
7810.81
7551.10
7552.79
7452.08 | P | 0 00000 | 5.04
4.97
5.01
5.06
5.01
5.04 | 6.43
6.55
6.59
6.70
6.65
6.70 | 3-2
5-5
4-4
2-2
4-3
3-2 | (1302)
x ⁵ F°-g ⁵ F
(1303) | 6124.08
6089.566
5041.32 | P
L
P | ©
(1)
© | | 7.03
7.45 | 3-2
3-4
3-3 | (1327)
alf-r3g°
(1328) | 9666.59
9637.55
9529.31
9430.08
8145.47 | F 2 F 2 F 2 G 4 | n V
IV*
V | | | | | 7964.93
7802.49
7751.18
7719.05
7617.19
7959.21
7720.68 | PP OPPOP | 0
0
5n
0
0
(1) | 5.04
5.06
4.97
5.01
5.04
5.01
5.06 | 6.59
6.65
6.56
6.61
6.66
6.56
6.66 | 3-4
2-3
5-4
4-3
3-2
4-4
2-2 | x ⁵ F°-h ⁵ D
(1304) | 9008.37
8814.50
8689.83
8464.02
8300.01 | P
P
P | 2
2
0
0 | 5.05
5.08
5.05 | 6.43
6.45
6.50
6.50 | 3-3
2-2
3-2 | X-u ³ D°
(1329)
X-t ³ D°
(1330)
X-v ³ P° | 8024.50
7994.473
7808.04
7573.53
7546.177 | 0 3
E 20
0 6
0 2
L 4
R 3
V 2 | n V
n V
IV* | | | | | 7689.10
7980.04 | P
P | ο
01 | 5.08
5.06 | 6.68
6.61 | 1-1
2-3 | | 8274.28
8264.27 | M | 6
3 | 5.05
5.08 | 6.54
6.58 | 3-3
2-2 | (1331)
X-8 ³ D°
(1332) | 6975.46
6902.80
6881.46 | V 2
V 3
V 3
M 1 | n V
n V | | | | | 7955.81
7855.41
7745.48
7965.52
7813.62 | O
P
P
P | (1)
4n
©
© | 5.01
5.04
5.06
5.06
5.08 | 6.56
6.61
6.66
6.61
6.66 | 4-3
3-2
3-1
2-3
1-1 | x ⁵ F°-f ⁵ P
(1305) | 6700.90
6841.65
6406.42
6217.288 | P
P
W | ©
(1) | 5.05
5.08
5.08 | | | X-w ¹ F° (1333)
X-u ³ F° (1334) | 6838.86
6793.62
6755.609
6726.78 | V 3
M 1
V 3
D (3 |) | | | | | 7742.71
7879.75
7733.68
7547.89
7588.30
7505.98
7484.28
7398.98 | 0 P P P P P P P | 4n
1
0
0
0
0 | 5.01
5.04
5.08
5.01
5.04
5.06 | 6.56
6.58
6.64
6.71
6.64
6.69
6.71
6.64 | 5-6
4-5
3-4
1-2
4-4
3-3
2-2
5-4 | x ⁵ F°- 1 ⁵ G
(1306) | 10018.15
9683.57
9335.27
9348.13 | P
F
P | (1)
©
1
© | 5.05
5.05
5.05 | 6.32 | -
3–1
2–3 | X-v1ge
(1335)
z5se-f5D
(1336)
z5se-e5G
(1337)
z5se-f5F
(1338) | 6609.56
6528.53
6501.681
6042.093
5036.294
4552.544
4237.162 | V 1
V 2
V 4
J 2
R 6
J (3 | V
IV*
V | | | | | 7528.15
7463.38
7420.20
7341.78
7194.02 | P
P
P
P | 00000 | 5.04
5.06
4.97 | 6.65
6.70
6.73
6.65
6.73 | 4-5
3-4
2-3
5-5
4-3 | x ⁵ F°-e ⁵ H
(1307) | *7148.69
5853.48 | R
P | (-)
©î | 5.05 | | 2-2 | z ⁵ s ^o -e ³ p
(1339)
z ⁵ s ^o -1 ⁵ D
(1340) | 4100.17
3851.58
3739.527
3681.774
3680.801 | W (3
W (4
J 3
V 1 | IA | | | | | 7415.19
7384.96
7605.32
7559.68
7482.20 | P
P
O
P | ©
©
2n
1n | 4.97
5.04
5.01 | 6.63
6.71
6.63
6.67
6.71 | 5-5
3-3
4-5
3-4
2-3 | x ⁵ F°-e ³ G
(1308) | 10890.13
11542.96
9233.15
9052.56 | P
P
P | ©?
©?
————————————————————————————————— | 5.29
5.32
5.30
5.31 | 6.42
6.39
6.63
6.67 | 2-1
1-2
-
5-5
4-4 | x ⁵ p° _{-e} 3 _D (1341)
y ⁵ G° _{-e} 3 _G (1342) | 3656.227
3634.698
3617.317
3616.572
3614.550 | V 3 G 4 J 2 J 3 | n IV
n IV
n IV | | | | | 7443.26
7746.56
7661.46 | P
P
P | 000 | 5.06 | 6.73
6.64
6.67 | 2-1
3-3
2-2 | x ⁵ F°-f ³ D
(1309) | 6671.36 | W | (3) | 5.30 | 7.15 | 55 | y ⁵ G°-h ⁷ D
(1343)
y ⁵ G°-g ⁵ G | 3587.752
3506.40
3438.306 | J 3
W (3 | IV
)
w) | | | | | 7359.95
7312.05 | P
P | 0 | 4.97
5.01 | 6.65
6.70 | 5-6
4-5 | x ⁵ F°-e ³ H
(1310) | 6450.99
6402.43 | V
P | {1
1} | | 7.26 | 2 – 2?
- | (1344) | 3262.284
3179.538
3139.908 | V 4 | n V | | | | | 7160.85
*7222.88
*7086.76
6027.76
6152.82 | P
V
V
P
P | © (1)
2
0
©7 | 5.04
5.06
4.97 | 6.73
6.75
6.81
7.02
7.02 | 2–3 | x ⁵ F°-f ³ F
(1311)
x ⁵ F°-3
(1312) | 10555.63
10362.73
10070.58
10023.34
9676.42 | P P P F | ©
©
©
1 | 5.42
5.45
5.49
5.48
5.37 | 6.59
6.65
6.71
6.71
6.65 | 3-4
2-3
0-1
1-1
4-3 | w ⁵ D°-g ⁵ F
(1345) | 3136.17
3126.175
3103.71
2991.632 | W (3
G 8
W (4
G 5 | n IV
) | | | | | 1 | | | | - | | , , | REV | ISE | D M 1 | ULTI | PLE | | | | | | | | | | |---|----------------------------|------------------------------|--|--|--|--|--|-----------------------|---------------------------------|--|--|---|--|---|-----------------------|------------------------------|--|--|---|--| | IA | rator
Ref | Int | Low
Anal A | P
High
List | J
A Tu | Multiplet
(No) | IA | ratory
Ref | Int | Low | P
High | J | Multiplet
(No) | | Ref | Int | Low | P
High | J | ultiplet
(No) | | 3277.347
3302.861
3312.707
3313.996
3255.884
3281.293 | A
A
C
A
A | 9
4
(1)
1
8
7 | | 4.75
4.77
4.80
4.82
4.77
4.80 | | a ⁴ D-z ⁶ D° (1) | Fe II co
4602.75
4582.12
4515.19
4558.58
4399.86 | P
P
P
P
P | a. | 2.53 | 5.21
5.23
5.27
5.34
5.34 | 31-31
15-31 | a ² D-z ⁶ F° (19) a ² D-z ⁶ P° (20) | Fe II con
5100.66
5120.34
5136.788
5150.93
4993.355 | P
P
A
P | tr
1 | 2.83 | 5.21
5.23
5.23
5.24
5.27 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | ,4 _{F_2} 6 _F 0
cont
,4 _{F_2} 6 _P 0 | | 3295.814
3303.466
3234.923
3264.76
3285.425 | A
A
P
C | 6
4
0
(3) | 1.07
1.09
0.98
1.04
1.07 | 4.82
4.83
4.80
4.82
4.83 | 12-12
32-22
22-12
12-2 | 4. 6. | 4480.46
4327.04
4177.70
4258.35
4119.53 | P
P
P
P | | 2.63
2.53
2.53
2.63
2.53 | 5.39
5.39
5.49
5.53
5.53 | 25-25 | a ³ D-z ⁴ D°
(31) | 4893.780
*5036.92 §
4629.336
4555.890
4515.337 | A
A
A | On
2
7
8
7 | 2.82
2.83
2.79
2.82
2.83 | 5.34
5.27
5.46
5.52
5.57 | | ,4 _{F-z} 6 _P •
(36)
,4 _{F-z} 4 _F •
(37) | | 2953.774
2970.510
2979.349
2975.938
2961.272 | A
A
A
A | 11
10
8
5
5 | 1.04
1.07
1.09
1.09 | 5.24 | 12- 2
- | a ⁴ D-z ⁶ F• † (2) | 4211.80
4075.95
4183.20
4124.793
4205.48
4070.03 | P
P
A
P | 1 | 2.53
2.63
2.53 | 5.56
5.58
5.58
5.52
5.57
5.57 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ² D-z ⁴ F°
(22) | 4491.401
4520.225
4489.185
4472.921
466.750
4582.835
4534.166 | A
A
A
A | 5
7
4
3
3
3 | 2.83 | 5.59
5.57
5.59
5.46
5.52
5.57 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | 3969.40
3969.38
3981.61
3938.289
3945.21
3966.43
3914.480
3930.31 | P
P
A
P
P
A | 2 | 1.66 | 4.77
4.80
4.82
4.80
4.83
4.83
4.83 | 2-12-12-12-12-12-12-12-12-12-12-12-12-12 | a ⁴ P-z ⁶ D ⁹ (3) | 4168.66
4035.54
3779.58
3833.02
3730.17
3798.60
3896.11 | P
P
P
P
P | | 2.63
2.53
2.53
2.63 | 5.59
5.59
5.80
5.85
5.85
5.88
5.80 | 32-12 | a ² D-z ⁴ P°
(23) | 4583.839
4549.467
4523.634
4508.283
4620.513
4576.331
4541.523
4648.23 | A A A A A A A P | 11
10
9
8
3
4 | 2.79
2.82
2.83
2.84
2.82
2.83
2.84 | 5.49
5.53
5.56
5.58
5.49
5.53
5.56
5.49 | | (38) | | 3475.74
3487.990
3508.213
3463.974
3479.914
3503.474
3456.00
3475.25 | P
A
A
A
P
P | 3
1
1
2
3 | 1.66
1.69
1.72
1.66
1.69
1.72
1.66
1.69 | 5.21
5.23
5.23
5.23
5.23
5.24
5.23 | 3-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | 5607.12
5864.54
6021.18
5545.26
5811.93
5986.54
5498.19
5779.65 | P | | 2.57
2.69
2.77
2.57
2.69
2.77
2.57
2.69 | 4.77
4.80
4.83
4.80
4.83
4.83
4.83 | 21-31
11-31
11-31
21-31
21-31
21-31
21-31 | b ⁴ P _{-z} 6 _D o
(34) | 4595.68
4138.40
4088.75
4064.75
4160.62
4104.18 | PPPP | | 2.84
2.83
2.84
2.83 | 5.53
5.80
5.85
5.88
5.80
5.85 | | ,4F_z ⁴ P°†
(39) | | 3425.582
3381.36
3364.22
3358.78
3338.19
3316.18 | A
P
P
P | 3 | 1.66
1.69
1.72
1.66
1.69 |
5.27
5.34
5.39
5.34
5.39
5.39 | 31-31
11-31
11-31
31-31
11-11
21-11 | a ⁴ P_z ⁶ P°
(5) | 4670.170
4871.27
5000.73
4648.933
4855.54 | A
P
P
A | 10 | 2.57
2.69
2.77
2.57
2.69 | 5.21
5.23
5.23
5.23
5.23 | 2 - 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | b ⁴ P _{-z} 6 _F •
(25) | 6516.053
6432.654
6369.45
5284.092
5256.89 | B
B
B | 30
8
4
3 | 2.88
2.88
2.88 | 4.77
4.80
4.82
5.21
5.23 | 31-31 s
31-31 s
31-31 s | 6 _{S-z} 6 _{D°} (40)
6 _{S-z} 6 _{F°} (41) | | 3227.732 §
3213.311
3210.449
3192.917 | A
A
A | 13
13
10
9 | 1.66
1.69
1.72
1.66 | 5.49
5.53
5.56
5.53 | 31-31
11-31
1-11
3-11
32-31 | a ⁴ P-z ⁴ D°
(6) | 4991.11
4634.60
4846.47
4580.055 | P
P
P | 1 | 2.77
2.57
2.69
2.57 | 5.24
5.23
5.24
5.27 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | b ⁴ P-z ⁶ F°
(26) | 5238.58
5169.030
5018.434
4923.921 | P
A
A | 1
13
13
13 | 2.88
2.88 | 5.23
5.27
5.34
5.39 | | 6 _{S_2} 6 _{pe}
(42) | | 3186.740
3193.809
3166.670
3170.337
3196.070 | A
A
A | 11
11
4
6 | 1.69
1.72
1.66
1.69 | 5.56
5.58
5.56
5.58 | 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | .4p .4re | 4665.80
4713.18
4461.43
4583.99
4386.57 | P
P
P
P | | 2.69
2.77
2.57
2.69
2.57 | 5.34
5.39
5.34
5.39
5.39 | 23-23
13-13
23-12 | | *4731.439§
4656.974
4601.34
4663.700 | A
A
P | 3
1 | 2.88
2.88 | 5.49
5.53
5.56 | 31-31 a
31-31 a
31-11 | 6 _{S-z} 4 _D °
(43) | | 3183.115
3185.315
3163.091
3161.945
3142.220 | A
A
A | 8
5
(5) | 1.69
1.72
1.66
1.69
1.66 | 5.57
5.59
5.57
5.59
5.59 | 13-33
3-13
3-33
13-13
23-13 | a ⁴ P-z ⁴ F° (7) | 4233.167
4351.764
4416.817
4173.450
4303.166 | A
A
A
A | 11
9
7
8
8 | 2.57
2.69 | 5.49
5.53
5.56
5.53
5.56 | 23-31
13-21
2-13
23-23
12-12 | b ⁴ P-z ⁴ D°
(37) | 4327.14
4153.98 | P
P | | | 5.80 | 21-31 a
21-11 | 68-z4pe
(45) | | 2984.831
2965.036
2964.629
3002.650
2985.545 | A
A
A
A | 15
10
9
13
13 | 1.72 | 5.80
5.85
5.88
5.80
5.85 | 21-21
12-12
12-22
12-22
2-12 | a ⁴ P-z ⁴ P°† (8) | 4385.381
4128.735
4273.317
4178.855
4296.567
4369.404
4122.638 | A
A
A
A
A | 7
3
3
8
6
2
4 | 2.77
2.57
2.69
2.57 | 5.58
5.56
5.58 | 21-14
12-14
14-34
14-34 | b ⁴ P-z ⁴ F° (38) | 6044.53
6129.71
6150.10
6141.01
5991.383
6084.11
6113.33
6116.04 | PPPBBBP | 10
5
2 | 3.14
3.19
3.21
3.22
3.14
3.19
3.21
3.22 | 5.20
5.21
5.23
5.20 | 51-51-8
41-41-31-31-31-31-31-31-31-31-31-31-31-31-31 | 4 _{G-2} 5 _F e
(46) | | 4420.75
4484.93
4381.79
4445.26
4525.75 | P
P
P
P | | 1.96
2.02
1.96
2.03
2.03 | 4.75
4.77
4.77
4.80
4.75 | -55 | a ² G-z ⁶ D ^e
(9) | 4258.155
4087.27
3824.913
3908.54 | A
P
A
P | 3
4 | 2.69
2.57
2.57
2.69 | 5.59
5.59
5.80
5.85 | 3-13
23-23
13-13
23-12
23-12
23-23
13-23 | b ⁴ P-z ⁴ P° (29) | 6185.34
6196.71
6178.13
5932.05 | P
P
P | | 3.19
3.21
3.22
3.19 | 5.18
5.20
5.21
5.27 | 31-21
21-11
41-51
31-41
22-31
41-31 a | 4 _{G_z} 6pe + | | 3521.64
3522.05
3458.13
3482.05
3587.95 | P
P
P
P | | | 5.46
5.52
5.52
5.57
5.46 | 41-41
31-31
41-31
31-31
31-31
31-41 | a ² G-z ⁴ F° (10) | 3964.57
m3764.09
3872.76
3974.160
4002.073 | P
P
P
A
A | 3
3 | | 5.88
5.85
5.88
5.80
5.85 | 24-14-14-14-14-14-14-14-14-14-14-14-14-14 | | 5793.16
5691.38
5362.864
5316.777
5264.801 | P
P
A
A | 5
4
2 | 3.19
3.21 | 5.34
5.39
5.49
5.53
5.56 | 32-12
42-32
42-32
32-13
32-13
32-32
32-32
32-32
32-32 | 4 _{G-z} 6 _{pe} +
(47)
4 _{G-z} 4 _{pe}
(48) | | 4818.26
4169.98
4251. 4 9 | P
P
P | | 2.27 | 4.83
5.23
5.23 | -
1½- ½
1½-3½
1-14 | a ² P _{-z} 6 _D °
(11)
a ² P _{-z} 6 _F °
(12) | 4825.71
4833.21
4840.00
4847.61
4867.73 | P
P
P
P | | | | | a ⁴ H-z ⁶ F°
(30) | 5414.089
5337.713
5435.79
5316.609
5275.994 | A
P
A | 2
0
8
7 | 3.21
3.22
3.22
3.14 | 5.49
5.53
5.49
5.46
5.52 | 3½-3½
3½-3½
3½-3½
5½-4½ a | 4 _{G—Z} 4F°
(49) | | 4158.45
4244.53
4151.79
4018.49
4041.84
3957.66 | P
P
P
P | | 2.27
2.33
2.27 | 5.24
5.24 | 12- 3 | a ² p_z ⁶ p° | 4868.82
4870.71
4903.85
4899.90 | P
P
P | | 2.66
2.68
2.66
2.68 | 5.20
5.21
5.18
5.20
5.27 | 44-45
32-35
42-55
32-42 | a ⁴ H-z ⁶ P°
(31) | 5234.620
5197.569
5425.269
5325.559
5254.92
5477.67 | A
A
A
P
P | 7
6
2
2 | 3,21
3,22
3,19
3,21
3,22
3,21 | 5.57
5.59
5.46
5.52
5.57
5.46 | 5-2-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | | | 3783.347
3821.92
3746.56
3798.36 | A
P
P | 4 | 2.27
2.33
2.27
2.33 | 5.53
5.56
5.56
5.58 | 12-12
12-24
12-14
12-14
14-14
14-14
14-14 | a ² P-z ⁴ D° (14) | 4644.09
4772.77
4384.33
*4314.289§
4278.128 | P
P
A
C | 4
(1) | | 5.34
5.27
5.46
5.52
5.57 | 51-41
41-31
34-21 | a ⁴ H-z ⁴ F°
(32) | 5346.56
4763.79
4780.60
4685.95 | P
P
P | 1 | 3.22
3.21
3.22
3.22 | 5.52
5.80
5.80
5.85 | 31-31 a
21-31 a
21-31
31-11 | 4 _{G-z} 4pe
(50) | | 3723.92
3741.56
3786.37
3712.39 | P
P
P | | 3.27
2.33
2.27 | 5.58
5.57
5.59
5.59 | $ \begin{array}{c} 1\frac{1}{2} - \beta \frac{1}{2} \\ \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $ | a ³ P-z ⁴ F° (15) | 4413.600
4338.70
4439.13
4372.22 | A
P
P | 0 | 2.68
2.68
2.68 | 5.46
5.52
5.46
5.49 | 31-31
31-42 | | 5728.74
5605.91
5990.59 | P
P
P | | 3.32 | 5.34
5.39
5.39 | 1 1 2 2 2 b 1 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2p_z6pe
(51) | | 3494.672
3507.387
3443.83
3478.55
3416.021 | A
P
P | 5
3
5 | | 5.80
5.85
5.85
5.88
5.88 | 12-32
2-12-12-12-12-12-12-12-12-12-12-12-12-12 | a ² P-z ⁴ P° (16) | 4332.88
4397.27
6239.36
6229.34 | P
P
P | | 2.68
2.68
2.79
2.82 | 5.53
5.49
4.77
4.80 | | a ⁴ H-z ⁴ D ^e
(33)
b ⁴ F-z ⁶ D ^e †
(34) | 5262.48
5519.83
5191.58
5470.81
5148.19 | P
P
P
P | | 3.32
3.18 | 5.53
5.56
5.56
5.58
5.58 | 1 2 - 2 2 b 2 - 1 2 1 2 - 1 2 1 2 - 2 1 2 - 2 | | | 4622.40
4691.55
4591.26
4664.79 | P
P
P | | 2.51
2.57
2.51
2.57 | 5.18
5.20
5.20
5.21 | _ | a ³ H-z ⁶ F°
(17) | 6219.54
6217.95
5171.62
5178.71 | P
P
P | | 3.79
3.82 | 5.18
5.20 | 23-15-11-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13- | b ⁴ F-z ⁶ D° † (34) b ⁴ F-z ⁶ F° (35) | 5181.97
5445.97
5126.19
4780.15 | P
P
P | | 3.18
3.18 | 5.59
5.59 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2P_z ⁴ F°
(53)
2P_z ⁴ P° | | 4724.07
5696.11 | P
P | | | | - | a ² D-z ⁶ D ^e (18) | 5180.53
5178.95
5132.67
5146.12
5154.40
5161.18 | P
P
P
P | | 2.83
2.84
2.79
2.82
2.83
2.84 | 5.23
5.20
5.21
5.23 | 21-24
11-24
41-44
31-34
21-24
12-12 | | 4886.92
4627.86
4831.11
4577.78 | P
P
P | Marongo | | 0.00 | | ³ P_Z ⁴ P*
(54) | | Laborator
I A Ref | | E
Low | P
High | J | Multiplet
(No) | Labor
I A | ator
Ref | | Low | P
High | J | Multiplet (No) | Labor
I A | ratory
Ref Int | E
Low | P
High | J | Multiplet (No) | |--|---------------------------|--------------------------------------|--|---|--|---|-----------------------|------------------|--------------------------------------|--------------------------------------|---|--|--|-------------------------|--------------------------------------|------------------------------|--|--| | Fe II continu | | | | | | Fe II con | | | | | | | Fe II con | | | | | | | 5534.860 A
5432.98 P
5591.38 P | 4 | 3.23
3.25
3.25 | 5.46
5.52
5.46 | 51-41
41-31
41-41 | b ² H-z ⁴ F°
(55) | 3388.134
3358.252 | A
A | †2
3 | 3.89
3.87 | 7.53
7.55 | | b ⁴ D-z ⁴ H° (77) | *2979.096 | A 3 | | 8.09 | _ | b ² F-z ² H° (100) | | 5525.14 P | | 3.25 | 5.49 | | b ² H-z ⁴ D°
(56) | 3376.24
3252.40
3250.34
3365.413 | P
P | • | 3.89
3.87
3.87
3.87 | 7.54
7.67
7.67
7.54 | 31-21
21-11
1-11
21-21 | b ⁴ D-z ² D°
(78) | 3602.60
3583.54
3607.05 | P
P
P | 4.06
4.06
4.06 | 7.51 | 61-51
51-41
51-51 | a ² I-z ⁴ G ^e
(101) | | 5909.38 P
5834.93 P
5732.72 P
5735.95 P
5827.49 P | | 3.41
3.37
3.41
3.37
 5.46
5.52
5.53
5.57
5.57
5.59 | 31-41
31-31
31-31
31-31
31-31
31-31
31-11 | a ² F-z ⁴ F°
(57) | 3249.911
3362.764
3305.634
3193.76 | A
A
A
P
P | 1
0
1 | 3.87
3.87
3.89
3.87
3.87 | 7.67
7.54
7.62
7.74
7.77 | 1 1 2 - 2 2
1 2 - 2 2 | b ⁴ D-y ⁴ D°
(79) | 3511.25
3493.34
3489.17
3486.08
3481.92
3495.16 | P
P
P
P | 4.06
4.06
4.06
4.06
4.06 | 7.60
7.60
7.60
7.60 | 53-53
53-53
63-53 | a ³ I-z ⁴ I•
(103) | | 5657.93 P
5835.43 P
5824.40 P | | 3.41
3.37
3.41 | 5.49
5.53 | 31-31
31-31
31-31
31-21 | a ² F-z ⁴ D°
(58) | 3163.86
3177.65
3203.509
3166.22 | P
A
P | 1 | 3.87
3.89
3.87 | 7.76
7.74
7.77 | 35-25
35-25
25-15 | | 3426.81 | P | 4.06
4.06 | 7.59
7.66 | | a ² I-z ² G°
(103) | | 5722.56 P
5737.68 P
5941.36 P | | 3.37 | 5.53
5.56
5.49 | 3 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - | | 3177.260
*3295.240
3191.374 | A
A | 1
4
1 | 3.87
3.87
3.87 | 7.76
7.62
7.74 | 15-35
35-35
15-35 | | 3418.02
3398.355 | P
A 4 | 4.06
4.06 | 7.69 | 5출-4출
6출-6출 | -2+ -4me | | 3021.407 A
2965.395 A | 1
2 | 3.37
3.41 | 7.46
7.57 | 31-31
31-11 | | 3164.26
3267.035
3231.702 | P
A
A | 3
5 | 3.87
3.89
3.87 | 7.77
7.66
7.69 | 31-41
31-41
31-31 | b ⁴ D-z ² G° (80) | 3360.103
m3356.24
3402.32 | A 3
P Fe | | 7.74 | 53-53
63-53
53-63 | (104)
a ³ I-z ³ I°
(105) | | 2984.89 P
2998.855 A
2971.616 A
2991.244 A | 2
1
0 | 3.37
3.41
3.37
3.41 | 7.51
7.53
7.53
7.54 | 31-41
21-31
31-31
31-31
31-31 | a ² F-z ⁴ G•
(60) | 3241.685
3259.048
3258.773 | A
A | 10
10 | 3.89
3.89
3.87 | 7.69
7.67
7.66 | 3½-3½
3½-4½
3½-3½ | | 3220.835
3131.719 | A 0 | 4.06
4.06 | | | a ² I-y ⁴ G°
(106)
a ² I-y ² G° | | 2964.131 A
2968.738 A | 7 | 3.37
3.37 | 7.54
7.53 | 3 § _2§ | a ² F-z ⁴ H° | 3247.171
3237.815
3268.92 | A
A
P | 9 8 | 3.87
3.87
3.89 | 7.67
7.68
7.66 | 35-35 | (61) | 3077.168
3062.234
3080.405 | A 10
A 9
A 3 | | 8.07
8.09
8.07 | 61-51
51-41
51-51 | a3I_y2G°
(107)
a2I_z2H°
(108) | | *2980.963 A
2954.050 A
2959.601 A | 4 4 7 | 3.41
3.37
3.37 | 7.55
7.55
7.54 | | a ³ F-z ⁴ H° (61) | 3249.657
3237.402
3259.75
3239.87 | A
A
P
P | 4
5 | 3.87
3.89
3.89 | 7.67
7.68
7.67
7.68 | 21-21
13-13
31-23
23-13 | | 3056.802
3049.18
3060.023 | A 5
P | 4.06
4.06
4.06 | 8.10
8.11 | 61-51
51-41
51-51 | a ³ I-x ⁴ G° (109) | | *2986.617§ A | | 3.41 | 7.54 | _ | a ² F-z ² De-† (63) | 3177.531
3135.360 | A
A | 10
9 | 3.89
3.87 | 7.77
7.81 | 31-31
31-31
31-31
11-11 | | 3020.001 | A 10 | | | | a ² I-x ⁴ F° (110) | | 6983.54 P
3327.63 P | | 3.80
3.80 | 5.57
7.51 | 35-45 | b ² G_z ⁴ F°
(63)
b ² G_z ⁴ G°
(64) | 3114.295
3105.548
3144.751
*3116.590\$ | A
A
A | 7
5
5
6 | 3.87
3.89
3.89 | 7.83
7.85
7.81
7.83 | 15-15
3-25
35-25
35-15 | | 3680.98
3661.17
3656.50 | P
P
P | 4.13
4.14
4.13 | 7.51 | 41-51
31-41
41-41 | c ² G-z ⁴ G°
(111) | | 3277.853 A
3307.57 P
3266.938 A
3289.347 A
3249.16 P | 0
4
7 | 3.75
3.80
3.75
3.80
3.75 | 7.53
7.53
7.55
7.55
7.55 | 5 4 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 |) ² (-z ² H° | *3105.166
3167.94
3133.048
3114.680 | A
P
A
A | 5
4
4 | 3.87
3.87
3.87
3.87 | 7.85
7.77 | 15-35
25-35
15-25
2-15 | | 3641.22
3636.61
3629.99
3645.78 | P
P
P | 4.14 | 7.53
7.53
7.54 | 3 1 - 3 1
4 1 - 3 1
3 1 - 2 1 | _3 <u>_</u> ,4µ• | | 3154.201 A
3167.853 A
3130.561 A
3192.059 A | 12
11
2
3 | 3.75
3.80
3.75
3.80 | 7.66
7.69
7.69
7.66 | | b ² G—z ² G•
(66) | 3070.591
3047.60
3025.99
3034.712 | A
P
P
A | ter
O | 3.89
3.89
3.87
3.89 | 7.91
7.94
7.95
7.95 | 3½-3½
3½-3½
3½-3½
3½-3½ | b ⁴ D-y ⁴ G°
(83)
b ⁴ D-z ² F°
(84) | 3636.90
3632.292
3614.873
3610.33 | P
A 3
A 5
P | 4.14
4.13 | 7.53
7.53
7.55 | 45-35 | c ² G-z ⁴ H°
(112) | | 3146.748 A
m3193.85 P
3155.950 A | 2
Fe ⁺
2 | | | | b ² G–y ⁴ F°
(67) | 3038.777
3023.859
2997.749 | Ā | 3
1
tr 4 | 3.87
3.87
3.89 | 7.94
7.95
8.00 | 12-32 | ь ⁴ р-у ² с• | 3555.08
3568.97
3564.54 | P
P
P | 4.13
4.14
4.13 | 7.59 | 32-42
42-42 | | | 3185.095 A
3184.43 P
3070.692 A | ĩ
4 | 3.80
3.80
3.75 | 7.67
7.67
7.77 | 32-42
32-42 | | 2989.01
2989.367
2986.91 | P
A
P | tr | 3.87
3.87
3.87 | 8.00
8.00
8.00 | 21-11
11-11 | (85)
b ⁴ D-z ² p•
(86) | 3493.468
3468.680
3464.497
3497.73 | A 10
A 8
A 3
P | 4.13
4.14
4.13
4.14 | 7.69
7.69 | 41-41
31-31
41-31 | c ² G-z ² G•
(114) | | 3075.228 A
3106.559 A | 2
4 | 3.80
3.80 | 7.81
7.77 | 32-32
32-32 | b ² 0-x ⁴ D°
(68) | 2989.731
2987.27 | A
P | 0 | 3.87 | 8.00 | 13-13
3-13
2-13 | | *3484.348\$
3499.877 | A 1
A 4 | 4.13
4.14 | 7.67
7.66 | | c ² G-y ⁴ F°
(115) | | 2985.29 P
3012.59 P
2978.850 A
3004.249 A | 3 | 3.75
3.80
3.75
3.80 | 7.89
7.89
7.89
7.91 | | b ² G -y⁴G°
(69) | 7838.09
7534.83 | P
P | | 3.33 | 5.57 | 2−02 | | 3495.616
3424.17 | A 4 | 4.13 | | | | | 2970.682 A
3000.059 A
2969.934 A | 5
5
8 | 3.80 | 7.91
7.91
7.95 | 31-31
41-31
31-31
31-31 | 184 - 8 Fe + | 3519.72
3386.452
3496.67 | P
A
P | 1 | 3.95
3.93
3.93 | 7.46
7.57
7.46 | 31-21
21-11
21-21 | b ² F_y ⁴ P°
(88) | 3391.303
3357.965
3395.336 | A 1
A 0
A 4 | 4.14 | 7.77
7.81
7.77 | $\begin{array}{c} 4\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \end{array}$ | c ² G-z ² I°
(116)
c ² G-x ² D°
(117) | | 2982.239 A
9403.36 P | 3 | 3.80 | 7.94 | _ | b ² G-z ² F• † (70) | 3470.242
3430.15
3452.33
3420.184 | A
P
P
A | 1n
0 | 3.93
3.95
3.93 | 7.51
7.53
7.53
7.54 | 31-41
31-31
31-31
21-21 | b ³ F-z ⁴ G°
(89) | 3287.468
3283.40
3279.649
3273.499 | A 1
P
A 2
A 3 | 4.13
4.14
4.13
4.14 | 7.89
7.89
7.89
7.91 | 41-51
31-41
41-41
31-31 | c ² G_y ⁴ G°
(118) | | 9214.85 P
9112.95 P
9061.33 P | | 3.87
3.87
3.87 | 5.23 | 2-12 | b ⁴ D-z ⁶ F° †
(71) | 3442.239
3448.433
3406.76 | A
A
P | 3
1 | 3.95
3.95
3.93 | 7.54
7.53
7.55 | 31-41
31-31 | b ² F_z ⁴ H° (90) | 3269.772
3268.512
3243.723 | A 2
A 3 | 4.13
4.14
4.13 | | 32-32 | | | 7841.40 P
7479.70 P
7389.05 P
7181.21 P | | 3.89
3.87
3.87 | 5.46
5.52
5.57 | 31-41
31-31
11-21 | b ⁴ D-z ⁴ F°†
(72) | 3428.64
3436.112 | P
A | 5 | 3.95
3.95 | 7.55
7.54
7.67 | 3½-3½
3½-3½ | b ² F-z ² D°
(91) | 3232.791
3247.398
3187.294 | A 7
A 3 | 4.14
4.14 | 7.95
7.94 | $3\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | c ² G-z ² F° (119) | | 7533.42 B
7301.57 P
7179.16 P | 3 | 3.87
3.89
3.87
3.87 | 5.52
5.57
5.59 | 34-34
34-34
34-34
12-12 | | 3297.888
3414.144
3323.066 | A
A | 5
2
8 | 3.93
3.93
3.95 | 7.54
7.66 | 32-22
32-42 | bar-zage | 3162.799
3159.32
3190.84 | A 8
P
P | 4.14 | 8.00
8.04
8.04
8.00 | 3 2 - 3 2
4 2 - 3 2
3 2 - 4 2 | c ² G-y ² G•
(120) | | 7711.71 B
7462.38 B
*7307.97 § B | 15
20
50 | 3.89
3.87
3.87 | 5.49
5.53
5.56 | 31-31
31-31
11-11 | b ⁴ D-z ⁴ D° (73) | 3276.606
•3296.826§
3314.80 | A
A
P | 2 | 3.93
3.95
3.95 | 7.69
7.69
7.67 | 31-32
32-32
31-41 | b ² F_z ² Ge
(92)
b ² F_v ⁴ F° | 3134.17
3118.74 | P
P | 4.13
4.14 | 8.07
8.09 | 41-51
31-41 | c ² G-z ² H• †
(121) | | 7234.51 B
7515.88 B
•7320.70 § B | 13
6
40 | 3.87
3.89
3.87 | 5.58
5.53
5.56 | 31-21
21-11 | | 3304.433
3325.012
3295.06 | A
A
P | 1 | 3.93
3.95
3.93 | 7.66
7.66
7.67 | 25-35
35-35
25-25 | b ² F-y ⁴ F°
(93) | 3079.356
3068.757
•3105.166 | A 0
A 2
A 5 | 4.14 | 8.14
8.16
8.11 | 41-31
31-21
31-41 | c ² G-x ⁴ G°
(122) | | 7223.39 B
7655.47 B
7449.34 B
7310.24 B | 8
1
6
6 | 3.87
3.87
3.87
3.87 | 5.58
5.49
5.53
5.56 | 31-21
21-12
11-21
21-21
11-21
12-21
2-12 | | 3315.53
3284.996
3257.358 | P
A
A | 0
1 | 3.93 | 7.67
7.68
7.74 | al al | L2m -4m | 3071.653
3040.829 | W 0 | | 8.15
8.19 | $\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ | e ² G-x ⁴ F°
(123) | | 6456.376 A
6247.562 A | 200
80 | 3.89
3.87 | | | b ⁴ D-z ⁴ P° (74) | 3230.496
3177.61 | A
P | 1 | 3.95
3.93 | 7.77
7.81 | 31-31
31-31 | b ³ F-x ⁴ D ⁶
(95) | 3029.681
3013.802 | A 0 | | 8.20
8.23 | * | e ² G-y ⁴ H°
(124) | | *6147.735 A
6416.905 A
6238.375 A
6149.238 A | 301
20
20
20 | 3.87
3.87
3.87
3.87 | 0.60 | 17-17 | | 3196.63
3158.32
3211.072 | P
P
A | 1 | 3.93
3.93 | 7.81
7.83
7.77 | | | 4270.39
4247.43 | P
P | 4.48
4.46 | 7.36
7.36 | $3\frac{1}{2}-1\frac{1}{2}$
$1\frac{1}{2}-1\frac{1}{2}$ | b ³ D-z ⁴ s•
(125) | | 6407.30 B
6239.95 P
3535.628 A | 1
2n
3 | 3.87
3.87
3.87 | 3.03 | 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | b ⁴ p-z ⁴ 8° |
3129.013
3120.023
3097.415
3115.492 | A
A
A | 1
1
3
1 | 3.95
3.93 | 7.89
7.91
7.91
7.91 | 31-41
31-31
21-21
31-21
31-21 | b ² F-y ⁴ G°
(96) | 4046.81
4012.467
4032.946 | P
A 1
A 3 | 4.46
4.48 | 7.53
7.54
7.54 | 23-33
13-23
23-23 | b ² D-z ⁴ G° (126) | | 3532.69 P
3533.19 P | 5 | 3.87
3.87
3.89 | 7.37
7.37
7.46 | 1출-1출
출-1출
3}-3} | b ⁴ D-z ⁴ s• (75) b ⁴ D-y ⁴ P° | 3096.296
3065.315
3083.024 | A
A
A | 5
6
3 | 3.95
3.93
3.95 | 7.94
7.95
7.95 | | b ² F_z ² F°
(97) | 4024.552
m3845.18
*3863.953
4004.15 | A 5
P Fe
A 1
P | 4.48
4.46
4.48
4.46 | 7.54
7.67
7.67
7.54 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | b ² D-z ² D°
(127) | | 3338.522 A
3369.349 A
3445.58 P
3335.90 P | 3
3 | 3.87
3.87
3.87
3.87 | 7.57 | 24-14
14-4
24-24
14-14 | b ⁴ D_y ⁴ P°
(76) | m3078.44
3044.843
3002.330 | P
A
A | Fe
5
5 | 3.93
3.95
3.93 | 7.94
8.00
8.04 | $3\frac{1}{2}$ $-4\frac{1}{2}$ $3\frac{1}{2}$ $-3\frac{1}{2}$ | b ³ F−y ³ G•
(98) | 3872.98
3841.35
3860.12 | P
P
P | 4.48 | 7.67
7.67 | 21-31
11-21
21-21 | b ³ D-y ⁴ F°
(138) | | 3369.80 P
3442.79 P
3336.34 P | | 3.87
3.87
3.87 | 7.46 | 13-25
2-12 | | 3027.38 | P | | 3.93 | 8.00 | | b ² F-z ² P°
(99) | 3827.67
3846.31 | P
P | 4.48 | 7.68
7.68 | $1\frac{1}{2} - 1\frac{1}{2}$ $2\frac{1}{2} - 1\frac{1}{2}$ | | | Labor
I A | | ry
Int | E
Low | | J | Multiplet
(No) | Labor
I A | rator
Ref | | E
Low | P
High | J | Multiplet (No) | Labor
I A | | y
Int | E I | High | J | Multiplet
(No) | |---|------------------|--------------|----------------------|------------------------------|--|--|--|------------------|----------------|-------------------------------|------------------------------|---|--|---|-------------|--------------------|----------------------------|------------------------------|---|--| | Fe II con | | | | | | ,, | Fe II co | | | | | | | Fe II con | tinu | ıeđ | | | | • | | 3834.81
3781.510
3725.304 | P
A
A | 1
3 | 4.48
4.48
4.46 | 7.69
7.74
7.77 | $ \begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 2\frac{1}{2} - 2\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $ | b ² D-z ² G°
(129)
b ² D-y ⁴ D°
(130) | 6199.16
6179.378
5813.67 | B
A
B | 2
5
3 | 5.54
5.55 | 7.54
7.67 | $ 3\frac{1}{2} - 2\frac{1}{2} $ $ 3\frac{1}{2} - 2\frac{1}{2} $ $ 2\frac{1}{2} - 1\frac{1}{2} $ | c ² F-z ⁴ G°
(162)
c ² F-z ² D°
(163) | 4002.549
3938.969
3996.36 | A
A
P | 3
4 | 5.89
5.93 | | | d ² D-x ² F°
(190) | | 3745.36
3682.66 | P
P | | 4.46 | 7.77
7.81 | $2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ | b ² D-x ⁴ D°
(131) | 5184.94
5823.17 | P
B | 3 | 5.55 | 7.66 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | c ² F-z ² G° (164) | 3975.029
3918.51 | A
P | 2 | 5.93
5.89 | | | d ² D-y ² P°
(191) | | 3699.90
3656.77
3673.77 | P
P
P | | 4.46
4.48 | 7.83
7.83
7.83 | 21-21
11-11
21-11 | | 5747.88
5797.81 | P
P | | 5.55
5.54 | 7.69 | 3 2 - 3 2 3 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 2 4 2 3 2 4 2 2 2 4 2 2 2 2 4 2 | (164)
c ² F-y ⁴ F° | 3762.894
m3727.04
3778.37 | A
P
P | 5
Fe | 5.89
5.93 | 9.20 | 25-15 | d ² D-x ² D°
(192) | | 3644.19
3566.148 | P
A | 3 | 4.46
4.48 | 7.85
7.94 | $1\frac{1}{2} - \frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | b ² D-z ² F° | 5834.06
5829.12
5804.91 | P
P
P | | | 7.66
7.66
7.67 | 23-33
33-33
23-23 | c ² F-y ⁴ F°
(165) | 3711.974
3627.168 | A
A | 1 | 5.89
5.93 | 9.21 | $1\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 3\frac{1}{2}$ | dSD_wSpo | | 3532.647
3548.55 | A
P | 2 | 4.46
4.48 | 7.95
7.95 | | b ² D-z ² F° (132) | 5800.02
5773.75 | P
P | | 5.54
5.55 | 7.67
7.68 | $3\frac{1}{2}-2\frac{1}{2}$
$2\frac{1}{2}-1\frac{1}{2}$ | | 3321.491
3324.838 | A
A | 1 | | 9.65
9.60 | 21-31
11-21 | d ² D_w ² F°
(193)
d ² D_v ² F°
(194) | | n3497.81
3485.728
3482.39 | P
A
P | Fe
1 | 4.48
4.46
4.46 | 8.00
8.00
8.00 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | b ² D-z ² P°
(133) | 5544.76
5160.824 | P
A | 1 | 5.54
5.54 | 7.77
7.94 | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | c ² F-x ⁴ D°
(166)
c ² F-z ² F° | 3365.640
3261.509 | Ā | ō
1 | 5.93 | 9.71 | 21-21 | 4¢ L−#glo | | 3368.447 | A | tr | 4.48 | 8 14 | 21 21 | h2n_v4c0 | 5127.866
5124.05
5164.69 | A
P
P | 1 | 5.55
5.54
5.55 | 7.95
7.95
7.94 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | c ² F-x ⁴ D°
(166)
c ² F-z ² F°
(167) | 3203.741 | A | 0 | 5.93 | 9.78 | $3\frac{1}{2}-1\frac{1}{2}$ | (195)
d ² D-w ² Pe
(196) | | 3318.862
3318.62 | A
P | 0 | 4.46
4.48 | 8.18
8.19 | $1\frac{1}{2} - \frac{1}{2}$ | (134)
b2D_z2S°
(135)
b2D_x2F°
(136) | 5019.478
4953.979 | A
A | 0 | 5.54
5.55 | 8.00 | | c ² F-y ² G°
(168) | 7287.36
7264.99 | ВВ | 6
10 | | 7.89
7.89 | -
41-51
31-41 | c ⁴ F-y ⁴ G°
(197) | | 3292.89
n3251.34 | P | Fe | 4.48 | 8.22 | 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | (136)
h ² D_v ² De | 4810.760
4760.15 | A
P | 0 | 5.54
5.55 | 8.11
8.14 | 31-41
21-21 | c ² F-x ⁴ G°
(169) | 7193.23
7134.99 | B
B | 8
5 | | 7.91 | 15-25 | | | 3209.603 | A
P | 1 | 4.46 | 8.30 | | b ² D-y ² D° (137) | 4738.52
4661.19 | P
P | | 5.54
5.55 | 8.15 | | c ² F-x ⁴ F°
(170) | 6966.9
6482.205 | В | 2 | 6.18 | 7.95
8.10 | 1 | c ⁴ F-z ² F°
(198) | | 3043.31
3013.38
3024.92
3002.09
3031.63 | P
P
P
P | | | 8.56
8.56
8.57
8.53 | 13-13
23-13
13-3
13-3
13-3 | b ² D-x ⁴ P°
(138) | 4658.03
4629.90
4626.78
4610.59 | P
P
P
P | | 5.54 | 8.19
8.21 | 31-31
31-21
31-21
21-11 | (170) | 6446.43
6331.969
6433.85 | B
B
B | 20
12
3 | 6.20
6.19
6.19 | | | c ⁴ F-z ⁴ F ⁶
(198)
c ⁴ F-x ⁴ G ⁶
(199) | | 2997.298
2982.059
2993.366 | A
A
A | 7
8
1n | 4.48
4.46
4.48 | 8.59
8.60
8.60 | $\begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 2\frac{1}{2} \\ 2\frac{1}{2} - 2\frac{1}{2} \end{array}$ | b ² D-y ² F°
(139) | m4526.58
4474.194
4529.56 | P
A
P | Fe
On | 5.54
5.55
5.55 | 8.27
8.30
8.27 | | c ² F-y ² D°
(171) | 6305.318
6175.158
6103.54
6045.497 | B
B
B | 15
15
8
6 | 6.20
6.19 | 8.15
8.19
8.21
8.22 | 15-15 | c ⁴ F-x ⁴ F°
(300) | | 4455.85 | P | | 4.60 | 7.37 | -
-
- 1-1-1-2 | a ² S-z ⁴ S° | 4048.831
m4044.01
4041.64 | A
P
P | 3
Fe | 5.54
5.55
5.54 | 8.59
8.60
8.60 | $3\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ | c ² F-y ² F°
(172) | 4444.563
4359.12 | A
P | 1 | |
8.97
9.02 | | c ⁴ F-w ⁴ F°
(201)
c ⁴ F-w ² C° | | 4147.26
4199.09 | P
P | | 4.60
4.60 | 7.5 7
7.5 3 | 5- 5 | | 4051.21
3935.942 | P
A | 6 | 5.55
5.54 | 8.59
8.68 | | | 4355.03
4349.28
4364.89 | P
P
P | | 6.20 | 9.03
9.03 | 3 - 3 - 3 - 4 - 3 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 4 | (302) | | 4015.20
3810.21 | P
P | | 4.60
4.60 | 7.67
7.83 | }-1} k-1} | a ² S-z ² D°
(142)
a ² S-x ⁴ D° | 3906.037
3673.35 | Ä
P | 5 | 5.55
5.54 | 8.71 | -1 -1 | c ² F-x ² G°
(173)
c ² F-x ² H° | 4346.50 | P | | | 9.03 | 3 1-41
2 1-31
- | | | 3796.55
3621.273 | P | 6 | 4.60
4.60 | 7.85
8.00 | 후- 호 | (143) | 3604.21
3610.38 | P
P | | | 8.97
8.96 | 31-31
31-31 | (174)
c ³ F-w ⁴ D°
(175) | 6487.43
6386.75 | B
B | 4
2 | 6.78
6.77 | | | d ² F-x ² G°
(203) | | 3624.890
3444.76 | Ā | 5 | 4.60 | 8.00
8.18 | | a ² S-z ² pe
(144)
a ² S-z ² Se | 3608.49
3622.81
3606.18 | P
P
P | | 5.54
5.55
5.55 | 8.96
8.95
8.97 | 3 2 - 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | (1.0) | 5519.72
5497.70 | P
P | | 6.78
6.77 | 9.01
9.02 | | d ² F-x ² F°
(204) | | 4650.04 | P | | | | _ | (145) | 3557.548
m3554.50 | A
P | 2
Fe | 5.54
5.55 | 9.01 | 31-31 | c ² F-x ² F°
(176) | 5074.063
5093.470 | A
A | 1 | 6.78
6.77 | 9.21
9.20 | | d ² F−x ² D°
(205) | | 4660.93
4495.52 | P
P | | 4.73 | 7.37 | | c ² D-z ⁴ S° (146) | 3366.960
3381.003 | Ā | 3 | 5.54 | 9.21 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | c ² F-x ² D°
(177) | 4830.40
4750.49 | P
P | | 6.78
6.77 | | | ^{d3} F−# ³ F• | | 4324.36 | P
P | | 4.72 | 7.57 | | c ² D-y ⁴ P°†
(147) | 3368.626 | A | 0 7 | 5.55
5.55 | 9.20 | $3\frac{1}{2} - 3\frac{1}{2}$ | -2m2me | *3451.614\$
3390.082 | A
A | 2
2 | 6.78 1
6.77 1 | 0.35
0.41 | 31-21
31-11 | d ² F_∀ ² D•
(207) | | 4180.97
4172.20
4369.61 | P
P
P | | 4.72
4.71
4.72 | | -2 -2 | c ² D-z ² D°
(148) | 3257.894
3226.378
3224.86
3259.44 | A
A
P
P | 3
2 | | 9.33
9.37
9.37
9.33 | $3\frac{1}{2} - 3\frac{1}{2}$ | c ² F-w ² F° (178) | 3451.228
3515.818 | A | 3 3 | | | _იგ–ა გ
- | (208) | | 4182.69
4176.44
4167.69 | P
P
P | | 4.71
4.72
4.71 | 7.66
7.67
7.67 | 21-31
11-21
21-21 | c ² D-y ⁴ F°
(149) | 3045.313
3046.675 | A
A | 0
1 | 5.54
5.55 | 9.60
9.60 | | c ² F-v ² F° (179) | 7334.66
7425.12 | B
P | 8 | 7.24
7.24 | | | (309)
₄₃ G-x ₃ H ₆ | | 4160.28
4151.60 | P
P | | 4.72
4.71 | 7.68
7.68 | 25-15 | | 2959.841
*2979.096
2961.119 | A
A
A | 4
3
tr | 5.54
5.55
5.55 | 9.71
9.69
9.71 | 31-21
21-11
21-21 | c ² F-w ² D°
(180) | 6677.33
6627.28 | B
B | 3
5 | 7.24
7.24 | | | (310)
_{¶3} G-# ₃ H _e | | 4138.21
4031.456 | P
A | 1 | 4.71
4.71 | 7.69 | 2½-3½ 2½-1½ | c ² D-z ² G°
(150)
c ² D-y ² D°
(151) | 3078.698 |
А | 8n | | | - | | 5891.36
5795.87 | B
B | 8
4n | 7.24
7.24 | | | d ² G_₩ ² F°
(211) | | 4084.58
3863.413 | P
A | 1 | 4.72 | 7.74 | 1½-3½ 21_31 | (151)
c ² D_v ⁴ G• | 3076.455
3071.141 | A
A
A | 6n
4n
5n | 5.88 | 9.86
9.90
9.86 | 5-15 | z ⁴ P°-e ⁴ D
(181) | 3960.895
4057.457 | A
A | 3
2 | 7.24 1
7.24 1 | 0.35
0.28 | 41-41
31-31 | (313)
4 ³ G-4 ₃ G• | | •3863.953
3827.079 | Ā | ī
4 | | | | c ² D-y ⁴ G°
(152) | 3049.011
3055.368
•3010.220§ | A
A | 5n
4n | 5.85
5.88 | 9.90
9.92
9.90 | 1 2 - 1 3 | | 4354.358
4507.195 | A | 2n
On | 7.62 1 | 0.45 | -
31-31 | y ⁴ D°-f ⁴ D
(213) | | 3814.121
3806.82 | A
P | 4 | 4.72
4.71 | 7.95
7.95 | $1\frac{1}{2} - 2\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ | c ² D-z ² F°
(153) | 3033.445 | Â. | 2n | 5.85 | 9.92 | 2 1 -1 1
12- 2 | | | Α . | | | | - | | | 3748.489
3759.460
3755.563 | A
A
A | 8
6
4 | 4.71
4.72 | 8.00 | 21-11
11-1 | c ² D-z ² P°
(154) | 5952.55
5835.50 | P
P | | 5.93
5.89 | 8.00 | $2\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - \frac{1}{2}$ | d ² D-z ² P°
(182) | 4066.328 | A
B | 12
 | | | - | z ³ D°_e ⁴ F
(314) | | 3566.052 | A | 2 | | | | 2. 2. | 5836.13
5856.45 | P
P | | | | | 2 2 | 5785.0
4366.165 | A | 5N
tr | 7.67 | 0.50 | 42-02
22-12 | y ⁴ F°-e ⁴ D
(215)
y ⁴ F°-f ⁴ D
(216) | | n3466.85
3440.25 | P
P | Fe | 4.71
4.72 | 8.27
8.30 | 21-21
11-11 | (155)
c2p_y2p°
(156) | 5451.60
5304.26 | P
P | | 5.93
5.89 | 8.19
8.21 | 31-31
11-31 | d°D-y°G°
(183)
d°D-x*F°
(184) | 6061.04 | В | 3n | | | - | x4D°_e4D | | 3472.886
3179.504 | | 0
8 | 4.72
4.71 | 8.27 | 1½-3½ 2½-3½ | c ² D-y ² F° | 5408.842
5278.955
5382.52 | A
A
P | 0n | 5.93
5.89
5.93 | 8.21
8.22
8.22 | 24-24
14-14
24-14 | | 4913.366 | A | 1 | 7.83 1 | 0.35 | 1 1 -31 | (217)
x4D°-32
(218) | | 3180.1649
3175.077 | A
A | 7
4 | | | | c ² D-y ² F°
(157) | 5272.413
5100.840 | A
A | 2
4n | 5.93 | 8.27
8.30 | 2}-2}
11-11 | d ² D-y ² D°
(185) | 4598.528
4628.821
4631.895 | A
A
A | in
On
On | 7.77 1
7.81 1
7.83 1 | 0.45
0.48
0.50 | 31-31
21-21
11-11 | x ⁴ D°-f ⁴ D
(219) | | 3089.388 | A | 4 | | | | c ² D-x ² G°
(158) | 5173.002
4635.328 | Ā
A | 5 | 5.89 | | | | 4625.549
4652.280 | A | tr
tr | 7.85 1
7.85 1 | 0.51 | $\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - 1\frac{1}{2}$ | | | 2972.769
2989.079 | A
A | tr n | 5.46
5.57 | 9.61
9.69 | 41-41
21-21 | z ⁴ F°-e ⁶ D
(159) | 4549.214
4625.911 | A
A | 4 | 5.89
5.93 | | | d ² D_y ² F° (186) | 4319.717 | A
A
A | in
in
in | 7.77 1
7.81 1
7.83 1 | 0.63
0.67
0.69 | 31-41
21-31
11-21 | x ⁴ D°-e ⁴ F
(220) | | 2991.817
2958.528 | A
A | 2n
1n | 5.49
5.49 | 9.61 | 31-41
31-31 | z ⁴ D°-e ⁶ D
(160) | 4446.248
4111.902 | A
A | 1n
1 | 5.93
5.93 | 8.71
8.93 | 21-31
21-21 | d ² D-x ² G°
(187)
d ² D-w ⁴ F° | 4318.216 | Ā | о́й
 | 7.85 | 0.7Ó | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | | 2962.936
2968.119
2972.016 | A
A | 1n
0
0 | 5.53
5.56
5.58 | 9.69
9.72
9.73 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 1-30/ | 4069.883
4131.17
4081.42 | A
P
P | i | 5.89 | 8.92 | 1 1 - 2 1
2 1 - 2 1 | (188) | 5081.920 | A | tr | 7.91 1 | | | y ⁴ G°-30
(221) | | 6219.35 | P | | | | - | .2 ₅ -4 | 4143.07 | P | | 5.93 | 8.91 | 22-12 | d ² D-x ² G ⁶
(187)
d ² D-w ⁴ F ⁶
(188) | 4493.579
4449.663
4431.626 | A
A | in
in
in | 7.89 1
7.89 1
7.91 1 | 0.63
0.67
0.69 | 25-45
45-35
35-35 | (333) | | 6160.75
6155.24 | P
P | | 5.54
5.54 | 7.55
7.55 | 3 2-32
3 2-32
3 2-32 | e ² F-z ⁴ H°
(161) | 4061.787
4007.73 | A
P | 1 | 5. 93
5. 8 9 | 8.97
8.96 | 32-32
12-32 | d ² D-w ⁴ D°
(189) | m4508.26 | P | Fe ⁺ | 7.89 1 | 0.63 | 4] -4]
- | | | Labo: | rator;
Ref | | E P
Low High | J | Multiplet
(No) | Labor
I A | rator
Ref | | E P
Low Hig | h | J | Multiplet
(No) | Labor
I A | ator;
Ref | | E P
Low High | J | Multiplet
(No) | |-----------------------------------|---------------|---------------|--|--|---|-----------------------------------|--------------|------------------|--|----------|--------------------|--|------------------------|--------------|---------------|----------------------------|-------------|--| | Fe II co | | | 20"262 | | () | e III co | | | 2011 2120 | - | | (, | | ntin | | | | ••• | | 2987.542 | A | 1n | 8.00 12.13 | 4출-5출 | у ² G°-е ⁴ Н | 3198.81 | A | 5 | 10.17 14.0 | | 3-4 | c3D-z5G° | 4323.81 | В | 2 | 11.17 14.02 | 3-3 | d ³ F-z ⁵ G° | | 5529.940 | | 2 | 8.18 10.41 | 1.11 | (223)
z ² 5°-e ⁶ p | 3204.76
3215.60
3201.90 | A
A
A | 6
8
1 | 10.17 14.0
10.18 14.0
10.17 14.0 | 2 | 2-3
1-2
3-3 | (6) | 4057.51 | B | 4 | 11.17 14.21 | 4-4 | (32)
d ³ F-z ⁵ H°
(33) | | 5529.540 | Α. | | | - | (224) | 3206.98 | Ã | 4 | 10.17 14.0 | | 2-2 | | 3773.80 | В | tr | 11.17 14.44 | 3-2 | d ³ F-z ⁵ F° (34) | | 5303.419
5315.618 | A | On
On | 8.15 10.48
8.19 10.52 | 41-51
31-41 | x ⁴ F°-e ⁴ G
(235) | 3266.88 | Ā | 20 | 10.26 14.0 | | 56 | a ⁵ F-z ⁵ G° | *3697.4500
3845.68 | B
B | 3
1 | 11.17 14.51
11.16 14.37 | 3-4
2-2 | | | 5278.265 | A | On
O | 8.21 10.55
8.19 12.15 | | | 3276.08
3288.81
3305.22 | A
A
A | 15
15
10 | 10.27 14.0
10.28 14.0
10.29 14.0 | 3 | 4-5
3-4
2-3 | (7) | 3586.12
3600.93 | A
A | 9
10 | 11.17 14.61
11.17 14.60 | 4-4
3-3 | | | 3117.505 | | | | - | (226) | 3339.36
*3273.53 \$ | Ā
A | 10 | 10.33 14.0 | 3 | 1-2
5-5 | | 3603.88
3599.49 | A
A | 9 3 | 11.16 14.59
11.17 14.60 | 2-2
4-3 | | | *3140.692§
3138.207 | A
A | 1
1n | 8.20 12.13
8.22 12.15 | 5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5- | у ⁴ н°-е ⁴ н
(227) | 3280.58
•3292.0499 | A
A | 6
8 | 10.27 14.0 | 2 | 4-4
3-3 | | 3611.72
3587.53 | A
A | 3 | 11.17 14.59
11.17 14.61 | 3-2
3-4 | | | 3300.056 | A . | tr | 8.40 12.13 | -
41-51 | L•v2u•_e4u | 3307.53
3278.04
3283.75 | A
B
A | 5
1d
2 | 10.29 14.0
10.26 14.0
10.27 14.0 | 3 | 2-2
5-4
4-3 | | 3593.15
3250.27 | A
B | 4 | 11.16
14.60
11.17 14.97 | 2-3
3-4 | 2 | | 55001050 | • | 01 | 0110 15110 | 12-02 | (228) | 3109.32 | В | 1 | 10.26 14.2 | | 5-5 | a5F-z5H° | 3294.85
3302.19 | B
B | 1 | 11.17 14.92
11.16 14.90 | 3-2 | | | _ | | | d Lines of Fe | 11 | • | *3129.04 \$ | B
A | 5
8
3 | 10.27 14.2 | 3 | 4-4? | (8) | 3176.00
3178.03 | A | 10
10 | 11.17 15.05
11.17 15.05 | | | | *7376.46 \$
7067.44
6586.69 | B
B
B | 20
20
5 | 5070.957
5061.794
5035.773 | A
A | 2
1
3 | 3164.67
3013.125 | A
A | 3
20 | 10.29 14.1 | | 2-3
5-5 | a5r_z5r° + | 3174.09
3176.86 | A
A
B | 10 | 11.16 15.05
11.17 15.05 | 2-3 | • | | 6517.01
6506.33 | B
B | 5 | 5032.794
*5030.740% | A | 1
3 | 3001.589
3002.99 | A
A | 12
5 | 10.27 14.3
10.33 14.4 | 8
4 | 4-4
1-1 | (9) | 3180.17
3179.08 | P
B | 1 | 11.17 15.05
11.17 15.05 | 3-3 | | | 6493.05 | В | 8 | 5022.874 | A | 1
3 | 3015.230
3008.506 | A
A | 7
5 | 10.27 14.3
10.28 14.3 | | 4-5
3-4 | | 3136.43
3110.052 | A | 10
10 | 11.17 15.10
11.17 15.14 | | | | 6491.28
6442.97
6385.473 | B
B
B | 4
6
5 | 5004.264
4948.848
4579.523 | A
A
A | 3
1
1 | 3000.836
3012.847 | B
B | tr
2 | 10.27 14.3
10.28 14.3 | | 4-3
3-2 | a ⁵ F-z ⁵ D°† | m3083.68 | A
P | Fe I | 11.16 15.16 | | | | 6383.753 | В | 15 | 4480.687 | A | 1 | 302 7.4 6
3055.55 | A
A | 3
5 | 10.29 14.3 | 57
57 | 2-1
1-0 | | 3089.649
3084.09 | B
A | 1
6 | 11.17 15.16
11.17 15.17 | | | | 6375.96
6248.916
6233.52 | B
B
B | 4n
4
3 | 4455.258
4451.545
4402.875 | A
A
A | 3
4
2 | 3007.802
3023.85
3054.134 | A
A
A | 6
8
7 | 10.28 14.3
10.29 14.3
10.33 14.3 | 57 | 3-3
2-2
1-1 | | *3004.109
3009.998 | ВВ | 3
1 | 11.17 15.28
11.17 15.27 | | | | 5962.4 | В | 30N | 4368.262
4361.249 | Ā
A | 1 2 | 3018.744
3050.463 | Ã
A | 6
5 | 10.29 14.3 | 88 | 2-3
1-2 | | 3004.490 | В | <u>ī</u> | 11.16 15.27 | | | | 5956.5 | В | 4N | 4357.574 | Ā | 4 | | | | | | | .3n -5ae | 4391.26 | В | 1 | 11.42 14.23 | 5-5 | a ¹ H-z ⁵ H° | | 5903.6
5891.9
5835.61 | B
B
B | 8N
3
3n | 4331.529
4286.311
4263.895 | A
A
A | 3
1
1 | *3419.49
3421.97 | A | 3
3 | 10.42 14.0
10.42 14.0 | | 2-3
2-2 | c ³ F-z ⁵ G°
(11) | 4927.56 | A | 2 | 11.53 14.03 |
45 | (42)
e ³ F-z ⁵ G° | | 5567.815 | В | 10 | 3860.915 | Ā | .3 | 3108.85 | A | 3 | 10.39 14.3 | | 4-5 | c ³ F-z ⁵ F° | 4226.14 | В | 2 | 11.53 14.45 | 2-3 | | | 5506.268
•5503.397§ | A | 3
1 | 3822.737
3725.901
3652.748 | A
A
A | 3
12
1 | 3143.36 | A | 2 | 10.45 14.3 | | 3-3 | c ³ F _{-z} 5 _D °
(13) | m4005.04
4022.36 | P
A | Fe I | 11.53 14.61
11.53 14.60 | 4-4
3-3 | | | *5466.94 \$
5466.021 | B | 30
30 | 3624.688
•3482.426§ | A | 2 2 | 3283.30
3294.50 | A
A | 2
4 | 10.85 14.6
10.85 14.6 | | 3-4
3-3 | b ¹ F-z ³ F° (14) | 4039.12
4021.75 | A
P | 3 | 11.53 14.59
11.53 14.60 | 2-2
4-3 | | | 5427.832 | В | 30 | *3473.825 | | 3 | 1005 11 | | | | | | .3v5aa | 4035.82
4005.64 | P | | 11.53 14.59
11.53 14.61 | 3-4 | | | 5402.113
5387.136
5318.267 | A
A
A | 2
2
0 | 3453.595
3451.318
3386.724 | A
A
A | 2
2
3 | 4003.41
3464.27 | A
B | 4 | 10.95 14.0 | | 4-4
4-4 | b ³ H-z ⁵ G°
(15)
b ³ H-z ⁵ D° | 4025.67
3990.81 | P
B | tr | 11.53 14.60
11.53 14.62 | | | | 5318.025 | A | 1 | 3356.265 | A | 2 | 3367.54 | A | 3 | 10.95 14.6 | | 4-4 | (16)
b ³ H-z ³ F° | 3800.43 | В | 1 | 11.53 14.78 | 3-2 | (46)
e3F_z3pe | | 5248.028
5169.733
5159.93 | A
A
B | 2
1
4 | *3329.070
*3299.771 | | 3
1 | 3396.71
3347.70 | A
A | 7
8 | 10.98 14.6
10.95 14.6 | | 6-6
5-5 | (17)
b ³ H-z ³ H°
(18) | 3500.29
*3501.75 | A
A | 7
8 | 11.53 15.05
11.53 15.05 | | | | 5156.10
5149.538 | B
A | 6
3 | *3228.600§
3223.444 | A
A | †3
1 | 3329.89
3373.51 | A
A | 7
2 | 10.95 14.6 | 35
34 | 4-4
6-5 | (10) | 3506.93
3501.32 | A
P | 5 | 11.53 15.05
11.53 15.05 | 2-3
4-4 | | | 5147.09 | В | 2 | 3171.016
3165.957 | A | 1 | *3333.27
3357.07 | A | 3 | 10.95 14.6 | | 5-4 | _b 3 _{H-y} 5po | 3504.40
3503.96 | A
P | 2 | 11.53 15.05
11.53 15.05 | | | | 5117.107
5101.48
5100.95 | A
B
B | 0
2N
15 | 3123.715 | A | 3n
1 | 3090.772 | B
B | tr
1 | 10.95 14.9 | | 4-3
4-3 | (19)
_b 3 _{H_v} 5 _F • | m3452.31
*3419.49 | P
A | Fe I | 11.53 15.10
11.53 15.14 | 4-3
3-2 | | | 5100.704 | A . | 2 | 3119.660 | A | 11 | 3026.985 | Ā | · 6 | 10.98 15.0 | 05 | 6-5 | (20)
b ³ H-z ³ G° | 3301.09 | В | tr | 11.53 15.27 | 2-2 | e ³ F-x ⁵ P°
_(50) | | 5097.375
5093.646
5089.278 | A
A
A | 71
1
0 | 3115.352
3071.270 | A
A | 3
3 | m3006.95
3006.122
*3004.109 | P
A
B | Fe III
4
3 | 10.95 15.0
10.95 15.0
10.95 15.0 | 05 | 5-4
4-3
4-4 | (21) | *3118.75 \$
3100.31 | A
P | 5 | 11.53 15.49
11.53 15.51 | 4-4
3-3 | e ³ F_y ³ F° | | 5087.25
5075.829 | B
A | 3 | *3063.8148
2968.906 | Ā | 1 2 | 0004.150 | | | | | | | 3098.93 | P | | 11.53 15.51 | 2-2 | | | | | | 2963.897 | A | 3n | 4305.92
4184.09
4196.69 | A
A
B | 2
4
1 | 11.10 14.0
11.08 14.0
11.08 14.0 | 03 | 5-5
4-5
4-3 | c ³ G-z ⁵ G•
(22) | 4590.68
4663.78 | B
B | tr
1 | 11.54 14.23
11.54 14.19 | 4-5
4-3 | | | | | | | | | *3947.10 | A | 4 | 11.08 14. | | 4-4 | c ³ G-z ⁵ H° | 4025.07 | A | 3 | 11.54 14.61 | | c1G-z3F° | | | I P 3 | | Anal B List | | June 1942
b ³ F-z ⁷ P° | 3663.98 | В | tr | 11.08 14. | 45 | 4-3 | (23)
c ³ G-z ⁵ F°
(24) | 3515.57 | A
P | 5 | 11.54 15.05 | 4-5 | | | 3069.335
3120.24
*3142.22 | B
B
B | 4
1
2 | 6.21 10.23
6.21 10.16
6.20 10.12 | 4-4
3-3
2-3 | (1) | 3664.98
3620.27 | B
A | 1
3 | 11.07 14. | | 3-2
5-4 | c3G-z5p° | 3516.58
3519.25 | В | 1 | 11.54 15.05
11.54 15.05 | 4-4 | | | 3071.238
3109.59 | B
B | 5
1 | 6.21 10.23
6.20 10.16 | 3-4
2-3 | | 3514.87 | A
P | 2 | 11.10 14.6 | 31 | 5-4 | (25)
c ³ G-z ³ F° | 3189.74 | A | | 11.54 15.41 | 4-3 | c ¹ G-y ³ D° (55) | | 5163.74 | В | 1 | 7.84 10.23 | -
4-4 | 9 a5G_z7po | 3512.34
3511.93
3499.57 | B
A | tr
7 | 11.08 14.0
11.07 14.0
11.08 14.0 | 59 | 4-3
3-2?
4-4 | (26) | 5532.65 | В | 1 | 11.98 14.21 | 3-4 | c ¹ F-z ⁵ H° (56) | | | _ | | | | 1 a ⁵ G-z ⁷ p° (2) | *3501.75
3489.07 | A
P | 8 | 11.07 14.0
11.07 14.0 | 30 | 3-3
3-4 | | 4714.53 | В | 1 | 11.98 14.60 | | c ¹ F-z ³ F°
(57) | | 6102.59
6322.98
6487.48 | P
P
P | | 8.31 10.23
8.21 10.16
8.22 10.12 | 3-4
2-3
1-3 | | 3514.39
3474.41 | P
P | | 11.10 14.0
11.08 14.0 | 31
34 | 5-6
4-5 | e ³ G-z ³ H°
(27) | 4671.25
3519.85 | В | tr
1 | 11.98 14.62
11.98 15.49 | | c ¹ F_y ⁵ P°
(58)
c ¹ F_y ³ F° | | 6299.74
6458.68 | P
P | | 8.22 10.12
8.21 10.16
8.21 10.12
8.21 10.12 | 3-3
2-2 | | 3448.63
3489.48 | P
P | | 11.07 14.6 | 55
54 | 3-4
5-5 | •=-• | | | | | | (59) | | 6434.44
4419.59 | P | 10 | 8.21 10.12
8.21 11.00 | 3-2
3-3 | | 3458.91
•3473.82 § | B
B | 2
5 | 11.08 14.6
11.10 14.6 | 55
55 | 4-4
5-4 | | 3525.17
3488.92 | A
A | 3
3 | 13.07 16.58
13.07 16.61 | 2-2
1-1 | | | 4382.31
4365.56 | A
B
B | 1 3 | 8.21 11.03
8.22 11.05 | 3-3
1-1 | (4) | 3167.54 | В | 1 | 11.10 15.0 | 00 | 5-5 | c ³ G-y ⁵ F°
_(28) | 3403.51
3406.18 | A
A | 2
2 | 13.07 16.70
13.08 16.70 | 3-2 | | | 4371.10
4352.70 | B
B | 1
4 | 8.31 11.03
8.21 11.05 | 3-2
2-1 | | *3120.03 § 3108.78 | P | 3 | 11.10 15.0
11.08 15.0 | 05 | 5-5
4-4 | (28)
c ³ G- z ³ G°
(29) | *3410.74 | A | 3 | 13.07 16.69 | | | | 4430.95
4395.78 | A
A | 7
6 | 8.21 11.00 | 3-3
1-3 | | 3102.55
3120.84
3110.85 | P
A
A | 2 | 11.07 15.0
11.10 15.0
11.08 15.0 | 05 | 3-3
5-4
4-3 | | *3410.74
*3357.40 | A
A | 3
4 | 13.08 16.70
13.08 16.75 | | _(6 2) | | 5156.0 | A | 4 | 8.60 11.00 | -
4-3 | b ⁵ D-z ⁵ p• | 3107.950
3100.48 | A
P | 8 | 11.08 15.0
11.07 15.0 | 05 | 4-5
3-4 | | 3370.23
*3339.0466 | A
A | 3n
2 | 13.07 16.85
13.08 16.89 | 1-1 | (63) | | *5127.32
5086.69
5193.89 | B
B
B | 6
3
4 | 8.62 11.03
8.62 11.05
8.62 11.00 | 3-2
2-1
3-3 | | 3070.072 | A | 5 | 11.08 15.
11.07 15. | 10 | 4-3
3-2 | c ³ G-z ³ D°
(30) | 3263.04
3238.74 | A
A | 1 2 | 13.07 16.85
13.08 16.89 | 1-2
3-3 | | | *5127.32
5073.78 | B
B | 6
3 | 8.62 11.03
8.62 11.05 | 2-2
1-1 | | 3035.802
3011.060 | A
B | 3
1 | 11.07 15. | | | o ³ G-y ⁵ D°
(31) | 3264.22 | A | 3 | 13.07 16.85 | 2-2 | 1 | | 5194.43
5114.10 | B
B
B | 4
1
2 | 8.62 11.00
8.62 11.03 | 2-3
1-3
0-1 | | | | | | | | (31) | 3096.86
3099.05 | A
A | 3
2 | 13.07 17.06
13.08 17.06 | | | | 5063.30 | ٥ | | 8.61 11.05 | -
- | REVI | SE | D M | ULTIPLE | T T | ABLE | | | | | | | |-------------------------|--------------|------------------|---|-------------------|--|-------------------------------------|-------------|----------------------|---|--------------------|---|-----------------------------------|--------------|--------------------------
---|---|---| | Labo
I A | rator
Ref | ry
Int | E P
Low High | J | Multiplet
(No) | Labor
I A | | y
Int | E P
Low High | J | Multiplet
(No) | Labor
I A | atory
Ref | | E P
Low High | J | Multiplet
(No) | | III (| contir | nued | | | | Fe III co | ntir | nued | | | | Fe III co | ntinu | led | | | | | 70.34 | A . | 4 | 13.53 16.23 | 2-2 | (66) | 4098.54 | В | 1 | 15.17 18.18 | | y ⁵ D°-e ⁷ D
(101) | 5149.33
5100.706
5030.75 | B
B
B | 7
10
6 | 4143.87
4121.31
4113.45 | B
B
B | 7
6
7 | | 32.97 | A | | 13.53 17.12 | 2-1 | c ¹ D-z ¹ P°
(67) | 3788.91
3496.29 | B
A | tr
4 | 15.17 18.43
15.18 18.71 | 4-4 | y ⁵ D°-e ⁷ S
(102)
y ⁵ D°-e ⁵ D | 5002.02
4948.54 | B
B | 8 | 4113.23
4109.95 | B
B | 7
5 | | 73.3
85.6
60.8 | A
A
A | 4
3
3 | 14.11 16.33
14.12 16.37
14.12 16.38 | 5-6
4-5
3-4 | d ³ G−y ³ H°
(68) | *3482.36 \$
3491.16 | В | 4d
2 | 15.16 18.71
15.17 18.71 | 3-4
2-3 | (103) | 4596.09
4573.14 | B
B | 5
5 | 4008.81
3964.11 | B
B | 5
5 | | 76.88 | A | 4 | 14.11 17.22 | 5-5
4-4 | d ³ G−w ³ G∘
(69) | 4237.21
*4238.7869 | B
B | 2 5 | 15.27 18.18
15.27 18.18 | 2-2
2-1 | x ⁵ P°-e ⁷ D
(104) | 4559.09
4535.50
4271.47 | B
B
B | 6
5
6 | 3743.40
3652.65
3589.77 | B
B
B | 8
6
5 | | 53.76
47.10
45.08 | P
A
A | Fe III
4
3 | 14.13 17.34
14.13 17.34
14.13 17.34 | 3-3
4-3 | (69) | 4211.51 | В | 3 | 15.25 18.18
15.28 18.71 | 1-2 | x ⁵ p•_e ⁵ p | 4266.88
4255.20 | B
B | 5 | 3367.02
3338.72 | ВВ | 6 | | 28.44 | A | 2 | 14.13 17.34 | | d ³ G_y ¹ F° | 3598.22
3572.46 | В | 1 | 15.25 18.71 | 1-2 | (105) | 4249.95
4243.85 | B
B | 7
8 | 3309.40
3304.31 | B
B
B | 6
9
6 | | 47.40
93.52
86.94 | P
A
A | Fe II
3
4 | 14.11 17.41
14.13 17.37
14.13 17.38 | 5-4
4-3
3-2 | d3G_v3F°
(71) | 4462.90
4467.36 | B
B | 3
1 | 15.42 18.18
15.42 18.18 | 2-3?
2-1? | y ³ D°-e ⁷ D
(106) | 4235.54
4222.39 | В | 10
8 | *3295.24 \$ | В | 8 | | 82.19
60.84 | A
A | 6
6 | 14.11 17.76
14.12 17.79 | 5-5
4-4 | d ³ G_v³G●
(72) | 4100.52 | В | 3 | 15.42 18.43 | 2-3 | y ³ D°-e ⁷ S
(107) | 4220.32
4210.87
4200.38 | B
B
B | 5
10
6 | 3151.86
3123.18
3121.08 | B
B | 10
10 | | 58.74
59.18
57.40 | A
A
A | 4
3
4 | 14.13 17.79
14.11 17.79
14.13 17.79 | 3-3
5-4
4-3 | | 4621.39
4616.95 | ВВ | 3 | 15.51 18.18
15.51 18.18 | 2-3
3-2 | y ³ F°-e ⁷ D
(108) | 4200.06
4189.10 | B
B | 6
7 | 3086.311
3044.438 | B
B | 6
5 | | 31.62 | A | 5 | 14.11 17.82 | 5-4 | | 4626.53
4624.42 | B
B | i
tr | 15.51 18.18
15.51 18.18 | 2-1
2-2 | (212) | 4179.25
4174.27 | B
B | 5
10 | | | | | 06.94
15.80
33.27 | A
A
A | 4
3
3 | 14.12 17.85
14.12 17.84
14.12 17.82 | 4-3
3-2
4-4 | (73) | 3831.75
3860.46 | B
B | tr
1 | 15.49 18.71
15.51 18.71 | 4-3
3-3 | y ³ F°-e ⁵ D
(109) | 4154.98
4145.74 | B
B | 8
5 | | | | | 62.44 | A | 6 | 14.11 17.90 | 5-4 | d ³ G-x ¹ G°
_(74) | 5436.80 | В | 1 | 15.91 18.18 | -
2–3 | y ³ P°-e ⁷ D | | | | | | | | 56.54 | A | 2 | 14.12 17.91 | 4-3 | | 5286.74
5443.88 | B
B | tr
3 | 15.85 18.18
15.91 18.18 | 0-1
3-1 | (110) | Co I I I | | 4 Anal | A List B | Feb | | | 22.00
45.877 | A | 3
3 | 14.11 18.20
14.12 18.17 | 5-5
4-4 | (76) | 4908.74 | В | 1 | 15.91 18.43 | 2-3 | y ³ P°-e ⁷ S
(111) | 4233.996
4339.13
4361.913 | E
P
A | (1N) | 0.00 2.91
0.10 2.94
0.17 3.00 | 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ F-z ⁶ F°
(1) | | 35.80
87.659 | B
B | 1 1 | 14.26 18.19
14.19 18.19 | 6-5
3-4 | z ⁵ H°-e ⁷ D
(77) | 5269.15 | В | 4 | 16.37 18.71 | 5-4 | y ³ H°-e ⁵ D | 4361.031
4190.712
4252.302 | C
A
A | (1n)
20
12 | 0.22 3.05
0.00 2.94
0.10 3.00 | 15-25
45-45
35-35 | | | 46.399 | В | tr | 14.38 18.43 | _ | z ⁵ F°-e ⁷ S | 5243.3
5282.1 | A
A | 10 | 18.19 20.54
18.19 20.52 | 5-4
4-3 | e ⁷ D-y ⁷ P° (113) | 4285.782
4303.235
*4109.706 | A
A
E | 6
3
(1d) | 0.17 3.05
0.22 3.09
0.00 3.00 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | | 94.156 | | 1 | 14.44 18.43 | 2-31
- | (78) | 5306.6
*5235.3 \$ | A
A | 4
5 | 18.18 20.51
18.19 20.54 | 3-2
4-4 | (220) | 4179.90
4229.955 | P
A
C | (2n) | 0.10 3.05
0.17 3.09
0.22 3.11 | 3 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | | 38.31 | В | 1 | 14.37 18.18 | 2–2 | (79) | *5276.2 \$ 5302.5 5229.57 | A
A
B | 7
6
2 | 18.18 20.52
18.18 20.51
18.18 20.54 | 3-3
2-2
3-4 | | 4268.032
4059.321 | G. | (1n)
(1) | | 1출- 출
4출-4출 | a4F_z6D° | | 47.119 | В | 1 | 14.38 18.43 | 3 – 3 | z ⁵ n•_e ⁷ s
(80) | 5272.0
5299.9 | A
A | 3
5 | 18.18 20.52
18.18 20.51 | 2-3
1-2 | | 4088.291
4108.488
3956.270 | A
F
A | (1)
(2) | 0.00 3.04
0.10 3.13
0.17 3.18
0.00 3.13 | 3 1 - 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | (2) | | 86.880 | В | tr | 14.43 18.43 | 2–3
– | z ⁵ g°_e ⁷ S
(81) | 5833.65
58 91. 5 | C | 10
6 | 18.43 20.54
18.43 20.52 | 3-4
3-3 | e ⁷ S-y ⁷ P* | 4011.089
4054.618
4198.425 | A
C | 2 | 0.10 3.18
0.17 3.22
0.10 3.04 | 31-21
21-11
31-41 | | | 69.82 | A | 4 | 14.56 17.26 | 4-4 | (82) | 5929.5 | Ā | 5 | 18.43 20.51 | 3-2 | (141) | 4189.50
4177.59 | H
H | (2)
(2)
(1)
(1) | 0.17 3.12
0.22 3.18 | $3\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ | | | 53.18 | A
A | 3
2 | 14.56 17.85
14.56 17.90 | | d ¹ G-y ¹ H°
(83)
d ¹ G-x ¹ G° | 5953.65
5920.0 | C | 6
7w | 18.71 20.78
18.71 20.79 | 4-3
-2 | e ⁵ D-w ⁵ p° | 3909.933
3979.518 | A
A | 15
10 | 0.00 3.16
0.10 3.20 | 41-51
31-41 | a ⁴ F-z ⁶ G° † (3) | | 90.60 | A | 4 | 14.56 17.91 | | (84)
d ¹ G-x ¹ F° | 5901.0 | Ā | 3 | 18.71 20.80 | - 1 | e ⁵ D-w ⁵ F° | 4027.032
4057.195 | A
A | 10
5 | 0.17 3.24
0.23 3.27
0.17 3.26 | 15-25 | | | 54.35 | A | 3 | 14.56 18.13 | 4-3 | (85)
d1g_u3g•
(86) | 3007.2 | A | 20wn | 18.71 22.81 | - | (116) | 3992.014
3526.847 | G
A | (1)
100R | | 2½-2½
4½-4½ | a ⁴ F-z ⁴ F° | | 18.34 | A | 6 | 14.56 18.40 | 4-4
- | (86)
d ¹ G-w ¹ G°
(87) | 6032.30
5999.30
5978.90 | 000 | 7
5
5n | 18.73 20.78
18.73 20.79
18.73 20.80 | 2-3
2-3
2-1 | e ⁵ 8_₩ ⁵ ₽°
(117) | 3575.361
3594.870
3602.079 | A
A
A | 60r
50R
40R | 0.10 3.55
0.17 3.61
0.22 3.65 | 3 1 - 3 1 2 1 3 1 3 - 3 1 3 - 3 1 3 1 3 1 3 1 3 1 3 | a ⁴ F-z ⁴ F° (4) | | 46.77
52.55 | B
B | tr
tr | 14.61 18.19
14.61 18.18 | 4-5
4-3 | z ³ F°-e ⁷ D
(88) | | | | | - | y ⁷ P°-f ⁷ D | *3474.018
3520.075 | F
A | 100R
15 | 0.00 3.55
0.10 3.61 | 45-35
35-25
25-15 | | | 03.282 | В | 1 | 14.60 18.71 | 3–3 | z ³ F°-e ⁵ D†
(89) | 4164.79
4137.93
4120.97 | A
A
A | 20
10
8 | 20.54 23.51
20.52 23.51
20.51 23.50 | 4-5
3-4
2-3 | (118) | 3550.592
3631.390
3652.541 | A
A
A | 20r
20r
15 | 0.17 3.65
0.10 3.50
0.17 3.55
0.22 3.61 | $3\frac{1}{2} - 4\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | | | 74.94
87.11 | ВВ | 1
tr | 14.64 18.19
14.65 18.19 | 5-4
4-5 | z ³ H°-e ⁷ D
(90) | 4166.86
4139.37
4122.06 | A
A
A | 9
8
8 | 20.54 23.51
20.52 23.51
20.51 23.50 | 4-4
3-3
2-2 | | 3647.658
3465.792 | A
A | 12
100 R | 0.22 3.61
0.00 3.56 | | a4F-z4G* † | | 43.067 | В | 2 | 14.65 18.71
14.65 18.71 | 4-4 | | 4168.41
4140.51 | A | 4
6
8 | 20.54 23.51
20.52 23.50
20.51 23.50 | 4-3
3-2
2-1 | | 3513.478
3529.032 | A
A
A | 50R
30r
25r | 0.10 3.61 | 3 1 - 4 1 2 1 | a ⁴ F-z ⁴ G°† (5) | | 143.439 | | | | 4-3 | | 4122.98
4081.19 | A
A | 7 | 20.54 23.57 | 4-3 | y ⁷ P°-f ⁷ S | 3533.356
3415.519
3456.924 | A
A | 5
9 | 0.22 3.72
0.00 3.61
0.10 3.67
0.17 3.72 | 41-41
31-31 | | | 46.714
60.162 | | 3 | 14.66 18.71
14.67 18.71 | 2-3
1-2 | y ⁵ P°-e ⁵ D
(92) | 4053.28
4035.54 | A
A | 5
4 | 20.52 23.57
20.51 23.57 | 3-3
2-3 | (119) | 3483.80
3412.633 | A
C | (6)
80R | 0.17 3.72 | 25-25
43-33 | a ⁴ F-z ⁴ D° | | 24.25
60.85 | ВВ | 1 3 | 14.78 18.18
14.81 18.18 | -
2-1
1-3 | z ³ P°-e ⁷ D
(93) | *3954.38
3968.78 | A
A | 12 | 20.78 23.90
20.79 23.90 | 3-4
3 -3 | w ⁵ P°-f ⁵ D
(120) | 3431.582
3442.918
3455.237 | Ā
A
A | 50r
40r
25r | 0.00 3.62
0.10 3.70
0.17 3.76
0.22 3.80
0.10 3.62
0.17 3.70
0.22 3.76
0.17 3.62
0.23 3.76 | 31-21
21-11 | (6) | | 88.71 | В | tr | 14.84 18.18 | 0-1 | | 3978.43
*3954.38 | A
A | 4
12 | 20.80 23.90
20.78 23.90 | 1-2
3-3 | (150) | 3510.426
3502.63 | A
A | 30r
30r | 0.10 3.62
0.17 3.70 | 31-31
21-21 | | | 40.08
68.21 | B | 3
1 | 14.78 18.71
14.81 18.71 | 2-3
1-2 | z ³ P°-e ⁵ D
(94) | m3969.43
3979.42
3980.14 | P
A
A | Fe I
5
3 | 20.79 23.90
20.80 23.90
20.80 23.90 | 2-3
1-1
1-0 | | 3491.316
3584.801
3552.720 | A
C
A | 15
15
8 | 0.22 3.76
0.17 3.62
0.22 3.70 | 15-15
25-35
15-25 | | | 28.44
777.43 | ВВ | 2 1 | 14.97 18.19
14.92 18.18 | 4-5
2-2 | y ⁵ F°-e ⁷ D
(95) | 4310.37 | A | 12n | 22.77 25.63 | - | z ⁷ F°-e ⁷ G | 3153.692
3132.218 | E
A | (1)
4 | | | a ⁴ F-z ² G° † | | 324.72 | A | 3 | 15.00 18.71 | 5-4 | y5F°_e5D | 4304.81
4296.86 | A |
10n
10n | 22.77 25.63
22.76 25.63 | 5-6
4-5 | (121) | 3237.028
3191.297 | A
A | 8
4 | 0.00 3.91
0.10 4.04
0.10 3.91
0.17 4.04 | $3\frac{1}{2} - 4\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | **/ | | 374.95
399.77 | | 4
3
4 | 14.97 18.71
14.94 18.71
14.97 18.71 | 4-3
3-2
4-4 | (96) | 4286.13
4273.42 | A | 10n
7n | 22.75 25.63
22.75 25.63 | 3-4
2-3 | | 3136.726
3219.150 | A
A | 5
5 | 0.00 3.93
0.10 3.93
0.17 4.05
0.17 3.93
0.22 4.05 | 41-31
31-31 | a ⁴ F-z ³ F° (8) | | 355.49
374.65 | A
B | 2 | 14.92 18.71
14.94 18.71 | 2-2
3-4 | | 4372.4 | A | 20wn | 22.81 25.63 | - | w ⁵ F°-e ⁵ G | 3186.350
3281.585
3227.752 | A
A
A | 5
2
2 | 0.17 4.05
0.17 3.93
0.33 4.05 | 21-21
21-31 | | | 877.77 | В | tr | 15.05 18.71 | -
4-4 | z ³ G°-e ⁵ D
(97) | Strongest
(Some pos | Uncl | lassifie
v Fe TT\ | d Lines of Fe | 111 | \-~~/ | 3121.415
3139.947 | C
A | 10
12 | 0.00 3.95 | 41-31
31-21 | a ⁴ F-y ⁴ D* | | 051.08
053.59 | ВВ | 2 1 | 15.14 18.18
15.14 18.18 | | z ³ D°-e ⁷ D | 6185.1 | В | 5 | 5353.78 | В | 5 | 3149.310
•3159.662 | A
A | 10
10 | 0.00 3.95
0.10 4.03
0.17 4.09
0.22 4.13
0.10 3.95
0.22 4.09
0.17 3.95
0.22 4.03 | 21-11
11-11 | 107 | | 711.32 | В | 3 | 15.14 18.18 | 2-2
3-3 | (98)
z ³ p•_e ⁷ s | 5875.6
5854.1
5587.9 | B
B
B | 5
5
5 | 5340.92
5339.92
5291.78 | B
B
B | 5
7
5 | 3203.026
3199.322
3189.752 | A
A
A | 4
4
5 | 0.10 3.95
0.17 4.03
0.23 4.09 | 23-23
23-23
13-13 | | | 158.18
184.18 | ВВ | tr
1 | 15.14 18.71
15.16 18.71 | 2-2
1-2 | z ³ D°-e ⁵ D
(100) | 5466.46
5430.14 | В | 5
5 | 5284.85
5272.86 | B
B | 5
6 | m3264.83
3241.05 | P
A | Ço
(3) | 0.17 3.95
0.22 4.03 | 21-31
11-21 | | | | - | | | | ,, | 5 402.27
538 7.3 5 | B | 5
5 | 5260.25
5227.53 | B
B | 10
6 | | | | | | | | | | | | | | 5375.68
5363. 8 0 | B | 5
6 | 5216.99
5177.73 | B | 8
5 | | | | | | | | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | |---|--|--|---|--|---| | Co I continued | | Co I continued | | Co I continued | | | 3082.614 A 13r
3158.772 A 13
3147.060 A 15r
3137.328 A 10
•3079.394 A 5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3405.120 C 150R
3409.177 C 60r
3417.154 A 50r
3433.045 A 60R
3334.146 A 30r | 0.43 4.05 $4\frac{1}{2}-4\frac{1}{2}$ $b^4F-y^4F^0$
0.51 4.13 $3\frac{1}{2}-2\frac{1}{2}$ (23)
0.58 4.19 $\frac{1}{2}-2\frac{1}{2}$
0.63 4.22 $\frac{1}{2}-1\frac{1}{2}$
0.43 4.13 $\frac{1}{2}-3\frac{1}{2}$
0.51 4.19 $\frac{3}{2}-2\frac{1}{2}$
0.58 4.22 $\frac{1}{2}-1\frac{1}{2}$ | 3326.564 C 2
*3314.073 A 8
3287.827 C (2)
3275.66 A (1) | 1.70 5.41 $2\frac{1}{2}-3\frac{1}{2}$ $a^4P-w^4F^9$
1.73 5.46 $1\frac{1}{2}-3\frac{1}{2}$ (43)
1.70 5.46 $2\frac{1}{2}-2\frac{1}{2}$
1.73 5.50 $1\frac{1}{2}-1\frac{1}{2}$ | | *3079.394 A 5
3089.596 A 10
3098.194 A 10
3013.592 A 8
3043.481 A 8 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3354.374 A 20
*3388.163\$ A 30r
3483.410 A 20r
*3474.018 F 100R
3462.804 A 60r | 0.51 4.19 3½-3½
0.58 4.22 3½-1½
0.51 4.05 3½-4½
0.58 4.13 3½-3½
0.63 4.19 1½-3½ | 3359.284 A 6
3401.617 C 2
3373.969 A 4
3318.398 A 4 | 1.70 5.38 2½-3½ 8 ⁴ P-x ² F°
1.73 5.36 1½-2½ (44)
1.70 5.36 2½-2½ | | 3044.004 A 30R
3061.822 A 20r
3072.341 A 15r
3086.777 A 15r | 0.00 4.05 4½-4½ a ⁴ F-y ⁴ F°
0.10 4.13 3½-3½ (11)
0.17 4.19 3½-3½
0.23 4.33 1½-1½ | 3409.646 C (2)
3370.322 A 10
3474.530 A 6 | 0.51 4.13 3½-3½ b ⁴ F-z ³ D°†
0.58 4.24 2½-1½ (24)
0.58 4.13 3½-3½
0.63 4.13 1½-3½ | 3346.310 C 1
3319.561 C (2)
3345.146 E (1)
3387.47 A 1 | 1.70 5.42 $3\frac{1}{2}$ $3\frac{1}{2}$ $4^4P - x^2D^9$
1.73 5.42 $1\frac{1}{2}$ $1\frac{1}{2}$ (45)
1.70 5.42 $3\frac{1}{2}$ $1\frac{1}{2}$
1.73 5.43 $1\frac{1}{2}$ $3\frac{1}{2}$
1.78 5.42 $\frac{1}{2}$ $1\frac{1}{2}$ | | 2987.166 A 15r
3017.548 A 15r
3048.888 A 12r
3121.566 C 10 | 0.00 4.13 4\frac{1}{2}-3\frac{1}{2}
0.10 4.19 3\frac{1}{2}-3\frac{1}{2}
0.17 4.33 2\frac{1}{2}-1\frac{1}{2}
0.10 4.05 3\frac{1}{2}-4\frac{1}{2} | *3521.731 C 5 3337.171 A 8 3333.388 A 10 | 0.43 4.13 42-42 b ⁴ F-y ² G°
0.51 4.21 32-32 (25)
0.51 4.13 32-42
0.58 4.21 32-32 | 3286.545 C 1
*3326.27 A (1) | 1.73 5.49 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ P-z ² S° 1.78 5.49 $\frac{1}{2}$ $\frac{1}{2}$ (46) | | 3118.249 A 5
3110.821 A 5 | 0.17 4.13 23-35
0.22 4.19 12-32 | 3412.339 C 80R
3395.370 A 40r | 0.51 4.13 3½-4½
0.58 4.21 3½-3½
0.43 4.38 4½-3½ b ⁴ F-y ² F° | 3358.035 A 4
3364.719 E (3)
3388.232 C 1
3339.256 E (1) | 1.70 5.49 $3\frac{1}{2}-3\frac{1}{2}$ $a^4P-y^4P^\circ$
1.73 5.51 $1\frac{1}{2}-1\frac{1}{2}$ (47)
1.78 5.54 $\frac{1}{2}-\frac{1}{2}$
1.70 5.51 $3\frac{1}{2}-1\frac{1}{2}$ | | 3062.199 A 5
3034.432 A 6
3118.636 A 1
3071.957 A 6
3158.293 E (1) | 0.10 4.13 $3\frac{1}{2}-2\frac{1}{2}$ $a^4F-z^2D^0$
0.17 4.24 $3\frac{1}{2}-1\frac{1}{2}$ (12)
0.17 4.13 $3\frac{1}{2}-3\frac{1}{2}$
0.23 4.24 $1\frac{1}{2}-1\frac{1}{2}$
0.23 4.13 $1\frac{1}{2}-3\frac{1}{2}$ | 3127.252 A 7
3105.929 A 3
3193.164 A 5
*3159.662 A 10
3249.995 A 6 | 0.51 4.48 3½-3½ (26)
0.51 4.38 3½-3½
0.58 4.48 2½-3½
0.58 4.38 2½-3½ | 3243.579 C 2
3283.777 C 3
3303.881 A 4 | 1.73 5.54 $1\frac{1}{2}$ $\frac{1}{2}$ 1.73 5.49 $1\frac{1}{2}$ $-\frac{1}{2}$ 1.78 5.51 $\frac{1}{2}$ $-\frac{1}{2}$ | | 2989.590 A 15r
3000.545 A 7
3064.370 A 5
3054.734 C 4 | 0.00 4.13 42-42 a ⁴ F-y ² G°† 0.10 4.21 32-32 (13) 0.10 4.13 32-42 0.17 4.21 32-32 | 3198.660 A 5
 | U.03 4.40 12-22 | 3103.983 C 5
3136.999 C 1
3113.473 A 6
3131.829 A 1
3173.140 A 1 | 1.70 5.68 $3\frac{1}{2}-2\frac{1}{2}$ $a^4P-x^4P^\circ$
1.73 5.67 $1\frac{1}{2}-1\frac{1}{2}$ (48)
1.70 5.67 $3\frac{1}{2}-1\frac{1}{2}$
1.73 5.67 $1\frac{1}{2}-\frac{1}{2}$
1.73 5.67 $\frac{1}{2}-\frac{1}{2}$ | | 4966.581 A 2
5071.40 P | | 4699.180 A (0)
4484.513 A (2)
4619.329 G (1)
4411.786 E (1) | 0.92 3.67 3 1-31
1.04 3.72 2 1-21
0.92 3.73 3 1 -2 1 | 3107.044 C 3
3095.716 A 3
3137.755 A 4 | 1.70 5.68 $3\frac{1}{2} - 3\frac{1}{2} a^4 P - v^4 D^0$
1.73 5.73 $1\frac{1}{2} - 2\frac{1}{2}$ (49)
1.78 5.71 $\frac{1}{2} - 1\frac{1}{2}$ | | 5091.282 G (1)
5085.695 G (1)
4907.125 C (2) | 0.43 | 4121.318 A 60
4118.774 A 50
3952.917 C 25 | 0.92 3.91 $3\frac{1}{2}$ $4\frac{1}{2}$ a^{2} F- z^{2} G*
1.04 4.04 $2\frac{1}{2}$ (38)
0.92 4.04 $3\frac{1}{2}$ $3\frac{1}{2}$ | 3103.405 A 4 | 1.73 5.71 $1\frac{1}{2}$ - $1\frac{1}{2}$ 17 1.78 5.74 $\frac{1}{2}$ - $\frac{1}{2}$ 1.70 5.71 $2\frac{1}{2}$ - $\frac{1}{2}$ | | 4953.179 A 2
4987.853 A 2
5007.286 A (2)
4796.378 A 1
4855.235 A (1) | 0.58 3.05 2½-2½
0.63 3.09 1½-1½
0.43 3.00 4½-3½
0.51 3.05 3½-3½ | 4092.386 A 25
4110.532 A 25
3945.326 A 15
4270.427 A (1n) | 0.93 3.93 3 1 -3 1 a ² F-z ² F°
1.04 4.05 2 1 -2 1 (29)
0.92 4.05 3 1 -3 1
1.04 3.93 2 1 -3 1 | 3040.812 A 1
3109.506 A 4
3086.393 A 4
3063.25 A (1) | 1.70 5.76 $2\frac{1}{2}-2\frac{1}{2}$ $a^{4}P-v^{2}P^{6}$
1.73 5.70 $1\frac{1}{2}-1\frac{1}{2}$ (50)
1.70 5.70 $3\frac{1}{2}-1\frac{1}{2}$
1.73 5.76 $1\frac{1}{2}-2\frac{1}{2}$ | | 4912.399 A 1
4959.682 A (1)
4727.936 A 3 | 0.63 3.11 1 2- 2 | 4066.365 A 15
4132.155 C 4
3965.236 A 2 | 0.93 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F-y^{4}D^{9}$
1.04 4.03 $3\frac{1}{2}-3\frac{1}{2}$ (30)
0.93 4.03 $3\frac{1}{2}-3\frac{1}{2}$ | 3145.022 A 3
3050.932 C (3)
3073.520 A 3 | 1.78 5.70 $\frac{1}{2}$ - $1\frac{1}{2}$
1.70 5.75 $2\frac{1}{2}$ - $1\frac{1}{2}$ $a^4P-y^4S^9$ 1
1.73 5.75 $1\frac{1}{2}$ - $1\frac{1}{2}$ (51) | | 4732.051 A (5)
4588.730 A 1 | 0.51 3.13 3\frac{1}{2} (15)
0.43 3.13 4\frac{1}{2} \frac{1}{2}
0.51 3.18 3\frac{1}{2} \frac{1}{2}
0.58 3.22 3\frac{1}{2} \frac{1}{2} | 3995.306 A 60
4045.386 A 20
3885.275 A 6 | 0.93 4.01 $3\frac{1}{2}$ $4\frac{1}{2}$ $a^{2}F-y^{4}G^{\circ}$
1.04 4.10 $2\frac{1}{2}$ (31)
0.92 4.10 $3\frac{1}{2}$ $3\frac{1}{2}$ | 3039.563 A 3
*3024.400 A (1)
3061.983 E (1) | 1.70 5.76 $3\frac{1}{2}-1\frac{1}{2}$ $a^4P-y^2P^{\circ}$
1.73 5.81 $1\frac{1}{2}-\frac{1}{2}$ (52)
1.73 5.76 $1\frac{1}{2}-1\frac{1}{2}$ | | 4828.908 A (1)
4677.528 F (1)
4880.25 H (2)
4857.938 G (1)
4837.948 G (2) | 0.51 3.04 34-44
0.58 3.12 24-34
0.63 3.18
14-24 | 3965.011 E 1
3811.065 A 5
3935.964 A 30 | 1.04 4.16 2½-3½
0.92 4.16 3½-3½
0.92 4.05 3½-4½ a ³ F-v ⁴ F° | 3096.408 A 3
 | | | 4030.898 A 30
4058.183 A 8
4076.134 A 3
4082.593 A 3 | 0.43 3.50 4½-4½ b ⁴ F-z ⁴ F° 0.51 3.55 3½-3½ (16) 0.58 3.61 2½-3½ 0.63 3.65 1½-1½ | 3997.901 A 40
3841.458 A 5
3922.755 A 7
3884.601 A 10 | 0.92 4.05 $3\frac{1}{2} - 4\frac{1}{2} a^3F - y^4F^0$
1.04 4.13 $3\frac{1}{2} - 3\frac{1}{2}$ (32)
0.93 4.13 $3\frac{1}{2} - 3\frac{1}{2}$
1.04 4.19 $3\frac{1}{2} - 3\frac{1}{2}$
1.04 4.23 $3\frac{1}{2} - 1\frac{1}{2}$ | 7437.16 C 1
7478.77 C (1)
7124.47 C 1
7250.13 C 1 | 1.87 3.55 $2\frac{1}{2}-3\frac{1}{2}$ $b^4P-z^4F^\circ$
1.95 3.61 $1\frac{1}{2}-3\frac{1}{2}$ (53)
2.00 3.65 $\frac{1}{2}-1\frac{1}{2}$
1.87 3.61 $\frac{3}{2}-3\frac{1}{2}$
1.95 3.65 $1\frac{1}{2}-1\frac{1}{2}$ | | 3952.326 C 8
3987.117 A 6
4019.288 A 5
4130.538 E (1n)
4150.429 A 2 | 0.43 3.55 44-35
0.51 3.61 32-35
0.58 3.65 25-15
0.51 3.50 32-45
0.58 3.55 22-35 | 3842.047 A 30
3861.164 A 30
3998.554 E (in) | 0.92 4.13 $3\frac{1}{2}-3\frac{1}{2}$ $a^{2}F-z^{2}D^{0}$
1.04 4.24 $3\frac{1}{2}-1\frac{1}{2}$ (33)
1.04 4.13 $3\frac{1}{2}-3\frac{1}{2}$ | 7084.974 A 100
7052.872 A 60
7016.602 A 35
6771.040 A 50 | 1.87 3.62 $3\frac{1}{2}-3\frac{1}{2}$ $5^4P-z^4D^0$
1.95 3.70 $1\frac{1}{2}-2\frac{1}{2}$ (54)
2.00 3.76 $\frac{1}{2}-1\frac{1}{2}$
1.87 3.70 $3\frac{1}{2}-3\frac{1}{2}$ | | 3941.728 A 30
3978.650 A 10
3991.684 A 6 | 0.43 3.56 42-52 b4F-z4G°
0.51 3.61 32-42 (17)
0.58 3.67 22-32
0.63 3.72 12-32
0.43 3.61 42-42 | 3845.468 A 60
3894.073 A 60
3745.491 A 25 | 0.92 4.13 3\frac{1}{2} a^2 F - y^2 G^\circ\text{1.04} 4.21 2\frac{1}{2} - 3\frac{1}{2} (34) \\ 0.92 4.21 3\frac{1}{2} - 3\frac{1}{2} | 6814.950 A 40
6872.32 A 40
6551.466 A 3
6678.818 A 5 | 1.95 3.76 $1\frac{1}{2}-1\frac{1}{2}$
3.00 3.80 $\frac{1}{2}-\frac{1}{2}$
1.87 3.76 $3\frac{1}{2}-1\frac{1}{2}$
1.95 3.80 $1\frac{1}{2}-\frac{1}{2}$ | | 3994.542 A 6
•3876.831 A 30
3906.287 A 10
3933.918 A 6 | 0.63 3.73 12-25
0.43 3.61 47-45
0.53 3.67 35-35
0.58 3.72 27-25
0.43 3.67 47-35 | 3569.370 A 80R
3587.186 A 70R
3480.719 C 4
3704.060 A 25 | 0.92 4.38 $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F - y^{2}F^{0}$
1.04 4.48 $3\frac{1}{2}$ $-2\frac{1}{2}$ (35)
0.92 4.48 $3\frac{1}{2}$ $-3\frac{1}{2}$
1.04 4.38 $3\frac{1}{2}$ $-3\frac{1}{2}$ | 5935.391 A 6
5922.365 C (in) | 1.87 3.95 $3\frac{1}{2} - 3\frac{1}{2} b^4 P - y^4 D^6$
1.95 4.03 $1\frac{1}{2} - 3\frac{1}{2}$ (55) | | 3808.102 A 10
3850.945 A 4
3873.120 A 60 | 0.51 3.74 35-45 | 3489.399 A 60r
3518.340 A 50R
3618.010 A 4 | 0.93 4.46 $3\frac{1}{2}-3\frac{1}{2}$ $a^{3}\mathbf{F}-\mathbf{y}^{3}\mathbf{D}^{\circ}$
1.04 4.55 $3\frac{1}{2}-1\frac{1}{2}$ (36)
1.04 4.46 $3\frac{1}{2}-3\frac{1}{2}$ | 5469.305 C 4
5381.105 C 5
•5651.734 C (1n) | 1.87 4.13 $3\frac{1}{2}-3\frac{1}{2}$ $b^4P-z^2D^{\circ}$
1.95 4.24 $1\frac{1}{2}-1\frac{1}{2}$ (56)
1.95 4.13 $1\frac{1}{2}-3\frac{1}{2}$ | | 3873.953 A 40
3881.869 A 25
3894.976 A 20
3974.726 A 10 | 0.51 3.70 3½-3½ (18)
0.58 3.76 3½-1½
0.63 3.80 1½- ½ | 6450.230 A 80
6282.636 A 40 | 1.70 3.62 3 3 a4P-s4D°
1.73 3.70 1 3 3 (37) | 4781.432 A 3
4737.769 A 2
4608.908 A (0)
4930.373 A 1 | 1.87 4.46 3½-3½ b ⁴ P-y ³ D°
1.95 4.55 1½-1½ (57)
1.87 4.55 3½-1½
1.95 4.46 1½-3½ | | 3957.928 A 15
3940.887 A 12
*4063.174 A (0)
m4019.30 P Co | 0.51 3.62 32-35
0.58 3.70 25-25
0.63 3.76 12-15
0.58 3.62 35-35
0.63 3.70 12-25 | 6230.968 C 10
6189.005 A 10
6093.144 A 10
6116.994 A 8 | 1.70 3.70 3-13
1.73 3.76 15-15 | 4834.359 G —
4086.300 A 15
4068.541 A 8 | 2.00 4.55 2 -1 2 | | 3542.976 E 2
3496.681 C 15
3417.795 C 6 | 0.43 3.91 44 44 b ⁴ F-z ² G*
0.51 4.04 37-35 (19)
0.43 4.04 47-35
0.51 3.91 37-45
0.58 4.04 22-32 | 6005.030 A (3)
5984.092 A 3
5530.780 A 10 | 1.70 3.76 $2\frac{1}{2} - 1\frac{1}{2}$
1.73 3.80 $1\frac{1}{2} - \frac{1}{2}$ | 4058.600 A 6
3973.144 A 10
3990.299 A 6
4013.942 A 7 | 1.87 4.89 32-32 b ⁴ P-x ⁴ D°
1.95 4.98 12-32 (58)
3.00 5.04 2-12
1.87 4.98 32-32
1.95 5.04 12-12
3.00 5.07 2-2 | | 3627.806 A 25r
3564.947 A 25r
3521.567 C 30r | 0.51 3.91 3\frac{1}{2} \frac{1}{2} \\ 0.58 4.04 2\frac{1}{2} - 3\frac{1}{2} \\ 0.43 3.93 4\frac{1}{2} - 3\frac{1}{2} b^4 F - z^2 F^4 | *5265.523 F (1)
5483.354 A 40 | 1.70 3.93 32-32 a ⁴ P-z ³ F°
1.70 4.05 32-32 (38)
1.70 3.95 32-32 a ⁴ P-y ⁴ P°
1.73 4.03 12-32 (39) | 3898.485 A 4
3947.125 A 3 | 1.87 5.04 $3\frac{1}{2} - 1\frac{1}{2}$
1.95 5.07 $1\frac{1}{2} - \frac{1}{2}$ | | 3490.736 A 10
3605.370 A 30r
3558.773 A 13 | 0.43 3.93 4 3 5 6 4 -2 2 p 0.51 4.05 3 2 -3 2 -3 0.51 3.93 3 2 -3 3 3 -3 3 3 -3 3 3 3 3 3 3 3 3 3 | 5331.456 A 15
5301.042 A 15
5230.210 A 25 | 1.78 4.09 1-19
1.70 4.03 25-25
1.73 4.09 15-15 | 4033.399 A 4
4092.848 C 3 | 1.95 5.01 $1\frac{1}{2} - 1\frac{1}{2}$ (59)
2.00 5.01 $\frac{1}{2} - 1\frac{1}{2}$ | | 3608.307 C 3
3502.278 A 100R | | 5247.921 A 15
5165.156 A 3
5149.796 A 4 | 1.78 4.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3856.796 A 4
3946.633 A 2
3568.426 C 2 | 1.87 5.07 3½-3½ b ⁴ P-3°
1.95 5.07 1½-3½ (60)
1.87 5.33 3½-3½ b ⁴ P-x ⁴ G°
1.95 5.33 1½-3½ (61) | | 3506.310 A 80R
3512.640 A 60R
3523.423 A 25r
3585.154 A 25R | 0.43 3.95 41-31 14-y400
0.51 4.03 33-25 (31)
0.58 4.09 27-15
0.63 4.13 15-5
0.51 3.95 32-35 | 3726.653 A 5
3760.401 A 4
3812.470 C 4 | 1.70 5.01 3-1-1 a4P-z48°
1.73 5.01 1-1-1 (40)
1.78 5.01 2-1-2 | 3645.190 A 5
3732.390 A 20
3814.457 A 5 | 1.87 5.18 $3\frac{1}{2}-3\frac{1}{2}$ $5^{4}P-z^{4}P^{6}$
1.95 5.18 $1\frac{1}{2}-1\frac{1}{2}$ (62) | | 3574.967 A 35r
3560.891 A 30r
3656.962 A 7
3624.955 A 8 | 0.51 3.95 3+35
0.58 4.03 2+35
0.63 4.09 1+15
0.58 3.95 2+35
0.63 4.03 1+35 | 3548.438 A 7
3577.260 A 3
3626.020 A 2
3546.707 A 6 | 1.70 5.18 23 23 a4P-z4P*
1.73 5.18 19-19 (41)
1.78 5.18 2-19
1.70 5.18 22-19 | 3878.750 A (4)
3730.476 A 20
3816.318 A 15
3816.458 A 15 | 2.00 5.18 \$-\$ 1.87 5.18 32-12 1.95 5.18 12-2 1.95 5.18 14-24 | | 3453.514// A 200R
3529.816/ A 80R
3509.843 A 50r | 0.43 4.00 4½-5½ b ⁴ F-y ⁴ G*
0.51 4.01 3½-4½ (22)
0.58 4.10 24-34 | 3578.903 C 6
3579.029 C 6
3624.337 A 5 | 1.73 5.18 13 3
1.73 5.18 13 3
1.78 5.18 2-12 | *3876.831 A 20
3525.872 C 3
3654.441 A 5 | 2.00 5.18 2-12
1.87 5.37 22-12 b ⁴ P-z ² P°†
1.95 5.32 12-2 (63) | | 3495.882 A 50r
3449.441 C 60R
3443.644 A 80R
3449.170 C 60R | 0.63 4.16 19-39
0.43 4.01 42-42
0.51 4.10 32-32 | 3377.080 A 5
3422.900 A 4
3463.499 C 3 | 1.70 5.36 3 3 3 4 P - **D*
1.73 5.34 1 3 3 (48)
1.78 5.34 5 1 5 1 7 0 5 34 3 3 3 | 3600.803 A 3
3711.646 A 3 | 1.95 5.37 13-13
2.00 5.32 3-3 | | 3367.111 A 30r
3385.219 A 25r | 0.58 4.16 3\frac{1}{2}\frac{1}{2}\frac{1}{2}
0.43 4.10 4\frac{1}{2}\frac{1}{2}\frac{1}{2}
0.51 4.16 3\frac{1}{2}\frac{1}{2}\frac{1}{2} | 3394.916 C 2
3420.474 A 5
m3442.98 P Co
3400.471 A 1 | 1.70 5.34 3-35
1.73 5.34 13-13
1.78 5.36 2-3
1.73 5.36 12-3 | | | | | | | • • | | | Laboratory E P J Multiplet Laboratory E P J Multiplet I Laboratory E P J Multiplet I A Ref Int Low High (No) I A Ref Int Low High (No) CO I continued | <u>co 1</u> con | o zaide | ~ | | | | | 00 1 0011 | OTHE | • | | | | | 00 I COII | CIME | _ | | | | | | |--|------------------|------------------------|------------------------------|------------------------------|---|--|--|------------------|-------------------|------------------------------|------------------------------
---|--|--|------------------|--------------------|------------------------------|------------------------------|--|--|---| | 3543.256
3639.443
3693.364
3562.912 | A
C
A | 15
10
2
7 | 1.95
2.00
1.87 | 5.36
5.34
5.34
5.34 | 2 - 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 7987.36
7417.38
7590.57
7154.688 | A
C
A | 5
10
2
8 | 2.03
2.07
2.03 | 3.76 | 3 - 3 a ² 1
1 - 3 (
2 - 3 (
1 - 1 | D-z ⁴ D°
(89) | 3578.076
3637.319
3556.120 | A
G | 6
4
(1) | | | | a ³ P_v ⁴ D° (117) | | | 3636.713
3670.041
3560.306
3614.10 | A
C
A | 6
3
5
(0) | 1.95
2.00
1.87
1.95 | 5.34
5.36 | 1}-1}
2- 2 | ·
· | 7315.73
7004.81
5991.890 | C
C | (3)
30 | 2.07
2.03 | 3.76
3.80
4.13 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | D-z ² D° | 3534.769
3647.081
3596.510 | A
A
A | 4
5
5 | 2.27
2.32
2.27 | | | a ² P-v ² D° (118) | | | 3487.712
3516.675 | A
C | 8 | 1.87
1.95 | 5.41
5.46 | - | b ⁴ P-w ⁴ F°† (65) | 5590.744
5688.593
5883.421 | Ä
C
.A | 10
2
(3) | | 4.24
4.24
4.13 | 31-31 a ³ 1
11-11 (
31-11
11-31 | (90) | 3421.029
3387.061 | C | (1)
1 | 2.27
2.27 | | | a ³ p_u ⁴ p° (119) | | | 3523.701
3615.387 | C
A | 7
6 | 1.87
1.95 | 5.38
5.36 | 21-31
11-25 | b ⁴ P-x ² F° (66) | m5354.01
5034.06
5113.232 | P
H
C | Ço
(3)
6 | 2.07
2.03
2.07 | 4.38
4.48
4.48 | $3\frac{1}{2} - 3\frac{1}{2} a^{2}$ $1\frac{1}{2} - 3\frac{1}{2} ($ $3\frac{1}{2} - 3\frac{1}{2} ($ | D _у²г°
(91) | 3478.555
3378.736
3423.35 | C
A
A | 8
5
(1) | 2.27
2.27
2.32 | 5.82
5.92
5.92 | 12-32
13-3 | a ³ P-w ² F ⁶
(130)
a ³ P-y ² S ⁶
(131) | | | 3478.744
3552.989
3480.012
3551.666 | C
A
C | 7
8
6
2 | 1.95 | 5.42
5.42
5.43 | 23-23
13-13
23-13
13-23 | b ⁴ P-x ² D°
(67) | 5176.085
4899.520
4974.47 | A
A
G | 30
3
(1) | 2.03 | 4.46
4.55
4.55 | 3 2 - 2 2 a 2 I
1 2 - 1 2 (
2 3 - 1 2 (| | 3373.226
3417.673 | A
C | 7
5 | 2.27
2.32 | 5.93
5.93 | | a ² P-x ² 5°
(122) | | | 3607.04
3485.700 | A
A | (0)
4 | 2.00
1.95 | 5.43
5.49 | -1- <u>-</u> 11 | b ⁴ P-z ² s° (68) | 5094.955
4371.130 | A
A | \8'
5 | 2.03
2.07 | 4.46 | $1\frac{1}{2} - 2\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ (1) | D-x ⁴ D° † | 3338.519
3402.064
*3358.003 | C
A | 1
4
3 | 2.27
2.32
2.27 | 5.97
5.95
5.95 | $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$ | a ² P-x ² P°
(123) | | | 3537.707
3243.840
3317.93 | A
A | 8
(0) | 1.87
1.95 | 5.49
5.68
5.67 | | 68)
b ⁴ P-x ⁴ P°
(69) | 4187.246
4192.856
4139.452 | A
A
A | 4
(2N)
3 | 2.03
2.07
2.03 | 4.98
5.01
5.01 | 21-13 a21 | | 3382.071
3263.213
3226.986 | E
A
A | 3
4
4 | 2.32
2.27
2.32 | 5.97
6.05
6.14 | ş-1ş
1 1 -11 | a ² P_w ² P° †
(124) | , | | 3359.066
3254.202
3312.148
3307.156
3365.014 | A
C
A
C | 3
12
7
7
2 | 3.00
1.87
1.95 | 5.67 | 2-13
23-13
13-3
13-23 | | 3735.928
3749.930
3693.476 | C
A
A | 12
9
8 | 2.07
2.03
2.03 | 5.37
5.32
5.37 | 3 - 1 a a 3 I
1 - 1 a (| | 3073.664
3107.540 | G
A | (1)
1 | | 6.29 | | a ² P_v ² P°†
(125) | | | 3247.170
3271.778 | A
A | 8 | 1.87
1.95 | 5.68
5.72 | 2-12
23-33
12-22 | b ⁴ P-v ⁴ D° (70) | 3755.447
3734.139
3777.543 | A
A
A | 10
7
6 | | 5.36
5.34
5.34 | 3 - 3 a a a a a a a a a a a a a a a a a | D-w ⁴ D°
(96) | 7712.661
7610.24
7217.34 | A
C
C | 6
2
(2) | 2.53
2.62
2.53 | 4.13
4.24
4.24 | 13-23
3-13
13-13 | b ² P-z ² D° (126) | | | 3325.240
3209.80
3279.254
3298.680 | A
A
A | 10
(1)
5 | 2.00
1.87
1.95
2.00 | 5.71
5.73
5.71 | 3-13
23-23
13-13 | | 3731.268
3774.599
3707.465 | A
A
A | 8
6 | 2.03
2.07
2.03 | 5.34
5.34
5.36 | 11-11
21-11
11-11
11-11 | 1 | 4268.446
4404.932 | A
A | 2
3 | | | | b ² P-x ² D°
(127) | | | 3298.880
3216.996
3253.416
3174.905 | A
C
E | 6
1
1 | 1.87
1.95 | 5.74
5.71
5.74
5.76 | 3 - 3
3 - 1
1 - 2
3 - 2 | . _h 4p_ #2no | 3693.106
3605.015
3645.440
3559.597 | A
C
E
E | 8
5
3 | 2.07
2.03
2.07
2.03 | 5.41
5.46
5.46
5.50 | 31-31 a ³ 1
11-31 (
31-31
11-12 | D-w ⁴ F°
(97) | 3969.116
3960.997
3851.848 | A
A
A | 8
6
2 | | | | b ³ P-w ³ D°
(128) | | | 3287.192
3224.632
3235.532 | A
A
A | 7
4
6 | 1.95
1.87
1.95 | 5.70
5.70
5.76 | 12-22
12-12
22-12
12-22 | b ⁴ P-v ³ D° (71) | 3733.483
3708.823 | A
A | 12
12 | 2.07 | 5.38
5.36 | 3 - 3 a a a a a a a a a a a a a a a a a | D-x ² F°
(98) | 3870.534
3991.831 | A
C | (2) | 2.53
2.62 | 5.73
5.71 | | b ³ P_v ⁴ D° † (129) | | | 13333.41
3173.56
3192.220 | P
A
A | Co
(1)
3 | 2.00
1.87
1.95 | 5.70
5.76
5.81 | 2-12
23-12
13- 1 | b ⁴ P-y ² P°
(72) | 3751.625
3683.047
3643.181 | A
A
A | 5
20
9 | | 5.42
5.42 | 3½-3½ a ³ [
1½-1½ (
3½-1½ | | 3819.908
4003.596
3892.118 | A
A
A | 4
2
3 | 2.53
2.62
2.53 | 5.76
5.70
5.70 | 15-15 | | | | 3234.119
3235.783
3278.842 | C
C
A | (2)
6 | 1.95
3.00
2.00 | 5.76
5.81
5.76 | 15-15
2-15
5-15 | | 3684.479
3641.784
3585.808 | Ö
A
C | 10
6 | 2.07 | 5.42
5.42
5.51 | 15-05 | | 3817.940
3863.607
3759.684
3925.151 | A
C
A | (4)
2
3
3 | 2.53
2.62
2.53
2.62 | 5.76
5.81
5.81
5.76 | 12-12
2- 2
12- 2
2-12 | b ² P_y ² P°
(131) | | | 3154.794
3161.652
3182.118 | A
A
A | 10
5
7 | 1.87
1.95
2.00 | 5.79
5.85
5.88 | 2 −1± | | *3521.731
3458.028 | c
c | 3 | 2.03 | 5.54
5.64 | $3\frac{1}{2}-1\frac{1}{2} a^{2}D$ $1\frac{1}{2}-\frac{1}{2} (1$ $3\frac{1}{2}-3\frac{1}{2} a^{2}D$ | | 3754.346 | A | 4 | | | 41 61 | . 2- 2 | | | 3103.735
3139.98
3152.707
3082.844 | A
P
A
C | 5
Co
6
2 | 1.87
1.95
2.00
1.87 | 5.85
5.88
5.91
5.88 | 25-25
15-15
2-15
25-15 | | m3334.12
3368.67
3421.628 | P
G
A | (1)
3 | 2.03
2.07
2.03 | 5.73
5.73
5.64 | $3\frac{1}{2} - 3\frac{1}{2}$ a^{3} | | 3631.948
3728.840
3591.746 | C
A
A | 2
3
4 | 2.53
2.62
2.53 | 5.93
5.93 | 1 | (132)
b2P-x280
(133)
b2p-x2po | | | 3111.339
3120.10
3188.377 | Č
A | ž
(3)
7 | 1.95
1.87
1.95 | 5.91
5.83
5.82 | 21-11
12- 2
21-31
11-21 | b ⁴ P-w ² F°
(74) | 3420.790
3396.457
3432.318
3390.396 | A
C
C | 7
1
3
5 | 2.07
2.03
2.07 | 5.68
5.67
5.67
5.67 | $3\frac{1}{2}-3\frac{1}{2}$ a^{2} D $1\frac{1}{2}-1\frac{1}{2}$ (1 | D-x ⁴ P°
103) | 3614.34
3686.477 | A | (1)
2 | | | | b ² P _{-X} ² Pe
(134) | | | 3129.481
3099.667
3140.715 | A
A | 3
2
2 | 1.95
2.00 | 5.82
5.93
5.93 | | b ⁴ P-x ² s° (75) | 3424.500
3348.112 | A
A | 10
8 | 2.03
2.07
2.03 | 0.0. | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3504.728
3502.998
3417.353
m3594.87 | A
E
E
P | (2d)
(1d)
Co | 2.53
2.62
2.53
3.62 |
6.05
6.14
6.14
6.05 | 12-12
12-12
12-12 | _р Зр _{-w} Зре
(135) | | | 3015.686 | A | 3
(17) | | | | 6 ⁴ P-x ² P°†
(76) | 3355.940
3356.464
•3322.198 | A
A | 2
6
8 | 2.03
2.07
2.03 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -y ⁴ s° | 3496.070
3604.469 | C
A | 3
4 | 2.69
2.77 | 6.22 | | a ² H-y ² H° | | | 3026.373
3060.048
3090.251 | A
A
Á | 6
5
4 | 1.87
1.95
3.00 | 5.95
5.98
5.99 | 31-31
11-31
1-31
1-11 | b ⁴ P-t ⁴ D°
(77) | 3342.734
3264.842
3308.688 | C
A
E | 8
5
(1) | 2.07
2.03
2.03 | 5.76
5.81
5.76 | $3\frac{1}{2}-1\frac{1}{2}$ a^{3} D $1\frac{1}{2}-\frac{1}{2}$ (1 $1\frac{1}{2}-1\frac{1}{2}$ | | 3469.683
3553.161 | E | (2n)
2 | 2.69
2.77 | | 5}-4}
42-3} | a ² H-w ² G°
(137) | | | 3005.766
3050.496
3087.806
2996.549 | A
A
A | 3
3
3 | 1.87
1.95
2.00 | 5.98
5.99
6.00
5.99 | 12-12
12-12
2- 2 | | 3321.912
3232.874
3265.352 | C
A
A | (9)
3 | | | 31-31 a ³ D
11-31 (1 | | 3174.140
*3235.532
3245.750 | A
A | 8
6
(1) | 2.69
2.77
2.77 | | 51-41
41-31
41-41 | a ³ H_v ³ G°
(138) | | | 3048.108
3017.254
3044.04 | A
A
P | 3 | 1.95 | 6.00 | 1출~ 출 | b ⁴ P_v ² F°
(78) | 3210.219
3180.290 | A | 5
2 | 2.03 | 5.91 | 1 1 2 2 | | 7388.689
7586.72 | A
C | 5
(4) | 2.71
2.86 | 4.38 | -
2-3-3-1
1-2-2-1 | b ² D-y ² F°
(139) | | | 7809.24 | c - | (1)
(1) | | | _ | (78)
a ² G-z ⁴ G°
(79) | 3283.466
3260.814
3293.861 | A
C | 9
9
2 | | | 21-31 a ³ D
11-21 (10
21-21 | | 6937.81
7054.042
7285.28 | C
A
C | 4
10
4 | | | | b ² D-y ² D°† | | | 7996.80
6563.403
6450.09 | C
A
P | 40
Co | 2.13
2.03
2.13 | 3.67
3.91
4.04 | 3½-3½
4½-4½
3¾-3¾ | (79)
a ² G-z ² G•
(80) | 3168.060
3154.678
3137.454 | C
C
E | 6
5
3 | 2.03 | 5.95 | $\frac{3\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-1\frac{1}{2}}$ a ² D. 11-12-12 | .08) | 4624.561
5004.187
4904.172 | A
G | (0)
(1) | | | | b ² D-z ² pe
(141) | | | 6146.38
6910.84
6490.344 | D
C | (3)
6 | 3.03
3.13 | 4.04
3.91 | 45-35
35-45
41-21 | 80) | 3169.766
3110.021 | A C | 9
5 | | 5.96
6.00 | 31-31 a ³ D
11-31 (10 |)_v ³ F°
.09) | 4543.810
4815.900 | A
A | 6 | | | | b ³ D-x ³ D°
(143) | | | 6429.913
6829.92 | A
D | (1) | | | | (81) | 6946.31
6632.438 | C
A | (2)
15 | 2.27
2.27 | 4.05
4.13 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -z ³ F° ;
10)
-z ³ D°† | 4545.985
m4813.45 | A
P | Co | | | -
13-95 | | | | 5890.487
5915.551
5659.121
6168.86 | A
A
A
D | 13
10
3
(1) | 2.03
2.13
2.03
2.13 | 4.13
4.21
4.21
4.13 | 41-41
31-31
41-31
31-41 | a ² G-y ² G°
(82) | 5647.234
5523.310 | Č
A | 15 | 2.32 | 4.46 | ½-1½ (1:
1½-3½ a ³ p- | 11)
-y ² D° | 4375.540
4431.608 | A | 3 | | | | b ² G-x ² G•
(143) | | | 5266.506
5235.188 | A
A | 25
15 | 2.03 | 4.38
4.48 | | a ² G-y ² F°
(83) | 5408.119
3915.503 | A
C
A | (3) | 2.27
2.27 | 4.55
5.42 | 1 2 3 2 a 3 p. 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 | -x ³ D• | 4158.420
4179.226
3676.552 | A
A | 4
3
13 | | | | b ² G_w ² F°
(144)
b ² G_y ² H° | | | 3712.177
3843.692 | A | 6 | | 5.34 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ | a ³ G-w ⁴ D°
(84) | 3977.184
3917.115
3835.497 | A
A
C | 3
8
(2) | | | 1 2 3 2 a 3 P - 1 2 1 1 1 1 2 - 1 2 1 1 1 1 2 - 1 2 1 2 | | 3702.237
3699.017
3649.329 | A
C | 13
2n
8 | | | | ხ ² G_y ² H°
(145)
ъ ² G_υ ² E° | | | 3651.254
3707.01
3690.715 | A
G
A | 4
7 | | | | a ² (L-w ⁴ F° †
(85) | 3893.067
3662.158 | Ē
A | 8 | | | 1 2 2 a 3 P - 2 (11 1 2 - 3 a 3 P - 2 (11 | | 3634.713
3632.839 | Á | 7
7 | | | | b ² G-u ² F°
(146)
b ² G-x ² H°†
(147) | | | 3816.876
3438.713 | A
C | 5
4 | | | | a ³ G-x ³ F°
(86)
a ³ G-z ³ H° | 3611.701
3562.097
3620.422 | A
A | 10
6
5 | | | $1\frac{1}{2}-3\frac{1}{2} a^{3}P$ $\frac{1}{2}-1\frac{1}{2}$ (11 $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-3\frac{1}{2} a^{3}P$ | | 3609.752
3341.341
3339.15 | A
A | 5
(4) | | | | (147)
b ² (1—8 ² pe
(148) | | | 3586.082
3381.498
3503.717 | E
C
C | 3
4
3 | | | | a ² G-z ² H°
(87)
a ² G-x ² G°
(88) | 3684.960
3633.340
3677.835 | A
A
G | 3
3
(1) | 2.32
2.27
2.32 | 5.67
5.67
5.67 | 11-31 a ³ P-
1-11 (11
11-11
1-11 | 16) | 3322.198
3314.073 | A
A | 8
8 | | | | (148)
b ² G_¥ ² G•†
(149) | | | | | J | w.13 | J. 00 | <u>05-9</u> 5 | (06) | | | | | | - - | | | | | | | | ,, | | | Laborato
I A Ref | ry
Int | E P
Low Hig | J
h | Multiplet
(No) | Labor
I A | ator
Ref | | E
Low | P •
High | J | Multiplet (No) | Labor
I A | | y
Int | E
Low | P
High | J | Multiplet
(No) | |--|--------------------------|--|---|--|--|------------------|--|------------------------------|------------------------------|---|--|--|-------------|---------------------------|------------------------------|------------------------------|---|--| | Co I continu | eđ | | | | Co I cont | inue | đ | | | | | Co I con | tinue | ed. | | | | | | 4530.949 A
4469.547 A
4466.881 A
4471.550 A | 30
15
10
5 | 2.91 5.6
2.94 5.7
3.00 5.7
3.05 5.8 | 7 .3 § –3 § | z ⁶ F°_e ⁶ F | 3485.368
3461.173
3446.088
3437.680 | A
A
C
A | 15
15
12
6n | 3.10
3.16
3.20
3.24 | | 61-71
51-61
41-51
31-41 | z ⁶ G°-e ⁶ H†
(163) | 5257.621
5158.854 | A | 10
2 | 3.95
4.03 | | - | y ⁴ D°-e ⁴ P† (188) | | 4478.319 A
4483.918 A
4421.337 A
4374.918 A | 4
3
4
3 | 3.09 5.8
3.11 5.8
2.91 5.7
2.94 5.7 | 5 13-13
7 3-3
1 53-43
7 43-33 | | 3448.358 | C | 4 | 3.24 | 6.82 | 3] - 3]
- | z ⁶ G°-3
(163) | 8093.932
7908.679
7869.868
7871.370 | A
A
A | 8
6
2
2 | 4.00
4.01
4.10
4.16 | 5.53
5.57
5.66
5.73 | 51-41
41-31
31-21
21-11 | y ⁴ G°e ⁴ F†
(189) | | 4391.568 A
4417.398 A
4445.711 A
4581.596 A
4565.578 A | 4
5
4
20
15 | 3.00 5.8
3.05 5.8
3.09 5.8
2.94 5.6
3.00 5.7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | . | 6908.08
7398.72
6901.52
7406.23 | CDCD | (5)
(1)
(2)
(1) | 3.39
3.51
3.39
3.51 | 5.18
5.18
5.18
5.18 | 15-25 | c ² D_z ⁴ P°
(164) | 5342.703
5343.383
5276.183
5250.003 | A
A
A | 50
20
8
7 | 4.10 | 6.31
6.32
6.43
6.51 | 51-61
41-51
31-41
21-31 | y ⁴ G°-e ⁴ H†
(190) | | 4549.658 A
4533.985 A
4517.094 A | 10
7
4 | 3.05 5.7
3.09 5.8
3.11 5.8 | 7 2 3 - 3 5
1 1 5 - 2 5
5 5 - 1 5 | | 5086.663
6474.558
5495.682 | A
A
A | (3)
a | 3.39
3.51
3.39 | 5.43
5.43
5.64 | | c ² D_x ² D• †
(165)
c ² D_w ² D• † | 5333.647
5334.821
5336.163 | A
A
A | 5
6
3 | 4.00 | 6.32 | 5 } -5 } | y ⁴ G°-g ⁴ F† (191) | | 3343.530 E
3299.11 A | (1)
(0)
(1)
(2) | 2.91 6.6
2.94 6.6 | 9 4] -4] | z ⁶ F°-f ⁴ G
(151) | 5558.825 | A | 3 | 3.51 | 5.73 | | c ² D-w ² D•†
(166) | 5344.570
5545.937 | A | (in)
2 | 4.01
4.10 | 6.32 | 41-41
31-31 | y ⁴ G°-g ⁴ F†
(191) | | 3272.76 A
3371.015 C
3351.138 A | {1
2
1 | 2.92 6.6
2.94 6.6
3.00 6.6 | 1 4] -5] | | 5210.042
5368.904 | Å | (2) | 3.39
3.51 | 5.76
5.81 | | c ² D_y ² P°
(167) | 5325.276
5316.772 | A
A | 10
7 | 4.00
4.01 | 6.32
6.33 | 51-51
41-41 | y ⁴ G°-e ⁴ G†
(192) | | 3356.842 A
3318.60 A | (1) | 3.05 6.7
3.09 6.8 | 3 2}-3}
1 1}-2} | | 4331.231
4494.746 | A | 3
2 | 3.39 | 6.24
6.26 | 3출-3출
1출-3출
- | c ³ D-u ³ F°
(168) | 5524.990
5407.520 | Ā | 4
5 | | 6.33 | 31-41
21-31 | (200) | | 3326.991 C
3277.662 A
3270.198 C | 8
3
2 | 3.91 6.6
3.94 6.7
3.00 6.7 | 3 54-54
1 44-44
8 34-34 | z ⁶ F°_f ⁶ F
(152) | 6082.431
6122.640
*6000.668 | A
A | 15
8
5 | 3.50
3.55 | 5.53
5.57
5.66 | 41-41
31-31 | z ⁴ F°-e ⁴ F†
(169)
? | 8372.79
*8589.78
8379.44 | A
A | (10)
(3)
(3)
(8) | 4.05 | 5.53
5.57 | 41-41
31-31 | y ⁴ F°-e ⁴ F†
(193) | | 3272.405 C
3251.656 A
3220.62 A | (2)
(3)
(4) | 3.05 6.8
3.91 6.7
2.94 6.7 | 1 5-4-4-5
8 4-3-3-5 | | 5946.484
5965.040 | A
A
F | 5
(2) | 3.61
3.65
3.50 | 5.73 | 43-33 | | 8208.57
8151.95 | A
A
A | \8
\8
\6 | 4.22 | 5.73
5.57 | $1\frac{1}{2} - 1\frac{1}{2}$ $4\frac{1}{2} - 3\frac{1}{2}$ | | | 3229.36 A
3354.213 C | (3) | 3.00 6.8
3.94 6.6 | 2 4} -5} | | 5846.575
5826.299 | A
A | (3) | 3.55
3.61 | 5.66
5.73 | 3 1 - 2 1 2 1 2 1 2 | | 8055.996
80 4 3.306 | A | 3 | 4.13
4.19 | 5.66
5.73 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | |
3329.013 A
3314.345 C
3305.730 A
3294.536 C | 3
3
3 | 3.00 6.7
3.05 6.7
3.09 6.8
3.11 6.8 | 8 2] -3]
2 1] -2] | | 5212.699
5146.753
5126.201 | A
A
A | 25
15
10 | 3.50
3.55
3.61 | 5.87
5.95
6.01 | 41-41
31-31
31-31 | z ⁴ F°- <u>f</u> ⁴ F† (170) | 5453.338
5359.200
5325.949 | A
A
A | (1)
6
4 | | 6.32
6.43
6.51 | 43-53
33-43
23-33 | y ⁴ F°-e ⁴ H
(194) | | 3319.822 A
3278.105 A
m3264.82 P | 4
2
Co | 3.91 6.6
3.94 6.7
3.00 6.7 | 3 51-41
1 41-3
8 31-2 | z ⁶ F°-e ⁶ D
(153) | 5122.767
5332.652
5265.786
5219.008 | A
A
A | 8
5
4
2 | 3.65
3.55
3.61
3.65 | 6.06
5.87
5.95
6.01 | 15-15
35-45
35-35
15-35 | | 5454.573
5637.734
5515.990 | A
A
A | 30
3
(1) | 4.13 | 6.32
6.32
6.43 | | y ⁴ F°-g ⁴ F†
(195) | | 3259.20 A
3346.932 A | (6)
8
5 | 3.05 6.8
3.94 6.6 | 3 4] -4] | • | 3972.506 | A | 6 | 3.50 | 6.61 | 41-51 | z4F0_f4G | 5402.000 | A | 3 | 4.33 | 6.51 | 12-12 | | | 3329.466 A
3308.814 A
3292.22 A | {1
{1}} | 3.00 6.7
3.05 6.7
3.09 6.8 | 8 25-25
4 15-15 | | 3938.856
3951.717
3904.790 | A
A
E | (in) | 3.55
3.61
3.65 | 6.69
6.73
6.81 | 23-33
13-33 | z ⁴ F°-f ⁴ G
(171) | 5444.585
5381.776
5425.621 | A
A | (a) | 4.05 | 0.00 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | y ⁴ F°-e ⁴ G†
(196) | | 3375.238 E
3313.116 A | (1) | 3.05 6.7
3.11 6.8 | 4 글-1글 | • | 5352.046 | A | 30 | 3.56 | 5.87 |
51-41 | z ⁴ 6°_+ ⁴ F+ | 53 47.4 99
5310.219 | A | (1n) | 4.13
4.19 | 6.44
6.51 | 2 1 -21 | | | 3319.478 C
3276.483 A
3293.210 A
3304.119 A | 8
4
3
3 | 3.91 6.6
2.94 6.7
3.00 6.7
3.05 6.7 | 3 51-61
1 41-51
5 31-41
9 21-31 | z ⁶ F°_e ⁶ G
(154) | 5280.631
5266.302
5268.498 | Ä
A
A | 20
10
10 | 3.61
3.67
3.72 | 5.95
6.01
6.06 | 42-32
32-32
32-12 | z ⁴ G°-f ⁴ F†
(172) | 5312.650
5124.718 | A | 8 2 | 4.19
4.22 | 6.51 | 2 1 -3 1
1 1 -2 1
- | y ⁴ F°-g ² F†
(197) | | 3287.575 A
•3315.035 C | .3 | 3.09 6.8
3.11 6.8 | 5 1 3-2 5
5 3-1 | | 4035.542
3991.528 | A
A | 8
4 | 3.61 | 6.62
6.71 | 5}-6}
4}-5} | z ⁴ G°-f ⁴ H
(173) | 5353.500
5362.781 | A
A | 25
15 | 4.13
4.21 | 6.43
6.52 | 41-51
3-42 | у ² G°-е ² Н
(198) | | 3250.51 A
3260.286 C
3254.63 A | (5w)
(2)
(9) | 2.91 6.7
3.00 6.7
3.05 6.8 | 9 3] -3]
5 3] -2] | | 3978.864
m3972.53 | C
P | Co | 3.67 | 6.77 | 34-44
32-32 | | 5341.328
5339.528 | A
C | 7
4 | | 6.44
6.53 | 41-41
31-31 | y ² G°-e ² G†
(199) | | 3294.098 C
3211.01 A | (2)
(4) | 3.09 6.8
2.94 6.7 | 9 4] _3] | • | 6454.998
6595.869 | A
A | 40
13 | 3.62
3.70 | 5.53
5.57 | 31-41
31-31 | z ⁴ D°-e ⁴ F† | 6347.843 | A | 10 | 4.38 | 6.32 | _ | y ² F°-g ⁴ F†
(300) | | 3339.780 A
3319.156 C
3308.482 A | 8
4
4 | 3.94 6.6
3.00 6.7
3.05 6.7 | 2 3 3 - 2 8 3 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | z ⁶ F°_e ⁶ P
(155) | 6477.861
6395.158 | A | 10
8 | 3.76
3.80 | 5.66 | 1 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | 6351.448
5984.253 | A
A | 3 | | | | (300)
y ² F°-e ² G
(301) | | 4749.68 A | 10 | 3.04 5.6 |
4 4 1 -51 | z ⁶ D°-e ⁶ F | 5483.962
5477.089
5470.460 | A
A
A | 10
5
4 | 3.62
3.70
3.76 | 5.87
5.95
6.01 | 34-44
34-34
14-34 | z ⁴ D°-f ⁴ F†
· (175) | 6049.110 | Ā | | 4.48 | 6.53 | 2 § -3 §
- | (301) | | 4771.108 C
4768.072 A
4754.358 A | 6
5
3 | 3.12 5.7
3.18 5.7
3.22 5.8 | 1 34-4
7 34-3
1 14-3 | (156) | 5452.305
5287.574
5326.247 | A C | 3
3
3 | 3.80
3.62
3.70 | 6.06
5.95
6.01 | 3-13
3-3-3
3-2-2- | | 6617.126
6591.834 | A
E | 6n
(1) | 4.46
4.55 | 6.32
6.43 | $3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$ | y ³ D°-e ³ P | | 4734.828 A
4629.359 A
4663.403 A
4682.361 A | 2
15
12
9 | 3.24 5.6
3.04 5.7
3.12 5.7
3.18 5.8 | 5 3-1
1 45-4
7 35-3 | t | 4594.633
4625.767 | A
A | 4 2 | | 6.30
6.37 | - | z ⁴ D°-e ⁴ D†
(176) | 8819.11
8750.13 | A
B | 100
60 | 5.13
5.22 | 6.53
6.63 |
5-1-4-1
4-1-3-1 | x ⁴ G°-h ⁴ F† (203) | | 4693.190 A
4698.389 A | 6 | 3.22 5.8
3.24 5.8 | 5 1 1-1
7 1-1 | | 4596.903
4526.794 | A | 5
2 | 3.62
3.70 | 6.30
6.43 | 3}-2}
3}-1 | z ⁴ D°-e ⁴ P†
(177) | | | | | | | | | 4527.919 A
4581.380 F
4623.020 A | (1)
(2N)
(1) | 3.04 5.7
3.12 5.8
3.18 5.8 | 1 3-2-2 | | 4570.024
4704.386 | A
A | (2) | 3.62
3.70 | 6.32
6.32 | | z ⁴ D°-g ⁴ F† | Strongest
3443.203 | Unc: | lassified
5 | Lines | of <u>Co</u> | I | | | 4657.390 A
3361.553 A | 51 | 3.22 5.8
3.04 6.7 | (15- 5 | 7 | 7027.797 | A | 6 | 3.91 | 5.67 | _ | z ² G°-e ² F† | 3177.266 | Ă | 8 | <u> </u> | | | | | 3398.811 A
3401.913 C | (2n) | 3.12 6.7
3.22 6.8 | 5 3½-42
5 1½-3 | z ⁶ D°-e ⁶ G†
(157) | 7134.290
5133.467 | A
A | 5
15 | 4.04
3.91 | 5.77
6.32 | | | Co II I | D 1 | 7.1 Ans | .1 C | List A | Vor | 1943 | | 4867.870 A | 35 | 3.10 5.6 | 4 6 5 | z600_e6F+ | 5156.366
4756.722 | Ā | 10 (1) | 4.04 | 6.43
6.51 | 31-41
42-31 | z ² G*-e ⁴ H
(180) | 3621.22 | A | 100 | 2.19 | 5.60 | 3-4 | 48 ⁵ P-4p ⁵ F° | | 4840.253 A
4813.476 A
4792.855 A | 25
20
15 | 3.16 5.7
3.20 5.7
3.24 5.8 | 1 53-4
7 43-3
1 33-2 | z ⁶ G*-e ⁶ F† | 5125.715
5108.903 | A
A | 7
10 | 3.91
3.91 | 6.32
6.33 | | z ² G°-e ⁴ G†
(181) | 3578.03
3555.93
3545.03 | A
A
A | 30
10
25 | | 5.68
5.73
5.68 | 2-3
1-2
3-3 | (1) | | 4779.979 A
4776.311 A | 10
6 | 3.27 5.8
3.28 5.8 | 2 41-1 | | 4746.115 | A | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3.91 | 6.51 | | z ² G°-g ² F
(182) | 3517.48
3514.21 | A | 10
5 | 2.23 | 5.73
5.78 | 2-2
1-1 | | | 4971.935 A
*4928.290 A
4882.704 A | 2
2
3 | 3.16 5.6
3.20 5.7
3.24 5.7 | 1 44-4
7 33-3 | | 4767.142 | A | | 4.04 | 6.63 | | | 3501.73
3446.40 | A
A | 200
100 | | 5.72
5.81 | 3 -4
2 - 3 | 4s ⁵ P-4p ⁵ D° | | 4843.454 A
4813.966 A | 3
2 | 3.27 5.8
3.28 5.8 | 5 12-1 | <u> </u> | 7743.27
8112.13
7553 970 | C
D | (5)
(1) | 3.93
4.05 | 5.53
5.57 | 31-41
21-31 | z ² F°-e ⁴ F
(183) | 3423.85
3415.78 | A
A | 75
75 | 2.26
2.19 | 5.87
5.81 | 1-2
3-3 | • - • | | 3564.115 A
3522.856 E | 4 | 3.16 6.6
3.20 6.1 | 2 5}-6
1 42-5 | z ⁶ G°-f ⁴ H†
(159) | 7553.970
7634.50 | A
C | (5) | 3.93
4.05 | 5.57
5.66 | 3 § -3 § | • | *3388.18 § 3387.72 3358.59 | A
A
A | 50
60
10 | 2.26
2.19 | 5.87
5.91
5.87 | 2-2
1-1
3-2 | | | *3491.987 C
3468.973 A | 3
3 | 3.24 6.5
3.27 6.6 | 13 35-31 | Ż | 5211.832
5077.410 | A
A | 3
3 | 3.93
3.93 | 6.30
6.36 | | z ³ F°-e ⁴ D
(184) | 3352.80
3370.94 | A | 30
50 | | 5.91
5.92 | 2-1
1-0 | | | 3505.133 A
3472.707 C
3452.18 A | 3
(1n)
(2) | 3.10 6.0
3.16 6.1
3.20 6.1 | 3 6-5
1 5-4 | z ⁶ G•_f ⁶ F†
(160) | 4795.853 | A | 2
(1) | 3.93 | 6.51 | 3 1 - 3 2 | z ² F°-e ⁴ H
(185)
z ² F°-g ² F
(186) | Voc | 1 | emsts s | · · · · · · · | anoti- | n ^* ' | iat of | | 3496.794 C | 6 | 3.10 6.0 | 3 6}-6 | z ⁶ G°-e ⁶ G† | 4785.070
4778.233 | A | (1) | 3.93
4.05 | 6.51 | ă <u>₹</u> −â
2
 | (186) | Measures
stronger | uncl | assified | lines | of Co | <u> </u> | | | 3471.382 A
3477.836 A
3476.360 C | 7
4
5n | 3.16 6.1
3.20 6.1
3.24 6.1 | 1 54-5
5 44-4
9 31-3 | z ⁶ g°-e ⁶ g†
(161) | 5254.652
5287.785 | A
A |
8
5 | 3.95
4.03 | 6.30 | 31-31 | y ⁴ D°-e ⁴ D†
(187) | | | | | | | | | 3447.281 C
3472.196 E | 3 | 3.27 6.1
3.28 6.1 | 35 a } _a | | 5230.363
5210.834 | G
A | (1)
3 | 4.09
4.13 | 6.45
6.50 | 12-13 | (201) | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | REVISED MULTIPLET TABLE | '* | | | | | | | | | | • | | • | | | | | | | | | |---|------------------|-------------------|----------------------|----------------------|---------------------------------|--|--|-------------|--------------------------|--------------------------------------|----------------------|--------------------------|--|----------------------------------|--------------|-------------------|------------------------|----------------------|----------------------------|--| | Labo
I A | rator
Ref | y
Int | Low | P
High | J | Multiplet
(No) | Labo:
I A | | ry
Int | E
Low | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | | Low
Low | P
High | J | Multiplet
(No) | | <u>N1 I</u> I | P 7.6 | 1 Anal | . A I | List B | Mar | ch 1942 | Ni I con | tinu | ed | | | | | <u>Ni I</u> con | tinue | đ | | | | | | 3946.18
3749.045
3832.873
3885.87
4093.62 | P
B
P
P | 8
5 | | 3.29
3.38
3.45 | 3-3
4-3
3-2
2-1
3-4 | (1) | 3392.992
3446.263
3423.711
3367.892 | B
B
B | 100R
100R
50R
8 | 0.03
0.11
0.21
0.03
0.11 | 3.69
3.82
3.69 | 3-3
2-2
1-1
3-2 | a ³ D-z ³ D°
(20) | 3287.221
*3029.297 | В | 3 | | 5.42 | | b ¹ D-x ¹ D°
(55)
b ¹ D-x ³
P°
(56) | | 3624.733 | В | 15 | 0.00 | 3.40 | 3-4
4-5 | | 3328.714
3472.545
*3548.185 | B
B
B | 5
70R
20r | 0.11 | | 2-1
2-3
1-2 | | 6767.778 | C | 20 | 1.82 | 3.64 | 0-1 | (57) | | 3739.229
3792.337 | В | 10
5 | | 3.47
3.53 | 3-4
2-3 | (2) | 3248.457 | В | 8 | 0.03 | | 3-4 | a3D-z3ge | 6177.258 | В | (3) | 1.82 | 3.82 | 0-1 | a ¹ S-z ³ D°
(58) | | 3561.751
3669.241
3730.751 | B
B
B | 10
12
4 | 0.00
0.16
0.27 | 3.47
3.53
3.58 | 4-4
3-3
2-2 | | 3234.649
3165.508 | B
B | 10r
3 | 0.11 | 3.92
3.92 | 2-3
3-3 | (21) | 5476.906
5079.961 | В | 50
(3) | 1.82 | 4.07 | 0 -1
0 -1 | a ¹ S-z ¹ P°
(59)
a ¹ S-y ³ D° | | 3498.19
3611.54 | P
P | • | 0.00 | 3.53 | 4-3
3-2 | | 3243.058
3315.663 | B
B | 25R
30R | 0.03
0.11 | 3.83
3.83 | 3-3
2-3 | a ³ D-z ¹ F° (22) | | | | | | _ | (60) | | 3502.595
3602.281
3437.280 | B
B
B | 8
15
30R | 0.00
0.16
0.00 | 3.52
3.59
3.59 | 4-5
3-4
4-4 | a ³ F_z ⁵ F° (3) | 3200.423
3271.118
3362.806 | B
B
B | 5
10
6 | 0.03
0.11
0.21 | 3.88
3.88
3.88 | 3-2
2-2
1-2 | a ³ D-z ¹ D° (23) | 7028.95
6928.52
7714.27 | P
P
G | 3 | 1.93
1.94
1.93 | 3.68
3.72
3.53 | 2-3
1-2
2-3 | a ³ P_z ⁵ Fe
(61)
a ³ P_z ³ Pe | | 3507.694
3577.240
3351.06 | B
B
P | 8
2 | 0.16
0.27
0.00 | 3.68
3.72
3.68 | 3-3
2-2
4-3 | | 3114.124
3197.113 | ВВ | 20R
10r | 0.11 | 4.07 | 2-1
1-1 | a ³ D-z ¹ P° (24) | 7261.94
7197.07
6914.562 | G
G
D | 3
5
50 | 1.94
1.93
1.94 | 3.64
3.64
3.73 | 1-1
3-1
1-0 | (62) | | 3467.502
*3548.185 | B
B | 12
20r | 0.16 | 3.72
3.75 | 3-3
3-1 | | 3050.819 | В | 100R | 0.03 | 4.07 | 3-4 | a ³ D_y ³ F° | 7788.95
7414.51 | Ğ | 2 2 | 1.94 | 3.53
3.64 | 1-3 | | | 3670.427
3664.095 | B
B | 20
20 | 0.16
0.27 | 3.53
3.64 | 3-2
3-1 | a ³ F-z ³ P° (4) | 3101.554
3134.108
3037.935 | B
B
B | 100R
60R
60R | | 4.09
4.15
4.09 | 2-3
1-2
3-3 | (25) | 7291.48 | В | (8) | 1.93 | 3.62 | 2-3 | a ³ P-z ³ F° | | 3793.608 | В | 8 | 0.27 | 3.53 | 2-2 | 7 7 | 3054.316
2992.595 | B
B | 50R
20R | 0.11 | 4.15
4.15 | 2-2
3-2 | | 7110.91
7062.97 | B
B | (6)
(4) | 1.94 | 3.66
3.69 | 2-3
1-2 | (63)
a ³ P _{-z} 3 _D e
(64) | | 3391.050
3571.869
3519.766 | B
B
B | 5′R
5∪R
20R | 0.00
0.16
0.27 | 3.64
3.62
3.78 | 4-4
3-3
2-2 | (5) | 3002.491
3003.629 | ВВ | 100R
60R | | 4.14 | 3-3
2-2 | a ³ D-y ³ D°†
(36) | 7001.57
6586.328
6532.891 | B
B
B | (4)
6
(3) | 1.93
1.94
1.93 | 3.69
3.82
3.82 | 2-3
1-1
2-1 | | | 3409.578
3413.478 | B | 8
25R | 0.00 | 3.62
3.78 | 4-3
3-2 | | 3057.638
3981.651 | B
B | 50R
20R | 0.21 | 4.25
4.25 | 1-1
2-1 | (20) | *6180.093 | В | (in) | 1.93 | 3.92 | | | | 3551.534
3688.415 | B
B | 8
15 | | 3.64
3.62 | 3-4
2-3 | | 3064.623
3080.755 | B
B | 25R
20R | 0.11 | | 2-3
1-2 | | 6482.811 | В | 5 | 1.93 | 3.83 | 2-3 | (65)
a ³ P_z ¹ Fe
(66) | | 3369.573
3500.852
3483.774 | B
B | 80R
25R
25R | 0.27 | 3.66
3.69
3.82 | 4-3
3-2
2-1 | a ³ F-z ³ D°
(6) | 2994.460 | В | 25R | | 4.15 | 3-4 | (27) | 6314.666
6364.597 | C
D | 15
(1) | 1.93
1.94 | 3.88
3.88 | 2-3
1-3 | a ³ P-z ¹ D ^e
(67) | | 3527.982
3612.741
3641.641 | B
B
B | 15
30R
4 | 0.16
0.27
0.27 | 3.66
3.69
3.66 | 3-3
2-2
2-3 | | 4298.767
4164.636
4074.897 | B
D
B | (2)
1
2 | 0.43
0.43
0.43 | 3.29
3.38
3.45 | 2-3
2-3
2-1 | a ¹ D-z ⁵ D°
(38) | 5754.675
5796.078
5892.878 | B
C | 10
(2)Fe
12 | 1.93
7 1.94
1.98 | 4.07
4.07
4.07 | 2-1
1-1
0-1 | a ³ P-z ¹ P°
(68) | | 3232.963
3371.993
3380.885 | B
B
B | 25R
15r
15r | | 3.82
3.82
3.92 | 4-5
3-4
2-3 | a ³ F_z ³ 3°
(7) | 3972.171
3904.64 | B | 10 | 0.43
0.43 | 3.53
3.58 | 2-3
2-2 | a ¹ D-z ⁵ G•
(29) | 5711.905
5592.283 | B
B | 5
8 | 1.93 | 4.15 | 2-3
1-2 | a ³ P_y ³ F°
(69) | | 3226,984
3282.696 | B
B | 5
8 | 0.00 | 3.82 | 4-4
3-3 | | 3783.530
3736.813 | В | 30r
15 | 0.43
0.42 | 3.68
3.72 | 2-3
2-2 | a ¹ D-z ⁵ F° (30) | 5553.693
5587.865 | В | 2
5 | | 4.15
4.14 | 2-2
2-3 | a ³ P-y ³ D° (70) | | 3145.121
3221.652 | B
B | 3
10r | 0.00 | 3.92
3.83 | 4-3
4-3 | a ³ F-z ¹ F° | 3705.12
3973.562 | P
B | 25 | 0.43 | 3.75
3.53 | 2-1
2-2 | a ¹ p_z ³ p° | 5424.654
5435.871
5388.350 | B
B
B | 4
5
(2) | 1.98 | 4.22
4.25
4.22 | 1-2
0-1
2-2 | (70) | | 3366.168
3469.486
3320.257 | B
B | 20R
15
20R | 0.16
0.27
0.16 | 3.83
3.83 | 3-3
2-3 | (8)
a ³ F-z ¹ D° | 3831.690
3858.301 | B
B | 20
40 r | 0.43 | 3.64
3.62 | 2-1
2-3 | (31)
a ¹ D-z ³ F° | 5353.415
4762.627 | B
B | 3 | 1.94 | 4.25
4.52 | 1-1
2-3 | a ³ P-y ¹ D° | | 3420.741 | В | 5 | 0.27 | 3.88
3.88 | 3-2
3-3 | (9) | *3674.15
3807.144 | P
B | 15
35r | 0.42 | 3.78
3.66 | 2-2
2-3 | (32)
a ¹ D-z ³ D° | 4791.00
4019.055 | E
D | (1)
(3) | 1.94 | 4.52
5.00 | 1-3
3-3 | (71)
a ³ P-2° | | 3249.440
3031.870 | B
B | 6
10r | 0.27 | 4.07 | 2-1
4-4 | a ³ F-z ¹ P°
(10)
a ³ F-y ³ F°
(11) | 3775.572
3634.941 | B
B | 30r
13 | 0.42
0.42 | 3.69
3.82 | 2-2
3-1 | (33) | 3564.67 | P | | 1.93 | 5.39 | 2-3 | a ³ P-x 3p 0 | | 3145.719
3184.367 | B
B | 8
8 | 0.16 | 4.09
4.15 | 3-3
2-2 | (11) | 3523.074 | В | 4 | | 3.92 | 2–3 | (34) | 3696.65
3713.336 | P
D | (3) | 1.93
1.94 | 5.27
5.27 | 3-3
1-1 | a ³ P_y ³ pe
(74) | | 3019.143
3097.118
3159.521 | B
B
B | 20R
15r
3 | | 4.09
4.15
4.07 | 4-3
3-2
3-4 | | 3619.392
3566.372 | В | 150R
100R | 0.43 | | 2-3 | a ¹ D-z ¹ F ⁶
(35)
a ¹ D-z ¹ D ⁶ | 3696.29
3713.696 | P
D | 1 | 1.93
1.94 | 5.27
5.27 | 3-1
1-3 | • • • • | | 3235.753 | В | 4 | 0.27 | 4.09 | 2-3 | 2 - 2 - | 3380.574 | В | 80R | 0.42 | 4.07 | 2-1 | (36)
a ¹ D-z ¹ Po | 3642.387 | В | 3 | 1.98 | 5.37 | 0-1 | a ³ P_y ¹ P° | | 2984.131
3045.006
3105.469 | B
B
B | 12R
10r
15r | 0.00
0.16
0.27 | 4.22 | 4-3
3-2
3-1 | a ³ F_y ³ D°
(13) | 3365.766
3310.202 | B
B | 15r
5 | 0.42 | 4.09
4.15 | 2-3
2-2 | (37)
a ¹ D-y ³ F°
(38) | 3529,625
3545.16 | D
E | {1
1 | 1.93
1.94 | 5.42
5.42 | 2-2
1-3 | a ³ p_x ¹ p°
(76) | | 3107.714
3129.314
3195.573 | B
B
B | 4
7
6 | 0.16
0.27
0.27 | 4.14
4.22 | 3-3
2-2
2-3 | | 3322.310 | В | 15r | 0.42 | 4.14 | 2-3 | a ¹ D-y ³ D° | 3176.292 | В | 2 | 1.94 | | | a ³ P-x ³ P°
,(77) | | 309 9.115 | В | 12r | 0.16 | | | a ³ F-z ¹ G° | 3250.743
3225.020 | B
B | 9
10r | 0.42
0.43 | 4.22
4.25 | 2-2
2-1 | (39) | 3181.740
3183.251
3183.038 | B
B
B | 5
4
3 | 1.93
1.94
1.98 | 5.82 | 2-3
1-2
0-1 | a ^{3p} _v ³ pe
(78) | | *2991. 095 | В | 4 | 0.27 | 4.40 | 2-3 | a ³ F_y ¹ F° †
(14) | 3101.879
3012.004 | B
B | 40R
75R | | 4.40 | 2-3 | a ¹ D_y ¹ F° (40) | 3170.715
3154.585 | B
B | 3 | 1.93
1.94 | | 2-2
1-1 | | | 3912.979 | В | .5 | | 3.18 | 3-4 | 23D-z5D° | | | | | 4.52 | -
2–3 | a ¹ D-y ¹ D°
(41) | 3164.166 | В | 2 | 1.94 | 5.84 | | a ³ P_4°
_(?9) | | 3889.671
3778.063
3811.32 | B
B
F | 15
5
(2) | | | 1-2
3-3
1-1 | (15) | 6128.990
6007.313
5925.81 | B
D
P | (3)
3 | 1.67
1.67
1.67 | 3.68
3.72
3.75 | 2-3
2-2
2-1 | b ¹ D-z ⁵ F°
(42) | *2991.095 | В _ | 4 | 1.93 | 6.05 | 2–3 | a ³ P-6° (80) | | *3674.06
3693.932
3772.530 | P
B
B | 10
8
6 | 0.03 | 3.38
3.45 | 3-3
3-1
1-0 | | 6643.641
6256.365 | C | 20
15 | 1.67 | 3.53 | 2-2 | b ¹ D_z ³ pe | 11196.70 | P | 10 | 2.73 | | | a ¹ G-z ¹ F° (81) | | 3587.931 | В | 13 | 0.03 | 3.47 | 3-4 | a ³ D-z ⁵ G° | 6327.603 | В | .5 | 1.67 | 3.64 | 3-1
3-3 | (43)
b ¹ p-z ³ F° | 8770.68
8702.49 | A
A | 10
6 | | 4.14 | 4-3
4-4 | a ¹ G_y ³ D°
(82)
a ¹ G_z ¹ G° | | 3609.314
3661.951
3523.444 | B
B
B | 10 | 0.11
0.21
0.03 | 3.58
3.53 | 2-3
1-2
3-3 | (16) | 5847.010
6191.186 | В | (3)
12 | 1.67 | 3.78
3.66 | 2-3
2-3 | (44)
b ¹ D-z ³ D° | 7385.24 | В | 1 | 2.73 | 4.40 | | (83)
a ¹ G_y ¹ F° | | 3553.483
3461.652 | В | 7 | 0.11 | 3.58 | 3-3 | -3n -5no | 6108.121
5748.343 | C
B | 8 3 | 1.67 | 3.69
3.82 | 2-3
2-1 | (45) | 4837.65 | P _ | | 2.73 | 5,28 | 4-3 | (84)
a ¹ G-w ³ D°
(85) | | 3452.890
3513.933 | B
B | 40R
15 | 0.03
0.11
0.21 | 3.68
3.72 | 3-4
3-3
1-3 | a ³ D-z ⁵ F° (17) | 5709.559 | В | 13 | 1.67 | 3.83 | 2-3 | b ¹ D-z ¹ F° (46) | 4401.547
4459.037 | B
B | 30
20 | | 5.98 | | z ⁵ D°-e ⁵ F | | 3374.221
3413.939
3485.888 | B
B
B | 15r
13r | 0.03 | 3.68
3.72
3.75 | 3-3
2-2 | | 5578.734 | В | 5 | | 3.88 | 3-3 | b ¹ D-z ¹ D°
(47)
b ¹ D-z ¹ P° | 4470.483
4462.460 | B
B | 15
10 | 3.38
3.45 | 6.06
6.15
6.22 | 3-4
3-3
1-3 | (86) | | 3485.888
3337.014
3387.466 | B
B | | 0.03 | 3.78
3.75 | 1-1
3-2
2-1 | | 5137.075
5102.971 | B
B | 8
(4) | 1.67 | 4.07 | | b ¹ D-z ¹ P°
(48)
b ¹ D-y ³ F° | 4436.981
4284.683
4325.607 | B
B
B | 5
6
6 | 3.48
3.18 | 6.26
6.06 | 0-1
4-4
3-3 | | | 3524.541
3492.956 | B
B | 200R
150R | 0.03 | 3.53
3.64 | 3-2
3-1 | a ³ D-z ³ pe
(18) | 4976.345
5003.751 | В | (4)
(2) | 1.67 | 4.15 | 3-2 | (49) |
4359.585
4384.543 | B
B | 10
5 | 3.38
3.45 | 6.15
6.22
6.26 | 2-2
1-1 | | | 3510.338
3610.462
3597.705 | B
B | 80R
60R | 0.21 | 3.73
3.53 | 1-0
3-2 | ,/ | 4843.165
4786.293 | B
B | (2)
(3) | 1.67 | 4.14
4.22
4.25 | 2-3
2-2
2-1 | b ¹ D-y ³ D°
(50) | 4161.34
4221.696
4285.19 | P
B
P | (2) | 3.29 | 6.15
6.22
6.26 | 4-3
3-2
3-1 | | | 3722.484 | В | 15 | 0.21 | 3.53 | 1-1 | | 4519.986 | В | 4 | 1.67 | 4.40 | | b ¹ D-y ¹ F° (51) | 4389.870
4574.03 | B
E | (1) | 3.45 | 6.26 | 1-1 | z ⁵ D°-f ³ D | | 3414.765//
3515.054
3458.474 | B
B
B | 150R | 0.03
0.11
0.21 | 3.62 | 3-4
2-3
1-2 | a ³ D-z ³ F° (19) | 4331.645 | В | 13 | 1.67 | | | b ¹ D-y ¹ D°
(52) | 4443.441 | В | (1)
(4) | | 6.08
6.26 | 2-3
0-1 | (87) | | 3433.558
3361.556 | В | 70R
20R | 0.03 | 3.62
3.78 | 3-3
2-2 | | 3435.489
3338.758 | B
B | 3
3 | 1.67 | | 2-3
2-1 | b ¹ p _{-x} 3p ₀
(53)
b ¹ p _{-y} 1p ₀ | 4414.20
4410.516 | P
B | 4 | 3.29 | | 3-4 | z ⁵ D°-e ³ F
(88) | | 32 86.946 | В | 8 | 0.03 | 3 .78 | 3–2 | | | - | = | | | ~-1 | b ¹ D_y ¹ P° (54) | 4565.13
4367 .36 | P
P | (1) | 3.38
3.45 | | 2-3
1-2 | Laborat
I A Re | tory
ef | | E : | P
Kigh | J | Multiplet
(No) | Labor
I A | rator;
Ref | | E : | P
High | J | Multiplet
(No) | Labor
I A | ator;
Ref | | E : | P
High | J | Multiplet (No) | |--|------------------|------------------------------|------------------------------|------------------------------|--------------------------|--|--|-----------------------|--|--|--------------------------------------|---------------------------------|---|--|------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--| | Ni I contin | nued | | | | | | Ni I cont | inue | đ | | | | | <u>Ni I</u> cont | inue | đ | | | | | | 4057.347 E
4200.464 E
4184.475 E
4148.75 F | B
B | (2)
5
(4) | 3.29
3.29
3.38
3.45 | 6.33
6.23
6.33
6.42 | 3-3
3-4
2-3
1-2 | z ⁵ D°-f ³ F
(89) | 7393.63
7715.63
7167.01
7826.81
7917.48 | B
B
B | 10
(7)
(4)
(4)
(7)
(2)
(1) | 3.59
3.68
3.72
3.68
3.72 | 5.26
5.28
5.45
5.26
5.28 | 4-3
3-2
2-1
3-3
2-3 | z ⁵ F°-e ³ D
(109) | 4713.84
4795.84
4864.282
4705.93 | P
E
B
E | (1)
(2n)
(1) | 3.53
3.64
3.73
3.64 | 6.15
6.22
6.26
6.26 | 2-3
1-2
0-1
1-1 | z ³ P°-e ⁵ F
(128) | | 3327.392 E
3293.674 E
3277.23 E | B
D
E
P | {1/1} | 3.29
3.38
3.45
3.28 | 7.00
7.13
7.22
7.00 | 3-2
3-1
1-0
3-3 | z ⁵ D°-f ³ P
(90) | 7286.56
8034.56
6928.25 | B
B | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3.75
3.72
3.68 | 5.45
5.26
5.46 | 1-1
2-3
3-2 | z ⁵ F°-e ¹ D | 4904.413
5139.255
5328.70 | B
B
P | 10
3 | 3.53
3.64
3.73 | 6.04
6.04
6.04 | 2-1
1-1
0-1 | z ³ P°-e ³ S
(129) | | 3217.830 E
3233.174 E
3213.423 E
3268.971 E | B
B
B | 8
4
5n
2n | 3.18
3.29
3.38
3.45 | 7.01
7.11
7.22
7.23 | 4-3
3-2
2-1
1-1 | z ⁵ D°-e ⁵ P
(91) | 5017.591
4998.233
5012.464
4953.204 | B
B
B | 10
2
2
3
3 | 3.52
3.59
3.68
3.72 | 5.98
6.06
6.15
6.22
6.26 | 5-5
4-4
3-3
3-3
1-1 | (110)
_Z 5 _F °_e5 _F
(111) | 4855.414
5082.354
4852.560
4811.999
5085.479 | B
B
B
B | 15
(4)
(2n)
(2)
(2) | | 6.07
6.07
6.07
6.21
6.07 | 3-3
1-1
3-1
1-0
1-3 | z ³ p°_e ³ p
(130) | | 3223.534 H | P
B
B | 3
2 | 3.48
3.18
3.29
3.29 | 7.22
7.01
7.16
7.01 | 0-1
4-4
3-3
3-4 | z ⁵ D°-1 ³ F
(92) | 4912.030
4866.267
4831.183
4873.437
4857.382
5157.993 | B
B
B
B
B | 2
10
10
4
2
(3) | 3.75
3.52
3.59
3.68
3.72
3.59 | 6.06
6.15
6.22
6.26
5.98 | 5-4
4-3
3-2
2-1
4-5 | | 4829.028
5042.195
4870.845
4815.92
4713.069 | B
B
E
B | 15
4
2
(1)
(2) | 3.53
3.64
3.73
3.53
3.64 | 6.08
6.09
6.26
6.09
6.26 | 2-3
1-2
0-1
2-3
1-1 | z ³ P°-f ³ D
(131) | | | B
B | 7
5 | 3.18
3.29 | 7.02 | 4-4
3-3 | z ⁵ D°-e ⁵ D†
(93) | 5192.524
5096.874
5010.045 | B
B
B | 2
2
(2) | 3.68
3.72
3.75 | 6.06
6.15
6.22 | 3-4
2-3
1-3 | | 4513.90
4752.426 | P
B | 4 | 3.53
3.64 | 6.24 | 2-1 | z ³ po-e ¹ p | | 3209.912 H
3206.952 H
3219.811 H | B
B
B | 5
5
4n
3 | 3.18
3.29
3.38
3.45 | 7.03
7.14
7.23
7.28 | 4-5
3-4
2-3
1-2 | z ⁵ D°-f ⁵ F
(94) | 4849.12
4976.155
4980.161 | P
B
B | (in) | 3.52
3.59
3.59 | 6.07
6.07
6.07 | 5-5
4-4
4-5 | z ⁵ F°-e ³ G
(113) | 4913.970
4506.302
4703.808 | B
D
B | 3
(1)
4 | 3.73
3.53
3.64 | 6.24
6.27
6.27 | 0-1
2-2
1-3 | (132)
z ³ po_f ¹ D
(133) | | 3118.56 I | B
P | 3 | 3.48
3.18 | 7.31
7.14 | 0-1
4-4 | e . e | 5168.660
4873.27 | B
P | 6 | 3.68
3.72 | 6.26 | 3-4
3-3 | 5 | *4490.541 | В | (3) | 3.53 | 6.28 | 2-3 | z ³ po-e ¹ F | | | B
D | 2
4 | 3.18
3.29 | 7.14
7.05 | 4-5
3-3 | z ⁵ D°-e ⁵ G
(95)
z ⁵ D°-1 ³ D | 4952.334
5128.03
4863.931 | E
B | (in)
(i)
(3n) | 3.59
3.68
3.72 | 6.08
6.09
6.26 | 4-3
3-2
2-1 | z ⁵ F°_f ³ D
(113) | 4553.175
4231.040 | B
B | (3)
.5 | 3.64
3.53 | 6.35 | 2-3 | z ³ p°-e ¹ S
(135)
z ³ p°-g ³ D | | | P
_ | | 3.38 | 7.05 | 2–3
- | (96) | m5142.98
5216.512
4918.712 | P
D
B | N1
2
(2) | 3.68
3.72
3.75 | 6.08
6.09
6.26 | 3-3
3-3
1-1 | | 4390.322
4252.107 | B
B | (2n)
(2) | 3.64
3.73 | 6.45
6.63 | 1-2
0-1 | (136) | | 7034.42 I | B
B
G- | 2 (1) | 3.47
3.53
3.58 | 5.26
5.28
5.45 | 4-3
3-2
3-1 | z ⁵ G°-e ³ D
(97) | 4808.52
4941.920 | E
B | (1)
(2) | 3.52
3.59 | 6.09 | 5-4
4-3 | z ⁵ F°-e ³ F
(114) | 3844.276
3987.090 | B
D | (S)
(3N) | 3.53
3.64 | 6.74
6.74 | 3-1
1-1 | z ³ P°_f ³ S
(137) | | 7126.71 | B
G | (1)
(2)
(1) | 3.53
3.58 | 5.26
5.28 | 3-3
3-2 | | 4760.23
4937.337 | P
B
D | 4 3 | 3.68
3.59
3.68 | 6.28
6.09
6.09 | 3-2
4-4
3-3 | (111) | 3701.63 | P | | 3.53 | 6.86 | 2–3
- | z ³ P°-f ¹ F
(138) | | 4648.659 I
4604.994 I | В | 25
15
12
10 | 3.37
3.40
3.47
3.53 | 5.98
6.06
6.15
6.22 | 6-5
5-4
4-3
3-2 | z ⁵ G°-e ⁵ F
(98) | 5131.770
4836.27
5220.307
4890.45 | E
B
P | (1)
2 | 3.72
3.72
3.75 | 6.28
6.09
6.28 | 2-3
2-3
1-2 | | 7617.00
7422.30
7409.39
7525.14 | B
B
B | 5
15
8
2 | 3.64
3.62
3.78
3.62 | 5.26
5.28
5.45
5.26 | 4-3
3-2
2-1
3-3 | z ³ F°-e ³ D
(139) | | 4600.372 I
4786.541 I | B
B | 6
15
10 | 3.58
3.40
3.47 | 6.26
5.98
6.06 | 2-1
5-5
4-4 | | 4559.945
4501.692
4675.639 | B
D
B | (3)
(1)
(2) | 3.52
3.68
3.59 | 6.23
6.42
6.23 | 5-4
3-2
4-4 | z ⁵ F°_f ³ F
(115) | 6690.80
7327.67 | B
B | (2)
(4) | 3.62
3.78 | 5.46
5.46 | 3-2
3-2 | z ³ F°-e ¹ D
(140) | | 4715.778 H
4686.218 H
4900.97 H
4874.809 H | B
B
E
B | 8
5
(1)
(2)
(3) | 3.53
3.58
3.47
3.53 | 6.15
6.22
5.98
6.06 | 3-3
2-2
4-5
3-4 | | 4655.661
4845.17
4738.43
4617.94 | B
E
E | (3)
(2)
(2)
(3)
(1)
(1) | 3.68
3.68
3.72
3.75 | 6.33
6.23
6.33
6.42 | 3-3
3-4
2-3
1-2 | | 5265.748
5058.03
5099.322 | B
B | (2)
(2)
5 | 3.64
3.62
3.64 | 5.98
6.06
6.06 | 4-5
3-4
4-4 | z ³ F°-e ⁵ F
(141) | | 4565.45 I | B
P | | 3.58 | 6.07 | 2-3
6-5 | z ⁵ g°-e ³ g | 4325.361
4521.924 | B
D | (1) | 3.59
3.72 | 6.44
6.45 | 4-3
2-2 | z ⁵ F°-g ³ D
(116) | 4886.992
5067.82
4925.578 | B
E
B | (3)
(1)
2 | 3.78
3.64 | 6.15
6.22
6.15 | 3-3
2-2
4-3 | | | 4523.74 I
4740.165 I | E
P
B | (1)
(2) | 3.47
3.53
3.47 | 6.07
6.26
6.07 | 4-4
3-3
4-5 | (99) | 3908.931
4025.44 | B
D | 8n
(1N) | 3.59
3.68 | 6.75
6.75 | 4-5
3-4 | z ⁵ F°_f ³ G
(117) | 4754.768
4967.551 | B
D | (1) | 3.62
3.78 | 6.22 | 3-2
2-1 | 7 7 | | 4614.58 E | e
e
B
P | (3)
(1)
(1)
3
N1 | 3.53
3.58
3.58
3.53 | 6.07
6.26
6.26
6.08 | 3-4
2-3
2-1
3-3 | z ⁵ G°-f ³ D
(100) | 3559.930
3496.350
3485.110
3396.50 | B
B
B | 2
5
2n | 3.52
3.59
3.68
3.59 | 6.99
7.13
7.23
7.23 | 5-6
4-5
3-4
4-4 | z ⁵ F°-e ³ H
(118) | 5039.259
5080.523
5035.374
4984.126 | B
B
B | (2r)
30
12
10 | 3.62
3.64
3.62
3.78 | 6.07
6.07
6.26 | 3-2
4-5
3-4
2-3 | z ³ F°-e ³ P
(142)
z ³ F°-e ³ G
(143) | | 4921.18 I | P
B | | | 6.09 | 2-2
5-4 | z ⁵ g°-e ³ F | 3542.00
3611.418 | E
D | {1
1} | 3.52
3.59 |
7.01
7.01 | 5-4
4-4 | z ⁵ F°_1 ³ F
(119) | 5076.321
4681.05 | B
P | (3) | 3.64
3.62 | 6.07
6.26 | 4-4
3-3 | | | 4705.50 H
4701.336 H | B
B
B | (4n)
(1)
(2)
3 | 3.47
3.47
3.40 | | 4-3
4-4
5-4 | (101)
z ⁵ g•_f ³ F | 3537.634
3482.73
3483.62 | D
E
P | {1
{1} | 3.52
3.59
3.68 | 7.01
7.13
7.23 | 5-5
4-4
3-3 | z ⁵ F°-g ³ G
(120) | 5051.527
4996.850
5010.961 | B
B
B | (2N)
(2n)
(3n) | 3.64
3.62
3.62 | 6.08
6.09
6.08 | 4-3
3-2
3-3 | z ³ F°-f ³ D
(144) | | 4302.13 I
4463.427 I | P
B
B | (3) | 3.47
3.47
3.53 | 6.33
6.23
6.33 | 4-3
4-4
3-3 | (102) | *3606.852
3575.952 | B
B | 4
3 | 3.59
3.68 | 7.01 | 4-5
3-4 | | 5035.961
5000.335
4945.458 | B
B
B | (3N)
4
2 | 3.64
3.62
3.78 | 6.09
6.09
6.28 | 4-4
3-3
3-2 | z ³ F°-e ³ F
(145) | | 4567.415 I
4484.54 I | D
E
E | {i}
(i) | 3.53
3.58
3.53 | 6.23
6.33
6.26 | 3-4
2-3
3-4 | z ⁵ G°-e ¹ G | 3530.595
3488.293
3599.530
m3624.72 | B
B
D
P | 4
3
(1)
N1 | 3.52
3.59
3.59
3.72 | 7.02
7.13
7.02
7.13 | 5-4
4-3
4-4
2-3 | z ⁵ F°-e ⁵ D
(121) | 4646.94
4995.65
5347.71 | P
P | | 3.62
3.62
3.78 | 6.28
6.09
6.09 | 3-2
3-4
3-3 | 7 3 | | | B
B | 5
4 | 3.40
3.47 | 6.99
7.12 | 5-6
4-5 | (103)
z ⁵ G°-e ³ H
(104) | 3421.342
3396.184 | B
B | 7
6 | 3.52
3.59 | 7.13
7.22 | 5-6
4-5 | z ⁵ F°-e ⁵ H
(133) | 4763.950
4547.234
4666.994 | B
B
B | 4
3
2 | 3.62
3.78 | 6.23
6.33
6.42 | 4-4
3-3
3-2 | z ³ F°_f ³ F
(146) | | 3309.32 I
3421.22 I | B
P
P | 4n | 3.53
3.40
3.40 | 7.22
7.13
7.01 | 3-4
5-4
5-5 | z ⁵ G°_g ³ G
(105) | 3422.878
3444.251
3337.36
3405.50 | B
B
P
P | 4
5 | 3.68
3.72
3.59
3.68 | 7.29
7.31
7.29
7.31 | 34
2-3
4-4
3-3 | | 4580.619
4400.26
4727.851
4832.704 | B
E
B
B | (3)
(1)
(2)
2 | 3.64
3.62
3.62
3.78 | 6.33
6.42
6.23
6.33 | 4-3
3-2
3-4
2-3 | | | 3479.264 E | B
B
B | 4
3
4 | 3.47
3.47
3.53 | 7.13
7.01
7.13 | 4-4
4-5
3-4 | | 3516.234
*3480.183 | B
B | 8
4 | 3.52
3.59 | 7.03
7.14 | 5-5
4-4 | z ⁵ F°-f ⁵ F
(123) | 4664.32
4965.14 | P
E | (1) | 3.62
3.78 | 6.27
6.27 | 3-2
2-2 | z ³ F°-f ¹ D
(147) | | | | 15
10 | 3.37
3.40 | 7.02
7.13 | 6-7
5-6 | z ⁵ G°-e ⁵ H
(106) | 3476.63
3467.732
3467.12 | B
B
E | 3n
4
(1) | 3.68
3.72
3.75 | 7.23
7.28
7.31 | 3-3
3-2
1-1 | | 4647.42
4946.037 | P
B | $\binom{1}{3}$ | 3.62
3.78 | 6.28
6.28 | 3-3
2-3 | z ³ F°-e ¹ F
(148) | | 3282.827 F
3281.880 F
3312.992 F | B
B
B | 5
5
4 | 3.47
3.53
3.58
3.40 | 7.22
7.29
7.31
7.22 | 4-5
3-4
2-3
5-5 | | 3415.67
3428.42
3573.27
3517.03 | P
P
P | | 3.52
3.68
3.68
3.72 | 7.14
7.28
7.14
7.23 | 5-4
3-2
3-4
2-3 | | 4400.870
4355.911
4330.720
4370.041 | B
B
B | 3
3
2
(3) | | 6.44
6.45
6.63
6.44 | 4-3
3-2
2-1
3-3 | z ³ F°-g ³ D
(149) | | 3307.013 E | B
B
P | 5
3 | 3.37
3.40
3.47 | 7.03
7.14
7.23 | 6-5
5-4
4-3 | z ⁵ g°-f ⁵ F
(107) | 3518.634
3477.864
3442.559 | B
B
B | 8
2
4n | 3.52
3.59
3.68 | 7.03
7.14
7.27 | 5-6
4-5
3-4 | z ⁵ F°-e ⁵ G
(134) | 4038.27
4009.984 | P
B
P | (3) | 3.64
3.62 | 6.70
6.76 | 4-4
3-3 | z ³ F°-g ³ F
(150) | | 3308.91 I
3401.166 I | P
P
B
B | N1
8
5 | 3.53
3.58
3.40
3.47 | 7.28
7.31
7.03
7.14 | 3-2
3-1
5-5
4-4 | | 3511.94
*3480.183
m3413.46
3471.63 | E
B
P
P | (1)
4
N1 | 3.72
3.75
3.52
3.68 | 7.24
7.30
7.14
7.24 | 2-3
1-2
5-5
3-3 | | 3958.60
4035.96
4230.39 | P
P | | 3.78
3.64
3.78 | | 2-2
4-3
2-3 | • - | | 3331.26 I
3366.807 I | P | 10
6 | 3.53
3.37
3.40 | 7.23
7.03
7.14 | 3-3
6-6
5-5 | z ⁵ ge_e ⁵ g
(108) | 3191.875 | В | 2 | | 7.39 | 5-5
- | z ⁵ F°-g ⁵ F
(125) | 3970.503
3944.126
3912.310 | B
B
B | 10n
12n
8n | 3.64
3.62
3.78 | 6.75
6.75
6.93 | 3-4
2-3 | z ³ F°-1 ³ G
(151) | | 3245.370 E | B
B
B | 4n
4
6 | 3.47
3.53
3.58 | 7.27
7.24 | 4-4
3-3
2-2 | ,, | 7122.24
7522.78
7182.00 | B
B
B | 100
3
8 | 3.53
3.64
3.73 | 5.26
5.28
5.45 | 3-3
1-3
0-1 | z ^{3pe} -e ³ D
(126) | 3511.613
3651.67 | D
P | 3 | 3.62
3.64 | 7.13 | 3-4?
4-4 | z ³ F°-g ³ G
(152)
z ³ F°-e ⁵ D | | 3194.76 I
3271.17 I | P
P | N1 | 3.40
3.47 | 7.30
7.27
7.24 | 5-4
4-3 | | 7182.00
7030.06
6842.07 | B
B | 3
8 | 3.53
3.64 | 5.28
5.45 | 3-3
1-1
3-1 | | 3537.243
3528.891 | D
B | (1)
(3) | 3.64 | 7.13 | 4-3 | (153)
z3ro_f5r | | 3403.432 E
3359.106 E | B
B | (1)
8
8 | | 7.30
7.03
7.14 | 3-2
5-6
4-5 | | 6432.06 | G
B | (1)
(4) | | 5.45 | 3-3 | z ³ po_e ¹ D | m3523.47
3494.703 | P
D | N1
(1) | 3.78
3.78 | 7.28 | 2-2
2-1 | (154) | | 3375.561 F | B
 | 2n
 | 3.58 | 7.24 | 2-3 | | 6772.36 | В | 5 | 3.64 | 5.46 | 1-3 | (127) | 352 6.54 0 | В | 3 | 3.64 | 7,14 | 4- 5 | z ³ F°_e ⁵ G
(155) | 6 FINDING LIST I A Type Element Multiplet No. I A Type Element Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I, A | Туре | Element | Multiplet No. | | |----------------------------------|------|---------------|---------------|-----------------------------|--------|-----------------|---------------|----------------------|------------|---------------|---------------------|--| | 489.10 | | Yb I | 3 | 6560.099 | | He II | 2 | 6634.10 | P · | Fe I | 1258 | | | 489.68
490.344 | | Zr I
Co I | 65
81 | 6560.68
6561.032 | | Si I
D | 62
1 | 6634.36
6635.15 | | Gd II
Ni I | 94
264 | | | 491.28 | | Fe II | | 6562.817 | | H | 1 | 6635.68 | P | Fe I | 1155 | | | 491.28 | P | N I
Ti II | 21 | 6563.403 | | Co I | 80 | 6636.53 | | La II | 61 | | | 491.61
491.712 | P | Mn I | 91
39 | 6563.86
6565.62 | | Hf II
Ti I | 81 | 6637.01
6638.24 | | N I
A II | 20
20 | | | 492.0 | | N II | 45 | 6565.88 | | v I | 48 | 6639.35 | P | Fe I | 1279 | | | 493.05 | | Fe II | 10 | 6567.22 | P | Fe I | 168 | 6639.71 | P | Fe I | 1195 | | | 493.780 | | Ca I | 18 | 6567.39 | | Hf II | 90 | 6639.72 | | AII | 20 | | | 494.11
494.52 | P | Gd II
Fe I | 123
1255 | 6568.00 | | Gd II | 121 | 6639.90 | P | Fe I | 1007 | | | 494.985 | r | Fe I | 168 | 6569.261
6569.31 | | Fe I
Sm II | 1253
62 | 6640.90
6641.06 | | 0 II
8 II | 4
25 | | | 495.45 | | Al II | 65 | 6527.10 | | He II | 7 | 6642.79 | | La II | 103 | | | 495.779
496.456 | | Fe I
Fe I | 1253 | 6570.834 | | Mn I | 51 | 6643.023 | | Cr I | 256 | | | 496.456 | | Ba II | 1258
2 | 6570.96
6571.22 | | La II
Fe I | 47
1121 | 6643.536
6643.641 | | Sr I
Ni I | 8
43 | | | 497.689 | | Ti I | 102 | 6572.781 | | Ca I | 1 | 6643.79 | | A II | 20 | | | 498.19
498.759 | | La II
Ba I | 104
6 | 6572.900
6574.238 | | Cr I
Fe I | 16
13 | 6644.60 | | Hf II
N I | 34
20 | | | | | | | | | | | 6644.96 | | | 20 | | | 498.950
499.52 | | Fe I
N I | 13
21 | 6575.022
6575.180 | | Fe I
Ti I | 206
286 | 6645.11
6646.52 | | Eu II
N I | 8
20 | | | 499.649 | | Ca I | 18 | 6576.95 | P | N1 I | 283 | 6646.90 | P | Fe I | 1156 | | | 500.25 | | AII | 26 | 6578.03 | | CII | 2 | 6646.98 | | Fe I | 206 | | | 501.212
501.681 | | Cr I
Fe I | 16 | 6578.51 | | La I
V I | 1
32 | 6647.06 | D | Hf II | 65 | | | 503.989 | | Sr I | 8 . | 6578.96
6580.22 | | N1 I | 265 | 6647.90
6648.08 | P
P | Fe I
Fe I | 551
13 | | | 504.164 | | v I | 48 | 6580.96 | | Cr I | 16 | 6653.41 | - | N I | 20 | | | 504.9
506.33 | | N II
Fe II | 45 | 6581.22 | | Fe I | 34 | 6653.75 | | C1 II | 38 | | | ,,,,,, | | re 11 | | 6582.85 | | C II | 2 | 6653.78 | | 0 I | 65 | | | 506.45
506.5279 | | N I
Ne I | 21
3 | 6584.53 | | Hf II | 99 | 6653.88 | | Fe I | 1052 | | | 508.135 | | Ti I | 102 | 6584.89
6586.328 | | Y I
N1 I | 1
64 | 6656.61
6657.54 | | N I
Cr I | 20
282 | | | 508.742 | | Ca I | 18 | 6586.343 | | Mn I | 51 | 6660.49 | | Si II | 202 | | | 509.16 | | A II | 21 | 6586.69 | | Fe II | | 6661.076 | | Cr I | 282 | | | 509. 56
511. 62 | | Fe I
Hf II | 1012
69 | 6587.75
6588.91 | | C I
Sm I | 22
1 | 6661.39
6661.68 | | N1 I
Cl II | 246
38 | | | 512.61 | | Hf II | 49 | 6591.32 | | Fe I | 1229 | 6663.26 | | Fe I | 1195 | | | 516.026 | | Cr I | 265 | 6591.834 | _ | Co I | 202 | 6663.446 | | Fe I | 111 | | | 516.053 | | Fe II | 40 | 6592 | P | C IV | 10 | 6665.42 | P | Fe I | 1156 | | | 517.01 | | Fe II | | 6592.472 | _ | N1 I | 248 | 6665.43 | P | Fe I | 34 | | | 517.27
518.376 | | V II
Fe I | 230 .
342 | 6592.91
6592.919 | P | Ti I
Fe I | 102
268 | 6666.36
6666.548 | | A II
Ti I | 25
101 | | | 519.371 | | Mn I | 39 | 6593.878 | | Fe I | 168 | 6666.94 | | 0 11 | 85 | | | 521.39 | | s II | 25 | 6595.326 | | Ba I | 6 | 6667.17 | P | Fe I | 110 | | | 522.3
522.38 | | N II
Cl II | 45
59 | 6595.869 | | Co I
Cr I | 174 | 6667.42 | P | Fe I | 168 | | | 524.76 | P | Fe I | 1280 | 6597.556
6597.607 | | Fe I | 282
1253 | 6667.73
6669.257 | | Fe I
Cr I | 1228
282 | | | 526.99 | | La II | 33 | 6598.594 | | N1 I | 249 | 6671.36 | | Fe I | 1343 | | | 527.20 | P | Si I | 52 |
6598.9529 | | Ne I | 6 | 6671.41 | | La II | 33 | | | 527.312 | | Ba I | 6 | 6599.112 | _ | Ti I | 49 | 6671.43 | P | Fe I | 1255 | | | 527.49
528.53 | | S1 I
Fe I | 62 | 6601.13
6603.20 | P
P | Fe I
Fe I | 1280
862 | 6671.51 | | Sm I
Si II | 1 | | | 529.197 | | Cr I | 265 | 6603.67 | P | Fe I | 860 | 6671.88
6672.84 | | V II | 229 | | | 531.44 | | V I | 48 | 6604.60 | | Sc II | 19 | 6672.88 | P | Fe I | 205 | | | 531.66
532.891 | | Hf II
N1 I | 48
64 | 6604.67 | | Fe I | 1254 | 6673.84 | P | Fe I | 1254 | | | 533.0 | | N II | 45 | 6605.546
6605.98 | | Mn I
V I | 51
48 | 6675.271
6676.86 | P | Ba I
Fe I | 6
11 94 | | | 533.97 | | Fe I | 1197 | 6607.02 | P | Ti II | 91 | 6677.24 | • | Cr I | 256 | | | 537.921 | | Cr I | 16 | 6607.82 | | V I | 59 | 6677.25 | | Ti I | 274 | | | 539.72 | _ | Fe I | 405 | 6608.03 | | Fe I | 109 | 6677.33 | | Fe II | 210 | | | 541.49
542.80 | P | Fe I | 1195 | 6609.116 | | Fe I | 206 | 6677.49 | P | Fe I | 1280 | | | 543.17 | | Hf II
La I | 100
7 | 6609.20
6609.56 | | Hf II
Fe I | 105 | 6677.54
6677.96 | P
P | Fe I
Fe I | 551
205 | | | 543.51 | | V I | 48 | 6609.64 | | Al II | 76 | 6677.993 | • | Fe I | 268 | | | 543.98
545.2 | | Fe I | 1139 | 6609.68 | P | Fe I | 13 | 6678.03 | | Zr II | 128 | | | 545.2
545.80 | | N II
Mg II | 45
23 | 6610.04
6610.58 | | . Gd II
N II | 108
31 | 6678.149
6678.19 | | He I
O II | 46
85 | | | 546.245 | | Fe I | 268 | 6612.17 | | Cr I | 282 | 6678.2764 | | Ne I | 6
6 | | | 546.276 | | Ti I | 102 | 6613.74 | | Y II | 26 | 6678.60 | P | Ti I | 213 | | | 546.791 | | Sr I | 8 | 6613.83 | P | Fe I | 13 | 6678.818 | | Co I | 54 | | | 547.58 | P | Fe I | 13 | 6615.03 | P | Fe I | 1155 | 6680.19 | | Cr I | 282 | | | 548.72
550.01 | | HC II | 111 | 6617.126 | n | Co I | 202 | 6680.26 | | Ti II | 112 | | | 550.244 | | Sr I | 12 | 6617.14
6617.266 | P | N1 I
Sr I | 248
8 | 6681.03
6681.23 | | C1 II | 38
94 | | | 551.466 | _ | Co I | 54 | 6621.24 | | Ni I | 97 | 6681.34 | P | Fe I | 1155 | | | 551.68
552.77 | P | Fe I
Fe I | 13
1995 | 6622.28 | _ | Gd II | 110 | 6682.23 | P | Fe I | 1008 | | | 554.18 | | La II | 1325
109 | 6622.41
6622.53 | P | Fe I
N I | 1157
20 | 6683.2
6684.36 | | He II
A II | 7
20 | | | 554.226 | | Ti I | 102 | 6623.78 | P | Fe I | 1010 | 6686.04 | | C1 II | 20
38 | | | 555.20 | | Si I | 62 | 6624.86 | | v i | 48 | 6687.57 | | y I | 1 | | | 555.87 | P | Fe I | 1007 | 6625.04 | | Fe I | 13 | 6690.80 | | Ni I | 140 | | | 556.066 | | Ti I | 102 | 6627.28 | | Fe II | 210 | 6692.47 | P | Fe I | 1192 | | | 556.79.
557.40 | | Fe I
Y I | 1255 | 6627.558 | | Fe I | 1174 | 6693.842 | | Ba I | 6 | | | 557.87 | | Sc I | 1
24 | 6627.62
6630.01 5 | | O II
Cr I | 85
16 | 6695.97
6696.30 | P | Al I
Fe I | 5
1255 | | | 557.91 | | Hf II | 66 | 6630.5 | | N II | 41 | 6696.30
6696.39 | r | re I
Al II | 1255
29 | | | 558.02 | | V I | 59 | 6632.438 | | Co I | 111 | 6698.63 | | Al I | 5 | | | | | | 1).4 | | | | | | | | | | | 558.05
559.580 | | Sc I
Ti II | 24
91 | 6633.44
6633.764 | | Fe I
Fe I | 1258
1197 | 6699.14
6699.46 | | Fe I | 1228
29 | | Type Element Multiplet No. I A | Labo
I A | ratory
Ref | | Low
E I | | J | Multiplet
(No) | Labor
I A | ator;
Ref | | E F | | J | Multiplet (No) | | Ref | Int | E l
Low | | J | Multiplet
(No) | |-------------------------------|---------------|-------------------|----------------------|----------------------|-------------------|---|----------------------------------|--------------|----------------------|----------------------|----------------------|----------------------|---|----------------------------------|-------------|-------------------|-------------------------|-------------------------|-----------------------------------|--| | <u>i I</u> cor | tinued | L | | | | | N1 I cont | | | | | | | Cu I cont | | | 7 00 | E 77 | 41 1 | 42po 52g | | 025.73
116.181 | G
B | (1)
6n | 4.22
4.25 | 6.27
6.27 | 2-2
1-2 | y ³ D°-f ¹ D
(251) | 7381.94
7559.62
7624.75 | B
B
G | (5)
(3)
(2) | 5.34
5.50
5.61 | | 4-5
3-4
2-3 | | 8092.634
7933.130 | A | 300
160 | | 5.33 | 13- 3 | 4 ² p° -5 ² s
(6) | | 997.610 | B | 2n | | 6.28 | | y ³ D°-e ¹ F
(252) | 6861.24 | В | (3)
(3) | | 7.14 | 4-5
2-2 | w ³ F°e ⁵ G | 5218.202
5153.235
5220.070 | A
A
A | 80
100
25 | 3.80
3.77
3.80 | 6.17
6.16
6.16 | 1 1 2 2 3
3 - 1 3
1 2 - 1 3 | 4 ² p°-4 ² D
(7) | | 863.97
821.143 | G
B | (2)
(2) | | 6.35
6.70 | 1-0
3-4 | y3D°_e1s
(253)
y3D°_g3F | 7297.75
7220.79 | B
B | (3) | 5.34 | | 4-3 | w3F0_13D | 4530.785 | A | 110 | 3.80 | | | 4 ² p°_6 ² g
(8) | | 1976.71
1657.38 | P
E | (1)
(2) | 4.22 | 6.70
6.90 | 2-3
1-2
3-3 | (254) | 9689.35 | | 3 | 5.43 | 6.70 | -
2–3 | (294)
x ¹ D°-g ³ F | 4480.350 | A . | 100 | 3.77 | 6.52 | <u>₹</u> - ₹ | (8) | | 1817.847
1115.982 | B
B | (3) | 4.14 | 7.13 | 3-4 | y ³ D°-g ³ G | 8586.20 | P | 1 | | 6.86 | 2-3 | (295)
x ¹ D°-f ¹ F | Cu II I | P 20 | 0.18 | Anal A | List 1 |) Ma | y 19 42 | | 102.74
1235.54 | P
P | | 4.22 | 7.23 | 2-3
3-3 | (255)
y ³ D°-1 ³ D | Strongest | Uncl | assified | l Lines | of Ni | I | | 4555.922 | A | (100) | 8.20 | 10.91 | 2-2 | 4p ³ po-s ² 3p | | 357.85 | P . | (1) | 4.33 | | a–3 | (256) | 10295.05
9396.57 | A
A | 5
20 | | | | | 4832.236
4505.997
4758.421 | A
A
A | 30
(75)
30 | 8.20 | 10.94
10.94
10.98 | 1-1
3-1
1-0 | (1) | | 3451.580 | В | (2)Fe? | 4.15 | | | z ¹ G°-e ⁵ F
(257) | 6362.414
6012.251 | D
B | (5)
(5)
(5n) | | | | | 4889.690
5060.635 | A | 30
30 | | 10.91
10.94 | 1-3
0-1 | | | 6421.507
5923.930 | B
B | (5n) | 4.15
4.15 | | 4-5
4-4 | z1G°_e3G
(258)
z1G°_f3F | 4594.908
4142.320 | B
B | (5n)
(4) | | | | | 3686.555 | A | (100) | 8.45 | 11.80 | 3-4 | 4p3r°-s2 1g | | 5643.099 | В | (1)
(2) | 4.15 | 6.33 | 4-3 | (259) | 4006.136
3762.618
3665.924 | B
B
B | (3)
2 | III
V | | | | 4043.502 | A | 75 | 8.75 | 11.80 | -
3-4 | (2)
4p ³ p°-s ² 1c | | 1842.01
1838.651 | E
B | (1)
2 | 4.15 | 6.70
6.70 | 4-3 | z1G°_g ³ F
(260) | 3647.71 | E | 3 | II | | | | | | 40 | 14.14 | | - | (3)
4d ³ S-4f ³ P° | | 4546.930 | B
E | 5 (1) | 4.15
4.15 | | | z ¹ G°-f ¹ F
(261)
z ¹ G°-f ¹ G | 3335.59
3332.180
3309.428 | E
B
B | 2n
6n
2n | V
V | | | | 4671.686
4681.990
4673.555 | A
A
A | 50
30 | 14.14
14.14
14.14 | 16.77 | 1-1
1-0 | (4) | | 1424.84 | | - | | | | (262) | 3268.064
3264.44 | B
E | 4n
2n | Ÿ
V | | | | 4909.726 | A | 100 | 14.27 | 16.78 | -
5-6 | 4d ³ G-4f ³ H° † | | 7333.49
6635.15 | B
B | (2)Fe? | 4.40 | 6.08 | 3-3
3-4 | y1F°-f ³ D
(263)
y1F°-e ¹ G | 3233.88
3199.342 | E
B | 2
3n | v
v | | | | 4931.653
4918.373 | Ā | 100
30 | 14.28
14.54 | 16.78 | 4-5
3-4 | (5) | | 6580.22 | В | (2n) | 4.40 | | | (264)
y1F°_e1F
(265) | 3151.259 | В | 4n | V | | | | 4985.503 | A | 40 | 14.33 | 16.81 | -
3-4 | 4d ³ D-4f ³ F° † | | 7953.11 | В | (1) | 4.52 | 6.07 | -
3–1 | y1D°-e3p | | | | | | | - 4040 | 5088.260
4937.196 | A
A | 30
20 | 14.37
14.56 | | 2-3
1-2 | (6) | | 7890.22
7855.12 | В
В | (3)
(3)
(1) | 4.52
4.52 | | 2-3
2-2 | (266)
ylp°-f3p
(267) | N1 II I | P 18 | 8 8 | 2.85 | List A
6.36 | | 1942
b ² D-z ⁴ D°
(1) | 5051.778 | A | 60 | 14.37 | | | 4d ³ F-4f ³ G° † | | 7082.22 | G | | 4.52 | 6.26 | 2-1 | y1D°_e3F | 3454.16
3373.98 | A
A | 5
4
5 | 2.85 | 6.51
6.51
6.62 | 13-2
23-2
13-1 | • | 5012.611
5067.082 | A | 20
30 | 14.36
14.63 | 16.82
17.07 | 3-4
2-3 | (7) | | 7863.79
7173.73 | B
B | (5)
(2) | 4.52
4.52 | 6.24 | 2-3
2-1 | (268)
y1p°_e1p | 3350.42
3274.90
3290.69 | A
A
A | 3
1 | | 6.62 | 23-1
12- | - | 4812.940 | A | 40 | 14.47 | 17.04 | 1-2 | 4d ¹ P-4f ¹ D° (8) | | 7063.57 | В | (3) | 4.52 | 6.27 | 2-2 | (269)
y ¹ D°-f ¹ D
(270) | 3208.91 | A | 1 | 2.85 | | 2] _3 | b ³ D-z ⁴ G° (3) | 4953.733 | A | 50 | 14.55 | 17.04 |
4-5 | 4d1g-4f1H° | | 7024.86 | В | 3 | 4.52 | 6.28 | 2-3 | y ¹ D°-e ¹ F
(271) | 3032.44
3063.93 | A
A | 3 | 2.85
2.94 | 6.92
6.97 | 3 1 2 - 3 | b ² D-z ⁴ F° (3) | 5006.787 | A | 30 | 14.59 | 17.05 | -
2-3 | (9)
4d ¹ D-4f ¹ F° | | 5664.017
5268.348 | B | 3
2 | 4.52 | 6.70
6.86 | 2-3
2-3 | y1D°_g3F
(272)
y1D°_f1F | 3769.455 | В | 5 | 3.09 | | _ | a ⁴ P-z ⁴ D° (4) | 5065.448 | A | 40 | | 17.06 | | (10)
4d ¹ F-4f ¹ G° | | 4971.354 | _ | 3 | | 7.00 | | (273)
y1D°_f3P
(274) | 3576.762
3471.35
3608.7 | B
C
P | 3 | 3.06
3.07
3.09 | 6.51
6.62
6.51 | 2-1 | 5 | | | | | | | (11) | | 8606.45 | A | 10 | 5.26 | 6.70 | -
3 -4 | x ³ D°-g ³ F | 3465.62
3407.30 | C | 1
8 | 3.06
3.07 | 6.62
6.69 | 13-1
23-1 | <u> </u> | Zn I I | P 9. | 35 A | nal A | List B | Мау | 1942 | | 7095.40 | В | | 5.26 | 7.00 | 3-2 | (275)
x ³ D°-f ³ P | 3495.6
3401.76 | P
A | а | 3.09
3.06 | 6.62
6.69 | 12- 1 | 2 | 3075.901 | A | 90 | 0.00 | 4.01 | 0-1 | 4 ¹ S-4 ³ P° (1) | | 7067.50 | В | (2) | 5.26 | 7.01 | 3-4 | (276)
x ³ D°-1 ³ F
(277) | 3290.54 | A | 17 | 3.09 | 6.84
7.22 | | 2 a ⁴ P-z ⁴ F°
(5)
2 a ⁴ P-z ² F° | 4810.534
4722.159 | A
A | 65
75 | | 6.63
6.63 | 2-1
1-1 | 4 ³ P°-5 ³ S
(2) | | 7657.30 | В |
(3) | 5.39 | 7.00 | 3–2 | x ³ F°_f ³ P
(278)_ | 2988.05
3087.07 | A
A | 5
20 | 3.09
3.09 | 7.09 | 2 1 -2 | 1 a4p_z2p° + | 4680.138 | A | 45 | 3.99 | 6.63 | 0-1 | 4 ³ P°-5 ¹ S | | 7032.16 | G. | (1)
(3) | 5.26
5.39 | 7.01
7.05 | 4-5
3-3 | x3F°-g3G
(279)
x3F°-13D | 3397.82 | A | 1 | 3.59 | 7.22 | _ | (7)
1 a ² P-z ² F° | 4292.885
3345.020 | A | 8
150 | 4.01
4.06 | 7.75 | 2–3 | (3)
4 ³ P°-4 ³ D | | 7433.48 | В | | | | - | (280) | | | | | | _ | (0) | 3302.588
3282.333
3345.572 | A
A
A | 150
100
100 | 4.01
3.99
4.06 | 7.75 | 1-2
0-1
2-2 | (4) | | 7735.99 | G- | (1) | 5.27 | 6.86 | 2–3
– | y ³ P°_f ¹ F
(281) | 4362.10
4244.80 | C | 1 | 4.01
4.01 | 6.92 | | a ² G-z ⁴ F°
(9) | 3302.941
3345.934 | A
A | 125
30 | 4.01
4.06 | 7.75 | 1-1
2-1 | | | 7170.14
7521.09 | B
G | (s)
(s) | 5.28
5.49 | 7.00
7.13 | 3-2 | w ³ D°-f ³ P
(282) | 4384.6
4192.07 | P | 1 | 4.01
4.01 | | | 1 a ² G-z ² G°
1 (10) | 3072.062
3035.781 | A
A | 70
35 | 4.06
4.01 | | 2-1
1-1 | 4 ³ p°_6 ³ s
(5) | | 7501.81
7141.62 | G
B | (1)
(1) | 5.57
5.28 | 7.22
7.01 | 1-0
3-4 | | 4067.051
3849.58 | B
B | 3
2 | | 7.22 | 41-3
31-2 | 1 a ² G-z ² F°
1 (11) | 3018.352 | A | 30 | 3.99 | 8.08 | 0-1 | | | 7409.17
7401.17
6576.95 | P
P | Ni | 5.49
5.57
5.28 | 7.16
7.24
7.16 | 2-3
1-2
3-3 | (283) | 4071.0
4015.50 | P | 1 | 4.01 | 7.05
7.09 | | 2 a ² G-z ² D° | 6362.347 | A | 100 | 5.77 | | | 4 ¹ po_4 ¹ D
(6) | | | r | | | | - | 3.00 3.0 | | • | | | 11.40 | _ | (12)
½ z ⁴ P°-e ⁴ F | 5181.995
4629.814 | A
A | 30
12 | 5.77
5.77 | | 1-0
1-2 | (7) | | 8968.20
0061.29 | A | 30
10 | 5.32
5.47 | 6.70
6.70 | 5-4
4-3 | (284) | 3881.92 | С | 1 | | | | (13) | 4113.210 | A | 12 | | 8.77 | 1-2 | (8) | | 8877.07
9710.21 | A
P | 10
1 | 5.47
5.59 | 6.86
6.86 | 4–3
3–3 | y ³ G°-f ¹ F
(285) | Measures
stronger | inad
uncl | equate f
assified | or prep
l lines | of N1 | n of
II | list of | 6928.319 | A | 10 | 6.63 | | -
1-2 | 5 ³ 8-6 ³ P° | | 7386.21
7481.49 | B
G | (7)
(5) | 5.32
5.47 | 6.99
7.12 | 5-6
4-5 | у ³ G°-е ³ Н
(286) | | | | | | | | 6938.472
6943.202 | A
A | 6
2 | 6.63
6.63 | 8.40
8.40 | 1-1
1-0 | (10) | | 7552.52
7290.87 | P
B | (1) | 5.59
5.32 | 7.22
7.01 | 3-4
5-5 | у ³ 0°-g ³ 0 | | P 7. | | | List D | | 1943 | | | | | | | | | 7419.35
7545.69 | B
G | (1)
(2)
(2) | 5.47
5.59 | 7.13 | 4-4
3-3 | (287) | 3247.540/
3273.957 | A | 1000
600 | 0.00 | | \$-1
\$- | 1 4 ² 5-4 ² P°
1 (1) | Zn II I | P : | 17.89 | Anal A | List | | ay 1942 | | 6813.598
7037.37 | B
B | (3)
(2) | 5.32
5.47 | 7.22 | 5-6
4-5 | у ³ С°-е ⁵ Н
(288) | 5105.541 | Ā | 300 | 1.38 | 3.80 |
2-1 | 1 48 ² 2 _{D-4} 2pe | 7478.79
5894.351
6214.58 | B
A
B | 20
20
12 | 3.09
5.98
6.09 | 8.08 | 5-1 | 4 ² p°-d ⁹ s ^{2 2} D | | 7266.22 | В | (4) | 5.59 | 7.29 | 3-4
 | | 5782.132
5700.240 | A
A | 30
30 | 1.64 | 3.77
3.80 | 12-1 | 2 2 | | _ | | | | | | | 9106.40
0321.10 | A
A | 30
5 | 5.34
5.50 | 6.70
6.70 | 4-4
3-3 | w ³ F°-g ³ F
(289) | 3093.989
3208.231
3010.838 | A
A | 40
60
100 | 1.38
1.64 | 5.37
5.48
5.48 | 21-3
11-2
21-2 | 2
148 ^{2 2} D-464p ⁴ D°
1 (3) | 7588.48
7732.50 | B | 15
10 | | 12.54 | ₹-1
2- | 5 ² S-5 ² P° (2) | | 8095.93 | G- | (1) | | 7.13 | 2-1 | (290) | 3010.838
3194.099 | A | 100 | | | | ² / ₂ ² ² D_4s4p ² P° | | A
A | | 11.96 | 14.48 | 21-3-3-11-2-2 | 1 4 ² D-4 ² F° (3) | | 7401.13
7458.92 | B
G | (4)
(1)
(1) | | 7.01
7.16
7.24 | 4-4
3-3
2-2 | | 3063.411
2997.364 | A | 80
80 | 1.64 | 5.75 | 11-2 | 148 ^{2 2} D-484p ² D | | | | 11.07 | | - 2-2 | | | `567.35 | G | (1) | 3.01 | 1.64 | a - a | | 3036.101 | Ā | 100 | 1.64 | 5.70 | 1 } -1 | (5) | 78 | | | | | | | REV | I S | ED MI | ULT | IPL | ET : | TABLE | | | | | | | | |-------------------------------|---------------|-----------------------|-----------------------|-------------------------|--|---|-------------------------------------|-------------|---------------------|----------------------|----------------------|------------------------------|--|---------------------------------|-------------|--------------------------|----------------------|----------------------|----------------------------------|---| | La
I A | borate
Rei | ory
f Int | | P
High | J | Multiplet
(No) | Labo
I A | | ory
Int | E
Low | P
High | . | Multiplet
(No) | Labo
I A | | ry
Int | Low E | P
High | J | Multiplet (No) | | | I P 5 | | | List B | • | 1943 | Br II Se | e ir | ntroduction | on | | | | | tinu | | | | | | | 4172.04
4032.97 | | 10R
10R | | 3.06
3.06 | 1 | 4 ³ P°_5 ³ g | Kr I Se | e ir | ntroduct1 | on | | | | 6435.02
6191.73
6402.005 | A
A
B | 500
1007
50 | 0.07 | 1.99 | 2] -1 | a ² D-z ² D°
(2) | | Ga II | See in | ntroductio | n | | | | <u>Kr II</u> Se | e ir | troduction | on . | | | | 6222.59
6138.44 | A
A | 501
151 | 0.00 | 1.98 | 11-31
21-31 | a ² D-z ⁴ D°† | | | | | | | _ | | | | | | | | | 6023.41
4674.84 | Ą | 201
125 | 0.00 | a.05 | | | | 3124.81 | | (20) | 0.88 | | 3-3 | 4p ¹ D-5s ³ P° | Rb I I
7800.227/ | / A | 10R | 0.00 | | }-1} | | 4643.69
4760.98 | A | 150
40 | 0.00 | 3.66
3.66 | | a ² D-z ² F° (4) | | 3269.49
3039.06 | | (40)
(60) | 0.88 | | 2-1
2-1 | (1)
4p ¹ D-5s 1P° | 7947.60
4201.851 | A
B | 10R
8 R | 0.00 | 2.94 | | (1)
5 ² g_6 ² p°
(2) | 4128.31
4142.86
4235.94 | A
A
A | 300
200
100 | 0.07
0.00
0.07 | 3.05
2.98
2.98 | 14-14
34-14 | a ² D-y ² D* | | 4685.83 | 37 B | (30) | 2.02 | 4.65 |
01 | (2)
4p ¹ g_5s ³ pe | 4215.556 | В | 7 R | | 2.93 | <u> </u> | (3) | 4039.83
4174.14 | A | 60
100 | 0.00 | 3.05 | 1출-2출 | | | 4226.57 | | (50) | 2.02 | | 0-1 | (3)
4p1g_5s1pe
(4) | Rb II Se | e in | troduction | on
 | | ******* | | 4047.64
4083.71 | A | 80
100 | 0.00 | 3.05
3.02 | | (6) | | 3067.13 | | (10) | 2.02 | | O-1
 | 4p 1g_4d3pe
(5) | <u>8r I</u> I | P 5. | 67 Anal | LA 1 | List C | Мау | 1943 | 4102.38
4077.38
4167.52 | A
A
A | 350
300
100 | 0.07
0.00
0.07 | 3.07
3.03
3.03 | 24-34
14-24
22-22 | a ² D_y2 y•
(?) | | 1125.28
0947.51
0734.14 | . A | 25
30
25 | 4.83
4.65
4.62 | 5.78 | 2-3
1-2
0-1 | 5s ³ P°-5p ³ D†
(6) | 6892.585 | | 200 | 0.00 | 1.79 | _ | 51g_53pe | 3620.95
3592.92 | A
A | 400
200 | 0.07 | 3.47
3.43 | 31-11
11-11
12-12 | a ² D-x ² P* | | 0405.05
9625.72 | | 40
35 | 4.83
4.65 | | 3-3
1-1 | 5s ³ P°-5p ³ P† (7) | 4607.331/ | | 600R | 0.00 | 2.68 | - 0-1 | 5 ¹ g _5 ¹ p •
(2)
5 ³ p •_6 ³ s | 3552.70
3021.74 | Ā | 40
15 | 0.00 | 3.47
4.15 | | a ² D-y ⁴ D° (9) | | | | | | | | | 7070.071
6878.313
6791.022 | A | 2000
1000
500 | 1.84
1.79
1.77 | 3.58
3.58
3.58 | 2-1
1-1
0-1 | (3) | 2996.94
3045.36
3005.26 | A
A | 20
12 | 0.07 | 4.13
4.13
4.11 | 15-25
25-25
15-15 | (a) | | <u>le II</u>
5893.42 | IP1 | .5.9 Ana
25 | 1 A
7.70 | List E | | 1943
53g 53pe | 4962.263
4872.493
*4832.075 | A
A
B | 40
40
50 | 1.84
1.79
1.77 | 4.33
4.32
4.32 | 2-3
1-2 | 5 ³ P [●] -5 ³ D
(4) | 2984.25
2974.59 | Å | 50
35 | 0.07 | 4.20 | 31-31
11-31 | a ³ D-x ³ F° (10) | | 8021.09 | | <u> 30</u> | 7.70 | 9.75 | - | 5 ² 8-5 ² P° (1) | 4967.944
4876.06
4971.668 | A
C
A | 30
15
3 | | 4.32
4.32
4.32 | 0-1
3-3
1-1
3-1 | | 3022.28
2964.96
2995.26 | Ă | 12
30 | 0.07 | 4.15 | | a ² D-x ² D• † | | 1814.80
1742.00
1824.20 | В | (200)
(50)
(10) | 9.80
9.75
9.80 | 12.36
12.36
12.36 | 13-33
3-13
18-13 | 5 ³ P°-5 ³ D
(3) | 4811.881
4784.320 | A | 40
30 | | 4.40 | 2-2
1-1 | 5 ³ pe_5p ² 3p | *5466.46// | A | 300 | 1.42 | 4.19 | - | | | | | | | | -22 | | 4876.325
*4832.075
4722.278 | B
B | 20
50
30 | 1.84
1.79
1.79 | | 2-1 | (5) | 5527.54
5581.87
5630.14 | A
A
A | 350
350
150
100 | 1.39
1.37 | 3.63
3.58
3.54 | 31-41
21-31
11-21 | a ⁴ F-z ⁴ G• † (12) | | As I | I P 10 | Anal B | | | Мау 19 | | 4741.923 | Â | 30
25 | 1.77 | 4.62 | 0-1
3-1 | 5 ³ p•_7 ³ s | 4839.87
4845.67 | A | 60
50 | 1.35
1.42
1.39 | 3.97
3.94 | | a ⁴ F-y ⁴ F°
(13) | | 8032.85
8075.32
8119.60 | A | 40
20
50 | 2.30
2.24
2.30 | 6.37
6.26
6.26 | 1-1-1-1 | 4p ² P°-5s ⁴ P† (1) | 4361.710
4326.445 | A
A | 20
8 | 1.79 | 4.62 | 1-1
0-1 | (6) | 4852.69
4859.84
4906.11 | A
A
A | 50
40
6 | 1.37 | 3.91
3.89
3.94 | 23-23
13-13
43-31 | (13) | | 9923.03
0023.98 | A
A | (150)
(100) | 6.53 | 7.77 | 21-21
11-11 | 5s ⁴ P-5p ⁴ P° (2) | 3351.246
3322.231
3366.333 | A
A | 150
30
50 | | 5.53
5.51
5.51 | 2-2
1-1
3-1 | 5 ³ pe_4d ² ³ p
(7) | 4893.44
4781.04
4799.30 | A
A
A | 6
10
15 | 1.37
1.39
1.37 | 3.89
3.97
3.94 | 24-14
34-44
24-34 | | | 833.76
8654.16 | A | 100 | 6.26 | 7.51 | \$- \$ | 5s ⁴ P-5p ⁴ D° (3) | 3329.988
3307.534
3301.734 | A | 30
50n
50 | 1.79
1.79
1.77 |
5.50
5.52
5.51 | 1-0
1-3
0-1 | | 4819.64
4527.25 | Ā | 10
80 | 1.35 | 3.91 | 1] _3 | <u>.4π_v4n</u> •+ | | 8564.71
8541.65
826.69 | A
A
A | 100
50
(140) | 6.37
6.26
6.53 | 7.81
7.70
7.81 | 5−1 5 | (3) | 6408.463 | A | 100 | | 4.19 | - | 4 ³ D- 445p ³ F• | 4527.80
4505.95
4487.47 | Ā
A
A | 50
50
40 | 1.39
1.37 | 4.13
4.11 | 2 } _1+ | a ⁴ F_y ⁴ D°†
(14) | | 267.29
821.76
597.94 | A
A
A | 25
150
(100) | | 7.70
7.66
7.66 | 1- | | 6503.989
6617.266
6546.791 | A
A | 80
50
-20 | 2.25
2.24 | 4.15
4.11
4.15 | 2-3
1-2
3-3 | (8) | 4475.72
4487.28
4477.45 | Ā
A
A | 20
20
25 | 1.39
1.37
1.35 | 4.15
4.13
4.11 | 13-33
33-33
33-33
13-13 | | | 869.69
428.94 | A
A | 100
100 | | 7.92
7.72 | 21-21
1-11 | 5s4P-5p2D°† | 6643.536
5480.865 | A
A | 20
40 | | 4.11 | 2–2
3–3 | 4 ³ D-4d5p ³ D° | 4513.58 | A | 4 | 1.89 | | - | _a 3 _{F_v} 4pe | | 300.62
305.62 | A
A | 50
50 | 6.53
6.37 | 7.86
7.86 | 21-11
12-12 | 5s ⁴ P-5p ⁴ S° (5) | 5504.184
5521.765
5534.794 | A
A
A | 30
25
15 | 2.24
2.26 | 4.49
4.48
4.49 | 3-3
1-1
3-3 | (9) | 4581.32 | A | 6 | 1.89 | | - | a ² F_y ⁴ P°
(15) | | | | | | | | | 5540.051
5450.836
5486.136 | A
A
A | 15
15
15 | | 4.48
4.51
4.49 | 2-1
2-3
1-2 | | 6845.24
6950.32 | A | 10
8 | 2.36
2.35 | 4.17
4.13 | 21-31
12-22 | z ⁴ P°-e ⁴ D†
(16) | | 8 II
170.47 | I P 19 | | al B | List | - | ne 1943 | 4891.980
4868.700 | A
A | 25
20 | 2.26
2.25 | 4.78 | 2-3 | 4 ³ D-4 ³ F° (10) | Strongest | Uncl | assified | Lines | of Y | Ĺ | | | 022.81
651.53 | A | 10
10
10 | | 11.77 | 1-1
0-1 | 5s ³ P°-5p ¹ P
(1) | 4855.045 | Ä | 30 | | 4.78 | 1-3
 | | 3587.75
3424.16
3278.43 | A
A
A | 30
7
5 | IIIA | | | | | 558.31
331.54 | A
A | 10 | 9.77 | 11.99 | 1-3 | .5s ³ p°-5p ³ D†
(2) | | A . | 8 | 2.49 | 4.88 | | 4 ¹ D_4 ¹ F° (11) | 3091.70 | | 15 | III | | | | | 985.60
730.92 | A
A | 8 | 10.06
9.77
9.77 | 12.24 | 3-2
1-1
1-3 | 5s ³ P°-5p ³ P† (3) | | A | 60 | 2.68 | 4.56 | 1-3 | 5 ¹ P°-5p ² ¹ D
(12) | <u>Y 11</u> I P | 12. | 3 Anal | . A. Li | lst A | June | 1942 | | 105.80
552.37 | A
A | 10 1
8 | 10.06
9.77 | 12.48
12.48 | 2-1
1-1 | 5s ³ P°-5p ³ S† (4) | o ••• - | | | 1 | • | | | 4204.69 | A | 10 | 0.00 | | | a ¹ S_z ³ P° | | 110.30 | A | 10 1 | 10.33 | 12.34 | 1-1 | 5s1p0_5p3p† | 4077.714// | | 400r | 0.00 | | } -1 } | , 1942
5 ² 8-5 ² P° | 3633.13
3496.08 | A
A | 80
80 | | 3.40
3.53 | | a ¹ S_z ¹ P°
(2)
a ¹ S_z ³ D° | | 107.80
352.25 | A | _ | 10.22 | | | (5)
5g1pe_5p1p
(6)
5c1pe_5p1g | 4215.524 | | 300r | 0.00 | 2.93 | | (1) | 3112.05 | A | 4 | 0.00 | 3.97 | | (3)
21g_y3pe
(4) | | | | | | | 1-0 | (7) | 10327.314
10914.877
10036.658 | A
A | 1000
200
300 | 1.83
1.80
1.80 | 3.03
2.93
3.03 | 34-14
14-14
14-14 | 4 ³ D_5 ³ P°
(2) | 4309.62
4398.02
4422.59 | A
A | 50
50 | 0.13 | 3.04
2.94 | 2-1 | 3 _{D-z} 3 _p (5) | | e I I | . p 9.5 | 71 Anal | B 1 | 1st C | June | 1942 | 4305.447 | A | 40 | | 5.89 | - | 5 ² P°_6 ² S | 4235.73
4358.73 | A
A
A | 40
20
30 | 0.10
0.13
0.10 | 2.89
3.04
2.94 | 1-0
3-3
1-1 | | | 918.88
002.00 | A
A | 25
15 | 5.95 | 7.33
7.32 | June
2-3
3-2 | 5 ⁵ 8°-5 ⁵ P | 4161.796
3464.457 | Ā | 30
50 | 3.03 | | | (3)
5 ³ P°-5 ³ D | 4199.27 | A
P | 5 | 0.10 | 3.04
3.23 | 1-3
3-3 | x ³ D-z ¹ D° | | 038.65 | Ã | 10 - | 5.95 | 7.31 | 3-3
3-1
- | (1) | 3380.711
3474.887 | A
A | 50
10 | 2.93
3.03 | | 12-12 | 5 ² P°-5 ² D
(4) | 3982.59
3950.35 | A | 150
200 | 0.13
0.10 | 3.23
3.23 | 2-2
1-3 | (6) | | 327.30
386.45
307.60 | A
A | 3 | | 7.49
7.48
7.49 | 1-1 | 5 ³ 8°-5 ³ P
(2) | w | o - | 4 4 | • | | . | | 3710.30//
3774.33
3788.70 | A
A
A | 500
300
200 | 0.18
0.13
0.10 | | 3-4 8
2-3
1-2 | 3 _{D-z} 3 r°
(7) | | | lee int | troduction | | | 1-0 | | <u>Y I</u> I P | A | Anal A | L1s1 | 1.94 | June 19 | | 3832.89
3818.34
3878.28 | A
A
A | 100
60
20 | 0.18
0.13 | 3.40 | 3-3
2-2
3-2 | | | | | troduction | | ~~~ | | | 6557.40
6793.71
6687.57 | A | 30
80
80 | 0.00
0.07
0.00 | 1.88
1.85 | 14-21
24-21
14-11 | a ² D_z ⁴ F°
(1) | 3776.56
3747.55 | A
A | 75
40 | | 3.40 | | a ³ D-z¹P•
(8) | | <u> </u> | | - ouuction | | | | | 6933.55 | A | 6 | 0.07 | 1.85 | 11-11
21-11
21-11 | | | | | 0.10 | J. TU | | (3) | | Labor | | | E P | High | J | Multiplet
(No) | Labora
I A R | tory
lef | | E P
Low | High | J | Multiplet
(No) | Labors
I A F | tory
Ref | Int | E P | High | J | Multiplet
(No) | |--|-------------|----------------------|-----------------------|------------------------------|--------------------------|--|-------------------------------|-------------|--------------------|----------------------|--------------|---------------------|--|-------------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--| | IA
Y II cont | Ref | | LOW | urgu | | (110) | Y II conti | | | | 0 | | | Y II cont | Inued | | | | | | | 3600.74 | A | 300 | | 3.61 | 3-3 | $\mathbf{a}^3 \mathbf{D} - \mathbf{z}^3 \mathbf{D}^{\circ}$ | | A
C | 20nl
5nl | | 6.79
6.78 | 2-2
2-1 | $z^{1}D^{0}-e^{3}D$ (40) | 3457.088
3429.42 | C | 4nl
3n | | 7.56
7.56 | 2-1
0-1 | y ³ P°-f ³ S
(77) | | 3611.06
3601.93 | A
A | 200
100 | 0.10 | 3.55
3.53
3.55 | 2-2
1-1
3-2 | (9) | | c | 5nl | | 6.88 | | z ¹ D°-e ¹ D | 3093.76 | A | 1 0n | 3.99 | 7.97 | 2-2 | y ³ P°_f ³ P | | 3664.62
3628.71
3549.02 | A
A
A | 150
100
100 | 0.13 | 3.53
3.61 | 2-1
2-3 | | 00001122 | С | 30nl | | 7.23 | 2-3 | z ¹ D°-e ¹ F | *3110.65
*3126.16 | A
A | 2n
4n | ,3.99 | 7.93
7.93 | 1-1
2-1 | (78) | | 3584.53 | Ã | 100 | | 3.55 | 1-2 | | 3069.26 | A | 5n | 3.23 | 7.25 | 2-1 | z ¹ D°-f ³ D | 3078.64 | A
A | 4n
2n | 3.97 | 7.91
7.97
7.93 | 1-0
1-2
0-1 | | | 3242.30
3216.70 | A
A | 150
100 | 0.13 | 3.99
3.97 | 3-2 | a ³ D_y ³ P°
(10) | 3026.47 | С | 10nl | 3.23 | 7.31 | 2-3 | (43)
z ¹ D°-e ³ G
(44) | 3103.3
3030.214 | C | 4n | | 8.06 | 2-3 | y ³ P°-g ³ D | | 3203.33
3200.28
3195.62
3179.42 | A
A
A | 60
50
50
10 | 0.13 | 3.96
3.99
3.97
3.99 | 1-0
2-3
1-1
1-2 | | 2978.18 | A
- | 3n | | 7.37 | 2-1 | z ¹ D°-e ¹ P
(45) | 3023.50 | À - | 2n | | 8.05 | 1-2 | (79)
z ¹ F°-e ³ D | | 3135.17 | A | 5 | | 4.13 | 3-3 | a3p_z1F° | 3668.489
3635.334 | C | 50nl
20nl | 3.51
3.40 | 6.87
6.79 | 4-3
3-2 | z ³ F°-e ³ D
(46) | 4607.94
4465.4 | A
A |
10nl | | 6.79
6.88 | | (80)
z1F°-e1D | | 3095.88 | A | 5 | 0.13 | 4.12 | 2 – 3 | (11) | 3605.46
3556.083 | C | 10nl
5nl | 3.36
3.40 | 6.78
6.87 | 2-1
3-3 | | 3967.69 | C | 15nl | | 7.23 | | (81)
z ¹ F°-e ¹ F | | 4682.32 | A | 20 | 0.41
0.41 | 3.04
2.94 | 2-2
2-1 | a ¹ D-z ³ P° (12) | 3507.964 | С | 8nl | 3.36 | 6.88 | 2-2 | z ³ F°-e ¹ D
_(47) | 3846.516 | C | 3n | | 7.32 | 3-3 | (82)
z1F°-f3D | | 4881.44
4374.94 | A
A | 2
300 | | 3.23 | 2-2 | a ¹ D-z ¹ D° | 3193.48 | A | 2nl | 3.36 | 7.23 | 2–3 | z ³ F ⁶ _e ¹ F
(48) | 3675.64 | С | 5nl | 4.13 | 7.47 | 3-2 | z ¹ F°-f¹D
(84) | | 4124.91 | A | 15 | 0.41 | 3.40 | 2-3 | (13)
a ¹ D-z ³ F° | 3232.00
3182.42 | A
A | 3n
3nl | 3.51
3.40 | 7.32
7.28 | 4-3
3-2
3-3 | z ³ ř°-ŕ ³ D
(49) | 3330.880 | C | 20nl | 4.12 | 7.82 | 3-4 | z ¹ F°-e ¹ G
(85) | | 4177.54 | A | 125 | 0.41 | 3.36 | 2-2 | (14)
a ¹ D-z ¹ P° | 3144.37
*3114.45 | A
A | 2n
10n | 3.40
3.36 | 7.32
7.32 | 2-37 | | 3896.804 | c | 10nl | 5.50 | 8.67 | 1-2 | y1Po_h1D | | 4127.57
3857.26 | A
P | 2 | 0.41 | 3.40
3.61 | 2-1
2-3 | (15)
a1D_z3D° | *3110.65
3081.600 | A
C | 2n
2n | 3.40
3.36 | 7.37
7.37 | 3-2 ?
2-2 | z ³ F°-e ³ P
(50) | • | | | | | | (86) | | 3930.66
3951.59 | Ā | 15
5 | 0.41 | 3.55
3.53 | 2-3
2-1 | (16) | 3173.07 | A | 100nl | 3.51 | 7.39 | 4-5 | z3Fo_e3G | Strongest | | assified
10n | i Lines | of Y I | <u>.I</u> | | | 3448.82 | A | 10 | 0.41 | 3.99 | 3-3 | a ¹ D-y ³ P° | 3129.933
3128.789 | C | 40nl
20nl | 3.40
3.36 | 7.34
7.31 | 3-4
2-3 | (51) | 8429.36
4734.52
3407.7 | A
A | 5n
3n | | | | | | 3467.88 | A . | 5 | 0.41 | 3.97 | 2-1
2-3 | (17)
a ¹ D-z ¹ F° | 3077.14 | A | 4n | 3.36 | 7.37 | 2-1 | z ³ F°_e ¹ P
_(52) | | | | | | | | | 3327.89 | A | 100 | 0.41 | 4.13 | ವ–ಎ
– | (18) | 3001.43 | A | 2 | 3.36 | 7.47 | 2-2 | z ³ ro_r¹D
(53) | _ | | | | | _ | | | 5610.36
5509.91 | A
A | 30·1 | 1.03 | 3.23
3.23 | 3-2
3-3 | a ³ F-z ¹ D ^e
(19) | 2980.69
3006.0 | C
A | 20nl
2nl | 3.51
3.51 | 7.65
7.61 | 4-4
4-3 | z ³ F°_e ³ F†
(54) | | 6.9 | | | 1st C | June | 1942
_a 3 _{F-z} 5g• † | | 5087.42 | A | 1001 | 1.08 | 3.51 | 4-4 | a3F_z3F° | | | | | | - | z1po_e3D | 6832 .93
6762 .3 8 | A | 12
30 | | 1.88
1.83 | 3-3
2-2 | (1) | | 5205.73
5200.42 | A | 80
60 | 0.99 | 3.40
3.36 | 3-3
2-2 | (20) | 3643.4 | A
C | 3nl
3nl |
3.40
3.40 | 6.78
6.88 | 1-1 | (55)
z ¹ P°-e ¹ D | 6127.49
6143.23 | A
A | 200
150 | 0.15
0.07 | 2.17
2.08 | 4-4
3-3 | a ³ F-z ³ F°
(2) | | 5320.78
5289.82 | A | 41
51 | 1.08
1.03
1.03 | 3.40
3.36
3.51 | 4-3
3-2
3-4 | | 3544.001
3109.3 | A | 1 | 3.40 | 7.37 | 1-2 | (56)
z1p°-e ³ p | 6134.58
6407.03 | A
A | 125
4 | 0.00
0.15 | 2.01
2.08 | 2-2
4-3 | | | 4982.13
5119.12 | A | 15 1
20 1 | 0.99 | 3.40 | 3-3 | | 3160.60 | Ā | 1n | 3.40 | 7.30 | 1-1 | (57) | 6357.10
5885.61 | P
A | .8 | 0.07 | 2.17 | 3-2
3-4 | | | 5123.21 | A | 50 1 | 0.99 | 3.40 | 3-1 | a ³ F_z ¹ P° | *3114.45 | A | 10n | 3.40 | 7.36 | | z ¹ P°-e ¹ S
(58)
z ¹ P°-e ¹ P | 5935.23
6062.88 | A
A | 10
12 | 0.00 | 2.08 | 2-3
3-2 | a3F_z5F* † | | 4883.69
4900.13 | A
A | 200
150 | 1.08 | 3.61
3.55 | 4-3
3-2 | a ³ F_z ³ D°
(22) | 3104.82
3027.75 | A
A | 4n
3 | 3.40
3.40 | 7.37 | 1-1 | (59)
z1po_f1p | 5955.37 | Â | 12 | 0.00 | 2.07 | 3-1 | (3) | | 4854.87
4786.58
4823.31 | A
A
A | 150
20
30 | 0.99
1.03
0.99 | 3.53
3.61
3.55 | 2-1
3-3
2-2 | | 3081113 | ^ | | | | - | (60) | 5879.79
5797.76 | A
A | 40
25 | 0.15 | 2.25 | 4-3
3-2 | a ³ F-z ³ D ^e †
(4) | | 4713.26 | В | (1) | 0.99 | 3.61 | 2-3 | | 3782.302
3800.883 | C | 50nl
15nl | 3.61
3.55 | 6.87
6.79 | 3-3
2-2 | z ³ D°-e ³ D
(61) | 5735.70 | A | 30 | 0.00 | 2.15 | 2-1 | a ³ F-z ³ G° † | | 4173.76 | A | ? | 1.03 | 3.99 | 3–2 | a ³ F_y ³ P°
(23)
a ³ F_z ¹ F° | 3792.56
3872.308 | Ö | 10nl
5nl | 3.53
3.61 | 6.78 | 1-1
3-2 | | 4688.45
4633.99
4575.52 | A
A
A | 40
50
40 | 0.15
0.07
0.00 | 2.79
2.73
2.70 | 4-5
3-4
2-3 | (5) | | 4064.99
3997.43 | A | 2
1 | 1.08 | 4.13 | 4-3
3-3
2-3 | (34) | 3812.18
3714.3 | C
A | 5nl
5nl | 3.55
3.55 | 6.78
6.87 | 2-1
2-3 | | 3916.64 | A | 10 | 0.15 | 3.30 | 4-5 | a3r_y5go | | 3946.21 | A | s | 0.99 | 4.13 | | | 3703.323
3684.903 | C | 5nl
5nl | 3.55
3.53 | 6.88
6.88 | 2-2
1-2 | z ³ D°-e ¹ D
(62) | 3879.04
3849.26 | A
A | 10
30 | | 3.25
3.21 | 3-4
2-3 | (6) | | 7450.32
7406.23 | A
A | 5
2 | 1.74
1.73 | 3.40
3.40 | 2-1
1-1 | | 3409.87 | C | 4nl | 3.61 | 7.23 | 3-3 | z ³ D°-e ¹ F | 3900.51
3989.29 | A
A | (10)
7 | 0.00 | 3.16
3.16 | 2-2
3-2 | | | 7332.97 | A | 3 | 1.71 | 3.40 | 0-1 | 3- 3-0 | 3319.78 | Ç | 15nl | 3.61 | 7.32
7.28 | 3-3
2-2 | z ³ D°-f ³ D
(64) | 3968.25
•3929.53§ | A
A | 80
150 | 0.15 | 3.26
3.21 | 4-5
3-4 | a ³ F_y ³ G°†
(7) | | 6613.74
•6795.41 | A | 30
30 | 1.74
(1.73
1.71 | 3.61
3.55
3.53 | 2-3
1-2
0-1 | a ³ P_z ³ D°
(26) | 3308.4
3318.6
3333.606 | A
A
C | 20nl
4nl
2n | 3.55
3.53
3.55 | 7.25 | 1-1
2-1 | (01) | 3885.41 | Ā | 100 | 0.00 | 3.18 | 3-3 | | | 6832.49
6858.25 | A | 4
5 | 1.74 | 3.55
3.53 | 2-2
1-1 | | 3293.9 | Ă | 3n | 3.53 | 7.28 | 1-21 | | 3890.32
3863.88 | A
A | 125
100 | 0.15
0.07 | 3.33
3.26 | 4-4
3-3 | a ³ F-x ³ F°
(8) | | 6896.00 | Ā | 10 | 1.74 | 3.53 | 2–1 | 7 - 7 | 3282.51
3286.71 | A | 3
3n | 3.61
3.55 | 7.37
7.30 | 3-2
3-1 | z ³ D°-e ³ P
(65) | 3835.96
3966.65 | A
A | 100
50
100 | 0.00
0.15
0.07 | 3.26 | 2-2
4-3
3-2 | | | 5497.42
•5521.56 | | 50
30 | | 3.97 | 2-2 | (27) | 3312.39
3231.20 | C
A | 4n1
2n | 3.53
3.55 | 7.26
7.37 | 1-0
3-2 | | 3921.80
3791.39
3780.53 | A
A
A | 80
100 | | 3.33
3.26 | 3-4
2-3 | | | 5546.02
•5544.61 {
5473.40 | A
A | 10 l
10 l
20 l | 1.74
1.73
1.73 | 3.97
3.96
3.99 | 2-1
1-0
1-2 | | 3304.01
3336.25 | C | 2n
4n1 | 3.61
3.61 | 7.34
7.31 | 3-4
3-3 | z ³ D°-e ³ G
(66) | 3896.53 | A | 10 | 0.07 | 3.24 | 3-3 | a3F-x1F0 + | | 5480.75 | Â | 151 | 1.71 | 3.97 | 0-1 | | 3212.40 | A | 5nl | 3.53 | 7.37 | 1-1 | z ³ p°-e ¹ p | 3864.33 | A | 40 | | 3.35 | 4-3 | (9)
a ³ F-x ³ D°
(10) | | 5196.43 | , A. | 101 | | 4.13 | 2-3
2-4 | _(28) | 3055.3 | A | 50nl | 3.61 | 7.65
7.61 | 3-4
2-3 | (67)
z3pe_e3r
(68) | 3847.01
3822.41
3766.71 | A
A | 30
40
60 | 0.07
0.00
0.07 | 3.23 | 3-2
2-1
3-3 | (10) | | 3280.91 | A | 1 Ag | 1.74 | 5.50 | 2-1
- | (29) | 3036.59
3053.27
3082.16 | C
C
A | 25nl
15nl
3n | 3.55
3.53
3.61 | 7.57 | 1-2
3-3 | (00) | 3764.38 | Â | 80 | 0.00 | 3.28 | 2-2 | 7_ 4 | | 8835.85 | A | 7 | 1.83 | 3.23 | 2-2 | (30) | 3066.02 | A | 4n | 3.55 | 7.57 | 3-2 | 7 | 3891.39 | A | 100 | 0.15 | | | a ³ F_z ¹ G° †
(11)
a ³ F_w ³ F° | | 8066.20 | A | 1 | 1.83 | | 2-2 | b ¹ D_z ³ F° (31) | 3050.5 | A | 1n | 3.53 | 7.58 | 1-0
- | z ³ D°_f ¹ S
(69) | 3663.64
3623.87 | A
A
A | 300
300
100 | 0.07 | 3.52
3.48
3.44 | 4-4
3-3
2-2 | (12) | | 7881.90 | A | 10 | 1.83 | | 2-1
2-3 | (32) | 4279.3
4364.01 | A
A | 5nl | 3.99
3.97 | 6.87
6.79 | 2-3
1-2 | | 3586.28
3714.13
3661.20 | A
A | 30
30 | 0.15 | 3.48
3.44 | 4-3
3-2 | | | 6951.68
7193.74
7264.19 | A
A
A | 3
1
10 | 1.83
1.83
1.83 | 3.61
3.55
3.53 | 3-3
3-3
3-1 | (33) | 4364.17 | Ä | ÷ | 3.96 | 6.78 | 0-1 | | 3575.79
3550.46 | A
A | 100
30 | 0.07 | 3.52
3.48 | 3-4
2-3 | | | 5728.91 | A | 101 | 1.83 | 3.99 | 3-3 | b ¹ p_y ³ p° | 4264.88 | A | 1n | 3.99 | 6.88 | 3-2 | (71) | 3601.18 | A | 400 | 0.15 | | 4-5
3-4 | a ³ F-x ³ G° † (13) | | 5781.69 | A | 51 | 1.83 | 3.97 | 2-1 | | 3848.194
3824.78 | C | 8nl
5nl | 3.99
3.97 | | 2-1
1-1 | (72) | 3547.69
3519.60 | A | 100
125 | 0.00 | 3.55 | 2–3 | | | 5402.78 | A | 50 l
30nl | 1.83 | 4.12
5.50 | 2-3
2-1 | (35) | 3813.8
3808.7 | A | 2nl
1n | 3.96
3.99 | | 0 -1
2-3 | | 3533.22
3501.33 | A
A | 60
15 | 0.15
0.07 | 3.65
3.60 | 4-5
3-4 | a ³ F_y ⁵ F°†
(14) | | 3362.00 | A | | | |
 | (36) | 3696.6 | A | 25nl | 3.99 | 7.32 | 2-3 | (73)
y3P°-f ³ D | 3566.10 | A | 100 | 0.15 | 3.61 | 4-3 | a3F_v3D° t | | 7388.46 | A | 1 | 1.94 | 3.61 | 4-3 | (37) | 3727.09
3758.9 | C
A | 30nl
3nl | 3.97
3.97 | 7.28 | 1-3
1-1 | (74) | 3509.32
•3471-18 \$ | A | 100
100 | 0.07 | 3.59
3.56 | 3-2
2-1 | (15) | | 5662.95 | A | 300 | 1.94 | 4.13 | 4-3
 | a ¹ d-z ¹ F°
(38) | 3650.45 | A | 2n | 3.99 | | 3-3
3-1 | | 3447.36 | A | 100 | 0.00 | 3.58 | 2-1 | (16) | | 3225.17 | A
C | 5nl
2n | 3.04
2.94 | | 2-3
1-2 | | *3721.398§
3689.2 | C
A | 4
2n | 3.99
3.96 | | 0-1 | _ | 3430.29
3465.63 | A | 8
10 | 0.15
0.15 | 3.71 | 4-4
4-3 | | | 3198.42 | U | | | | | . (00) | 3716.91 | C | 7n1 | 3.99 | 7.31 | 2-3 | y ³ p°_e ³ G
(76) | *3414.66 \$ 3368.63 | A
A | 20
5 | 0.07
0.00 | | 3-2
2-1 | 80 | | | | | | | REV | ΙS | E D 1 | ULT | I P L | E T | TABLE | | | | | | | | |--------------------------------|--------------|----------------------|----------------------|----------------------|----------------------------|--|-------------------------------|--------------|-------------------|----------------------|----------------------|-------------------------|---|-------------------------------|---------------|----------------|----------------------|----------------------|--|--| | Lab
I A | orato
Ref | ry
Int | Low E | P
High | J | Multiplet
(No) | Lab
I A | orato
Ref | r y
Int | | P
High | J | Multiplet
(No) | Lab
I A | orato:
Ref | ry
Int | E I
Low | H1gh | J | Multiplet
(No) | | Zr I co | ntinu | eđ | | | | | Zr I co | nt1nu | .ed | | | | | Zr II c | ontin | ued | | | | | | 3353.65 | A . | 20 | 0.15 | | 4-4 | (18) | 4866.07
4883.61 | A
A | 5
5 | 0.73
0.68 | 3.21 | 4-4 | (44) | 3340.55
3356.08 | A
A | 15
18 | 0.16
0.09 | 3.86
3.77 | 41-31
31-21 | a ⁴ F_z ⁴ F° | | 3234.12
3212.02
3191.23 | A
A
A | 100
100
100 | 0.15
0.07
0.00 | 3.91 | 4-5
3-4
2-3 | (19) | 4881.25
4784.94
4815.05 | A
A
A | 4
12
12 | 0.65
0.68
0.65 | 3.26 | | | 3393.13
3214.19 | A | 10
40 | 0.09 | 3.68
3.93 | 2-1-1-3
3-1-4-5 | | | 3282.73
*3250.42\$ | A
A | 15
35 | 0.15 | 3.91 | 4-4
3-3 | | 4828.05 | Ā | 10 | 0.63 | | | | 3231.69
3272.21 | A
A | 30
8 | 0.04 | 3.86
3.77 | 2 1 -34
12-22 | | | 3085.34 | A | 12 | 0.07 | | 3-2 | | 4327.76
4239.31 | A
A | 200
150 | 0.73
0.68 | | 4-4 | (45) | *3288.81
3319.03 | A
A | 10
8 | | 3.85
3.76 | 31-21
21-11 | a ⁴ F-z ² D° (4) | | 3014.44 | A | 15 | 0.00 | 4.09 | 2-2 | (20)
a ³ F-u ³ F• †
(21) | 4241.68
4241.20
4240.35 | A
A
A | 80
50
50 | 0.65
0.62
0.60 | 3.53 | | | 3241.01
3284.72
3208.33 | A
A
A | 25
20 | 0.00 | 3.85 | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | | 3029.52
3011.73 | A | 300
250 | 0.15 | 4.17 | 4-3
3-2 | a3F_u3p+ † (22) | 4302.88
4294.78 | A
A | 15
20 | 0.73
0.68 | 3.60
3.56 | 5-4
4-3 | | 3165.98 | A | 4
10 | | 3.85
4.06 | 1}-3} | a ⁴ F_z ⁴ D° | | 2985.36 | A | 200 | 0.00 | 4.13 | 2 - 1
 | | *4282.20 { 4268.01 4166.37 | A
A
A | 20
20
20 | 0.65
0.62
0.68 | | 3-2
2-1
4-5 | | 3138.66
3129.76 | A
A | 25
12 | 0.09
0.04 | 4.03
3.98 | 41-31
31-21
21-11 | (5) | | 7111.71
7439.89 | A
A | 20
10 | 0.52
0.54 | 2.25
2.20 | 2-3
1-2 | a ³ P-z ³
D°†
(23) | 4187.56
4201.45 | A
A | 20
20 | 0,65
0.62 | 3.60 | 3-4
2-3 | | 3125.92
3110.87
3095.07 | A
A
A | 12
8
12 | 0.09 | 3.95
4.06
4.03 | 14- 4
34-34
24-24 | | | 7554.73
7336.03 | A
A | 5
4 | 0.52
0.52 | 2.15
2.20 | 0 -1
2-2 | | 4213.86 | A | 15 | 0.60 | 3.53 | 1-2 | | 3099.22
3068.02 | A
A | 10
2 | 0.00
0.04 | 3.98
4.06 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 6140.50
6192.96 | A
A | 15
5 | 0.52
0.54 | | 2-2
1-1 | a ³ P_z ³ P°
(24) | 4081.22
4072.71
4064.16 | A
A
A | 100
100
100 | 0.73
0.68
0.65 | 3.75
3.71
3.68 | 5-4
4-3
3-2 | (46) | 3065.20
3061.33 | A
A | 3 | | 4.03
4.13 | 1 2 - 2 2 | .4r. v2no | | 6120.86
*6304.35
6213.06 | A
A
A | (5)
(3)
8 | 0.52
0.54
0.54 | 2.53
2.50
2.53 | 2-1
1-0 | | 4055.03
4044.57 | A
A | 60
25 | 0.62 | 3.66
3.65 | 2-1
1-0 | | 3060.11
3019.84 | Ā | 3 | 0.04
0.04 | 4.07
4.13 | 21-11
21-21 | a ⁴ F-y ² D°
(6) | | 6124.86 | Ā | 5 | 0.52 | 2.53 | 1-3
0-1 | | 4023.99
4024.92
4027.20 | A
A
A | 30
40
40 | 0.68
0.65
0.62 | 3.75
3.71
3.68 | 4-4
3-3
3-3 | | 3030.91
2991.40 | A
A | 10
5 | | 4.07
4.13 | $1\frac{1}{2} - 1\frac{1}{2}$
$1\frac{1}{2} - 2\frac{1}{2}$ | | | 5620.16
•5680.93 | A | 15
15 | 0.52
0.54 | 2.71
2.71 | 2-1
1-1 | a ³ P-z ³ S• †
(25) | 4030.03
3977.32 | A
A | 30
3 | 0.60
0.65 | 3.66
3.75 | 1-1
3-4 | | 3697.49 | A | 30 | 0.46 | 3.80 | -
4}-5} | b4F-z4Ge | | 5385.14 | A | 40 | 0.52 | 2.81 | 2-2 | a ³ P_y ¹ D°
_(26) | *3988.68
4002.55 | A | 10
8 | 0.62
0.60 | 3.71
3.68 | 2-3
1-2 | | 3766.83
3843.03 | A | 25
30 | 0.36 | 3.68
3.57 | $3\frac{1}{2}$ $-3\frac{1}{2}$ | (7) | | 5133.42
5277.40 | A
A | 6
8 | 0.52
0.54 | 2.88 | 2-3
1-3 | a ³ P-y ³ D°†
(27) | 5664.55 | A | 25 | 0.63 | 2.81 |
2-2 | a ¹ D-y ¹ D° | 3934.14
3832.94
3903.77 | A
A
A | 20
1
1 | 0.46 | 3.45
3.68
3.57 | 15-25
45-45
35-35 | | | 5311.42
5224.94
5362.56 | A
A
A | 6
6
6 | 0.52
0.52
0.54 | 2.84
2.88
2.84 | 0-1
2-3
1-1 | | 4732.34 | A | 15 | 0.63 | 3.24 | 2-3 | | 3984.76 | A . | 4 | 0.36 | 3 .4 5 | 3 }-3 } | 4 9 | | 4948.77 | A | 2 | 0.52 | 3.01 | 2-3 | a ³ P_y ¹ F° | 4542.22 | A | 20 | 0.63 | 3.35 | 2-3 | (48)
a ¹ D-x ³ D°†
(49) | 3729.74
3814.97
3667.06 | A
A
A | 5
2
3 | 0.41 | 3.77
3.64
3.77 | 41-31
31-21
31-31 | b ⁴ F-z ² F° (8) | | 4604.42 | A | 8 | 0.52 | 3.20 | 2-3 | a ³ P _{-z} ⁵ P° † | 4135.68 | A . | 10 | | 3.61 | 2-3 | a ¹ D-v ³ D°†
(50) | 3756.96
*3613.43 | Ā | 1 2 | 0.36 | 3.64
3.77 | 21-21
21-31 | | | 45 35.75 | A | 30 | 0.52 | 3.24 | 2–3 | (29)
a ³ P-x ¹ F•
_(30) | 4183.31
3530.22 | A | 10
15 | 0.63 | 3.58
4.13 | 2-1 | (51) | 3711.95 | A | 1 | 0.32 | 3.64 | 12-32 | . 4 4 | | 4360.80
4507.11 | A
A | 15
30 | 0.54 | | 2-3
1-3 | a ³ p-x ³ p•† (31) | 3360.45 | A | 25 | 0.63 | 4.30 | 2-3
2-2 | (52) | 3556.61
3576.88
3614.79 | A
A
A | 30
20
18 | 0.41 | 3.93
3.86
3.77 | 44-44
34-34 | b ⁴ F-z ⁴ F° (9) | | 4553.01
4043.57 | A
A | 12
30 | 0.52 | 3.23
3.57 | 0 –1
2 –2 | a ³ P-x ³ P• † | 3090.44
3136.95 | A | 6 | 0.63 | 4.62 | 3-2 | (53)
a ¹ D-u ³ P° | 3674.74
3636.46 | Ā
A | 40
8 | 0.32
0.46 | 3.68
3.86 | 14-14
44-34 | | | 4108.39
4121.45 | A
A | 15
30 | 0.54
0.54 | 3.54
3.53 | 1-1
1-0 | (32) | *3157.82 | A | 30
50 | 0.63 | 4.56 | 2-1
2-3 | (54)
a ¹ D-w ¹ F° | 3668.46
3718.86
3499.58 | A
A
A | 8
6
8 | 0.36 | 3.77
3.68
3.93 | 3 1 - 2 1 2 2 1 1 2 2 1 2 1 2 2 2 2 2 2 2 | | | 3613.70 | A | 15 | 0.52 | 3.93 | 2-1 | a ³ P-y ³ s° † | 3139.79 | A | 30 | 0.63 | 4.56 | 2-3 | (55)
a ¹ D-v ³ G° | 3525.81
3573.09 | Ā | 8 | 0.36 | 3.86
3.77 | 21-31
11-21 | | | 3269.66 | A | 40 | 0.52 | 4.29 | 3-3 | (33)
a3p_y5pe †
_(34) | 6445.76 | A | 10 | 0.99 | 2.91 |
4-3 | (56)
a ¹ G_y ³ F° | 3588.32
3630.03 | A
A | 6
10 | | 3.85 | | b4F-z2D° | | 3260.11
3045.82 | A
A | 40
10 | 0.52 | 4.30
4.57 | 2-2
2-3 | a ³ p_w ¹ p• †
(35)
a ³ p_v ³ p• | 3877.60 | A | 40 | 0.99 | 4.18 | 4-5 | (57)
a ¹ G-z ¹ H° | 3536.94
3587.98 | Ā | 5
7 | 0.36 | 3.76
3.85
3.76 | 23-13
23-23
14-14 | (10) | | 3094.79
•3157.82 | A
A | 15
50 | 0.52 | 4.50 | 2-1
1-0 | (36) | 3535.16 | A | 30 | 0.99 | 4.49 | 4-4 | (58)
a ¹ G-x ¹ G•
(59) | 3497.00 | A | 2 | | 3.85 | 1 2 2 2 | .4- 4-0 | | *3063.58§
3095.82 | A | 8
12 | 0.54
0.52 | 4.57
4.50 | 1-3
0-1 | | 3005.50 | A | 60 | 0.99 | 5.10 | 4-4 | a1G_w1g*
(60) | 3430.53
3410.26
3404.84 | A
A
A | 30
20
12 | 0.46
0.41
0.36 | 1.06
1.03
3.98 | 43-33
33-23
23-13 | b ⁴ F-z ⁴ D°
(11) | | 3120.74
3132.06 | A
A | 125
50 | 0.52
0.54 | 4.47
4.48 | 2-3
1-2 | a ³ P_t ³ D° (37) | 4341.13
4366.45 | A
A | 20
15 | 1.39
1.36 | 4.23
4.19 | 3-4
3-3 | a ⁵ P-w ⁵ D° † | 3399.36
3377.45 | A
A | 10
6 | 0.32
0.41 | 3.95
1.06 | $\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{2}$ | | | 3131.11
3113.50 | A | 25
8 | 0.52 | 4.46
4.48 | 0-1
2-3 | ,, | 4394.94
4413.04 | Ā | .8
12 | 1.34 | 4.15
4.19 | 1-2
3-3 | (61) | 3363.81
3367.81
3331.90 | A
A
A | 5
5
2 | 0.32 3 | 1.03
3.98
1.06 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | | 3148.81
3130.05 | A | 25
8 | 0.54
0.52 | 4.46
4.46 | 1-1
2-1 | | 4430.45
4431.48 | A | 13
10 | 1.36
1.34 | 4.15
4.13 | 3-3
1-1 | | 3327.67 | Ā | 3 | | | 23-33
12-23 | | | 3005.36
3108.36 | A
A | 40
10 | 0.52
0.54 | 4.62
4.51 | 2-2
1-0 | a ³ P-u ³ P* †
(38) | 5046.61 | A | 10 | 1.53 | 3.97 | -
4-5 | _Ъ 3 _{F—w} 3գ• ϯ | 3275.15
3287.31
3240.85 | A
A
P | 2
3 | 0.32 4 | .13 | 21-21
11-11 | b ⁴ F-y ² D°
(12) | | 9015.16 | В | 20 | 0.73 | | - | -5m -5ae + | 5064.93
5078.28 | A | 15
30 | 1.48 | 3.91
3.87 | 3-4
2-3 | (62) | 2998.34 | A | 1 | | | | b ⁴ F-z ³ P° | | 9276.89
9547.26 | B
B | 25
25 | 0.68 | 2.10
3.01
1.94 | 5–6
4–5
3–4 | a ⁵ F-z ⁵ G°†
(39) | 4683.43
4707.78 | A
A | 15 | 1.52 | 4.16 | 4-4 | b ³ F_v ³ F° † | 2968.95 | A | 13 | 0.46 4 | | | | | 9822.30
10084.70 | B
B | 30
13 | | 1.88
1.83 | 2-3
1-2 | | 4711.91 | A | 4
8 | 1.48 | 4.10
4.14 | 3-3
4-4 | (63)
b ³ F-u ³ F• † | 2978.07
2979.18 | A | 12
12 | 0.41 4 | . 55
. 50 | 3+-2+
3+-1+ | b ⁴ F-y ⁴ F° †
(14) | | 8070.12
8133.00 | A
A | (25)
(20) | 0.73
0.68 | 2.26
2.20 | 55
44 | a ⁵ F-z ⁵ F° (40) | 4657.64
*4644.82 | A
A | 7
8 | 1.48
1.44 | 4.13
4.09 | 3-3
2-2 | (64) | 4096.63 | Ā. | 4 | | .57 | 2] _3] | a ² D-z ⁴ G°
(15) | | 8212.59
8305.94
8389.42 | A
A | (18)
(15) | 0.65
0.62 | 3.15
3.11 | 3–3
2–2 | ,, | 6313.05 | A | 50 | 1.58 | 3.53 |
5 - 6 | а ³ G-z ³ н• † | 4211.88
4258.05 | A | 12
12 | 0.52 3 | • 45 | 2 } -2 } | | | 8370.21
8414.00 | A
A
A | (8)
(10)
(7) | 0.60
0.73
0.68 | 2.07
2.20
2.15 | 1-1
5-4
4-3 | | 6470.25
6489.68 | A
A | 15
25 | 1.58 | 3.48
3.45 | 4-5
3-4 | (65) | 3836.76
3958.24 | A
A
A | 60
50 | | .77 | 21-31
11-21 | a ² D-z ² F°
(16) | | 8464.65
8498.44 | A
A | (10)
(10) | 0.65
0.62 | 2.11
2.07 | 3-2
3-1 | | 4753.06 | Α. | 3 | 1.87 | 4.46 | -
6–7 | a ³ H-z ³ I° | 3998.98
3738.13 | | 30 | 0.56 3 | | | | | 7849.38
7944.65
8063.10 | A
A
A | (15)
(15)
(10) | 0.65 | 2.26
2.20
2.15 | 4-5
3-4
3-3 | | 4719.12
4762.78 | A | 10
8 | 1.85 | 4.47 | 5-6
4-5 | (66) | 3800.73
3838.28 | A
A
A | 5
5
5 | 0.52 3 | .86
.77
.77 | 21-31
11-21
21-21 | 2D_z4F°
(17) | | 8201.73 | A | (10) | 0.60 | 2.11 | 1-3 | _ | | | | | | | | 3915.94
3955.82 | A
P | 25 | 0.52 3 | -68 | 1 1 -1 1
52-12 | | | 7870.00
7956.69
8058.14 | A
A
A | (12)
(7)
(7) | | 2.25 | 3-2 | a ⁵ F-z ³ D°†
(41) | <u>Zr II</u> I | P 13 | .97 A | nal A | List | A Ju | ly 1942 | 3750.65
3817.59 | A
A | 6
12 | | .85
.76 | 2] -2] | a ² D-z ² D°
(18) | | 7169.14 | A | 150 | 0.62 | 2.45 | 3-1
5-4 | a ⁵ F-z ⁵ D° † | 3391.96 // | | 100 | 0.16 | 3.80 | | • | 3855.43
3714.77 | Ä
A | 3
15 | 0.56 3 | •76 | 3 - 1 1
1 1 - 2 1 | (10) | | 7097.78
7102.95 | A | 150
80 | 0.68
0.65 | 2.42
2.39 | 4-3
3-2 | (43) | 3438.23
3496.18
3572.47 | A
A
A | 100
50
30 | 0.09
0.04
0.00 | 3.68
3.57
3.45 | 34-44
34-34 | a ⁴ F-z ⁴ G°
(1) | 3520.87 | A | _5. | 0.56 4 | .06 | 3] -3] 8 | 2D_z4D0 | | 7103.77
7087.35 | A | 40
20 | 0.60 | 2.36
2.34 | 2-1
1-0 | | 3505.67
3551.94 | A
A | 12
18 | 0.16 | 3.68
3.57 | 13-23
43-44
33-34 | | m3556.54
3457.56 | P
A | Zr+
13 | | | 3 <mark>-2-2</mark> | (19)
3n -3ne | | 4687.80 //
4710.08 | A | 150
100 | 0.73
0.68 | 3.36
3.30 | 5-6
4-5 | a ⁵ F_y ⁵ G°
(43) | 3613.08
3672.65 | A
A | 13
3 | | 3.45
3.45 | 31-31
31-31
31-31 | | 3479.02
3510.46 | A
A
A | 5
7 | 0.53 4 | .07 | 13-13
13-13
33-13 | (30)
_{3D} -A _{3D} | | 4739.48
4772.32
4815.62 | A
A
A | 100
80 | 0.65
0.62 | 3.25
3.21 | 3-4
3-3 | | 3419.10
3478.29 | A
A | 5
4 | | 3.77
3.64 | 41-31
31-31 | a4F_z2F° (2) | 3334.62 | A | 9 | | | | r _S D-z _S Ge | | 4788.69
4805.88 | A
A
A | 60
8
15 |
0.60
0.73
0.68 | 3.16
3.30
3.25 | 1-2
5-5
4-4 | | 3424.82
3305.15 | A
A | 7
15 | 0.04 | 3.77 | 34-34 | \~/ | 3871.13 | A | 7 | 0.52 4 | | | (32)
^{2D-} 235• | | 4824.29
4851.36 | A
A | 12
12 | 0.65
0.62 | 3.21
3.16 | 3-3
2-2 | | 3388.29
3273.04 | A
A | 15
75 | 0.00
0.16 | 3.64 | 1] -2] | .4= -4=- | 3182.86
3129.16 | A
A | 35
10 | | 43 2 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (33)
(33)
(33) | | 4887.72
4893.12
4905.09 | A
A
A | (2)
2
(4) | 0.68 | 3.25
3.21 | 5-4
4-3 | | 3279.26
3306.27 | Ā | 65
25 | 0.09
0.04 | 3.86
3.77 | 31-31
31-21 | a ⁴ F-z ⁴ F° (3) | 3157.00 | A | 10 | | 43 | 1-1-1- | | | | | 17/ | V•05 | 3.16 | 3–2 | | 3357.26 | A | 15 | 0.00 | 3.68 | 11 11 | | | | | | | | | | Lab
I A | orator;
Ref | | Low E | | J | Multiplet
(No) | Labo: | | ry
Int | E
Low | | J | Multiplet
(No) | Labo
I A | ratory
Ref] | | E : | | J | Multiplet
(No) | |--|----------------|----------------------|------------------------------|------------------------------|---|--|--|------------------|----------------------|------------------------------|------------------------------|---|--|---|-----------------|---------------------|------------------------------|------------------------------|---|--| | <u>Zr II</u> c | ontinu | eđ | | | | | Zr II co | ntinı | ued | | | | | | ntinue | | | | | | | 2981.02
3036.50 | A
A | 13
7
3 | 0.56
0.52
0.52 | 4.70
4.59
4.53 | 23-33
13-33
13-13 | a ² D-y ⁴ D° (24) | 4442.50
4024.45 | A
A | 2
12 | 0.99 | 3.77
4.06 | | a ⁴ P _{-z} 3 _F • (53) a ⁴ P _{-z} 4D• | 4222.41
4266.72 | A
A | 3
1 | 1.20
1.18 | 4.13
4.07 | 1 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | b ⁴ P-y ² D° (80) | | 3086.44
3111.15
3125.21 | A
A
A | 3
4 | | 4.52
4.47 | 2}-1}
1}- } | | 4018.38
4040.24
4071.09 | A
A
A | 10
4
4 | 0.96
0.93 | 4.03
3.98
4.03 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (54) | 3853.07
3819.84
3792.32 | A
A
A | 2
2
3 | 1.23
1.20
1.18 | 4.43
4.43
4.43 | 21-11
11-11
1-11 | b ⁴ P-z ² P° (81) | | 3036.39
3064.64
3089.00 | A
A
A | 15
3
1 | 0.56
0.52
0.56 | | 21-31
11-21
21-21 | | 4077.05
4085.68
4131.31
4123.38 | A
A
A | 3
5
1 | 0.96 | | 15-15
25-15
15-5 | | 3717.02
3561.11
3690.98 | A
A
P | 3 | 1.20
1.23
1.18 | | | b ⁴ P-y ⁴ D° (82) | | 3003.73
3020.45
3044.12 | A
A
A | 15
5
4 | 0.56
0.52
0.56 | 4.66
4.61
4.61 | 21-31
11-21
21-21
21-21 | . a ² D-y ² F°
. (26) | 3941.92 | A | 3 | 0.99 | 4.13 | 2 } -2 } | a ⁴ P-y ² D°
(55) | 3607.39
3578.22 | A
A | 7
7 | 1.23
1.20 | | | b ⁴ P-z ⁴ S° (83) | | 3013.32
2990.10 | A
A | 8 3 | 0.56 | 4.65
4.65 | 21-11
11-11 | a ² D-z ⁴ S° (27) | 3692.60
3588.80
3512.67 | A
A
A | 1
3
3 | 0.96
0.99
0.96 | 4.43
4.47 | | 4P-z2po
(56)
4P-z2po
(57) | 3554.09
3506.04
3521.28 | A
A
P | 7
4 | | 4.75
4.71 | | b ⁴ P-z ⁴ P° (84) | | 4273.52
4090.52 | A
A | 4
10 | 0.75
0.75 | 3.64
3.77 | 11-21 | (28)
(28)
(28) | 3485.31
3334.25
3396.34 | A
A
A | 5
10
7 | 0.93
0.99
0.96 | 4.47
4.70
4.59 | | a ⁴ P-y ⁴ D°
(58) | 3506.48
3549.51
3529.99
3478.50 | A
A
A | 2
10
5
3 | 1.20 | 4.71 | 21-11
11-1
11-21 | | | 4156.24
4224.27
3991.14 | A
A
A | 15
3
40 | 0.71
0.75
0.75 | 3.68
3.68 | 12-12 | (29) | 3432.41
3433.90
3458.93
3480.40 | A
A
A | 7
8
10
5 | 0.93
0.99
0.96
0.93 | 4.52
4.59
4.52
4.47 | 3-11
3-21
1-1 | | *3497.90
3302.66
3343.81 | A
A
A | 13
71
4 | 1.18 | 4.71
4.97
4.89 |] -1] | b ⁴ P-x ⁴ D°
(85) | | 4045.63
4110.05 | Ā | 15 | 0.71
0.75 | | | a ² P_z ² D° (30) | *3497.90
3507.66 | A
A | 12
4 | 0.99
0.96 | 4.52
4.47 | 2 - 1 - 1 - 1 - 1 - 1 - 1 | 45 450 | 3369.27
3394.63
3402.52 | A
A
A | 3
3
1 | 1.23
1.20
1.18 | 4.89
4.84
4.81 | 21-21
11-11
1-1-1 | (65) | | 3772.06
3767.89
3823.72
3807.41 | A
A
A | 5
1
2 | | 4.03
3.98
3.98
3.95 | 15-25
5-15
15-15 | a ² P-z ⁴ D°
(31) | 3403.69
3431.57
3454.57
3469.94 | A
A
A | 8
6
4
4 | 0.99
0.96
0.93
0.99 | 4.62
4.55
4.50
4.55 | 13-23
13-23
3-13
23-23 | a ⁴ P-y ⁴ F°
(59) | 3424.64
3008.13
3015.67 | A
A
A | 1
3
1 | 1.20
1.23
1.20 | 5.33
5.30 | 13-13 | b ⁴ P-y ⁴ P°
(86) | | 3660.92
3667.40
3720.29 | A
A
P | 3
1 | 0.75
0.71
0.75 | 4.13
4.07
4.07 | 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ² P-y ² D°
(32) | 3481.44
m3520.91
3362.70 | A
P
A | Zr+
4 | 0.96
0.99
0.99 | 4.50
4.50
4.66 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .4p_v2re | m3036.33
3025.16
2987.80
2998.49 | P
A
A | Zr+
3w
5
2 | 1.20 | 5.30
5.28
5.33
5.30 | 21-11
11-21
11-21
1-11 | | | 3483.54
3437.16 | A
A | 13
10 | | 4.30
4.30 | | a ² P_z ² 5°
(33) | 3376.25
3413.39 | A
A | 7
5 | 0.96
- 0.99 | 4.61
4.61 | | a ⁴ P-y ² F° (60) | 5124.98 | A - |
2 | | | - | a ² H-z ⁴ F° | | 3354.39
3280.75
3322.99 | A
A
A | 7
3
10 | 0.75
0.71
0.75 | 4.43
4.47
4.47 | 1 1 1 1 | a ³ P-z ² P° (34) | 3374.71
3338.41
3313.70 | A
A | 15
10
8 | 0.99
0.96
0.93 | 4.65
4.65
4.65 | 1\$-1\$
\$-1\$ | | 4379.78
4442.99
4308.94 | A
A
A | 9
25
4 | 1.53
1.48
1.48 | | | (87)
a ² H-z ² G°
(88) | | 3311.34
3218.68 | A
A | 1 7 | 0.71 | 4.43
4.59 | - 1- 2 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − | a ² P-y ⁴ D°
(35) | 3285.89
*3288.81
3272.30 | A
A
P | 10 | | 4.75
4.71
4.70 | \$- \$ | a ⁴ P-z ⁴ P° (62) | 3874.37 | A | 1 | 1.48 | 4.66 | 43-33 | a ² H-y ² F° | | 3318.52
3276.37
3295.03 | A
A | 7
1
1 | 0.75
0.71
0.75 | 4.47
4.47
4.50 | | a2P_y4F° | 3324.03
3296.41
3251.46
3264.81 | P
A
P
A | 7
6 | 0.99
0.96
0.96
0.93 | 4.71
4.70
4.75
4.71 | 2 - 1 - 1 - 1 - 2
- 1 - 2 - 1 | • | 3505.47
3463.02
3459.95 | A
A
A | 15
35
3 | 1.53
1.48
1.48 | | | a ² H-y ² G•
(90) | | 3200.67
3088.28 | A
A | 3
1 | • | 4.61
4.75 | 1] -2] | (36)
a ² P-y ² F°
(37)
a ² P-z ⁴ P° | 3106.58
3133.49
3155.68 | A
A
A | 35.
25
10 | 0.99
0.96
0.93 | 4.97
4.89
4.84 | 21-31
11-31
1-11 | a ⁴ P-x ⁴ D° (63) | 3326.81
3359.96
3402.87
3285.77 | A
A
A | 15
12
7
3 | | 5.24
5.15
5.15
5.24 | 54-54
54-44
54-44
44-54 | a ² H-z ² H°
(91) | | 3128.79
3091.30 | A | 1 | 0.75
0.71 | 4.70
4.70 | 12 2 | (38) | 3165.45
3178.10
3181.58 | A
A
A | 7
15
8 | 0.99
0.96
0.93 | 4.89
4.84
4.81 | 23-23
13-13
2- 3 | | 3275.65 | A | 1 | | | | a ² H-x ² F° (92) | | 3021.97
3010.28 | Å | 1
2w1 | 0.71 | 4.84 | - | a ² P-x ⁴ D° (39) | 3210.98
3204.36
2975.16 | A
A
A | 3
4
1 | 0.99
0.96
0.96 | 4.84
4.81
5.10 | 24-14
12-2
13-13 | a4p_y2p• † | 6100.04
6114.78 | A
A | 3
2 | 1.75
1.66 | 3.68 | 15-15 | 0 ² D-z ⁴ F° (93) | | 4277.37
4317.32
4454.80
4496.96 | A
A
A | 4
12
10
15 | 0.80
0.71
0.80
0.71 | | 31-41
21-31
31-31
21-21 | a ² F-z ⁴ G°
(40) | 3009.85
3048.42 | A | 3 | 0.93 | 5.03
5.04 | | a ⁴ P-y ² P° †
(64)
a ⁴ P-y ² G°
(65) | 5418.01
5191.60
5112.28 | A
A
A | 1
7
7 | 1.75
1.75
1.66 | 4.13 | 2 } -2 } | b ² D-z ⁴ D°
(94)
b ² D-y ² D°
(95) | | 4149.33
4308.99 | A
A | 75
30 | | | | a ² F-z ² F° (41) | 4816.47 | A | 1 | 1.01 | 3.57 |
43 | 30 -400 | 5311.78
5000.91 | A | 3 | 1.75
1.66 | 4.07
4.13 | $2\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-2\frac{1}{2}$ | | | 4339.56
4029.68
3936.07 | A
A | 3
20
7 | 0.80 | 3.64
3.77
3.93 | 31-21
21-31
31-41 | . ₂ 3 _{F_z} 4 _F 0 | 4461.22
4613.95
4399.44 | A
A | 10
5
2 | 1.01
0.97
0.97 | 3.77
3.64
3.77 | 44-34
34-24
35-35 | (66)
a ² G-z ² F°
(67) | 4445.88
4186.70
4310.62 | A
A | 1
12
5 | 1.66
1.75 | 4.43
4.70
4.59 | 15-15
21-31
11-21 | b ² D-z ² P°
(96)
b ² D-y ⁴ D°
(97) | | 3921.02
4034.10
4031.35 | P
A
A | 5
2 | 0.71
0.80
0.71 | 3.86
3.86
3.77 | 21-31
31-31
21-21 | a ² F_z ⁴ F°
(42) | 4215.76
4401.35 | A | 1
3 | 0.97 | 3.93 | 43-43
32-22 | 8~(}_ 2.** | 4383.10
4296.74 | A
A | 1
8 | 1.66 | 4.47 | $1\frac{1}{2} - \frac{1}{2}$ $2\frac{1}{2} - 3\frac{1}{2}$ | b ² D_y ⁴ F° | | 4150.97
4161.20
4048.68 | A
A | 10
20
25 | 0.80
0.71
0.80 | 3.00 | 25-15 | | 4286.51
4034.84 | A
A | 5
0 | | 3.85
4.03 | | (69) | 4364.91
4342.23
4231.64 | A
A
A | 4
1
8 | 1.66 | 4.55
4.50
4.66 | 13-23
13-13
23-33 | b ² D-y ⁴ F°
(98)
b ² D-y ² F° | | 4050.32
3934.80
3782.24 | A
A | 15
20
4 | 0.71
0.71
0.80 | | 31-11
21-21
31-31 | $\begin{array}{ccc} & a^2F-z^2D^{\circ} \\ & (43) \\ & & \\ & & \\ & & & \\ & & & \\ & & & &$ | 3698.17
3751.60
3796.47
3655.56 | A
A
A | 100
75
20
7 | 1.01
0.97
1.01
0.97 | 4.34
4.26
4.26
4.34 | 41-41
31-31
41-31
31-41 | a ² G-z ⁴ D°
(70)
a ³ G-z ² G°
(71)
a ² G-y ⁴ D° | 4179.81
4312.23
3833.87 | A
A | 15
3
2 | | | | b ³ D-y ³ F° (99) | | 3721.69
3823.41
3771.98 | A
A
A | 3
3
2 | 0.71
0.80
0.71 | 4.03
4.03
3.98 | 24-24
34-24
24-14 | a ² F-z ⁴ D°
(44) | 3344.80
3408.09 | A
A | 15
10 | 0.97 | 4.70
4.59 | 41-31 | a ² G-y ⁴ D°
(72) | 3813.98
3923.92
3678.91 | A | 0
1
10 | 1.66 | 4.89 | 11-31
21-31
21-31 | b ² D-x ⁴ D° (100) | | 3682.67
3709.27
3671.28 | A
A | 60
20 | 0.71
0.80
0.71 | 4.13
4.07 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ² F-y ² D° (45) | 3309.90
*3414.65 \$
3443.57 | A | 12
7 | 0.97
1.01
0.97 | 4.62 | 41-31
31-21 | a ² G-y ⁴ F°
(73) | 3662.14
3582.08 | A
A | 8 | 1.66 | 5.03 | 12-12
12-12 | b ² D-y ² P° (101) | | 3613.43
3481.14
3479.39 | A
A | 35
30 | 0.71
0.80
0.71 | | | a ² F-z ² G° (46) | 3378.30
3373.42
3387.87 | A
A
A | 5
8
12 | 1.01
0.97 | 4.66
4.61 | 32-32
41-31
31-21 | a ² G_y ² F°
(74) | 3633.49
3565.41
3661.33
3539.05 | A
A
A | 10
5
4
4 | 1.75
1.66
1.75
1.66 | 5.15
5.12
5.12
5.15 | 21-21
11-11
21-11
11-21 | b ² D-x ² D°
(103) | | 3568.14
3314.49 | A
A | 10 | 0.80 | 4.43 | 3] _1 | a ² F-z ² po | 3337.93
3115.73 | A
A | 2 | 1.01 | | 4] -3] | a ² G-x ⁴ D° | 3527.42
3396.66
m3483.59 | A
A
P | 7
6
Zr+ | 1.75
1.66
1.75 | 5.25
5.29
5.29 | $2\frac{1}{1}$ $-3\frac{1}{2}$ $2\frac{1}{2}$ $-2\frac{1}{2}$ | b ² D-x ² F° (103) | | 3166.29
3181.94
3228.81 | A
A | 8
7
15 | 0.80
0.71
0.80 | | | a ² F-y ⁴ D°
(48) | 3054.84
3028.05
3057.22
3025.70 | A
A
A | 30
20
5
2 | 1.01
0.97
1.01
0.97 | 5.05
5.04
5.04
5.05 | 44-44
34-34
44-34
34-44 | (75)
a ² G-y ² G°
(76) | 3222.48
3161.01
3236.17 | A
A
A | 15
2
1 | 1.75
1.66
1.75 | 5.58
5.56
5.56 | 21-31
11-11
21-11 | b ² D-w ² D° (104) | | 3212.85
3256.53
3155.95 | A
A
A | 6 1 1 | 0.71
0.71
0.71 | | | a ³ F-y ⁴ F°
(49) | 2976.61 | A | 10 | 1.01 | 5.15 | 4 <u>}</u> -4날
- | a ² G-z ² H°†
(77) | 3183.26
3074.55
3110.52 | P
A
A | 1 1 | 1.75
1.66 | 5.63
5.67 | | b ² D-x ² P°
(105) | | 3191.93
3164.32
3237.54 | A
A
A | 12
20
1 | 0.80
0.71
0.80 | 4.66
4.61
4.61 | 31-31
21-21
31-21 | a ² F-y ² F° (50) | 4854.65
4359.74 | A
A | 0
10 | 1.23 | 3.77
4.06 | 2}-3} 2}-3} | b ⁴ P-z ² F°
(78)
b ⁴ P-z ⁴ D°
(79) | *6106. 4 7 | | 3 | 1.75 | | -
15-15 | b ² G-z ² F° | | 3120.72
3122.61
3054.39 | P
A
A | Z r
1
3 | 0.71
0.80
0.71 | 4.66 | 2 5 -3 5 | a ³ F_z ⁴ P° (51) | 4370.96
4403.35
4414.54
4440.45 | A
A
A | 8
6
5
10 | 1.20
1.18
1.23
1.20 | 4.03 | 1+-3+
+-1+
3+-3+
1+-1+ | (19) | 4761.67
4894.43
4925.90 | A
A
A | 1
0
1 | 1.75
1.74
1.75 | | | (106)
b ² G-z ² G°
(107) | | 3013.66 | A . | 0 | | 4.89 | | a ² F-x ⁴ D°
(52) | *4457.43 \$
4485.44
4495.44 | | 8
2
3 | 1.18
1.23
1.20 | 3.95
3.98 | 23-13
13-13
13-3 | | 4191.50
4325.64 | A
A | 6
3 | 1.75 | 4.70 | 44-34 | b ² G-y ⁴ D°
(108) | Labora
I A R | tory
ef | | E
Low | P
High | J | Multiplet
(No) | Labo
I A | | ory
Int | | P
High | J | Multiplet (No) | Labo: | | y
Int | E
Low | P
High | J | Multiplet
(No) | |--|-------------|-------------|----------------------|----------------------|--|--|---|-------------|-----------------------|----------------------|----------------------|---|--|---|-------------|--------------------|--|----------------------|--------------------------------|--| | Zr II cont | inue | ed | | | | | Zr II co | ntin | ued | | | | | Cb II co | ntinu | eđ. | | | | | | | A
A | 5
1 | | 4.62
4.55 | 43-3 1
35-25 | b ² G-y ⁴ F ^b
(109) | 4908.67 | A | 1 | | 5.63 | | a ² S-x ² P°
(145) | 3781.379
3898.292 | A
A | 200 | 1.69
1.69 | 4.86 | 3-4 | b ³ F_z ³ G• †
(9) | | | A
A | 5
7 | | 4.66
4.61 | 41-31
31-21 | b ² G-y ² F° (110) | 3612.34
3650.73 | A. | 7 | | 6.53
6.49 | 2-13
2- 2 | a ² 9_w ² P°
: (146) | 3863.056
3763.13 | A
A | 150
8n | 1.58 | 4.78 | 2-3
4-4 | b ³ F-2 ³ F• † | | 3818.78 | A |
1 | 1.74 | 4.97 | 3 } -3 | b ² G-x ⁴ D° | 3026.18
3018.53 | A
A | 3w1
3w | 3.93
3.86 | |
41-41 | z ⁴ F°-e ⁴ F† | 3831.840
3818.862
3952.367 | A | 200
200
100n | 1.69
1.58 | 4.91
4.81 | 3-3
2-2 | (10) | | 3731.26 | A
A | 40
35 | 1.74 | 5.05
5.04 | 41-41
31-31 | (112) | 3000.59
3024.72 | A
A | 3w
3w | | 7.88 | 21-21
21-1 | . (141) | | A | | 1.69 | | 3–2 | | | | P
A | 10 | 1.75
1.74 | 5.04
5.05 | 3 }-4 5 | | 2988.74 | A | 4w | 4.13 | 8.25 |
2 1 -21 | . v ² D•_e ² D | Strongest
3717.06 | Uncl | .assified
300 | Lines | of <u>Cb</u> | <u> II</u> | | | 3611.90 | A
A | 25
15 | 1.74 | 5.24 | 41-51
31-41 | b ² G-z ² H°
(113) | 2966.27 | A | 2w | 4.07 | 8.23 | 1] -1]
- | y ² D°-e ² D
(148) | 3659.602
3510.262 | A
A | 300
400 | | | | | | 3530.85 | A
A | 1
6 | 1.75 | 5.15
5.25 | | | 3229.73
3278.89 | A
A | 1 1
2 | 4.43
4.47 | 8.25
8.23 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | z ² P°-e ² D
(149) | 3432.708
3283.463
3263.365 | A
A
A | 400
400
300 | | | | | | | A
A | 8
4 | 1.74 | 5.29
5.25 | 31-21
31-31 | b ² G-x ² F°
(114) | Strongest | Unc | lassifie | d Lines | | | | 3260.564
3127.526 | A
A | 350w
500 | | | | | | | A
A | 5
5 | 1.83 | 4.13
4.07 |
2] -2] | c ² D-y ² D°
(115) | 3827.27
3423.82 | A
A | 1
31 | | | | | 3064.530
3034.95
3032.767 | A
A | 250r
200wR | | | | | | 5477.82 | A | 2 | 1.82 | 4.07 | 2] -1 | | 3068.32
*3063.63 § | A
A | 2 w
3 wl | | | | | 2994.725 | A
A | 400rs
300w | | | | | | 4565.43 | A
A
A | 1
3
1 | 1.82
1.77
1.77 | 4.43
4.47
4.43 | 25-15
15-15
15-15 | c ² D-z ² P°
(116) | 3038.59
3018.08 | A
A | 2
2 w | | | | | | | | | | | | | 4289.18 | A | 2 | 1.82 | 4.70 | | | 2994.05 | A | 4 w | | | | ***** | Mo I I I
3798.259 / | | 6 Anal
50R | 0.00 | ist D | - | 1942
a ⁷ S-z ⁷ P* | | | A
A | 2 | 1.82
1.77 | 4.62
4.55 | 21-31
11-21 | c ² D-y ⁴ D°
(117)
c ² D-y ⁴ F°
(118) | | | | | | | | 3864.115
3902.968 | A
A | 50R
50R
50R | 0.00 | 3.25
3.19
3:16 | 3-4
3-3
3-2 | (1) | | | A.
A | 2
5 | 1.82 | | 21-31
11-31 | c ² D-y ² F° (119) | <u>Cb I</u> I I | | Anal C | | D J
3.17 | uly 19
4 1 _5 1 | | 3112.125
3158.156 | A
A | 5n
5R | 0.00 | | 3-4
3-3 | a ⁷ S-z ⁷ D ^e (2) | | 3757.80 | A | 8 | 1.82 | 5.10 | | c ² D_y ² P°
(120) | 4079.726
4100.918 | A
A | 1000w
600w | 0.09
0.05 | 3.11
3.06 | 31-41
31-31 | a ⁶ D-y ⁶ F°†
(1) | 3208.838 | A | 10n | 0.00 | 3.85 | 3–2 | | | | A.
A | 1 | 1.77 | 5.03
5.04 | | | 4133.813
4137.090
4139.703 | A
A
A | 400
300
400w | 0.00 | 3.01
2.98
3.11 | 1 - 2 - 3 - 1 - 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 | | 3132.591
3170.333
3193.969 | A
A
A | 10R
10R
10R | | 3.94
3.89
3.86 | 3-4
3-3
3-2 | a ⁷ S-y ⁷ P°
(3) | | | A.
A. | 1 | 1.82 | 5.15
5.13 | 2] -2] | c ² D-y ² G ⁶
(121)
c ² D-x ² D ⁶
(122) | 4152.575
4164.661
4163.658 | A
A
A | 500
300
250 | | 3.06
3.01
2.98 | 41-41
31-31
31-31 | | 5506.51 | В. | 40R | 1 77 | 7 57 | - 2 2 | a5g_z5pe | | 3651.50 A | A. | ž | 1.77 | | 13-23 | 2- 2 | 4168.122 | A | 250w | 0.00 | 2.96 | 13-13 | 6- 6 | 5533.01
5570.46 | B
B | 30R
25R | 1.33
1.33
1.33 | 3.56 | 2-3
2-3
3-1 | (4) | | 3599.91 A | A
A | 4 | 1.82 | 5.25
5.29 | | c ² D-x ² F° (123) | 3791.209
3824.882 | A | 300r
100 | 0.13 | 3.38
3.31 | 32-32 | a ⁶ D-y ⁶ D° † | 6030.66 | В. | 9 | 1.53 | 3.57 | -
4-3 | a ⁵ D-z ⁵ P° † | | 3511.55 A
3550.11 F | A
P | 8 | 1.82 | 5.30 | 2] -1글 | c ² D-y ⁴ P°
(124) | 3713.018
3739.80
3759.556 | A
A | 300r
300r
200r | 0.09 | 3.45
3.39
3.33 | 41-41
31-31 | a ⁶ D-x ⁶ D°†
(3) | 5888.32
5791.86 | B
B | 6
6
7 | 1.46
1.41 | 3.56
3.54 | 3-2
3-1 | (5) | | 3282.84 A | 1 | 12
20 | 1.82 | 5.58
5.56 | 31-31
11-11 | c ² D-w ² D°
(125) | 3790.138
3802.928 | A
A | 200r
400r | 0.13 | 3.39
3.33 | 41-31
31-21 | a ⁶ D-x ⁶ D°†
(3) | 5858.28
5751.41
5689.22 | B
B
B | 6
7 | 1.46
1.41
1.38 | 3.57
3.56
3.54 | 3-3
2-2
1-1 | | | 3236.61 A | | 4
3 | 1.77 | 5.58
5.63 | 1 § -3 §
3 § -1 § | c ² D-x ² P° | 3798.127
3787.064
3697.850 | A
A
A | 300r
150
200 | 0.05
0.03
0.05 | 3.30
3.28
3.39 | 21-11
11-1
21-3 | | 4626.467
4662.767 | A
A | 10
5 | 1.52 | | 4-3
3-2 | a ⁵ D-y ⁵ P° † | | 3159.12 A
3197.08 A | ١. | 5
3 | 1.77 | 5.67
5.63 | $1\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$ | c ² D-x ² P°
(126) | 3726.235
3742.393 | Ā
A | 250
200r | 0.00 | 3.33 | 19-24 | | 4661.933
4524.344 | A
A | 5
10 | 1.41
1.46 | 4.06
4.19 | 3-1
3-3 | (0) | | 3015.86 A | ٠ _ | 8 | 1.83 | 5.91 | 2] _2] | c ² D-w ² F°
(127) | 3580.277
3575.850 | A
A | 400r
200 | 0.13
0.09 | 3.58
3.54 | 41-31
31-21 | a ⁶ D_y ⁶ P°†
(4) | 4576.500
4595.160 | A | 10
10 | 1.41
1.38 | 4.11 | 3-2
1-1 | _ | | 6346.54 A
6678.03 A | | 1 3 | 2.40
3.41 | 4.34 | 3 1 - 4 1
2 1 - 3 1 | b ² F-z ² G° | *3535.304 | A | 400w | 0.09 | 3.58 | 3 } _3 } | | 4277.246
4288.65
4293.228 | A
A
A | 12
5n
10 | 1.52
1.46
1.41 | 4.34 | 4-5
3-4
3-3 | a ⁵ D-z ⁵ F° †
(7) | | 4661.78 A | | 5 | 2.40 | | | b ² F_y ² G°
(129) | a | | | | | | | 3833.757 | A | 10n | 1.52 | 4.74 | 4-4 | a ⁵ D-z ⁵ D° † | | 4494.41 A | | *
8 | 2.41
2.40 | 5.15 | | b ² F-x ² D°
(130) | <u>Cb II</u> I
3094.172// | | | 0.51 | | July 19
56 | _a 5 _{F-z} 5 _G • † | 3828.883
3826.701
3822.987 | A
A
A | 10
10
5 | 1.46
1.41
1.38 | 4.64 | 3-3
2-2
1-1 | (8) | | 4553.96 A
4482.04 A | | 12
3 | 2.41
2.40 | E 4 E | a1 41 | . 2 2 | 3130.780
3163. 4 03 | A
A | 1500wR
1000R | 0.44
0.37 | 4.38
4.38 | 4-5
3-4 | (1) | 3901.775
3886.825 | A
A | 10
(3) | 1.52
1.46 | 4.69
4.64 | 4-3
3-2 | | | 4333.28 A | | 15 | 3.40 | 5.25 • | 3 } -3 } | (131)
bar-xare | 3194.983
3225.478
3191.096 | A
A
A | 700R
500wR
200w | 0.29 | | 1-2
5-5 | | 3869.085
3847.252
3763.356 | A
A
A | 10
10
5 | 1.41
1.38
1.46 | 4.58 | 2-1
1-0
3-4 | | | *4282.21 § A
4267.30 P
4348.64 P | • | 6 | 2.41
2.40
2.41 | 5.29
5.29
5.25 | 23-23
33-23
23-33 | (131)
b ² F-x ² F°
(132) | 3215.595
3236.403
3254.070 | A
A
A | 300wr
300r
200r | | 4.28
4.19
4.12 | 4-4
3-3
2-2 | | 3770.517
3781.597 | A
A | 8
10 | 1.41
1.38 | 4.69 | 2-3
1-2 | | | 4805.91 A | | 2 | 2.40 | 5.33 | 31 ol | h2r4po | 3028.436 | A | 300w | 0.44 | 4.51 | 4-3 | a ⁵ F-z ³ D° † | 3405.934
3384.617 | A
A | 10r
10n | 1.52
1.46 | 5.11 | 4-5
3-4 | a ⁵ D-y ⁵ F* †
(9) | | 3881.97 A
3914.36 A | | 7
7 | 2.40
2.41 | 5.58
5.56 | 31-21
31-11 | (133)
bar-wapo
(134) | 3076.864
3099.180
2982.100 | A
A
A | 200
100
100 | | 4.39
4.31
4.51 | | (3) | 3358.130
3344.750
3327.308 | A
A
A | 10
10
10r | 1.41
1.38
1.35 | 5.07 | 2-3
1-2
0-1 | | | 6787.15 A | _ | | 2.48 | | - | bap_zas• | | | | | | _ | 3n 3-04 | 3361.371 | A | 10r | | 5.20 | 4_4 | a ⁵ D-8° † | | 6313.57 A | | 1 | 2.48 | 4.43 | 1 2 - 2 | (135)
b2P_z2pe
(136) | 3412.934
3408.678
3409.191 | A
A
A | 150
100
100 | 0.76 | 4.51
4.39
4.31 | 1-3 | a ³ P-z ³ D°†
(3) | 3289.016 | A | 10 r | 1.41 | 5.17 | 2-3 | (10)
a ⁵ D_7° †
(11) | | 6028.64 A
*6106.47 A | | 2
2 | 2.42
2.48 | | | | 3540.961 | A | 200 | 1.03 | 4.51 | -
43 | a ³ F-z ³ D° † | 4012.51
4062.09 | C
A | (1)
5Nr | 2.07 | 5.15 | 6-5
5-4 | a ⁵ G-y ⁵ F° †
(13) | | 4703.03 A | | 5 | 2.48 | 5.10 | 1-1-1 | b ² P-y ⁴ F°
(137)
b ² P-y ² P°
(138) | 3619.514
3651.182 | A
A | 300 | 0.98 | 4.39
4.31 | 3-3
3-1 | (4) | 4084.391
4107.477 | A
A | 10n
8r | 2.07
2.06 | 5.09
5.07 | 4-3
3-3 | (15) | | 4734.94 A
4841.98 A
4601.97 A | | 1
0
2 | | 5.03
5.10 | 1 1 | (136) | 3145.405
3180.290 | A
A | 500rs
400 | | 4.95
4.86 | | a ³ F-z ³ G° †
(5) | 4103.158
4056.037 | A | 10
10 | 2.05
2.07 | 5.06
5.11 | 2-1
4-4 | | | 4629.07 A
4574.49 A | | 5
6 | 2.48
2.42 | 5.15
5.13 | 1 2 3 3 | b ³ P-x ³ D°
(139) | 3206.350
3223.332 | A
A | 300rs
100 | 0.93
1.03 | 4.78
4.86 | 2-3
4-4 | (5) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | 4674.41 A | | 1 | | | | | 3247.478 | A | 150w | 0.98 | 4.78 | - | | Mo II I | ΡÌ | Anal D | | | ug 194 | | | 4388.50 A
4323.62 A | | 2
2 | | | .1 -1 | b ³ P-x ³ F°
(140)
b ³ P-y ⁴ P° | 3440.589
3479.567
3515. 4 31 | A
A
A | 200
150
200w | 1.31 | 4.95
4.86
4.78 | | a ³ G-z ³ G• †
(6) | 3446.085
3524.646 | A
A | 6
8 | 2.94
2.94 | 6.52
6.45 | 41-41
31-31 | 4 _F _ 4 _F • (1) | | 3982.01 A | | 3 | 2.48
2.43 | 5.58 | 1 1 2 3 1 | (141)
b3P_w3D°
(143) | 3485.432 | A | 300w | 1.36 | 4.97 | 5-4 | a3G-23F0 + | 3596.351
3670.668
3522.063 | A
A | 4
3
2 | 2.98
2.94 | 6.34
6.45 | 14-14
44-34 | | | 4002.95 A | | 3 | 2.48 | 5.56 | 1 2 1 2 | (1#4) | 3426.562
3478.79 | A | 250w
100 | 1.31 | 4.91
4.81 | 4-3
3-3 | (7) | 3585.91
3643.47
3448.542 | B
A
A | 3n
3 | 2.94
2.95
2.94 | 6.39
6.34
6.52 | 34-21
34-11
34-41 | | | 3922.36 A
3048.28 A | | 1
5 |
 | | | 4367.966 | A | 100n | 1.69 | 4.51 | | b ³ F-z ³ D° † | 3534.688
3622.850 | A
A | 3 2 | 2.94
2.95
2.95
2.98
2.94
2.95
2.95
2.95
2.95
2.95 | 6.45
6.39 | 31-31
11-31 | | | 3032.00 A
3075.55 A | | 3 | 2.43
2.48 | 6.49
6.49 | 12- 2 | (143)
b3P_w3P°
(144) | 4579.446
4527.648 | A | 150n
50n | 1.69
1.58 | | | (8) | 3136.465
3187.592 | A
A | 4 | 2.94
2.94 | 6.88 | | 4F_ 4De † | | | _ | | • | | • | | | | | | | | | 3250.747 | _ | 3 - | 2.95 | 6.75 | 3 } -1 } | , | Laboratory
I A Ref Int | E P J Multiplet Low High (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | |--|---|---|---|--|---|--| | o II continued 250.689 A 10 363.644 A 10 433.501 A 8 209.649 A 5 279.023 A 10 377.765 A 10 | 3.13 6.03 3 2 2 4 D 4P° † 3.10 5.93 2 1 2 (3) 3.04 5.83 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Ru II I P ? Anal
3690.032 A 80
3657.574 A 50
3734.454 A 25
3777.919 A 10
3177.060 A 100
3294.220 A 80 | D List C Sept 1943 2.39 5.74 31-41 4D 6p° † 2.39 5.77 31-31 (1) 2.53 5.84 21-21 2.62 5.89 12-12 2.39 6.28 31-41 4D 6p° † 2.53 6.28 22-32 (2) | Rh II continued 3477.828 A 200 3093.481 A 200 3096.740 A 150 3062.201 A 100 3008.996 A 200 3047.160 A 200 2879.382 A 2 | 3.43 6.98
3.47 7.46
3.59 7.57
3.43 7.46
3.47 7.57
3.59 7.64
3.43 7.57 | 3-4 5p 5p 5p 3-3 (4) 1-2 3-3 2-2 1-1 3-2 | | 941.478 A 10
961.503 A 15
986.201 A 6
635.144 A 20
688.307 A 15
693.645 A 10
702.553 A 8
719.74 A 3 | 3.13 6.36 31 41 4D 6D° † 3.13 6.34 31 32 12 3.10 6.30 32 12 3.13 6.53 31 41 4D 4F° † 3.10 6.45 32 32 32 3.01 6.34 31 32 32 3.01 6.34 31 32 32 3.01 6.34 32 32 | 3339.810 A 50
3369.395 A 25
3175.317 A 10
3143.657 A 15
3107.586 A 10
3094.555 A 8
3221.378 A 15 | 2.62 6.32 14-24
2.67 6.34 5-14
2.39 6.36 3-32
2.39 6.36 32-32
2.39 6.36 32-32 4D-6P°†
2.53 6.52 22-22 (3)
2.53 6.36 32-32 | 3962.167 A 75
3035.013 A 200
3187.889 A 200
3307.362 A 200
3864.891 A 75
3166.948 A 200
3173.678 A 100
3081.585 A 100 | 3.47 7.64
3.59 7.66
3.43 7.30
3.47 7.30
3.59 7.37
3.47 7.48
3.47 7.48 | 3-1
1-0
3-4 5p_ 5pe
3-3 (5)
1-3
3-3
1-1
3-1 | | 755.54 A 5
743.34 A 6
292.312 A 12
320.902 A 5
339.215 A 5
347.269 A 3
346.403 A 4
380.215 A 3 | 3.10 6.39 31-31
3.04 6.34 12-12
3.13 6.88 31-31 4D-4D°
3.10 6.82 32-32 (6)
3.04 6.75 12-12
3.01 6.70 12-12
3.13 6.82 32-32
3.13 6.82 32-32
3.10 6.75 22-12 | 3976.593 A 100
3965.564 A 100
3979.957 A 60
3977.326 A 30
3979.736 A 40
3991.626 A 40
3998.896 A 30 | 2.39 6.54 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3267.480 A 250
3240.516 A 150
3211.947 A 150
3815.012 A 100
3754.13 P | 3.92 7.69
4.03 7.83
4.18 8.02
4.23 7.46
4.29 7.57 | - 3 _G 3 _F · .
4-3 (6)
3-2 (6)
2-3 3 _P 5 _D · .
1-2 (7) | | 379.762 A 3
267.639 A 3
271.666 A 4
297.684 A 3 | 3.04 6.70 13 3
3.10 6.88 23 3
3.04 6.83 13 23
3.01 6.75 2-12 | 3259.0077 A 20
3060.252 A 8
3221.978 A 20
3075.336 A 6 | 3.75 6.54 3½-4½ 3F-4Fe†
2.66 6.69 3½-3½ (6)
2.75 6.58 3½-3½ 3F-4De†
2.66 6.67 3½-3½ (7) | 3720.69 P
3269.60 P
3188.603 A 150
3147.931 A 8
3140.272 A 50
3119.837 A 5 | 4.33 7.64
4.23 8.00
4.29 8.16
4.32 8.34
4.23 8.16
4.29 8.34 | 3-3 3p 3p 3p 1-3 (8) 0-1 2-3 1-1 | | u I I P 7.5 Anal
799.347 A (8)
798.901 A (8)
728.030 A (10R)
726.926 A (10R)
730.433 A (4) | C List D Aug 1942 0.00 3.35 5-4 a ⁵ F-z ⁵ D°† 0.15 3.40 4-3† (1) 0.00 3.31 5-5 a ⁵ F-z ⁵ F°† 0.15 3.46 4-4 (2) 0.26 3.57 3-3 | Rh I I P 7.7 Anal
3692.357 A 50
3657.987 A 50
3596.194 A 20
3612.470 A 15 | O.00 3.34 4 3 4 4 5 6 7 (1) 0.19 3.56 3 5 2 1 (1) 0.32 3.75 2 5 1 7 2 1 | Pd I I P 8.30 Ana
3634.71 B 700R
3516.95 A 500r
3571.16 A 200 | 1 A List D 0.81 4.31 0.96 4.47 1.25 4.70 | Aug 1942 3-2 5s ³ D-5p ³ P° 2-1 (1) 1-0 | | 742.280 A (10) 760.031 A (4) 661.353 A (6) 417.353 A (30) 430.772 A (7) 498.942 // A (50R) | 0.33 3.63 2-2
0.88 3.67 1-1
0.15 3.52 4-5 a ⁵ F-z ³ G°†
0.26 3.87 3-4 (3)
0.33 3.93 2-3
0.00 3.53 5-6 a ⁵ F-z ⁵ G°† | 3434.893 // A 200R
3700.909 A 30
3507.316 A 20
3474.780 A 20
3502.524 A 50
3396.85 A 100R | 0.00 3.59 41-51 a4F-z4G°†
0.19 3.53 31-42 (2)
0.32 3.84 21-32
0.43 3.98 11-22
0.00 3.52 41-42 | 3799.17 B 75
3832.31 B 75
3404.60 // A 1000R
3609.56 A 600R
3481.17 A 400r
3480.76 A 300r
3218.98 A 20 | 0.96 4.21
1.25 4.47
0.81 4.44
0.96 4.38
1.25 4.79
0.81 4.38
0.96 4.79 | 3-2
1-1
3-4 5s ³ D-5p ³ F°
2-3 (2)
1-2
3-3
3-3
3-2 | | 436.737" A (30R)
596.179 A (30)
593.022 A (30)
589.215 A (5)
301.587 A (8)
554.509 A (10R) | 0.15 3.74 4-5 (4)
0.26 3.69 3-4
0.33 3.77 2-3
0.38 3.82 1-2
0.00 3.74 5-5
0.81 3.52 4-5 a ³ F-z ³ G°† | 3528.024 A 30
3462.040 A 30
3470.657 A 30
3583.098
A 10
3666.215 A 15
3323.092 A 50R
3283.573 A 20R | 0.00 3.63 41-41 a4F-z4F*† 0.19 3.69 32-32 0.43 3.98 12-12 0.19 3.63 32-42 0.32 3.69 22-32 0.19 3.63 32-42 0.19 3.63 32-42 0.19 3.90 31-42 a4F-z2G*† 0.32 4.08 22-32 (4) | 3242.72 A 1000R
3421.24 A 500
3302.15 A 400
3287.26 A 50
3065.30 A 100
3372.02 A 300
3718.92 B 100 | 0.81 4.63
0.96 4.56
1.35 4.98
0.81 4.56
0.96 4.98
0.96 4.62 | 3-3 5s ³ D-5p ³ D°
2-2 (3)
1-1
3-2
2-1
2-3 | | 297.711 A (10)
410.026 A (8)
212.063 A (10)
584.445 A 30
681.786 A 10
080.600 A (20) | 1.00 3.87 3-4 (5)
1.13 3.93 2-3
0.81 3.74 4-5 a ³ F-z ⁵ G°†
1.00 3.69 3-4 (6)
1.13 3.77 2-3
0.81 3.83 4-3 a ³ F-y ⁵ F°† | 3597.147 A 30
3478.906 A 15
3543.948 A 10
3271.612 A 10
3788.474 A 15 | 0.41 3.84 3½-3½ a³D-z⁴q° † 0.41 3.96 3½-3½ a³D-z²D° 0.70 4.18 1½-1½ (6) 0.41 4.18 3½-1½ 0.70 3.96 1½-3½ | 3002.66 A 50
3114.05 A 300
3027.92 A 100
3258.80 A 300
3021.74 A 10 | 1.35 4.56
0.81 4.92
0.96 4.92
0.96 5.03
1.35 5.03
0.96 5.04 | 1-2
3-3 58 ³ D-5p ¹ F°
2-3 (4)
2-2 58 ³ D-5p ¹ D°†
1-3 (5)
2-1 58 ³ D-5p ¹ P° | | 144.164 A (10)
199.902 A (10)
867.839 A (8)
984.858 A (10)
097.791 A (10) | 1.00 3.98 3-8 (7) 0.81 3.75 4-4 a ³ F-z ³ F°† 0.81 4.00 4-3 a ³ F-z ³ D°† 1.00 4.10 3-3 (9) 1.13 4.15 3-1 | 3856.515 A 10
3958.865 A 30
3799.311 A 20
3822.262 A 15
4128.870 A 20 | 0.70 3.90 $3\frac{1}{2}$ $4\frac{1}{2}$ $a^{2}F-z^{2}G^{\circ}$ † 0.96 4.08 $3\frac{1}{2}$ $3\frac{1}{2}$ (7) 0.70 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F-z^{2}F^{\circ}$ 0.96 4.19 $3\frac{1}{2}$ $3\frac{1}{2}$ (8) 0.96 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ | 3251.66 A 300
4213.95 B 300
3690.35 B 300
3894.19 B 300
3958.66 B 300 | 1.45 4.38
1.45 4.79
1.45 4.62
1.45 4.56 | 1-1 (6)
3-3 5s ¹ D-5p ³ F°
3-2 (7)
2-3 5s ¹ D-5p ³ D°
3-2 (8) | | 309.267 A 30
636.235 A 35
155.136 A 12
171.028 A 40
142.763 A 8
040.744 A 6
911.593 A 3 | 0.92 3.35 4-4 a ⁵ D ₋ z ⁵ D°†
1.06 3.25 3-4 (10)
1.12 3.51 1-2
0.92 3.31 4-5 a ⁵ D ₋ z ⁵ F°†
1.06 3.46 3-4 (11)
1.12 3.57 2-3
1.12 3.63 1-2 | 3538.142 A 4
3793.217 A 15
3833.889 A 10
4121.682 A 15 | 0.70 4.19 3½-3½ 0.70 3.96 3½-3½ e ² F-z ² D° 0.96 4.18 2½-1½ (9) 0.96 3.96 3½-3½ | 3489.79 A 200r
3553.10 A 500r
3441.40 A 300
3433.44 A 250 | 1.45 4.98
1.45 4.93
1.45 5.03
1.45 5.04 | 3-1 3-3 58 ¹ D-5p ¹ F° (9) 3-3 58 ¹ D-5p ¹ D° (10) 3-1 58 ¹ D-5p ¹ P° (11) | | 869.153 A 25
921.074 A 12
907.888 A 8
669.977 A 8
757.841 A 30
372.208 A (10) | 1.06 3.57 3-3
1.12 3.63 2-3
0.93 3.57 4-3
0.93 3.53 4-5 a ⁵ D-z ³ G°†
0.92 3.75 4-4 a ⁵ D-z ³ F°† | Rh II I P ? Anal
3207.297 A 250
3028.808 A 75
3074.081 A 50
3434.57 P
3162.284 A 100 | C List D Nov 1942 3.13 6.98 4-4 ³ F- ⁵ D° † 3.39 7.46 3-3 (1) 3.56 7.57 2-3 3.39 6.98 3-4 3.56 7.46 2-3 | Pd II See introduction | LA List C | May 1942 | | 709.484 A 35 | (13) 1.13 3.75 4-4 b ³ F-z ³ F°† (14) | 3159.254 A 300
3151.500 A 75
3386.129 A 2
3233.324 A 250
3239.101 A 30
3019.819 A 150
2988.387 A 50 | 3.13 7.04 4-5 3F-5F++ 3.39 7.30 3-4 (2) 3.56 7.30 2-3 3.56 7.65 2-3 3F-5G++ 3.56 7.65 2-3 (3) | 388Q.682// A 1000R
3382.890 A 1000R
 | 3.76 5.25
3.65 5.25 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 84 | REVISED MULTIPLET TABLE | | | |---|---|--|---| | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | | Cd I I P 8.96 Anal A List D Aug 1943
3261.050 A 10R 0.00 3.78 0-1 51s-53po | Cs I I P 3.88 Anal A List D Nov 1943
8531.10 // A 4000R 0.00 1.45 1-11 63s-63P° | <u>Ba II</u> continued
5013.00 D (10) | 5.99 8.45 3\\\ 5.96 8.45 2\\\\ - (10) | | 5085.824 A 100R 3.93 6.36 2-1 5 ³ P°-6 ³ S 4799.918 A 100R 3.78 6.36 1-1 (2) 4678.160 A 50 3.72 6.36 0-1 | 8943.50 A 2000R 0.00 1.38 $\frac{1}{2}$ - $\frac{1}{2}$ (1)
4555.421 B (2000R) 0.00 2.71 $\frac{1}{2}$ - $\frac{1}{2}$ 6 ² S-7 ² P°
4593.195 B (1000R) 0.00 2.69 $\frac{1}{2}$ (2) | 4957.15 D (10)
4309.32 D (8)
4267.95 D (8) | 5.96 8.45 $2\frac{1}{2}$ (10)
5.99 8.85 $3\frac{1}{2}$ $4^2F^0-7^2G$
5.96 8.85 $2\frac{1}{2}$ (11) | | 6438.4696 B 100 5.39 7.31 1-8 5 ¹ P°-5 ¹ D (3) | Cs II See introduction | 6378.91 D (5)
6135.83 D (4) | 6.17 8.11 $\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-9 ² S 6.10 8.11 $\frac{1}{2}$ $\frac{1}{2}$ (12) | | Cd II See introduction | Ba I I P 5.19 Anal A List C Nov 1942 | 5981.25 D (8)
5784.18 D (8)
5999.85 D (3) | 6.17 8.24 $1\frac{1}{2}$ $-3\frac{1}{2}$ $7^{3}P^{\circ}$ $-8^{2}D$ 6.10 8.23 $\frac{1}{2}$ $-1\frac{1}{2}$ (13) 6.17 8.23 $1\frac{1}{2}$ $-1\frac{1}{2}$ | | | 7911.338 A (200) 0.00 1.56 0-1 6 ¹ s-6 ³ P° | 4997.81 D (3)
4847.14 D (3) | 6.17 8.64 $1\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-10 ² 8 6.10 8.64 $\frac{1}{2}$ $\frac{1}{2}$ (14) | | <u>In I</u> I P 5.76 Anal A List D Aug 1942 | 5535.484// A 1000R 0.00 3.23 0-1 6 ¹ s-6 ¹ P° (2) | 4843.46 D (8) | 6.17 8.72 1½-3½ 7 ² P°-9 ² D | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3501.107 A 300R 0.00 3.53 0-1 6 ¹ 5-566p ¹ P° (-5)
3071.583 A 100R 0.00 4.03 0-1 6 ¹ 5-7 ¹ P° | 4708.94 D (8)
4850.84 D (2) | 6.10 8.72 ½-1½ (15)
6.17 8.72 1½-1½ | | In II See introduction | 7059.941 A (2000) 1.18 2.93 3-4 5 ³ D-5d6p ³ F° † | 4405.23 D (4)
4287.80 D (3) | 6.17 8.98 $1\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-11 ² S 6.10 8.98 $\frac{1}{2}$ $\frac{1}{2}$ (16) | | | 7380.398 A (1000) 1.14 2.83 2-3 (5)
7672.092 A (600) 1.13 2.72 1-2
7488.083 A (200) 1.18 2.83 3-3
7780.479 A (400) 1.14 2.78 2-3 | 4325.73 D (6)
4216.04 D (5)
4329.62 D (3) | 6.17 9.03 $1\frac{1}{2}-2\frac{1}{2}$ $7^{2}P^{0}-10^{2}D$
6.10 9.02 $\frac{1}{2}-1\frac{1}{2}$ (17)
6.17 9.02 $1\frac{1}{2}-1\frac{1}{2}$ | | <u>Sn I</u> I P 7.30 Anal A List D Aug 1942
3009.136 A 700R 0.21 4.31 1-1 5p ³ P-6s ³ P° 1 | 6498.759 A 300r 1.18 3.08 3-3 5 ³ D-5d6p ³ D° 6527.312 A 250 1.14 3.03 2-2 (6) | | | | 3175.046// A 2000R 0.42 4.31 2-1 (1)
3034.120 A 900R 0.21 4.28 1-0 | 6595.326 A 200 1.12 2.99 1-1
6693.842 A 70 1.18 3.03 3-2 | La I I P 5.59 Anal | | | 3330.620 A 500r 1.06 4.77 2-2 5p ¹ p-6e ³ P° 3801.022 A 2000R 1.06 4.31 2-1 (2) | 6675.271 A 80 1.14 3.99 2-1
6341.682 A 150 1.14 3.08 2-3
6450.854 A 135 1.12 3.03 1-3 | | 0.13 2.04 $2\frac{1}{2}-3\frac{1}{2}$ $a^{2}D-z^{2}F^{\circ}$
0.00 1.88 $1\frac{1}{2}-3\frac{1}{2}$ (1)
0.13 1.88 $2\frac{1}{2}-3\frac{1}{2}$ | | 3262.340 A 2500R 1.06 4.85 2-1 5plp-6alpo (3) | 6110.784 A 300r 1.18 3.20 3-2 5 ³ p-5 ₄ 6p ³ p° † 6063.117 A 200 1.14 3.17 2-1 (7) 6019.470 A 100 1.12
3.17 1-0 | | 0.13 2.21 $2\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}D-y^{2}F^{0}$
0.00 2.08 $1\frac{1}{2}$ $3\frac{1}{2}$ (2)
0.13 2.08 $3\frac{1}{2}$ $3\frac{1}{2}$ | | 5631.707 A 500 2.12 4.31 0-1 5p ¹ S-6s ³ P° (4) | 5971.699 A 100 1.14 3.20 2-2
5997.088 A 100 1.12 3.17 1-1 | 5455.14 A 400
5501.34 A 300 | 0.13 2.39 $3\frac{1}{2} - 3\frac{1}{2}$ $a^2 D - y^2 D^0 +$ 0.00 2.24 $1\frac{1}{2} - 1\frac{1}{2}$ (3) | | 4524.744 A 1000 2.12 4.85 0-1 5p ¹ S-6s ¹ P° (5) | 3993.401 A 80 1.18 4.28 $3-4$ $5^3D-4^3F^{\circ}$ 3935.717 A 50 1.14 4.27 2-3 (8) 3909.910 A 40 1.12 4.27 1-2 | 5271.18 A 150 | 0.13 2.47 21-11 a ² D-y ² Pe+
0.00 3.49 11-1 (4) | | | 3995.656 A 30 1.18 4.27 3-3
3937.870 A 20 1.14 4.27 2-2 | 4280.27 A 100 | 0.13 3.01 2½-3½ a ² D-w ² F° †
0.00 3.95 1½-3½ (5) | | Sn II I P 14.57 Anal A List D Aug 1942
6453.50 A 70 7.02 8.93 $\frac{1}{2}$ -1 $\frac{1}{2}$ 6 2 5-6 3 Pe 6844.05 A 25 7.02 8.83 $\frac{1}{2}$ - $\frac{1}{2}$ (1) | 5777.622 A 400r 1.67 3.80 2-3 6 ³ P°-6 ³ D† 5519.047 A 200 1.56 3.80 1-2 (9) 5424.551 A 100 1.51 3.79 0-1 5800.229 A 100 1.67 3.80 2-2 | 6709.49 A 200 | 0.37 2.21 21-31 a4F-y2Fe+
0.33 2.08 11-32 (6) | | 3351.97 A 60 7.34 11.03 21-31 p ² 3D-4 ² F° 3283.21 A 50 7.26 11.02 11-21 (2) | 7905.751 A 500 1.67 3.23 2-1 6 ³ P°-7 ³ S
7392.411 A 400 1.56 3.23 1-1 (10)
7195.235 A 200 1.51 3.23 0-1 | 6394.23 A 600
6410.98 A 300 | 0.51 2.48 4½-5½ a ⁴ F-z ⁴ G°†
0.43 2.36 3½-4½ (7)
0.37 2.30 2½-3½
0.33 2.22 1½-2½ | | Sb I I P 8.64 Anal A List D Sept 1942 | Ba II I P 9.96 Anal A List B Nov 1943 | 5789.32 A 250d?
5769.32 A 80 | 0.51 2.64 41-41 a4F-y4F*† 0.43 2.56 31-31 (8) 0.37 2.51 31-21 0.33 2.48 11-19 | | 3347.10 A 5 2.28 5.97 1 2-2 5p ² P°-68 ⁴ P
3383.15 A 100 2.02 5.67 2-1 (1)
3637.83 A 250 2.28 5.67 12-1 (1)
3722.79 A 200r 2.02 5.34 2-2 | 4554.033 // A 1000R 0.00 2.71 1-11 625-62P° 4934.086 B 700R 0.00 2.50 1-1 (1) | | 0.51 3.88 41-31 a4F-y4p° † 0.43 2.82 31-21 (9) 0.37 3.77 31-11 | | 4033.55 A 200 2.28 5.34 1 = 1 | 6141.718 A 600r 0.70 3.71 31-11 53D-62P° | 5106.23 A 150d | 0.33 2.75 15- 5 | | 3267.51 A 700r 2.02 5.80 $\frac{1}{2}$ (2) | 6141.718 A 600r 0.70 3.71 $2\frac{1}{2}-1\frac{1}{2}$ $5^{2}D-6^{2}P^{2}$ 6496.896 A 600r 0.60 3.50 $1\frac{1}{2}-\frac{1}{2}$ (2) 5853.675 A 300 0.60 2.71 $1\frac{1}{2}-1\frac{1}{2}$ | | 0.51 2.87 4½-3½ a ⁴ F-1°† (10)
0.51 3.81 4½-4½ a ⁴ F-x ⁴ F°† | | 3504.48 A 50 2.28 5.80 14-4
3029.63 A 500r 2.02 6.10 3-13 | 4899.934 A 35 2.71 5.23 $\frac{1}{2}$ | 4567.90 A 200
4549.50 A 50 | 0.51 3.21 4½-4½ a ⁴ F-x ⁴ F°†
0.43 3.13 3½-3½ (11)
0.37 3.08 2½-2½
0.33 3.08 1½-1½ | | Sb II See introduction | 4130.648 A 80 2.71 5.70 1 2 2 6 6 PP 6 PD 3891.781 A 50 2.50 5.67 1 1 4 (4) | | 12-12 | | ma T T D 0 00 4002 D 1404 D 5 1000 | 4166.003 A 20 2.71 5.67 12-12 (4) | La II I P 11.38 Ana | l A List B Nov 1943 | | Te I I P 8.96 Anal B List D June 1942 9722.88 A 100 5.46 6.73 2-3 65so-65p | 8710.82 C (3n) 5.70 7.11 $2\frac{1}{2}$ - $3\frac{1}{2}$ $6^{2}p$ - 5^{2} F° 8737.74 C (3n) 5.67 7.08 $1\frac{1}{2}$ - $2\frac{1}{2}$ (5) | | 0.34 1.94 4-4 a ³ F-z ³ F°†
0.13 1.77 3-3 (1) | | 10051.55 A 50 5.46 6.69 2-2 (1)
10091.13 A 25 5.46 6.69 2-1 | 5391.60 D (10) 5.70 7.99 $3\frac{1}{2}-3\frac{1}{2}$ 6^{2} D- 6^{2} F° 5361.35 D (8) 5.67 7.97 $1\frac{1}{2}-3\frac{1}{2}$ (6) | 7066.24 A 300
6808.88 A 30 | 0.13 1.77 3-3 (1)
0.00 1.75 2-3
0.13 1.94 3-4
0.00 1.77 2-3 | | I I See introduction | | 6774.28 A 100 | 0.13 1.95 3-3 a ³ F-z ¹ F°† | | I II See introduction | 4326.74 D (2) 5.70 8.55 $2\frac{1}{2}$ $-3\frac{1}{2}$ $6^{2}D-7^{2}F^{\circ}$ 4297.60 D (2) 5.67 8.54 $1\frac{1}{2}$ $-2\frac{1}{2}$ (7) | | 0.34 3.05 4-4 a ³ F-z ¹ Go +
(3)
0.34 3.37 4-4 a ³ F-y ³ F° | | Xe I See introduction | 6874.09 D (10) 5.99 7.78 $3\frac{1}{2}$ $4^{2}F^{\circ}-5^{2}G$ 6769.63 D (10) 5.96 7.78 $3\frac{1}{2}$ (8) | 5805.77 A 130
5808.31 A 60 | 0.13 3.25 3-3 (4)
0.10 3.12 3-2
0.24 2.25 4-3 | | Xe II See introduction | 5480.30 D (3) 5.99 8.24 $3\frac{1}{2}$ $4^2F^0 - 8^2D$ 5428.79 D (2) 5.96 8.23 $2\frac{1}{2}$ (9) | 6172.72 A 10
5493.45 A 20 | 0.13 2.12 3-2
0.13 2.37 3-4
0.00 2.25 2-3 | 00 | |-------------------------------|---------------|------------------------|----------------------|----------------------|-------------------|--|-------------------------------|--------------|-------------------|--------------|--------------|-------------------|--|-------------------------------|-------------|------------------|----------------------|----------------------|-------------------|--| | Labo
I A | orator
Ref | y
Int | Low E | P
High | J | Multiplet
(No) | Labo
I`A | rator
Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | Labo:
I A | | 'y
Int | Low E | P
High | J | Multiplet (No) | | La II c | ontin | req | | | | | La II co | ntin | neq | | | | | La II co | ntinu | req | | | | | | 6305. 4 6 | A | 10 | 0.34 | 3.20 | 4-4 | a ³ F-z ³ H° | 5880.63 | A | 50 | 0.23 | 2.33 | 1-3 | $a^{3}D-z^{1}D^{o}+$ (35) | 3705.81
3780.67 | A | 80
50? | 0.77 | | 2-2 | a ³ P-x ³ P° | | 5 29 0.83 | A | 50 | 0.00 | 2.33 | 2-2 | a ³ F-z ¹ D° † | 5183.42
5122.99 | A
A | 400
200 | 0.40 | 2.78
2.73 | 3-3
3-2 | a ³ D-z ³ D°
(36) | 3854.91
3835.09 | A
A
A | 30
50 | 0.71
0.77
0.71 | 3.97 | 1-1
3-1
1-0 | (55) | | 4921.80
4920.98 | A
A | 300
300 | 0.24 | 2.75
2.63 | 4-5
3-4 | (6)
a ³ F-z ³ G•
(7) | 5114.55
5301.97 | Ā | 300
300 | 0.23 | 2.65
2.73 | 1-1
3-2 | (50) | 3637.15
3714.87 | Ä | 40
40 | 0.71 | 4.10
3.97 | 1-2 | | | 4899.92
5163.61 | Ā | 200
40 | 0.00 | 2.52
2.63 | 2-3
4-4 | *** | 5303.54
4946.47 | Ā | 100
50 | 0.32 | 2.65
2.73 | 3-1
1-3 | | 0122701 | • | | | | | | | 5156.74
5423.82 | A | 40
4 | | 3.52
3.52 | 3-3
4-3 | | 4999.46 | A | 200 | 0.40 | 2.87 | 3-2 | a ³ D-z ³ P° | 5380.97 | A | 100 | 0.91 | 3.21 | 0-1 | a ¹ S-y ³ D°
(56) | | 4860.90 | A | 80 | | 2.78 | 4-3 | a3r_z3D° | 4970.39
4809.00 | A
A | 100
100 | 0.33 | 2.80
2.80 | 3-1
1-0 | (37) | 4991.27 | A | 80 | 0.91 | 3.39 | 0-1 | a1g_z1pe
(57) | | 4740.27
4662.51 | A
A | 120
200 | 0.13 | 2.73
2.65 | 3-2
3-1 | (8) | 4840.03
4804.04 | A
A | 30
80 | 0.33 | 2.87
2.80 | 3-3
1-1 | | 4354.40 | A | 300 | 0.91 | | 0-1 | a ¹ S-y ¹ P° (58) | | 4645.28
4522.37 | Ā | 100
400 | 0.13 | 2.78
2.73 | 3-3
2-2 | | 4682.12 | A . | 5 | 0.23 | 2.87 | 1-2 | 3- 1-0 | 4036.59 | A | 15d | 0.91 | 3.97 | 0-1 | a ¹ S-x ³ P° (59) | | 4435.84
4300.44 | A | 10
60 | 0.00 | 2.78
2.87 | 2-3 | a ³ F-z ³ P° † | 4713.93
4570.97 | A | 40
10
400 | 0.40 | 3.02 | 3-2
3-3 | a ³ D_y ¹ D°
(38) | 9657.00 | A | 30 | 0.92 | 2.20 | 4-4 | | | 4086.72 | A | 300 | | 3.02 | 2-2 | (9)
a ³ F-y ¹ D° | 4429.90
4699.62 | A
A | 50 | 0.23 | 3.02 | 1-2
3-3 | a ³ D_y ¹ F° | 6636.53 | A | 5 | 0.92 | 2.78 | 4-3 | (60)
a ¹ G-z ³ D° | | 4432.95 | A | 201 | | 3.03 | | (10)
a ³ F_y ¹ F° + | 4558.46 | Ā | 300 | 0.32 | 3.03 | 2-3 | (39) | 5863.70 | A | 80 | 0.92 | 3.03 | 4-3 | (61)
a ¹ G-y ¹ F°
(62) | | 4076.71 | Ā | 40 | 0.00 | 3.03 | 3-3 | (11) | 3988.51
4031.68 | A
A | 500
300 | 0.40
0.32 | 3.50
3.38 | 3-3
2-2 | a ³ D-y ³ D°
(40) | 4796.67 | A | 25 | 0.92 | 3.50 | 4-3 | | | 3794.78
3790.83 | A
A | 400
300 | 0.24 | 3.50
3.38 | 4-3
3-2 | a ³ F-y ³ D°
(13) | 4151.98
4141.73 | A
A | 250
200 | 0.23 | 3.31 | 1-1
3-2 | (10) | 4739.80 | A | 15 | 0.92 | 3.53 | 4-4 | | | 3849.02
3662.08 | A
A | 100
30 | 0.00
0.13 | 3.21
3.50 | 2-1
3-3 | | 4275.64
3886.37 | A
A | 100
150 | 0.32 | 3.21 | 2-1
2-3 | | 4748.73 | A | 150 | 0.92 | 3.52 | 4-5 | a ¹ G_z ¹ H°
(65) | | 3650.19
3530.67 | A
A | 80
8 | 0.00 | 3.38
3.50 | 2-2
2-3 | | 3921.54 | . A | 300 | 0.23 | 3.38 | 1-3 | | 4042.91 | A | 300 | 0.92 | 3.98 | 4-3 | a1G-x1F°
(66) | | 3759.08 | A | 300 | | 3.53 | 4-4 | a3F-x3Fe | 3949.10 /
4123.23 | A | 600
400 | 0.40
0.32 | 3.53
3.31 | 3-4
2-3 | a ³ D-x ³ F°
(41) | 6958.11 | A | 100 | 1.25 | 3.02 | 2-2 | b1D-y1D° | | 3871.64
3784.81 | Ā | 200
15 | 0.13 | 3.31
3.26 | 3-3
2-3 | (13) | 4077.35
4238.38 | A | 300
400 | 0.23 | 3.26
3.31 | 1-3
3-3 | | 5486.86 | Ą | 5 | | 3.50 | 2-3 | (67)
b ¹ D-y ³ D° † | | 3936.22
3628.83
3725.05 | A
A | 50
60
2 0 | 0.13
0.13
0.00 | 3.26
3.53
3.31 | 3-2
3-4
2-3 | | 4196.55
4315.90 | A
A | 250
30 | 0.32
0.40 | 3.26
3.26 | 2-2
3-2 | | *6296.08 | A . | 300 | 1.25 | 3.21 | 2-1 | (68) | | 3645.43 | A . | 200 | 0.00 | 3.39 | 2-3
2-1 | a ³ F_z ¹ p° | 4025.87
3916.05 | A
A | 50
300 | 0.32 | 3.39
3.39 | 2-1
1-1 | a ³ D-z ¹ P° (43) | 5971.09
6126.09 | A
A | 8
50 | 1.25
1.25 | 3.31
3.26 | 2-3
2-2 | b ¹ D-x ³ F°
(69) | | 3510.00 | A | 15 | 0.13 | 3.64 | | (14)
a3F_y3p• | 3808.79 | A | 15 | 0.40 | 3.64 | 3-2 | a ³ p_y ³ p• + | 5769.06 | A | 60 | 1.25 | 3.39 | 2-1 | b ¹ D-z ¹ po
(70) | | 3550.82 | A | 6 | 0.00 | 3.48 | 2-1 | (15) | 3910.81
3715.53 | A
A | 10 l
50 | 0.32 | 3.48
3.64 | 3-1
2-3 | (43) | 5535.66 | A | 80 | 1.25 | 3.48 | 2-1 | b ¹ D-y ³ P° † (71) | | 3108.46 | A | 8 | 0.00 | 3.97 | 2-1 | a ³ F-x ³ P°
(16) | 3601.07 | A | 20nl | 0.32 | 3.75 | 2-1 | a ³ D-y ¹ P° | 4934.83 | A | 100 | 1.25 | 3.75 | 2-1 | b15_y1po
(72) | | 3306.98
3104.58 | A | 8
50 | 0.24 | 3.98
3.98 | 4-3
2-3 | a ³ F-x ¹ F° † (17) | 3512.93 | A . | 10 | 0.23 | 3.75 | 1-1 | (44) | 4530.54 | A | 15 | 1.25 | | 2-1 | b ¹ D-x ³ pe
(73) | | 6952.52 | A | 10 | 0.17 | 1.95 | - 2 7 | a ¹ D-z ¹ F° |
3337.49
3380.91 | A | 300
300 | 0.32 | 4.10
3.97 | 3-2 | a ³ D-x ³ P°
(45) | •4522.37 | A | 400 | 1.25 | 3.98 | 2-3 | b ¹ D-x ¹ F°
(74) | | 5936.22 | A | 30 | 0.17 | 2.25 | 2-3 | (18)
a ¹ D-y ³ F° | 3344.56
3265.67 | A | 200
600
150 | 0.23 | 3.92
4.10 | 1-0
3-3 | | 4286.97 | A | 300 | 1.94 | | 4-5 | z ³ F°-e ³ G† | | 6320.39 | Ã | 200 | 0.17 | 2.12 | 2-3 | (19) | 3303.11
3193.02 | A | 25 | 0.23 | 3.97
4.10 | 1-1 | | 4385.20
4692.50
4655.49 | A
A
A | 40
200
400 | 1.77
1.75
1.94 | 4.59
4.38
4.59 | 3-4 | (75) | | 5712.39 | A | 30 | 0.17 | 2.33 | 3-3 | a ¹ D-z ¹ D°
(30) | 3453.17
3376.33 | A
A | 50
50 | 0.40 | 3.98
3.98 | 3-3
2-3 | a ³ D-x ¹ F°
(46) | 4743.08 | Â | 250 | 1.77 | 4.38 | 4-4
3-3 | | | 5259.38 | A | 50 | 0.17 | 2.52 | 2–3 | a ¹ D_z ³ G°
(21) | | • | | | | _ | (10) | 4525.31
4427.52 | A
A | 100
100 | 1.94
1.77 | 4.67
4.56 | 4-4
3-3 | z ³ F°-e ³ F
(76) | | 4728.41
4826.87 | A
A | 100
30 | 0.17
0.17 | 2.78
2.73 | 2-3
2-2 | a ¹ D-z ³ D°
(23) | 6129.57
6100.37 | A
A | 50
30 | 0.77 | 2.78
2.73 | 2-3
1-2 | a ³ P-z ³ D°
(47) | 4619.87
4703.27 | Ā | 300
150 | | 4.42 | 3-2
4-3 | (10) | | 4986.83 | A . | 100 | 0.17 | 2.65 | 3-1 | 4 7 | 6174.15
•6296.08 | A
A | 6
300 | | | 0-1
2-2 | | 4668.91
4269.50 | A
A | 250
300 | 1.77 | 4.43 | 3-2
3-4 | | | 4574.87
4691.17 | A | 200
50 | 0.17
0.17 | 2.87
2.80 | 2-2
2-1 | a ¹ D- z ³ P°
(23) | 6358.12
6570.96 | A
A | 30
1 | | 2.65
2.65 | 1-1
2-1 | | 4383.44 | A | 100 | 1.75 | | 2–3 | 7 | | 4333.76 | A | 500 | 0.17 | 3.02 | 3-3 | a ¹ D-y ¹ D°
(24) | 5874.00 | A | 6 | | 2.87 | 3-2 | a ³ P-z ³ P° † | 4647.50
4378.10 | A | 100
50 | 1.94 | 4.59 | 3-3 | z ³ F°-e ¹ F
(77) | | 4322.51 | A | 100 | 0.17 | 3.03 | 2-3 | a ¹ D_y ¹ F° (25) | 6067.13
5892.66
5703.32 | A
A
A | 6
4
20 | 0.71 | 2.80 | 2-1
1-0
1-2 | (48) | 4334.96 | A | 100
200 | 1.75 | | 2-3 | z ³ F°-e ³ D† | | 3713.54
3846.00 | A
A | 100
20 | | 3.50
3.38 | 2-3
2-2 | a ¹ D_y ³ D°
(26) | 5727.29 | Ā | 30 | 0.65 | 2.87
2.80 | 0-1 | | 4217.56
4192.35
4099.54 | A
A
A | 100
150 | 1.94
1.77
1.75 | 4.72 | 4-3
3-2
2-1 | (78) | | 4067.39 | A | 100 | 0.17 | 3.21 | 2-1 | | 5464.37 | A | 25 | 0.77 | 3.03 | 2-3 | a ³ P_y ¹ F° (49) | 3994.50
4152.78 | A
A | 10
100 | 1.77 | 4.86 | 3-3 | | | 3929.22
3995.74 | A
A | 300
400 | 0.17
0.17 | 3.31
3.26 | 2-3
2-2 | a ¹ D-x ³ F°
(27) | 4526.12
4613.38 | A
A | 200
200 | 0.77 | 3.50
3.38 | 2-3
1-2 | (49)
a ³ P-y ³ D°
(50) | 4349.99 |
A | 100 | 1.94 | | | z ³ F°-e ¹ G | | 3840.72 | A | 60 | 0.17 | 3.39 | 2-1 | a ¹ D-z ¹ P° | 4824.05
4724.42 | A
A | 100
40 | 0.65
0.77 | 3.21
3.38 | 0-1
2-2 | • • | 4023.58 | Ā | 40 | 1.77 | | 3-4 | (79) | | 3557.26 | A | .8 | | 3.64 | | (28)
a ¹ D-y ³ P° | 4935.61
5062.91 | A
A | 10
20 | | 3.21
3.21 | 1-1
2-1 | | 4671.82 | Ą | 300 | 1.95 | | | z1F°-e30 | | 3735.85
3 45 2.18 | A | 10
40 | | 3.48
3.75 | 2-1
2-1 | (29)
a ¹ D-y ¹ P° | *4850.58 | A | 30 | | 3.31 | | a ³ P-x ³ F° | 5080.21 | A | 40 | | 4.38 | 3-3 | (80) | | 3143.76 | A | 40 | | 4.10 | | (30)
a ¹ D-x ³ P° | 4830.51
4716.44 | A
A | 10
80 | 0.71 | | 1-2 | (51)
a ³ P-z ¹ P° | 4540.71
4719.93 | A | 10
150 | 1.95
1.95 | | 3-4
3-3 | z ¹ F°-e ³ F†
(81) | | 3249 .35 | Ã | 80 | 0.17 | | 3-1 | (31) | 4605.78
4508.48 | A
A | 100
10 | 0.71 | 3.39 | 1-1 | (52) | 4663.76 | A | 300 | 1.95 | 4.59 | 3-3 | z ¹ F°-e ¹ F
(82) | | 3245.13 | A | 150 | 0.17 | 3.98 | 2-3 | a ¹ D-x ¹ F°
(32) | 4296.05 | A | 300 | 0.77 | | | a ³ P-y ³ P° | 4230.95 | A | 150 | 1.95 | 4.86 | 3-3 | z ¹ F°-e ³ D
(83) | | 8262.30 | A | 300 | | 2.37 | -
3 -4 | a ³ D-y ³ F° | 4455.79
4559.28 | A
A | 50
100 | 0.71
0.77 | 3.48 | 1-1
3-1 | (53) | 4263.59 | A | 300 | 1.95 | 4.84 | 3-4 | z ¹ F°-e ¹ G
(84) | | 8390.48
8526.99 | A | 300
300 | 0.23 | 2.25
2.12 | 2-3
1-3 | (33) | 4580.05
4204.03 | A
A | 150
100 | 0.71
0.71 | 3.40
3.64 | 1-0
1-2 | | 4050.08 | A | 200 | 1.95 | 4.99 | 3-2 | z1F°_e1D
(85) | | 6671.41
8837.91 | A | 40
15 | 0.40
0.32 | 2.25
2. 12 | 3-3
2-2 | | 4364.66 | A | 100 | 0.65 | 3.48 | 0-1 | 3n 1n- | 4859.18 | Ą | 5n | 2.05 | | | z ¹ G°-e ³ G† | | 8859.03 | A | 5 | 0.40 | 2.20 | 3-4 | | 4143.77
4058.08 | A | 15
5 | 0.77
0.71 | | 3-1
1-1 | a ³ P_y ¹ P°
(54) | 5302.62 | A | 150 | 2.05 | 4.38 | 4-3 | (86) | | | | | | | | (34) | 86 | | | | | | | K E V | 156 | L D MAIL | , | | | | | | | | | | | |--------------------------------|--------------|----------------|----------------------|----------------------|-------------------|---|--------------------------------|--------------|-----------------------|----------------------|----------------------|-------------------|--|-------------------------------|---------------|-----------------|----------------------|--------------|-----------------|---| | Labo
I A | rator
Ref | y
Int | E
Low | P
High | J | Multiplet (No) | Labo
I A | rator
Ref | 'y
Int | E
Low | P
High | J | Multiplet (No) | Lab
I A | orator
Ref | | Low E | P
High | J | Multiplet
(No) | | La II co | ntinu | eđ | | | | | La II co | ntinu | ıed | | | | | La II c | ontinu | ed | | | | | | 4717.58
4911.34 | A
A | 50
10 | 2.05
2.05 | 4.67
4.56 | 4-4
4-3 | z ¹ G°-e ³ F
(87) | 3049.39
3054.02
3081.42 | A
A
A | 5
6
6n | 2.78
2.73
2.65 | 6.83
6.77
6.65 | 3-4
3-3
1-2 | z ³ D°-f ³ F†
(115) | *4600.59 | A | 5n | $\binom{3.64}{3.48}$ | 6.32
6.16 | 2-3
1-2 | y ³ P°-f ³ D†
(148) | | *4850.58 | A | 30 | 2.05 | 4.59 | 4-3 | z ¹ G°-e ¹ F
(88) | 3022.26 | A | 5nl | 2.73 | 6.81 | 3-3 | $z^3D^{\bullet}-g^1D$ | 4538.87 | A | 8nl | 3.64 | 6.36 | 2-3 | y ³ P°_f ¹ D
(149)_ | | 4419.16 | A | 30 | 2.05 | 4.84 | 4-4 | z ¹ G°-e ¹ G
(89) | | | | | | _ | (116) | 4132.50 | A | 10nl | 3.64 | | 2-3 | y ³ P°-g ³ D
(150) | | 5048.04
5279.11 | A | 30 1
40 | | 4.82
4.59 | 4-5
3-4 | y ³ F°_e ³ G
(90) | 6188.09
6443.05
6307.25 | A
A | 100 l
50 n
20 n | 2.87
2.80
2.80 | 4.86
4.72
4.76 | 2-3
1-2
0-1 | z ³ p°_e ³ D†
(117) | 3767.05
3885.09 | A | 5n
4 | 3.64
3.64 | 6.92 | 2-2
2-1
- | y3pe_é3p †
(151) | | 5480.72
5566.92
5806.56 | A
A
A | 25
40
8. | 2.12
2.37
2.25 | 4.38
4.59
4.38 | 2-3
4-4
3-3 | | 6315.79
5808.63 | A | 50
8 | 2.80 | 4.76
4.99 | 1-1
2-3 | z ³ po_e ¹ D | 9346.69 | A | 15 | 3.52 | 4.84 | 5-4 | z ¹ H°-e ¹ G
(152) | | 5381.77 | A | 50 | 2.37 | 4.67 | 4-4 | y ³ F°-e ³ F† | 3460.31 | A | 51 | 2.87 | 6.44 | 2-3 | (118)
z ^{3po} _f ¹ F | 4880.20 | A | 10n | 4.10 | 6.63 | -
2–3 | x ³ P°-g ³ D† | | 5340.66
5381.91 | A | 100
100 | 2.25
2.13 | 4.56
4.42 | 3-3
3-3 | (91) | 3283.95 | A | 8 n | 2.87 | 6.63 | 2-3 | (119)
z ³ P°-g ³ D† | 4502.16 | A | 10n] | 3.97 | 6.71 | 1-1 | (153)
x ³ pe_e ³ s
(154)_ | | 4952.06
5002.12 | A
A | 40
40 | 2.37
2.25 | 4.86
4.72 | 4-3
3-2 | y ³ F°-e ³ D†
(92) | 3329.07
3326.21 | A
A | 8
5 | 2.80
2.87 | 6.51 | 1-2
2-1 | (130)
z ³ p•_e ¹ p† | 3411.76
3580.10 | A
A | 30nl
8n | 4.10
4.10 | 7.72
7.55 | 3-3
3-1 | x3p°_f3p+
(155) | | 4688.65 | Ã | 40 | 2.13 | 4.76 | 2-1 | | 3212.56 | A | 5 | 2.87 | 6.71 | 3-1 | (121)
z ^{3p°} -e ³ s† | 3578.89
3294.44 | A
A | 5n
10 | 3.97
3.97 | 7.42 | 1-0 | (===, | | 4996.82 | A . | 50 | 2.37 | 4.84 | 4-4 | y ³ F°-e ¹ G
(93) | | | | | | - | (122) | 3407.00 | A | 8n1 | 3.92 | 7.55 | 0-1 | 3ne3ne | | 4498.76 | A | 10 | 2.2 5 | 4.99 | 3-2
- | y ³ F°_e ¹ D
(94) | 3932.53
3694.27 | A | 10 l
7 n | 3.02 | 6.16
6.36 | 2-2
2-3 | y ¹ D°-f ³ D†
(123)
y ¹ D°-f ¹ D | 3217.12
3112.63 | A | 8n
8n | 4.10
3.97 | 7.94
7.94 | 2-2
1-2 | x ³ P°-g ³ P†
(156) | | 5188.21
5377.08 | A
A | 500
200 | 2.44
2.29 | 4.82
4.59 | 6-5
5-4 | z ³ H°-e ³ G
(95) | 3612.34 | A | 50 | 3.02 | 6.44 | 2-3 | (124)
y ¹ D°-f ¹ F | 3174.88
3191.39 | A
A | 10nl
10n | 4.10
4.10 | 7.99
7.97 | 2-3
2-2 | x ³ P°-h ³ D†
(157) | | 5671.54
4891.43 | A
A | 100
10 | 2.20
2.29 | 4.38
4.82 | 4-3
5-5 | ,, | 3420.54 | A | 5 n | 3.02 | 6.63 | 2-3 | (125)
y1D°-g ³ D† | | | | | | | 11 | | 5167.28 | A . | 10 | 2.20 | 4.59 | 4-4 | 3 3 | 3520.72 | A | 10 nl | 3.02 | 6.53 | 2-3 | y1D°-f3G | 5173.83 | A . | 251 | 3.98 | 6.36 | 3-2 | x ¹ F°-f ¹ D
(158)
x ¹ F°-f ¹ F | | 5204.1 4
5226.20 | A | 300
40 1 | 2.29 | 4.67
4.56 | 5-4
4-3 | z ³ H°-e ³ F
(96) | 3397.77 | A | 40 nl | 3.02 | 6.65 | 3-3 | (127)
y ¹ D°_f ³ F
(128) | 5014.45
4194.36 | A | 30nl
30n | 3.98 | 6.44 | | (159)
x1F0-f1G | | 5157.43 | A | 150 | 2.20 | 4.59 | 4-3 | z ³ H°-e ¹ F
_(97) | 6718.68 | A | 60 | 3.03 | 4.86 | -
3-3 | y1F°_e3D† | 4134.00 | • | | | | - | (160) | | 4843.29 | A | 5 | 2.29 | 4.84 | 5-4 | z ³ H°-e ¹ G
(98) | 6801.38 | A | 5 | 3.03 | 4.84 | 3-4 | (129)
y1F°_e1G | 4562.5 | A | 5n | 4.38 | 7.08 | 3–3 | e ³ G-1°
(161)
e ³ G-2° | | 5458.68 | A | 50 | 2.33 | 4.59 | 2-3 | z ¹ D°-e ¹ F
(99) | 6273.76 | A | 100 | 3.03 | 4.99 | 3-2 | (130)
y1F°-e1D
(131) | 5066.99 | A | 20n
15nl | 4.82 | 7.25
7.50 | 5-4
4-4 |
(162)
e ³ G-4°† | | 5172.89
5090.56 | A
A | 20 1
20 1 | 2.33
2.33 | 4.72
4.76 | 2-3
2-1 | z ¹ D°-e ³ D†
(100) | 3427.57 | A | . 8 | 3.03 | 6.63 | 3-3 | | 4341.30 | A | | | | - | (163) | | 4636.42 | A | 80 | 2.33 | 4.99 | 2-2 | z ¹ D°-e ¹ D | 4363.05 | A | 50 1 | 3.50 | 6.32 | -
3-3 | y ³ D°-f ³ D | 5107.54 | A | 6n | 4.67 | 7.08 | 4-3 | e ³ F-1°
(164) | | 3007.32 | A | 5 | 2.33 | 6.44 | 2-3 | (101)
z ¹ D°-f ¹ F | 4443.94
4207.61 | A | 20 nl
10 l | 3.38
3.21 | 6.16
6.14 | 2-2
1-1 | (133) | 4304.11 | A | 10nl | 4.67 | 7.53 | 4 -
- | e ³ F_5°†
(165) | | 5973.52 | A | 130 1 | 2.75 | 4.82 | -
55 | (102)
z ³ g•_e ³ g† | 4634.95
4474.03
m4193.37 | A
A
P | 35 1
10
La+ | 3.50
3.38
3.38 | 6.16
6.14
6.32 | 3-2
2-1
2-3 | | 4113.28 | A | 40 1 | 4.59 | 7.59 | 3- | e ¹ F-6°
(166) | | 6310.91
6642.79 | A
A | 200 | 2.63 | 4.59 | 4-4
3-3 | (103) | 4180.97 | Ā | 131 | 3.21 | 6.16 | 1-3 | | 4131.74 | A | 5n | 4.86 | 7.85 | -
3 - | e ³ D-7° | | 6714.08
5652.3 | A
A | 80
10 n | 2.75
2.63 | 4.59
4.82 | 5-4
4-5 | | 3939.85
3816. 25 | A
A | 20 l
10 n | 3.50
3.21 | 6.63
6.44 | 3-3
1-1 | y ³ D°-g ³ D†
(134) | 3817.24 | A | 8n | 4.72 | 7.95 | 2-3 | (167)
e ³ D-8°
(168) | | 6446.62
6399.04 | A
A | 200
400 | 2.75
2.63 | 4.67
4.56 | 5-4
4-3 | z ³ G°-e ³ F†
(104) | 3925.09 | A | 5 | 3.38 | 6.53 | 2-3 | y ³ D°-f ³ G
(135) | Stronges | t. linel | aggifie | d Lines | of La | II | (100) | | 6498.19 | Ä | 250 | 2.52 | 4.43 | 3-2 | (104) | 3701.81
3641.66 | A
A | 40 1
50 1 | 3.50
3.38 | 6.83
6.77 | 3-4
2-3 | y ³ D°-f ³ F†
(136) | | | La III | | · <u>-</u> | | | | 5948.30 | A | 30 | 2.52 | 4.59 | 3-3 | z ³ G°_e ¹ F
(105)_ | 3581.68 | Ā | 20 nl | 3.81 | 6.65 | 1-2 | | 5817.83
4516.38 | A
A | 10n
5nl | | | | | | 5532.17
5610.53 | A
A | 10
20 | 2.63
2.52 | 4.86
4.72 | 4-3
3-2 | z3G°_e3D
(106) | 3731.48 | A | 8 n | 3.50 | 6.80 | 3-4
- | у ³ D°-е ³ Н
(137) | 4210.22
4201.50
4193.34 | A
A
A | 50nl
6n | | | | | | 5901.95 | A | 401 | 2.75 | 4.84 | 5-4 | z ³ G°-e ¹ G
(107) | 4411.21
4337.78 | A
A | 25 nl
10 l | 3.53
3.31 | 6.16 | 3-2 | x ³ F°-f ³ D†
(138) | 4161.94 | A | 8n | | | | | | 6830.83 | A | 6 | 2.78 | 4.59 | 3-4 | z ³ D°-e ³ G† | 4098.73 | A | 5 | | 6.32 | 3-3 | x ³ F°-f ¹ D | 4133.33
4007.64 | A
A | 6nl
7n
51 | | | | | | 6554.18
6732.80 | A
A | ?
40 | | 4.67
4.56 | 3-4
3-3 | (108)
z ³ D°-e ³ F
(109) | 3981.36
3979.08 | A
A | 10 l
8 l | 3.26
3.53 | 6.36 | 2-2
4-3 | (139)
v3F°_g3n+ | 3963.04
3962.03 | A
A | 101 | | | | | | 6968.78 | Â | 25 | 2.65 | 4.42 | 1-2 | _ | 3864.49 | A | 1001 | 3.53 | 6.72 | 4-5 | (140)
x ³ F°-f ³ 0† | 3747.96
3665.22 | A
A | 51
101 | | | | | | 6813.68 | A . | 50 | | 4.59 | 3-3 | z ³ D°-e ¹ F†
(110)
z ³ D°-e ³ D† | 3773.12
3780.53 | A
A | 150 1
50 ? | 3.31 | | 3-4
2-3 | (141) | 3610.25
3298.72 | A | 30 l
5 n | | | | | | 5927.71
6203.51 | A
A | 30
50 1 | 2.73 | 4.86 | 3-3 | z ³ D°-e ³ D†
(111) | 3736.41 | A | 15 l | 3.53 | 6.83
6.77 | 4-4 | | 3208.13
3018.95 | A | 6
6nl | | | | | | 5848.95
6374.08
6085.43 | A
A
A | 20
30
10 | 2.78 | 4.76
4.73
4.76 | 1-1
3-2
2-1 | | 3570.10
3474.84 | A
A | 30 nl
8 l | | 6.81 | 3-3
2-2 | (142)
x ³ F°-g ¹ D† | 3004.68 | Ä | 5n | | | | | | 5447.59 | A | 10 | 2.73 | 4.99 | 2-2 | z ³ D°-e ¹ D† | 3423.9 | A | 5 | 3.31 | 6.93 | 3-4 | (143)
x ³ F°-f ¹ G† | _ | | | | | | 4040 | | 3484.39 | A | 101 | 2.78 | 6.32 | 3-3 | (112)
z ³ D°-į ³ D† | 2985.43 | A | 5 | 3.26 | 7.39 | 2-2 | | La III | IP1 | .9.1 A
300 | nal C
1.68 | List / | | ov 1942
 6 ² 5–6 ² P° | | 3432.81
3209.13 | A | 5
6 | 2.73 | 6.32 | 2–3
3–3 | (113)
z ³ D°-g ³ D† | 4481.31 | A | 25 nl | 3.39 | 6.14 | -
1-1 | (145)
z ¹ P°-f ³ D | 3171.68
3517.14 | A | 300 | 1.68 | 5.19 | 1-11
2-11 | (1) | | 3263.98
3253.41 | A
A
A | 5
10n | 2.73 | 6.51
6.44 | 3-3
1-1 | (114) | 3059.91 | A | 8 | 3.39 | 7.43 | 1-0 | (146)
z1po_f3p+ | Ce I No | analy | sis Ma | y 1943 | (Temper | rature | Class) | | | | | | | _ | | | - | | | | - | (147) | | | | | - | IA | rator;
Ref | | | High | J
Dec 194 | Multiplet
(No) | Labor
I A | Ref | Int | E l
Low | | J | Multiplet
(No) | Labor
I A
Ce II con | Ref | Int | E l | | J | Multiplet (No) | |--|---------------|--------------------------------|--------------------------------------|--------------------------------------|--|--|--|-------------|------------------------|----------------------------------|------------------------------|----------------------------------|--|--|------------------|----------------------------------|-------------------------|----------------------------------|--|---| | roup I
186.599
248.676 | C | 600
200 | 0.38
0.20 | | | a ⁴ H-z ⁴ I°
(1) | 5518.491
5610.257 | A
C | 10
20 | | | - | a ⁴ G-z ⁴ H° (26) a ² F-z ² G° | 3942.746
4075.714
3999.242
4386.835 | C
C
B
A | 150
150
500
(15)
(5) | (0.29
(0.23 | 3.38)
3.04) | $4\frac{1}{3}-5\frac{1}{3}$ $3\frac{1}{3}-4\frac{1}{3}$ | b ⁴ H°-z ⁴ I
(57) | | 306.724
562.360
528.472 | G
A
A | 100
400
150 | 0.04
0.00
0.38 | 3.11 | 35-45
65-65 | | 4624.899
4148.901 | A
A | 60
(25) | 0.61 | 3.31
3.58 | | (27) | 4296.786
4486.909
4242.723 | A
A | 150
(15) | (0.85
(0.29 | | 61-61
41-41 | b4H°-z2G | | 572.277
628.160
418.784
382.167 | A
A
A | 250
500
200
200 | 0.20
0.04
0.38
0.20 | 2.90
2.71
3.18
3.02 | 51-51
42-41
61-61
51-51 | a ⁴ H-z ⁴ H°
(2) | 4167.804
4110.381
4155.532 | A
A
A | (12)
60
(6) | 0.61 | 3.60
3.61
3.61 | 31-41
21-31
31-31 | 2 ² F-z ⁴ D°
(38)
2 ⁸ F-z ⁴ F°
(39) | 4349.789
4087.297
3808.124 | A
A
B
B | 100
(4)
300 | (0.29
(0.29
(0.29 | - | - | (58)
b ⁴ H°-z ² H
(59) | | 296.680
460.213
680.458
560.959 | A
C
C | 200
400
(2)
60
125 | 0.04
0.00
0.38
0.20
0.04 | 3.91
3.77
3.02
3.91
3.77 | 41-41
31-31
61-51
51-41
41-31
51-61 | | 6035.487
6034.204
5975.830
6043.386 | C
C
A | (4)
(4)
20
60 | 1.13
0.98
0.85
0.72 | 3.18
3.02
2.91
2.77 | 61-61
51-51
41-41
31-31 | b ⁴ H-z ⁴ H°† (30) | 4123.872
4083.233
3912.424
4077.470 | A
A
B
B | 150
200
300
75 | | 3.85)
3.72)
3.45)
3.32) | 61-61
51-51
41-41
41-31 | b ⁴ H ^e -z ⁴ H
(60) | | 523.077
151.970
137.646
239.912 | C
C
A | 200
400
200 | | 3.18
3.02
2.91 | 51-61
41-51
31-41 | | 4893.968 | C | 15 | | | | ь ⁴ н_у ² д°
(31) | 3919.813
3836.112 | A
A | 100
(15) | 0.70 | 3.85) | 51-61
31-41 | | | 483.900
450.732
209.409§ | A
A | 100
75
(25) | 0.38 | 3.14
2.98
3.14 | 61-51
51-41
51-51 | a ⁴ H-z ³ H° (3) | 5613.698
5768.895 | A
C | (5)
20 | 0.94 | 3.14
2.98 |
65 | a ² I-z ² H° (32) | 3931.369
3854.322
3854.187 | B
B | 100
100 | (0.29
(0.23 | | | b ⁴ H°-y ⁴ H
(61)
b ⁴ H°-112 | | 198.724
934.46
144.492 | A
P
A | 60
(10) | | 3.98
3.14
2.98 | 43-43
43-53
33-43 | | 4410.641 | С | 30 | 0.87 | 3.66 | -
4-3-3-3 | a ² G_y ² F° | 3694.91 1 | A | 60 | (0.29 | 3.63) | 4 } -5 } | (62)
b ⁴ H°-y ² H
(63) | | 133.800
127.367 | C | 500
150 | 0.38 | | | a ⁴ H-z ⁴ G° | 4339.317
4062.223 | A
A | 30
60 | 0.87
0.88 | 3.71
3.92 | 41-41
31-31 | (33)
(33)
(34) | 4407.278
3908.408 | A
A | (40)
125 | | | | b ⁴ H°-x ² H†
(64)
b ⁴ H°-y ⁴ G | | 133.800
073.477 | 000 | 500
200 | 0.04 | 3.02
3.03 | 41-31
31-21 | a ⁴ H-z ⁴ G° (4) | 4117.013
4163.516 | C
A | 75
(20) | 0.87
0.88 | 3.86
3.85 | 41-51
31-42 | а ² G-у ² н°
(35) | 3646.965 | C | 300 | | | | (65)
b ⁴ H°-131† | | 081.222 | A
A | 150
125 | 0.00 | 3.02 | | a ⁴ H-z ² I°
(5) | | | | | | - | | 3501.453 | В | 60 | | | | (66)
b ⁴ H°-141
(67) | | 388.007 | A | (8) | | 3.20 | _ | | | | | | | | | 32 79.84 2
3164 . 154 | B
A | 125
200 | (0.29 | | | b ⁴ H°-171 †
(68)
b ⁴ H°-186 † | | 606.402
593. 932 | A
A | 50
200 | 0.43
0.22 | 3.11
2.90 | 51-61
41-51 | a ² H- z ⁴ I° (6) | | | | | | | | 3146.407 | В | 200 | | | | (69)
b⁴Ḥ°−188† | | 198.669
582.502 | A
A | 75
(10) | 0.43 | 3.02
2.91 | | a ³ H-z ⁴ H°
(7) | Ce II Gr | up I | I See | | | | | 3622.145 | A | 100 | (0.85 | 4.26) | 6 } -6 } | 6 ⁴ H°-y ² I
(71) | | 560.280 | A | 125 | 0.43 | | 51-51 | a ² H-z ² H° | 3562.091
4053.506 | A
A | (6)
100 | (0.52 | 3.98) | 61-71
31-41 | a ⁴ H°-z ⁴ I† (36) | 2990.873 | A | 80 | (0.29 | | | ь ⁴ н°-209
(72) | | 471,240
844.87
227.746 | A
P
A | 200
100 | 0.22
0.43
0.22 | 2.98
2.98
3.14 | 43-43
53-43
43-53 | a ² H-z ² H°
(8) | 3848.597
4080.435
4222.599 | C
B
A | 150
(5)
300 | (0.52
(0.36
(0.12 | 3.73)
3.38)
3.04) |
53-53
53-53
43-43 | | 3272.253
3169.183 | A
C | 250
150 | | | | b ⁴ H°-213
(73)
b ⁴ H°-221 | | 144.995 | A | 60 | 0.22 | 3.20 | 43-43 | a ² H-z ⁴ G• | 3718.380
3803.097 | Ç | 200
200 | - | | | a ⁴ H°-z ⁴ G† (37) | 3218.944 | C | 200 | | | | (74)
b ⁴ H°-229 | | 165.606
142.398
4 61.138 | C
A
A | 200
150
50 | 0.43
0.22
0.43 | 3.39
3.20
3.20 | 51-61
41-51 | (9)
a ² H-z ² I°
(10) | 3815.831
3942.151 | A
C
B | 250
125 | (0.00 | 3.36)
3.13) | 3 § _2 § | | 3201.714 | C | 300 | (0.85 | 4.71) | 6] -5]
- | (75)
b ⁴ H°-232
(76) | | 285.366
118.144 | A
C | 30
300 | | 3.31 | | a ² H-z ² G°
(11) | 3653.108
3668.719 | A
A | 125
(12) | (0.36
(0.00 | 3.73)
3.36) | | a ⁴ H°-z ⁴ F
(38) | 4117.288
4253.356
4246.711 | A
A
A | (20)
50
(30) | (0.74
(0.46
(0.46 | 3.73)
3.36)
3.17) | 3\-4\\ 1\\-2\\\ 1\\-2\\\ 1\\-1\\\ | e ⁴ D°-z ⁴ F
(77) | | 993.822 | C | 200 | 0.43 | 3.52 | | a ² H-y ² G°
(12) | 3853.164 | A . | 125 | (0.00 | | | a ⁴ H°-z ² G
(39) | 3914.949 | A | (18) | • | | | a ⁴ D°-126 | | 918.276 | C . | 200 | 0.22 | 3.37 | | | 3709.286
3667.981
3709.933 | A
A
A | 400
400
500 | (0.52
(0.36
(0.12 | 3.85)
3.72)
3.45) | 64-64
54-54
44-44 | a ⁴ H°-z ⁴ H† (40) | 4193.094 | C | 50 | (0.74 | 3.68) | 3 } _3 } | (78)
a ⁴ D°-132
(79) | | 330.582
075. 304 | A
C | 25
20 | 0.39 | | | b ³ H-z ⁴ I°
(13)
b ³ H-z ³ H° | 3716.365
3764.117 | A
A | 600
150 | (0.00 | 3.32) | 34-34 | а ⁴ н°-у ² н | 3234.274 | С | 300 | | | - | a ⁴ D°-173
(80) | | 079.681 | c | 75 | 0.90 | 3.33 | _ | (14) | 3660.641 | C | 250 | | | | (41)
a ⁴ H°-116†
(43) | 3933.731
4046.341
4071.814 | C
B
C | (60)
100
150 | (0.70 | 3.84) | 41-51
31-41 | a ⁴ F°-z ⁴ G
(81) | | 187.452
274.244 | C
A | 60
75 | 0.73
0.56 | 3.11
2.90 | 71-61
61-51 | a ⁴ K-z ⁴ I°
(15) | 3927.383 | В | (4) | | | | a4Ho-x2H | 4391.661
4255.784 | A
A | 250
60 | (0.70 | 3.13) | 44-44 | | | 353.534
044.008 | A
A | 50
25 | 0.40 | 3.18 | 52-42 | a ⁴ K-z ⁴ H°
(16) | 3534.051
3545.603
3426.208 | CBC | 300
(3)
250 | (0.52
(0.36
(0.12 | 4.01)
3.84)
3.72) | 61-51
51-41
41-31
31-21 | a ⁴ H°-y ⁴ G
(44) | 4398.787
4399.203 | A
A | (20)
60 | (0.55
(0.33 | 3.36)
3.13) | 3 1 -3 1
2 1 -2 1 | | | 022.871 | С. | | 0.56 | | _ | | 3485.054
3441.210 | c
c | 400
150 | (0.00 | 3.34) | 35-45 | а ⁴ ӊ°-159 | 4068.836
4330.445
4337.777 | A
A
A | 75
30
125 | (0.70
(0.32 | 3.73) | 41-41 | a ⁴ F°-z ⁴ F†
(82) | | 467.537
714.83
846.574 | A
A
C | (5)
(8) | 0.61
0.58
0.48 | 3.37
3.20
3.02 | 41-51
31-41
21-31 | a ⁴ F-z ⁴ G°
(17) | 3393.920
3142.312 | C
A | 50
(25) | | | | (45)
a ⁴ H°-z ³ I
(46) | 3876.974
4054.991 | A
A | (15)
50 | 0.55 | 3.73) | 31-41
11-21 | | | 773.942
680.127 | c
c | 50
25 | 0.44 | 3.03 | 19-29 | a4F-z2G° | 3728.423 | | 250 | | | _ | | 4119.877 | A | (20) | (0.33 | | | a ⁴ F°-z ⁴ H† | | 429.270 | С | 100 | 0.61 | | | (18)
4F_v ⁴ G° | 3788.753
4028.411 | A
A
A | 75
150 | 0.47 | 3.73 | 64-64
54-54 | a ⁴ I°-z ⁴ I†
(47) | 3967.048
3960.914 | A
A | 100
125 | | | | a ⁴ F°-z ² D
(84) | | 442.72
078.321
444.393 | P
A
A | 60
60 | 0.58
0.48
0.44 | 3.36
3.50
3.22 | 41-51
31-41
21-31
11-21 | (19) | 4299.362
3757.862 | B
A | 60
(15) | (0.17 | J. 0 + J | | | 4193.874
4187.323 | A
A | (35)
(35) | (0.55 | 3.50) | 31_41 | a ⁴ F°-116
(85)
a ⁴ F°-x ² H | | 491.10
317.591
497.849 | P
A | 30
25 | 0.61
0.58 | 3.36
3.50 | 41-41
31-31
21-21 | | 3878.372 | A | 150 | (0.17 | | | a ⁴ I°-z ⁴ G
(48) | 3882.446 | A | 75 | (0.32 | 3.50) | 11-1 | a ⁴ F°-z ⁴ D | | 861.164 | A | (18) | 0.48 | 3.50 | 43-33 | | 4024.491
3834.556
3931.088 | C
B
A | 60
100
135 | 0.32 | 3.53 | 51-51 | a ⁴ I°-z ² H
(49) | 3631.194 | В | 125 | (0.33 | 3.72) | 2 } -3 } | a4F°-y4G
(88) | | 463.410
565.842 | A
A | 60
50 | 0.48 | 3.24
3.52 | 25-15 : | a ⁴ F_z ⁴ D°
(30)
a ⁴ F_y ² G° | | B
C | (5d) | | | | | 4336.255
4119.015 | A
A | 50
(25) | (0.70
(0.55 | 3.55)
3.55) | 41-31
31-31 | a ⁴ F°-123
(89) | | 423.678
370.716 | A
C | (25)
50 | 0.58 | 3.37
3.37 | 31-31
31-31 | a ⁴ F-z ⁴ D°
(20)
a ⁴ F-y ² G°
(21) | 3795.256
3940.338 | C
B | (5)
100 | 10.32 | 3.401 | 61-51
51-41
41-31 | a ⁴ I°-z ⁴ H
(50) | 3722.759
4098.981 | A
A | (12)
(15) | | | | a ⁴ F°-139
(90) | | 119.784
067.279 | A
A | (20)
50
(20) | 0.58 | 3.60
3.61 | 41-41
31-31 | 4 _{F-z} 4 _F 0
(22) | 3922.005
3653.670
3769.046 | C
B | (2s)
250
(5) | (0.17
(0.47
(0.17 | 3.85)
3.45) | 61-61
41-41 | | 3904.340 | A
B | (5) | | | | a ⁴ F°-136† (91) | | 123.488
115.374
161.175 | C
A
A | (20)
150
(18) | 0.48
0.44
0.48 | 3.47
3.44
3.44 | 24-24
14-14
24-14 | | 3560.798
3577.458 | C | 500
500 | (0.67
(0.47 | 4.14)
3.92) | 7}-6}
6}-5} | a ⁴ I°-y ⁴ H (51) | 3760.694
3519.077 | A | (6)
(25) | (0.33 | 3.83) | 3 1 -3 1 | | | 117.175 | Α. | 15 | 0.92 | | _ | ₂ 4 _{I-z} 4 _I ° | 3698.650
3786.632
3426.583 | B
B
B | (5)
150
(4) | (0.32
(0.17
(0.32
(0.17 | 3.69)
3.43)
3.92) | 54-41
44-31
54-51 | | 3276.251
3436.304 | A
A | (18)
(15) | | | | a ⁴ F°-175
(93)
a ⁴ F°-180† | | 365.710
409.224
368.901 | A
A
A | 15
80
40 | 0.77
0.62
0.53 | 3.11
2.90
3.71 | 61-61
51-51
41-41 | a ⁴ I-z ⁴ I°
(23) | 3507.945
3655.851 | Ā | 125
500 | (0.32 | 3.69) | 53-43 | | 3229.363
*3227.1149 | Ā | (25)
300 | | | | a ⁴ F°-180 †
(94)
a ⁴ F°-181 | | 468.37
472.297 | P
C | Ce I | | | | | 3898.273
3719.797 | C
A | 100
(15) | (0.47
(0.32 | 3.63)
3.63) | 6}-5}
5}-5} | a ⁴ I°-y ² H†
(52) | 3405.977 | G | 100 | | | | (95)
a ⁴ F°-184 | | 393.391
512.085 | A
C | 100
150 | 0.62 | 3.91
2.77 | 51-41
41-31 | 2 ⁴ I-2 ⁴ H°
(34) | 3718.190 | В | 150 | • | - | | a ⁴ I°-116
(53) | 3189.638 | A | (30) | | | | (96)
a ⁴ F°-186
(97) | | 360.541
334.455 | A
A | 75
60 | 0.92 | | | a ⁴ I-y ⁴ I°
(25) | 3659.227
3520.522 | A | 135
150 | | | | a ⁴ I°-123
(54)
a ⁴ I°-132 | 3379.172
3366.554 | C
B | 100
150 | | | | a ⁴ F°-187
(98)
a ⁴ F°-188 | | 512.215
525.329 | Ä | 50
50 | 0.62 | 4.35
4.24 | 51-51
41-41 | 1==7 | 3446.721 | A | | | | | (55)
a ⁴ I°-156
(56) | 3171.615 | В | 300 | (0.33 | 4.22) | 21-31 | a ⁴ F°-188
(99) | | TA REL INC DOWNERS (MO) | Ref Int | | (No) | |--|--------------------------|---
---| | Ce II continued <u>Ce II</u> continued <u>Ce II</u> cont | inued | Low High | (20) | | (142) | A 150 | | $3\frac{1}{2}-3\frac{1}{2}$ $6\frac{4}{9}$ $6\frac{1}{1}$ 6 | | 3236.735 A 150 (0.55 4.36) $3\frac{1}{2}-3\frac{1}{2}$ $a^{\frac{1}{2}}$ $a^{\frac{1}{2$ | A 75 | | (187) | | $\frac{1}{100}$ | C 100
A (20)
A 100 | (0.93 4.01)
(0.56 3.54)
(0.56 3.72) | $5\frac{1}{2}-5\frac{1}{2}$ $5\frac{1}{4}$ | | 3177.137 A (20) $(0.55 - 4.44)$ $3\frac{1}{2} - 3\frac{1}{2}$ (103) 3271.151 A (18) $(0.44 - 4.28)$ $4\frac{1}{4} - 3\frac{1}{4}$ 6^{4} 6^{4} 6^{4} 6^{4} 6^{4} | B 60 | | | | 3274.864 C 150 (0.70 4.47) $4\frac{1}{2}-4\frac{1}{2}$ $8\frac{4}{10}$ -213 3314.721 A 100 (0.49 4.22) $3\frac{1}{2}-3\frac{1}{2}$ (146) | в 60 | (0.56 3.70) | 21-12 b40°-134 | | 3082.304 A (20) (0.55 4.55) $3\frac{1}{2} - 3\frac{1}{2}$ $a_{10}^{4} = 217$ 3295.289 A 80 (0.49 4.24) $3\frac{1}{2} - 2\frac{1}{2}$ $b_{10}^{2} = 219$ (105) (147) 3923.109 3199.279 A (25) (0.70 4.56) $4\frac{1}{2} - 4\frac{1}{2}$ $a_{10}^{4} = 218$ 3285.224 A 125 (0.49 4.25) $3\frac{1}{2} - 2\frac{1}{2}$ $b_{10}^{2} = 219$ (105) | C 125 | (0.56 3.70) | $3\frac{1}{2}-3\frac{1}{2}$ $5\frac{4}{9}$ $0^{\circ}-135$ (191) | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | B (5) | | $3\frac{1}{2}-3\frac{1}{2}$ b4G°-136 (192) | | (107) 7407 570 4 70 41 71 2679 2074 | B (4)
B 100 | | 3½-4½ b4G°-y2G
(193)
3½-3½ b4G°-145 | | 4539.755 B 200 (0.33 3.04) 32-42 (108) 3103.377 A 125 (0.44 4.42) 42-42 b26-209 (151) 3921.731 | B 100 | | $3\frac{1}{2}-3\frac{1}{2}$ b $G^{2}-153$ | | 3760.404 B (2) (0.32 3.60) 41-41 a ³ Ge-z ⁴ G† (152) 3442.380 | A 75 | (0.56 4.14) | $2\frac{1}{2}-2\frac{1}{2}$ b ⁴ G°-180 (196) | | 3613.701 A 150 (0.32 3.73) 43-43 a ² G ^o -z ⁴ F 4696.12 P (0.97 3.66) 33-43 (153) | C 60 | | $3\frac{1}{2}-1\frac{1}{2}$ b ⁴ G°-181 (197) | | 4278.866 A (20) (0.32 3.20) 4½-3½ a ² G ² -z ² G 4725.090 C 20 (0.52 3.13) 1½-2½ | A 100
A (18) | | $3\frac{1}{2}-3\frac{1}{2}$ $6^{\frac{1}{2}}$ $6^{\frac{1}{$ | | 4495.389 A (4) (0.68 3.36) 2*=2* b*F*=Z*F | A (18) A (30) | | $3\frac{1}{2}-3\frac{1}{2}$ b ⁴ G°-307 | | 4131.089 B 100 (0.33 3.31) 33-43 (112)
4120.829 A 150 (0.32 3.31) 42-42 4380.060 A (30) (0.62 3.44) 32-12 b4f°-2 ² D 3055.243 | C 150 | | (200)
2½-1½ b ⁴ G°-222 | | (155)
3628.247 A (10) (0.32 3.72) 4½-5½ a ² G°-z ⁴ H† 4104.996 C 50 (0.62 3.63) 2½-3½ b ⁴ F°-127
*3952.573 B 125 (0.33 3.45) 3½-4½ (113) (156) 3956.284
3943.141 B (5) (0.32 3.45) 4½-4½ (113) (4373.818 | C 150 | (0.61 3.73) | _ (201) | | 4361.661 A (18) (0.53 3.36) 34-34 c ² 6°-z ⁴ 6† 4449.336 | A 50
A 200 | (0.56 3.38)
(0.61 3.38) | $5\frac{1}{2}-6\frac{1}{2} a^{2}H^{\circ}-z^{4}I$
$4\frac{1}{2}-5\frac{1}{2}$ (202)
$5\frac{1}{2}-5\frac{1}{2}$ | | 3838 542 4 150 (0.33 3.54) 31.21 | B 50
A 50 | | 51-51 a ² H°-z ² H
41-41 (203)
41-52 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A 75 | | | | 4270.189 | A (25)
A 60 | (0.61 3.85)
(0.56 3.45) | $5\frac{1}{2}-6\frac{1}{2}$ $a^{2}H^{\circ}-z^{4}H^{\dagger}$ $4\frac{1}{2}-4\frac{1}{2}$ (204) | | (116) 4153.67 P (0.53 3.50) 3\frac{1}{2}-4\frac{1}{2} (159) 3938.086 | B (7)
B (4) | (0.56 3.69)
(0.56 3.43) | 41-41 a ³ H°-y ⁴ H†
42-32 (205) | | 3539.086 A 300 (0.32 3.81) $4\frac{1}{2}$ - $3\frac{1}{2}$ a^{2} G^{0} -145† 3958.266 B (6) (0.72 3.84) $4\frac{1}{2}$ - $4\frac{1}{2}$ (160) 4075.853 | B 125
C (25) | (0.61 3.63) | 51-51 a2Ho-v2H | | | B 300 | (0.56 3.63) | 4 1 -5 1 | | (130) | B (4) | | - · (207) | | | B (5)
A (12) | (0.61 3.84)
(0.56 3.84) | 51-41 a2H°-y4G
41-41 (208) | | (123) 4017.596 A (108) (0.78 3.79) 44-44 (26"-yed 4197.998 | B (5)
A 100 | (0.61 3.55)
(0.56 3.55) | $5\frac{1}{2}-4\frac{1}{2}$ a ² H°-122
$4\frac{1}{2}-4\frac{1}{2}$ (209) | | $4257 \cdot 121$ A (20) (0.46 3.36) $3\frac{1}{2} - 3\frac{1}{2}$ (123) 3357.215 A 125 (0.53 4.20) $3\frac{1}{2} - 4\frac{1}{2}$ $c^2 c^2 - 187$ 3895.114 | B 125 | | 5½-4½ a ² H°-142
(210) | | 3766.514 R (4n) (0.46 3.73) 31.41 32rg4r 3344.761 A 300 (0.53 4.22) 32-32 600-1887 3521.880 | C 200 | | $5\frac{1}{2}-4\frac{1}{2}$ a ² H ⁰ -177 | | 4479.432 A 30 (0.42 3.17) $3\frac{1}{2}-1\frac{1}{2}$ (166) | B 125
C 300 | | $4\frac{1}{2}-3\frac{1}{2}$ a ² H°-188
(212)
$5\frac{1}{2}-6\frac{1}{2}$ a ² H°-y ² I | | 4320.723 A 60 (0.46 3.31) $3\frac{1}{2}-4\frac{1}{2}$ $a^2F^{\circ}-z^2H$ (167) (167 | A 200 | | (213)
4½-3½ a2H°-205 | | 4100-(10 B (d) (0.40 5.45) 39-49 80 -27H (168) | A 250 | (0.56 4.39) | 4½-3½ a2H°-207 | | 3857.240 B (4) (0.42 3.61) $3\frac{1}{2}$ 31 | A 250 | | $4\frac{1}{2}-3\frac{1}{2}$ a ² H°-210 (216) | | 5/55-465 A /5 (0-46 5-70) 65-15 E-F-154 | A (20) | (0.61 4.47)
(0.56 4.47) | 51-41 a2H°-213 | | 3792.326 A 50 (0.46 3.71) $3\frac{1}{2}$ $3\frac{3}{2}$ $3\frac{3}$ | A (25) | (0.73 3.79) | 3½-4½ b ³ F°-y ³ G | | 3246.674 A 60 (0.42 4.23) $3\frac{1}{2}-3\frac{1}{2}$ $8\frac{2p}{p}-188$ 4427.917 B (6) (0.53 3.32) $3\frac{1}{2}-3\frac{1}{2}$ (171) | A (10) | | 2318)
23-13 b2F°-167 | | 3594.190 A 150 (1.31 4.79) 3 2 3 4 2 2 4 2 2 3 2 8 3 2 3 2 3 2 4 2 2 3 2 3 2 3 3 3 3 3 3 3 | B 76 | (0.60 3.43) | (219) | |
$\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A (15) | (0.60 3.68) | 11-11 a2001 | | 4400 000 P 70 (0.50 7 40) al al 470 4404 7007 455 | A (25) | (0.60 3.83) | $\begin{array}{c} 1\frac{1}{2} - \frac{1}{2} & (231) \\ 1\frac{1}{2} - \frac{1}{2} & a^{2}D^{2} - 147 \\ & (232) \end{array}$ | | 4310.699 A (30) (0.49 3.36) $3\frac{1}{2}-3\frac{1}{2}$ (133) 4090.947 A (6) (0.83 3.84) $4\frac{1}{2}-4\frac{1}{2}$ $a^{\frac{1}{4}}G^{-}y^{\frac{1}{2}}G^{-}y^{\frac{1}$ | B 50 | | 2½-2½ a ² D°-161
(223) | | 3992.386 A 125 (0.44 3.53) $4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$ 61 | A (15) | (0.73 3.58) | 1½-1½ a ² P°-124 | | | A (15) | | (234) $1\frac{1}{2}-3\frac{1}{2}$ $a^{2}P^{2}-136$ (225) | | 4176.080 A (12) (0.49 3.45) 3 - 42 (135) | A (15) | (0.73 3.82) | 1½-1½ a ³ P°-146
(226) | | 93468 1136 A B (0.53 4.00) 31 31 (470) 4700 074 | A (8)
A (5)
A (8) | (0.90 3.73)
(0.74 3.73) | $6\frac{1}{2}-6\frac{1}{2}$ a ² I°-z ⁴ I
$5\frac{1}{2}-6\frac{1}{2}$ (227)
$5\frac{1}{2}-4\frac{1}{2}$ | | 4168.067 B (4) (0.44 3.43) $4\frac{3}{2}$ (136) 3609.887 C 350 (0.89 4.31) $5\frac{1}{2}$ $4\frac{1}{2}$ a^4 G^0 -199 *5347.806§ 4197.668 B (4) (0.49 3.43) $3\frac{1}{2}$ $-3\frac{1}{2}$ (179) | | | | | 3051,975 C 60* (0.53 4.58) 24_14 e409 220 4004 405 | A 30
P | (0.90 3.53)
(0.74 3.31) | $6\frac{1}{2}-5\frac{1}{2}$ a^2 $1^{\circ}-z^2$ H $5\frac{1}{2}-4\frac{1}{2}$ (228) | | 4107.426 B 200 (0.49 3.50) 3-44 (138) 3252.483 C 30 (0.89 4.69) 5\frac{1}{2}-5\frac{1}{2} a^4G^-239 | W (30) | | 5\frac{1}{2} - 4\frac{1}{2} a^2 I^o - z^4 H (229) | | 1 4106 881 B (E4) (0 40 7 E6) 71 61 1246 446 | C 300
C (4) | (0.90 4.41)
(0.74 3.50) | $6\frac{1}{2}-5\frac{1}{2}$ $a^{2}I^{\circ}-x^{2}H$ $5\frac{1}{2}-4\frac{1}{2}$ (230) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | A (40) | | 5½-5½ a ² I°-z ² I
(231) | | 3953.660 A (12) (0.49 3.61) $3\frac{1}{2}-3\frac{1}{2}$ bage -136 (140) 3063.010 C 400 (0.89 4.93) $5\frac{1}{2}-4\frac{1}{2}$ a $\frac{1}{4}$ G -248 3590.598 (185) | A 125 | | 5½-4½ a ³ I°-184
(232) | | 3672.789 | A 60 | (0.90 4.36) | 6½-6½ a ² I°- y2 I
. (233) | | Labo
I A | orato
Ref | ry
Int | Low E | P
High | J | Multiplet (No) | Labo
I A | | 'y
Int | E P
Low H | High | J | Multiplet (No) | Labor
I A | | y
Int | E
Low | P
High | J | Multiplet (No) | |-----------------------------|--------------|-------------------|-------------------------|-------------------------|-------------------------------------|---|--|-------------|-----------------------|--------------------------------------|----------------------|---------------------------------|---|--|-------------|--------------------------|----------------------|----------------------|--------------------------------|--| | II o | ontin | ued | | | | | <u>Pr II</u> I | P 1 | Anal | C List | в і | Dec 19 | 41 | <u>Pr II</u> cor | ntinu | eđ | | | | | | 43.888
823.837 | B
B | 100
200 | (0.79
(0.79 | 4.19) | 44-34 | d ² G°-y ⁴ H
(234)
d ² G°-186 | 4628.751
4535.921
4517.595 | A | 100
60
40 | | 3.72
3.72
3.79 | 5-5
4-5
5-5 | a ⁵ I°-2
(1)
a ⁵ I°-3† | 4254.420
4664.647
3971.164 | A
A
A | 30
30
40 | 0.63
0.42
0.43 | 3.07
3.53 | 7-7
6-6
6-7 | a ³ I°-z ³ I†
(27) | | 500.583 | В | 60 | (0.79 | 4.22) | 41-31 | (235)
d2G°-188
(236)
d2G°-237 | *4429.238 | A
A | 60 | 0.00 2 | 2.79 | 4-5 | (2) | 4329.415
4008.714 | A
A | 25
75 | 0.88 | 3.71 | 5–6
7–7 | a ³ I°-z ⁵ H† | | 83.670 | C . | 100 | | | | (237) | 4744.925
4487.821 | A | 40
20 | 0.05 2 | 8.80
8.80 | 6–6
5–6 | a ⁵ I°-4
(3) | 3982.063
3962.445 | A
A | 150
40 | 0.43 | 3.52
3.33 | 6-6
5-5 | (28) | | 40.883
864.370 | A
A | (20)
(10) | (0.90 | 3.58) | 3-12
3-4-1 | c ² F°-124
(238)
c ² F°-y ² G | 4100.746//
4143.136
4179.422 | A
A
A | 150
150
150 | | 3.56
3.35
3.16 | 8–9
7–8
6–7 | a ⁵ I°-z ⁵ K
(4) | 4395.788
4096.822 | A
A | 30
25 | 0.43 | 3.23
3.23 | 6-5
5-5 | a ³ I°-19
(29) | | 89.444 | В | 30 | | | | (239)
c ² F°-164
(240) | 4222.98
4408.844
4405.849 | A
A
A | 150
200
80 | 0.05 2
0.00 2
0.55 3 | 8.98
8.80 | 5–6
4–5
8–8 | | 4347.490
4054.845 | A
A | 30
80 | 0.42 | 3.26
3.26 | 6-6
5-6 | a ³ I°-22†
(30) | | 7 41. 727
716.930 | A. | (10)
(10) | | | | c ² F°-186
(241)
c ² F°-188 | *4429.238
4449.867 | A
A | 100
150 | 0.37 3 | 3.16
2.98 | 7-7
6-6 | | 4338.694 | A | 25 | 0.42 | | | a ³ I°-23† | | 559.328 | A
A | (6) | (0.90 | 4.36) | 3 } _3 } | (242)
c ² F°-205 | *4496.429
4734.177
4754.635 | A
A
A | 250
25
(15) | 0.37 2 | 3.80
3.98
3.80 | 5-5
7-6
6-5 | | 4302.100
4015.389 | A
A | (60)
40 | 0.42 | 3.29
3.29 | 6–5
5–5 | a ³ 1°-25
(32) | | 73.455 | C | 100 | (0.90 | 4.55) | 3 } -3 } | (243)
c ³ F°-217
(244) | 4707.541
4454.382
4368.327 | A
A
A | 20
30
150 | 0.05 2 | 2.83
2.83
3.83 | 6-5
5-5
4-5 | a ⁵ I°-5
(5) | 4568.545
4243.528
3964.261 | A
A
A | (30)
20
40 | 0.63
0.42
0.22 | 3.33
3.33
3.33 | 7– 6
6–6
5–6 | a ³ I°-z ³ H
(33) | | 60.16 | A | (25) | | | | b ² D°-129
(245) | 4651.517 | A | 75 | | 2.86 | | a ⁵ I°-6 | 4403.605 | A | 25 | 0.63 | 3.43 | 7–8 | a ³ I°-30
(34) | | .59.033
896.883 | B
A | 50
40 | | | | b ² D°-164
(246)
b ² D°-216 | 4297.764 | A | 80 | 0.00 2 | 2 .87 | 4–5 | (6)
a ⁵ I°-7
- (7) | 5110.768
5173.898 | A
A | 60
60 | 1.14 | 3.56 | -
10-9
9-8 | a ⁵ L°-z ⁵ K† | | 18.276 | С | 500 | | | - | (247)
c ⁴ F°-169 | 4206.739
4189.518
4164.192 | A
A
A | 100
125
100 | 0.55 3
0.37 3
0.20 3 | 3.32
3.17 | 8-8
7-7
6-6 | | 5220.113
5259.743
5322.778 | A
A
A | 50
80
60 | 0.79 | 3.16
2.98
2.80 | 9-6
8-7
7-6
6-5 | (35) | | 33.091 | A | 50 | (1.27 | 4.86) | 3] -3]
- | (248)
c ⁴ F°-244
(249) | 4118.481
4225.327
4458.336 | A
A
A | 200
150
25 | 0.55 3 | 3.92
3.32 | 5-5
4-4
8-7 | | 4801.150 | A | 15 | 0.48 | 3.05 | 6-5 | a ⁵ L°-z ⁵ I† | | 13.996 | A | 30 | | | | ъ ^З н°-z ⁴ н
(250) | 4412.155
4333.913
4305.763 | A
A
A | 20
100
100 | 0.37 3
0.20 3
0.05 2 | | 7-6
6-5
5-4 | | 5034.415
5135.125 | A
A | 20
20 | 1.11 | 3.56
3.35 | -
9 - 9
8-8 | a ⁵ K°-z ⁵ K† | | 42.135 | A
C | (8) | | | | b ² H°-159
(251)
b ² H°-z ² I
(252) | 3966.573
3965.263
3964.825 | A
A
A | 80
150
250 | 0.37 3
0.20 3
0.05 3 | 3.48
3.32
3.17 | 7-8
6-7
5-6 | | 5219.053
5292.630
5381.262 | A
A
A | 20
30
60 | 0.79
0.65
0.51 | 3.16
2.98
2.80 | 7-7
6-6
5-5 | 1=17 | | 84.675
07.289 | A
A | 100
125 | | | | b2Ho-y2I | 4044.818
3953.516 | A
A | 60
125 | 0.55 3 | 3.05
3.67 | 4–5
8–8 | a ⁵ I°-z ³ K† | 5195.110
5206.562 | A
A | 20
20 | 1.11 | | 9-8
8-7 | a ⁵ K°-z ⁵ I
(38) | | 63.427 | A | (40) | (1.04 | 3.93) | -
3] -2] | (253)
b ⁴ D°-158 | 3997.054
4241.019 | A |
40
60 | 0.55 3 | 3.46
3.46 | 7-7
8-7 | (9) | 5195.307
5129.520
5110.382 | A
A
A | 30
40
60 | 0.79
0.65 | 3.17
3.05
2.92 | 7-6
6-5
5-4 | , | | 46.681 | A | (20) | | | | (254)
b ⁴ D°-175
(255) | 4141.257
4578.139 | A
A | 80
25 | 0.55 3
0.37 3 | 3.53
3.07 | 8-7
7-6 | a ⁵ I°-z ³ I
(10) | | | | | | - | .5-0 5-4 | | 15.877
79.424 | A
A | (20)
50 | | | | b ⁴ D°-177
(256) | 3908.033
3918.856 | A
A | 150
150 | 0.55 3
0.37 3 | 5.52 | 8-7
7-6 | a ⁵ I°-z ⁵ H
(11) | 6025.723
6305.262
6244.344 | A
A
A | 20
4
5 | 1.43
1.36
1.19 | 3.32
3.17 | 7 -7
6-6 | b ⁵ I°-z ⁵ I†
(39) | | 60.975 | c | 60 | | | | b4D°-205
(257)
b4D°-238 | 3947.633
3994.834
3908.431 | A
A
B | 100
200
200 | 0.20 3
0.05 3
0.00 3 | 3.14
3.16 | 6-5
5-4
4-3 | | 6161.194
6165.945 | A | 50
60 | 1.05
0.92 | 3.05
2.92 | 5-5
4-4 | | | 94.779 | A | (30) | (1.25 | 4.06) | -
2]- 3] | (258)
e ² F°-171 | 3699.952
3925.456 | A | (12)
75 | | 3.14 | 7-7
4-4 | _ | Strongest | Uncl | assified | Lines | of Pr | <u>11</u> | | | rongest | · Ima | 1000161 | led Lines | of Ca | TT | (259) | 4191.615
3989.718
3920.524 | A
A
A | 20
100
15 | 0.20 3
0.05 3
0.00 3 | 1.15 | 6-5
5-5
4-5 | a ⁵ I°-16
(12) | 3880.466
3877.225
3865.458 | B
B
B | 100
200
100 | V
V | | | | | 43.963
71.475 | . one. | 20
20 | A
A
red Tives | or <u>ce</u> | 11 | | 4421.231
4178.273 | A
A | 40
50 | 0.37 3
0.20 3 | 3.16 | 6-6 | a ⁵ I°-17
(13) | 3854.905
3852.805 | B
B | 100
150 | V
V | | | | | 82.462
57.842
47.143 | CCC | 40
15
20 | V
V
V | | | | 3972.164
4081.018
3889.330 | A
A
A | 100
50
75 | 0.05 3
0.20 3
0.05 3 | 3.23 | 5-6
6-5
5-5 | a ⁵ I°-19
(14) | 3851.617
3850.825
3846.605
3830.719 | B
B
B | 200
150
125
125 | V
V
V | | | | | 37.282
69.502 | C
C | 60
20 | v
v | | | | 3823.571
4272.271 | A
A | (10)
80 | 0.00 3 | | 4–5 | a ⁵ I°-22 | 3826.292
3818.281 | B
B | 100 | v
v | | | | | 44.704
31.745
11.394 | C | 75
30
60 | V
V
V | | | | 4039.357
4171.824 | A
A | 30
40 | 0.20 3 | | 6–6
7–6 | (15)
a ⁵ I°-z ³ H | 3816.166
3800.303
3792.524 | B
B
B | 125
200
100 | V
V | | | | | 70.094
23.837 | B
B | 15
60 | V
V | | | | 3949.438
3769.695 | A
A | 125
30 | 0.20 3
0.05 3 | | 6-6
5-6 | (16) | 3772.854
3764.811 | В | 100 | V
IV | | | | | | | | | | | | 3912.898
3885.190 | A
A | 135
75 | 0.20 3 | | 6-5
6-6 | a ⁵ I°-26
(17)
a ⁵ I°-27† | 3761.867
3739.193
3687.039 | B
B
B | 250
100
125 | IV
IV | | | | | <u>III</u>
55.585 | IP: | 19.5
600 | Anal A (2.25 | | | 1943
fs ³ F°-fp ³ G | *3711.099
4282.440 | Ā | 75
(25)
60 | | .38 | 5–6 | (18)
a ⁵ I°-30 | 3668.830 | B | 150 | ĬŸ | | | | | 31.559
43.609
28.564 | A
A | 500
150
400 | (2.00
(1.97
(2.25 | 6.C7)
5.55)
6.07) | 3-4
2-3
4-4 | (1) | 4033.857 | Ā | 75 | 0.37 3 | | 7–8 | (19) | Nd II I | | /sis M
Anal C | | | p erat u
pr 194 | re Class) | | 70.894
53.262 | A
A | 300
150 | (2.00
(2.35 | 5.55)
5.93) | 3-3
4-4 | fs ³ F°-fp ³ F | 4534.154
4510.160
4468.712 | A
A
A | 60
100
150 | 0.63 3
0.42 3
0.22 2 | .16 | 7-8
6-7
5-6 | a ³ I°-z ⁵ K
(20) | *4959.130\$
4835.982 | | 60
15 | | | - | a ⁶ I-1° (1) | | 43.956
27.332
56.35 | A
A
P | 200
125
Ce+ | (2.00
(1.97
(2.25 | 5.57)
5.92) | 3-3
2-2
4-3 | (2) | 4879.121
4826.649
5251.738 | A
A | (30)
(40)
12 | 0.63 3
0.43 2
0.63 2 | .16
.98 | 7-7
6-6
7-6 | | 4920.692
4799.423 | A
A | 60
10 | 0.06 | | | a ⁶ I-308 30 | | 54.368
41.247
31.548 | A
A
A | 150
250
400 | (2.00
(2.00
(1.97 | 5.57)
5.93) | 3-2
3-4
2-3 | | 4672.081 | A | 40 | 0.33 3 | | 5-6 | a ³ I°-6† | 4859.030
4825.482 | A
A | | | 2.86 | 6 1 -5 1 | a ⁶ I-z ⁶ H ^o (3) | | 59.374 | A | 300 | (2.25 | | 4-3 | fs ³ F°-fp ¹ F† | 4323.551 | A
A | 30
25 | 0.83 3 | | | a ³ I°-7 | 4811.343
*4706.542§ | A
A
A | | | | | (3) | | 10.516
06.974
57.575 | A
A
A | 200
200
100 | (2.25
(2.00
(1.97 | 5.97) | 3–2 | fs ³ F°-fp ³ D† | 4261.796
4180.68 | A
A | 15
(8) | 0.42 3
0.22 3 | .32 | 6 -7
5-6 | (23) | 4609.148
4612.473
4414.432 | A | (1)
4
8 | 0.06
0.06 | 2.86
2.74
2.86 | 41-41
41-51 | | | 85.089 | A | 200 | (1.97 | 5.97) | 2-1
2-2 | a 3ma - 1- | 4589.76
4492.427
4351.849 | A
A | (5d)
15
50 | 0.63 3
0.43 3
0.23 3 | .17
.05 | 7-7
6-6
5-5 | | 4505.75
4680.734 | A
A | (8)
30 | 0.00 | 2.74 | 3 } -4 } | a ⁶ I-218 7 1 | | 22.736 | | 200 | | 6.33) | | fs ³ F°-fp ¹ G
(5) | 4561.461
5292.10 | A
A | (6)
60* | 0.88 8
0.63 2 | | 5-4
7-8 | a ³ I°-10 | 4569.849
4465.075 | A
A | 2
10 | 0.06 | | | a ⁶ I-3°
(5) | | 04.596
47.05 | A
A | 100
300 | (2.29
(2.29 | | | fs ¹ F°-fp ¹ F
(6)
fs ¹ F°-fp ³ D | 4859.038
*4496.429 | A
A | 12
250 | 0.42 2 | .96 | 6-6
5-6 | a ³ I°-10
(24)
a ³ I°-11†
(25) | 4763.865
4556.136 | A
A | 20
12 | 0.18 | | | a ⁶ I_4° (6) | | 57.214 | A | 300 | | | 3-4 | (7)
fs ¹ Fo_fn ¹ G | 4056.543 | A | 80 | 0.63 3 | .67 | 7-8 | a ³ 1°-z ³ K | 4451.978 | A | 50 | 0.00 | | | | | 56.556 | A | 125 | (2.29 | 6.33) | 3-2 | (8)
fs ¹ F°-fp ¹ D
(9) | 4062.817
4413.765
4359.795
4762.727 | A
A
A | 125
50
30
20 | 0.42 3
0.22 3
0.63 3
0.42 3 | .01
.46 | 6-7
5-6
7-7
6-6 | (26) | 4709.714
4506.582 | A | 30
30 | 0.18 | 2.80
2.80 | 54-5 1
41-51 | a ⁶ I_5°†
(?) | | I No | anal | ys1s | May 1942 | 3 (Tem | peratu | re Class) | | | | - | | | | | | | | | | | | 90 | | | | | | | REVI | SE | D M C | JLTI | PLE | | ABLE | | | | | | , |]+4m ³ | |----------------------------------|--------------|---------------------|----------------------|----------------------|---|---|------------------------------------|-------------|------------------|----------------------|----------------------|--|---|------------------------------------|--------------|------------------------|----------------------|----------------------|----------------------------------|---| | Labo
I A | rator
Ref | y
Int | E I | P
High | J | Multiplet
(No) | Labor
I A | ator
Ref | | E F
Low | High | J | Multiplet
(No) | Labor
I A | atory
Ref | Int | Low I | ligh | J M | ultiple t
(No) | | Nd II co | | | | | | | Nd II con | tinu | eđ | | | | • | Nd II con | _ | | 0.00 | 7 00 | glel- | 6v -6v• • | | 4411.052
4342.071 | A
A | 150
20 | 0.18
0.06 | 2.98
2.91 | 51-51
42-45 | a ⁶ I-z ⁶ I°†
(8) | 3328.270 | A | 80 | 0.00 | 3.71
3.76 | | a ⁶ I-30037
(40)
a ⁶ I-30453 | 5708.280
5804.020
5421.559 | A
A
A | 40
60
20 | 0.86
0.74
0.74 | 3.02
2.87
3.02 | 43-43
43-53? | 6K-z6K• † | | 4375.039
4232.378 | A
A | 30
150
200 | 0.00 | 2.82 | 3 1 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 3339.063
3282.777 | A | 60
8 | 0.06 | 3.76 | | a ⁶ I ₋₃₀₄₅₃ (41) | 5302.279 | A | 6 | | | | (80) | | 4247.367
4412.265 | A
A | 200 | 0.06 | 2.86 | 41-41 | a ⁶ I-23171
(9) | 3334.471
*3231.349§ | A
A | 50
(8) | 0.18
0.06 | 3.88
3.88 | 51-41
41-41 | a ⁶ I-25°
(42) | *5356.976§
5431.526
5311.461 | A
A
A | 15
40
12 | 1.12 | 3.39
3.31 | 73-63
63-53 | (80) | | 4314.511 | A . | 50
300 | 0.00 | 3.70 | 3½-4½
81-91 | (9)
₈ 6 _{7-z} 6 _K ∘ | 5255.510 | A | 50 | 0.20 | 2.55 | -
4 <u>1</u> -41 | a ⁴ I-1° | 541631
5250.816 | Ā
A | 15
8 | 0.86 | 3.13
3.09 | 51-41
42-32 | | | 4012.250
4061.085
4109.455 | A
A | 200
200 | 0.47 | 3.51 | 74-84
64-74 | a ⁶ I-z ⁶ K° (10) | 5212.365 | A | 30 | 0.20 | 2.57 | | a ⁴ I-20830
(44) | 5276.879 | A | 8 | 0.86 | | 51-41 5 | | | 4156.083
4177.321 | A
A
A | 250
200
400 | 0.18
0.06
0.00 | 3.02 | 55-65
45-55
34-45 | | 5603.651
*5191.448\$ | A
A | 5
100 | 0.38 | 2.58
2.58 | 51-51
41-51 | a ⁴ I-2°
(45) | 5474.734 | A | 10 | | | 6 } _6 } 8 | | | 4303.573
4284.518
4325.766 | A
A | 100
150 | 0.63
0.47 | 3.51
3.32 | 81-81
71-71 | | 5361.174 | Ą | 3
6 | | 2.86
2.74 | 61-51
51-41 | a ⁴ I-z ⁶ H ^o (46) | 5455.815
5668.868 | A.
A | 20
15 | 1.41 | | | (83)
6K-29027 † | | 4358.169
4351.295
4400.828 | A
A
A | 200
40
100 | 0.32
0.18
0.06 | 3.15
3.02
2.87 | 64-64
54-54
43-44 | | 5228.427
5089.837
*4867.839§ | A
A
A | 8 | 0.20 | 2.63
3.74 | 45-45 | 7 | •6385.196§ | Α. | 150 | 1.16 | 3.09 | 5 <u>}</u> -5 <u>}</u> 11 | 06I-25014 | | 4368.632 | A | 60 | 0.06 | 2.89 | | a ⁶ I-6° (11) | 4647.759
4820.336 | A
A | 3
30 | 0.20 | 2.86 | 4½-5½ | a ⁴ I-3° | *5620.62 \$
5718.120 | P
A | 500
12 | 1.54
1.40 | 3.73
3.56 | 8월-8월 1
7월-7월 | 61-y ⁶ 1•†
(86) | | 4272.789
4556.735 | A | 30
12 | 0.00 | 2.89 | | | 5092.797 | A | 30 | 0.38 | 2.80 | | a4I-5° † | 5842.391
5740.862 | A
A | 8
15
15 | 1.16 | 3.39
3.31
3.13 | 63-63
53-53 | | | 4366.315
4270.565 | A | 12
25 | 0.06 | 2.89
2.89 |
$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ | a ⁶ I-7°
(13) | 4446.387
4567.606 | A
A | 200
12 | 0.20 | 2.98
2.91 | 41-51
41-41 | (48)
a ⁴ I-z ⁶ I°
(49) | 5891.528
5706.206 | A | 15 | 0.93 | | | | | 4465.601
4282.570 | A
A | 10
15 | 0.18 | 2.95
2.95 | 51-51
43-51 | a ⁶ I-8°†
(13) | 4715.589 | Ā | 25 | 0.20 | 2.82 | | | 5614.303 | A | (10) | 1.04 | 3.24 | 4-1-4-1 | (87) | | 4246.879 | A | (10) | 0.06 | 2.97 | 41-41 | a ⁶ I-9°† (14) | 4456.394
4462.985
4451.566 | A
A
A | 40
250
400 | 0.56 | 3.51
3.32
3.15 | 74-84
64-74
54-64 | a ⁴ I-z ⁶ K° † (50) | Strongest | Uncl | assifie | d Lines | of <u>Nd</u> | 11 | | | 4156.265
4374.923 | A | 30
20 | 0.00 | 2.97
3.00 | 5-4-2-5-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4 | a ⁶ Į-10° | 4385.663 | A . | 150 | 0.20 | 3.02 | 45-25 | | 5451.115 | B
B | 100
20 | IV
III | | | | | 4199.099
4110.472 | A | 10
40 | | 3.00
3.00 | | a ⁶ I-10°
(15) | 4597.013
4914.385 | A
A | 20
15 | 0.20 | 2.89 | | a ⁴ I-6°
(51)
a ⁴ I-7° | 4832.276
4542.603
4282.443 | B
B | 60
50 | IA | | | | | 4173.379
4085.815 | | 8
30 | 0.06 | 3.02
3.02 | 41-31
35-35 | a ⁶ I-11°
(16) | 4594.447 | A | 6 | 0.20 | 2.89 | | a ⁴ I-7°
(52) | *4135.325
4031.807 | B
B | 50
100 | IA | | | | | 4277.279 | A | 6 | 0.18 | 3.07
3.07 | | a ⁶ I-13°†
(17) | 4501.808
4763.624 | A | 50
5 | 0.20 | 2.95
2.97 | | a ⁴ I-8°†
(53)
a ⁴ I-9° | 4023.002
4012.704 | B
B | 80
50 | III | | | | | 4109.073
4457.179 | | 100
(5) | 0.06 | 3.09 | | a ⁶ I-25014
(18) | 4463.407 | A | 30 | 0.20 | 2.97 | | a ⁴ I-9°
(54)
a ⁴ I-10° | 4007.435
4004.010 | B
B | 50
60 | III | | | | | 4080.227 | A | 50
80 | 0.06 | 3.09
3.73 | 4½-5½ | (18)
- ₈ 6 ₇₋₁₇ 6 ₇ • | 4703.576
4381.290 | A
A | 15
(10) | 0.38 | 3.00 | | (55)
a ⁴ I-11° | 3994.684
3953.525 | B | 80
60 | III
IV | | | | | 3973.269
3990.103
4020.872 | A | 60
60 | 0.47
0.32 | 3.56
3.39 | 73-73
63-63 | a ⁶ I-y ⁶ I° (19) | 4120.654 | Ā | 6 | | 3.73 | 71-81 | (56)
• a ⁴ I-y ⁶ I°
• (57) | 3934.823
3920.965
3911.169 | B
B
B | 50
100
60 | IV
III
IV | | | | | 3951.154
4018.826 | A | 150
30
80 | | 3.31
3.13
3.09 | 5-5-5-
4-4-4-3
31-31 | • | 4106.582
4100.240
3979.479 | A
A
A | 8
15
60 | 0.38 | 3.56
3.39
3.31 | 53-63
43-53 | . (37) | 3905.886 | В | 100 | III | | | | | 3991.743
4205.595
4227.719 | A | 40
30 | 0.63 | 3.56
3.39 | 8 1 - 7 1
7 1 - 6 1 | • | 4371.069
4358.699 | A | (10)
15 | 0.74
0.56 | 3.56
3.39 | 73-73
63-63 | | 3901.850
3900.226
3890.940 | B
B
B | 50
60
60 | IV
III
III | | | | | 4133.361
4179.585 | A | 50
30
50 | 0.32
0.18
0.06 | 3.13 | | ;
† | 4217.282
4211.286 | A | 5
40 | 0.38
0.20 | | 4-4-4- | • | 3890.580 | В | 50 | IV | | | | | 4075.272
3780.391
3805.359 | . А | 20
100 | 0.47 | 3.73 | | †
† | 4541.269
4266.716 | A
A | 50
30 | 0.38
0.20 | | 5}-5}
4}-5 | a ⁴ I-13°
(58) | 3889.929
3878.582
3848.524 | B
C
B | 50
50
80 | IA
IA
IA | | | | | 3848.233
3807.227 | A | 50
(15) | 0.18
0.06
0.00 | 3.31 | 4 } -5 | • | 4256.239 | A | 8 | 0.20 | 3.10 | | a ⁴ I-25138
(59) | 3836.541
3814.725 | B
B | 60
60 | III | | | | | *3937.575
4234.196 | | 5
6 | 0.18 | | | a ⁶ I-13°†
(20) | 4797.157 | A | 20 | | 3.13 | | a ⁴ I-15°†
(60)
a ⁴ I-16° | 3808.772
3803.474 | ВВ | 30
40 | III | | | | | 4069.267 | ' A | 80
60 | 0.06 | | | (20) | 4144.553
4075.116 | A | 30
60 | 0.20 | | | 4I-26182† | 3784.250
3763.475 | B
B | 80
60 | III | | | | | *3976.836
4961.396 | | 10 | 0.63 | 3.12 | | (21)
a ⁶ I-25235
(22) | 4307.778 | A | 15 | | 3.24 | | (62)
a ⁴ I-21°
(63) | 3758.944
3741.427 | В | 4 0
50 | III | | | | | 4413.784 | L A | (5)
(4) | 0.32 | | | | 4059.961
4000.493 | A
A | 50
30 | 0.20 | | | a ⁴ I-20° | 3728.130
3723.506 | В | 50
50 | III | | | | | 4034.012
3952.195 | | 100 | 0.00 | 3.12 | | a ⁶ I-14°
(23) | 4123:881 | A | 40 | 0.38 | 3.3 7 | | (64)
1 a ⁴ I-22°
(65) | 3685.804
3673.542 | C | 60
50 | V | | | | | 4391.110
4186.033 | 3 A | 10
8
30 | 0.32
0.18
0.06 | 3.13 | 64-5
54-5
44-5 | a ⁶ I-15°
(24) | 4051.145 | A | 60 | 0.38 | 3.43 | | a41-27744† | 3672.363
3665.180 | C
B | 50
50 | IV
TTT | | | | | 4024.785
4113.826 | | 20 | 0.18 | 3.18 | | a ⁶ I-16°
(25) | 3982.355
3769.644 | A
A | 20
40 | 0.38
0.20 | | | a ⁴ I-28170
(67) | 3609.788
3592.595
3587.504 | B
B
B | 40
60
50 | III
IV
IV | | | | | 3958.001
3863.409 | L A | 4 0
60 | 0.06 | | | } (25)
} a ⁶ I-y ⁶ H° | 4338.697 | A | 80 | 0.74 | | | a ⁴ I-29027
(68) | 3543.352 | В | 50 | IV
IV | | | | | 3941.512 | 3 A | 150 | 0.06 | 3.19 | 42-4 | (26)
a ⁶ I-17°†
(27) | 3811.073
3615.817 | A
A | 30
30 | 0.38
0.20 | 3.62
3.62 | | a ⁴ 1-29298
(69) | 3393.641
3364.950
3300.148 | B
B
B | 60
50
7 0 | IA
IA | | | | | 3863.32 | 7 A | 80
80 | 0.00 | | | 4 (27)
4 a6I-26041 | 3470.866 | A | 20 | 0.20 | | | a ⁴ I-30453
(70) | 3285.093 | В | 50 | IV | | | | | 3838.98:
3894.62' | | 40 | 0.00 | | | a ⁶ I-26182 | 3522.044
3354.621 | | 25
10 | 0.38
0.20 | 3.88
3.88 | 51-4
41-4 | a ⁴ İ-25°
(71) | 3275.218
3134.897
3133.603 | B
B
B | 60
50
100 | IV
V
V | | | | | 4040.79 | | 100 | 0.18 | 3.24 | 5 } -6 | a ⁶ I-18° | 6257.834 | A | (25) | 0.55 | 2.55 |
5-}-4 | 1 a ⁶ L-1° | 3116.141
3115.172 | B
B | 60
100 | v
v | | | | | 4038.12
•3887.86 | | 30 | 0.18
0.06 | 3.24 | 5-4-4
4-4 | a ⁵ I-19°
(31) | 5548.474 | | 8 | 0.55 | | | ((6) | 3098.476
3092.915 | ВВ | 50
60 | V
V | | | | | 3811.77 | 4 A | 20 | 0.00 | 3.24 | 32-4 | Ž | 5361.474
5234.195 | A | 60
50 | 0.68
0.55 | 2.98 | 6-5-5-5-5-5-4-5-5-4-5-5-4-5-5-5-5-5-5-5- | 1 a ⁶ L-4°
(73)
1 a ⁶ L-z ⁶ I°
2 (74) | 3075.380
3014.165 | B
B | 50d
60 | V
V | | | | | 4220.25
4030.47
3880.77 | 0 A | 25 | 0.32
0.18
0.06 | 3.24 | 54-5
44-5 | a ⁶ I-21°
1 (32) | 5130.596 | A | 40 | | | 10}-9 | 1 a ⁶ L-z ⁶ K°† | 3007.975 | B | 50 | v | | | | | 3826.41 | 6 A | 60 | 0.06 | 3.29 | | a ⁶ I-20°
(33) | 5192.621
5249.585
5293.168 | A | | 1.13
0.97
0.88 | 3.51
3.32
3.15 | 83-8
83-7
73-6 | a ⁶ L-z ⁶ K° †
(75) | | | _ = | | | | 0.40 | | 3752.679
4043.59 | | | 0.00 | 3.37 | | 1 a ⁶ I-32°
1 (34) | 5293.106
5273.431
5319.818 | A | 50 | 0.68
0.55 | 3.02 | 0 5 -0 | 2 | | | 67 Ana: | | .st D
2.35 | Apr 1 | 942
a ⁷ F-z ⁹ G•† | | 3869.04 | 5 A | 30 | 0.18 | 3.37 | | | 5442.274 | | 40 | 0.68 | 2.95 | | 2 a ⁶ L-8° | 6671.51
6588.91 | A | 500 | 0.39 | 2.26 | 5–6 | (1) | | 3851.74
3714.80 | | 20 | 0.06 | | | 1 a ⁶ I-23°
2 (35) | 5165.140 | A | 10 | 0.68 | 3.07 | | 12 a ⁶ L-12°
(77) | 5659.86
*5516.09 | B
B | 400
500d | | 2.28
2.27
2.52 | 1-3 | a ⁷ F-38°
(2) 37°
59°) | | 4228.20
4021.33 | | | 0.47
0.32 | | | a ⁶ I−24°†
2 (36) | 5934.747
5811.572 | | (10)
13 | | 2.82 | 4-3-3-5-5-5 | a ⁶ K-z ⁶ I°
(78) | 4841.701
3925.216 | B
B | 400
400 | 0.50
0.10 | 3.05
3.24 | 6-5
2-1 | 103°
118° | | 3973.65 | 0 A | | | 3.43 | _ | a ⁶ I-27744
(37) | 5702.244 | A | 20 | 0.74 | 2.91 | | | *3756.411 | § B
 | 600
300 | | 3.39
3.37 | | 127°
a ⁷ F-z ⁷ G°† | | 3614.67 | | . (8) | 0.06 | | | | 5371.935
5485.699 | A | 80 | 1.26 | 3.70
3.51
3.32 | 9-5-9
8-5-8
7-1 7 | a ⁶ K-z ⁶ K°†
(79) | 4296.743 | " в | 300 | 0.50 | 3.37 | υ- <i>ι</i> | a ⁷ F-z ⁷ G° † | | 4175.60
39 63.1 1 | | . 50
. 60 | | 3 3.58
7 3.58 | 8 1 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - | \$ a51-29027
\$ (39) | 5594.425
5688.525 | | | | 3.32 | 62-6 | 1 | | | | | | | | | | | REVISED | MULTIPLET TABLE | | 91 | |--|--|---
--|---|--| | Laboratory
I A Ref Int
Sm II I P 11.4 A | E P J Multiplet Low High (No) unal B List C Mar 1943 | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | | 4704.397 A 500
4648.160 A 100
4606.514 A 100
4092.266 A 400
3970.528 A 200
3941.874 A 300 | 0.00 2.62 1 1 8 F 1 ° 0.00 2.66 1 1 5 ° 0.00 2.68 2 1 5 ° 0.00 3.08 2 1 3 3 ° 0.00 3.11 1 1 3 5 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 7 ° | <u>Sm II</u> continued
3601.692 A 200
3583.394 A 150
3530.600 A 150
3382.399 A 600
3320.155 A 600d
3312.415 A 400 | 0.18 3.61 31-31 a8F-107°
0.18 3.63 31-41 110°
0.18 3.68 31-41 118°
0.18 3.83 31-31 133°
0.18 3.90 31-32 136°
0.18 3.91 31-31 a8F-137° | Sm II continued
3662.905 A 200
3592.603 A 1500
3402.464 A 500
*3384.658 A 300
3354.185 A 150
3344.353 A 200 | 0.38 3.75 5 4½ 8°F-125°
0.38 3.81 5 6 6½ (39) z8g°
0.38 4.00 5 4 4½ 146°
0.38 4.02 5 5 5 147°
0.38 4.06 5 4 2 149°
0.38 4.07 5 4 2 151° | | 3745.605 A 200d
3693.989\$ A 1200
3304.523 A 200
3250.372 A 200d
3207.185 A 400 | 0.00 3.29 1 2 8F-z8G°
0.00 3.34 1 1 (2) z8G°
0.00 3.73 1 1 124°
0.00 3.80 1 1 129°
0.00 3.85 1 1 134° | *3301.678 A 100
3285.664 A 200
3230.559 A 400
3187.006 A 200
3178.125 A 200 | 0.18 3.92 3\frac{1}{4}(21) 138°
0.18 3.94 3\frac{1}{3}\frac{3}{2}141°
0.18 4.00 3\frac{1}{4}\frac{1}{2}146°
0.18 4.06 3\frac{1}{4}\frac{1}{2}149°
0.18 4.07 3\frac{1}{2}\frac{1}{2}151° | 3321.179 A 800
3272.807 A 200
3253.943 A 200
3215.262 A 200
3196.182 A 150
•3187.216 A 300 | 0.38 4.09 5 5 5 48F-153°
0.38 4.15 5 5 5 5 (40) 155°
0.38 4.17 5 5 6 162°
0.38 4.24 5 5 5 5 166° | | 4777.846 A 200
4719.838 A 200
4687.183 A 400
4676.911 A 500
4523.037 A 150
4239.704 A 300
4183.764 A 150 | 0.04 2.62 1½- ½ a ⁸ F-1°
0.04 2.66 1½-1½ (3) 2°
0.04 2.67 1½-1½ 4°
0.04 2.68 1½-1½ 5°
0.04 2.77 1½-2½ 9°
0.04 3.95 1½-1½ a ⁸ F-18° | 4615.690 A 300
4403.360 A 100
4225.328 A 400
4041.675 A 200
3891.210 A 100
3799.542 A 300
3241.586 A 100 | 0.19 2.86 $\frac{1}{2}$ $\frac{1}$ | 4961.936 A 250
4816.012 A 100
4717.718 A 150
4523.912 A 250
4433.885 A 300 | 0.43 2.92 3 4 4 a ⁶ F-15°
0.43 2.99 3 4 4 (41) 21°
0.43 3.05 3 3 3 4 4 43°
0.43 3.16 3 4 4 43°
0.43 3.22 3 4 4 49° | | 4042.723 A 200
4023.231 A 300
3993.308 A 200
3896.977 A 600 | 0.04 2.96 1 1 1 2 8 F 18°
0.04 2.99 1 1 4 20°
0.04 3.09 1 1 33°
0.04 3.11 1 2 34°
0.04 3.13 1 2 1 37°
0.04 3.21 1 2 2 8 F 47° | 4938.100 A 100
4577.690 A 250
4552.659 A 150
4499.475 A 125 | 0.25 2.75 1 2 2 a ⁶ F-8°
0.25 2.94 1 2 2 (23) 17°
0.25 2.96 1 1 18°
0.25 2.99 1 2 2 20°
0.25 3.08 1 2 2 32° | 4373.462 A 100
4286.640 A 100
4234.573 A 200
4203.051 A 125
4068.334 A 100 | 0.43 3.25 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 3792.025 A 150
3787.203 A 100
3789.197 A 200
3739.197 A 200
3724.902 A 200
3708.410 A 200 | 0.04 3.21 12-22 a8F-47°
0.04 3.29 12- 2 (5) z8g°
0.04 3.30 12-12 61°
0.04 3.34 12-12 z8g°
0.04 3.35 12-22 76° | 4360.720 A 150
4169.478 A 200
4129.231 A 100
4083.584 A 100
4064.576 A 300 | 0.25 3.08 12-25 32°
0.25 3.21 12-25 a6r-47°
0.25 3.24 13-25(24) 52°
0.25 3.27 12-15 55°
0.25 3.28 12-15 59°
0.25 3.36 12-2 74° | 3971.397 A 300
3843.500 A 200
3831.501 A 400
3800.370 A 100
3774.294 A 150 | 0.43 3.54 3\frac{1}{2}-2\frac{1}{2}a^6F-100^\circ\circ\circ\circ\circ\circ\circ\cir | | 3634.928 A 200
3634.928 A 200
3632.504 A 100
3340.579 A 800
3254.377 A 500
3241.161 A 500 | 0.04 3.41 12-12 88F-z8G°
0.04 3.44 12-12 (6) 85°
0.04 3.45 12-2 86°
0.04 3.73 12-1 134°
0.04 3.83 12-12 133°
0.04 3.83 12-12 134° | 3986.045 A 150
3788.125 A 400
3762.588 A 200
3712.764 A 200
3711.543 A 200 | 0.25 3.51 11-21 a ⁶ F-95°
0.25 3.53 11-21 (25) 99°
0.25 3.57 11-21 104°
0.25 3.57 11-11 105° | *3756.411\$ A 600
3535.653 A 150
3396.187 A 250
4834.618 A 100 | 0.43 3.72 3½-3½ a ⁶ F-123°
0.43 3.92 3½-3½(44) 133°
0.43 4.07 3½-2½ 150°
0.48 3.04 6½-5½ a ⁶ F-25° | | 1791.584 A 200
1745.680 A 500
1669.396 A 500
1458.517 A 400 | 0.10 3.68 32-12 8 ⁸ F-5°
0.10 3.70 32-12 (7) 6°
0.10 2.75 32-22 8°
0.10 2.87 32-32 14°
0.10 2.94 32-32 17° | 3650.188 A 200
3214.125 A 150
 | 0.25 3.63 1½-3½ 111°
0.25 4.09 1½-3½ 152° | 4595.291 A 250
4537.952 A 200
4424.339 A 600
4362.040 A 300
4350.465 A 300d | 0.48 3.17 $6\frac{1}{2}-6\frac{1}{2}(45)$ 44°
0.48 3.20 $6\frac{1}{2}-6\frac{1}{2}$ 46°
0.48 3.27 $6\frac{1}{2}-5\frac{1}{2}$ 56°
0.48 3.31 $6\frac{1}{2}-5\frac{1}{2}$ 64° | | 1345.858 A 150
1323.284 A 200
1237.663 A 200
1210.352 A 150
1155.217 A 100
 0.10 3.96 31-11 88F-18°
0.10 3.02 31-11 (8) 23°
0.10 3.03 21-21 24°
0.10 3.07 21-31 30° | 4646.684 A 200
4473.015 A 150
4452.727 A 250
4334.153 A 400
4318.936 A 500 | 0.38 3.82 41-31 a8F-12°
0.28 2.92 41-41 16°
0.28 3.93 41-41 25°
0.28 3.04 41-51 25°
0.28 3.05 41-31 27°
0.28 3.12 41-31 a8F-36°
0.28 3.13 41-51 (27) 38° | 4280.789 A 400
4123.956 A 150
3885.286 A 1000
3767.358 A 200
3706.752 A 300 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 149.831 A 200
1042.905 A 250
1976.270 A 200
1948.113 A 300
1943.239 A 200 | 0.10 3.16 2 3 48F-42°
0.10 3.21 3 2 3 9 47°
0.10 3.23 2 3 5 50°
0.10 3.23 3 2 5 3 50° | 4285.496 A 200
4279.678 A 200
4244.702 A 200
4109.405 A 150
4066.737 A 200 | 0.28 3.16 4\frac{1}{2} 42°
0.28 3.16 4\frac{1}{2} 43°
0.38 3.18 4\frac{1}{2} 45°
0.28 3.28 4\frac{1}{2} 4\frac{1}{2} 8^8 F-58°
0.28 3.31 4\frac{1}{2} 4\frac{1}{2} (28) 63° | 3649.527 A 500
3604.285 A 800
3568.271 A 1500
3418.514 A 500
3347.298 A 150 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 917.442 A 200
880.766 A 150
862.054 A 150
830.293 A 200
812.067 A 150
805.626 A 200 | 0.10 3.25 $3\frac{1}{2} - 3\frac{1}{2}$ $5\frac{1}{4} \circ$
0.10 3.28 $2\frac{1}{2} - 1\frac{1}{2} \cdot a^{8}r - 59 \circ$
0.10 3.30 $3\frac{1}{2} - 1\frac{1}{2} \cdot (10)$ 61°
0.10 3.33 $3\frac{1}{2} - 3\frac{1}{2} \cdot (10)$ 61°
0.10 3.34 $2\frac{1}{2} - 1\frac{1}{2} \cdot z^{8} \circ$
0.10 3.35 $2\frac{1}{2} - 3\frac{1}{2} \cdot 71 \circ$ | 3987.428 A 80
3935.764 A 150
3857.912 A 100
3851.880 A 150
3833.828 A 200 | 0.28 3.48 4½-5½ 91°
0.28 3.48 4½-4½ a8F-92°
0.28 3.50 4½-4½ (29) 94° | *3306.388 A 500
*3301.678 A 100
3286.229 A 300
3276.747 A 200
3239.657 A 300 | 0.48 4.17 62-52 a8F-157°
0.48 4.23 62-62 163°
0.48 4.23 62-62 163°
0.48 4.24 62-52 164°
0.48 4.25 62-52 166°
0.48 4.29 62-62 168° | | 797.283 A 150
793.971 A 500
731.258 A 600
688.418 A 100
670.840 A 1000 | 0.10 3.35 2½-3½ 71° 0.10 3.35 2½-3½ 8 ⁸ F-72° 0.10 3.36 2½-3½(11) 73° 0.10 3.41 2½-3½ z ⁸ G° 0.10 3.45 3½-1½ 87° 0.10 3.47 3½-3½ z ⁸ G° | 3800.887 A 400
3735.980 A 500
3692.221 A 150
*3667.932\$ A 150d
3627.014 A 400
3609.491 A 1200 | 0.28 3.62 4½ -5½ 109° | 4948.627 A 150
4713.057 A 150
4615.441 A 150
4519.633 A 200
4454.629 A 200 | 0.54 3.04 43-51 a6F-25°
0.54 3.16 43-42(49) 43°
0.54 3.23 43-43 49°
0.54 3.27 43-53 56°
0.54 3.31 43-53 64° | | 627.971 A 100
623.316 A 200
621.229 A 600
584.259 A 100
511.227 A 150 | 0.10 3.51 3 2 2 a 8 - 95°
0.10 3.51 3 2 2 13 96°
0.10 3.51 3 2 2 97°
0.10 3.55 3 2 3 102°
0.10 3.62 3 108° | 3609.491 A 1200
*3384.658 A 300
3368.568 A 200
3336.124 A 200
3310.661 A 500
3187.787 A 200 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | *4220.659 A 200
4188.128 A 200
*4178.019 A 100d
*4155.217 A 100
4107.387 A 200 | 0.54 3.47 41-31 a ⁶ F-z ⁸ G°
0.54 3.49 41-32 (50) 93°
0.54 3.50 41-41 94°
0.54 3.51 41-31 97°
0.54 3.55 41-41 101° | | 295.813 A 300
231.528 A 200
216.850 A 300
187.216 A 300 | 0.10 3.85 3 1 48F-134°
0.10 3.92 3 3 3 139°
0.10 3.94 3 3 141°
0.10 3.98 3 3 144° | 3169.875 A 250
4952.371 A 150
4566.206 A 200
4543.948 A 250 | 0.28 4.17 42-52 157° 0.33 3.83 32-32 a ⁶ F-12° 0.33 3.03 32-32 32 27° 0.33 3.13 32-32 36° 0.33 3.13 32-32 36° 0.33 3.13 32-32 36° | 4075.845 A 250
3979.200 A 150
3826.202 A 400
*3760.694 A 500
3650.998 A 150 | 0.54 3.57 4 4 4 3 6 F 103°
0.54 3.64 4 3 3 (51) 113°
0.54 3.77 4 4 4 127°
0.54 3.82 4 4 173°
0.54 3.82 4 4 173°
0.54 3.82 4 4 138° | | 815.808 A 400
693.628 A 150
674.599 A 600
591.818 A 100
511.829 A 200 | 0.18 2.75 3 2 a a Fr 8°
0.18 2.81 3 3 3 4 14 11°
0.18 2.81 3 3 3 4 12°
0.18 2.87 3 4 14°
0.18 2.92 3 4 15° | 4420.526 A 200
4292.182 A 150
*4064.576 A 300
4035.110 A 250
3976.430 A 200 | 0.33 3.12 32 32 47° 0.33 3.31 32 32 47° 0.33 3.37 32 32 46° 0.33 3.39 32 12 85° 0.33 3.44 25 12 88° 0.33 3.46 32 12 88° 0.33 3.51 32 32 97° | 3389.325 A 200
3371.209 A 150
3333.635 A 150
3228.784 A 200 | 0.54 4.18 4 3 4 3 4 6 7 159°
0.54 4.20 4 3 3 (52) 161°
0.54 4.24 4 4 165°
0.54 4.36 4 171° | | 390.858 A 600
329.016 A 400
309.012 A 200
365.075 A 100d
220.659 A 200 | 0.18 2.99 3 4 4 a ⁶ F-21°
0.18 3.03 3 3 2 4 15 24°
0.18 3.05 3 3 3 2 27°
0.18 3.05 3 3 2 3 2 32°
0.18 3.11 3 2 2 3 34° | 3947.838 A 100
3881.383 A 100
3847.511 A 150
3838.941 A 200
3764.370 A 300 | 0.33 3.46 3 12 88°
0.33 3.51 3 2 3 97°
0.33 3.54 3 3 3 4 6 7 100°
0.33 3.55 2 3 3 3 107°
0.33 3.61 2 3 3 107°
0.33 3.62 2 108°
0.33 3.63 2 2 111° | 4913.248 A 150
4847.760 A 200
4718.329 A 150
4467.342 A 500
4378.236 A 150
4236.745 A 250 | 0.66 3.17 5\\ \frac{1}{2} \cdot \frac{6}{2} \cdo | | 178.019 A 100d
152.209 A 200
113.902 A 100
047.160 A 80
019.982 A 80 | 0.18 3.14 3-2-2 a ⁸ F-39°
0.18 3.16 3-3-4(16) 42°
0.18 3.18 3-3-4 45°
0.18 3.23 3-2-4 51°
0.18 3.25 3-2-5 54° | 3755.276 A 200
•3743.868 A 500
•3707.167\$ A 100d
3645.387 A 200
3369.455 A 200 | 0.33 3.62 31 110°
0.33 3.63 22 21 111°
0.33 3.66 21 12 a ⁶ F-116°
0.33 3.72 22 32 (35) 123°
0.33 3.99 22 12 145°
0.33 4.07 22 22 150° | 4153.332 A 100
4118.551 A 400
4082.600 A 100d
3728.469 A 400
3467.874 A 100 | 0.66 3.63 51-41 8 ⁶ F-110°
0.66 3.65 51-44 (54) 114°
0.66 3.65 51-41 118°
0.66 3.97 51-61 143°
0.66 4.23 51-61 163°
0.66 4.24 51-41 165° | | 986.682 A 150
946.511 A 200
928.279 A 400
990.080 A 200
975.545 A 200 | 0.18 3.38 3\frac{1}{2}4\frac{1}{2}a^8F58^\times
0.18 3.31 3\frac{1}{2}4\frac{1}{2}(17) 63^\times
0.18 3.33 3\frac{1}{2}-3\frac{1}{2} 66^\times
0.18 3.36 3\frac{1}{2}-3\frac{1}{2} 76^\times
0.18 3.37 3\frac{1}{2}-2\frac{1}{2} 76^\times | 4854.365 A 150
4889.568 A 250
4642.235 A 500
4593.544 A 150 | 0.38 2.92 5 4 4 a F-15°
0.38 2.93 5 4 4 (38) 16°
0.38 3.04 5 5 5 25° | 7082.37 A 400d 6862.82 A 1001 | 0.66 4.24 5 4 165°
0.88 2.62 1 4 4 8 H 1°
0.88 2.68 1 2 1 5 5° | | 371.778 A 300
335.725 A 100d
324.175 A 200
760.694 A 500
743.868 A £00 | 0.18 3.37 3 4 4 a ⁸ F-77°
0.18 3.40 3 4 (18) 81°
0.18 3.41 3 2 280°
0.18 3.47 3 3 2 280°
0.18 3.48 3 4 92° | 4593.544 A 150
4434.323 A 400
4421.138 A 300
4368.031 A 150d
4347.801 A 400
4362.677 A 300 | 0.38 3.16 54-54 243° 0.38 3.16 54-64 43° 0.38 3.20 54-64 49° 0.38 3.22 54-44 49° 0.38 3.22 54-65 57° | 6790.00 A 200d
5116.700 A 100d
-7039.22 A 600d | 0.93 2.75 21-21 a ⁶ H-8°
0.93 3.34 22-12(56) z ⁸ G°
 | | 736.805 A 100
710.869 A 100
708.654 A 300
345.290 A 300
534.290 A 1500d? | 0.18 3.50 3½-4½ a ⁸ F-94°
0.18 3.51 3½-3½(19) 96°
0.18 3.51 3½-3½ 97°
0.18 3.57 3½-4½ 103°
0.18 3.58 3½-4½ z ⁸ G° | 4256.393 A 400
4266.128 A 100
3983.138 A 200
3982.397 A 800
3780.927 A 150
3718.877 A 500 | 0.38 3.28 5½-6½ 57° 0.38 3.31 5½-4½ a ⁸ F-63° 0.38 3.48 5½-5½ (38) 91° 0.38 3.52 5½-5½ 98° 0.38 3.64 5½-5½ 112° | 7042.24 A 500d
6856.03 A 400d | 1.07 2.82 4½-3½ a ⁸ H-12°
1.07 2.87 4½-3½(58) 14° | | -92 | | REVISED MULTIPLET TABLE | | |---|--|--|---| | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | Laboratory EP J Maultiplet
IA Ref Int Low High (No) |
Laboratory EP J Multiplet
IA Ref Int Low High (No) | | Sm II continued | | Eu I I P 5.64 Anal A List D Apr 1942 | Eu II continued | | 7030.44 A 800d
6731.84 A 500d | 1.16 2.92 5½-4½ a ⁸ H-15°
1.16 2.99 5½-4½(59) 21° | 4594.03// A 10000R 0.00 2.69 3½-4½ a85°-y8P
4627.22 A 8000R 0.00 2.67 3½-3½ (1)
4661.88 A 7000R 0.00 2.65 3½-3½ | 3531.151 A 60 3.23 6.73 5-5 z ⁹ P-e ⁹ D° 3313.33 A 400 2.99 6.71 4-4 (24) 3272.77 A 400 2.93 6.71 3-3 cont 3319.89 A 80 2.99 6.71 4-3 | | 6472.34 A 300d | 1.37 3.28 7½-6½ a ⁸ H-57° (60) | | 3377.78 A 600 2.93 6.70 3-2
3308.03 A 300 2.99 6.72 4-5 $z^{9}P_{-9}^{-2}D^{0}$ | | 8032.03 A 250d
•7039.23 A 600d | 1.41 3.94 $3\frac{1}{2}-3\frac{1}{2}$ $a^{8}G-17^{\circ}$ 1.41 3.16 $3\frac{1}{2}-4\frac{1}{2}(61)$ 43° | Eu II I P 11.21 Anal B List C May 1942 3819.67 A 6000R 0.00 3.23 4-5 a 95-29 P | (25) 4485.15 A 100 3.31 6.06 4-4 z ⁷ P-e ⁹ So (26) | | 6569.31 A 1000d | 1.49 3.37 8½-7½ a ⁸ H-75° (62) | 4129.73 A 5000r 0.00 2.99 4-4 (1)
4205.05 A 6000r 0.00 2.93 4-3
3724.94 A 4000 0.00 3.31 4-4 a ⁹ 5°-z ⁷ P | 4383.17 A 200 3.31 6.13 4-3 z ⁷ P-e's° 4464.97 A 200 3.36 6.13 2-3 (27) | | 8025.12 A 400 | 1.51 3.05 3½-3½ b ⁸ F-27° (63) | 3688.42 A 1500 0.00 3.35 4-3 (2) | 3616.152 A 100 3.31 6.73 4-5 z ⁷ P-e ⁹ D ^e 3673.19 A 80 3.35 6.71 3-3 (38) | | 8510.90 A 200d
8348.68 A 150d | 1.59 3.04 41-51 b F-25°
1.59 3.06 41-51 (64) 28°
1.59 3.16 41-41 43° | 3991.33 A 300 0.00 4.13 4-5 a ³ S ² -Z ² D
3077.358 A 200 0.00 4.01 4-4 (3)
3173.607 A 100 0.00 3.89 4-3 | 3678.259 A 100 3.36 6.72 2-1 $z^7P-e^7D^0$ (29) 3396.58 A 200 3.31 6.95 4-5 $z^7P-f^7D^0$ | | 7837.27 A 400

7928.14 A 800 | 1.59 3.16 4½-4½ 43°
 | 4435.58 A 3000 0.21 2.99 3-4 a ⁷ 5°-z ⁹ P
4522.59 A 2000 0.21 2.93 3-3 (4) | (30)
Strongest Unclassified Lines of <u>Eu II</u> | | 8485.99 A 400d | 1.68 3.13 6½-5½ a804-38° | 3971.98 A 4000r 0.21 3.31 3-4 a ⁷ S°-z ⁷ P 3930.50 A 4000r 0.21 3.35 3-3 (5) | 3861.18 A 80 V
3815.495 A 80 V | | 8048.70 A 400d | 1.74 3.27 6½-5½ b ⁸ F-56° | 3907.10 A 3000r 0.21 3.36 3-2
3097.45 A 100 0.21 4.19 3-2 a ⁷ 8°-103 | 3717.69 A 80 V | | 8026.32 A 500d | | 3054.94 A 600 0.21 4.25 3-3 a ⁷ s ⁶ -y ⁹ P1 | 3687.78 A 80 V
3679.500 A 80 V
3390.783 A 80 V
3130.73 A 80 V | | 8068.46 A 800 | 1.74 3.27 4½-5½ 8 ⁸ P-56° (68) | 6645.11 A 8000 1.37 3.23 6-5 a ⁹ D ^e -z ⁹ P
7370.22 A 2500 1.31 2.99 5-4 (8)
7426.57 A 1500 1.27 2.93 4-3 | 3130110 X 00 1 | | 8305.79 A 500d
7935.08 A 400d | 1.79 3.28 $7\frac{1}{2}$ $-6\frac{1}{2}$ 8^{0} -57° 1.79 3.37 $7\frac{1}{2}$ $-7\frac{1}{2}$ (69) 75° | 7426.57 A 1500 1.27 3.93 4-3
6437.64 A 4000 1.31 3.23 5-5
7194.81 A 1500 1.27 2.99 4-4
7301.17 A 2500 1.24 2.93 3-3 | <u>Gd I</u> I P 6.16 Anal C List D June 1943 | | Strongest Unclassifie | d Lines of <u>Sm II</u> | 6303.41 A 2000 1.27 3.23 4-5
7077.10 A 3000 1.24 2.99 3-4 | 7168.37 A 3000 0.21 1.93 6-5 a ⁹ D ^e -z ⁹ P
7733.50 A 1500 0.12 1.72 5-4 (1) | | 4515.094 A 150
4478.657 A 125 | IX | 7317.55 A 1500 1.32 3.93 2-3
6173.05 A 2000 1.31 3.31 5-4 a ⁹ D°-z ⁷ P ⁺ | 6730.73 A 1500 0.12 1.96 5-6 a ⁹ D°-z ¹¹ 6828.25 A 1500 0.07 1.87 4-5 (2) | | 4444.259 A 150
4352.101 A 200
4381.009 A 100 | IX
IX
IX | 6049.51 A 2000 1.27 3.31 4-4 (9)
5872.98 A 500 1.24 3.35 3-3 | 6916.57 A 2000 0.03 1.81 3-4
6991.92 A 1500 0.00 1.77 2-3 | | 3962.995 A 200d
3959.527 A 100 | III
III | 5818.74 A 1000 1.22 3.35 2-3 | 5856.22 A 4000 0.12 2.23 5-6 a ⁹ D ^o -z ⁹ F
5696.22 A 8000 0.07 2.23 4-5 (3) | | 3903.417 A 500
3875.193 A 100 | III | *3917.39 \$ A 60 1.37 4.52 6-5 a ⁹ D°-y ⁹ P* 4017.58 A 100 1.31 4.39 5-4 (10) 4151.52 A 20 1.27 4.25 4-3 | 5617.91 A 4000 0.00 2.20 2-3
6114.07 A 2000 0.21 2.23 6-6 | | 3854.209 A 300
3848.779 A 200d | III | *3964.90 § A 60 1.27 4.39 4-4
4112.04 A 30 1.34 4.35 3-3 | 5851.63 A 5000 0.12 2.23 5-5
5632.25 A 2500 0.00 2.19 2-2 | | 3797.730 A 600
3780.763 A 300
3778.136 A 400 | III
III
III | 3928.87 A 15 1.24 4.39 3-4
4085.38 A 40 1.23 4.25 2-3 | 5701.35 A 2500 0.03 2.19 3-2 | | 3767.755 A 150 | iii
III | 3741.31 A 400 1.37 4.67 6-5 a ⁹ D°-x ⁹ P 3761.12 A 300 1.31 4.60 5-4 (11) 3799.009 A 100 1.27 4.52 4-3 | 4313.845 A 2000 0.03 2.69 3-3 | | 3758.968 A 200
3757.529 A 300
3741.288 A 300 | III | 3674.634 A 50 1.31 4.67 5-5
3714.904 A 100 1.27 4.60 4-4 | 4306.340 A 1500 0.00 2.87 2-2 | | 3739.117 A 300
3737.141 A 300 | III | 3765.93 A 150 1.24 4.53 3-3
3683.267 A 40 1.24 4.60 3-4
3743.556 A 100 1.22 4.52 2-3 | 4053.642 A 2500 0.12 3.17 5-6 (5)
4078.700 A 3000 0.07 3.09 4-5 | | 3721.847 A 400
3712.109 A 100
3706.979 A 200 | III
III
IV | 3713 45 A 125 1.24 4.57 3-2 a ⁹ D°-115 | 4058.219 A 2500 0.03 3.07 3-4 | | 3706.979 A 200
3700.922 A 150
3677.793 A 200 | III
IV | 3508.852 A 20 1.31 4.83 5–4 20°-y°P 3508.731 A 10 1.27 4.79 4–3 (13) 3646.75 A 35 1.22 4.61 2–2 | 5015.04 A 1500 1.05 3.51 8-9 a ¹¹ Fe-z ¹ 5103.45 A 2000 0.98 3.40 7-8 (6) 5155.845 A 1500 0.92 3.32 6-7 | | 3670.677 A 150
3662.693 A 200 | III
IV | 3646.75 A 35 1.22 4.61 2-2
3440.999 A 80 1.24 4.83 3-4
3461.38 A 80 1.22 4.79 2-3 | 5197.768 A 1300 0.88 3.35 5-6
5219.40 A 3000 0.84 3.30 4-5 | | 3656.221 A 200
3638.767 A 400 | IV
IV
III | 3710.870 A 80 1.31 4.64 5-6 a ⁹ D°-116 | 5255.805 A 1500 0.81 3.16 3.4
5251.180 A 2000 1.05 3.40 8-8
5283.076 A 3000 0.98 3.32 7-7 | | | III | 3611.57 A 100 1.27 4.69 4-4 a DD-121 (15) 3603.20 A 200 1.27 4.70 4-4 a DD-122 | 7 5301.67 A 4000 0.92 3.25 6-6
5307.30 A 4000 0.88 3.20 5-5
7 5321.777 A 4000 0.84 3.16 4-4 | | 3580.941 A 300
3566.836 A 150
3559.101 A 300d | III | 0(16)7- | 5331.777 A 4000 0.84 3.16 4-4
5302.78 A 3000 0.81 3.14 3-3
5321.496 A 2000 0.79 3.11 2-2 | | 3418.151 A 300
3408.676 A 400 | IV
IV | 3543.153 A 80 1.23 4.71 2-2 (17) | 5348.67 A 2000 0.79 3.09 2-1 | | 3365.863 A 400
3350.875 A 200
3348.683 A 200 | III | 3623.54 A 150 1.37 4.78 6-7 a ⁹ p°-125 (18)
3552.516 A 100 1.31 4.79 5-5 a ² p°-126 | 5350.38 A 4000 1.54 3.85 7-8 a ⁹ F°-z ⁹ (
5353.26 A 3000 1.46 3.77 6-7 (7) | | 3348.683 A 200
3343.494 A 200
3325.258 A 300 | IA
IA
IA | (19)
3369.055 A 200 1.31 4.98 5-6 a ⁹ p°-131 | 5343.00 A 3000 1.39 3.70 5-6
5333.30 A 8000 1.34 3.66 4-5 | | 3316.579 A 300 | IV | 3435.022 A 80 1.37 4.98 6-6 (20) | | | 3307.017 A 500
3298.104 A 500
3273.483 A 500 | III
III
IV | (21) | Gd II I P ? Anal C List B Sept 1943 | | 3253.401 A 300 | IA | 4355.09 A 300 3.23 6.06 5-4 z ⁹ P-e ⁷ S°
4011.69 A 100 2.99 6.06 4-4 (22)
3943.08 A 40 2.93 6.06 3-4 | 3763.00 A 50 0.24 3.52 $6\frac{1}{2} - 5\frac{1}{2}$ a ¹⁰ D°-z ² 3952.00 A 300 0.14 3.27 $5\frac{1}{2} - 4\frac{1}{2}$ (1) | | 3218.614 A 300
3211.734 A 400 | IV
IV | 3380.35 A 100 2.99 6.64 4-4 z ⁹ P-1° | 3993.213 A 200 0.08 3.17 42-33
3656.152 A 1500 0.14 3.52 52-52 | | 3193.014 A 300
3183.916 A 400 | I V | 3521.09 A 100 3.23 6.74 5-6 $z^9P_{-}e^9P_{-}$ | 3871.54 A 80 0.08 3.27 4½-4½
† 3934.824 A 300† 0.03 3.17 3½-3½
3587.186 A 40 0.08 3.52 4½-5½ | | 3152.525 A 300 | IV | 3366.39 A 300 2.93 6.71 3-4 | 3763.00 A 50 0.34 3.52 62-52 a100°-z 3952.00 A 300 0.14 3.27 52-42 (1) 3993.213 A 200 0.08 3.17 42-32 3871.54 A 80 0.08 3.27 42-42 1 3934.824 A 3001 0.08 3.27 42-42 3587.186 A 40 0.08 3.52 42-52 38816.64 A 250 0.03 3.27 32-42 3894.696 A 2000 0.00 3.17 22-32 | | | | | REVISED A | OPILLE | IIABEE | | | 75 | |---|-------------------------------------
---|---|--|--|---|---|---| | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref Int | E P J
Low High | Multiplet (No) | | Gd II continued | | | Gd II continued | | | Gd II continued | | | | 3422.466 A 10000 | 0.24 3.84 | $6\frac{1}{2}$ - $7\frac{1}{2}$ a ¹⁰ D°-z ¹⁰ F
$5\frac{1}{2}$ - $6\frac{1}{2}$ (2) | 4078.444 A 1300 | 0.60 3.68 | $5\frac{1}{2}-6\frac{1}{2} a^8 D^{\circ}-z^{10}F$ $4\frac{1}{2}-5\frac{1}{2}$ (15) | 3009.650 A 150 | 0.60 4.70 $5\frac{1}{2}-4\frac{1}{2}$ | a8D0_8 t | | 3545.797 A 3000
3671.20 A 1500
3716.36 A 1000 | 0.14 3.62
0.08 3.44
0.03 3.35 | 45-55
35-45 | 4184.252 A 2000
4212.001 A 800
4251.733 A 2000 | 0.49 3.44
0.42 3.35
0.38 3.28 | 35-45
25-35 | 2969.267 A 50 | 0.60 4.75 $5\frac{1}{2} - 5\frac{1}{2}$ | a8De_9 | | 3759.00 A 300
3646.19 A 3000 | 0.00 3.28
0.24 3.62 | 31-31
61-61 | 4380.490 A 1500
4343.179 A 1500 | 0.35 3.24
0.60 3.44 | 12-22
52-52 | 2965.428 A 400
3012.190 A 600 | 0.60 4.76 $5\frac{1}{2}-5\frac{1}{2}$
0.60 4.69 $5\frac{1}{2}-4\frac{1}{2}$ | a ⁸ D°-z ⁶ F†
(39) | | 3743.47 A 2000
3768.39 A 2000
3796.37 A 2500 | 0.14 3.44
0.08 3.35
0.03 3.28 | 5 1 - 5 2 3 4 2 4 3 3 5 - 3 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 | 4310.981 A 200
4322.195 A 125
*4327.125§ A 1500 | 0.49 3.35
0.38 3.24
0.35 3.20 | 41-41
21-21
11-11 | 4510.380 A 30d? | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3813.97 A 2000
3855.56 A 200 | 0.00 3.24
0.24 3.44 | 23-23
63-53 | 4478.795 A 250
4419.032 A 800 | 0.60 3.35
0.49 3.28 | 51-41
41-31 | 4344.487 A 40 | $0.43 3.27 3\frac{1}{2}-4\frac{1}{2}$ | a85°-z10p | | 3844.579 A 500
3850.69 A 800
3852.45 A 1000 | 0.14 3.35
0.08 3.28
0.03 3.24 | 5\$-4\$
4\$-3\$
3\$-2\$ | 4387.674 A 300
4369.771 A 500 | 0.42 3.24
0.38 3.20 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4498.276 A 300
4215.023 A 600 | 0.43 3.17 3½-3½ | (31) | | 3850.97 A 1200 | 0.00 3.20 | 3 1 -1 1 | 4360.917 A 250 | | $3\frac{1}{2}-4\frac{1}{2} a^8 D^6-3$ (16) | 4390.953 A 300 | | a ⁸ S°-z ¹⁰ F
(32) | | 3968.361 A 60
3887.157 A 40
3831.80 A 100 | 0.14 3.25
0.08 3.25
0.03 3.25 | 51-41 a ¹⁰ D°-2
41-42 (3)
31-42 | 3843.80 A 25
4162.732 A 500
4188.099 A 60 | 0.60 3.81
0.49 3.46
0.42 3.37 | 5½-4½ a ⁸ D°-z ⁸ P† 4½-3½ (17) 3½-2½ | 4364.140 A 25
4073.195 A 400 | | a ⁸ S°-2
(33)
a8s° -8p+ | | 3367.093 A 100 | 0.14 3.81 | 51-41 a10po-z8p | 3719.53 A 300
4070.390 A 200 | 0.49 3.81
0.42 3.46 | 3 1-2 1
4 1 - 4 1
3 1 - 3 1 | 4191.067 A 800 | | a ⁸ S ⁹ -z ⁸ P† (34) | | 3654.62 A 2000d
3697.73 A 1000 | 0.08 3.46
0.03 3.37 | 41-31 (4)
31-81
43-41 | 3645.62 A 300
4013.953 A 60 | 0.42 3.81
0.38 3.46 | 3 | *4170.108§ A 150 | 0.43 3.38 $3\frac{1}{2} - 3\frac{1}{2}$ | a85°-3
(35)
a85°-z10D† | | 3308.517 A 80
3605.665 A 100
3682.26 A 800 | 0.08 3.81
0.03 3.46
0.00 3.37 | 42-42
33-33
83-83 | 4167.159 A 40 | 0.42 3.38 | $3\frac{1}{2}-3\frac{1}{2}$ a ⁸ D°-3 † | 3881.84 A 50
3760.71 A 200 | | | | 3268.335 A 400
3571.933 A 300 | 0.03 3.81
0.00 3.46 | 3 1 - 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3822.17 A 80
3826.05 A 200 | 0.60 3.83
0.49 3.72 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3763.33 A 60
3769.45 A 100 | 0.43 3.70 3½-3½
0.43 3.70 3½-3½ | a ⁸ S ^e -z ⁸ D
(37) | | 3732.45 A 100 | 0.08 3.38 | $4\frac{1}{2}-3\frac{1}{2} a^{10}D^{0}-3$ (5) | 3902.398 A 1000
3957.672 A 1000
3987.214 A 600 | 0.42 3.59
0.60 3.72
0.49 3.59 | 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 3512.219 A 800 | | a8ge_z6p+ | | 3524.196 A 1000
3491.954 A 2000 | 0.03 3.53
0.00 3.53 | 3½-3½ a ¹⁰ p°-4
3½-3½ (6) | 3872.62 A 60
*4130.372 A 3000 | 0.42 3.61
0.60 3.59 | 32-32
52-42 | 3441.790 A 400
3469.307 A 100 | 0.43 4.01 $3\frac{1}{2}$ - $3\frac{1}{2}$ 0.43 3.98 $3\frac{1}{2}$ - $3\frac{1}{2}$ | a ⁸ S°-z ⁸ F†
(39) | | 3439.990 A 6000
3454.145 A 1500
3518.632 A 30 | 0.24 3.83
0.14 3.72
0.08 3.59 | $6\frac{1}{2}-6\frac{1}{2} a^{10}D^{0}-z^{10}D$
$5\frac{1}{2}-5\frac{1}{2}$ (7)
$4\frac{1}{2}-4\frac{1}{2}$ | 3916.508 A 3000
3836.91 A 300
3760.92 A 100 | 0.60 3.75
0.49 3.71
0.42 3.70 | $5\frac{1}{2}-5\frac{1}{2}$
$a^{8}D^{9}-z^{8}D^{+}$
$4\frac{1}{2}-4\frac{1}{2}$ (20)
$3\frac{1}{2}-3\frac{1}{2}$ | 3463.984 A 5000
3468.989 A 3000 | 0.43 3.99 $3\frac{1}{2}-4\frac{1}{2}$ 0.43 3.98 $3\frac{1}{2}-3\frac{1}{2}$ | a ⁸ S ^e _y ⁸ P
(40) | | 3449.616 A 800
*3423.92 \$ A 1500
3549.365 A 3000 | 0.03 3.61
0.00 3.60
0.24 3.72 | 33-33
23-23
63-53 | 3760.92 A 100
3699.73 A 800
3969.293 A 300
3839.64 A 300 | 0.42 3.70
0.35 3.69
0.60 3.71
0.49 3.70 | 15-15
55-45
44-35 | 3482.602 A 800
3315.590 A 400
3358.434 A 300 | | a85°_y10p | | 3584.962 A 3000
3494.404 A 3000 | 0.14 3.59
0.08 3.61 | 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3767.04 A 500
3730.84 A 1000 | 0.42 3.70
0.38 3.69 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 3010.899 A 250 | 0.43 4.52 $3\frac{1}{2}-4\frac{1}{2}$ 0.43 4.55 $3\frac{1}{2}-2\frac{1}{2}$ | | | 3454.904 A 2000
3350.474 A 10000
3392.530 A 2000 | 0.03 3.60
0.14 3.83
0.08 3.72 | 3 1 - 2 1 5 1 - 2 1 5 1 - 2 1 5 | 3787.56 A 400
3758.31 A 200
3712.70 A 2000 | 0.49 3.75
0.42 3.71
0.38 3.70 | 42-52
31-41
21-31 | 2993.038 A 500 | | | | 3473.219 A 2000
3418.733 A 2000 | 0.03 3.59
0.00 3.61 | 3 <u>1</u> -4 <u>1</u>
3 <u>1</u> -3 <u>1</u> | 3687.74 A 800
3578.596 A 30 | 0.35 3.70
0.49 3.94 | 1½-3½ 4½-3½ a ⁸ D°-z ⁶ P† | 4734.427 A 100
4802.575 A 80
4316.052 A 600 | 0.66 3.27 $5\frac{1}{2}-4\frac{1}{2}$
0.60 3.17 $4\frac{1}{2}-3\frac{1}{2}$
0.66 3.52 $5\frac{1}{2}-5\frac{1}{2}$ | a ¹⁰ F°-z ¹⁰ P† (43) | | 3462.997 A 200
3365.591 A 400 | 0.14 3.71
0.03 3.70 | $5\frac{1}{2}-4\frac{1}{2} a^{10}D^{\circ}-z^{8}D^{+}$
$3\frac{1}{2}-3\frac{1}{2}$ (8)
$3\frac{1}{2}-1\frac{1}{2}$ | 3409.297 A 500
3321.348 A 30 | 0.42 4.04
0.38 4.10 | 4½-3½ a ⁸ D°-z ⁶ P† 3½-2½ (21) 2½-1½ | 4627.66 A 40
4719.040 A 60 | 0.60 3.27 41-41
0.55 3.17 31-31 | | | 3345.985 A 2000
3422.751 A 500
3401.067 A 300 | 0.00 3.69
0.14 3.75
0.08 3.71 | 35-15
55-55
45-45 | 3510.133 A 30
*3369.618 A 400
3296.668 A 30 | 0.42 3.94
0.38 4.04
0.35 4.10 | 31-31
31-21
11-11 | 4327.140 A 200
4073.759 A 1500 | 0.60 3.52 4½-5½ 0.82 3.84 7½-7½ | a ¹⁰ F°-z ¹⁰ F† | | 3360.711 A 1000
3336.180 A 2500 | 0.03 3.70
0.00 3.70 | 3 1 - 3 1
2 1 - 2 1 | 3468.083 A 200 | 0.38 3.94 | 22-32 | *4262.092§ A 2500
4438.266 A 150 | 0.82 3.84 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 | (44) | | 3362.233 A 10000
3358.620 A 8000
3331.383 A 4000 | 0.08 3.75
0.03 3.71
0.00 3.70 | 45-55
35-45
25-35 | 3481.275 A 5000
3450.376 A 4000
3416.948 A 2500 | 0.50 4.14
0.49 4.07 | $5\frac{1}{2}-6\frac{1}{2} a^{8}D^{6}-z^{8}F^{+}$
$4\frac{1}{2}-5\frac{1}{2}$ (33)
$3\frac{1}{2}-4\frac{1}{2}$ | 4481.056 A 300
4521.296 A 100 | 0.60 3.35 41-41
0.55 3.28 31-31 | | | 3196.532 A 150 | | | 3416.948 A 3500
3399.406 A 500
3399.991 A 1200 | 0.42 4.03
0.38 4.01
0.35 3.98 | 25-45
25-35
15-25 | 4558.080 A 250
4394.719 A 25
4550.954 A 150 | 0.50 3.20 15-15
0.82 3.62 75-65
0.73 3.44 65-55 | | | 3052.511 A 50
3133.094 A 150 | 0.00 4.04
0.00 3.94 | 41-31 a ¹⁰ D°-z ⁶ P† 21-22 (9) 22-32 | 3557.053 A 1000
3481.797 A 3000
3439.784 A 1500 | 0.60 4.07
0.49 4.03 | 51-51
41-41
21-21 | 4581.086 A 200
*4597.91 § A 500 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3161.369 A 2500
3145.00 A 2500 | 0.24 4.14
0.14 4.07 | $6\frac{1}{2}-6\frac{1}{2}$ $a^{10}D^{\circ}-z^{8}F$
$5\frac{1}{2}-5\frac{1}{2}$ (10) | 3439.784 A 1500
3424.592 A 1200
3590.468 A 100 | 0.42 4.01
0.35 3.96
0.60 4.03 | 13-13
55-45 | 4601.05 A 500
4596.978 A 400
3959.523 A 500? | 0.55 3.24 31-21
0.52 3.20 21-11
0.73 3.84 61-71 | | | 3119.08 A 60
3101.911 A 850d
3098.899 A 300 | 0.08 4.03 | 45-45
35-35 | 3505.512 A 3000
3467.267 A 3500 | 0.49 4.01
0.42 3.98 | 12-12
12-22
12-12
12-2 | *4163.092§ A 250
4344.300 A 100 | 0.66 3.62 $5\frac{1}{2}$ $-6\frac{1}{2}$ 0.60 3.44 $4\frac{1}{2}$ $-5\frac{1}{2}$ | | | 3223.740 A 10007
3171.09 A 125 | 0.34 4.07
0.14 4.03 | 25-25
65-55
55-45 | 3451.233 A 2000
3432.994 A 1500 | 0.38 3.96
0.35 3.95 | 12- 2 | 4408.248 A 400
*4466.547\$ A 500
4506.333 A 200 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3138.094 A 80
3124.250 A 150
3119.336 A 25 | 0.08 4.01
0.03 3.98
0.00 3.96 | 200 - 100 - | *3640.18 \$ A 50
3480.547 A 60
3528.545 A 300 | 0.60 3.99
0.42 3.97
0.49 3.99 | 51-41 a ⁸ D°-y ⁸ P† 32-31 (23) 43-42 31-32 31-32 31-31 12-32 | 4757.791 A 80 | 0.66 3.25 5\frac{1}{2}-4\frac{1}{2} | a ¹⁰ F°-2† | | 3085.621 A 60
3093.846 A 25 | 0.14 4.14
0.08 4.07 | 5 1 6 1 4 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3466.952 A 600
3439.208 A 3000 | 0.42 3.98
0.38 3.97 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | 4321.110 A 200
4382.061 A 60 | 0.55 3.37 3½-2½ | (45)
a ¹⁰ Fo_z8p†
(46) | | 3083.350 A 200
3076.925 A 2000 | 0.03 4.03
0.00 4.01 | 33-43
23-33 | *3461.952\$ A 300
3425.930 A 600
3412.753 A 80 | 0.42 3.99
0.38 3.98
0.35 3.97 | 3 1 -4 1
31-31
11-21 | 4253.366 A 800
4330.606 A 600
3791.72 A 30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3160.69 \$ A 200
3135.034 A 200 | 0.08 3.98
0.03 3.97 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ¹⁰ D°-y P† 3\frac{1}{2}-3\frac{1}{2} (11) | 3407.61 A 1500? | 0.60 4.22 | 5½-5½ a ⁸ D°-y ¹⁰ P | 3791.72 A 30
4204.857 A 300
4296.076 A 1000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3156.532 A 2000
3123.989 A 1000
3119.941 A 800 | 0.08 3.99
0.03 3.98
0.03 3.99 | 41-31 a ¹⁰ p°-y P† 31-32 (11) 41-42 31-42 32-42 32-42 | 3374.688 A 300
3356.513 A 80
3419.069 A 50 | 0.49 4.15
0.43 4.10
0.49 4.10 | 4½-4½ (24)
3½-3½
4½-3½ | *4359.152 A 40
4308.233 A 40 | | a ¹⁰ F°-3† (47) | | 3098.644 A 800
3100.504 A 10000 | 0.00 3.98 | 3½-3½
61-51 a10ne_v10n | 3309.582 A 60
3313.731 A 600
3318.055 A 100 | 0.49 4.33
0.43 4.15
0.38 4.10 | 5-5-5-4 a ⁸ pe-y ¹⁰ p
4-4-4-5 (34)
3-3-5-4-4-5-5-4-4-5-5-3-4-5-3-2-3-2 | 4140.450 A 100 | | | | 3081.993 A 8000
3068.643 A 4000 | 0.14 4.15
0.08 4.10 | 61-51 a ¹⁰ p°-y ¹⁰ p
51-42 (12)
41-31
51-51 | 3161.638 A 40 | 0.60 4.50 | 5] -5] a ⁸ p•-y ⁸ D† | 4063.59 A 200 | | a ¹⁰ F°-4
(48) | | 3027.602 A 8000
3032.845 A 10000
3034.051 A 8000 | 0.14 4.22
0.08 4.15
0.03 4.10 | 5 5 -5 5
45-4 5
34-34 | 3003.583 A 150
2960.926 A 500
3143.131 A 400 | 0.42 4.53
0.38 4.55
0.60 4.52 | 51-51 a ⁸ D°-y ⁸ D† 32-32 (25) 23-32 (25) 55-42 (25) 31-22 (25) 31-22 (25) 32-22 (25) 32-22 (25) | 4098.606 A 3000
*4130.372 A 3000
4217.195 A 500 | 0.82 3.83 $7\frac{1}{2}-6\frac{1}{2}$
0.73 3.72 $6\frac{1}{2}-5\frac{1}{2}$ | a ¹⁰ F°-z ¹⁰ D† (49) | | 2980.154 A 6000
2999.045 A 8000 | 0.08 4.22
0.03 4.15 | 32-32
42-52
42-52
32-42
32-32 | 3053.570 A 600
2991.520 A 150 | 0.49 4.53
0.43 4.55 | 45-35
35-35 | 4098.900 A 400
4045.148 A 100 | 0.55 3.60 34-24 | | | 3010.129 A 8000 | | - | 3077.077 A 800
3009.366 A 60
2972.742 A 150 | 0.49 4.50
0.42 4.52
0.38 4.53 | 45-55
35-45
24-34 | 3983.008 A 80
4037.332 A 1500 | $\begin{array}{ccccc} 0.73 & 3.83 & 6\frac{1}{2} - 6\frac{1}{2} \\ 0.66 & 3.72 & 5\frac{1}{2} - 5\frac{1}{2} \end{array}$ | | | 4506.931 A 60 | 0.43 3.16 | $3\frac{1}{2}-4\frac{1}{2} a^{8}D^{\circ}-1\uparrow$ | 3028.981 A 200 | 0.60 4.67 | 53-43 a8D0-7† | 4132.275 A 3000
4037.897 A 1200
4001.257 A 600 | 0.55 3.61 35-35
0.53 3.60 35-35 | |
 4235.148 A 100
4446.487 A 350
4494.853 A 35 | 0.60 3.52
0.49 3.27
0.43 3.17 | 51-51 a8D°-21OP† 41-41 (14) 31-32 31-41 32-32 | | | (36) | 3959.436 A 3007
4070.288 A 600 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 4341.282 A 600
4426.151 A 80 | 0.43 3.17
0.43 3.27
0.38 3.17 | 35-45
25-35 | | | | 3994.165 A 800
3971.754 A 300 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | - | | | | | | | | | 94 | | REVIS | ED MUL | | TABLE | | | |--|---|--|---|--|---|--|--| | Laboratory
I A Ref Int | | tiplet Laborat | ory
of Int Lo | - · | J Multiplet (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | | Gd II continued | - | Gd II conti | | | | Gd II continued | | | 4085.564 A 2000
4049.429 A 1200
3973.981 A 500
3983.246 A 300
3895.230 A 200
3971.062 A 100
m3916.61 P Gd ⁺
3881.94 A 30 | 0.66 3.71 5 4 4 (0.60 3.70 4 3 3 4 (0.55 3.70 3 2 3 4 4 4 6 (0.55 3.70 3 2 3 4 4 4 6 (0.55 3.70 3 2 3 2 3 6 (0.50 3.70 3 2 3 2 3 6 (0.50 3.70 3 2 3 2 3 6 (0.50 3.70 3 3 3 3 3 6 (0.50 3.69 1 3 1 3 1 3 1 3 1 4 1 4 | 0F°-z ⁸ D† 4427.606 A
(50) 3997.764 A
4154.862 A
4246.568 A
4316.266 A
4383.119 A
4359.636 A
4444.102 A
4400.18 A | 300 1.
250 1.
150 1.
150 1.
150 1.
30 1. | 06 4.14 51
10 4.07 45
13 4.03 35
15 4.01 35
17 3.98 15
15 3.98 25 | | 4582.38 A 300
4471.29 A 200
4433.635 A 60
4646.326 A 40
4520.070 A 150
4467.227 A 80
4554.989 A 50
4488.401 A 80
4374.243 A 30 | 1.25 3.94 42-32 a ⁶ D°-z ⁶ P† 1.28 4.04 32-22 1.31 4.10 22-12 1.32 3.94 32-32 1.33 4.04 22-22 1.33 4.04 12-22 1.35 4.10 2-12 1.35 4.07 42-52 a ⁶ D°-z ⁶ F† | | 3918.236 A 150
3875.46 A 100
3854.177 A 50 | 0.60 3.75 $4\frac{1}{2}$ $5\frac{1}{2}$ 0.52 3.70 $3\frac{1}{2}$ $3\frac{1}{2}$ 0.50 3.70 $1\frac{1}{2}$ $3\frac{1}{2}$ | 4438.13 A | 30 1. | .17 3.95 1] | -4 b ⁸ D°-y ⁸ P†
-3 (68) | 4463.347 A 80
4731.373 A 50 | 1.25 4.07 4½-5½ a ⁶ D°-z ⁸ F†
1.25 4.01 4½-3½ (83)
1.33 3.95 1½-½ | | 3709.13 A 50
3576.772 A 25
*3614.21 A 100
3591.912 A 30
3569.566 A 40 | 0.82 4.14 7½-6½ a ¹⁰
0.50 3.95 1½- ½ (
0.73 4.14 6½-6½
0.60 4.03 4½-4½
0.55 4.01 3½-3½ | 0F°_z ⁸ F | 150 1.
100 1.
150 1.
140 1. | .15 3.97 23
.13 3.99 3
.15 3.98 2 | -45
-45
-35 | 4570.977 A 40
4509.082 A 50
3791.17 A 300
3807.65 A 25
3764.60 A 50 | 1.28 3.98 3½-3½ a ⁶ D°-y ⁸ P† 1.25 3.98 4½-3½ (84) 1.25 4.50 4½-5½ a ⁶ D°-y ⁸ D† 1.28 4.52 3½-4½ (85) 1.25 4.52 4½-4½ | | 3567.654 A 40
3543.768 A 500
3558.468 A 250
3544.985 A 60 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3581.91 A
3600.963 A
3626.32 3
3629.51 A
3558.189 A | A 200 1.
A 40 1.
A 80 1.
A 400 1. | .06 4.50 5
.10 4.53 4
.13 4.53 3
.17 4.57 1
.06 4.53 5
.10 4.53 4 | -5) b ⁸ D°-y ⁸ D
-4) (69)
-3)
-1) | 3764.60 A 50
3755.56 A 40
3641.39 A 125
3613.490 A 80 | 1.25 4.52 4½-4½
1.25 4.53 4½-3½
1.28 4.67 3½-4½ a ⁶ D°-7†
(86)
1.28 4.70 3½-4½ a ⁶ D°-8 | | 3593.445 A 60
3564.046 A 60
3554.802 A 30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0F°-y ⁸ P† *3592.709 A
(52) 3608.753 A
3613.392 A
3625.26 A | A 200 1 A 150 1 A 60 1 A | .13 4.55 3
.15 4.57 2
.10 4.50 4 | -25
-15
-52 | 3517.890 A 60 | 1.25 4.75 $4\frac{1}{2}$ $5\frac{1}{2}$ $a^{(107)}$ $a^{(88)}$ | | 3466.498 A 150
3193.174 A 200
3137.940 A 80 | 0.66 4.52 51-41 a ¹⁰ | Ore_y ¹⁰ P+ 3634.757 | A 100 1 A 100 1 A 80 1 A | .13 4.52 3
.15 4.53 3
.17 4.55 1 | -41
1-31
1-32 | 3512.496 A 600
3617.164 A 300
3610.76 A 300
3592.709 A 1500d | 1.28 4.69 32-42 (89)
1.31 4.73 22-32
1.33 4.77 12-22 | | 3089.204 A 30
3212.274 A 50
3162.764 A 25
3108.230 A 30 | 0.55 4.55 33-25
0.66 4.50 53-53
0.60 4.50 43-53
0.55 4.52 33-42 | 3412.583 A
*3451.914§ A
3388.065 A | A 25 1 | | 5-45 DOD01 | 3580.618 A 40
3579.549 A 25
*3567.116 A 30
3553.716 A 40 | 1.35 4.79 \$-1\$ 1.38 4.73 3-3\$ (1.33 4.79 12-1\$ (1.35 4.81 2-2 1.33 4.81 12-2 | | 3040.34 A 150 | 0.60 4.66 $4\frac{1}{2}-3\frac{1}{2}$ a ¹⁰ | (DD) 33(4:204 A | | .06 4.75 5 | (71)
1-5½ b ⁸ D°-9
2-5½ (72) | 3428.467 A 500 | | | 3075.422 A 30 | 0.66 4.67 5½-4½ alc
0.66 4.69 5½-4½ alc
0.60 4.73 4½-3½ (| 0F°_7†
(56) 3332.133 A
0F°_z ⁶ F† 3426.342 A | A 1000 1 | .06 4.76 5 | 1-5} b ⁸ D°-z ⁶ F†
1-35 (73)
1-25 | 3464.132 A 100?
3503.206 A 60 | 1.25 4.85 $4\frac{1}{2}$ $4\frac{1}{2}$ a^{6} D° $-x^{8}$ P † 1.28 4.85 $3\frac{1}{2}$ $-4\frac{1}{2}$ (90) 1.31 4.84 $3\frac{1}{2}$ $-3\frac{1}{2}$ | | 3058.119 A 80
2987.074 A 80 | | 7701 204 / | A 200 1
A 150 1 | .11 4.19 17 | -2 1
-1 1
-4 1 | 3395.120 A 1000
•3402.073 A 1000
3407.56 A 600? | 1.25 4.88 $4\frac{1}{2}$ $4\frac{1}{2}$ $a^{6}D^{0}$ $-z^{6}D$
1.28 4.91 $3\frac{1}{2}$ $-3\frac{1}{2}$ (91)
1.31 4.93 $3\frac{1}{2}$ $-3\frac{1}{2}$ | | 5860.73 A 1000
5010.821 A 400 | 1.06 3.16 $5\frac{1}{2}-4\frac{1}{2}$ b^{8} 1.06 3.52 $5\frac{1}{2}-5\frac{1}{2}$ b^{8} | D°-1† 3390.498 A | A 30 1
A 100 1 | .13 4.77 3
.15 4.79 3 | - 2 1
- 1 1
- 1 | 3413.273 A 400
3417.330 A 150
3367.661 A 150 | 1.33 4.95 $1\frac{1}{2}$ 1.35 4.96 $\frac{1}{2}$ 2 1.25 4.91 $4\frac{1}{2}$ 3 $\frac{1}{2}$ | | 5010.821 A
400
6049.50 A 80
5583.68 A 800
5956.48 A 200
5096.063 A 200 | 1.13 3.17 $3\frac{1}{2}$ $3\frac{1}{2}$ 1.06 3.27 $5\frac{1}{2}$ $4\frac{1}{2}$ 1.10 3.17 $4\frac{1}{2}$ $3\frac{1}{2}$ 1.10 3.52 $4\frac{1}{2}$ $5\frac{1}{2}$ | 3300.976 | A 400 1
A 30 1
A 60 1 | .10 4.76 4
.13 4.69 3 | 2-5
2-42
3-32 b ⁸ D°-x ⁸ P†
3-42 (74) | 3379.756 A 400
3393.630 A 400
3405.038 A 150
3430.238 A 40
3427.362 A 80 | 1.28 4.93 32-22
1.31 4.95 22-12
1.33 4.96 12-2
1.31 4.91 22-32
1.33 4.93 12-22 | | 4805.817 A 100
5267.322 A 40
5176.285 A 800
•5469.72 § A 800
5728.32 A 60 | 1.06 3.62 5 6 b8
1.10 3.44 4 5 5 1
1.06 3.44 5 5 5 1
1.10 3.35 4 4 4 5 1
1.13 3.38 3 3 3 3 | D°-z ^{1O} F† 3329.345 4
(60) 3366.532 4
3320.438 3
3350.097 4 | A 400 1
A 50 1
A 300 1
A 400 1 | .13 4.84 3
.15 4.83 2
.13 4.85 3
.15 4.84 2 | 1-3-1
1-2-1
1-4-1
1-3-1
1-3-1
1-3-1 | 3425.624 A 50
3257.072 A 100
3274.183 A 300
3281.607 A 200 | 1.35 4.95 ½-1½
1.35 5.03 4½-5½ a ⁶ D°-y ⁸ r†
1.38 5.05 3½-4½ (92)
1.31 5.07 3½-3½ | | 5728.32 A 60
5371.621 A 40
5644.84 A 300
5856.96 A 150
6011.12 A 30 | 1.06 3.35 53-43
1.10 3.38 43-33
1.13 3.24 33-23
1.15 3.20 33-13 | 3226.318
3236.106
3242.834 | A 1000 1
A 150 1
A 50 1 | .06 4.88 5
.10 4.91 4
.13 4.93 3 | 2-2
1-41 b ⁸ D°-z ⁶ D†
1-31 (75)
1-25
1-15 | 3282.305 A 400?
3279.529 A 200
3242.304 A 150
3255.819 A 150
3264.137 A 60 | 1.33 5.09 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 5616.21 A 300
4483.328 A 300 | 1.06 3.25 $5\frac{1}{2}-4\frac{1}{2}$ b^{8}
1.06 3.81 $5\frac{1}{2}-4\frac{1}{2}$ b^{8} | D°-2 *3262.515 /
(61) 3263.373 /
D°-z ⁸ P† *3262.515 / | A 80 1
A 125 1 | .10 4.88 4
.13 4.91 3 | \$-4\$
\$-3\$
\$-3\$ | 3270.515 A 100
3224.297 A 60
3238.621 A 300 | 1.35 5.12 $\frac{1}{2}$ $\frac{1}{2}$ 1.25 5.07 $\frac{1}{2}$ $\frac{1}{2}$ 3.25 5.09 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | | 4483.328 A 300
4551.455 A 30
5304.923 A 25
5357.790 A 50 | 1.06 3.81 5 4 4 b 8 1.10 3.81 4 4 4 4 4 1.13 3.46 3 2 3 2 3 1.15 3.46 3 2 3 2 3 1.15 3.46 3 2 3 2 3 2 3 1.15 3.46 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 | (62) 3289.150 2
3102.551 3133.852 | A 100 1
A 1000 1 | .13 4.88 3 | \$-4 \$ | 3250.187 A 300
3259.250 A 250
3072.565 A 1000 | 1.31 5.11 $3\frac{1}{2}-1\frac{1}{2}$
1.33 5.13 $1\frac{1}{2}-\frac{1}{2}$ | | 5394.321 A 125
5470.53 A 50 | 1.13 3.38 $3\frac{1}{2}$ | (63) 3146.878 | A 800 1
A 250 1
A 300 1 | .10 5.03 4
.13 5.05 3
.15 5.07 2
.17 5.09 1 | 2-42
2-42
2-32
2-32 | 3089.954 A 400
3093.058 A 150
3101.185 A 135 | 1.28 5.28 $3\frac{1}{2}$ – $3\frac{1}{2}$ (93)
1.31 5.30 $3\frac{1}{2}$ – $1\frac{1}{2}$
1.28 5.26 $3\frac{1}{2}$ – $3\frac{1}{2}$ | | 4453.931 A 60
4711.975 A 80
5023.133 A 200
*5020.368§ A 80
5062.862 A 150 | 1.06 3.83 51-61 b8
1.10 3.72 42-52
1.13 3.59 31-42
1.15 3.61 31-32
1.17 3.60 13-32 | 70°-z ¹⁰ D 3101.407 (64) 3120.181 3128.560 3130.812 | A 50 1
A 125 1
A 200 1
A 300 1 | .06 5.03 5
.10 5.05 4
.13 5.07 3
.15 5.09 3
.17 5.11 1 | 1-6 b b p - y f f † 2-5 (76) 2-4 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 | 3113.172 A 250
3108.360 A 150
3129.696 A 80
3118.600 A 150 | 1.35 5.30 $\frac{1}{2}$ - $1\frac{1}{2}$ | | *4639.001 A 200
*4958.788§ A 800
4973.896 A 30 | 1.06 3.72 $5\frac{1}{2} - 5\frac{1}{2}$
1.10 3.59 $4\frac{1}{2} - 4\frac{1}{2}$
1.13 3.61 $3\frac{1}{2} - 3\frac{1}{2}$ | 3117.974
3121.760 | A 40 1
A 80 1 | | ~ ~ | 5877.26 A 1000
6634.36 A 1500
6681.23 A 1000 | 1.42 3.52 5½-5½ a ¹⁰ po-z ¹⁰ p
1.31 3.17 3½-3½ (94)
1.42 3.27 5½-4½ | | 5031.562 A 80
4878.049 A 30
4910.838 A 50
4984.905 A 60 | 1.10 3.61 45-35
1.13 3.60 35-25 | 2972.17
2985.521
2983.060 | A 100 1
A 100 1
A 60 1 | .13 5.28 3
.15 5.30 2
.13 5.26 3
.17 5.30 1 | 1-21 b ⁸ D°-y ⁶ P
1-15 (77)
1-31
1-11 | 6681.23 A 1000
6846.60 A 1200
5733.86 A 4000
6305.15 A 1500 | 1.37 3.17 $4\frac{1}{2} - 3\frac{1}{2}$
1.37 3.52 $4\frac{1}{2} - 5\frac{1}{2}$
1.31 3.27 $3\frac{1}{2} - 4\frac{1}{2}$ | | 4582.53 A 400
4728.468 A 300
4791.150 A 40 | 1.06 3.75 5\frac{1}{2}-5\frac{1}{2} b^8 1.10 3.71 4\frac{1}{2}-4\frac{1}{2} 1.13 3.70 3\frac{1}{2}-3\frac{1}{2} 1.06 3.71 5\frac{1}{2}-4\frac{1}{2} 1.10 3.70 3\frac{1}{2}-3\frac{1}{2} 1.13 3.70 3\frac{1}{2}-3\frac{1}{2} 1.15 3.69 21.1 | 3002.197
3002.710
(65) | A 60 1 | .17 5.28 1 | \$-3 \$ | 5597.21 A 200
5951.60 A 80
6106.19 A 100 | 1.42 3.62 5 6 a 10 pe_z10 f + 1.37 3.44 45 5 (95) 1.42 3.44 5 5 5 | | 4894.30 A 600
4654.986 A 100
4732.60 A 600 | 1.17 3.69 $1\frac{1}{2}$ $-1\frac{1}{2}$ 1.06 3.71 $5\frac{1}{2}$ $-4\frac{1}{2}$ 1.10 3.70 $4\frac{1}{2}$ $-3\frac{1}{2}$ | 5586.16
5871.81 | | | 12-32 a ⁶ D°-z ⁸ P
(78)
12-32 a ⁶ D°-3 † | 6727.83 A 125
6346.65 A 400 | 1.42 3.25 $5\frac{1}{2}$ $4\frac{1}{2}$ a^{10} P° -2 1.31 3.25 $3\frac{1}{2}$ $4\frac{1}{2}$ (96) | | 4801.05 A 500
4865.02 A 400
4786.908 A 150 | 1.13 3.71 35-45 | 2000.40 | A 30 1
A 300 1 | .28 3.61 3
.31 3.61 2 | $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ | 5164.543 A 150
5987.11 A 150
5749.41 A 500 | 1.42 3.81 5½-4½ a ¹⁰ P°-z ⁸ P†
1.31 3.37 3½-2½ (97)
1.31 3.46 3½-3½ | | 4834.232 A 300
4873.339 A 150 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A 100 1
A 60 1 | 25 3.70 4
28 3.70 3 | 1-3 a ⁶ D°-z ⁸ D†
1-3 (81) | 5749.41 A 500
5545.01 A 250 | 1.31 3.53 3½-2½ a ¹⁰ p°-4 (98) | | | | | | | | | • • | | Lab
I A | orato:
Ref | ry
Int | E
Low | P
High | J | Multiplet (No) | Labo
I A | | ry
Int | E
Low | P
High | J | Multiplet (No) | I | | rato | ry
Int | E | | J | Multiplet | |---|-----------------------|--|------------------------------|--|--|---|--|------------------|--|--------------------------------------|--|--|--|---|-------------------|------------------|------------------------------------|-------------------|----------------------|------------------------|---| | Gd II c | ontin | req | | | | , | Gd II co | | | 20.11 | | | (110) | | | ntin | | Low | High | | (No) | | 5125.56
*5252.14
5419.876
5372.216
5560.69
5500.43
5375.393 | A
A
A | 400
500
150
300
600
600 | 1.37
1.31
1.42
1.37 | 3.83
3.72
3.59
3.72
3.59
3.61
3.60 | 52-61-42-43-43-43-32-32-32-3 | a ¹⁰ P°-z ¹⁰ D† (99) | 4241.276
4197.069
4153.510
4115.376
4141.017
4108.401 | A
A
A
A | 80
150
125
80
25
50 | 1.61
1.59
1.58
1.57
1.57 | 4.55 | 12-12
12-12
12-22
2-12 | a ⁸ F°_y ⁸ D†
(117)
cont | 7385
5162
4223 | -
.97
.47 | A
A
A | 80
50d
60 | 2.34 | 4.01
4.73
5.26 | 21-31 | 2°-z ⁸ F
(139)
2°-z ⁶ F†
(140)
2°-y ⁶ P
(141) | | 5393.659
5179.919 | A
A | 100
125 | 1.42 | 3.71
3.75 | 51-41
45-55 | a ¹⁰ pe_z ⁸ D† (100) | 4059.370
3722.068 | A
A | 80
100 | 1.72 | | | a ⁸ F°-z ⁶ F†
(118)
a ⁸ F°-y ⁸ F† | 7748
4965 | | A | 40
60 | 2.40 | 3.99 | | 3°_y&P+
(142) | | *4666.448 | A | 40 | 1.37 | 4.01 | | | | | | | | - | (119) | 4608 | | A
A | 4 0 | 2.40
2.40 | 4.88
5.07 | | 3°-z ⁶ D
(143)
3°-y ⁸ F † | | 4803.536
4716.576 | | 80
30 | 1.42
1.37 | 3.99
3.98 | 51-41
43-31 | a ¹⁰ P°_z ⁸ F † (101) a ¹⁰ P°_y ⁸ P † (102) | 7908.06
6314.22 | A
A | 40d?
50 | 2.19 | 3.75
4.14 | | c ⁸ D°-z ⁸ D†
(130)
c ⁸ D°-z ⁸ F† | 8089 | 06 | | | | | | (144) | | *4639.001
4406.67 | A | 200
400 | 1.31 | | 3½-3½ | -10ne10na | 7197.08
6568.00 | A
A | 80
100 | 2.27
2.19 | 3.98
4.07 | 5-6-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5 | (121) | 5441 | | A
A | 60
4 0 | 2.46
2.46 | 4.73 | | 4°-y ⁸ P†
(145)
4°-z ⁶ F | | 4421.24
•4522.82 | A
A
A | 200
250 | 1.31 | 4.22
4.10
4.15 | 3 2 - 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 | a ¹⁰ P°-y ¹⁰ P† | 6996.76
6857.13 | A
A | 1500
600 | 2.22
2.19 | 3.98
3.99 | 2 1 -2 1
51-41 | _с 8 _D •_у8 _P | *5178
5200 | | | 100
30 | | 4.85 | 3 2 - 4 2
3 2 - 3 2 | (146) | | 4514.505
4325.566
4347.310 | A
A
A | 200
200
400 | 1.37
1.37 | 4.10
4.22
4.15 | 43-33
43-53
32-42 | | 6920.62
7000.75 | A
A | 250
200 | 2.20
2.21 | 3.98
3.97 | 51-41
41-31
31-21 | (122) | 4726 | | A
A | 40 | 2.46
2.46 | 4.84
5.07 | | (147)
4°-y ⁸ F† | | 4003.850 | A | 30 | | 4.50 | 51-51 | a ¹⁰ P°-y ⁸ D† | 6900.73
6945.98
7051.00 | A
A
A | 200
150
200 | 2.20
2.21
2.22 | 3.99
3.98
3.97 | 41-41
31-31
21-21 | | *3402 | .072 | A | 1000 | 2.46 | 6.09 | | (148)
4°-w ⁸ P† | | 3748.88 | A | 50 | 1.37 | 4.66 | 41-31 | (104)
a10pe_6 | 6299.07 | A | 40 | 2.19 | 4.15 | | c ⁸ D°-y ¹⁰ P | | | | | | | | (149) | | 3489.281 | A | 40 | | 4.85 | 31-41 | (105)
a10pe_x8p
(106) | 6494.11
4968.575 | A
A | 80
50 | 2.20
2.19 | 4.10 | | (123)
c ⁸
D°-7 | Str 01 | | Une: | lassifie
300 | ed Lines
V | of <u>Ga</u> | | | | 3414.207
3363.974 | A
A | 60
30 | 1.43
1.37 | 5.03
5.03 | 51-61
42-52 | a ¹⁰ pe_x8p
(106)
a ¹⁰ pe_y8F †
(107) | 4916.78 | A | 25 | | 4.70 | | (124)
c ⁸ D°-8 | 8316
7963 | . 38
. 25 | A
A | 500
500 | A
A | | | | | 6610.04 | A | 80 | 1.65 | 3.52 | _ | a8F°-z10p+ | 4799.859
4888.542 | A
A | 60
40 | 2.19
2.21 | 4.76
4.73 | 51-51
31-31 | (125)
c ⁸ D°-z ⁶ F†
(126) | 7930
7846 | | A
A | 3000
3000 | V
V | | | | | 6480.11
7172.26 | A
A | 200
600 | | 3.62
3.44 | | (108)
a ⁸ F°-z ¹⁰ F†
(109) | 4839.616
4923.578 | A
A | 40
60 | 2.22
2.19 | 4.77
4.69 | 21-21
51-41
41-31 | (120) | *7844
7324 | 89 | A | 300
400 | ٧ | | | | | 7252.70
7394.90 | A
A | 400
150 | 1.65
1.61 | 3.35
3.28 | 51-41
41-31 | (109) | 4875.966
4664.272 | A
A | 50
30 | 2.20 | 4.73
4.85 | | c8D°-x8P+ | 7147
7135
7037 | 73 | A
A
A | 500
250
600 | V
V
V | | | | | 7505.35
5721.99 | A
A | 80
200 | 1.59 | 3.24
3.81 | 3 ۇ –2∌ | .8me .8me | •4337.510§ | A | 80 | 2.19 | 5.03 | | | 6985. | 89 | A | 1500 | v | | | | | 6704.18
6622.28 | Ā
A | 60
50 | 1.61 | 3.46
3.46 | | a ⁸ F°-z ⁸ P†
(110) | 4335.290
4304.087
4292.747 | A
A
A | 25
25
25 | 3.19
3.21
2.22 | 5.03
5.07
5.09 | 5 2 -5 2
3 2 -3 2
2 2 -2 2 | c8D°_y8F †
(128) | *6980
6887
5913 | 63
55 | A
A | 250
300
800 | V
V | | | | | 6260.31
6180.42
6380.95 | A
A | 40
300
600 | | 3.59
3.72
3.59 | 25-45 | a ⁸ F°-z ¹⁰ D | 3191.044
3172.169
3200.454
3177.490 | A
A
A
A | 125
30
60
30 | | 6.06
6.09
6.06
6.09 | 5 1 - 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 | c ⁸ D°-w ⁸ P†
(129) | *5911.
*5754.
5538.
4397. | 17 §
32 | | 500
250
300
300 | IV
V
V | | | | | 6080.65
6004.57
5904.07 | A
A
A | 300
500
800 | 1.72
1.65
1.61 | | 61-51
51-41
41-31 | a ⁸ F°-z ⁸ D
(112) | 3206.466 | A | 400 | 2.27 | 6.13 | 1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | 4304.
4297. | 895 | A
A | 400
400 | v
v | | | | | 5855.24
5845.71
5884.59
5897.62
5840.47
5815.85 | A
A
A
A
A | 300
80
30
200
200
250 | 1.59 | | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 6752.67
7006.16
7118.86
7054.62
7085.52
7164.90 | A
A
A
A | 2000
1000
800
200
50
25 | 2.30
2.36
2.24 | 4.14
4.07
4.03
4.01
3.98
3.96 | 7-6-1-
6-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1- | a ⁸ G°-z ⁸ F†
(130) | 4253.
4238.
4197.
4137.
4111. | 782
681
104 | A
A
A
A | 800
500
800
500
500 | V
V
V
V | | | | | 5820.99
5801.30
5807.05
4881.925 | A
A
A | 200
40
100
200 | 1.57
1.58
1.56 | 3.69
3.70
3.69
4.10 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ⁸ F°_z ⁶ P† | 6718.14
6988.75
6959.24
6971.66
7058.02 | A
A
A
A | 150
100
150
100
80 | 2.31
2.30
2.26
2.24 | 4.14
4.07
4.03
4.01
3.98 | 62-62
52-52
42-42
32-32
23-23 | | 4063.
4062.
4053.
4049.
4023. | 590
294
858 | A
A | 1500
500
1000
2000
300 | V
V
V
IV | | | | | 5092.251
5108.91 | A
A | 600
500 | | | | (113)
a8F°_z8F† | 7116.77
7146.13 | A
A | 150
40 | 2.22
2.22 | 3.96
3.95 | 13-14 | | 4013. | 798 | Ą | 250 | v | | | | | 5098.38
5100.937 | A | 400
100 | 1.72
1.65
1.61
1.59 | | 49-49
39-39 | (114) | 6702.12
7141.17 | A
A | 40
25 | 2.30
2.24 | | 5 \frac{1}{2} - 6 \frac{1}{2} 3 \frac{1}{2} - 2 \frac{1}{2} | a ⁸ G°-y ⁸ P† | 4008.
3996.
3895. | 320 | A
A
A | 400
800
400 | V
IV
V | | | | | 5175.839
5256.030
5178.104 | A
A
A | 50
50
100 | 1.56
1.72
1.65 | 4.07 | 62-53
53-43 | | 5621.43
5510.58 | A
A | 100
80 | 2.31 | 4.50
4.50 | 61-51 | a ⁸ G°-y ⁸ P†
(131)
a ⁸ G°-y ⁸ D†
(132) | 3842.
3801. | 20 | Ā | 400
400 | ĮÝ
V | | | | | 5187.237
5186.915
4954.025
5031.290
5050.878 | A
A
A
A | 250
200
50
250
300 | 1.58
1.57
1.65
1.61 | 3 95 | 32-12-13-13-13-13-13-13-13-13-13-13-13-13-13- | • | 4996.373
4881.925
4821.955 | A
A
A | 800
800 | 2.26
2.24
2.23 | 4.73
4.77
4.79 | 41-31
31-21
25-11 | a ⁶ G°-z ⁶ F† (133) | 3782.
3770.
3733.
3719. | 34
69
08 | A
A
A
A | 300
300
300
800 | V
V
V
V | | | | | 5071.023
5111.930 | A
A | 200
30 | 1.58 | 4.03
4.01
3.98 | 25-35
15-25 | | 4800.100
4772.728 | A | 60
30 | 2.22
2.22 | 4.81 | 2-12
2-12 | | 3664.
*3457. | | A
A | 2000
300 | V
V | | | | | 5156.76
5210.488 | A
A | 200
200 | | 3.96 | 2-12 | -8ma8m + | 4755.347 | A . | 30 | 8.88 | | | a ⁸ G°-x ⁸ P† | 3364.
3330. | 341
340 | A
A | 500
800 | V
V | | | | | 5191.081
5199.211
5160.896
5160.105 | A
A
A | 250
60
100
40 | | 3.97
3.99
3.98
3.97 | 31-31
41-41
31-31
21-21 | a ⁸ F°_y ⁸ P†
(115) | 4540.016
4521.94
4486.352
4517.10 | A
A
A | 200
150
100
30 | 2.31
2.30
2.30 | 5.03
5.05
5.03 | 63-53
53-43
53-63 | (134)
a8G°_y8F†
(135) | 3084.0
3005.0 | 007
092 | A
A | 250
300 | V
V
V | | | | | 5149.841
5130.28
5140.839 | A | 50
200
400 | 1.59
1.58 | 3.98 | 3 3 -4 3
2 3 -3 1 | | 3287.192
3252.743 | A
A | 40
30 | 2.30
2.26 | | | a ⁸ G°_w ⁸ P†
(136) | 3002.0
2963.0 | | A | 1000
400 | V
V | | | | | 4936.155
4806.165
4892.11 | A
A
A | 50
40
30 | 1.57
1.72
1.65
1.58 | 3.97 | 15-25 | (116) | 7017.73
7133.16
7242.24 | A
A
A | 60
100
60 | 2.25
2.25
2.25 | | 21-31 :
21-21 :
21-11 | | Tb II | | anal | | | | | re Class) | | 4436.225
4296.30
4229.803
4173.556
4127.721 | A
A
A
A | 200
400
200
100
25 | | 4.50
4.52
4.53
4.55
4.57 | 61-51
51-41
41-31
31-31
31-31 | | 7189.57 | A . | 800 | | | 3] -3] : | | | | | , | | | | | | | | | | | c x | | | | | | | | | | | | | | | | | | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | |--|---|--| | Dy I No analysis May 1942 (Temperature Class) | Tm II continued | Hf I continued | | Dy II No analysis May 1942 (Temperature Class) | 3678.862 A 80 1.11 4.46 3-3
a ¹ F ^e -45
3431.195 A 100 1.11 4.70 3-4 (12) 52
3399.951 A 70 1.11 4.74 3-47 53
3374.512 A 100 1.11 4.76 3-3 54 | 3332.73 A 200 0.00 3.70 2-3 a ³ F-29°
3162.57 A 80 0.00 3.90 2-2 (2) 32°
3072.88 A 300 0.00 4.02 2-2 34°
3018.32 A 80 0.00 4.09 2-2 35° | | <u>Ho I</u> No analysis May 1942 (Temperature Class) | 3374.512 A 100 1.11 4.76 3-3 54
3327.578 A 40 1.11 4.81 3- 55
3267.401 A 80 1.11 4.88 3-3 a ¹ F°-57 | 3018.32 A 80 0.00 4.09 2-2 35°
2980.82 A 100 0.00 4.14 3-2 37° | | Ho II No analysis May 1942 (Temperature Class) | 3236.806 A 150 1.11 4.93 3-4 (13) 58
3231.509 A 60 1.11 4.93 3-3 59 | 4174.33 A 50 0.29 3.25 3-3 a ³ F-16°
3523.02 A 60 0.29 3.79 3-4 (3) 30°
3312.87 A 100 0.29 4.02 3-2 34° | | Er Not separated May 1942 | Strongest Unclassified Lines of Tm II | 3131.81 A 150 0.39 4.23 3-2 41°
-3080.84 A 80 0.39 4.30 3-4 a ³ F-43° | | Tm I IP? Anal D List D Jan 1943 | 5782.356 B 100 V
5709.976 B 100 IV
4626.565 B 80 IV | 3087.41 A 80 0.29 4.31 3-2 (4) 45°
3020.54 A 100 0.29 4.38 3-3 46°
2964.88 A 150 0.29 4.45 3-4 47° | | 4386.434 A 200 0.00 2.81 3½ a ² F°-2 4359.929 A 300 0.00 2.83 3½ (1) 3 | 3996.518 B 200 III
3817.395 B 100 III | 3820.74 A 50 0.56 3.79 4-4 a ³ F-30° | | | 3725.061 B 200 III
3535.522 B 100 III
3462.198 B 300 III | 3173.94 A 100 0.56 4.45 4-4 (5) 47° 3156.68 A 50 0.56 4.47 4-3 48° | | 3949.275 A 100 1.08 4.21 2 a ² F°-15
3916.476 A 200 1.08 4.23 2 (2) 16 | 3441.505 B 200 III
3362.619 B 300 III | 5719.18 A 40 1.11 3.27 2-1 a ³ P-17° (6) | | Strongest Unclassified Lines of Tm I 5971.28 A 200 I | 3309.804 B 100 IV
3240.230 B 125 IV
3151.036 B 200 IV | 5552.12 A 40 0.70 2.92 2-3 a ¹ D-11° (7) | | 5895.646 A 300 I
5764.300 A 200 I
5675.853 A 400 I | 3131.257 B 400 IV | | | 5631.404 A 150 I
5307.121 A 200 I | <u>Yb I</u> I P 6.23 Anal B List D May 1942 | Hf II I P 14.8 Anal B List B Nov 1942 3253.70 A 80 0.38 4.17 3 3 3 2 D-z 4F° | | 4203.730 A 300 I
4187.616 A 500 I
4105.843 A 600 I
4094.188 A 700 I | 5556.48 A 1500 0.00 2.22 0-1 6 ¹ s-6 ³ P° (1) 3987.98 // A 2000 0.00 3.09 0-1 6 ¹ s-6 ¹ P° | 3253.70 A 80 0.38 4.17 $3\frac{1}{2} - 3\frac{1}{2}$ $a^{2}D-z^{4}F^{e}$ 3399.80 A 150 0.00 3.63 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ (1) 3793.37 A 60 0.38 3.63 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ 3561.65 A 80 0.00 3.47 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ | | 3883.132 A 400 I
3751.812 A 100 I | 7699.49 A 1500 2.43 4.04 2-1 6 ³ P°-7 ³ S | 3193.53 A 40 0.38 4.24 23 23 a ² D-z ⁴ D°†
3145.32 A 25 0.00 3.92 13 14 (2)
3479.29 A 40 0.38 3.92 33-12 | | 3744.066 A 300 I
3717.915 A 500 I | 6799.61 A 1000 2.22 4.04 1-1 (3)
6489.10 A 800 2.13 4.04 0-1 | 3428.37 A 20 0.00 3.60 1½- ½ | | | | 3016.94 A 6 0.00 4.09 1 2 (3) | | <u>Tm II</u> I P ? Anal B List B Jan 1942
4526.565 A 80 0.00 2.67 4- a ³ F°-1 | <u>Yb II</u> I P 13.05 Anal D List D May 1943
3289.36 A 800 0.00 3.75 $\frac{1}{2}$ $-1\frac{1}{2}$ 6^{2} 8 -6^{2} P°
3694.19// A 1000 0.00 3.34 $\frac{1}{2}$ $-\frac{1}{2}$ (1) | 3317.99 A 20 0.38 4.10 $3\frac{1}{2}$ | | 4481.273 A 200 0.00 2.75 4- (1) 2
4199.918 A 100 0.00 2.94 4-4 3
3958.101 A 200 0.00 3.12 4-47 4 | 3694.19// A 1000 0.00 3.34 ½— ½ (1) | 3134.73 A 150 0.38 4.31 2½-2½ a ² D-z ⁴ G°†(5) | | 3890.528 A 60 0.00 3.17 4- 5
3848.023 A 1000 0.00 3.21 4- a ³ F°-6 | <u>Lu I</u> I P 5? Anal B List D May 1942 | 3352.06 A 80 1.03 4.71 $4\frac{1}{2}$ | | 3761.913 A 600 0.00 3.28 4-4 (2) 7 3761.331 A 800 0.00 3.28 4-3 8 3701.364 A 350 0.00 3.33 4-4 9 | 6004.53 A 100 0.25 2.30 2 3 4 2 3 6 7 † 5736.55 A 40 0.00 2.15 1 3 2 (1) | 4093.16 A 150 0.45 3.47 14-14
3933.65 A 40 1.03 4.17 44-34
4335.15 A 5 0.78 3.63 34-24 | | 3668.088 A 120 0.00 3.36 4-4 10 3608.766 A 200 0.00 3.42 4-3 a ³ F°-11 | 5135.10 A 100 0.25 2.65 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3139.67 A 15 0.78 4.71 31.41
3462.65 A 15 0.61 4.17 32.31
3880.82 A 40 0.45 3.63 13.21 | | 3536.576 A 80 0.00 3.49 4-3 (3) 13
3425.630 A 150 0.00 3.60 4-4 13
3397.499 A 100 0.00 3.63 4-3 4-3 (4) | 3841.17 A 100 0.25 3.46 2-1-2 a ² D- ² P°? | 3505.22 A 150 1.03 4.55 41-31 a4F-x4D° 3569.03 A 80 0.78 4.34 32-32 (7) | | 3291.001 A 120 0.00 3.75 4-4 15
3276.811 A 50 0.00 3.77 4-4 a ³ F°-16
3258.048 A 150 0.00 3.79 4-3 (4) 17 | 4124.73 A 100 0.00 2.99 1 | 3719.37 A 70 0.61 3.93 34.14
3918.10 A 100 0.45 3.60 14.4
3273.66 A 6 0.78 4.55 34 34 | | 3241.530 A 200 0.00 3.81 4-4 18
3210.825 A 50 0.00 3.84 4-4 20
3133.886 A 250 0.00 3.94 4-4 22 | Strongest Unclassified Lines of <u>Lu I</u> 5001.15 A 100 III | 3273.66 A 6 0.78 4.55 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 4677.858 A 40 0.03 3.67 3- a ³ F °-1 | 4518.58 A 200 III
3647.77 A 50 III | 3355.38 A 25 0.45 4.24 $1\frac{1}{2}-2\frac{1}{2}$
3176.85 A 50 0.61 4.49 $2\frac{1}{2}-1\frac{1}{2}$ a $4F-z^3P^0$
3389.83 A 70 0.45 4.09 $1\frac{1}{2}-\frac{1}{2}$ (8)
3054.52 A 15 0.45 4.49 $1\frac{1}{2}-1\frac{1}{2}$ | | 4529.376 A 80 0.03 2.75 3- (5) 2
4242.153 A 300 0.03 2.94 3-4 3
3995.586 A 80 0.03 3.12 3-47 4 | | | | 3883.437 A 200 0.03 3.21 3- 6 3795.759 A 600 0.03 3.28 3-4 a ³ F°-7 | <u>Lu II</u> I P ? Anal A List B May 1942
3507.39 A 100 0.00 3.52 0-1 a ¹ S-z ³ P° | 3379.98 A 20 0.45 4.21 13-14 (9)
3384.70 A 30 0.45 4.10 13-22 | | 3795.169 A 80 0.03 3.28 3-3 (6) 8
3734.124 A 300 0.03 3.33 3-4 9
3700.256 A 300 0.03 3.36 3-4 10 | (1) 5476.69 A 300 1.75 4.01 3-2 a ³ D-z ³ P° | 2975.89 A 150 0.61 4.75 2\frac{1}{2}-3\frac{1}{2}a^4Fz^4G^0\frac{1}{2}+3\frac{1}{2}a^4+3\frac{1}{2}+3\frac{1}{2}a^4+3\frac{1}{2}+3\fr | | 3566.472 A 100 0.03 3.49 3-3 12
3453.665 A 200 0.03 3.60 3-4 a ³ F°-13
3425.082 A 300 0.03 3.63 3-3 (7) 14 | 6221.88 A 300 1.54 3.52 3-1 (2)
6463.11 A 300 1.46 3.37 1-0
4994.14 A 130 1.54 4.01 3-2 | 3388.21 A 20 0.61 4.31 24-24
3495.75 A 20 0.78 4.31 34-24 | | 3425.082 A 300 0.03 3.63 3-3 (7) 14
3316.875 A 60 0.03 3.75 3-4 15
3302.454 A 150 0.03 3.77 3-4 16
3283.400 A 50 0.03 3.79 3-3 17 | 5983.90 A 100d 1.46 3.52 1-1
4839.62 A 30d 1.46 4.01 1-2 | 3031.16 A 120 0.61 4.68 2½-1½ a ⁴ F-y ² D° † 3025.29 A 30 1.03 5.11 4½-3½ a ⁴ F-z ² F° † | | 3266.633 A 80 0.03 3.81 3-4 a ³ F°-18 3235.448 A 90 0.03 3.84 3-4 (8) 20 | 3876.65 A 100 1.54 4.73 3-1 a ³ D-z ¹ P° (3) 3077.59 A 150 1.54 5.55 3-3 a ³ D-z ³ F°† | 3025.29 A 30 1.03 5.11 41-31 a4p-26p+ 7 3101.39 A 100 0.78 4.76 31-21 (12) 2968.82 A 120 0.61 4.76 21-21 | | 3173.828 A 200 0.03 3.92 3-3 31
3157.344 A 180 0.03 3.94 3-4 22
3098.597 A 100 0.03 4.01 3-27 34 | 3397.07 A 150 1.46 5.09 1-2 (4)
3254.32 A 90 1.75 5.55 3-3
3472.48 A 120 1.54 5.09 2-2 | 4926.99 A 8 1.66 4.17 23-3 a4P-z4F° † 6279.84 A 20 1.66 3.63 33-23 (13) 6835.29 A 50 1.66 3.47 23-13 | | 3015.296 A 100 0.03 4.13 3-4 37 | 4785.43 A 60 3.14 4.72 2-1 alp-glp* | | | 3900.790 A 90 1.08 4.25 2-27 a ³ F°-33
3810.734 A 50 1.08 4.32 2-2 (9) 37
3756.860 A 100 1.08 4.37 2- 40 | (5)
3623.98 A 40 2.14 5.55 2-3 a ¹ D-2 ³ F°
4184.26 A 130 2.14 5.09 2-2 (6) | 4272.85 A 60 1.66 4.55 23-37 a4P-z4D° † 4664.14 A 150 1.60 4.24 13-27 (14) 5040.82 A 150 1.48 3.92 1-17 5269.85 A 10 1.60 3.92 17-17 | | 3704.848 A 50 1.08 4.41 2-3 41 3665.812 A 60 1.08 4.45 2-3 a ³ F°-44 | 3554.43 A 200 2.14 5.61 2-2 a ¹ D-z ¹ D° (7) | 5399.85 A 10 1.60 3.93 11-12
5809.50 A 30 1.48 3.60 1-12
5463.38 A 10 1.66 3.93 22-12
4367.90 A 40 1.66 4.49 23-12 a4p-z2po | | 3653.614 A 80 1.08 4.46 2-3 (10) 45
3557.796 A 80 1.08 4.55 2-3 47
3481.750 A 30 1.08 4.63 2-2 48 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3285.609 A 60 1.08 4.84 2-2 56 | Hf I I P ? Anal D List D Dec 1942
5550.60 A 50 0.00 2.22 2-2 a ³ F- 2° | 5075.92 A 30 1.66 4.10 31-31 a4p-z3pe+ | | 3929.583 A 100 1.11 4.25 3-27 a ¹ F°-33 3838.198 A 200 1.11 4.32 3-2 (11) 37 3798.752 A 80 1.11 4.35 3-2 39 | 5181.86 A 40 0.00 2.38 2-3 (1) 5° 3777.64 A 50 0.00 3.27 2-1 17° 3682.25 A 200 0.00 3.35 2-2 18° | 4934.46 A 60 1.60 4.10 13-35 | | 3783.561 A 60 1.11 4.37 3- 40 3730.810 A 40 1.11 4.41 3-3 41 | 3497.49 A 150 0.00 3.53 2-3 24°
3472.38 A 100 0.00 3.55 2-1 25° | 4097.21 A 8 1.66 4.68 2½-1½ a ⁴ p-y ² po (17) | | Laborat
I A Re: | ory
[Int | E P
Low | High | J | Multiplet
(No) | Labo
Ì A | rator
Ref | y
Int | Low E | P
High | J | Multiplet
(No) | Lab
I A | orato:
Ref | r y
Int | E
Low | P
High | J | Multiplet
(No) | |-------------------------------------|----------------|----------------------|----------------------|--|--|--|--------------|------------------|----------------------|----------------------|---|--|-------------------------------|---------------|--------------------|----------------------|----------------------|---|--| | Hf II conti | | | | | (3.27 | | ntin | | 20 | 6 | | (, | Hf II c | | | 20# | | | (110) | | 3699.72 A
3800.39 A
3780.09 A | . 7 | 1.60
1.48 | 4.74 | | a ⁴ P-z ⁴ P° (18) | 4319.51
3867.32 | A
A | 8
15 | 2.20 | 5.39 | 1 1 2 2 3 | | 4904.51
4848.46
5080.44 | A
A
A | 30
20
10 | 3.37
3.33 | 6.04
5.91
5.76 | 21-31
11-21
1-11 | b ⁴ P-y ⁴ D° †
(83) | | 3883.77 A
3923.91 A
3624.00 A | 40 | | 4.84
4.74
5.00 | 25-15
15- 5
15-25 | | 4049.44
4008.46 | A
A | 10
8 | 2.20 | 5.25
5.28 | 1를-1를
1를-1를 | (53)
a ² P-y ² P•† | 5164.56
5156.06 | A
A | 8
5 | 3.52
3.37 | 5.91
5.76 | 3 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | | 3665.35 A
3984.03 A | _ | | 4.84 |] -1글 | a ⁴ P-z ³ F°† | 3597.42
3964.96 | A | 10
15 | 1.88 | 5.31
5.31 | 12- 2 | (54) | 4765.78
4760.59 | A
A | 12
20 | 3.33
3.33 | 5.92
5.93 | | b ⁴ P-x ² D°
(84)
b ⁴ P-z ⁴ S° | | 3413.74 A
3349.17 A | 8. | 1.66 | 5.28
5.28 | 2] _1] | (19)
a ⁴ P-y ³ P• †
(20) | 3487.57
3199.99 | A
A | 8
30 | 2.20
1.88 | 5.74
5.74 | 1 1 2 | a ² P-z ² 5°
(55) | 4570.70 | A | 30 | 3.52 | 6.22 | | (85)
b4P_y4P°
(86) | | 3203.67 A | | | 5.52 | 1 ½ - 1 ½
2 ½ - 3 ½ | a ⁴ P-y ² F°† (21) | 3206.77
3055.43 | A
A | 4
9 | 3.20
1.88 | 6.05
5.92 | 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ² P-x ² D°
(56) | 4321.36
4268.10 | A | 30
5 | 3.37
3.33 | 6.22 | \$ −1 \$ | | | 4605.79 A | | | 4.17 |
2 1 -3 1
3 1 -3 1 | a2F-z4F° † | 4807.14 | Ą | 30 | 2.15 | 4.71 |
4}-4 | , a ² G-z ⁴ F° | 4436.18
4141.84 | A | 9
5 | 3.52
3.33 | 6.31
6.31 | 2 −1 2 | b ⁴ P-w ² D° †
(87) | | 5348.40 A
5767.18 A
6980.91 A | 30
200 | 1.49
1.86 | 4.17
3.63
3.63 | 23-23
33-23 | (33) | 6222.81
5128.53 | A
A | 10
20 | 2.19
2.15 | 4.17
4.55 | | a ² G-z ⁴ D° † | 4007.36 | A | 10 | 3.52 | | _ ` | b ⁴ P-x ⁴ P° †
(88) | | 6248.95 A
4586.25 A | 10 | 1.86 | 3.47
4.55 | | a ³ F-z ⁴ D° | 4050.67
3998.51 | A
A | 7
6d | 3.19
2.15 | 5.23
5.23 | 31-41
43-41 | (58)
. a ² (1-z ⁴ (10 †
. (59) | 6997.83
6135.10 | A
A | 30
30 | 3.47
3.47 | 5.23
5.48 | | b ² G-z ⁴ G°
(89)
b ² G-y ⁴ F°† | | 4486.14 A
5187.75 A
5071.23 A | 30 | 1.86 | 4.24
4.24
3.92 | 31-31
31-31
31-31
31-11 | (23) | 4809.18
4735.75
5801.71 | A
A
A | 6
10
15 | 2.19
2.15
2.19 | 4.75
4.75
4.31 | 31-31
41-31
31-31 | • | 6567.39
6027.57 | A | 60
20 | 3.51
3.47 | 5.39 | 3 3 -2 3 | (90)
b ² g_y ² F° † | | 4029.16 A
4113.58 A | | | 4.55 | 2 } -3 | a ² F-z ² P° | 4162.40
4790.72 | A
A | 50
40 | 2.15
2.19 | 5.11
4.76 | | a ² G-z ² F°† | 6473.89
4599.46 | Ā | 20
40 | 3.51 | 5.42 | 3+-2+ | (91) | | 5524.35 A
4533.18 A | 50 | 1.86 | 4.10 | | (34)
a ³ F-z ³ D*
(35) | 3478.98
3701.15 | A | 30
40 | 2.15 | 5.69 | T. 17 | a ² G-y ⁴ F°† | 5346.30
5247.10 | A
A | 40
60 | 3.47
3.51
3.47 | 5.82 | 41-41
31-31
41-31 | (92) | | 4735.67 A | 20 | 1.49 | 4.10 | 3 } -3 } | a ² F-z ⁴ G° | 3849.52 | A
A | 25 | 2.15
2.19 | 5.48
5.39 | | | 4675.45
4865.43 | A
A | 10
10 | 3.51
3.51 | 6.15 | 3 1 - 4 1 3 1 - 2 1 3 | b ² G-x ² D° | | 3661.05 A
3782.78 A
4269.67 A | 8
20 | 1.49
1.86 | 5.23
4.75
4.75 | 23-33
33-33 | (26) | 3661.73
3817.20
3705.40 | A
A
A | 2
20
15 | 2.15
2.19
2.19 | 5.52
5.42
5.52 | 33-23
33-33 | a ² G_y ² F°
(62) | 4125.10
4452.70 | A
A | 5
10 | 3.47
3.51 | 6.46
6.28 | 41-31
31-21 | b ² G-x ² F°
(94) | | 4370.95 A
5034.33 A | 8 | | 4.31
4.31 | 3 1 - 2 1
3 1 - 2 1 | | 3080.64
3394.99 | A
A | 100
30 | 3.15
3.19 | 6.15
5.82 | 43-43 | a ² G-z ² G°†
(63) | 4123.54 | A | 10 | 3.51 | 6.51 | 3 } _2 } | PSG-#SDe | | 3747.48 A
3872.55 A | | | 5.16
4.68 | | a ² F-y ² D°†
(27) | 3358.30
3011.24 | A
A | 8
20 | 2.15
2.19 | 5.82
6.28 | 31-31
41-31
31-31 | a ² G-x ² F°† | 3810.59
3979.40 | A
A | 10
40 | 3.51
3.47 | 6.75
6.57 | | b ² G-w ² F° | | 3932.40 A
3797.95 A | | | 5.00
5.11 | | a ³ F-z ⁴ P°†
(28)
a ³ F-z ³ F° | 6647.06 | A | 100 | 2.86 | 4.71 | | (64) | 3864.75 | A | 30 | 3.47 | 6.66 | | (97)
b ² G-y ² G° †
(98) | | 3771.36 A
3407.76 A | 8 | 1.49 | 4.76
5.11 | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | (39) | 8236.13
6041.44
7328.64 | A
A
A | 10
6
30 | 2.67
2.67
2.49 | 4.17
4.71
4.17 | 34-34
34-44
34-34 | b ⁴ F-z ⁴ F°
(65) | 6584.53
7983.66 | A | 40
5 | 3.82 | 5.69 | -
5 1 -41 | a ² H-y ⁴ F° | | 3220.66 A
3092.26 A | 50
20 | 1.49 | 5.69
5.48 | 31-41
21-31
31-31 | a ² F-y ⁴ F°
(30) | 7277.67 | A | 50 | 2.86 | 4.55 | 41-31
31-21 | b4F-z4D° † | 7016.99 | A
A | 6 | 3.94
3.94 | 5.48
5.69 | 41-31 41-41 | (99) | | 3410.18 A
3162.61 A
3495.94 A | 40
40
10 | 1.49
1.86 | 5.48
5.39
5.39 | 33-33
23-23
33-23 | | 7861.22
8581.88
97 42. 28 | A
A
A | 8
57
1 | 2.67
2.49
2.33 | 4.24
3.92
3.60 | 25-15
15- 5 | (66) | 5289.98
6542.80
5565.56 | A
A
A | 10
50
5 | 3.82
3.94
3.94 | 6.15
5.82
6.15 | 54-44
41-31
41-41 | a ² H-z ² G°
(100) | | 3383.39 A
3376.68 A | 6
4 | | 5.25
5.52 | 2½-1½
3½-3½ | a ² F_y ² F° †
(31) | 6557.91
7030.33
7757.89 | A
A
A | 100
150
15 | | 4.55
4.24
3.92 | 31-31
21-21
11-11 | | 3762.51 | A | 25 | 3.94 | 7.22 | 43-33 | a ² H-x ⁴ D°
(101) | | 3140.77 A
3064.68 A | 15
20 | | 5.42
5.52 | 2 } -3 } | | 5969.38
•6156.25 | A
A | 5
3d | 2.49
2.49 | 4.55 | 2] -3] | b ⁴ F_z ² P° | 4682.68
3900.64 | A
A | 8
20 | 3.94
3.82 | 6.57
6.98 | | a ² H-w ² F°
(102)
a ² H-z ² H°† | | 3046.03 A
3116.95 A | 30
8 | | 5.91
5.82 | | a ² F-y ⁴ D°†
(32)
a ² F-z ² G°† | 7021.23
7663.09 | Ā
A | 30
30 | 2.33 | 4.09 | 1분- 분 | (67)
b ⁴ F-z ² D°† | 4613.74
4422.76 | A
A | 50
150 | 3.94
3.82 | 6.61 | 41-41
51-41 | (103) | | 6644.60 A | 300 | | 3.63 | _ | (33)
b ² D-z ⁴ F°† | 4334.65
4817.22 | A | 30
80 | 2.86 | 5.70 | 41-51 | (68)
b ⁴ F-z ⁴ G° | 4047.96
4524.74 | A
A | 50
30 | 3.82
3.94 | 6.87
6.66 | 51-41
43-33 | a ² H-y ² G° †
(104) | | 4999.69 A | 40
50 | 1.77 | 4.24 | 11-21 | b2D-z4D0+ | 5444.07
6230.84 | A
A
A | 30
20 | 2.33 | 4.75
4.31 | $3\frac{1}{2} - 4\frac{1}{3}$ $2\frac{1}{2} - 3\frac{1}{3}$ | (03) | 6609.20 | A | 8 | 4.05 | 5.91 | -
2] -2] | c ² D-y ⁴ D° | | 6935.16 A
6754.61 A | 100 | 1.77 | 3.92
3.60 | 21-13
12- 2 | (35) | 5194.57
5929.35
6511.62 | A
A
A | 6
5
6 | 2.86
2.67
2.86 | 5.23
4.75
4.75 | 41-41
31-31
41-31 | | 5110.61 | A | 7 | | 6.46 | | (105)
c ² D-x ² F°
(106) | | 5360.44 A
5324.26 A
4541.31 A | 40
30
20 | 1.77 | 4.09 | 23-13
13-13
13-13 | b ² D-z ² P°
(36) | 4622.71
5264.95 | A
A | 100
80 | 2.49
2.33 | 5.16
4.68 | 21-21
13-15 | b ⁴ F-y ² D° (70) | 4486.65
4241.93 | A
A | 20
7 | 4.05 | 6.80
6.96 | | c ² D-x ⁴ P°
(107)
c ² D-w ² P° | | 5058.18 A
5311.60 A | 10
150 | | 4.31
4.10 | $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-2\frac{1}{2}$ | b ² D-z ² D°
(37) | 5057.03
4699.72 | A
A | 30
40 | 2.67
2.49 | 5.11
5.11 | 3 1 -3 1
25-3 1 | b ⁴ F-z ² F°†
(71) | 3945.36 | A | 10n | 4.05 | 7.17 | 2] -2] | (108)
c ² D-v ² D°
(109) | | 4731.36 A | 40 | 2.14 | 4.75 | | b ² D-z ⁴ G°
_(38) | 5079.65
4350.52 | A
A | 60
150 | 2.33 | 4.76
5.69 | | | 67 19.4 0
7398.96 | A
A | 50
10 | 4.62 | 6.46 | 3 1 - 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | b ² F-x ² F° (110) | | 4249.33 A
3648.35 A | 30
6 | 1.77 | | | _{b²D−y²D•} | 4245.84
4232.43
4703.62 | A
A
A | 20
60
10 | 2.49
2.33 | 5.39
5.25
5.48 | 41-41
21-21
11-11
42-31 | (72) | 6550.01
7278.72 | A
A | 10
6 | | 6.51 | | b ² F-w ² D° (111) | | 4320.69 A
4020.25 A
4573.81 A | 40
5
20 | 3.14
1.77
3.14 | 5.00
4.84
4.84 | 21-21
11-11 | b ³ D-z ⁴ P°
(40) | 4535.38
4466.41 | A
A | 30
30 | | 5.39
5.25 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | |
5673.58 | A | 10 | 4.62 | 6.80 | | b2F-x4P° † | | 4158.90 A | 30 | 2.14 | | | b ² D-z ² F°†
(41) | 4187.68 | A | 8 | 2.33 | 5.28 | | b ⁴ F_y ² P° † | 5493.22 | A | 6 | 4.62 | 6.87 | | (112)
b2F_y2G° †
(113) | | 4127.80 A
3698.39 A | 40
10 | | | | b ² p_y ⁴ F° † | 4640.14
4490.60
4336.66 | A
A
A | 30
30
30 | 2.86
2.67
2.67 | 5.52
5.42
5.52 | 44-34
34-24
34-34 | b ⁴ F-y ² F°
(74) | 4179.55
3946.00 | A
A | 10
7n | 4.62 | 7.57 | • | b2F_u2D°
(114)
b2F_y2F°† | | 3935.64 A
3485.16 A | 30 | | 5.28
5.31 | 21-11
11-1 | b ² D-y ² P°
(43) | 4206.59
4071.22 | A
A | 80
6 | 2.49
2.49 | 5.42
5.52 | 21-21
21-31 | | Strongest | Uncl | assifie | d Lines | of <u>Hf</u> | II | (115) | | 3518.75 A
3659.02 A | 15
4 | | 0.20 | 15-15 | _b 2 _{D-y} 2 _F ° | 3877.11
3806.07
3766.92 | A
A
A | 40
40
50 | 2.67 | 6.04
5.91
5.76 | 41-31
31-21
21-11 | b ⁴ F-y ⁴ D°†
(75) | 7061.90
6850.07 | A
A | 30 ?
601 | | | | | | 3384.14 A
3195.63 A | 10
8 | 1.77 | 5.42 | 1] -2] | ~ (44)
b ² D-y ⁴ D° † | 3737.88 | A . | 15 | 2.33 | 5.63
6.15 | 15- 5 | | 6548.72
4519.02
4443.07 | A
A
A | 10
10n
20 | | | | | | 3110.87 A | 40 | | | | b ² D-z 28° | 3744.98
3917.47 | A | 15
20 | 2.67 | 5.82 | | b ⁴ F-z ² G° † (76).
b ⁴ F-x ² D° † | | | | | | | | | 3024.78 A | 15 | 2.14 | 8.22 | 3 <mark>출-1출</mark> 1 | 646)
b ² D-y ⁴ P°†
(47) | 3438.24
3218.20 | A | 15
8 | 2.33
2.67 | 5.92
6.51 | | 64F_w2D° † | <u>Ta I</u> I | P ? | Anal C | List | | c 1942 | | | 5391.36 A
5590.73 A | 10
5 | | 4.09 | 13-13 | 8 ³ P-z ³ P°†
(48) | 3323.35 | A | 30 | 2.86 | 6.57 | 4-3-3-3-3-1 | (78)
b ⁴ F-w ² F°
(79) | 5402.51
5212.75 | A | 40w
35w | 0.00 | 2.28 | 11-11
11-21
11-11 | 1 2° | | 6531.66 A
6512.61 A | 30
10 | 2.20 | 4.09 | 1글-3글 8 | a ² P-z ² D°† | 7561.08 | A | 10 | 3.37 | 5.00 | | b ⁴ P-z ⁴ P°
(80) | 4574.32
3970.10
3077.24 | A
A
A | 15
15
15d? | 0.00
0.00
0.00 | 3.11 | 13-13
13-23
13-23 | 17°
52° | | 5298.06 A
5842.23 A | 100
80 | | 4.21 | ۇ -1≱ | (49)
m ² P-z ⁴ G° | 6306.17
6563.86 | A | 5
10 | 3.52
3.37 | 5.48
5.25 | 1출-1출 | b ⁴ P-y ⁴ F° † (81) | 5328.38 | Ā. | 20w | 0.25 | 2.56 | -
2] -1글 | a ⁴ F-4° | | 4177.50 A
4417.37 A | 20
100 | 2.20 | | | (50)
a ² P-y ² D°†
(51) | 6455.85 | A | 20 | 3.37 | 5.28 | 1-1-1- | b ⁴ P-y ² P°†
(82) | 5037.65
2965.54 | A
A | 30
20 r | | 2.70 | 2 1 -1 1
2 1 -1 1 | 62°
(2) 8° | | | 2.7 | = · - • | | c -2 | · | | | | | | | | | • | | | | - | | | i | 98 | | | | | | | R E V | 1 5 1 | . ע | | | | * D D B | | | | | | | | |--|-------------|--|------------------------------|------------------------------|---|---|--|-------------|----------------------------|------------------------------|------------------------------|---|--|--|--------------|--------------------------|-------------------------|----------------------|---|--| | Labo:
I A | | y
Int | Low E | P
High | J | Multiplet
(No) | Labo:
I A | | 'y
Int | Low
Low | P
H1gh | J | Multiplet
(No) | Labor
I A | atory
Ref | | Low | High | J | Multiplet
(No) | | Ta I con | tinue | đ | | | | | W II con | tinue | od | | | | | <u>Ir I</u> II | 9.2 | Anal | B L1 | t D | Dec 19 | | | 5811.10 | A | 2041 | 0.49 | 2.61 | 3 1 _2 1
_ | a ⁴ F-6° (3) | 3657.59
3361.11 | A
A | 120
100 | 1.09
1.09 | 4.46
4.76 | ţţ | (3)2° | 3800.122
3448.967 | Å | 60 r
60 | 0.00
0.50 | 3.25
4.08 | 41-41
11-21 | a ⁴ F-z ⁶ D° † (1) | | 5 461.31
3063.56 | A
A | 25
18r | 0.69
0.69 | 2.95
4.72 | 41-31
42-31 | a ⁴ F-12°
(4)78° | 3572.48 | A | 300 | 1.31 | 4.76 | -
1½- ½ | 2-2°
(3) | 3513.638
3266.446 | A | 80 r
60 | 0.71 | 3.51
4.49 | | a ⁴ F _{-z} ⁶ F ⁰ † (2) | | 6925.35
5776.76 | A
A | 20d? | 0.75 | 3.51
3.88 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | a ⁴ P ₋ 3° (5)10° | 3024.51 | A | 300 | 1.40 | 5.48 | a l _a l
_ | 3-7°
(4) | 3437.006 | | 60 | | | - | a ⁴ F_z ⁶ G ⁰ † (3) | | 5413.47
5349.08
5136.47
4921.29 | A
A
A | 20w
25w
30w
25 | 0.75
0.75
0.75
0.75 | 3.03
3.05
3.15
3.25 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14°
15°
18°
31° | 3149.87 | A | 500 | 1.63 | 5.54 | - | 4-11°
(5) | 4268.096
3368.472
3992.114 | A
A | 80
60
80 | | | | b ⁴ F-z ⁶ D ⁰ †
(4)
b ⁴ F-z ⁶ F ⁰ †
(5) | | 5419.19
5354.67 | A
A | 30w
30w | | | _ | a ⁴ P?-14°
(6) 15° | *3189.24
3177.22
3051.30
3021.98 | A
A
A | 100 1
150
400
100 | 1.66
1.66
1.66
1.66 | 5.53
5.54
5.70
5.74 | 31-41
31-31
31-31
31-41 | 5- 9°
(6)10°
13°
15° | 3220.772
3915.384
3068.897 | A
A
A | 100 r
60
60 | | 4.18
4.37
4.37 | | b ⁴ F-z ⁶ G• † (6) | | 5141.63
4926.02 | A | 30w
35 | 0.75 | 3.15
3.25 | 13-13
13-13
- | 21° | 3463.52
3179.44 | A
A | 200
150 | 1.66 | | _ | | 3198.917
3212.121 | A
A | 60
60 | 0.88 | 4.74 | | b ⁴ F-z ⁴ D° †
(7)
b ⁴ F-z ⁴ G° † | | 5939.75 | A | 20₩ | 1.20 | 3.28 | 1년
- | a ⁶ D-23°
(7) | 3175.97
3036.68 | A
A | 200
100 | 1.66 | 5.54
5.72 | 21-11
21-21 | 6- 5°
(7)10°
11°
14° | | | | | | | (8) | | 5944.01 | A | 304? | | | 1] -2]
- | (8) | 3343.40
3160.03 | A
A | 120
300 | 1.83 | 5.53
5.74 | 4}-4}
4}-4} | 8- 9°
(8)15° | Pt I I I | 9.2 | Anal | B Li | st D | Dec 19 | 943 | | 5435.27 | A | 30 | | | | a ⁶ D?-35°
(9) | 3401.90 | A | 150 | 1.85 | 5.48 | - | 9_ 7°
(9)10° | 3315.05
3290.23 | A
A | 8
6 | 0.00
1.35 | 3.72
5.00 | 3-4
1-3 | a ³ D-z ⁵ D°† | | 6045.38 | A . | 30 | | | | a ⁶ p_28°
(10) | 3342.46
3376.17 | A | 400 | 1.85 | 5.54 | - | | 3064.71
3139.39
3156.59 | A
A
A | 50
10
10 | | 4.03
4.03
5.16 | 3-2
3-3
1-1 | a ³ D-z ³ P° † | | 7148.61
6430.78
4936.41 | A
A | 30
30
30 | 1.51
1.51
1.51 | 3.43
4.01 | 31-31
31-31
31-21 | a ⁶ D-20°
(11)28°
52° | *3189.24 | Â | 1001 | 1.87 | 5.74 | 3 1-41
- | 10- 9°
(10)15° | 2997.97 | A | 30 | 0.10 | | | a ³ D-z ³ Fe (3) | | 7346.37
6485.36 | A
A | 30
30 | 1.65 | 3.33
3.55 | -
41-31
41-41 | a ⁶ D-26°
(12)32°
39°
53° | 3555.18
3486.14 | A
A | 120
100 | 2.00
2.00 | 5.48
5.54 | 2-2-2-1-5
2-1-5
2-1-5 | 11- 7°
(11)11° | 3408.14
3966.37 | A
A | 15
6 | 0.10
1.25 | 3.72
4.36 | 4-4
3-3 | a ³ F-z ⁵ D° † (4) | | 5997.24
5037.33 | A | 35w
30w | 1.65 | 3.71
4.10 | 44-44
43-33
- | 53 ° | 3529.57 | A | 100 | 2.04 | 5.54 | 4 <u>-</u> 3-3-2
- | 13-10°
(13) | 3042.65
4164.54 | A
A | 2 0
5 | 0.10
1.25 | 4.16
4.21 | | a ³ F_z ⁵ Ge
(5)
a ³ F_z ³ Fe † | | 5404.95 | ٨ | 35w | 2.13 | 4.41 | 3 } _1½ | 9-62°
(13) | 3549.08
3358.62
3343.09 | A
A
A | 150
200
100 | 2.05
2.05
2.05 | 5.53
5.72
5.74 | 31-41
31-21
31-41 | 13- 9°
(13)14°
15°
17° | 3638.80
5368.97 | Â | 8 3 | 1.25 | 4.64 | 3-4
2-3 | (6) | | <u>Ta II</u> Se | e int | roduction | on | | | | *3243.36 | A | 100 | 2.05 | | —
— | 17 | 3301.87 | A | 10 | 0.81 | 4.55 | 2-2 | a ³ P-5° (7) | | | | | | | | | 3010.76 | A | 100 | 2.35 | 6.45 | 4출-3물
 | 15-27°
(14) | Pt II Sec | 1nt: | roduet 1 | | | | | | <u>WI</u> IP | 7.94 | | | | June | | *3243.36 | A | 100 | 2.47 | 6.28 | 3 <mark>출-4출</mark>
 | 16-23°
(15) | | | | | | | | | 4244.374
4680.539
4843.829 | A
A
A | 200
400
500 | 0.60
0.41 | 3.23
2.96 | 3-3
3-2 | d ⁴ s ² 5p_d4sp ² p•†
(1) | 3151.31 | A | 300 | 2.87 | 6.78 | 4] -5] | 19-38°
(16) | Au I I I | 9.2 | Anal | A L1 | st D | Dec 19 | 42 | | 5053.300
5006.169
5224.680
5514.712 | A
A
A | 500
400
400
500 | 0.21
0.77
0.60
0.41 | 2.65
3.23
2.96
2.65 | 1-1
4-3
3-3
3-1 | | 3345.86 | A | 200w | 2.89 | 6.58 | 3 } -1} | 30-31°
(17) | 3122.782
6278.30
•5064.69 | B
A
A | (150)
35n
15 | 1.13
2.65
2.65 | 5.08
4.61
5.08 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | a ³ D_6 ³ P° (1) | | 4102.713
3881.402
3835.058 | A
A
A | 150
100
(5) | 0.77
0.60
0.41 | | 4-3
3-3
2-2 | d ⁴ e ^{2 5} D−d ⁴ sp ⁵ p∾†
(2) | | P 7.8 | 35 Anal | LB L | ist D | Мау | 1942 | 7510.74
5837.29 | A
A | 200
40 | 5.08
4.61 | 6. 73
6. 73 | -
1}-
2-2 | 6 ² P°-7 ² 8
(2) | | 3757.093
3864.335 | A
A | {3}
3} | 0.41 | | 2-2 | a ⁴ s ³⁵ D–a ⁴ sµ ⁵ D°†
(3) | 4889.15
5275.54 | | 2000
1000 | 0.00 | 2.52
2.34 | 21-31
21-21 | a6g_z8p* | 4793.63
4065.09 | A
A | 100
45 | 4,61 | 7.66 | 13-23 | 6 ² Pe-6 ² D | | 3829.133
4219.383
3570.662
3760.133 | A
A
A | (3)
(3)
(5)
(6)
(4)
(5) | 0.21
0.77
0.60
0.41 | 4.05
3.69 |
1-1
4-3
3-4
2-3 | | 3460.47 //
3464.72
3451.88 | A
A
A | 1000
800
600 | | 3.57
3.56
3.58 | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 1\frac{1}{2}$ | a ⁶ g_z ⁶ p° (3) | 4811.61
Au II See | inti | 60
roduction | 5.08
on | 7,65 | 19-19 | | | 3631.959
3682.101
3757.929 | A
A
A | | 0.21
0.77
0.60 | 4.13 | 1-3
4-5
3-4 | d ⁴ s ²⁵ D−d ⁴ sp ⁵ F°1
(4) | | | | | | | | | | | | | | | | 3872.835
4047.948
3847.501 | A
A
A | (5)
(3)
(4)
(2)
(3) | 0.41
0.21
0.00 | | 3-3
1-3
0-1 | , -, | 0s I I
4420.468 | P 8.1 | 7 Anal
400R | 0.00 | st D
2.79 | Dec 19 | 943
1–36° | Hg I I I
5460.743 | 10.3
A | 39 Ans
500R | | 7.70 | | 1942
6 ³ p°_7 ³ g | | 3570.662
3326.194 | A
A | (6)
60 | 0.41 | | | d ⁴ s ^{2 5} D−313°
(5)362° | 4260.854
3528.602
3301.559 | A
A
A | 300
400R
500R | | 3.90
3.50
3.74 | 4-5
4-4
4-5 | (1)27°
32°
37° | 4358.343
4046.557 | Ā | 300
100 | 4.87 | | 1-1
0-1 | (1) | | 3300.819
3215.578
3191.577 | A
A
A | 150
150
60 | 0.60
0.77 | 4.34
4.61
3.87 | 3-4
4-5
0-1 | 351° | 3267.945
*3058.66 | A
A | 400R
500R | 0.00 | 3.78
4.03 | 4-4
4-4 | 39°
41° | 3663.274
3131.845 | A | 50R
100 | 5.44
4.87 | 8.81
8.81 | 2-2
1-3 | 6 ³ P°-6 ¹ D | | 3176.602
3046.452
3041.876 | A
A | 30
50
25 | 0.21
0.21 | 4.09
4.26
4.47 | 1-3
1-3
3-1 | 331°
344°
361° | 3752.524 | A | 400R | 0.34 | 3.63 | _
_ 2_3
_ | 2-35°
(2) | 3650.144
3125.668 | A
B | 100R
200R | | 8.82
8.81 | 2-3
1-2
- | 6 ³ P°-6 ³ D† (3) | | 4008.769
4074.374
4294.623 | A
A
A | 1000
500
1000 | 0.36 | 3.44
3.39
3.24 | 3-4
3-3
3-2 | d ⁵ s ⁷ S−d ⁴ sp ⁷ P•
(6) | 4135.784
3963.628
3782.195
3336.150 | A
A
A | 200
500
400R
200R | 0.51
0.51
0.51
0.51 | 3.63
3.78 | 3-4
3-3
3-4
3-3 | 3-32°
(3)35°
39°
43° | 5790.659
5769.598 | A
A | 300
300 | 6.67
6.67 | 8.81
8.81 | | 6 ¹ P°-6 ¹ D
(4)
6 ¹ P°-6 ³ D†
(5) | | 3867.986
4302.123 | A
A | 300
500 | 0.36
0.36 | 3.56
3.23 | 3-4
3-3 | d ⁵ s ⁷ S-d ⁴ sp ⁷ D° (7) | 3262 200 | A
A | 500R
500R | | 4.30 | 3-4
3-2 | 45°
46° | Many lines | | | | re | | | | 4757.565
3617.522
3780.770 | A
A | 800
300 | 0.36
0.36
0.36 | 3.78 | 3-2
3-3 | d ⁵ s ⁷ B-d ⁴ sp ⁵ p° | | A
A | 100
300 | | 3.59
3.74 | 5-5 | 4-34°
(4)37° | | | | | | | | | 3207.248
3049.694 | A
A | 80
60 | 0.36
0.36 | 4.21
4.41 | 3-2 | (8)
d ⁵ s ⁷ 8- 341°
(9)357° | 3370.588
3156.248 | A | 300R
500R | 0.64 | 4.30
4.55 | 5-4
5-5
 | 45°
53° | <u>Tl I</u> I I | 6.08
A | Anal | 0.96 | 1st D
3.27 | Dec 1 | 1942
6 ² P°-7 ² 8
(1) | | 3017.447 | A | 60 | 0.36 | 4.45 | 3-4 | 360° | 4112.018 | A | 150 | 0.71 | 3.71 | | 5 –36°
(5) | 3775.724 | A | 500R | 0.00 | | | | | <u>W II</u> I | P T | Anal D | List | D D | ec 194 | :3 | 3560.855 | A | 150R | 1.08 | 4.55 | | 7–53°
(6) | 3519.24
3529.38
<u>Many line</u> | | 500R
100R
w fine s | 0.96
0.96
structu | 4.47
4.46
re | 12-22 | 6 ² P°-6 ² D† | | 3641.42
3286.57 | A
A | 150
100 | 1.08 | 4.46
4.83 | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | 4F-1° (1)3° | | | | | | | | Tl II Sec | int | roductio | on | | | | | Ī | WALLDED WORLD INDO | |---|--| | Laboratory EP J Multiplet IA Ref Int Low High (No) | Laboratory EP J Multiplet
IA Ref Int Low High (No) | | Pb I I P 7.38 Anal A List D Dec 1943 | Bi II See introduction | | 3639.568 A 500R 0.97 4.36 1-1 6p ³ P-7e ³ P*† 4057.812 A 1000R 1.31 4.36 2-1 (1) 3683.469 A 1000R 0.97 4.32 1-0 | Rn I See introduction | | 3739.940 A 300 2.65 5.95 2-2 6p ¹ D-7s ³ P ⁶ 7228.974 B (2000) 2.65 4.36 2-1 (2) | Ra I I P 5.25 Anal A List D May 1942 | | 3572.734 A 200R 2.65 6.10 2-1 6p ¹ p-7s ¹ P° (3) | 4835.91 // A 100 0.00 3.56 0-1 718-71P° (1) | | Pb II See introduction | | | | Ra II I P 10.10 Anal A List D May 1943 | | Bi I I P ? Anal B List D Dec 1942 | 3814.42 // A 300 0.00 3.24 \(\frac{1}{2}\)-1\(\frac{1}{2}\) 7\(^2\)B-7\(^3\)P* 4683.38 A 100 0.00 2.64 \(\frac{1}{2}\)-\(\frac{1}{2}\) (1) | | 3067.712// A 9R 0.00 4.03 1½- ½ 6p ⁴ 5°-1 (1) | Th I Wo analysis Dec 1942 | | 4722.652 to (8) (10) $(1.41 4.02$ (2) (3) (3) | | | Wide fine structure | | | | | | | 99 | | |----------------------------|------------|--------------|--------------|---|---| | Laborat
I A Re | | E
Low | P
High | J Multiplet (No) | | | Th II I P | 7 Anal | C Lis | t D J | uly 1944 | | | 3539.589 A | 400 | 0.00 | 3.49 | 12-32 a3D-z4F0 t | ١ | | 4277.322 A | 400 | 0.00 | 2.89 | 12-12 a2D-y2po t | • | | 3610.794 A
4019.137// A | 30
1500 | 0.51
0.00 | 3.93
3.07 | $\begin{array}{ccc} 2\frac{1}{2} - 3\frac{1}{2} & a^2 D - y^2 F^{\circ} + \\ 1\frac{1}{2} - 3\frac{1}{2} & (3) \end{array}$ | ł | | 3180.199 A | 400 | 0.19 | 4.07 | -
2] -3] a ⁴ F-z ⁴ F° 1 | | | 3392.040 A | 300 | 0.19 | 3.83 | $3\frac{1}{2}-3\frac{1}{2}$ a ⁴ F-y ² G° 1 | r | | 4391.114 A | 600 | 0.55 | 3.36 | | ٢ | | 4919.814 A | 500 | 0.76 | 3.27 | 3\frac{1}{2}-3\frac{1}{2} a^4H^0-z^4G1 (7) | ł | | Th III See | introduc | tion | | | • | U Not separated Dec 1942 ## REVISED MULTIPLET TABLE | | | | | | | F | ORBIDDE | N LINES | | | | | | | |----------------------------------|-----------------------|----------------------|---|---|------------------------------|----------------------------|-------------------------|---|--|-------------------------------|----------------------|----------------------|---|---| | IA | Low | | J | Multiplet
(No) | I A | E I | | J | Multiplet
(No) | I A | | P
High | J | Multiplet
(No) | | Be I I P
4548.3 | 0.00 | (2.71) | 0-1 | 2s ² 1s-2s2p ³ p* | F IV I P
4059.3
3996.3 | 0.08
0.03 | 3.12
3.12 | 2-2
1-3 | 3p ^{3 3} P-2p ^{2 1} D | 7869.5 | | 2.66 | 2–0 | 3p ² 1p-3p ² 1s
(3F) | | | 44 20 | | | | 3532.2 | 3.13 | 6.61 | 3-0 | 2p ² 1 _{D-2p} 2 1 _S (2F) | s I I | P 10.31 | | | | | <u>CI</u> IP:
9849.5 | 0.01 | 1.26 | 2-3 | 2p ² ³ P-2p ² ¹ D | | | | | | 10819.8
11305.8 | 0.00 | 1.14 | 2-2
1-2 | 3p4 3p-3p4 1p | | 9823.4
9808.9 | 0.00 | 1.26 | 0-3 | (1F)
2p ² ³ p-2p ² ¹ s | <u>Ne III</u> I
3868.74 N | P 63.3 | 3.19 | 2-2 | 3p4 3p-3p4 1p | 4506.9
4589.0 | 0.00 | 2.74
2.74 | 3-0
1-0 | 3p ⁴ 3p-3p ⁴ 1s
(2F) | | 4627.3
4621.5 | 0.01 | 2.67 | 2-0
1-0 | (ar) | 3967.51 N | 0.08 | 3.19 | 1-3
2-0 | (1F) 2p4 1s | 7724.7 | | 3.74 | 2-0 | 3p ⁴ ¹ D-3p ⁴ ¹ S | | 8727.4 | 1.26 | 2.67 | 2-0 | 2p ² 1p-2p ² 1s
(3F) | | | | | (ar) | | | | | (3F) | | <u>ni</u> ip | 14.49 | | | | | 96 | | دا دا | _{2p} 3 2 _p e_2p3 2pe | | P 23.3 | 7.07 | 41 41 | 3p ³ 4g 0_3 p ³ 2pc | | 5200.7
51 98. 5 | 0.00
0. 0 0 | 2.37
2.37 | $1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$ | 2p ³ 4s°-2p ³ 2p° (1F) | 4716 ?
4730 ?
4714 ? | (4.76
(4.76 | 7.38)
7.38)
7.38) | 21-11
11-12
21-12
11-12 | (1F) | 4068.62
4076.22 | и 0.00 | 3.03 | $\frac{1\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-\frac{1}{2}}$ | (1F) | | 3466.4 | 0.00 | 3.56 | 11/2- | 2p ³ 4se-2p ³ 2pe
(2F) | 4717 7 | (4.76 | 7.38) | 12-12 | | 6717.0
6731.3 | 0.00 | 1.84 | 1 1 2 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3p ³ 4s°-3p ³ 2p°
(2F) | | 0395.4
0404.1 | 2.37
2.37 | 3.56
3.56 | 2}-
1}- | 3p ³ 2p ^e -3p ³ 2pe
(3F) | <u>Ne V</u> I P | | | | . 2 3 2 1. | 10317.7
10336.0
10369.7 | 1.84
1.83
1.84 | 3.03
3.03
3.03 | 21-12
12-12
22-12
12-12 | 3p ³ 2p ⁰ -3p ³ 2p ⁰ (3F) | | | | | | | 3425.8 N
3345.9 N | 0.10 | (3.74)
(3.74) | 2-2
1-2 | 3p ² 3p _{-3p} 3 1 _D (1F) | 10284.3 | 1.83 | 3.03 | 1-1-1 | | | 6583.6 N | | 1.89 | 2-2 | 3p ² 3p-2p ² 1p | 2972 1 | (3.74 | 7.89) | 2- 0 | 2p ^{2 1} D-2p ^{2 1} s
(2F) | <u>8 III</u> | I P 34.9 | | | | | 6548.1 N
6527.4 | 0.00 | 1.89
1.89 | 1-3
0-2 | (1F) | | | | | | 9532.1
9069.4 | 0.10
0.04 | 1.40 | 2-2
1-3 | 3p ^{2 3} P-3p ^{2 1} D | | 3070.8
3063.0 | 0.02
0.01 | 4.04
4.04 | 2-0
1-0 | 2p ² 3p _{-2p} 2 1 _S (2F) | Na IV I I | 98.5 | | | | 3796.7
3721.1 | 0.10 | 3.35 | 2-0
1-0 | 3p ² 3p-3p ² 1g
(2F) | | 5754.8 N | 1.89 | 4.04 | 2-0 | 3p ² 1 _{D-2p} 2 1 _S (3F) | 3319.3
3445.9 | | 3.72
3.72 | 2-2
1-3 | 2p ⁴ 3p _{-2p} 4 .1p
(1F) | 6310.2 | | 3.35 | 3-0 | 3p ² 1 _{D-3p} ² 1 _S | | <u>01</u> IP | 13.56 | | | | <u>Na V</u> I P | 138.0 | | | | | | | | (01) | | 6300.23 L
6363.88 L | 0.00 | 1.96 | 2-2
1-2 | 2p ⁴ 3p _{-2p} 4 1p
(1F) | 4011.2
4021.6
4017.5 | 5.83
5.83
5.83 | 8.90
8.90
8.90 | 21-11
12-1
21-1
12-12 | 2p ³ 2p•-2p ³ 2p• | <u>s VIII</u>
9917.9 | IP† | 1.24 | 11 1 | . _{2p} 5 2pe_2p5 2pe | | 2972.3 | | 4.17 | 1-0 | 2p ⁴ ³ p _{-2p} ⁴ ¹ s
(2F) | 4015.3 | 5.83 | 8.90 |
13-13 | | | | 1.04 | 1½- ½ | (1F) | | 5577.350A | 1.96 | 4.17 | 3-0 | 2p ⁴ 1p _{-2p} ⁴ 1s
(3F) | <u>Mg VI</u> II | 186.1 | | | | 6 VII | | | | | | | | | | (OF) | 3485.5 | 6.70 | 10.24 | 3 1 -11 | 3p3 3pe-3p3 3pe | <u>s XII</u>
7536 | 0.00 | 1.64 | } -1 } | 3p ² P-3p ² P | | <u>0 II</u> I P | 35.00 | | | | 3503.0
3500.4
3488.1 | 6.70 1
6.70 1 | 10.23 | $\begin{array}{c} 3\frac{1}{2}-1\frac{1}{2} \\ 1\frac{1}{2}-\frac{1}{2} \\ 3\frac{1}{2}-\frac{1}{2} \\ 1\frac{1}{2}-1\frac{1}{2} \end{array}$ | (1F) | | | | | (1F) | | 3728.91 N
3726.16 N | 0.00 | 3.31
3.31 | $1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$ | 2p ³ 4s°-2p ³ 2p° (1F) | | | | | | <u>Cl II</u> | I P 23.70 | | | | | 7319.4 | 3.31 | 5.00 | 21-11 | 2p ³ 2p•_2p ³ 2p• | | P 241.1 | | | 70 70 | 8579.5
9125.8 | 0.00 | 1.44 | 2-2
1-2 | 3p4 3p-3p4 1p | | 7329.9
7318.6
7330.7 | 3.31
3.31
3.31 | 5.00
5.00
5.00 | 21-11
11-1
21-1
11-11 | (2F) | 3074.0
3093.4
3098.7 | 7.59 1
7.59 1
7.59 1 | l1.58
l1.58 | 21-12
12-12
12-12 | 3p ³ 2pe-3p ³ 2pe
(1F) | 3583.2
3675.0 | 0.00
0.09 | (3.44)
(3.44) | 2-0
1-0 | 3p ^{4 3} P-3p ^{4 1} S
(2F) | | | | | | | 3068.8 | 7.59 1 | 11.61 | 1 1 1 1 1 1 | | 6152.9 | | (3.44) | 2-0 | 3p4 1 _{D-3p} 4 1 _S | | | P 54.71 | | | 2.7. 2.4 | <u> 81 I</u> I P | 8.12 | | | | | | | | (3F) | | 5006.84 N
4958.91 N
4931.8 | 0.01 | 2.50
2.50
2.50 | 2-2
1-3
0-2 | 2p ² 3p-2p ² 1p | 6589.74
6526.85 | 0.03
0.01 | | 2-0
1-0 | 3p ² 3p-3p ² 1s | <u> </u> | I P 39.7 | | | | | 4363.21 N | 2.50 | 5.33 | a-0 | 2p ² 1 _D -2p ² 1 _S (2F) | 10991.52 | 0.78 | 1.90 | 3-0 | 3p2 1 _{D-3p} 2 1 _S | 3342.7
3353.4 | 0.00 | 3.69
3.68 | $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$ | 3p ³ ⁴ se-3p ³ 2pe | | | | | | | | | | | (3F) | 5517.2
5537.7 | 0.00
0. 00 | 2.24
2.23 | $\begin{array}{c} 1\frac{1}{2}-3\frac{1}{2} \\ 1\frac{1}{2}-1\frac{1}{2} \end{array}$ | 3p ³ 4s°-3p ³ 2p° (1F) | | <u>F II</u> I P
4789.5 | | 0.50 | | - 4 3- 4 4 | <u>PI</u> IP1 | 0.9 | | | | 8481.6
8501.8 | 2.24
2.23 | 3.69
3.68 | 21-11
11-1 | 3p ³ 2pe_3p ³ 2pe
(3F) | | 4869.3 | | 2.58
2.58 | 2-2 | 2p ⁴ ³ P-2p ⁴ ¹ D
(1F) | 8787.6
8799.1 | 0.00 | 1.40 | $1\frac{1}{2}-3\frac{1}{2}$
$1\frac{1}{2}-1\frac{1}{2}$ | 3p ³ 4s ^e -3p ³ 2pe
(1F) | 8550.5
8433.7 | 2.24
2.23 | 3.68
3.69 | 21-11
12-12
22-12
12-12 | (01) | | 4157.5 | 2.58 | 5.55 | 2-0 | 3p ⁴ 1D-3p ⁴ 1s
(3F) | 5332.4
5339.7 | | 2.31
2.31 | $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$ | 3p ³ ⁴ S°-3p ³ ² p° (2F) | | | | | | | | | | | | n | | | • | | 8046.1 | I P 53.2
0.17 | 1.70 | 2-2 | 3p ^{2 3} P-3p ^{2 1} D | | | D 00 00 | | | | <u>PII</u> I P
11898.2 | 0.06 | 1.10 | 2-2 | 3p ² | 7530.9 | 0.06 | 1.70 | 1-2 | (1F) | | | P 62.39 | | _ 1 | 22 ~ ~ | | | | | | | | | ~ ~ | | | F III I 1
5721.2
5733.0 | | 6.36
6.36 | 21-
11- | 2p ³ 2p•-2p ³ 2p• | 11483.2
4736.6 | 0.02 | 2.66 | 1-2
2-0 | (1F)
3p ² 3p-3p ² 1s | 3203.3
3118.3 | | 4.03 | 2-0
1-0 | 3p ²⁻³ p-3p ² 1 _S (2F) | | FORBIDDEN | LINES | |-----------|-------| |-----------|-------| | | | | | | F | ORBIDDE | N LINES | | | | | | | |------------------------------|---|---|--|----------------------------------|----------------------|----------------------|--|--|--|-------------------------|----------------------|--------------------------|--| | IA | E P
Low High | J | Multiplet
(No) | Î A | E I
Low | | J | Multiplet (No) | IA | E l
Low | | J | Multiplet
(No) | | A III I P | 40.8 | | | Ca V I | P 84 | | | | Sc VII | I P ? | | | | | 7135.8
7751.0 | 0.00 1.73
0.14 1.73 | 2-2
1-2 | $_{3p^{4}}^{3p}_{-3p^{4}}^{3p}_{D}$ | 5308.9
6085.9 | | 2.32
2.32 | 3-2
1-3 | 3p ⁴ 3p _{-3p} 4 1p
(1F) | 4987 1
5045 1
5224 1 | (0.08
(0.00
(0.08 | 2.45) | 21-11
11-1
21-1 | 3p ^{3 2} De-3p ^{3 2} Pe
(1F) | | 3005.1
3109.0 | 0.00 (4.11)
0.14 (4.11) | 2-0
1-0 | 3p ⁴ | 3996.3 | 2.32 | 5.41 | 8-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (3F) | 4824 ? | \0.00
 | 2.56) | 12-12 | | | 5191.4 N | 1.73 (4.11) | 3-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (3F) | - | | | | (ar) | T1 I | D 6 81 | | | | | | | | | Ca VI | [P 7 | | | | 12168.80 | 0.05 | | 4-3 | a ³ F-a ³ P | | <u>A IV</u> I P 6 | 31 | | | 3646.3
3702.7 | 0.00 | 3.38
3.33 | $1\frac{1}{2}-3\frac{1}{2}$
$1\frac{1}{2}-1\frac{1}{2}$ | 3p ³ 4se-3p ³ 2pe
(1F) | 12012.60
11849.83
11856.02
11771.95 | | | 3-1
2-0
3-3
2-1 | (1F) | | 4711.4
4740.3 | 0.00 2.62
0.00 2.60 | 13-33
12-12 | 3p ³ 4s ^e -3p ³ 2pe
(1F) | 5587.2
5631.0 | 3.38
3.33 | 5.59
5.52 | 21-11
11-12
21-12
11-12 | 3p ³ 2 _D e_3p ³ 2pe
(2F) | 11621.54
8777.26 | 0.00 | 1.06 | 3-3
4-4 | a ³ F-b ³ F | | 7236.0
7263.3 | 2.62 4.33
2.60 4.30 | 2-1-1-1
1 | 3p ³ 2p°-3p ³ 2p° (2F) | 5766.4
5460.0 | 3.38
3.33 | 5.52
5.59 | $1\frac{2}{2} - 1\frac{2}{2}$ | | 8716.24
8669.28
8884.12 | 0.02
0.00
0.05 | 1.42 | 3-3
2-2
4-3 | (2F) | | 7332.0
7169.0 | 2.62 4.30
2.60 4.33 | 21-12
12-2
22-2
12-12 | ,, | | | | | | 8799.09
8613.35 | 0.02 | 1.42
1.45 | 3-2
3-4 | | | | | | | Ca VII | I P † | | | 0.7. 0.4 | 8588.84
8970.23
8488.93 | 0.00
0.05
0.00 | 1.44
1.42
1.45 | 2-3
4-2
2-4 | | | <u>A V</u> I P 78 | 3 | | | 5615.8
4938.6 | 0.50
0.20 | 2.70
2.70 | 2-2
1-3 | 3p ² | 8521.66 | 0.05 | 1.50 | 4-4 | a ³ F-a ¹ G | | 7006.3
6434.9 | 0.25 2.01
0.09 2.01 | 2-2
1-3 | 3p ^{2 3} p-3p ^{2 1} D (1F) | 3688 7 | 2.70 | (6.05) | 3-0 | 3p ² 1p-3p ² 1s
(2F) | 8367.07
8249.61 | 0.02
0.00
0.05 | 1.50 | 3-4
2-4 | (3F)
_a 3 _{F-a} 5 _P | | 4610 7 | 2.01 (4.69) | 2-0 | 3p2 1p-3p2 1s | | | | | (br) | 7287.25
7213.88
7150.21 | 0.02 | 1.73 | 4-3
3-2
2-1 | (4F) | | | | | (2F) | Ca XII | I P 655 | | | | 7328.50
7238.29 | 0.05 | 1.73 | 4-2
3-1 | | | | | | | 3329.3 | 0.00 | 3.71 | 1월~ 월 | 3p ⁵ | 7173.92
7126.40
7087.39 | 0.00
0.00 | 1.73 | 3-3
2-2
2-3 | | | <u>AX</u> IP?
5534.6 | 0.00 2.23 | 1킬- 킬 | 2p ⁵ 2pe_2p ⁵ 2pe | | | | | (1F) | 6739.63
6670.76 | 0.05 | | 4-5
3-4 | a ³ F-a ³ G
(5F) | | | | -2- 2 | (1F) | | | | | | 6617.12
6768.65 | 0.00
0.05 | 1.87 | 2-3
4-4 | (5) | | | | | | <u>Ca XIII</u>
4086.5 | I P 7 | 3 A9 | 2-1 | 2p4 3p-2p4 3p | 6692.48
6791.02
6642.57 | | 1.87 | 3–3
4–3
3–5 | | | AXI IP | | | 4.7. 4.7 | 4000.5 | 0.00 | 3.02 | 2-1 | (1F) | 6595.88 | 0.00 | 1.87 | 3-4 | | | 6919 | 0.00 1.78 | 2–1 | 3p ⁴ 3p-3p ⁴ 3p
(1F) | | | | | | 5828.12
5794.16
5755.60 | 0.05
0.03
0.00 | 2.15 | 4-3
3-2
3-1 | a ³ F-a ³ D
(6F) | | | | | | | I P ? | | | 0.7.0.7 | 5867.87
5812.53 | 0.05
0.02 | 2.15
2.14 | 4-2
3-1 | | | A XIV I P | 1 | | | 5648 1 | 0.00 | (2.19) | 0-1 | 2p ^{2 3} p-2p ^{2 3} p
(1F) | 5755.39
5737.59
5699.57 | 0.03
0.00
0.00 | 2.17
2.15
2.17 | 3-3
2-2
2-3 | | | 4359 7 | 0.00 2.83 |] _1] | 2p ² P°-2p ² P°
(1F) | | | | | | 5629.54 | 0.05 | 2.24 | 4-2 | a ³ F-b ³ P | | | | | | Sc II | I P 12.8 | | | | 5587.73
5555.33
5561.66 | 0.02
0.03 | 2.22 | 3-1
2-0
3-2 | (7F) | | <u>K IV</u> I P 6 | 82.5 | | | 9285.20
9191.34 | 0.02 | 1.35 | 3-2
3-3 | a ³ D-b ¹ D
(1F) | 5535.09
5509.51 | 0.00 | 2.23
2.24 | 2-1
2-2 | | | 6101.1
6794.8 | 0.00 2.02
0.21 2.02 | 2-2
1-3 | $_{3p^{4}}^{3p}_{-3p^{4}}^{1}_{D}$ | 9134.50
8649.11 | | 1.35 | 1-2
3-0 | a ³ D-a ¹ S | 5614.62
5562.94 | 0.05 | 2.25
2.34 | 4–6
3–5 | a ³ F-a ³ H
(8F) | | 4511.0 | 2.02.4.76 | 2-0 | 3p4 1 _{D-3p} 4 1 _S | 8567.60
8518.20 | 0.01 | 1.45
1.45 | 3-0
2-0
1-0 | (2F) | 5542.54
5630.85
5595.31 | 0.00
0.05 | 2.23
2.24 | 2-4
4-5 | (01) | | 4511.0 | 2.02 4.76 | 2=0 | (2F) | 8347.24
8307.67 | 0.02
0.01 | 1.50
1.49 | 3-2
2-1 | a ³ D-a ³ P
(3F) | 5664.02 | 0.03 | 2.23 | 3-4
4-4 | | | | | | | 8279.99
8384.28 | 0.00
0.03
0.01 | 1.49 | 1-0
3-1
2-0
2-2 | ,, | 5584.81
5518.00 | 0.05 | 2.26 | 4-4
3-4 | a ³ F-b ¹ G
(9F) | | <u>KV</u> IP1 | | | 7 4 7 2 | 8326.66
8271.32
8261.21 | 0.01
0.00 | 1.50 | 1-1 | | 5466.67
5396.71 | 0.00 | 2.33 | 2-4
4-2 | a ³ F-c ³ P | | 4125 ?
4166 ? | 0.00 (2.99)
0.00 (2.96) | 15-25
15-15 | 3p ³ 4s°-3p ³ 3p° (1F) | 8403.62
8225.25 | 0.02 | 1.49
1.50 | 3-0
1-2 | | 5358.79
5312.52 | 0.00 | 2.32
2.32 | 3-1
2-0 | (10F) | | 6316.6 | (2.99 4.95) | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3p ³ ² D°-3p ³ ² p° (2F) | 11896.48 | 0.31 | 1.35 | 2-2 | a ¹ D-b ¹ D | 5334.30
5310.36
5286.31 | 0.02
0.00
0.00 | 2.32
2.33 | 3-2
2-1
2-3 | | | 6349.5
6446.5
6223.4 | (2.96 4.91)
(2.99 4.91)
(2.96 4.95) | $\begin{array}{c} 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - \frac{1}{2} \\ 2\frac{1}{2} - \frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array}$ | (2F) | 10872.05 | 0.31 | 1.45 | 2-0 | (4F)
a ¹ D-a ¹ S
(5F) | 5025.53
4982.92 | 0.02 | 2.48
2.48 | 3-1
2-1 | a ³ F-a ¹ P
(11F) | | | | | | 10399.33
10456.86 | 0.31
0.31 | 1.49 | 2-2
2-1 | (5F)
a ¹ D-a ³ P
(6F) | 5043.30 | 0.05 | 2.49 | 4-2 | a^3F-b^1D | | <u>KVI</u> IP1 | 7 | | | 10486.97 | 0.31 | 1.49 | 2-0 | | 4988.75
4946.76 | 0.02 | 2.49 | 3-2
2-2 | (12F) | |
6229.2
5603.2 | 0.36 2.34
0.14 2.34 | 2-3
1-3 | $3p^2 \frac{3}{1}P - 3p^2 \frac{1}{1}D$ | 10780.17
10660.35
10569.44 | | 1.76
1.76
1.76 | 4-4
3-4
3-4 | a ³ F-a ¹ G
(7F) | 4898.49
4847.01 | 0.05
0.02 | 2.57
2.57 | 4-5
3-5 | a ³ F-a ¹ H
(13F) | | 4097 7 | 2.34 (5.35) | 3-0 | 3p ² 1p-3p ² 1s
(2F) | - | | | | | 11933.60
11881.68 | 0.84
0.83 | 1.88 | 5-5
4-4 | a ⁵ F-a ³ G
(14F) | | | | | (SF) | Sc III | I P 24.65 | | | | 11835.06
12024.89
11950.77 | 0.82
0.84 | 1.87
1.87 | 3-3
5-4 | (11) | | | | | | 3945.34
3914.83 | 0.02 | 3.15 | 21-1
11-1 | 3 ² D-4 ² S
(1F) | 11950.77
11792.55
11767.30 | 0.83 | 1.87
1.88 | 4-3
4-5 | | | <u>Ca I</u> I P 6
4912.82 | 0.00 2.51 | 0-2 | 4 ¹ 5-3 ³ D | | | | -5- 5 | · / | 11748.60
12095.67 | 0.81
0.84 | 1.87
1.87 | 3-4
2-3
5-3 | | | 4916.18 | 0.00 2.51 | 0-1 | (1F) | Sc VI | P 1117 | | | | 11679.85
11681.81
11690.94 | 0.82
0.81
0.81 | 1.87 | 3-5
2-4
1-3 | | | 4575.46 | 0.00 2.70 | 0-2 | 4 ¹ S-3 ¹ D
(2F) | 4672.2 | 0.00 | | 2-2 | 3p4 3p-3p4 1p | 9258.83 | 0.83 | 2.17 | 4-3 | a ⁵ F-a ³ D | | | | | | 5539.6 | 0.41 | 4.64 | 1-2 | (1F) | 9288.45
9281.86
9189.22 | 0.82
0.81
0.82 | 2.14 | 3-2
2-1
3-3 | (15F) | | <u>Ca II</u> I P | 11.82 | | | 3590.8 | 2.64 | 6.08 | 2-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (2F) | 9235.10
9245.82 | 0.81
0.81 | 2.15
2.14 | 2-3
1-1 | | | 7291.46
7323.88 | 0.00 1.69
0.00 1.69 | 1-21
1-11 | 4 ² S-3 ² D
(1F) | | | | | | 9137.01
919 9.44 | 0.81
0.81 | | 2-3
1-2 | | | | | - | | | | | | | | | | | | 102 #### REVISED MULTIPLET TABLE | | | | | | EN LINES | | | | | | |--|--|--|--|---|---|--|---|---
--|--| | E P
Low High | J | Multiplet
(No) | I A | E P
Low High | J | Multiplet
(No) | I A | E P
Low High | J | Multiplet
(No) | | ued | | | | | , . | 4 2 | | | .1 -1 | .4 2 | | 0.82 2.24
0.81 2.23
0.81 2.22
0.81 2.24
0.81 2.23
0.81 2.23 | 3-2
2-1
1-0
2-3
1-1 | a ⁵ F-b ³ P
(16F) | 11971.26
11782.27
11735.52
11602.41
11557.08 | 0.05 1.08
0.03 1.08
0.03 1.08
0.01 1.08
0.01 1.08 | 35-15
25-25
16-15 | a ⁴ F-a ³ D
(1F) | 8648.73
8625.93
8722.54
8553.73
8549.64 | 0.15 1.58
0.13 1.56
0.15 1.56
0.13 1.58
0.12 1.56 | 45-55
35-45
45-45
35-55
25-45 | b ⁴ F-a ³ H
(16F) | | 0.84 2.25
0.83 2.24
0.82 2.23
0.84 2.24
0.83 2.23
0.84 2.23 | 5-6
4-5
3-4
5-5
4-4
5-4 | а ⁵ F-а ³ Н
(17F) | 11432.93
11458.27
11396.50
11618.68
11242.12
11228.14 | 0.00 1.08
0.05 1.13
0.03 1.11
0.05 1.11
0.03 1.13
0.01 1.11 | 1 ۇ -2 ۇ | a ⁴ F_a ² G
(2F) | 7119.56
7051.04
7115.47
7055.06
6999.99
7003.95
6963.02 | 0.15 1.88
0.13 1.88
0.15 1.88
0.13 1.88
0.12 1.88
0.12 1.88
0.11 1.88 | 4 - 4 - 3 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 4 | b ⁴ F-b ³ G
(17F) | | 0.82 2.24
0.81 2.23
0.82 2.33 | 3-5
2-4
3-2 | a ⁵ F-c ³ P | 11110.92
10956.10
10901.79 | 0.00 1.11
0.05 1.18
0.03 1.16 | 15-05 | a ⁴ F-a ⁴ P
(3F) | 6434.04
6436.55
6391.51
6405.27 | 0.13 2.05
0.12 2.04
0.12 2.05
0.11 2.04 | 31-11
21-11
21-11 | b ⁴ F-b ³ P
(18F) | | 0.81 2.32
0.81 2.33
0.81 2.32
0.81 2.33 | 1-0
2-3
1-1
1-2 | | 10758.32
10747.64
10676.61
10608.18
10640.19 | 0.03 1.18
0.01 1.16
0.00 1.16
0.01 1.18
0.00 1.16 | 12-12 | | 5080.84
5032.69
5065.43
5047.91 | 0.15 | 41_31 | b ⁴ F-b ³ F
(19F) | | 0.83 3.57
0.82 3.56
0.81 3.55
0.81 3.55 | 5-4
4-3
3-2
2-1
1-0 | a ⁵ F-a ⁵ D
(19F) | 10503.47
10116.66
10148.57
10031.39 | 0.00 1.18
0.01 1.23
0.00 1.23
0.00 1.23 | 1 ½ - 3 ½
2 ½ - 1 ½
1 ½ - ½
1 ½ - 1 ½ | a ⁴ F-a ² P
(4F) | 5021.69
4987.68
5002.63 | 0.13 2.58
0.11 2.59
0.11 2.58 | 13-23
12-32 | b ⁴ F-c ² D | | 0.84 3.57
0.83 3.56
0.82 3.55
0.81 3.55
0.83 3.57
0.82 3.57
0.81 3.56
0.81 3.55 | 5-3
4-2
3-1
2-0
4-4
3-3
2-2
1-1 | | 10379.73
10300.86
10233.37
10203.05
10163.13
10125.99
10066.92 | 0.05 1.24
0.03 1.23
0.01 1.22
0.03 1.34
0.01 1.23
0.00 1.23
0.01 1.24 | 41-31-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | a ⁴ F-b ⁴ P
(5F) | 4165.41
4187.46
4147.21
4169.40
4129.49
4156.25
4116.60 | 0.13 3.08
0.13 3.11
0.12 3.08
0.13 3.11
0.11 3.08
0.11 3.11 | 35-25
35-25
25-25
25-25
25-25
15-25 | (aor) | | 0.82 3.57
0.81 3.57
0.81 3.56
0.81 3.57
0.81 3.57 | 3-4
2-3
1-3
2-4
1-3 | | 9972.59
8085.17
8060.16 | 0.00 1.23
0.00 1.24
0.05 1.57
0.03 1.56 | 1½-3½
4½-3½
3½-1½ | a ⁴ F-b ² D
(6F) | 9649.94
9398.59
9642.42
9405.71 | 0.60 1.88
0.57 1.88
0.60 1.88
0.57 1.88 | 31-41
21-31
31-31
21-41 | a ² F-b ² G
(21F) | | 0.90 2.17
0.90 2.15
0.90 2.14 | 2-3
2-3
2-1 | a ¹ D-a ³ D
(20F) | 7976.95
7975.58
7894.10
7916.25
7835.98 | 0.03 1.57
0.01 1.56
0.01 1.57
0.00 1.56
0.00 1.57 | 22-12
22-22
12-12
12-22 | | 6250.51
6124.57
6227.19
6147.13 | 0.60 2.58
0.57 2.59
0.60 2.59
0.57 2.58 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ² F-b ² F
(22F) | | 0.90 2.24
0.90 2.23
0.90 2.22 | 2-2
2-1
2-0 | a ¹ D-b ³ P
(21F) | 8074.29
8028.94
8138.59
7966.36 | 0.05 1.58
0.03 1.56
0.05 1.56
0.03 1.58 | 41-51
31-41
41-41
31-51 | a ⁴ F-a ² H
(7F) | 4925.84
4916.81
4982.73
4861.41 | 0.60 3.11
0.57 3.08
0.60 3.08
0.57 3.11 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ² F-c ² D
(23F) | | 0.90 2.32
0.90 2.32
0.90 2.48 | 2-1
2-0
2-1 | (23F)
a ¹ D-a ¹ P | 6725.67
6647.05
6722.02 | 0.05 1.88
0.03 1.88
0.05 1.88 | 41-41
31-31
41-31 | a ⁴ F-b ² G
(8F) | 8229.81
8166.83
8189.44 | 1.08 2.58
1.08 2.59
1.08 2.59 | $ \begin{array}{r} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 $ | a ² D-b ² F
(24F) | | 0.90 2.49 | 2-3
 | a ¹ D-b ¹ D
(24F)
a ¹ D-a ¹ F
(25F) | 6589.42
6592.93
6548.87 | 0.01 1.88
0.01 1.88
0.00 1.88 | $\begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 2\frac{1}{2} - 4\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \end{array}$ | 4m h2p | 7917.03
6077.80
6151.82 | 1.08 2.63
1.08 3.11
1.08 3.08 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | a ² D-a ² S
(25F)
a ² D-c ² D
(26F) | | 1.06 2.17
1.05 2.15
1.04 2.14
1.06 2.15 | 2-3
1-2
0-1
2-2 | a ³ P-a ³ D
(26F) | 6083.36
6087.77
6047.46
6053.14
6013.28 | 0.03 2.05
0.01 2.04
0.01 2.05
0.00 2.04
0.00 2.05 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (9F) | 6065.34
8491.16 | 1.08 3.11 | 1 2-22 | a ² G—b ² F
(27F) | | 1.06 2.14
1.05 2.17
1.04 2.15 | 2-1
1-3
0-2 | 7_ 7 | 4877.01
4823.44
4862.80
4837.42 | 0.05 2.58
0.03 2.59
0.05 2.59
0.03 2.58 | 43-33
34-23
43-23
34-33 | a ⁴ F-b ² F
(10F) | 8363.05
8405.16
6172.91 | 1.11 2.59 | 3 2 - 2 2
3 2 - 2 2
3 2 - 2 2 | a ² G-c ² D
(38F) | | 1.05 2.23
1.06 2.23
1.05 2.22
1.05 2.24 | 2-2
1-1
2-1
1-0
1-2 | (27F) | 4793.03
4806.83
4771.54
4785.21 | 0.01 2.59
0.01 2.58
0.00 2.59
0.00 2.58 | 23-23
13-23
13-23
13-32 | | 8789.70
8651.14
8743.66 | 1.18 2.58
1.16 2.59
1.18 2.59 | 21-31
11-21
21-21 | a ⁴ P-b ² F
(29F) | | 1.06 2.22
1.04 2.24 | 0 -3 | a ³ p_c ³ p | 4031.15
4041.57
4004.07
4020.20
3983.08 | 0.05 3.11
0.03 3.08
0.03 3.11
0.01 3.08
0.01 3.11 | 44-34
34-14
34-24
24-15
24-34 | a ⁴ F-c ⁵ D
(11F) | 83 48.9 3
6377.83 | 1.16 2.63
1.18 3.11 | | a ⁴ P-a ² S
(30F)
a ⁴ P-c ² D
(31F) | | 1.05 2.32
1.06 2.32
1.05 2.32
1.05 2.33 | 1-1
2-1
1-0
1-2 | (28F) | 4005.07
3968.23
- | 0.00 3.08
0.00 3.11 |
| h ⁴ r_e ⁴ P | 6473.52
6328.46
6409.46 | 1.18 3.08
1.16 3.11
1.16 3.08 | 25-15
15-25
2-15 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 1.06 2.32
1.04 2.33
1.06 2.48 | 2-0
0-2
2-1 | a ³ P-a ¹ P
(29F) | 11884.57
11823.03
11714.28
11778.39 | 0.12 1.16
0.11 1.16
0.12 1.18
0.11 1.16 | 24-14
14-24
14-14
14-14 | (12F) | 9108.42
8798.79
8703.03 | 1.23 2.59
1.23 2.63
1.22 2.63 | $1\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{2}$ | a ² P-b ² F
(32F)
a ² P-a ² S
(33F) | | 1.04 2.48
1.06 2.49
1.05 2.49 | 0-1
2-2
1-3 | a ³ P-b ¹ D
(30F) | 11117.80
11178.94
11024.82 | 0.12 1.23
0.11 1.22
0.11 1.23 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | b ⁴ F-a ² P
(13F) | 6569.73
6616.12
6671.31 | 1.23 3.11
1.22 3.08
1.23 3.08 | $ \begin{array}{c} 1\frac{1}{2} - 2\frac{1}{2} \\ \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $ | a ² P-c ² D
(34F) | | 1.44 2.49
1.42 2.49 | 3-2
2-2 | b ³ F-b ¹ D
(31F) | 11185.70
11173.94
11151.54
11057.76 | 0.13 1.24
0.12 1.23
0.11 1.22
0.12 1.24 | | b ⁴ F-b ⁴ P
(14F) | 9199.54
9071.07
9149.11 | 1.24 2.58
1.23 2.59
1.24 2.59 | 21-31
11-31
21-21 | b ⁴ P-b ² F
(35F) | | | | (32F) | 11080.02
10965.77 | 0.11 1.23
0.11 1.24 | | 4 3 | 8763.95
8719.70 | 1.23 2.63
1.22 2.63 | | b ⁴ P-a ² S
(36F) | | 1.50 2.57 | 4–5 | a ¹ G-a ¹ H
(33F) | 8661.20
8661.96
8565.94
8585.04
8490.71
8529.50
8436.37 | 0.15 1.57
0.13 1.56
0.13 1.56
0.12 1.56
0.12 1.57
0.11 1.56
0.11 1.57 | 4 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | b ⁴ F-b ² D
(15F) | 6590.88
6651.26
6693.12
6550.29
6625.75 | 1.24 3.11
1.23 3.08
1.24 3.08
1.23 3.11
1.23 3.08 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | b ⁴ P-c ³ D
(37F) | | | Low High | Low High 1ed 0.82 2.24 3-2 0.81 2.23 2-1 0.81 2.23 1-1 0.81 2.24 2-3 0.81 2.24 1-2 0.81 2.24 1-2 0.81 2.23 1-1 0.81 2.24 1-2 0.81 2.23 1-1 0.81 2.24 1-2 0.82 2.23 3-4 0.84 2.25 5-6 0.83 2.24 4-5 0.83 2.23 4-4 0.84 2.23 5-4 0.82 2.33 3-4 0.84 2.23 5-4 0.82 2.33 3-2 0.81 2.32 1-0 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.35 1-2 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.82 3.57 3-3 0.81 3.56 3-2 0.81 3.55 3-1 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.57 1-3 0.90 2.17 2-3 0.90 2.17 2-3 0.90 2.24 3-2 0.90 2.32 2-1 0.90 2.24 3-2 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.48 2-1 1.06 2.14 1-1 1.06 2.15 1-2 1.04 2.24 0-2 1.05 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.24 1-2 1.04 2.33 0-1 1.06 2.33 2-1 1.06 2.32 2-0 1.04 2.32 1-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.32 0-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.32 2-0 1.04 2.32 0-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.34 1-2 1.06 2.32 2-0 1.04 2.34 0-2 1.04 2.34 0-2 1.05 2.32 1-1 1.06 2.49 1-2 1.44 2.49 3-2 1.44 2.49 3-2 1.45 2.57 4-5 | Low High (No) 1ed 0.82 | Low High (No) | Low High (No) Low High Low Low High Low | | | 100 | Table Tabl | 1 | | | | | | | FORBIDDE | n lines | | | | | | |----------------------------------|-------------------------------------|-----------------------------------|---|---|-------------------------------------|--------------------------|--|----------------------------------|-------------------------------------|---|---| | IA | E P
Low High | J
h | Multiplet
(No) | ,I A | E P
Low High | J | Multiplet (No) | IA | E P
Low High | J | Multiplet (No) | | T1 II con | tinued | | | V II cont | inued | | | <u>V II</u> cont | inued | | | | 11478.92 | 1.56 2.6 | 3 11/2-1 | b ² D-a ² S | 7459.30
7468.52 | 0.04 1.70
0.03 1.68 | 4-3
3-3 | a ⁵ D-a ⁵ P
(4F) | 9982.17
9733.52 | 1.12 2.36
1.09 2.36 | 4-4
3-4 | a ³ F-b ¹ G
(16F) | | 8039.68
8106.38 | 1.57 3.11
1.56 3.08 | 1 21-21 | (38F)
b ² D-c ² D
(39F) | 7457.80
7541.95 | 0.01 1.67 | 2-1
4-3 | (*E') | 8674.27 | 1.12 2.55 | 3-4
4-3 | a ³ F-b ³ D | | 8192.33
7956.90 | 1.57 3.08 | 8 2] _1] | (551) | 7515.13
7387.47 | 0.03 1.67
0.03 1.70 | 3-1
3-3 | | 8490.18
8413.83 | 1.09 2.55
1.07 2.53 | 3-2
3-1 | (17F) | | | | | | 7411.90
7418.75 | 0.01 1.68
0.00 1.67 | 2-2
1-1 | | 8485.90
8347.16 | 1.09 2.55
1.07 2.55 | 3–3
2–2 | | | M4 TTT T | P 27.6 | | | 7332.06
7373.32
7398.95 | 0.01 1.70
0.00 1.68
0.00 1.67 | 2-3
1-2
0-1 | | 8343.02
8235.69 | 1.07 2.55
1.09 2.59 | 2–3
3–2 | a^3F-a^1D | | T1 III I
12417.8 | 0.05 1.0 | 5 [,] 4–3 | a ³ F-a ¹ D | 7294.30
7353.77 | 0.00 1.70
0.00 1.68 | 1-3
0-2 | | 8101.03 | 1.07 2.59 | 2-2 | (18F) | | 12061.0
11799.5 | 0.03 1.05 | 5 3-2 | (1F) | 5549.49 | 0.04 2.27 | 4-3 | $\mathbf{a^5}_{\mathbf{D}-\mathbf{a^3}\mathbf{D}}$ | 6114.85
6040.31 | 1.09 3.11
1.07 3.11 | 3-2
3-3 | a ³ F-b ¹ D
(19F) | | 9706.8 | 0.05 1.32 | | a ³ F-a ³ P | 5527.92
5504.22 | 0.03 2.26
0.01 2.26 | 3-2
3-1 | (5F) | 5634.78 | 1.13 3.31 | 4-3 | a ³ F-a ¹ F | | 9594.5
9488.3 | 0.02 1.31 | 0 2-0 | (2F) | 5509.63
5496.84 | 0.03 2.27
0.01 2.26
0.00 2.26 | 3-3
2-2
1-1 | | 5554.68
5493.10 | 1.09 3.31
1.07 3.31 | 3–3
2–3 | (20F) | | 9487.4
9428.3
9324.8 | 0.02 1.32
0.00 1.31
0.00 1.32 | 1 2-1 | | 5482.91
5478.76
5475.59 | 0.01 2.27
0.00 2.26 | 2-3
1-2 | | 11918.75 | 1.43 3.46 | 1-0 | a ³ P-a ¹ S | | 7152.8 | 0.05 1.78 | 8 4-4 | a ³ F-a ¹ G | 5472.09 | 0.00 2.26 | 0-1 | | 11852.49 | 1.47 2.51 | 2-2 | (21F)
a ³ P-c ³ P | | 7033.0
6991.8 | 0.02 1.78
0.00 1.78 | | (3F) | 5282.88
5245.25 | 0.03 2.36
0.01 2.37 | 3-3
2-1 | a ⁵ D-b ³ P
(6F) | 11658.88
12219.66 | 1.43 2.48
1.47 2.48 | 1-1
3-1 | (22F) | | 3337.7 | 1.05 4.74 | 4 2-3 | a ¹ D-a ³ D | 5227.25
5254.49
5225.90 | 0.00 2.37
0.01 2.36
0.00 2.37 | 1-0
2-3
1-1 | | 11568.38
11324.18
11368.21 | 1.42 2.49
1.42 2.51
1.39 2.48 | 1-0
1-3
0-1 | | | 3363.2
3378.4 | 1.05 4.72 | 3 3-3 | (4F) | 5235.07
5216.07 | 0.00 2.36
0.00 2.37 | 1-3
0-1 | | 11471.69 | 1.47 2.55 | 2-3 | a ³ P-b ³ D | | 3008.4 | 1.05 5.15 | | a^1D-b^1D | 4965.31 | 0.03 2.51 | 3-2 | a ⁵ D-c ³ P | 10983.23
10835.22 | 1.42 2.55
1.39 2.53 | 1-3
0-1 | (23F) | | | | | (5F) | 5002.88
4968.65 | 0.01 2.48
0.00 2.49 | 3-1
1-0 | (7F) | 11479.51
11098.96 | 1.47 2.55
1.43 2.53 | 2-2
1-1 | | | 3608.5
3622.9
3631.8 | 1.32 4.74
1.31 4.72
1.30 4.70 | 3 ~1-2 | a ³ P-a ³ D
(6F) | 4940.22
4985.27 | 0.01 2.51
0.00 2.48
0.00 2.51 | 2-3
1-1
1-3 | | 11606.00
11019.11 | 1.47 2.53
1.47 2.59 | 2–1
2–2 | a^3P-a^1D | | 3638.4
3640.6 | 1.30 4.70
1.32 4.72
1.31 4.70 | 3 2-3 | | 4923.05
4976.33 | 0.00 2.51 | 0-1 | | 10561.05 | 1.43 2.59 | 1-3 | (24F) | | 3656.3
3593.3 | 1.33 4.70 | 3-1 | | 4928.68
4898.64 | 0.04 2.55
0.03 2.55 | 4-3
3-2 | a ⁵ D-b ³ D
(8F) | 9644.96
9292.19 | 1.47 2.75
1.43 2.75 | 2-1
1-1 | a ³ P-a ¹ P
(25F) | | 3826.7 | 1.32 5.15 | | a ³ p _ b ¹ D | 4896.87
4897.21 | 0.01 2.53
0.03 2.55 | 2-1
3-3 | | 9106.60 | 1.39 2.75 | 0-1 | 31- | | 3214.5
3207.6 | 1.31 5.15
1.30 5.15 | | (7F) | 4874.21
4880.00 | 0.01 2.55
0.00 2.53 | 2-3
1-1 | | 7526.46
7309.90 | 1.47 3.11
1.43 3.11 | 2-2
1-2 | a ³ P-b ¹ D
(36F) | | 4140.4 7 | 1.73 4.72 | 3 0-21 | a ¹ S-a ³ D | 4872.80
4857.50
4871.43 | 0.01 2.55
0.00 2.55
0.00 2.53 | 2-3
1-2
0-1 | | 9356.40 | 1.57 2.89 | 6-5 | a ³ H-a ¹ H | | 4163.6 7 | 1.73 4.70 | | (8F) | 4012140 | | | | 9282.92
9217.51 | 1.56 2.89
1.55 2.89 | 5-5
4-5 | (27F) | | 3615.5 | 1.73 5.15 | 5 0-2 | a ¹ S-b ¹ D
(9F) |
9570.34
9454.15 | 0.39 1.68
0.37 1.67 | 5-4
4-3 | a ⁵ F-b ³ F
(9F) | | | | . 3 1 | | 4160.9 | 1.78 4.74 | | a ¹ G-a ³ D | 9358.90
9395.23 | 0.35 1.67
0.37 1.68 | 3-2
4-4
3-3 | | 8582.52
8544.49 | 1.67 3.11
1.67 3.11 | 3-2
2-2 | b ³ F-b ¹ D
(28F) | | 4200.6
3661.3 | 1.78 4.72 | | (10F)
a ¹ G-b ¹ D | 9313.72
9253.44
9256.51 | 0.35 1.67
0.33 1.67
0.35 1.68 | 3-3
3-4 | | 7556.03
7518.35 | 1.68 3.31
1.67 3.31 | 4-3
3-3 | b ³ F-a ¹ F
(29F) | | 0002.0 | | | (11F) | 9209.25
9183.58 | 0.33 1.67
0.32 1.67 | 2-3
1-2 | | 7489.15 | 1.67 3.31 | 2-3 | (501) | | | | | | 9279.59 | 0.37 1.70 | 4-3 | a5 _{F-a} 5 _P | 11444.66 | 1.81 2.89 | 5-5 | а ³ G-а ¹ н | | <u>ti VII</u> I | P 140 | | | 9268.77
9235.60 | 0.35 1.68
0.33 1.67
0.35 1.70 | 3-2
2-1
3-3 | (10F) | 11315.52 | 1.80 2.89
1.80 3.31 | 4-5 | (30F) | | 4144.8
5104.5 | 0.00 2.98
0.56 2.98 | | 3p ⁴ | 9144.25
9165.30
9166.00
9043.52 | 0.35 1.70
0.33 1.68
0.32 1.67 | 2-3
1-1 | | 8138.62
8076.58 | 1.80 3.31
1.79 3.31 | 4-3
3-3 | a ³ G-a ¹ F
(31F) | | 0.000 | | | | 9043.52
9096.76 | 0.33 1.70
0.32 1.68 | 2-3
1-2 | | 9595.85 | 2.03 3.31 | 4-3 | b ³ G-a ¹ F | | 3263.1 | 2.98 6.76 | 3 2-0 | 3p ⁴ ¹ D-3p ⁴ ¹ S
(3F) | 8698.69 | 0.39 1.81 | 5-5 | a ⁵ F-a ³ G | 9522.24 | 2.02 3.31 | 3–3 | (32F) | | | | | | 8627.35
8579.15
8774.69 | 0.37 1.80
0.35 1.79
0.39 1.80 | 4-4
3-3
5-4 | (11F) | V III I | P 29.6 | | | | Ti VIII | I P T | | | 8698.18
8553.87 | 0.37 1.79
0.37 1.81 | 4-3
4-5
3-4 | | 8745.0 | 0.04 1.45 | 31-21 | 3d ³ 4F-3d ³ 4P | | 4468 '7 | (0.13 2.90 | 0) 2] _1] | 3p ³ 2p°-3p ³ 2p° (1F) | 8510.24
8490.44 | 0.35 1.80
0.33 1.79 | 3-4
2-3 | | 8735.0
8683.4 | 0.02 1.43
0.00 1.42
0.02 1.45 | 31-31
21-15
15-5
21-25 | (1 F) | | 4545 ?
4779 ? | (0.13 2.72 | 3) 2 5- 5 | (1F) | 7477.26 | 0.39 2.04 | 5-5 | a ⁵ F-b ³ G | 8599.1
8625.8
8493.1 | 0.00 1.43
0.00 1.45 | $1\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ | | | 4263 7 | (0.00 2.90 | J) 15-15 | | 7431.08
7387.74
7540.14 | 0.37 2.03
0.35 2.02
0.39 2.03 | 4-4
3-3
5-4 | (12F) | 8615.4 | 0.07 1.50 | | 3d ³ 4F-3d ³ 2G | | | | | | 7387.74
7540.14
7475.84
7370.00
7344.03 | 0.39 2.03
0.37 2.02
0.37 2.04 | 5-4
4-3
4-5
3-4 | | 8598.3
8782.6 | 0.04 1.48
0.07 1.48 | 41-41
31-31
41-31
31-41
21-31 | (2F) | | VII I P | | | 5- 3- | 7344.03
7321.87 | 0.35 2.03
0.33 2.02 | 3-4
2-3 | | 8437.9
8457.2 | 0.04 1.50
0.02 1.48 | | | | 11414.22
11580.17
11715.20 | 0.04 1.12
0.03 1.09
0.01 1.07 | 9 3 <u>–</u> ,3 | a^5D-a^3F (1F) | 6497.76
6456.04 | 0.37 2.27
0.35 2.26 | 4-3
3-2 | a ⁵ F-a ³ D
(13F) | 6233.9
6215.6 | 0.04 2.02
0.02 2.00 | 31-31
21-11
21-21
11-12
12-22 | 3d ³ 4 _{F-3d} 3 2 _D (3F) | | 11757.86
11857.28 | 0.04 1.09 | 9 4-3
7 3-2 | | 6415.69
6431.11 | 0.33 2.26
0.35 2.27 | 3-1
3-3 | (101) | 6159.3
6160.1 | 0.02 2.02 | 23-23
13-13 | - ' | | 11246.87
11444.61
11619.10 | 0.03 1.12
0.01 1.09 | 3 3-4
9 2-3 | | 6405.67
6382.03 | 0.33 2.26
0.32 2.26 | 2-2
1-1 | | 6104.8 | 0.00 2.02 | | 3d ³ 4F-3d ³ 2H | | | 0.00 1.0 | | -53- | 6381.13
6372.11 | 0.33 2.27
0.32 2.26 | 2-3
1-2 | | 6098.1
6065.2 | 0.07 2.10
0.04 2.08 | 41-51
31-41 | (4F) | | 8545.12
8763.28
8878.98 | 0.03 1:4'
0.01 1.42
0.00 1.39 | 3 2-1 | a ⁵ D-a ³ P
(3F) | 5662.62
5613.81 | 0.37 2.55
0.35 2.55 | 4–3
3–2 | a ⁵ F-b ³ D
(14F) | | | | | | 8471.07
8709.38 | 0.01 1.4 | 7 2-2
3 1-1 | | 5613.81
5605.36
5611.94 | 0.33 2.53
0.35 2.55 | 2-1
3-3
2-3
1-1 | ,/ | | 48.3 | | | | 8420.72
8682.13 | 0.00 1.4°
0.00 1.4° | 7 1-3
3 0-1 | | 5575.69
5579.65 | 0.33 2.55 | 2-2
1-1 | | 8815.9
8575. 4 | 0.04 1.44
0.00 1.44 | 3-2
3-3 | 3d ² 3 _{F-3d} 2 1 _D (1F) | | 7533.84
7497.68 | 0.04 1.60
0.03 1.6 | 8 4-4 | a5 _{D-b} 3 _F (3F) | 5573.84
5550.25 | 0.33 2.55
0.32 2.55 | 2-3
1-2 | | 7611.2
7551.9 | 0.04 1.66
0.00 1.63 | 3-2
2-1 | 3d ² 3 _{F-3d} 2 3p
(2F) | | 7469.44
7571.69 | 0.01 1.6°
0.04 1.6° | 7 2-2 | (0.7 | 10800.75 | 1.13 2.27 | 4-3 | a ³ F-a ³ D | 7431.2 | 0.00 1.66 | 2-2 | | | 7526.94
7460.57 | 0.03 1.6°
0.03 1.6° | 7 3-2
8 3-4 | | 10576.98
10382.14 | 1.09 2.26
1.07 2.26 | 3-2
2-1
3-3 | (15F) | 5446.0
5326.5 | 0.09 2.36
0.04 2.36 | 4-4
3-4 | 3d ^{2 3} F-3d ^{2 1} G
(3F) | | 7440.63
7430.26 | 0.01 1.6
0.00 1.6 | 7 2-3
7 1-2 | | 10510.25
10355.93 | 1.09 2.27
1.07 2.26 | 2-2 | | 5237.7 | 0.00 2.36 | 2-4 | | | | | | | 10291.94 | 1.07 2.27 | 2-3 | | | P 173? | | 3p4 3p-3p4 1p | | | | | | | | | | 3686
4734 | 0.00 3.35
0.74 3.35 | 2-2
1-2 | 3p* 3P-3p* 1D
(1F) | | | | | | | | | | | | | _ | REVISED MULTIPLET TABLE | | | | | | FORBIDDE | N LINES | | | | | | |--|--|--------------------------|--|--|--|--|--|--|--|---|--| | I A | E P
Low High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet (No) | I A | E P
Low High | J | Multiplet
(No) | | | 6.74 | | .7 ₀ .5 ₀ | Cr I cont | | 4.3 | a ⁵ D-b ³ P | <u>Cr II</u> cont
5339.65 | inued
1.54 3.85 | 41-41 | a ⁶ D-a ⁴ F | | 4577.32
4575.84
4573.93 | 0.00 2.70
0.00 2.70
0.00 2.70 | 3–3
3–2
3–1 | a ⁷ S-a ⁵ P
(1F) | 5285.34
5239.47
5197.31 | 1.03 3.36
1.00 3.35
0.98 3.35
1.00 3.36 | 4-3
3-1
2-0
3-3 | (15F) | 5299.42
5270.19
5247.84 | 1.52 3.85
1.50 3.84
1.49 3.84 | 41-41
31-31
21-21 | (13F) | | 4149.52
4251.99 | 0.00 2.97
0.00 2.90 | 3-2
3-1 | a ⁷ S—a ³ P
(2F) | 5226.64
5193.82
5165.98
5181.21 | 1.00 3.36
0.98 3.35
0.96 3.35
0.98 3.36 | 3-3
3-1
1-0
3-3 | | 5354.15
5313.88
5279.80 | 1.54 3.85
1.52 3.84
1.50 3.84 | 12-15
43-35
33-25
25-15 | | | 4117.09
4113.42
4114.10 | 0.00 3.00
0.00 3.00
0.00 3.00 | 3-4
3-3
3-3 | a ⁷ S-b ⁵ D
(3F) | 5162.53
5150.07
5146.55 | 0.96 3.35
0.96 3.36
0.96 3.35 | 1-1
1-3
0-1 | | 5285.21
5255.97
5238.35 | 1.52 3.85
1.50 3.85
1.49 3.84 | 3\$-4\$
3\$-3\$
1\$-3\$ | | | 4116.36
3672.37 | 0.00 3.36 | 3-1
3-2
3-1 | a ⁷ 8-b ³ P | 5134.16
5124.41
5098.44 | 0.96 3.36
1.03 3.43
1.00 3.42 | 0-2
4-5
3-4 | a ⁵ D-b ³ G
(16F) | 5228.44
5368.91
5323.64
5242.00 | 1.48 3.84
1.54 3.84
1.52 3.84
1.50 3.85 | 41-31
41-31
31-11
21-41 | | | 3678.71
7016.80 | 0.00 3.35 | 2-3 | (4F)
a ⁵ 8-a ⁵ P | 5083.54
5083.54
5154.28
5126.25 | 0.98 3.41
1.03 3.42
1.00 3.41 | 2-3
4-4
3-3 | (101) | 5224.30
5219.02 | 1.49 3.85
1.48 3.84 | 1 \$-3 \$
\$-2 \$ | | | 7013.33
7008.84 | 0.94 2.70
0.94 2.70 | 2-2
3-1 | (5F) | 5182.71 | 1.03 3.41 | 4-3 | | 5248.64
5157.59
5206.02 | 1.52 3.87
1.50 3.89
1.50 3.87 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁶ D-a ² D
(14F) | | 6059.21
6280.22
6420.88 | 0.94 2.97
0.94 2.90
0.94 2.86 | 2-2
2-1
2-0 | a ⁵ 8-a ³ P
(6F) | <u>Cr II</u> I | P 16.6 | | | 5127.09
5174.95
5108.57 | 1.49 3.89
1.49 3.87
1.48 3.89 | 1 2 - 1 2
1 3 - 2 3
2 - 1 2 | | | 5990.31
5982.55
5983.99 | 0.94 3.00
0.94 3.00
0.94 3.00 | 2-4
2-3
2-2 | a ⁵ S-b ⁵ D
(7F) | 8000.12
8125.50
8229.81 | 0.00 1.54
0.00 1.52
0.00 1.50 | 21-41
21-31
21-31
21-11
21-11
21-11 | a ⁶ S-a ⁶ D
(1F) | 5034.05
4924.81
4985.64 | 1.54 3.99
1.52 4.02
1.52 3.99 | 41-31
31-21
31-31 | a ⁶ D-a ² F
(15F) | | 5988.76
5992.15 | 0.94 3.00
0.94 3.00 | 3-1
3-0 | | 8308.68
8357.78 | 0.00 1.49
0.00 1.48 | | | 4887.27
4947.17
4859.87 | 1.50 4.03
1.50 3.99
1.49 4.03 | 42-32
32-32
32-32
32-32
32-32
32-32
32-32 | | | 5092.97
5105.16
5108.53 | 0.94 3.36
0.94 3.35
0.94 3.35 | 2-2
2-1
2-0 | a ⁵ S-b ³ P
(8F) | 4992.68
5049.73
5092.60 | 0.00 2.47
0.00 2.44
0.00 2.43 | 23-33
23-23
23-13
23-13
23-13 | a ⁶ S-a ⁴ D
(2F) | 9223.25 | 2.47 3.81 | | a ⁴ D-b ⁴ P | | 8351.14 | 1.03 2.53 | 4-5 | a ⁵ D-a ⁵ G | 5119.47
4581.18 | 0.00 2.41 | 2 1 -21 | a ⁶ S-a ⁴ P | 9512.58
9686.70
9033.73 | 3.44 3.74
2.42 3.70
2.44 3.81
2.43 3.74 | 31-21
23-13
13-3
23-23
13-13 | (16F) | | 8043.80
7938.41
7867.83 | 1.00 2.53
0.98 2.53
0.96 2.53
1.03 2.53 | 3-4
3-3
1-3
4-4 | (9F) | 4580.80
4580.88
3993.57 | 0.00 2.69
0.00 2.69
0.00 3.09 | 23-13
22-2
23-31 | (3F)
a ⁶ S-b ⁴ D | 9364.08
9590.94
8899.71
9274.58 | 2.42 3.74
2.41 3.70
2.42 3.81
2.41 3.74 | 12-12
12-23
12-23
2-12 | | | 8183.69
8045.57
7940.71
8185.52 | 1.00 2.53
0.98 2.53
1.03 2.53 | 3-3
3-2
4-3 | | 3991.47
3992.08
3993.29 | 0.00 3.09
0.00 3.09
0.00 3.09 | $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - \frac{1}{2}$ | (4F) | 9806.20
9651.02 | 3.47 3.73
3.44 3.72 | 3 1 - 4 1
2 1 - 3 1
3 1 - 3 1
3 1 - 3 1 | a ⁴ D-a ⁴ H
(17F) | | 8047.93
7387.23 | 1.00 2.53
1.03 2.70 |
3-2
4-3 | a ⁵ D-a ⁵ P | 3239.07
3298.61 | 0.00 3.81
0.00 3.74 | 21-21
21-11
21-11
21-1 | a ⁶ S-b ⁴ P
(5F) | 9866.49
8929.91 | 2.47 3.73
2.47 3.85 | | a ⁴ D-a ⁴ F | | 7269.33
7177.04
7383.38 | 1.00 2.70
0.98 2.70
1.03 2.70 | 3-2
2-1
4-3 | (10F) | 3337.77
3202.25 | 0.00 3.70
0.00 3.85 | | a ⁶ 5-a ⁴ F | 8792.09
8703.79
8652.17 | 2.44 3.85
2.42 3.84
2.41 3.84 | 3 - 4 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 | (18F) | | 7264.51
7273.06
7181.74 | 1.00 2.70
1.00 2.70
0.98 2.70
0.96 2.70 | 3-1
3-3
2-2
1-1 | | 3207.46
3212.75
3216.32 | 0.00 3.85
0.00 3.84
0.00 3.84 | 21-41
21-31
21-21
21-11 | (6F) | 8970.56
8831.94
8730.02
9013.04 | 3.47 3.85
3.44 3.84
3.43 3.84
3.47 3.84 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | 7117.45
7185.39
7122.07
7087.10 | 0.98 2.70
0.96 2.70
0.96 2.70 | 3-3
1-2
0-1 | | 3188.79
3170.55 | 0.00 3.87
0.00 3.89 | 21-21
21-11 | a ⁶ S-a ² D
(7F) | 8858.94
8826.02 | 2.44 3.84
2.47 3.87 | | a ⁴ D-a ² D | | 7125.65
7091.68 | 0.96 2.70
0.96 2.70 | 1-3
0-2 | | 3089.76
3066.29 | 0.00 3.99
0.00 4.02 | 2 1 -21 | a ⁶ 8-a ² F
(8F) | 8520.22
8653.20
8400.89 | 2.44 3.89
2.44 3.87
2.42 3.89 | 3 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (19F) | | 6333.46
6484.72
6561.75 | 1.03 2.97
1.00 2.90
0.98 2.86 | 4-2
3-1
3-0 | a ⁵ D-a ³ P
(11F) | 12471.70
12168.18 | 1.54 2.53
1.52 2.53 | 41-51
31-41
21-31 | a ⁶ D-a ⁴ G
(9F) | 8530.15
8328.78 | 2.42 3.87
2.41 3.89 | 1 2-2 3
2-1 2 | a ⁴ D-a ² F | | 6249.35
6414.93
6511.90 | 1.00 2.97
0.98 2.90
0.96 2.86 | 3-2
2-1
1-0 | | 11943.75
11789.27
12460.65 | 1.50 2.53
1.49 2.53
1.54 2.53
1.52 2.53 | 14-24 | | 8106.88
7806.88
7947.28
7960.85 | 3.47 3.99
3.44 4.03
3.47 4.03
2.44 3.99 | 3 1 - 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | (20F) | | 6184.51
6367.28
6140.20
6342.98 | 0.98 2.97
0.96 2.90
0.96 2.97
0.96 2.90 | 3-3
1-1
1-3
0-1 | | 12170.50
11951.78
12463.08
12178.83 | 1.52 2.53
1.50 2.53
1.54 2.53
1.52 2.53 | 43-43
33-33
23-23
43-33
33-22 | | 7706.58 | 2.42 4.03 | 31-21
21-31
12-22 | | | 6117.60 | 0.96 2.97 | 0-2
4-4 | a ⁵ D-b ⁵ D | 10719.84
10500.65 | 1.54 2.69
1.52 2.69 | | a ⁶ D-a ⁴ P
(10F) | 10373.30
10388.07
10380.40 | 2.53 3.72
2.53 3.72
2.53 3.72 | 5-6-6-5
4-5-5-5
5-5-5-5 | a ⁴ G-a ² I
(21F) | | 6167.84
6106.17
6067.88 | 1.00 3.00
0.98 3.00
0.96 3.00 | 3-3
2-2
1-1 | (13F) | 10331.86
10502.67
10331.43 | 1.50 2.69
1.52 2.69
1.50 2.69 | 41-21
31-11
21-21
31-21
21-12
21-21
21-11 | | 10119.57
10223.27 | 2.53 3.75
2.53 3.74 | 5-6-6-1
4-5-5-1
3-4-1 | a ⁴ G-a ⁴ H
(22F) | | 6249.75
6169.37
6111.14 | 1.03 3.00
1.00 3.00
0.98 3.00 | 4-3
3-2
2-1 | | 10210.20
10333.39
10209.78 | 1.49 2.69
1.50 2.69
1.49 2.69 | 13-3
23-23
13-13 | | 10305.67
10366.26
10215.85
10307.34 | 2.53 3.73
2.53 3.72
2.53 3.74
2.53 3.73 | 3 3 -4 3
2 3 -3 3
5 3 -5 3 | | | 6071.35
6176.08
6104.67
6062.98 | 0.96 3.00
1.00 3.00
0.98 3.00
0.96 3.00 | 1-0
3-4
2-3
1-2 | | 10137.00
10211.69
10136.59
10138.47 | 1.48 2.69
1.49 2.69
1.48 2.69
1.48 2.69 | 13-23
13-23
1-13
2-22 | | 10377.34
10372.30
10299.79
10373.98 | 2.53 3.73
2.53 3.73
2.53 3.73 | 35-35-45-45-45-45-45-45-45-45-45-45-45-45-45 | | | 6045.80
6251.33
6174.44 | 0.96 3.00
1.03 3.00
1.00 3.00 | 0-1
4-3
3-1 | | 7974.31
7845.41 | 1.54 3.09
1.52 3.09 | | a ⁶ D-b ⁴ D
(11F) | 9337.40
9388.12 | 2.53 3.85
2.53 3.85 | 51-41
42-31 | a ⁴ G-a ⁴ F
(23F) | | 6114.66
6112.75
6061.50 | 0.98 3.00
0.98 3.00
0.96 3.00 | 2-0
3-4
1-3 | | 7752.86
7688.64
7965.96 | 1.50 3.09
1.49 3.09
1.54 3.09 | 23-13
13-3
43-33 | • | 9432.18
9457.95
9343.61 | 2.53 3.84
2.53 3.84
2.53 3.85 | 50-40-30-40-30-40-30-30-30-30-30-30-30-30-30-30-30-30-30 | | | 6040.94
5975.39 | 0.96 3.00
1.03 3.09 | 0-2
4-5 | a ⁵ D-a ³ G | 7847.76
7757.43
7853.51 | 1.52 3.09
1.50 3.09
1.52 3.09 | 42-31-31-31-31-31-31-31-31-31-31-31-31-31- | | 9386.74
9427.18
9342.24 | 2.53 3.85
2.53 3.84
2.53 3.85 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | 5949.99
5913.34
6026.18 | 1.00 3.07
0.98 3.07
1.03 3.07 | 3-4
2-3
4-4 | (13F) | 7750.56
7684.16
7647.06 | 1.50 3.09
1.49 3.09
1.48 3.09 | 12-12 | | 9381.78
9228.60 | 2.53 3.85
2.53 3.87 | | a ⁴ G-a ² D | | 5972.59
6049.37
5926.18 | 1.00 3.07
1.03 3.07
1.03 3.11 | 3-3
4-3 | a ⁵ D-a ³ F | 7758.47
7681.89
7642.61
7689.65 | 1.50 3.09
1.49 3.09
1.48 3.09
1.49 3.09 | 23-34
14-24
14-34
14-34
12-34 | | 9072.86
9223.81
8446.39 | 2.53 3.89
2.53 3.87
2.53 3.99 | 31-21
21-11
31-21
31-21 | (34F)
a ⁴ G-a ² F | | 5876.92
5876.23
5951.24 | 1.03 3.11
1.00 3.10
0.98 3.08
1.03 3.10 | 4-4
3-3
2-2
4-3 | (14F) | 7689.65
7640.39
5442.82 | 1.49 3.09
1.48 3.09
1.54 3.81 | | a ⁶ D-b ⁴ P | 8272.21
8445.28
8268.36 | 2.53 3.99
2.53 3.99
2.53 4.02 | 41-31
31-21
31-31
21-21 | (25F) | | 5934.73
5852.48
5819.54 | 1.00 3.08
1.00 3.11
0.98 3.10 | 3-2
3-4
2-3 | | 5552.93
5615.19
5386.27 | 1.52 3.74
1.50 3.70 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (13F) | 8441.27 | 2.53 3.99 | 21-21
21-31
 | | | 5836.21
6010.53
5795.58 | 0.96 3.08
1.03 3.08
0.98 3.11 | 1-3
4-3
3-4 | | 5505.25
5579.06
5341.39 | 1.50 3.74
1.49 3.70
1.50 3.81 | 41-21
31-11
21-21
31-21
31-21
21-21
21-11 | | 11056.70
11785.17
12300.16 | 2.69 3.81
2.69 3.74
2.69 3.70 | 21-21
11-11
1-12 | a ⁴ P-b ⁴ P
(26F) | | 5780.29
5815.79 | 0.96 3.10
0.96 3.08 | 1-3
0-2 | | 5470.51
5557.14
5308.68 | 1.49 3.74
1.48 3.70
1.49 3.81 | 15-25 | | 11782.63
12300.77
11058.94 | 2.69 3.74
2.69 3.70
2.69 3.81 | 2 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 | | | | | | | 5 449.43
528 8. 83 | 1.48 3.74
1.48 3.81 | 3-13
2-22 | | 11784.63 | 2.69 3.74 |] _1] | | FORBIDDEN LINES E P High Multiplet (No) I A Multiplet (No) Multiplet (No) E P IA E P High High Low Low Mn V I P 75.7 Cr V continued Cr II continued 6396.2 6346.2 6220.7 3d² 1p-3d² 1s (4F) 41-21 31-1 31-2 31-2 31-2 21-1 3d3 4F-3d3 4P 2.10 2.05 2.03 3.85 3.84 3.84 a⁴P-a⁴F (27F) 2-0 0.17 10696.87 21-31 12-31 2-12 21-31 11-12 21-12 0.10 (1F) 10758.04 2.69 0.04 10797.66 3d2 3p-3d2 1s 0.10 10807.8 2-0 1-0 10755.91 10798.14 3.84 3.84 1.98 2.69 (5F) 3.12 2.05 10394.3 1.94 6159.3 0.00 0.04 0.00 6088.5 2.03 10796.00 2.69 3.84 5991.0 21-21 11-11 21-11 11-21 1-11 $a^{4}P-a^{2}D$ (28F) 2.05 10491.99 2.69 2.69 3.87 6029.7 0.00 5868.3 10299.05 3.89 3.89 Cr VIII I P 1847 3d³ ⁴F-3d³ ²G 5889.0 0.17 2.27 2.69 3.87 10494.00 3p5 2pe_3p5 2pe 1글- 글 0.10 10298.63 2.69 89 10098.2 0.00 1.22 5863.1 2.21 2.21 (1F) 6069.2 0.17 0.10 a⁴P-a²F 3.99 4.02 4.02 5694.8 9491.15 2.69 (29F) 2.69 5703.3 2.21 9274.68 0.04 9273.10 2.69 5591.9 0.00 2.21 Cr IX I P 2097 0.10 0.04 0.04 0.00 2.83 2.85 2.83 4528.7 3d3 4F-3d3 2P $3p^4 3p_{-3p^4} 1_{D}$ 3273.5 4407.9 0.00 2-2 1-2 4398.4 4432.8 3.77 (3F) Cr III I P 31 3d⁴ ⁵D-3d⁴ ³P 4331.9 2.85 2.20 2.12 2.30 2.13 2.20 2.13 5785.4 0.07 4365.2 0.00 4-3 3-1 3-3 2-1 2-3 1-1 1-3 0-1 0-2 5945.1 5712.7 0.04 3.04 3.04 3.04 3.04 3.04 0.17 0.10 0.10 3d3 4F-3d3 2D 4308.4 (4F) I P 15.57 Mn II 4196.3 4203.5 5884.9 5689.3 5843.6 0.02 $a^{7}S-a^{5}S$ (1F) $a^{7}S-a^{5}D$ (2F) 0.04 10553.58 0.00 1.17 3-2 2.20 2.12 2.20 5618.9 4120.7 0.01 0.00 6978.57 6850.42 0.00 3-4 3-3 3-2 3-1 3.04 1.77 4055.5 0.00 4062.2 5600.1 6763.56 1.82 3d^{4 5}D-3d^{4 3}F (2F) 5550.3 0.07 2.29 1.84 4-4 3-3 2-2 4-3 3-2 3-4 2-3 1-2 4-2 5505.1 0.04 2.29 3-3 3-2 3-1 a⁷8-a⁵P (3F) 0.02 2.28 0.00 5471.3 3344.72 3.69 3.69 Mn VI IP? 5572.6 5523.3 0.04 2.28 3337.82 0.00 3d^{2 3}F-3d^{2 1}D 4-2 3-2 2-2 5483.3 5453.4 0.04 2.29 6277.3 0.21 0.00 a⁷S-b⁵D (4F) 3049.05 4.05 4.06 4.06 4.05 3-4 3-3 3-2 3-1 5933.4 0.09 2.17 5435.6 5591.3 0.01 2.28 3042.61 3042.44 5679.3 4-2 3-1 2-0 3-2 2-1 3d2 3F-3d2 3P 0.02 5432 2.29 3044.52 0.00 5907.1 0.21 2.30 2.23 2.19 2.30 2.23 2.29 1-3 5783.4 5625.0 0.09 (2F) *5418.0 a⁵S-a⁵P (5F) 2-3 2-2 4896.65 3.69 3.69 5601.6 0.09 3d⁴ ⁵D-3d⁴ ³G (3F) 4894.1 4876.0 4870.8 4-5 3-4 2-3 4-4 3-3 3-5 0.07 2.59 2.57 4889.49 1.17 5541.7 0.00 4881.87 ã-1 5374.6 0.00 2. 30 2-2 0.02 2.56 3d2 3F-3d2 1G? 4.06 4.06 4.05 a^5S-b^5D (6F) 4275.21 2-3 2-2 2-1 3.40 3.40 3.40 4-4? 3-4? 2-4? 4928.9 1.17 3866.9 0.21 0.04 0.04 0.03 0.01 0.07 2.56 2.59 2.57 2.56 2.56 4911.9 4842.4 4274.87 4278.97 (3F) 3631.4 2-4 1-3 4-3 4835.4 a⁵D-a⁵G (7F) 3.40 3.41 3.41 4-5 3-4 2-3 4965.6 7547.77 1.77 7696.30 7805.96 1.82 Mn IX I P 2217 3.41 3.41 3.41 3.41 3.41 1-3 4-4 3-3 2-2 4-3 3-3 1.84 1.77 1.80 7879.32 7540.74 7693.38 3p5 2pe_3p5 2pe 7978.7 0.00 1.55 1출~ 글 Cr IV I P 50.4 (1F) 7805.47 7537.93 1.82 1.79 1.75 1.74 1.79 1.75 1.74 1.79 7390.6 7338.0 41-21 31-1 21-2 31-3 21-1 21-2 21-2 3d3 4F-3d3 4P 0.12 (1F) 7692.91 1.80 3.41 0.03 0.07 0.03 0.00 0.03 0.00 7233.4 7180.4 7171.6 a⁵D-a⁵P (8F) 6423.45 1.77 3.69 4-3 3-3 2-1 3-3 2-2 1-1 2-3 1-2 0-1 Mn X I P 247? 6523.23 6590.10 1.80 3.69 3.70 3.69 7111.4 3p4 3p-3p4 3p 9997.3 0.00 1.23 2-1 6535.99 1.80 (1F) 3p4 3p-3p4 1p 1.82 3.69 7051.7 6603.99 4122.6 1.23 4.23 1-2 6906.1 0.00 6642.66 (2F) 6617.06 1.82 3.69 3d3 4F-3d3 2G 6915.6 0.12 1.90 1.86 6656.77 . 69 0.07 0.13 0.07 0.03 0.03 6893.2 7086.7 (2F) 6668.63 1.85 3.70 1.86 6731.2 6746.2 1.90 a⁵D-b⁵D (9F) 4.05
4-4 3-3 3-2 1-1 4-3 3-2 2-1 Fe I I P 7.858 4.06 5473.94 1.80 6591.0 5530.11 5574.04 1.82 1.48 1.55 1.60 a⁵D-a³F 8347.55 0.00 4-4 3-3 2-2 4-3 3-3 3-4 6640.0 0.05 0.09 0.00 1.84 4.05 8231.52 5394.78 1.77 4.06 8151.33 7959.00 2.40 2.40 2.40 $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 3d³ 4F-3d³ 3p (3F) 5296.3 0.07 5473.37 5536.98 1.55 5209.1 5145.5 0.03 7964.27 8647.89 0.05 1.82 4:05 60 3-1 1-0 3-4 2-3 1-2 0-1 5579.73 1.84 4.05 1.48 0.09 0.11 0.00 0.09 0.11 2-3 1-3 4-2 2-4 1-3 0-2 5494.80 4.05 1.55 1.60 1.60 8431.56 41-21 31-13 31-23 21-23 21-23 11-32 5071.6 0.12 2.55 3d3 4F-3d3 2D 4.06 4.06 4.05 1.83 5530.69 2.55 4976.5 0.07 (4F) 7708.83 0.07 0.03 0.03 0.00 0.00 4971.8 4899.4 2.55 5561.21 8868.91 8564.56 1.48 2.55 2.55 2.55 4894.8 8337.65 0.12 1.60 4843.1 4838.7 a⁵D-a⁵P (2F) 2.55 5696.36 0.00 2.17 4-3 Mn IV 3-3 2-1 4-2 3-1 3-3 I P 52 0.05 0.09 0.00 2019 2.21 2.19 5775.05 0.13 0.07 0.13 0.07 3d³ 4_{F-3d}3 2_H (5F) 4907.6 2.63 2.60 5804.45 5639.55 4-2 3-1 2-0 3-2 2-1 3d⁴ ⁵D-3d⁴ ³P 0.11 0.07 0.03 0.07 2.76 2.63 2.55 2.76 4873.4 4969.3 4662.7 2.60 2.63 2.60 0.05 2.21 4823.3 5708.96 4908.8 4799.4 0.03 4591.4 5872.77 0.09 2.19 2-2 1-1 2-3 1-2 0-1 1-3 0-2 2.63 2.55 2.76 5867.17 5934.41 0.11 2.21 4761.9 0.03 1-0 2-3 1-1 1-3 0-1 0-2 0.01 4863.9 0.11 2.19 2.21 2.17 4535.7 5936.99 2.63 2.76 2.63 5898.30 5999.99 4719.7 0.01 Cr V I P 72.8 4497.4 0.01 5968.87 1.84 1.84 1.84 7252.8 4-2 3-2 2-3 3d² 3_{F-3d}2 1_D 4478. A 6932.4 0.06 5439.72 2.27 4-2 3-1 2-0 a^5D-a^3P 0.00 6700.1 0.00 3d4 5D-3d4 3F (2F) 4528.3 2.41 2.47 2.37 2.41 2.47 4-4 3-3 2-2 0.11 5224.15 5170.84 0.05 2.83 4480.6 4442.0 4548.5 2.82 1.98 1.94 1.91 1.98 1.94 4-2 3-1 2-0 3-2 2-1 2-3 3d2 3F-3d2 3p 6705.5 0.14 0.03 3-2 2-1 1-0 2.81 5565.68 0.05 6586.7 6462.3 0.06 (2F) 0.11 0.07 0.07 2.82 4-3 3-4 2-3 1-2 4-2 3-4 1-3 0-2 5303.99 0.09 4495.3 0.11 5220.56 6430.7 6376.6 0.06 1-0 2-2 1-1 1-3 0-1 0-2 4461.0 5656.39 5356.32 0.09 0.11 0.11 2.83 . 27 0.03 4427.7 2.82 2.41 2.27 2.41 6230.4 0.00 4405.2 2.81 5715.94 4563.7 0.11 2.81 5382.26 5745.49 4523.6 3d2 3r-3d2 1g 0.14 2.87 4-4 4408.5 4396.9 0.06 2.87 (3F) 4391.1 2.82 0.01 4387.4 2.87 | IA | E P
Low High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet (No) | Į A | E P
Low High | J | Multiplet
(No) | |--|--|--|--|--|--|--|--|--|---|---|---| | Fe I con | tinued | | | <u>Fe I</u> conti | nued | | | Fe I conti | nued | | | | 4843.34
4886.56
4916.26
4789.19
4847.58
4942.95
4956.35 | 0.00 3.55
0.05 3.58
0.09 3.60
0.00 3.58
0.05 3.60
0.05 3.55
0.09 3.58 | 4-4
3-3
2-2
4-3
3-2
3-4
2-3 | a ⁵ D-b ³ F
(4F) | 8022.25
8164.85
8289.45
7876.34
8054.83
7773.91 | 0.86 2.39
0.91 2.42
0.95 2.44
0.86 2.42
0.91 2.44
0.86 2.42 | 5-6
4-5
3-4
5-5
4-4
5-4 | a ⁵ F-a ³ H
(13F) | 10264.65
10592.32
10771.88
9974.41
10318.68
9731.40 | 1.48 2.68
1.55 2.72
1.60 2.75
1.48 2.72
1.55 2.75
1.48 2.75 | 4-5
3-4
2-3
4-4
3-3
4-3 | a ³ F_a ³ G
(23F) | | 4961.18
4751.75
5014.37
5002.01
4983.42 | 0.11 2.60
0.00 2.60
0.09 2.55
0.11 3.58
0.12 2.60 | 1-3
4-3
3-4
1-3
0-3 | а ⁵ р-а ³ ф | 7390.42
7406.61
7510.54
7168.42
7317.43
7536.93
7604.53 | 0.86 2.55
0.91 2.58
0.95 2.60
0.86 2.58
0.91 2.60
0.91 3.55
0.95 2.58 | 5-4
4-3
3-3
5-3
4-3
4-4
3-3 | a ⁵ F-b ³ F
(14F) | 8466.95
8649.72
8792.49
8233.22
8488.19
8086.73 | 1.48 2.94
1.55 2.98
1.60 3.00
1.48 2.98
1.55 3.00
1.48 3.00 | 4-5
3-4
2-3
4-4
3-3
4-3 | a ³ F-b ³ G
(24F) | | 4603.66
4631.93
4640.05
4544.36 | 0.00 2.68
0.05 2.72
0.09 2.75
0.00 2.72
0.05 2.75 | 4-5
3-4
2-3
4-4
3-3 | (5F) | 7658.84
7741.96
7756.59
7759.25 | 0.99 2.60
0.95 2.55
0.99 2.58
1.01 2.60 | 3-2
3-4
3-3
1-3 | | 8490.34
8469.75
8794.80 | 1.55 3.00
1.60 3.06
1.60 3.00 | 3-2
2-1
2-3 | a ³ F-c ³ P
(25F) | | 4578.83
4693.56
4694.59 | 0.05 2.68
0.09 2.72 | 3-5
2-4 | | 7899.63
7859.60 | 0.99 2.55
1.01 2.58 | 2-4
1-3 | | 7935.32
8321.51 | 1.48 3.03
1.55 3.03 | 4-4
3-4 | a ³ F-a ¹ G
(26F) | | 4680.05
4493.23
4377.37 | 0:11 2.75
0.00 2.75
0.00 2.82 | 1-3
4-3
4-3 | a ⁵ D-b ³ P | 6760.61
6836.94
6884.50 | 0.86 2.68
0.91 2.72
0.95 2.75 | 5–5
4–4
3–3 | a ⁵ F-a ³ G
(15F) | 6954.69
7107.04
6823.42 | 1.48 3.25
1.55 3.29
1.48 3.29 | 4-5
3-4
4-4 | a ³ F-b ³ H
(27F) | | 4437.10
4473.46
4458.57
4494.57
4510.63
4516.60
4532.09 | 0.05 2.83
0.09 2.85
0.05 2.82
0.09 2.83
0.11 2.85
0.09 2.82
0.11 2.83 | 3-1
2-0
3-2
3-1
1-0
2-2
1-1 | (6F) | 6633.48
6731.89
6973.07
7005.23
7008.89
6525.11
7147.16
7134.08 | 0.86 2.72
0.91 2.75
0.91 2.68
0.95 2.72
0.99 2.75
0.86 2.75
0.95 2.68
0.99 2.72 | 5-4
4-3
4-5
3-4
2-3
5-3
3-5
2-4 | | 7016.21
7109.01
7439.58
7316.44
7321.23
7541.42 | 1.48 3.24
1.55 3.29
1.60 3.26
1.55 3.24
1.60 3.29
1.60 3.24 | 4-3
3-2
2-1
3-3
2-2
2-3 | a ³ F-a ³ D
(28F) | | 4554.49
4550.64
4573.23 | 0.11 2.82
0.12 2.83
0.12 2.82 | 1-3
0-1
0-2 | | 7092.89 | 1.01 2.75 | 1-3 | 5 3- | 6231.27
6393.72 | 1.55 3.53
1.60 3.53 | 3-2
2-3 | a ³ F-a ¹ D
(29F) | | 4203.39
4217.71
4229.86
4144.97
4178.93
4278.21 | 0.00 2.94
0.05 2.98
0.09 3.00
0.00 2.98
0.05 3.00
0.05 2.94 | 4-5
3-4
2-3
4-4
3-3
3-5 | a ⁵ D-b ³ G
(7F) | 6616.18
6682.18
6710.88
6730.99
6758.48
6808.42 | 0.95 2.82
0.99 2.83
1.01 2.85
0.99 2.82
1.01 2.83
1.01 2.83 | 3-3
3-1
1-0
2-3
1-1
1-3 | a ⁵ F-b ³ P
(16F) | 5746.99
5952.21
6113.97
5946.87
6100.26
6094.65 | 1.48 3.63
1.55 3.62
1.60 3.62
1.55 3.63
1.60 3.62
1.60 3.63 | 4-3
3-3
2-1
3-3
2-2
2-3 | a ³ F-b ³ D
(30F) | | 4269.60
4263.07
4107.51 | 0.09 2.98
0.11 3.00
0.00 3.00 | 2-4
1-3
4-3 | | 5931.19
5971.33
6018.54
5815.53 | 0.86 2.94
0.91 2.98
0.95 3.00
0.86 3.98 | 5-5
4-4
3-3
5-4 | a ⁵ F-b ³ G
(17F) | 5609.27
5799.53 | 1.48 3.68
1.55 3.68 | 4-4
3-4 | a ³ F-b ¹ G
(31F) | | 4108.02
4104.59
4099.29
4179.45
4153.72
4130.47
4230.40
4185.74 | 0.00 3.00
0.05 3.06
0.09 3.10
0.05 3.00
0.09 3.06
0.11 3.10
0.09 3.00
0.11 3.06 | 4-3
3-1
2-0
3-2
2-1
1-0
3-3
1-1 | a ⁵ D-c ³ P
(8F) | 5893.89
6093.32
6099.31
6113.40
5742.07
6226.64
6196.75
6177.21 | 0.91 3.00
0.91 a.94
0.95 2.98
0.99 3.00
0.86 3.00
0.95 2.94
0.99 2.98
1.01 3.00 | 4-3
4-5
3-4
2-3
5-3
3-5
2-4
1-3 | | 11524.46
11237.04
11790.50
11018.07
11518.28
11764.23
11495.96 | 3.17 3.24
2.19 3.29
3.21 3.26
3.17 3.29
2.19 3.24
2.21 3.29 | 3-3
2-3
1-1
3-3
2-1
2-3
1-3 | a ⁵ p-a ³ p .
(33F) | | 4263.62
4201.56
4280.04
3812.07
3814.58
3889.58 | 0.11 3.00
0.12 3.06
0.12 3.00
0.00 3.24
0.05 3.29
0.09 3.26
0.00 3.29 | 1-3
0-1
0-3
4-3
3-3
2-1 | a ⁵ D-a ³ D
(9F) | 6019.63
5955.61
5902.64
6114.52
6016.15
6178.35 | 0.95 3.00
0.99 3.06
1.01 3.10
0.99 3.00
1.01 3.06
1.01 3.00 | 3-3
2-1
1-0
2-3
1-1
1-3 | a ⁵ F-c ³ P
(18F) | 8456.74
8596.27
8775.19
8467.54
8623.51
8585.14
8746.99 | 2.17 3.63
2.19 3.62
2.21 3.62
2.17 3.62
2.19 3.62
2.19 3.63
2.21 3.63 | 3-3
2-3
1-1
3-3
2-1
2-3
1-2 | a ⁵ P-b ³ D
(33F) | | 3754.98
3846.46
3873.51 | 0.05 3.26
0.05 3.24 | 4-2
3-1
3-3 | | 5212.95
5268.82 | 0.86 3.22
0.91 3.25 | 5-6
4-5
3-4 | a ⁵ F-b ³ H
(19F) | | | | a ³ P- a ¹ P | | 3856.98
3917.64
3917.23
3884.57 | 0.09 3.29
0.11 3.26
0.09 3.24
0.11 3.29 | 2-2
1-1
2-3
1-2 | | 5289.66
5147.16
5193.13
5074.90 | 0.95 3.29
0.86 3.25
0.91 3.29
0.86 3.29 | 5-5
4-4
5-4 | | 10908.34
9775.94
11044.11 | 2.27 3.40
2.27 3.53
2.41 3.53 | 2-1
2-2
1-3 | (34F)
a ³ P-a ¹ D
(35F) | | 3931.50
3945.70
3898.19
3403.65
3454.34
3493.55
3405.39 | 0.12 3.26
0.11 3.24
0.12 3.39
0.00 3.63
0.05 3.62
0.09 3.62
0.00 3.62 | 0-1
1-3
0-2
4-3
3-2
2-1
4-3 | a ⁵ D-b ³ D
(10F) | 5180.78
5194.19
5352.29
5304.06
5390.75
5427.17
5404.80 | 0.86 3.24
0.91 3.29
0.95 3.26
0.91 3.24
0.95 3.29
0.99 3.26
0.95 3.24 | 5-3
4-2
3-1
4-3
3-2
3-1
3-3
2-3 | a ⁵ F-a ³ D
(20F) | 9093.67
10196.82
10770.38
9106.17
10235.17
9136.73 | 2.27 3.63
2.41 3.62
2.47 3.62
2.27 3.62
3.41 3.62
2.27 3.62 | 2-3
1-3
0-1
2-3
1-1
2-1 | a ³ P-b ³ D
(36F) | | 3458.73
3452.54
3489.07
3516.17 | 0.05 3.63
0.05 3.63
0.09
3.62
0.11 3.62 | 3-1
3-3
2-2
1-1 | | 5363.91
5477.40
5481.17
5412.97 | 0.99 3.29
1.01 3.26
0.99 3.24
1.01 3.29 | 1-1
3-3
1-2 | | 10601.80
10867.84
11069.08 | 2.39 3.56
2.42 3.56
2.44 3.56 | 6-5
5-5
4-5 | a ³ H-a ¹ H
(37F) | | 3487.23
3511.64
3527.33 | 0.09 3.63
0.11 3.62
0.12 3.63 | 2-3
1-2
0-1 | | 5532.41
4454.37 | 1.01 3.24
0.86 3.63 | 1-3
5-3 | • ⁵ F-b ³ D | 10075.00
10314.96 | 2.39 3.62
2.42 3.62 | 6-6
5-6 | a ³ H-a ¹ I
(38F) | | 3509.78
3522.76 | 0.11 3.63
0.12 3.62 | 1-3
0-2 | | 4548.32
4630.06
4545.20 | 0.91 3.62
0.95 3.62
0.91 3.63 | 4-2
3-1
4-3 | (21F) | 9822.50
9986.60 | 2.42 3.68
2.44 3.68 | 5-4
4-4 | a ³ H-b ¹ G
(39F) | | 9836.83
9998.31
10055.97
10178.29
10262.84
10239.79
10452.56
10443.95 | 0.91 2.17
0.95 2.19
0.99 2.21
0.95 2.17
0.99 2.19
1.01 2.21
0.99 2.17
1.01 3.19 | 4-3
3-2
2-1
3-3
2-8
1-1
2-3
1-2 | a ⁵ F-a ⁵ P
(11F) | 4623.19
4685.99
4618.97
4677.94
4723.39
4674.64
4715.21
4711.86 | 0.95 3.62
0.99 3.63
0.99 3.63
0.99 3.62
1.01 3.62
1.01 3.63
1.01 3.63 | 3-2
2-1
3-3
2-2
1-1
2-3
1-2
1-3 | | 11450.66
11786.08
12073.48
11765.16
12019.17
11997.43 | 2.55 3.63
2.58 3.62
2.60 3.62
2.58 3.63
2.60 3.62
2.60 3.63 | 4-3
3-3
2-1
3-3
2-2
2-3 | b ³ F-b ³ D
(40F) | | 9386.96
8643.14 | 0.95 2.27
0.99 3.41 | 3-3
3-1 | a ⁵ F-a ³ P
(12F) | 11537.68
12025.23 | 1.48 2.55
1.55 2.58 | 4-4
3-3 | a ³ F_b ³ F
(33F) | 10916.64
11202.11 | 2.55 3.68
2.58 3.68 | 4-4
3-4 | b ³ F-b ¹ G
(41F) | | 8413.97
9619.74
8771.24
9778.70 | 1.01 2.47
0.99 3.27
1.01 2.41
1.01 3.37 | 1-0
3-3
1-1
1-3 | • • | 12387.48
11233.90
11791.90
12372.55
12645.23 | 1.60 2.60
1.48 2.58
1.55 2.60
1.55 2.55
1.60 2.58 | 2-2
4-3
3-2
3-4
2-3 | , -, | | | | | | I A | E P
Low High | J | Multiplet
(No) | IÀ | E P
Low High | J | Multiplet
(No) | I A | E P
Low High | J | Multiplet
(No) | |--|--|---|---|---|--|--|---|---|--|---|--| | Fe II I | P 16.16 | | | Fe II cont | inued | | | Fe II cont | inued | | | | 7419.43
7523.37
7552.38
7637.52
7686.90
7665.29
7806.22
7803.90
7733.12
7926.90
7874.23
7999.47 | 0.00 1.66
0.05 1.89
0.08 1.69
0.08 1.69
0.11 1.72
0.08 1.66
0.11 1.66
0.12 1.69
0.12 1.69 | 4 - 3 - 4 - 3 | a ⁶ D_a ⁴ P
(1 F) | 3124.18
3181.05
3162.21
3209.94
3190.76
3230.17
8616.96
8891.88
9033.45
9051.92
9226.60 | 0.00 3.95
0.05 3.93
0.05 3.93
0.08 3.95
0.11 3.93
 | 3 | a ⁶ D_b ² F
(12F)
(12F)
s ⁴ F-a ⁴ P
(13F) | 3376.20
3452.30
3504.51
3538.69
3387.10
3455.11
3504.02
3440.99
3501.62
3539.19
3489.98
3536.25
3524.38 | 0.23 3.89
0.30 3.87
0.35 3.87
0.38 3.87
0.30 3.87
0.30 3.87
0.35 3.87
0.35 3.87
0.35 3.87
0.35 3.87
0.35 3.87
0.38 3.87 | | a ⁴ F-b ⁴ D
(26F) | | 5650.39
5546.59
5713.35
5582.01
5750.95
4965.78
4843.51 | 0.08 2.27
0.11 2.33
0.11 2.27
0.12 2.33
0.13 2.27
0.05 3.53
0.08 3.53
0.08 3.53 | 3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | a ⁶ D_a ² P
(2F)
(2F)
(3F) | 9367.54
9399.02
9470.93
9652.70
7155.14
7171.98
6896.18
7452.50 | 0.38 1.72
0.35 1.66
0.38 1.69
0.38 1.66
0.23 1.96
0.30 2.02
0.23 3.02
0.30 1.96 | 11- 21- 11- 21- 11- 21- 21- 21- 21- 21- | a ⁴ F-a ² G
(14F) |
3318.38
3402.50
3339.14
3380.95
3450.39
3428.24
3484.01
3461.42 | 0.23 3.95
0.30 3.93
0.23 3.93
0.30 3.95
0.35 3.93
0.35 3.93
0.38 3.93
0.38 3.95 | 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | a ⁴ F-b ³ F
(27F) | | 5036.55
4889.70
5086.52
4917.22
4799.31
4665.65 | 0.11 | 15-15
15-25
2-15 | a ⁶ D-b ⁴ P
(4F) | 7388.16
7686.19
7544.00
6440.40
6339.70 | 0.35 2.03
0.35 1.96
0.38 2.02
0.35 2.27
0.38 2.33 | 21-31
21-32
11-32
21-11
11-12 | a ⁴ F-a ² P
(15F) | 10028.62
9795.21
10327.56
9957.44 | 1.04 2.27
1.07 2.33
1.07 2.27
1.09 2.33 | 31-11
11-11
11-11
11-11 | a ⁴ D-a ² P
(28F) | | 4598.07
4889.63
4728.07
4639.68
4958.23 | 0.08 2.77
0.05 2.57
0.08 2.69
0.11 2.77
0.08 2.57 | 41-31
31-15
23-31
31-15
21-25
21-25 | | 6558.51
5413.34
5440.45
5280.25 | 0.38 2.27
0.23 2.51
0.30 2.57
0.23 2.57 | 12-12
43-53
33-43
42-42 | a ⁴ F-a ² H
(16F) | 10508.07
7958.50
7740.11
8245.12
7916.98 | 1.09 3.37
0.98 3.53
1.04 3.63
1.04 3.53
1.07 3.63 | 31-21
31-21
21-11
21-21 | a ⁴ D-a ² D
(29 F) | | 4772.07
4664.45
5006.65
4798.28
5035.50 | 0.11 2.69
0.12 2.77
0.11 2.57
0.12 3.69
0.13 3.57 | 13-13-
13-23-
13-23-
2-23-
2-23- | | 5362.06
5295.70
5527.33
5412.64
5654.85 | 0.23 2.53
0.30 2.63
0.30 2.53
0.35 2.63
0.35 2.53 | 41-31
31-11
31-21
21-11
21-21 | a ⁴ F-a ³ D
(17F) | 8446.11
8022.63
7764.69
7449.45 | 1.07 3.53
1.09 3.63
0.98 3.57
1.04 3.69 | 11-21
2-12
31-21
21-11
11-2 | a ⁴ D-b ⁴ P
(30F) | | 4664.97
4716.36
4750.57
4633.27
4687.56
4604.48 | 0.00 2.65
0.05 2.66
0.08 2.68
0.00 2.66
0.05 2.68
0.00 2.68 | 42-52
34-43
23-32
44-43
34-32
42-32 | _е ⁶ D-а ⁴ Н
(5F) | 5495.82
5745.70
5273.38
5158.00
5107.95 | 0.38 2.63
0.38 2.53
0.23 2.57
0.30 2.69
0.35 2.77 | 12-12
12-22
42-22
32-12
32-12
32-22 | a ⁴ F-b ⁴ P
(18F) | 7281.67
7214.69
7131.77
8037.29
7613.15
7370.94 | 1.07 2.77
0.98 3.69
1.04 2.77
1.04 3.57
1.07 2.69
1.09 3.77 | 12-2
32-1
22-2
12-1
12-1 | | | 4416.27
4457.95
4488.75
4509.61
4382.75 | 0.00 2.79
0.05 2.82
0.08 2.83
0.11 2.84
0.00 2.83 | 41-41
34-31
34-31
14-15
44-32 | a ⁶ D-b ⁴ F
(6F) | 5433.15
5268.88
5181.97
5556.31
5347.67
5644.00 | 0.30 2.57
0.35 2.69
0.38 2.77
0.35 2.57
0.38 2.69
0.38 2.57 | 34-34
34-14
14-34
14-14
14-32 | | 8228.16
7710.79
8342.34
6809.21
6933.67 | 1.07 2.57
1.09 2.69
1.09 2.57
0.98 2.79
1.04 2.82 | 3-41
3-3-1
1-3-1
1-3-3-1 | a ⁴ D-b ⁴ F
(31F) | | 4432.45
4470.29
4492.64
4514.90
4528.39
4533.00
4358.10
4414.45
4550.48
4555.01
4551.98 | 0.05 a.83
0.06 a.84
0.05 a.79
0.08 a.83
0.11 a.83
0.12 a.84
0.00 a.84
0.05 a.84
0.08 a.79
0.11 a.83 | 34 4 3 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 4 4 3 4 | | 5158.81
5261.61
5333.65
5376.47
5111.63
5230.06
5296.84
5072.40
5184.80
5039.10 | 0.23 2.62
0.30 2.65
0.35 2.68
0.38 2.68
0.23 2.65
0.30 2.66
0.35 2.68
0.33 2.66
0.30 2.68
0.33 2.68 | 44-35-43-43-43-34-33-43-53-53-53-53-53-53-53-53-53-53-53-53-53 | a ⁴ F-a ⁴ H
(19 F) | 7011.24
7047.99
6739.85
6872.17
6966.32
6671.90
6839.01
7017.94
7075.26
7093.98
6631.20 | 1.07 3.83
1.09 3.84
0.98 2.82
1.04 2.83
1.07 2.83
1.04 2.83
1.04 2.79
1.07 3.82
1.09 2.83 | 32-32-32-32-32-32-32-32-32-32-32-32-32-3 | | | 4387.40
4359.34
4413.78
4452.11
4474.91 | 0.00 2.88
0.05 2.88
0.08 2.88
0.11 2.88
0.12 2.88 | 41-21
31-21
21-21
11-21
1-21 | a ⁶ D-a ⁶ S
(7F) | 4814.55
4905.35
49073.39
5020.24
4774.74
4874.49 | 0.23 2.79
0.30 2.82
0.35 2.83
0.38 2.84
0.23 2.82
0.30 2.83 | 41-41
31-31
21-21
11-11
41-31 | a ⁴ F-b ⁴ F
(30F) | 6507.63
6698.02
6830.06
5721.35
5741.11 | 0.98 2.88
1.04 2.88
1.07 2.88
0.98 3.14
1.04 3.19 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ⁴ D-a ⁶ S
(32F)
a ⁴ D-a ⁴ G
(33F) | | 3931.44
3932.72
3949.27
3968.27
3874.07
3905.62
3937.80
3847.78
3894.40 | 0.00 3.14
0.05 3.19
0.08 3.21
0.11 3.22
0.00 3.19
0.05 3.21
0.08 3.22
0.00 3.31 | 42-51
31-41
21-31
11-21
41-41
31-31
21-31 | a ⁶ D-a ⁴ G
(8F) | 4950.74
4947.38
5005.52
5043.53
4745.49
4852.73
5049.29
5076.57 | 0.35 2.84
0.30 2.79
0.35 2.83
0.38 2.83
0.23 2.83
0.30 2.84
0.35 2.79
0.38 2.82 | | | 5778.35
5809.43
5600.66
5683.56
5753.83
5545.88
5659.83
5523.28 | 1.07 3.21
1.09 3.22
0.98 3.19
1.04 3.21
1.07 3.22
0.98 3.21
1.04 3.22
0.98 3.23 | 1 - 3 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | (302) | | 3836.89
3991.84
3976.97
3979.93
3986.38 | 0.00 3.22
0.05 3.14
0.08 3.19
0.11 3.21
0.12 3.23 | 34-34-34-34-34-34-34-34-34-34-34-34-34-3 | | 4243.98
4276.83
4319.62
4358.37
4177.21 | 0.23 3.14
0.30 3.19
0.35 3.21
0.38 3.22
0.23 3.19 | 41-51
31-41
21-31
11-21
41-41 | a ⁴ F-a ⁴ G
(21F) | 5746.96
5477.25
5843.90
5527.61
5901.26 | 1.04 3.18
1.07 3.32
1.07 3.18
1.09 3.32
1.09 3.18 | 23-13
13-3
13-13
13-13
3-13 | a ⁴ D_b ³ P
(34F) | | 3979.78
3834.73
4010.91
3851.63
4029.41 | 0.08 3.18
0.11 3.32
0.11 3.18
0.12 3.32
0.12 3.18 | 31-11
11-11
11-11
1-11
1-11 | a ⁶ D-b ² P
(9F) | 4344.81
4305.90
4146.65
4331.56
4134.01
4346.85
4352.78 | 0.30 3.21
0.35 3.22
0.23 3.21
0.30 3.22
0.23 3.22
0.30 3.14
0.35 3.19 | | | 5163.94
5199.18
5083.72
5283.11
5278.39 | 0.98 3.37
1.04 3.41
0.98 3.41
1.04 3.37
1.07 3.41 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ D-a ² F
(35F) | | 3659.96
3670.62
3712.26
3709.14
3751.66
3736.17 | 0.00 3.37
0.05 3.41
0.05 3.37
0.08 3.41
0.08 3.37
0.11 -3.41 | 42-32
31-32
31-32
21-32
12-32 | a ⁶ D_a ² F
(10F) | 4372.43
4356.14
4197.81
4409.86 | 0.38 3.21
0.35 3.18
0.38 3.32
0.38 3.18 | $ \begin{array}{c} 1\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $ | a ⁴ F-b ³ P
(33F) | 4249.07
4347.35
4407.16
4438.92
4266.34
4351.80 | 0.98 3.89
1.04 3.87
1.07 3.87
1.09 3.87
0.98 3.87
1.04 3.87 | 31-31
21-31
11-11
31-21 | a ⁴ D-b ⁴ D
(36F) | | 3175.38
3224.54
3256.73
3277.12
3185.01 | 0.00 3.89
0.05 3.87
0.08 3.87
0.11 3.87
0.00 3.87 | | a ⁶ D-b ⁴ D (11F) | 4114.48
4178.95
4083.78
3929.35
3968.66 | 0.23 3.25
0.30 3.25
0.23 3.25
0.23 3.37
0.30 3.41 | 41-51
31-41
41-41
41-31
31-21 | a ⁴ F-b ³ H
(23F)
a ⁴ F-a ³ F
(24F) | 4406.39
4329.43
4402.60
4439.73
4270.62
4351.05 | 1.04 3.87
1.07 3.87
1.04 3.89
1.07 3.87
1.09 3.87
0.98 3.87
1.04 3.87 | 34-14-14-14-14-14-14-14-14-14-14-14-14-14 | | | 3226.99
3256.31
3214.67
3254.24
3277.55
3289.46 | 0.05 3.87
0.08 3.87
0.05 3.89
0.08 3.87
0.11 3.87
0.12 3.87 | | | 3882.73
4017.38
4033.98
4084.32
4080.00 | 0.23 3.41
0.30 3.37
0.35 3.41
0.35 3.37
0.38 3.41 | 41-31
31-31
41-31
31-31
21-31
11-31 | , - m /. | 4384.21
4435.08
4157.89
4268.67 | 1.07 3.89
1.09 3.87
0.98 3.95
1.04 3.93 | 31-31-31-31-31-31-31-31-31-31-31-31-31-3 | a ⁴ D-b ² F
(37F) | | 3289.46
3244.18
3275.02
3289.89
3264.84
3287.35 | 0.12 3.87
0.08 3.89
0.11 3.87
0.12 3.87
0.11 3.89
0.12 3.87 | 23-34
13-34
13-34
13-34
13-34 | | 4131.51
3505.81
3528.28
3460.20
3575.72 | 0.38 3.37
0.23 3.75
0.30 3.80
0.23 3.80
0.30 3.75 | | a ⁴ F-b ² G
(35F) | 4190.53
4234.81
4321.92 | 0.98 3.93
1.04 3.95
1.07 3.93 | 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | 5557750 | Craw Godf | 2-49 | | 3579.81
3628.65
3616.00 | 0.30 3.75
0.35 3.80
0.35 3.75
0.38 3.80 | 41-41
31-31
41-31
31-41
21-31
11-31 | | 8119.16
7539.67
8252.38
7673.74
8413. 26 | 1.66 3.18
1.69 3.32
1.69 3.18
1.72
3.32
1.73 3.18 | 24-14
12-14
14-14
1-14
2-12 | a ⁴ P-b ² P
(38F) | 108 REVISED MUL | | | | | | FORBI | DDEN LINE | 2S | | | | | |--|--|--|---|---|---|---------------------------------|--|--|--|---|---| | I A | E P
Low High | | Multiplet
(No) | IA | E P
Low High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet
(No) | | <u>Fe II</u> con | tinued | | | Fe III c | ontinued | | | <u>Fe VI</u> I | P 1 | | | | 5551.31
5643.44
5725.92
5580.82
5650.94
5724.62 | 1.66 3.89
1.69 3.87
1.72 3.87
1.66 3.87
1.69 3.87
1.72 3.87 | 1 2 - 2 3 3 4 - 2 3 3 4 5 1 5 - 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | a ⁴ P-b ⁴ D
(39F) | 3976.2
4144.3
4130.7
4129.4
3322.54 | 0.00 3.10
0.05 3.00
0.09 3.00
0.12 3.10 | 3 3-5
3 2-4
0 1-3 | a ⁵ D-a ³ G
(4F)
cont
a ⁵ D-a ⁷ S | 5678.0
5631.6
5485.7
5428.6
5425.3
5336.4 | 0.35 | 42-13-13-13-13-13-13-13-13-13-13-13-13-13- | 3d ³ ⁴ F-3d ³ ⁴ P
(1F) | | 5588.15
5649.67 | 1.66 3.87
1.69 3.87 | 2] -1] | | 3371.4
3406.2
3428.8 | 0.05 3.7
0.09 3.7
0.13 3.7 | 3-3
3-3 | (5F) | 5236.6
5279.2
5100.4 | 0.06 2.42
0.00 2.34
0.00 2.42 | 31-31
11-11
11-31 | | | .0431.10
.0594.89
.0036.79 | 1.96 3.14
2.02 3.19
1.96 3.19 | 33-43 | a ² G-a ⁴ G
(40F) | 3239.7
3301.6 | 0.00 3.8
0.05 3.7
0.09 3.7 | 3-2 | a ⁵ D-a ³ D
(6F) | 5177.0
5146.8 | 0.25 2.63
0.15 2.54 | 41-41
31-31
41-31 | 3d ^{3 4} F-3d ^{3 2} G
(2F) | | 0400.53
9862.21
0321.34 | 2.02 3.21
1.96 3.21
2.02 3.22 | 3 2-3 2
4 2-3 2 | | 3333.8
3254.7
3300.5
3286.2 | 0.00 3.79
0.05 3.79
0.05 3.8 | 4-2
3-1
3-3 | | 5370.5
4968.8
4974.0
4807.5 | 0.25 2.54
0.15 2.63
0.06 2.54
0.06 2.63 | 44-34
34-44
34-34
34-44
12-32 | | | 9682.13
.0013.88
9513.87 | 1.96 3.23
2.02 3.25
1.96 3.25 | 41-51
31-41 | a ² G_b ² H
(41F) | 3334.9
3355.5
3319.2
3356.6 | 0.09 3.79
0.12 3.79
0.09 3.89
0.12 3.79 | 1-1
3-3 | | 4850.9
3995.8 | 0.00 2.54
0.15 3.23 | | 3d ³ 4p-3d ³ 2p | | 8715.84
8885.66 | 1.96 3.37
2.03 3.41 | 43-33 | a ² G—a ² F
(42F) | 3366.2
3340.7
3367.3 | 0.13 3.79
0.13 3.89
0.13 3.79 | 0-1 | | 3849.1
3890.9
3774.9
3815.1 | 0.06 3.27
0.06 3.23
0.00 3.27
0.00 3.23 | 3 - 1 - 2
2 - 2
3 - 1 - 2
1 - 1 - 2
1 - 1 - 2 | (3F) | | 9133.63
6873.87
6944.91 | 2.02 3.37
1.96 3.75
2.02 3.80 | | a ² G-b ² G
(43F) | 3236.7
3283.1
3316.1 | 0.00 3.81
0.05 3.81
0.09 3.81 | . 3-4 | a ⁵ D-a ¹ G
(7F) | 3776.1
3645.7
3664.1 | 0.25 3.51
0.15 3.53
0.15 3.51 | | 3d ³ 4 _{F-3d} 3 2 _D (4F) | | 6700.68
7131.13 | 1.96 3.80
2.02 3.75 | 43-33
33-43 | | 8728.9 | 2.40 3.81 | 2-3 | a ³ P-a ³ D | 3558.1
3575.6
3494.7 | 0.06 3.53
0.06 3.51
0.00 3.53 | 41-21
31-1
31-21
21-21
11-1
11-21 | | | 6188.55
6473.86
6396.30 | 1.96 3.95
2.02 3.93
2.03 3.95 | 3] _2] | a ³ G-b ³ F
(44F) | 9969.6
10504.3
8838.2
9960.0 | 2.55 3.79
2.62 3.79
2.40 3.79
2.55 3.79 | 0-1
3-3 | (8F) | 3511.6
3675.2 | 0.00 3.51
0.25 3.60 | | 3d ³ 4F-3d ³ 2H | | 0796.48 | 2.27 3.41 | 11-31 | a ³ p_a ³ F
(45F)
a ³ P_b ⁴ D | 8830.7
7078.2 | 2.40 3.79
2.55 4.30 | 2-1 | a ³ P-a ¹ S | 3630.3
3740.2
3569.0
3543.5 | 0.15 3.55
0.25 3.55
0.15 3.60
0.06 3.55 | 41-51
31-41
41-41
31-51
21-41 | (5F) | | 7674.06
8012.08
7687.94
8009.53 | 2.27 3.87
2.33 3.87
2.27 3.87
2.33 3.87 | 13-33
3-13
13-13 | a ³ P-b ⁴ D
(46F) | 6096.3
6614.0 | 2.40 4.42
2.55 4.42 | | (9F)
a ^{3P} -a ¹ D
(10F) | | | -2 -2 | | | 7685.58
7432.23 | 2.27 3.93
2.27 3.93 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ² P_b ² F | 9701.3
9942.2 | 3.48 3.75
2.51 3.75 | | a ³ H-a ¹ I
(11F) | <u>Fe VII</u> I
6599.7 | P 7
0.29 2.16 | 4-3 | 3d ² 3 _{F-3d} 2 1 _D | | 9949.32
0038.79 | 2.51 3.75
2.57 3.80 | | (47F)
a ² H-b ² G | 9444.2
9608.6 | 2.51 3.81
2.53 3.81 | 5-4 | a ³ H-a ¹ G
(12F) | 6085.5
5730.9 | 0.13 2.16
0.00 2.16 | 3-2
3-2 | (1F) | | 0432.60
8931.47 | 2.57 3.80
2.57 3.75
2.57 3.95 | 5 1
4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 | (48F)
a ² H-b ² F | 10640.4
11088.0 | 2.65 3.81
2.68 3.79 | 4-3
3-3 | a ³ F-a ³ D | 5276.1
5158.3
4989.4 | 0.29 2.63
0.13 2.52
0.00 2.47 | 4-2
3-1
2-0 | 3d ² 3 _{F-3d} 2 3 _F (2F) | | 9755.81 | 2.53 3.80 | 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | (49F)
a ² D-b ² G | 11272.6
10916.5
11284.9 | 2.70 3.79
2.68 3.81
2.70 3.79 | | (13F) | 4942.3
4893.9
4699.0 | 0.13 2.63
0.00 2.52
0.00 2.63 | 3-3
3-1
3-3 | | | 9116.41
9918.01
9196.26 | 2.53 3.89
2.63 3.87
2.53 3.87 | 21-31
11-21
21-21 | (50F)
a ³ D-b ⁴ D
(51F) | 11107.3 | 2.70 3.81
2.65 3.81 | 2-3
4-4 | a ³ F-a ¹ G | 3759.9
3587.2
3457.3 | 0.29 3.57
0.13 3.57
0.00 3.57 | 4-4
3-4
3-4 | 3d ^{2 3} F-3d ^{2 1} G
(3F) | | 9941.20
9216.20
9937.27 | 2.63 3.87
2.53 3.87
2.63 3.87 | 13-13
23-13
13-13
13-13 | | 10882.6
7088.3
7220.0 | 3.68 3.81
3.68 4.42
2.70 4.42 | 3-4
3-2
2-3 | (14F)
a ³ F-a ¹ D
(15F) | 8738.1 | 2.16 3.57 | 3-4 | 3d ² 1D-3d ² 1G | | 8706.79
9517.76
8851.13 | 2.53 3.95
2.63 3.93
2.53 3.93 | 21-31
11-21
21-21 | a ² D-b ² F
(52F) | | | | | | | | (42) | | | | | | <u>Fe V</u> I P
3970.1 | 0.16 3.27 | 4-3 | 3d4 5p_3d4 3p | <u>Fe X</u> I P
6372.9 | | 1글- 글 | _{3p} 5 | | 5151.9
49 36.4 | P 30.48
0.00 2.40
0.05 2.55 | 4-3
3-1 | a ⁵ D-a ³ P
(1F) | 4136.4
4239.8
3895.7
4071.5
4181.3 | 0.10 3.08
0.05 2.97
0.10 3.27
0.05 3.08
0.02 2.97 | 3-1
2-0
3-2
2-1
1-0 | (1F) | 6374.51 C) | 0.00 1.34 | -2- 2 | (1F) | | 4883.9
5270.4
5011.3
4930.5 | 0.09 2.62
0.05 2.40
0.09 2.55
0.12 2.63 | 2-0
3-3
2-1
1-0 | | 3838.1
4026.6
3798.2 | 0.05 3.27
0.02 3.08
0.02 3.27 | 2-3
1-1
1-3 | | 7888.6 | 0.00 1.56 | 2–1 | 3p4 3p_3p4 3p+ | | 5355.9
5060.3
5412.0 | 0.09 2.40
0.12 2.55
0.13 2.40 | 3-3
1-1
1-3 | | 4003.2
3777.4
4123.9 | 0.00 3.08
0.00 3.27
0.16 3.15 | 0-1
0-3
4-6 | 3d4 5D-3d4 3H | 7891.94 C'
3986.1 | 1.56 4.66 | 1-2 | (1F)
3p ⁴ 3p-3p ⁴ 1p† | | 5084.8
5439.9 | 0.13 2.55
0.13 2.40 | 0-1
0-2 | | 4093.0
4077.5
4175.2 | 0.10 3.11
0.05 3.08
0.16 3.11 | 3-5
2-4
4-5 | (2F) | | | | (aF) | | 4985.9
5032.7
5063.7 | 0.00 2.48
0.05 3.51
0.09 2.53 | 4-6
3-5
2-4 | a ⁵ D-a ³ H
(2F) | 4142.5
4236.8 | 0.10 3.08
0.16 3.08 | 3-4
4-4 | | Fe XIII I | P 3557 | | | | 4924.5
4987.2
4881.0 | 0.00 2.51
0.05 2.53
0.00 2.53 | 4-5
3-4
4-4 | | 3891.8
3838.9
3794.6
3911.1 | 0.16 3.33
0.10 3.31
0.05 3.30 | 4-4
3-3
2-2 | 3d ^{4 5} D-3d ^{4 3} F
(3F) | 10796.2
10797.95 C)
10749.7 | 1.15 2.29
0.00 1.15 | 1-3
0-1 | 3p ² 3p _{-3p} 2 3p
(1F) | | 1658.1
1701.5
1733.9 | 0.00 2.65
0.05 2.68
0.09 2.70 | 4-4
3-3
3-2 | a ⁵ D-a ³ F
(3F) | 3850.8
3820.2
3782.9 | 0.16 3.31
0.10 3.30
0.10 3.33
0.05 3.31 | 4-3
3-2
3-4
2-3 | | 10746.80 C)
3387.7 | 2.29 5.93 | 3-3 | 3p ² 3p _{-3p} 2 1p
(2F) | | 1607.0
1667.0
1754.7
1769.4 | 0.00 2.68
0.05 2.70
0.05 2.65
0.09 2.68 | 4-3
3-2
3-4
2-3 | | 3755.5
3923.5
3764.8 | 0.02 3.30
0.16 3.30
0.05 3.33 | 1-3
4-3
3-4 | | | | | (52) | | 777.7
573.9
824.1 | 0.12 2.70
0.00 2.70
0.09 2.65 | 1-2
4-2
2-4 | | 3744.1
3735.2
3430.3 | 0.02 3.31
0.00 3.30
0.16 3.76 | 1-3
0-2
4-5 | 3d ^{4 5} D-3d ^{4 3} G | | P 3901 | 1 41 | 2_3pe =_3pe | | 813.9
799.5 | 0.12 2.68
0.13 2.70 | 1-3
0-2 | .5 _m 3- | 3406.6
3400.3
3463.4 | 0.10 3.72
0.05 3.68
0.16 3.72 | 3-4
2-3
4-4 | (4F) | 5303.6
5302.86 c) | 0.00 2.33 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 3p ³ p•_3p ³ p•
(1F) | | 070.7
079.7
096.6
008.3 | 0.00 3.03
0.05 3.08
0.09 3.10
0.00 3.08 | 4-5
3-4
2-3
4-4 | a ⁵ D-a ³ G
(4F) | 3445.4
3374.6
3362.5 | 0.10 3.68
0.10 3.76
0.05 3.72 | 3-3
3-5
2-4 | | <u>Pe XV</u> I P | 454? | | | | 046.4 | 0.05 3.10 | 3-3 | | 3368.9
3503.5 | 0.03 3.68
0.16 3.68 | 1-3
4-3 | | 7080.2 | (29.8 31.6) | 1-2 | 3p3pe_3p3pe | | | | | | | F | ORBIDDE | N LINES | | | | _ | | |-----------------------------|-------------------------------------|--|--|---|--|----------------------|--|--|-------------------------------|-------------------------------------|--|---| | IA | E P
Low High | J
h | Multiplet
(No) | IA | Low E | P
High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet
(No) | | Co II | I P 17.1 | | | Co VIII | continued | | | 3d2 3 _{F-3d} 2 3 _P | N1 II co | ontinued
1.04 4.01 | 41 41 | a ⁴ F-a ² G | | 10188.1
10245.4 | 0.00 1.23
0.12 1.33 | 3 3 3 3 | 3d ⁸ ³ F-48 ³ F
(1F) | 4564.7
4492.3
4422.4 | 0.43
0.19
0.09 | 3.13
2.94
2.79 | 4-2
3-1
2-0 | (ar) | 4147.30
4310.46
4143.17 | 1.15 4.01
1.04 4.01 | 4 - 4 - 3 - 3 - 4 - 3 - 3 - 4 - 3 - 3 - | (10F) | | 10280.7
9336.2
9639.4 | 0.20 1.40
0.00 1.33
0.12 1.40 | 2 4-3 | | 4198.0
4204.9 | 0.19 | 3.13
3.94 | 3-2
3-1 | | 4314.92
4461.54 | 1.15 4.01
1.25 4.01 | $3\frac{1}{2}-4\frac{1}{2}$
$3\frac{1}{2}-3\frac{1}{2}$ | | | 11280.5
10972.9 | 0.12 1.2
0.20 1.3 | 1 3-4
2 2-3 | | 3946.0 | | 3.13 | 3-3 | | 4466.33
4573.45 | 1.25 4.01
1.32 4.01 | 2 1 2 - 4 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 8830.3
12168.8 | 0.00 1.40
0.20 1.2 | | | | | | | | 10459.79 | 1.67 2.85 | | a ² F-b ² D | | 5625.4
5852.8 | 0.00 2.19 | | 3d ^{8 3} F-4s ⁵ P
(2F) | Co XI | I P 304? | | | | 11359.87
12323.27 | 1.85 2.94
1.85 2.85 | 31-21
21-11
21-21 | (11F) | | 5971.6
5943.2 | 0.20 2.20
0.12 2.10 | 6 2-1 | \ / | 5185 | 0.00 | 2.38 | 1출- 호 | 3p5 2pe_3p5 2pe
(1F) | 8704.34 | 1.67 3.09 | | a ² F-a ⁴ P | | 6083.2
6180.9 | 0.20 2.2 | | | | | | | | 10209.10
9957.23 | 1.85 3.06
1.85 3.09 | 31-21
21-11
21-21 | (12F) | | 7274.6 | 0.50 2-1 | 9 4-3 | 4 ₈ 5 _{F-48} 5 _P | N1 I I | P 7.61 | | | | 7102.84 | 1.85 3.59 | 2 1 1 2 | a ² F-a ² P
(13F)
a ² F-a ² G | | 7421.5
7467.0 | 0.56 2.2
0.61 2.2 | 6 2-1 | (3F) | 7393.71 | | 1.67 | 4-2 | a ³ F-b ¹ D | 5275.83
5703.64 | 1.67 4.01
1.85 4.01
1.67 4.01 | 31-41
21-31
31-31 | a ^o F_a ^o G
(14F) | | 7567.6
7642.3
7611.7 | 0.56 2.19
0.61 2.29
0.64 2.29 | 3 2-2 | | 8201.77
8843.42 | 0.16
0.27 | 1.67 | 3-2
3-3 | (1F) | 5269.16
5711.46 | 1.85 4.01 | $3\frac{1}{2} - 4\frac{1}{2}$ | | | 7797.2
7793.9 | 0.61 2.19
0.64 2.2 | 9 2-3 | | 6404.46
6941.63 | 0.00
0.16 | 1.93 | 4-2
3-1 | a ³ F-a ³ P
(2F) | | | | | | | | | | 7243.99
7002.02
7395.79 | 0.27
0.16
0.27 | 1.98
1.93
1.94 | 2-0
3-2
2-1 | | <u>N1 VII</u>
3191.2 | IP?
0.29 4.16 | 4-3 | 3d ⁴ ⁵ D-3d ⁴ ³ P | | Co VI | I P † | | | 7464.39 | 0.27 | 1.93 | 3-3 | 7 4 | 3379.7
3503.8 | 0.19 3.84
0.10 3.62 | 3-1
2-0 | (1F) | | 3481.5 | 0.22 3.7 | | 3d4 5p-3d4 3p | 4523.16
4813.27 | 0.00 | 2.73
2.73 | 4-4
3-4 | a ³ F-a ¹ G
(3F) | 3106.0
3299.6 | 0.19 4.16
0.10 3.84
0.03 3.62 | 3-2
2-1
1-0 | | | 3658.1
3761.0
3403.3 | 0.14 3.5
0.07 3.3
0.14 3.7 | 5 2-0 | (1F) | 5027.34 | 0.27 | 2.73 | 2-4 | | 3440.3
3038.3
3243.2 | 0.10 4.16
0.03 3.84 | 2-2
1-1 | | | 3586.8
3708.3 | 0.07 3.5
0.03 3.3 | 1 2-1 | | 7507.44
7908.30 | | 1.67 | 3-2
2-2 | a ³ D-b ¹ D
(4F) | 2990.4
3214.5 | 0.03 4.16
0.00 3.84 | 1-2
0-1 | | | 3341.5
3538.8 | 0.07 3.7
0.03 3.5 | 1 1-1 | | 8466.38
6489.61 | 0.21 | 1.67 | 1-2 | a ³ D-a ³ P | 3413.3
3396.7 | 0.29 3.91
0.19 3.83 | 4-5
3-4 | 3d ^{4 5} D-3d ^{4 3} H (2F) | | 3299.8
3512.9
3277.3 | 0.03 3.7
0.00 3.5
0.00 3.7 | 1 0-1 | | 6730.25
6989.04 | 0.11 | 1.93
1.94
1.98 | 3-3
3-1
1-0 | (5F) | 3486.6 | 0.29 3.83 | 4-4 | | | 3444.1 | 0.22 3.8 | | 3d4 5D-3d4 3F | 6437.70
6604.30 | 0.03
0.11 | 1.94 | 3-1
3-0 | | 3165.4
3106.1 | 0.29 4.19
0.19 4.16 | 4-4
3-3 | 3d ^{4 5} D-3d ^{4 3} F
(3F) | | 3388.2
3336.9 | 0.14 3.7
0.07 3.7 | 7 2-3 | (2F) | 6787.00
7130.24 | 0.21 | 1.93
1.94
1.93 | 2-3
1-1
1-3 | | 3048.8
3191.3
3117.1 | 0.10 4.15
0.29 4.16
0.19 4.15 | 2-2
4-3
3-3 | | | 3465.7
3398.5
3367.5 | 0.22 3.7
0.14 3.7
0.14 3.8 | 7 3-2 | | 7193.97 | 0.21 | 1.55 | | | 3081.6
3038.4 | 0.19 4.19
0.10 4.16 | 3-4
2-3 | | | 3326.9
3295.4 | 0.07 3.7
0.03 3.7 | 8 2-3
7 1-3 | | 9887.18 | 0.43 | 1.67 | 2-2 | a ¹ D-b ¹ D
(6F) | 3000.6 | 0.03 4.15 | 1-3 | | | 3476.5
3307.0
3285.6 | 0.22 3.7
0.07 3.8
0.03 3.7 | 0 2-4 | | 8832.31
8194.57 | 0.42 | 1.82 | 2-3
2-3 | a ¹ D-a ¹ S
(7F)
a ¹ D-a ³ P | N1 VIII | I P 1 | | | | 3272.9 | 0.00 3.7 | | | 8111.97
7929.70 | 0.43 | 1.94 | 3-1
3-0 | (8F) | 4773.4 | 0.46 3.05 | 41-21 | 3d ³ 4F-3d ³ 4P | | | | , | | | | | | | 4644.2
4493.3
4446.2 | 0.27 2.93
0.13 2.87
0.27 3.05 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (1F) | | Co VII | I P † | | | N1 II | I P 18.4 | | | | 4404.4
4297.8 | 0.13 2.93
0.00 2.87 | 23-13
13-3
23-23 | | | 5136.3
5076.3 | 0.34 2.7
0.30 3.6 | | 3d ³ 4r-3d ³ 4p | 10718.16 | 0.00 | 1.15 | 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | a ² D-a ⁴ F
| 4225.9
4216.4 | 0.13 3.05
0.00 2.93 | 15-15 | | | 4901.1
4858.4
4851.6 | 0.09 2.6
0.20 2.7
0.09 2.6 | 4 3 - 2 | | 11616.88
9885.74
10921.07 | 0.19
0.00
0.19 | 1.25
1.25
1.32 | 11-31
31-31
11-12
31-12 | (1F) | 4052.5
4106.1 | 0.00 3.05
0.46 3.46 | 1½-3½
4½-4½ | 3d3 4F-3d3 2G | | 4738.9
4652.2 | 0.00 2.6
0.09 2.7 | 0 1 -
4 3 - 3 | | 9377.33 | 0.00 | 1.32 | | 3 3 | 4032.3
4298.8 | 0.27 3.33
0.46 3.33 | 42-42-43-43-43-43-43-43-43-43-43-43-43-43-43- | (2F) | | 4692.6
4505.9 | 0.00 2.6
0.00 2.7 | 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 7379.57
7413.3 3
6668.16 | 0.00
0.19
0.00 | 1.87
1.85
1.85 | $ \begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \end{array} $ | a ² D-a ² F
(2F) | 3862.3
3850.3
3695.0 | 0.27 3.46
0.13 3.33
0.13 3.46 | 3 2 4 2 2 4 1 2 4 1 | | | 4475.0
4435.1 | 0.34 3.0
0.20 2.9 | 9 41-4 | 3d ^{3 4} F-3d ^{3 2} G
(2F) | 8303.23 | 0.19 | 1.67 | | | 3705.8 | 0.00 3.33 | 15-05 | | | 4665.5
*4262.7 | 0.34 2.9
,0.20 3.0 | 8 4 3 3
9 3 3 4 | | 4326.85
4485.87 | 0.00
0.19 | 2.85
2.94 | 32-32
12-12
32-12
12-32 | a ² D-b ² D
(3F) | 3228.2
3035.3 | 0.46 4.28
0.27 4.34 | 41-21
31-11
31-21 | 3d ³ ⁴ F-3d ^{3 2} D
(3F) | | 4103.1
4139.5 | 0.09 2.9
0.09 3.0
0.00 2.9 |)9 2 } _4 | | 4201.74
4628.77 | 0.00
0.19 | 2.94
2.85 | 12-32 | | 3075.6
3026.4 | 0.27 4.28
0.46 4.54 | 4] -4] | 3d ³ 4F-3d ³ 2H | | 3492.5 | 0.34 3.8 | | | 3993.65
4294.70 | 0. 00
0.19 | 3.09
3.06 | 21-21
12-12 | a ² D-a ⁴ P
(4F) | | | | (4F) | | 3338.5
3361.7
3239.8 | 0.20 3.9
0.20 3.8
0.09 3.9 | 30 3 1 -1
37 3 1 -2 | (3F) | 4033.56
4285.90
4249.48 | 0. 00
0. 19
0. 19 | 3.06
3.07
3.09 | 33-13
13-3
13-3
13-3
32-3 | | 9977.1
8761.8
9565.8 | 3.05 4.28
2.93 4.34
3.05 4.34 | 25-25
15-15
21-11 | 3d ³ 4p _{-3d} 3 2 _D (5F) | | 3261.7
3168.2 | 0.09 3.8
0.00 3.9 | 37 31-3
90 13-1 | | 4025.80 | 0.00 | 3.07 | | | 9105.8
8430.1 | 3.93 4.28
2.87 4.34 | 21-21
12-12
22-12
12-22
12-22 | | | 3189.1
3209.3 | 0.00 3.8
0.34 4.1 | | | 3439.29
3559.86
3378.55 | 0.00
0.19
0.00 | 3.59
3.65
3.65 | 23-13
13-3
23-3 | a ² D-a ² P
(5F) | 10627.5 | 3.46 4.63 | | 3d ^{3 2} G-3d ^{3 2} H | | 3159.5
3274.7 | 0.20 4.1
0.34 4.1 | 10 3 4
10 4 4 | (4F) | 3627.35 | 0.19 | 3.59 | $1\frac{3}{2}-1\frac{3}{2}$ | | 10225.3
11509.6 | 3.33 4.54
3.46 4.54 | 41-51
31-41
41-41 | (6F) | | 3098.6
3071.0 | 0.20 4.1
0.09 4.1 | | | 3074.11 | 0.00 | 4.01 | 2 }- 3 } | a ² D-a ² G
(6F) | | | | | | 10912.8 | 2.74 3.8 | -
87 2 1 -2 | -
1 3d ³ 4p-3d ³ 2p | 6794.37
6911.05 | 1.04
1.15 | 2.85
2.94 | 41-21
31-11 | a ⁴ F-b ² D
(7F) | N1 IX | I P ? | | | | 9752.5
10671.7 | 2.63 3.9
2.74 3.9 | 90 1] -1
90 3] -1 | (5F)· | 7256.16
7307.82 | 1.15
1.25 | 2.85
2.94 | 31-11
31-21
21-11
21-21 | **** | 5056.5
4331.7 | 0.61 3.05
0.20 3.05 | 4-2
3-2 | 3d ² 3 _{F-3d} 2 1 _p (1F) | | 9953.5
9558.5 | 2.63 3.8
2.60 3.9 | 87 1 1- 3
90 1 -1 | 2 | 7694.82
7612.96
8033.86 | | 2.94 | 21-21
12-13
12-23 | | 4043.4
4190.6 | 0.00 3.05
0.61 3.56 | 2–3
4–3 | 3d2 3 _{F-3d} 2 3p | | 11347.6 | 3.09 4.1 | | -
} 3d ^{3 2} G-3d ³ 2H | 6007.34 | 1.04 | 3.09 | | a ⁴ F-a ⁴ P | 4065.7
4112.7 | 0.20 3.24
0.00 3.00 | 3-1
2-0 | (aF) | | 10986.0
12209.6 | 2.98 4.1
3.09 4.1 | 10 3 } ⊸4 | (6F) | 6467.52
67 9 1.61 | 1.15
1.25 | 3.06 | 41-31
31-11
31-31
31-31
31-31 | (8F) | 3680.3
3810.6 | 0.20 3.56
0.00 3.24 | 3-2
2-1 | | | | | | | 6365.52
6813.73
7054.37 | 1.15
1.25
1.32 | 3.06 | 23-13
13-13 | | 3470.0 | 0.00 3.56 | 2-2 | | | Co VII | <u>I</u> IP† | | | 6700.61
7078.25 | 1.25
1.32 | 3.09
3.06 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | N1 XII | I P T | | | | 5268.4
4785.9 | 0.42 2.1
0.19 2.1 | | | 6956.25
5274.27 | | • | | a ⁴ F-a ² P | 4231.4 | 0.00 (2.93) | 12- 2 | 3p ⁵ 2pe_3p ⁵ 2pe
(1F) | | 4461.0 | 0.00 2.1 | | | 5281.46
5431.39 | 1.32 | 3.65 | 23-13
13-3
12-12 | (9F) | | | | · · · / | | | | | | | | | | | | | | | | I A | E
Low | P
High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet (No) | IA | E P
Low High | J | Multiplet
(No) | |---|--|--------------------------------------|--|--|---|---|--|--|--|--|--|--| | N1 XIII
5116.3
5116.03 C)
3643.3 | | (2.41)
5.80) | | 3p4 3p_3p4 3p
(1F)
3p4 3p_3p4 1p
(2F) | Zr II con
7454.82
7386.11
7156.26
7149.08
6933.53 | 0.16 1.82
0.09 1.77
0.09 1.82
0.04 1.77
0.04 1.82 | 41-21-31-31-31-31-31-31-31-31-31-31-31-31-31 | a ⁴ F-c ² D
(5F) | <u>Zr II</u> cont
7710.56
7264.43
7662.36
7307.76 | 0.80 2.40
0.71 2.41
0.80 2.41
0.71 2.40 | 31-31
21-21
31-21
22-32 | a ² F-b ² F
(23F) | | N1 XV I I
8024
8024.21 C)
6700.6
6701.83 C) | • | 3.38)
(1.84) | | 3p ² 3p _{-3p} ² 3p | 6991.75
6785.44
5855.37
5932.88
5669.58
5778.97
5528.87
5675.73
5434.30 | 0.00 1.77
0.00 1.83
0.16 2.27
0.09 2.17
0.09 2.27
0.04 2.17
0.04 2.27
0.00 3.17
0.00 3.27 | 100 100 100 100 100 100 100 100 100 100 | a ⁴ F-d ² D
(6F) | 9670.04
10120.75
10461.95
9377.83
8315.71
8416.96
8098.70
8261.59 | 0.99 2.27
0.96 2.17
0.99 2.17
0.96 2.27
0.99 2.48
0.96 2.42
0.96 2.42
0.93 2.42 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ⁴ P-d ² D
(24F)
a ⁴ P-b ² P
(25F) | | <u>N1 XVI</u> I
3601.3 | P 7 | 3.43 | 1/2-11/2 | 3p2pe_3p2pe
(1F) | 5520.18
5331.46
5495.42
5354.76
5206.84
5229.06
5122.88
5144.39 | 0.16 3.40
0.09 2.41
0.16 2.41
0.09 2.40
0.04 3.41
0.04 2.40
0.00 2.41
0.00 3.40 | 42-32-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | a ⁴ F-b ² F
(7F) | 7954.76
8862.47
8561.42
8798.83
8621.67 | 1.01 2.40
0.97 2.41
1.01 3.41
0.97 3.40 | \$-1\$
4\$-3\$
3\$-2\$
4\$-2\$
3\$-3\$ | a ² G-b ² F
(26F) | | Cu II I F
4375.71
4165.79
3806.34 | P 20.18
0.00
0.00 | 2.82
2.96
3.24 | 0-2
0-1
0-2 | 3d ¹⁰ 1 _{5-4s} 3 _D (1F) 3d ¹⁰ 1 _{5-4s} 1 _D | 9607.90
9870.08
9202.81
9490.96
8872.37
9208.72
8625.25 | 0.46 1.75
0.41 1.66
0.41 1.75
0.36 1.66
0.36 1.75
0.32 1.66
0.32 1.75 | 42-24-34-34-34-34-34-34-34-34-34-34-34-34-34 | b ⁴ F-b ³ D
(SF) | 9886.87
10128.19
9670.87
9937.20
9496.60 | 1.23 2.48
1.20 2.42
1.20 2.48
1.18 2.42
1.18 2.48 | 22-12-12-12-12-12-12-12-12-12-12-12-12-1 | b ⁴ P-b
² P
(27F) | | | P 36.8 | 1.81 | 2-2
1-2 | (2F)
4p4 3p_4p4 1p
(1F) | 9582.55
9291.03
9704.10
9179.54
8954.34
8850.73
8702.70 | 0.46 1.75
0.41 1.74
0.46 1.74
0.41 1.75
0.36 1.74
0.36 1.75
0.32 1.74 | 44-44-34-34-34-34-44-14-34-34-34-34-34-34-34-34-34-34-34-34-34 | b ⁴ F-b ² G
(9F) | 5539.74
5517.24
5433.69
5773.51
5643.02
5303.37
5316.97
5118.07 | 0.18 2.41
0.08 2.32
0.00 2.27
0.18 2.32
0.08 2.27
0.08 2.41
0.00 2.33 | 4-3
3-2
2-1
4-2
3-1
3-3
2-2
2-3 | 4d ² ³ F-5e ³ D | | | P 10.98 | 1.83 | 1-21
1-11 | 5 ² S-4 ² D
(1F) | 9108.53
9089.24
8743.65
8766.76
8444.83
8525.41
8220.64 | 0.46 1.82
0.41 1.77
0.41 1.82
0.36 1.77
0.36 1.82
0.32 1.77
0.32 1.82 | 43-13-33-13-33-13-13-13-13-13-13-13-13-13 | b ⁴ F-c ³ D
(10F) | 7853.3
6193.7
6487.5
6661.7 | 0.00 2.41
0.42 1.99
0.42 2.41
0.42 3.32
0.42 3.27 | 2-3
2-3
2-3
2-2
2-1 | 4d ² ¹ D-5s ¹ D
(2F)
4d ² ¹ D-5s ³ D
(3F) | | <u>Y II</u> I P
7091.17
7131.55
6739.91 | 0.00 | 1.73 | 0-2
0-1
0-3 | a ¹ S-a ³ P
(1F) ¹
a ¹ S-b ¹ D
(3F) | 6839.24
6984.07
6622.05
6793.01
6449.21
6646.31
6317.64 | 0.46 3.27
0.41 2.17
0.41 3.17
0.36 2.17
0.36 2.27
0.32 2.17
0.32 2.27
0.46 2.40 | 41-31
31-15
31-35
31-15
31-15
11-15
12-32 | b ⁴ F-d ² D
(11F)
b ⁴ F-b ² F | 6864.4
9349.2
9543.3
9671.2
10034.9
9926.0 | 0.47 2.27
1.09 2.41
1.03 2.32
1.00 2.27
1.09 2.33
1.03 2.32 | 0-1
2-3
1-2
0-1
2-3
1-1 | 4d ² 1 _S -5e ³ D
(4F)
4d ² 3P-5e ³ D
(5F) | | 7904.04
7706.06
7664.67
7954.24
7787.00
7658.92
7586.23 | 0.18
0.13
0.10
0.18
0.13
0.13 | 1.73
1.71
1.73
1.71
1.74 | 3-2
3-1
1-0
3-1
2-0
2-2
1-1 | a ³ D-a ³ P
(3F) | 6165.35
6344.56
6196.53
6015.26
6044.94
5900.64
5929.20 | 0.41 3.41
0.46 3.41
0.41 3.40
0.36 3.41
0.36 3.40
0.32 3.41
0.33 3.40 | 41-31-32-32-32-32-32-32-32-32-32-32-32-32-32- | (12F) | 8921.0
9307.5
10458.9
 | 1.03 2.41
1.00 2.32
1.09 2.27 | 1-1
1-3
0-2
2-1 | | | 7540.54
7470.10
7250.78
7144.60 | | 1.74
1.83
1.83 | 1-3
3-2
2-3
1-3 | a ³ D-b ¹ D
(4F) | 10351.92
10890.02
11203.92
10083.37 | 0.56 1.75
0.52 1.66
0.56 1.66
0.52 1.75 | 21-21
15-15
23-15
15-25 | a ² D-b ² D
(13F) | 6408.5 | 0.00 1.93 | 11/2- 1/2 | 4p ⁵ 2 pe_4 p ⁵ 2 pe (1F) | | 9255.10
9324.01
9442.77 | 0.41
0.41
0.41 | 1.73 | 3-3
3-1
3-0 | a ¹ D-a ³ P
(5F) | 9774.53
9947.19
10208.43
9534.75 | 0.56 1.82
0.52 1.77
0.56 1.77
0.52 1.82 | 31-31
11-11
23-11
11-31 | $\mathbf{a^2D-c^2D}$ (14F) | <u>Xe II</u> I P
9487.5 | 0.00 1.30 | 1분~ 분 | 5p ^{5 2} p•_5p ^{5 2} p•
(1F) | | 8665.66 | 0.41 | | 2-2 | a ¹ D-b ¹ D
(6F) | 7196.91
7479.79
7626.54
7066.07 | 0.56 2.27
0.52 3.17
0.56 3.17
0.52 3.27 | 21-21
12-12
12-12
23-13
12-32 | a ² D-d ² D
(15F) | | 33.0 | | - 4 3p - 4 3p | | <u>Y V</u> I P 7 | 0.00 | 1.49 | 11/2- 1/2 | 4p ⁵ 3po_4p ⁵ 3po
(1F) | 6697.09
6548.47
6660.68
6583.66 | 0.56 2.40
0.52 3.41
0.56 3.41
0.52 3.40 | 21-31
12-32
12-32
12-32
12-32 | a ² D-b ² F
(16F) | 10206.5
5846.3 | 0.00 1.21 | 2-1
2-3 | 5p ⁴ ³ p-5p ⁴ ³ p
5p ⁴ ³ p-5p ⁴ ¹ p
(2F) | | <u>Zr II</u> I P
0860.44
0603.65
0464.94 | 0.09
0.04
0.00 | 1.20 | 3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁴ F-b ⁴ P
(1F) | 6418.86
6506.40
6617.17
6314.58 | 0.56 | 31-12
12-12
12-12 | a ² D-b ² P
(17F) | <u>La II</u> I P
11011.70
9903.31
11490.57 | 11.38
0.13 1.25
0.00 1.25
0.17 1.25 | 3-2
3-3
3-3 | a ³ F-b ¹ D
(1F)
a ¹ D-b ¹ D | | 0355.58
0261.18
0028.71 | 0.0 <u>4</u>
0.00 | 1.23
1.20
1.23 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ F-a ³ H | 11595.50
11659.62
12211.22
11096.98 | 0.75 1.82
0.71 1.77
0.75 1.77
0.71 1.82 | 12-22
1-12
12-12
2-22 | a ² P-c ² D
(18F) | La III I P | 19.1 | | (3F) | | 9909.40
9376.93
7786.03
7893.57 | | 1.48
1.48
1.75 | 41-51
31-41
41-41
41-21
31-11 | (3F)
a ⁴ F-b ² D | 8137.88
8408.39
8691.53
7889.15 | 0.75 2.27
0.71 2.17
0.75 2.17
0.71 2.27 | 12-32
2-12
12-12
2-32 | a ² P-d ² D
(19F) | 8339.72
7355.92 | 0.20 1.68
0.00 1.68 | 21- 1
11- 1 | 5 ² D-6 ² S
(1F) | | 7460.93
7623.44
7319.15
7444.80
7058.76 | 0.09
0.04
0.04
0.00 | 1.75
1.66 | 42-14-33-33-14-33- | (3F) | 7156.94
7197.88
7404.36
6963.85 | 0.75 2.48
0.71 2.43
0.75 2.43
0.71 2.48 | 12-12
2-12
12-12
12-12 | a ³ P_b ³ P
(30F) | 8983.71
9392.85 | 0.00 1.37
0.00 1.31 | 4-6
4-5 | a ⁹ S-a ⁹ D° (1F) | | 7769.35
7518.81
7849.08
7445.63
7873.33 | 0.16
0.09
0.16
0.09
0.04 | 1.75
1.74
1.74
1.75
1.75 | 41-41
31-31
41-31
31-41
21-31 | a ⁴ F-b ² G
(4F) | 12094.78
11698.62
11132.24
8380.68
8428.62 | 0.80 1.82
0.71 1.77
0.71 1.82
0.80 2.27
0.71 2.17 | 300000 0000000000000000000000000000000 | a ² F-c ² D
(21F)
a ² F-d ² D
(22F) | 9694.01
9916.30
10074.84
5929.31
5879.32
5832.40 | 0.00 1.27
0.00 1.24
0.00 1.23
0.00 2.08
0.00 2.10
0.00 2.13 | 4-4
4-3
4-2
4-5
4-4
4-3 | a ⁹ S-a ⁷ D°
(2F) | | 7304.82
7110.54 | 0.04
0.00 | | 2 - 4 - 4 - 5 - 1 - 2 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | | 8969.06
7906.95 | 0.80 2.17
0.71 2.27 | 3 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | • • | 5796.28 | 0.00 2.13 | 4-2 | | # Part II—Finding List of All Lines in the Table of Multiplets # TABLE OF CONTENTS # PART II. FINDING LIST | | | PAGI | |--|---------|------| | 1. Introduction | | | | 2. Part A—Observed and Permitted Predicted Lines | | | | 3. Blends | • • • • | 1 | | | | | | 5. Part B—Forbidden Lines | • • • • | • | | 6. Contents of Section on Forbidden Lines | • • • • | 1 | | 4. Scope | • • • • | 1 | | 8. Errata | • • • • | 1 | | | | | | Body of Multiplet Table | | 1-0 | | Forbidden I in as | | る/一プ | ## A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST #### PART II # Finding List of All Lines in the Table of Multiplets ### 1. Introduction Any arrangement of the wave-lengths in a given spectrum, by multiplets makes it inconvenient to locate a given line. The difficulty is greatly increased when many spectra are involved. Consequently a "Finding List" containing all lines in the Revised Multiplet Table has been included as Part II of this Contribution. As in the RMT the Finding List is in two parts. The first contains permitted lines observed in the laboratory, permitted predicted lines, and a few forbidden lines observed in the laboratory when a strong electric field is present. The second contains only forbidden lines of the nebular, auroral and coronal type. See §5. ## 2. Part A—Observed and Permitted Predicted Lines The lines are listed in order of increasing wave-length and cover the range $\lambda\lambda 2951-13164$. At the violet end of this long range, the proportion of known lines included is smaller than in the main body of the list, due to the masking by the ozone in our atmosphere of all but the strongest lines. The number of lines in the same wave-length interval decreases from the violet to the red. The incompleteness of laboratory material accentuates this in the infra-red. The total number of lines in this section is approximately 23,200. Three entries are given for each line and a fourth if the line is predicted or forbidden. All entries are copied directly from Part I of this Contribution. The first is the laboratory wavelength. The source
from which the wave-length is taken can be found from the references A, B, C etc. in the R M T and Table 7. The second entry headed "Type" is blank for all lines observed in the laboratory, except the selected forbidden ones that appear under special conditions, (due to Stark effect). These are marked "Forb" and include 11 lines of He 1, 6 of Na 1, 11 of Al 11, 2 of Al 111 and 2 of K 1. Predicted Lines. These fall into three classes. (a) For some faint lines observed in the laboratory but not well-measured, a predicted wave-length obtained from the spectroscopic term values is preferable to the observed value. (b) It is well-known that many predicted lines not yet observed in the laboratory are important astrophysically, and an attempt has been made to include these in the R M T. (c) If a line that would otherwise be included is masked by a strong line in the laboratory, the predicted position of the masked line is entered. Such cases are carefully noted and explained in the R M T. In every case where a predicted wave-length is used, the entry "P" occurs in the column headed "Type" in the Finding List. This column contains only the two entries "Forb" and "P". All other lines are observed laboratory wave-lengths in the usual sense of the word "observed". The third entry for each line is the spectrum to which the line belongs. Here the chemical symbols of the elements are used and Roman numerals denote arc spectra (1) and spark spectra in successive stages of ionization, i.e. first spark spectrum (11), second spark spectrum (111) etc. Finally the number of the multiplet to which the line of a given spectrum belongs, is given under the heading "Multiplet No." This number appears under the "Multiplet Designation" of each multiplet in the R M T and the numbers start with 1 for each spectrum. All lines of a given multiplet have the same multiplet number. A blank in this column indicates that the line is unclassified. In the R M T, under a given spectrum, unclassified lines follow the multiplets. When two or more numbers appear in this column, the line is a blend and occurs in each of the multiplets indicated. Examples: $\lambda 2957.56$ is due to Cr II and appears in Multiplets 104 and 141 of Cr II (See pp. 44 and 45 of the R M T). λ 2984.89 is a predicted wave-length. The line is in Multiplet No. 60 of Fe II (See p. 67 of the R M T). λ2991.632 is an unclassified line of Fe I (See p. 65 of the R M T). #### 3. Blends Reference has been made above to a line appearing in two multiplets of a given spectrum, for example $\lambda 2957.56$. Such blends can be readily detected in the Finding List by the presence of more than one multiplet number. In the R M T they are noted by an asterisk. This applies to blended lines in the same spectrum. If, however, an arc and spark line of an element are blended the wave-length is repeated in the Finding List; or nearly identical wave-lengths are entered, if different measures were used in the two instances. For example $\lambda 2988.952$ appears in Multiplet No. 11 of Sc 11 and in Multiplet No. 34 of Sc 11. In the R M T such lines have an asterisk preceding the wave-length and the symbol "§" following it. A careful examination of close pairs of lines of a given element in the Finding List will doubtless reveal more blends than have been noted in the RMT. Similarly, it is probable that erroneous identifications of lines due to impurities that have not heretofore been suspected, can be detected. The predicted wave-lengths of masked lines (§2) fall close to observed lines. For example $\lambda 2965.25$ is the predicted position of the line of Fe 1 in Multiplet No. 316, masked by the strong Fe 1 line at $\lambda 2965.255$, which occurs in Multiplet No. 10. All predicted lines have separate entries in the Finding List, regardless of how close the pairs in a given spectrum may be—for example, $\lambda\lambda 2990.33$ and 2990.34 are both predicted lines of Fe 1. If observed in the laboratory these lines would undoubtedly be blended. When identical wave-lengths appear in spectra of different elements, the lines are arranged in the alphabetical order of the chemical symbol. When similar wave-lengths occur in spectra of different stages of ionization of a given element, the arc spectrum comes first, then the spark spectra, in order of increasing ionization. # 4. Scope of the Finding List The users of this Finding List are emphatically warned that the list is not complete. The range is that useful to the astrophysicist, having the violet limit $\lambda 2951$. Within the range covered, the elements to be included have been selected according to their astrophysical importance. For a given element, the spectra for different degrees of ionization and the lines of each have been similarly selected. It is fairly complete for the first spark spectra through the first long period. It lists only the leading arc lines for many elements, but includes all observed classified lines of Fe 1. For any element, the List grading in the R M T can be used as a guide to the completeness of selection. On account of these restrictions this book is not a list of "Hauptlinien" or a compendium of wave-lengths of elements in general. On the other hand it does contain a large number of predicted lines which invite the attention of the laboratory worker in spectroscopy. # 5. Part B. Forbidden Lines—Nebular, Auroral, Coronal etc. The second part of the Finding List contains only forbidden lines. Here the word "forbidden" applies in the general sense—i.e. lines due to downward transitions from metastable states in the atoms. The number of lines listed is roughly 2550. The arrangement is similar to Part A of the Finding List, with the exception that in Part B the great majority of lines are predicted. Consequently no column headed "Type" is given. The wave-lengths that are *not* predicted are noted by the following letters: N Nebular Wave-length L Laboratory Wave-length A Auroral Wave-length C Coronal Wave-length Column two contains the chemical symbol and stage of ionization of the spectrum as in Part A, and column three the Multiplet Number. In order to avoid confusion with Multiplet Numbers in Part A, all Multiplets of forbidden lines have the letter "F" accompanying the Multiplet Number. ### 6. Contents A complete list of all possible forbidden lines in the region useful to the astrophysicist would be prohibitively long. For simple spectra the lines are few, but for the complex spectra, particularly in the first long period, fairly rigid selection has been made. Anyone desiring to construct complete lists is advised to consult the references to the analysis of the various spectra. # 7. Index of The Finding Lists In order to facilitate the work of transferring from the Multiplet Number of the Finding List to the Multiplet in the R M T, a separate card is enclosed in the Finding List, containing an index of the R M T. The elements are in order of increasing atomic number. This index gives the multiplets of each element contained on each page of the R M T. For example, $\lambda 2980.296$ is in Multiplet No. 94 of Ti 1. On the index card hunt Ti 1 and then this Multiplet Number. It is to be found on page 27 of the R M T, which contains Multiplets of Ti 1 from No. 55 through No. 140. ## 8. Errata After the tabular material in the Finding List had been completed for publication, four errors were detected, as follows: | IA E | lement Mı | ıltiplet No. | | I A | Element M | lultiplet No. | | |------------------|------------------|--------------|----------------------------|-----------|-----------|------------------|--------| | 3497.137 | Fe 1 | 78 | should read | 3497.15 | P | Fe 1 | 78 | | 4618.568 | Fe 1 | 1151 | Reject-Way | ve-length | erron | neous | | | 4061.3
4068.7 | Sc III
Sc III | | should read
should read | | | Sc III
Sc III | 1
1 | The writer will be grateful to those who use this Table if they will call to her attention any errors they detect, so that a list of errata may be published. In the compilation of a list containing about 25,750 lines, doubtless there are a number of mistakes in spite of the care that has been taken to avoid errors. | · | | | |---|--|--| I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|------------------|---------------|----------------------|------|----------------|---------------|--------------------------------|--------|-----------------|------------------| | 2951.40 | | Cr II | 59 | 2972.277 | | Fe I | 104 | 2985.849 | | Cr I | 28 | | 2951.95 | | Cr II
V II | 59
2 | 2972.64 | | Cr II
Gd II | 28
25 | 2985.98
2985.995 | | S III
Cr I | 14
28 | | 2952.07
2953.358 | | Cr II | 27 | 2972.742
2972.769 | | Fe II | 159 | 2986.137 | | Cr I | 28 | | 2953.706 | | Cr II | 66 | 2973.137 | | Fe I | 10 | 2986.456 | | Fe I | . 11 | | 2953.774 | | Fe II
Fe I | 2
10 | 2973.236 | | Fe I
V II | 10
218 | 2986.473
2986.617 | | Cr I
Fe II | 28
62 | | 2953.940
2954.050 | | re 1
Fe II | 61 | 2973.975
2974.006 | | Sc I | 11 | 2986.655 | | Fe I | 200 | | 2954.332 | | v I | 18 | 2974.59 | | YI | 10 | 2986.91 | P | Fe II | 86 | | 2954.67 | | Cr II | 104 | 2974.78 | | Fe I | 335 | 2987.074 | | Gd II | 57 | | 2955.12 | | Cr II | 59 | 2974.934 | | Ti I | 94 | 2987.166 | | Co I | 11 | | 2955.71 | | Cr II | 58 | 2975.110 | | Gd II | 77 | 2987.27 | P | Fe II | 86 | | 2956.133 | | Ti I | 30 | 2975.16 | | Zr II | 64 | 2987.292 | | Fe I
Ti II | 30
28 | | 2956.60
2956.797 | | Cr II
Ti I | 58
30 | 2975.483
2975.650 | | Cr I
V II | 28
28 | 2987.40
2987.542 | | Fe II | 28
223 | | 2957.28 | | Cr I | ••• | 2975.89 | | Hf II | 10 | 2987.65 | | Si I | 1 | | 2957.33 | | V I | 18 | 2975.938 | | Fe II | 2 | 2987.72 | | Ca II | 11 | |
2957.365
2957.520 | | Fe I
V II | 10
2 | 2976.126
2976.197 | | Fe I
V II | 146
28 | 2987.80
2988.027 | | Zr II
V II | 86
27 | | 2957.56 | | Cr II | 104,141 | 2976.50 | P | Fe I | 56 | 2988.05 | | N1 II | 6 | | | | A | | | | ** ** | | 2222 252 | | C- TT | 00 | | 2958.20
2958.528 | | Cr II
Fe II | 49
160 | 2976.517
2976.593 | | V II
Ru II | 28
4 | 2988.056
2988.367 | | Cr II
Rh II | 28
3 | | 2958.54 | | Cr II | 97 | 2976.61 | | Zr II | 77 | 2988.468 | | Fe I | 56 | | 2959.601 | | Fe II | 62 | 2976.718 | | Cr II | 27 | 2988.61 | | Ca III | 2 | | 2959.841
2959.97 | | Fe II
Cr II | 180
59 | 2976.905
2976.922 | | Ce II
Fe I | 168
334 | 2988.649
2988.74 | | Cr I
Zr II | 14
148 | | 2959.992 | | Fe I | 316 | 2977.226 | | Ru II | 4 | 2988.942 | | Fe I | 316 | | 2960.303 | | Fe I | 148 | 2977.539 | | V I | 18 | 2988.952 | | Sc I | 11 | | 2960.926
2961.119 | | Gd II ·
Fe II | 25
180 | 2978.07
2978.18 | | Zr II
Y II | 14
45 | 2988.952
2989.01 | P | Sc II
Fe II | 3 <u>4</u>
86 | | ~601.119 | | _ | 100 | 2010110 | | | 20 | 2000.01 | • | | | | 2961.272 | | Fe ÍI | 2 | 2978.226 | | V II | 87 | 2989.079 | | Fe II | 159 | | 2961.732
2962.11 | | Cr II
Fe I | 27,59
57 | 2978.850
2979.05 | | Fe II
A II | 69
19 | 2989.194
2989.30 | | Cr II
Ca III | 28
4 | | 2962.167 | | Rh II | 4 | 2979.096 | | Fe II | 100,180 | 2989.306 | | V II | 87 | | 2962.772 | | V I | 18 | 2979.102 | | V II | 44 | 2989.367 | | Fe II | 86 | | 2962.936
2963.249 | | Fe II
V II | 160
154 | 2979.18
2979.199 | | Zr II
Ti II | 14
123 | 2989.42
2989.590 | | Ca II
Co I | 11
13 | | 2963.46 | | Cr II | 58 | 2979.349 | | Fe II | 2 | 2989.594 | | V II | 28 | | 2963.605 | | Gd II | | 2979.362 | | Rh II | 4 | 2989.731 | | Fe II | 86 | | 2963.73 | | Cr I | | 2979.683 | | Sc II | 44 | 2989.74 | | V II | 87 | | 2963.897 | | Fe II | | 2979.726 | | Ru II | 5 | 2990.10 | | Zr II | 27 | | 2964-131 | | Fe II | 60 | 2979.741 | | Cr II | 28 | 2990.16 | _ | Ti II | 123 | | 2964.629
2964.88 | | Fe II
Hf I | 8
4 | 2979.957
2980.154 | | Ru II
Gd II | 4
12 | 2990.33
2990.34 | P
P | Fe I
Fe I | 334
460 | | 2964.96 | | ΥÏ | 11 | 2980.296 | | Ti I | 94 | 2990.392 | • | Fe I | 316 | | 2965.036 | | Fe II | 8 | 2980.532 | _ | Fe I | 317 | 2990.873 | | Ce II | 72 | | 2965.19
2965.231 | | Cr II
Ti I | 58,160
94 | 2980.60
2980.69 | P | Fe I
Y II | 201
54 | 2990.948
2991.095 | | V I
N1 I | 58
14,80 | | 2965.25 | P | Fe I | 316 | 2980.752 | | Sc I | 11 | 2991.244 | | Fe II | 60 | | 2965.255 | | Fe I | 10 | 2980.791 | | Cr I | 28 | 2991.33 | | Eu II | 3 | | 2965.395 | | Fe II | 59 | 2980.82 | | Hf I | 2 | 2991.40 | | Zr II | 6 | | 2965.428 | | Gd II | 29 | 2980.963 | | Fe II | 61 | 2991.520 | | Gd II | 25 | | 2965.54
2965.564 | | Ta I
Ru II | 2
4 | 2981.02
2981.200 | | Zr II
V II | 24
87 | 2991.626 | | Ru II
Fe I | 5 | | 2965.68 | | Ti I | 94 | 2981.446 | | Fe I | 11 | 2991.632
2991.817 | | Fe II | 160 | | 2965.707 | | Ti I | 94 | 2981.448 | | Ti I | 29 | 2991.886 | | Cr I | 28 | | 2965.86
2966.051 | | Sc I
Cr II | 11
33 | 2981.651
2981.852 | | Ni I
Fe I | 26
104 | 2992.11
2992.2 4 | | O III
K III | 10
2 | | 2966.26 | | Fe I | 104 | 2981.924 | | V II | 114 | 2992.378 | | V II | 114 | | 2966. 27 | | Zr II | 148 | 2982.059 | | Fe II | 139 | 2992.40 | | Cr II | 28 | | 2966.901 | | Fe I | 10 | 2982.100 | | Сь ІІ | 2 | 2992.595 | | N1 I | 25 | | 2967.225 | | Ti I | 30 | 2982.234 | | Fe I | 460 | 2992.63 | | CII | 8 | | 2967.642
2968.119 | | Cr I
Fe II | 28
160 | 2982.239 | | Fe II | 70
20 | 2993.038 | | Gd II | 42 | | 2968.119
2968.21 | | Cr II | 160
96 | 2982.75
2982.78 | | V II
C1 II | 28
53 | 2993.366
2994.05 | | Fe II
Zr II | 139 | | 2968.231 | | T1 I | 29 | 2983.009 | | V II | 22,28 | 2994.069 | | Cr I | 14 | | 2968.373
2968.67 | | V II
Cr II | 28
58 | 2983.060
2983.306 | | Gd II
T1 I | 77
29 | 2994.259 | P | Al II
Fe I | 14 | | 2968.738 | | Fe II | 6 1 | 2983.558 | | V II | 29
28 | 2994.427
2994.460 | | re I
Ni I | 9
27 | | 2968.82 | | Hf II | 12 | 2983.574 | | Fe I | 9 | 2994.50 | | Fe I | 11 | | 296 8.906 | | Fe II | | 2983.66 | | 0 111 | 7 | 2994.540 | | V. II | 218 | | 2968.95 | | Zr II | 14 | 2983.78 | | 0 111 | 6 | 2994.725 | | Cb II | 218 | | 2969.267 | | Gd II | 28 | 2984.131 | | N1 I | 12 | 2994.737 | | Cr II | 28 | | 2969.364
2969.474 | | Fe I
Fe I | 11
30 | 2984.183
2984.25 | | Na II
Y I | 2
10 | 2994.958
2995.10 | | Ca I
Cr I | 17
15 | | 2969.67 | | Cr II | 66 | 2984.35 | P | Ti II | 28 | 2995.10
2995.26 | | YI | 15
11 | | 2969.934 | | Fe II | 70 | 2984.69 | | Cr II | 27 | 2995.530 | P | Al II | 14 | | 2970.106
2970.35 | | Fe I
Si I | 10,11
1 | 2984.785
2984.82 | | Fe I
Cr I | 29
15 | 2995.546
2995.644 | P | Al II
Ce II | 14
183 | | 2970.384 | | Ti I | 29 | 2984.831 | | Fe II | 8 | 2995.838 | | Fe I | 460 | | 0000 | | D | • | | | | | | | | | | 2970.510
2970.556 | | Fe II
Ti I | 2
94 | 2984.89
2985.02 | P | Fe II
Cr II | 60
56 | 2995.999
2996. 3 86 | | V II
Fe I | 27
148 | | 2970.66 | | Cr II | 57 | 2985.184 | | V II | 218 | 2996.51 | | 0 111 | 10 | | 2970.682 | | Fe II | 69 | 2985.29 | P | Fe II | 69 | 2996.549 | | Co I | 77 | | 2971.112
2971.616 | | Cr I
Fe II | 28
60 | 2985.325
2985.36 | | Cr II
Zr I | 28
22 | 2996.580
2996.63 | | Cr I
Cl II | 28
22 | | 2971.906 | | Cr II | 28 | 2985.43 | | La II | 145 | 2996.70 | | VII | 28 | | 2972.016 | | Fe II | 160 | 2985.477 | | T1 I | 29 | 2996.88 | P | Ti II | 28 | | 2972.17 | | Gd II
V II | 77
97 | 2985.521 | | Gd II | 77 | 2996.94 | | Y I
V I | 9 | | 2 | | | | • | TNDI | NO LIGI | | | | | | |----------------------|--------|-----------------|---------------|----------------------|------|-----------------|----------------------|----------------------|------|-----------------|---------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Typė | Element | Multiplet No. | | 2997.298 | | Fe II | 139 | 3006.82 | | 0 11 | | 3015.67 | | Zr II | 86 | | 2997.309 | | Ca I | 17 | 3006.858 | | Ca I | 17
18 | 3015.686
3015.86 | | Co I
Zr II | 76
127 | | 2997.364 | | Cu I | 5
85 | 3006.86
3006.90 | | N II
V I | 116 | 3015.80 | | Fe I | 198 | | 2997.749
2997.71 | | Fe II
O III | 10 | 3006.95 | P | Fe III | 21 | 3015.98 | | VII | 42 | | 2997.87 | | V I | 116 | 3006.98 | | C1 11 | 53 | 3016.14 | | V II | 26 | | 2997.945 | | V II | 141 | 3007.035 | | V II | 141 | 3016.15 | | A IV | 1 | | 2997.97 | _ | Pt I | 3 | 3007.071 | | Na II | 12
74 | 3016.16 | | V I
Fe I | 58
30 | | 2998.158
2998.163 | P
P | Al II | 14
14 | 3007.08
3007.146 | | O II
Fe I | 7 4
55 | 3016.186
3016.454 | | Mn I | 35 | | 2998.34 | | Zr II | 13 | 3007.2 | | Fe III | 116 | 3016.775 | | V II | 27 | | 2998.49 | | Zr II | 86 | 3007.284 | | Fe I | 11 | 3016.94 | | Hf II | 3 | | 2998.787 | | Cr I
Fe II | -14
60 | 3007.296
3007.32 | | V II
La II | 27
102 | 3017.187
3017.195 | | Ti II.
Ce II | 85
107 | | 2998.855
2998.896 | | Ru II | 5 | 3007.442 | | Na II | 1 | 3017.254 | | Co I | 78 | | 2999.045 | | Gd II | 12 | 3007.487 | | Ti I | | 3017.34 | | Ne II | 8 | | 2999.238 | | V I | 58 | 3007.655 | | Mn I | 35 | 3017.447 | | WI | 9 | | 2999.30 | | Cr II | 33 | 3007.74 | P | O II
Fe I | 74
262 | 3017.548
3017.569 | | Co I
Cr I | 11
27 | | 2999.512
2999.641 | | Fe I
Ca I | 30
17 | 3007.75
3007.802 | 1 | Fe III | 10 | 3017.628 | | Fe I | 9 | | 2999.92 | P | Ti II | 28 | 3007.975 | | Nd II | | 3017.63 | | 0 111 | 10 | | 2999.96 | | Cr II | 42 | 3008.13 | | Zr II
Fe I | 86
9 | 3017.80
3018.08 | | Cr II
Zr II | 95 | | 3000.059 | | Fe II
Hf II | 69
3 | 3008.139
3008.265 | | re 1
Mn I | 9
35 | 3018.08
3018.134 | | Fe I | 199 | | 3000.09
3000.14 | | A II | J | 3008.28 | | 0 11 | 74 | 3018.25 | P | Fe I | 263 | | 3000.45 | | AII | 72 | 3008.322 | | Ti II | 85 | 3018.32 | | Hf I | 2 | | 3000.452 | | Fe I | 56 | 3008.506 | | Fe III | 9 | 3018.352 | | Zn I
Cr I | 5
26 | | 3000.545 | | Co I | 13
147 | 3008.508 | | V 11
V 11 | 141
26 | 3018.496
3018.53 | | Cr I
Zr II | 26
147 | | 3000.59
3000.836 | | Zr II
Fe III | 147
10 | 3008.610
3008.67 | | Cr II | 75 | 3018.744 | | Fe III | 10 | | 3000.863 | | Ca I | 17 | 3008.789 | | Ce II | 122 | 3018.82 | | C1 II | 22 | | 3000.868 | | Ti I | 29 | 3008.79 | | O III | 10 | 3018.821 | | Cr I
La II | 26 | | 3000.890 | | Cr I
Fe I | 28
9 | 3008.996 | | Rh II
Fe I | 4
198 | 3018.95
3018.983 | | Fe I | 30 | | 3000.950
3001.203 | | V II | 9
27 | 3009.098
3009.136 | | Sn I | 1 | 3019.09 | | V II | 86 | | 3001.42 | | YII | 53 | 3009.138 | | Na II | 13 | 3019.143 | | Ni I | 11 | | 3001.589 | | Fe III | 9 | 3009.205 | | Ca I | 17 | 3019.291 | | Fe I | 199 | | 3001.65 | | Ne II | 4 | 3009.366 | | Gd II
Fe I | 25 | 3019.350
3019.819 | | Sc I
Rh II | 10
3 | | 3001.66
3001.754 | P | Fe I
V II | 506
141 | 3009.570
3009.650 | | Gd II | 30
27 | 3019.84 | | Zr II | 6 | | 3001.90 | | v i | 116 | 3009.85 | | Zr II | 64 | 3020.001 | | Fe II | 110 | | 3001.93 | | V II | 43 | 3009.998 | | Fe III | 41 | 3020.45 | | Zr II | 26
9 | | 3002.09 | P | Fe II | 138 | 3010.129 | | Gd II
Fe II | 12
181 | 3020.495
3020.54 | | Fe I
Hf I | 4 | | 3002.197
3002.330 | | Gd II
Fe II | 77
98 | 3010.220
3010.28 | | Zr II | 39 | 3020.643 | | Fe I | 9 | | 3002.442 | | V I | 00 | 3010.42 | P | Ti I | 170 | 3020.65 | | V II | 26 | | 3002.491 | | N1 I | 26 | 3010.76 | | WII | 14 | 3020.673 | | Cr I | 27 | | 3002.65 | | V I | 47 |
3010.838 | | Cu I
Gd II | 3
42 | 3021.074
3021.407 | | Fe I
Fe II | 9
59 | | 3002.650
3002.66 | | Fe II
Pd I | 8
4 | 3010.899
3011.060 | | Fe III | 31 | 3021.558 | | Cr I | 27 | | 3002.710 | | Gd II | 77 | 3011.162 | | Mn I | 35 | 3021.74 | | Pd I | 6 | | 3002.728 | | Ti I | 29 | 3011.24 | | Hf II
Mn I | 6 4
35 | 3021.74
3021.78 | | Y I
V I | 9
75 | | 3002.860
3002.99 | | Gd II
Fe III | 9 | 3011.376
3011.42 | | Cr II | 35
27 | 3021.78 | | Zr II | 39 | | 3002.99 | | A II | J | 3011.482 | | Fe I | 316 | 3021.98 | | W II | 6 | | 3003.031 | | Fe I | 30 | 3011.73 | | Zr I | 22 | 3022.00 | | Fe III | 76 | | 3003.282 | _ | Fe III | 89 | 3012.004 | | Ni I | 41 | 3022.146 | | V II
La II | 86
116 | | 3003.37 | P | Ti II
V II | 28
27 | 3012.01
3012.020 | | Cr II
V II | 87
43 | 3022.26
3022.28 | | Y I | 10 | | 3003.461
3003.583 | | Gd II | 25 | 3012.020 | | Gd II | 29 | 3022.57 | | VII | 26 | | 3003.629 | | N1 I | 26 | 3012.34 | | Cr II | 42 | 3022.736 | | Ce III | 5 | | 3003.73 | | Zr II | 26 | 3012.59 | P | Fe II
Fe III | 69
10 | 3022.749
3022.804 | P | Mn I
Al II | 35
13 | | 3003.924
3004.109 | | Cr II
Fe III | 33
21,41 | 3012.847
3012.90 | | Hf II | 10
4 | 3022.804 | F | Ti II | 13
126 | | 3004.109 | | Fe I | 199 | 3013.030 | | Cr I | 26 | 3022.93 | | C1 II | 57 | | 3004.249 | | Fe II | 69 | 3013.102 | | V II | 26 | 3023.45 | | 0 111 | 4 | | 3004.35 | | 0 III | 10 | 3013.125 | | Fe III | 9 | 3023.50 | | Y II
Fe I | 79
103 | | 3004.39
3004.47 | | C1 II
Cr II | 22
88 | 3013.32
3013.37 | | Zr II
O II | 27
56 | 3023.583
3023.80 | | re I
N II | 103
35 | | 3004.47 | P | Fe I | 105 | 3013.38 | P | Fe II | 138 | 3023.85 | | Fe III | 10 | | 3004.490 | | Fe III | 41 | 3013.592 | | Co I | 10 | 3023.859 | | Fe II | 84 | | 3004.62 | | Fe I | 57 | 3013.66 | | Zr II | 52 | 3023.86 | | Ti II | 126 | | 3004.68 | | La II
V I | 47 | 3013.713 | | Cr I
Fe II | 26
124 | 3023.882
3024.033 | | V II
Fe I | 41
11 | | 3004.824
3005.057 | | V I
Cr I | 47
28 | 3013.802
3014.120 | | Fe I | 458 | 3024.033 | | A III | 4 | | 3005.092 | | Gd II | | 3014.165 | | Nd II | | 3024.098 | P | Al II | 13 | | 3005.26 | | Y I | 9 | 3014.176 | | Fe I | 31 | 3024.114 | P | Al II | 13 | | 3005.302
3005.36 | | Fe I
Zr I | 199
38 | 3014.37
3014.44 | | V I
Zr I | 116
21 | 3024.350
3024.36 | | Cr I
O III | 26
10 | | 3005.50 | | Zr I | 60 | 3014.49 | | A II | 72 | 3024.400 | | Co I | 52 | | 3005.62
3005.766 | | O II
Co I | 77 | 3014.668
3014.760 | | Mn I
Cr I | 35
27 | 3024.51
3024.57 | | W II | 4 | | 3005.760 | | V II | 86 | 3014.760 | | V II | 27 | 3024.681 | | Cr I | 117 | | 3006.0 | | Y II | 54 | 3014.915 | | Cr I | 27 | 3024.72 | | Zr II | 147 | | 3006.04 | | 0 11 | | 3015.194 | | Cr I | 27 | 3024.78 | | Hf II | 47 | | 3006.05 | | Cl II
Fe III | 22
21 | 3015.230
3015.296 | | Fe III
Tm II | 9
8 | 3024.92
3024.981 | P | Fe II
V II | 138
85 | | | | | | | | | U | JUNE 1001 | | | | | 3006.122
3006.24 | | V I | 116 | 3015.364 | | Sc I | 10 | 3025.16 | | Zr II | 86 | | I A | Туре | El ement | Multiplet No. | I A | Туре | El ement | Multiplet No. | I A | Туре | El ement | Multiplet No. | |--|------|-----------------|---------------|--------------------------|------|-----------------|---------------|-----------------------|------|----------------|------------------------| | 3025.40 | P | Cr I | 27 | 3034.95 | | Cb II | | 3044, 567 | | Mn I | 15 | | 30 25, 638 | | Fe I | 198 | 3034.99 | | Cr II | 42 | 3044.843 | | Fe II | 98 | | 30 25 . 68
30 25 . 70 | | V II
Zr I·I | 75
76 | 3035.013 | | Rh II | 4 | 3044.936 | | V I | 17 | | 30 25. 75 | | 0 II | 84 | 3035.14
3035.25 | P | V II
Fe I | 245
506 | 3045.00
3045.006 | | Cl II | 21 | | 3 0 25 , 843 | | Fe I | 9 | 3035.43 | • | 0 111 | 4 | 3045.077 | | Ni I
Fe I | 12
29 | | 30 25. 99 | P | Fe II | 84 | 3035.781 | | Zn I | 5 | 3045.085 | | Ti II | 23 | | 3026.18
3026.373 | | Zr II | 147 | 3035.802 | | Fe III | 30 | 3045.313 | | Fe II | 179 | | 3026.462 | | Co I
Fe I | 77
30 | 3035.98
3036.07 | | Ne II
V II | 17 | 3045.36 | | Y I | 9 | | 00 201 202 | | 16.1 | 30 | 3030.07 | | V 11 | 40 | 3045.53 | | Cr II | 48 | | 30 26 . 47 | | Y II | 44 | 3036.101 | | Cu I | 5 | 3045.58 | | Ne II | 8 | | 30 26 . 647 | | Cr II | 95 | 3036.33 | P | Zr II | 86 | 3045.593 | | Mn I | 34 | | 30 26.75
30 26.776 | P | A II | 120 | 30 36 . 39 | | Zr II | 25 | 3045.593 | | Na II | 11 | | 30 26. 78 1 | P | Al II | 13
13 | 30 36 . 50
30 36 . 59 | | Zr II
Y II | 24
68 | 3045.594
3045.714 | | Fe I
Sc II | 198 | | 3026.85 | | Cr II | 41 | 3036.68 | | WII | 7 | 3045.808 | | Mn I | 37
34 | | 3026.985 | | Fe III | 21 | 3036.784 | | T1 II | 78 | 3045.82 | | Zr I | 36 | | 3027.04 | P | Ne II | 8 | 3036.986 | | Fe II | 181 | 3045.877 | | Fe III | 76 | | 30 27 . 38
30 27 . 46 | r | Fe II
Fe III | 99
10 | 3037.044
3037.26 | | Cr I
Si III | 27
10 | 3046.03
3046.10 | | Hf II
A II | 32 | | | | | 20 | 0001.20 | | 51 111 | 10 | 3040.10 | | K 11 | | | 3027.600 | | VII | 85 | 3037.388 | | Fe I | 9 | 3046.266 | | Mn II | 10 | | 30 27 . 60 2
30 27 . 75 | | Gd II
Y II | 12 | 3037.73 | | Ne II | 8 | 3046.399 | | Fe III | 78 | | 3027.73 | | Pd I | 60
5 | 3037.731
3037.782 | | Ce II
Fe I | 18 1
31 | 3046.452 | | W I
Fe II | 5 | | 3028.04 | | O IV | 5 | 3037.935 | | N1 I | 25 | 3046.675
3046.685 | | Ti II | 179
4 7 | | 3028.042 | | V II | 85 | 3037.98 | | A IV | 2 | 3046.714 | | Fe III | 92 | | 30 28 . 05 | | Zr II | 76 | 3037.98 | | C1 11 | 53 | 3046.819 | | Fe I | 315 | | 30 28 . 125
30 28 . 436 | | Cr II
Cb II | 87
2 | 3038.00 | | V II | 246 | .3046.929 | | Fe I | 198 | | 3028.608 | | Rh II | 1 | 3038.04
3038.52 | | Cr II
Cr II | 154
41 | 3047.035
3047.047 | | Mn I
Fe I | 34
457 | | | | | - | 0000102 | | o. 11 | ** | 00411041 | | | 407 | | 3028.66 | | Ca III | 3 | 3038.520 | | V II | 96 | 3047.119 | | Fe III | 80 | | 30 28 . 82 | | 0 II | 73 | 3038.59 | | Zr II | | 3047.13 | | 0 111 | 4 | | 3028.84
3028.93 | | Ne II
A II | 4
84 | 3038.706
3038.777 | | Ti II
Fe II | 85
84 | 3047.160
3047.201 | | Rh II
Fe I | 4 | | 30 28 . 98 1 | | Gd II | 26 | 3039.064 | | Ge I | 2 | 3047.455 | | Cr I | 382∉
164 | | 3029.041 | | Mn II | 10 | 3039.254 | | F III | 3 | 3047.57 | | Ne II | 8 | | 30 29 . 164 | | Cr I | 26 | 3039.322 | | Fe I | 199 | 3047.60 | P | Fe II | 84 | | 30 29 . 237
30 29 . 297 | | Fe I
N1 I | 56
56 | 3039.51 | | O II
Mn II | 72
10 | 3047.605 | | Fe I | 9 | | 3029.52 | | Zr I | 22 | 3039.551
3039.563 | | Co I | 10
52 | 3047.63
3047.76 | | Cr II
Cr II | 15
15 | | | | | | | | | | 33 2 | | | 20 | | 30 29 . 56 | | V II | 26 | 3039.65 | | Ne II | 17 | 3047.9 | | 0 11 | 82 | | 3029.681
3029.730 | | Fe II
Ti II | 124
85 | 3039.67
3039.74 | P | C II
Cr I | 29
117 | 3048.108 | | Co I
V II | 77 | | 3029.83 | | Sb I | 2 | 3039.746 | r | F III | 3 | 3048.214
3048.28 | | Zr II | 123
1 44 | | 3030.149 | | Fe I | 198 | 3039.76 | | 0 11 | 72 | 3048.42 | | Zr II | 65 | | 3030.214 | | YII | 79 | 30,39.767 | | V II | 153 | 3048.65 | | V II | 67 | | 30 30 . 245 | n | Cr I | 27 | 3039.780 | | Cr I | 26 | 3048.766 | | Ti II | 78 | | 3030.61
3030.757 | P | Fe I
Fe I | 145
459 | 3039.92
3040.34 | | Sc II
Gd II | 47
55 | 3048.864
3048.888 | | Mn I
Co I | 34
11 | | 30 30 . 769 | | Sc I | 10 | 3040.428 | | Fe I | 30 | 3048.891 | | VII | 40 | | | | | | | | | | | | | | | 3030.85 | | Ne II
Zr II | 17
6 | 3040.603 | | Mn I | 34 | 3049.011 | | Fe II | 181 | | 3030.91
3031.007 | | V I | 7 4 | 3040.812
3040.829 | | Co I
Fe II | 50
123 | 3049.027
3049.18 | P | Mn II
Fe II | 21
109 | | 3031.16 | | Hf II | 11 | 3040.846 | | Cr I | 27 | 3049.39 | • | La II | 115 | | 3031.213 | | Fe I | 198 | 3040.92 | | Cr II | 65 | 3049.44 | | CII | 43 | | 30 31. 353 | | Cr I | 27 | 3040.93 | | Si III | 10 | 3049.694 | | WI | 9 | | 3031.486
3031.559 | | Cr I
Ce III | 117
1 | 3041.224
3041.278 | | Mn I
Al II | 34
28 | .3049.883
3050.073 | | Cr I
Al I | 27
7 | | 3031.63 | | Cr II | 87 | 3041.42 | | V II | 40 | 3050.137 | | Cr II | 65 | | 3 0 31. 63 | P | Fe II | 138 | 3041.639 | | Fe I | 56 | 30 50.400 | | V I | 74 | | 20.01 400 | | Fo T | 90 | 9041 74 | | C= 11 | 0.5 | 9050 469 | | Fo III | 10 | | 30 31, 638
30 31, 870 | | Fe I
Ni I | 30
11 | 3041.74
3041.745 | | Cr II
Fe I | 95
30 | 3050.463
3050.496 | | Fe III
Co I | 10
77 | | 30 32.00 | | Zr II | 144 | 3041.86 | | V I | - | 3050.5 | | Y II | 69 | | 3032.08 | | 0 II | 83 | 3041.876 | | WI | 5 | 3050.57 | | Ne II | 48 | | 3032, 187
3032, 44 | | V II
N1 II | 75
3 | 3042.020
3042.27 | | Fe I
V II | 30
40 | 3050.661
3050.735 | | Mn II
V II | 21
66 | | 30 32. 50 | | 0 II | 83 | 3042.481 | | Co I | 10 | 3050.75 | | Cr II | 95 | | 3032.767 | | CP II | | 3042.65 | | Pt I | 5 | 3050.819 | | N1 I | 25 | | 3032.845 | | Gd II | 12 | 3042.666 | | Fe I | 30 | 3050.890 | | V I | 16 | | 3032.85 | | As I | 1 | 3042.733 | | Mn I | 34 | 3050.932 | | Co I | 51 | | 30 32. 927 | | Cr II | 15 | 3042.79 | | Cr II | 47 | 3051.30 | | WII | 6 | | 3033.104 | | Fe I | 146 | 3043.02 | | 0 111 | 4 | 3051.308 | | V II | 228 | | 3033.445 | | Fe II | 181 | 3043.067 | | Fe III | 91 | 3051.924 | | Ce II | 184 | | 30 33. 445 | | V II
A II | 123 | 3043.124 | | V I | 17
21 | 3051.975 | | Ce II
K III | 180 | | 3033,52
30J3,591 | | A II
Mn II | 19
21 | 3043. 132
3043. 143 | | Mn II
Mn I | 21
34 | 3052.07
3052.194 | | K III | 2
15 | | 30 33.821 | | V II | 34 |
3043.31 | P | Fe II | 138 | 3052.229 | | Cr I | 164 | | 3034.05 | | Cr II | 74 | 3043.356 | | Mn I | 34 | 3052.511 | | Gd II | 9 | | 3034.051 | | Gd II | 12 | 3043.439 | | Fe III | 91 | 3052.54 | P | O IV | 5 | | 30 34. 120 | | Sn I | 1 | 3043.54 | | V II | 40 | 3052.78 | P | Fe I | 262 | | 30 34 . 190 | | Cr I | 26 | 3043.555 | | V I | 17 | 3052.929 | | Sc II | 37 | | 3034.32 | | 0 111 | 20 | 3043.770 | | Mn I | 34 | 3053.065 | | Fe I | 146 | | 3034.432 | | Co I | 12 | 3043.851 | | Ti II | 78 | 3053.20 | | A II | 60 | | 3034.48
3034.51 | | Ne II
Fe I | 8
57 | 3043.90
3044.004 | | Cr II
Co I | 48
11 | 3053.27
3053.39 | | Y II
V II | 68
34 | | 3034.51 | | Cr II | 33 | 3044.04 | P | Co I | 78 | 3053.443 | | Fe I | 31,398 | | 30 34. 54 | | F III | 3 | 3044.12 | | Zr II | 26 | 3053.570 | | Gd II | 25 | | 3034.712 | | Fe II | 84 | 3044.16 | | Ne II | 17 | 3053.65 | | Cr II | 64 | | (3034.74
3034.810 | | Si III
Mn II | 10
21 | 3044.24
3044.438 | | Cr II
Fe III | 154 | 3053.65
3053.664 | | V I
Na II | 17
15 | | | | | £.1 | | | | | W. CO. CO. | | | AU | | 4 | | | | | נעמוי | NO LIST | | | | | | |------------------------|------|-----------------|---------------|------------------------|-------|----------------|---------------|---------------------------|------|----------------|-------------------| | I A | Туре | El ement | Multiplet No. | I A | Туре | El emen t | Multiplet No. | I A | Туре | El emen à | Multiplet No. | | 3053.74 | | C1 II | 14 | 3063.25 | | Co I | 50 | 3072,664 | | Co I | 125 | | 3053.74
3053.880 | | Cr I | 26 | 3063.280 | | T1 II | 119 | 3072.68 | | Ne II | 17,48 | | 3053.894 | | V II | 40 | 3063.411 | | Cu I | 4 | 3072.88 | | Hf I | 2 | | 3054.02 | | La II | 115 | 3063.46 | | O IV | 1 | 3072.971
3073.126 | | Ti II
Mn I | 5
15 | | 3054.134 | | Fe III
V II | 10
67 | 3063.502
3063.56 | | Ti II
Ta I | 47
4 | 3073. 244 | | Fe I | 549 | | 3054.24
3054.316 | | N1 I | 25 | 3063.58 | | Zr I | 36 | 3073.25 | | Cr II | 47 | | 3054.362 | | Mn I | 15 | 3063.63 | | Zr II | | 3 073.5 2 0 | | Co I | 51 | | 3054.39 | | Zr II | 51 | 3063.734 | | V I | 16 | 3073.679 | | Cr I | 184 | | 3054.52 | | Hf II | 8 | 3063.814 | | Fe II | | 3073.823 | | V I | 15, 17 | | 3054.69 | | Ne II | 8
7 | 3063.84 | | Cr II | 32 | 3073.982
3074.061 | | Fe I
Rh II | 313
1 | | 3054.694
3054.724 | | Al I
Co I | 7
13 | 3063.93
3063.939 | | N1 II
Fe I | 3
147 | 3074.15 | | 0 111 | 26 | | 3054.82 | | A III | 4 | 3064.302 | | Al I | 7 | 3074.157 | | Fe I | 457 | | 3054.84 | | Zr II | 76 | 3064.370 | | Co I | 13 | 3074.334 | | Na II | 9 | | 3054.89 | | V I | 16 | 3064.372 | | Na II | 6 | 3074.47 | | Cr I | 55 | | 3054.94 | | Eu II | 7 | 3064.530 | | Cb II | 00 | 3074.55
3074.66 | | Zr II
V II | 105
112 | | 3054,949
3055,243 | | Fe I
Ce II | 263
201 | 3064.623
3064.64 | | N1 I
Zr II | 26
25 | 3074.665 | | Al II | 27 | | 3055.263 | | Fe I | 55 | 3064.68 | | Hf II | 31 | 3074.67 | | Cr II | 73 | | 3055.3 | | Y II | 68 | 3064.71 | | Pt I | 2 | 3074.68 | | 0 111 | 26 | | 3055.368 | | Fe II | 181 | 3064.77 | | A III | 4 | 3074.91 | | Cr II | 73 | | 3055.43 | | Hf II | 5 6 | 3065.01 | | 0 111 | 26 | 3075.043
3075.19 | | V II
O III | 228
26 | | 30 55, 44
30 55, 55 | | Cr II
Fe III | 33
10 | 3065.067
3065.106 | | Cr I
Sc II | 184
37 | 3075. 225 | | T1 II | 20
5 | | 3055.585 | | Ce III | 1 | 3065.20 | | Zr II | 5 | 3075.228 | | Fe II | 68 | | 3055.942 | | V II | 123 | 3065.30 | | Pđ I | 3 | 3075. 269 | | V I | 105 | | 3056.157 | | Na II | 1 | 3065.315 | | Fe II | 97 | 3075.32 | | As I | 1 | | 3056, 334
3056, 556 | | V I
Ce III | 17
9 | 3065.61
3066.019 | | V II
Mri I | 112
15 | 3075.336
3075.38 | | Ru II
Sc II | 7
37 | | | | | | | | | | | | | | | 3056.68 | | Cr II | 48 | 3066.02 | | Y II | 68 | 3075.380
3075.422 | | Nd II
Gd II | 56 | | 3056.740
3056.775 | | Ti II
Ce II | 47
121 | 3066. 158
3066. 220 | | Al I
Ti II | ·7
5 | 3075.474 | | V II | 67 | | 3056.802 | | Fe II | 109 | 3066.354 | | Ti II | 5 | 3075.55 | | Zr II | 144 | | 3056.84 | | K III | 2 | 3066.375 | | v i | 17 | 3075.58 | | V II | 22 8 | | 3057.08 | | VII | 95 | 3066.487 | | Fe I | 313 | 3075.721 | | Fe I | 28 | | 3057.155 | | Al I | 7 | 3066.51 | | V Į | 17 | 3075.901
3075.933 | | Zn I
V I | 1
57 | | 3057.214
3057.22 | | Ce III
Zr II | 8
76 | 3066.514
3066.536 | | Ti II
Na II | 47
18 | 3075.95 | | 0 111 | 26 | | 3057.395 | | Ti II | 5 | 3066.69 | P | Fe I | 456 | 3076.016 | | V II | 34 | | 3057.446 | | Fe I | 28 | 3066.80 | | V II | 123 | 3076.455 | | Fe II | 181 | | 3057.575 | | Ce III | 4 | 3066.92 | | A II | | 3076.58 | | Cr I | 55 | | 3057.638 | | N1 I | 26 | 3067.104 | | V II | 34 | 3076.864 | | CP II | 2 | | 3057.80 | P | Fe I | 29 | 3067. 123 | | Fe I | 56 | 3076.925
3077.077 | | Gd II
Gd II | 10
25 | | 3057.86
3058.00 | | Cr II
Cl II | 65
14 | 3067.132
3067.18 | | Ge I
Cr II | 5
15 | 3077.14 | | Y II | 52 | | 3058.090 | | Ti II | 47 | 3067. 22 | P | Cr I | 55 | 3077.168 | | Fe II | 108 | | 3058.119 | | Gd II | 57 | 3067.23 | P | Cr II | 15 | 3077.24 | | Cr II | 103 | | 3058.17 | | Cr I | 164 | 3067.244 | | Fe I | 28 | 3077.24
3077.358 | | Ta I
Eu II | 1
3 | | 3058.38 | | Cr II | 4 8 | 3067.41 | | Hf I | 4 | | | | | | 3058.66 | | Os I | 1 | 3067.712 | | B1 I | 1 | 3077.40
3077.50 | | A IV | 1 | | 3058.68 | | 0 V | 6 | 3067.952 | _ | Fe I | 315a | 3077.59
3077.79 | | Lu II
Cr II | 4
103 | | 3059.047
3059.064 | | Al I
Min II | 7
21 | 3068
3068.02 | P | O VI
Zr II | 2
5 | 3077.831 | | Cr I | 184 | | 3059.086 | | Fe I | 9 | 3068.06 | | 0 11 | 26 | 3078.014 | | Fe I | 29 | | 3059.16 | | Ne II | 17 | 3068.175 | | Fe I | 55 | 3078.15 | | A III | 4 | | 3059.24 | | CII | 47 | 3068.32 | | Zr II | | 3078.315
3078.436 | | Na II
Fe I | 2,8 | | 3059.30
3059.41 | | 0 111 | 4 | 3068.643 | | Gd II
O III | 12 | 3078.44 | P | Fe II | 1 46
97 | | 3059.521 | | Cr II
Cr II | 15
15 | 3068.68
3068.757 | | Fe II | 26
122 | 3078.64 | | Y II | 78 | | 3059.741 | | m4 *** | | 80.60 808 | | Îr I | 6 | 3078.645 | | Ti II | 5 | | 3059.741 | | Ti II
Le II | 5,47
147 | 3068.897
3068.927 | | Fe I | 53 | 3078.698 | | Fe II | 181 | | 3060.023 | | Fe II | 109 | 3069.26 | | YII | 43 | 3078.948 | | V II | 66 | | 3060.048 | | Co I | 77 | 3069.335 | | Fe III | 1 | 3079.34 | | Cr II | 102 | | 3060.11 | | Zr II | 6 | 3069.645 | | V I | 15 | 3079.356 | | Fe II | 122 | | 3060.162 | | Fe III | 92 | 3070.072 | | Fe III | 30 | 3079.394
3079.627 | | Co I
Man I | 10,49
15 | | 3060.252
3060.460 | | Ru II
V I | 6
17 | 3070.12
3070.266 | | V II
Mn I | 228
15 | 3079.75 | | V II | 113 | | 3060.531 | | Sc II | 37 | 3070.591 | | Fe II | 83 | 3079.84 | P | Fe I | 102 | | 3060.545 | | Fe I | 457 | 3070.692 | | Fe II | 68 | 3080.146 | | V I | 15 | | 3060.63 | | Cr I | 164 | 3071.03 | | Cr II | 41 | 3080.333 | | V I | 57 | | 3060.93 | | V I | 15 | 3071.08 | | Ne II | 17 | 3080,405 | | Fe II | 108 | | 3060.94 | | A II | | 3071.141 | | Fe II | 181 | 3080.64
3080.72 | | Hf II
Cr I | 63
184 | | 3060.984 | | Fe I | 55 | 3071. 238 | | Fe III | 1 | 3080.755 | | N1 I | 26 | | 3061.14
3061.33 | P | Cr II
Zr II | 103
6 | 3071.242
3071.270 | | Ti II
Fe II | 47 | 3080.84 | | Hf I | 4 | | 3061.59 | | Cr II | 41 | 3071.35 | | C1 II | 14 | 3081.01 | | V II | 112 | | 3061.652 | | Cr I | 55 | 3071.58 | | Cr II | 47 | 3081.254 | | V II | 66 | | 3061.822
3061.983 | | Co I
Co I | 11
52 | 3071.583
3071.653 | | Ba I
Fe II | 4
123 | 308 1. 30
308 1. 330 | | V II
Mn I | 164
15 | | | | | | | | | | | | | | | 3062, 119
3062, 178 | | Mn I
V II | 15
113 | 3071.66
3071.69 | P | O IV
Cr I | 1
55 | 3081.42
3081.46 | | La II
O II | 115 | | 3062. 178 | | Co I | 113
12 | 3071.09
3071.77 | | √ II | 250 | 3081.575 | | Ti II | 119 | | 3062. 201 | | Rh II | 4 | 3071.957 | | Co I | 12 | 3081.585 | | Rh II | 5 | | 3062, 234 | | Fe II | 108 | 3072.062 | | Zn I | 5 | 3081.600 | _ | Y II | 50 | | 3062.702 | | V II | 34 | 3072. 107 | | Ti II | 5 | 3081.83
3081.993 | P | Fe I
Gd II | 53
12 | | 3062.872
3063.010 | | Fe I
Ce II | 456 | 3072.341
3072.47 | | Co I
Cr II | 11
32 118 | 3082.010 | | V I | 105 | | OC CO. O IN | | AR II | 185 | JU 1 6. 41 | | V. 11 | 32, 116 | | | - | | LINDING DISI | | | | | | | | | | | | • | |-----------------------------|------|----------------|------------------|----------------------|------|------------------|---------------|-----------------------------|------|-----------------|---------------| | I A | Туре | El ement | Multiplet No. | I A | Туре | El ement | Multiplet No. | I A | Type | Element | Multiplet No. | | 3082.159 | | Al I | 3 | 3092.915 | | Nd II | | 3101.557 | | Mn I | | | 3082.16 | | YII | 68 | 3092.997 | | Mg I | . 5 | 3101.77 | | Ti I | 181 | | 3082.304 | | Ce II | 105 | 3093.108 | | V II | 1 | 3101.879 | | Ni I | 40 | | 3082.524 | | V II | 39 | 3093.16 | P | V II | 39 | 3101.911 | | Gd II | 10 | | 3082, 56
3082, 614 | | Sc II
Co I | 36
10 | 3093, 24
3093, 41 | | V I
A II | 15
84 | 3 10 2. 29 5
3 10 2. 36 | | V II
Ca I | 1
16 | | 3082.844 | | Co I | 73 | 3093.423 | | Si III | 1 | 3102.405 | | Co I | 49 | | 3082.99 | | AII | 120 | 3093.48 | | Cr II | 125 | 3102.517 | | Ti I | 181 | | 3083.024 | | Fe II | 97 | 3093.481 | | Rh II | 4 | 3102.55 | P | Fe III | 29 | | 3083.07 | P | Sc II | 37 | 3093.53 | P | Fe I | 102 | 3102.551 | | Gd II | 76 | | 3083. 152 | | Fe I | 197 | 3093.613 | | Si III | 1 | 3102.58 | | Cr II | 116 | | 3083. 208 | | V II | 112 | 3093.76 | | Y II | 78 | 3102.63 | | A II | 110 | | 3083.350 | | Gd II | 10 | 3093.792 | | V I | 57 | 3102.64 | P | Fe I | 29 | | 3083.539 | | V I | 57 |
3093.806 | | Fe I | 55 | 3102.71 | | Fe I | | | 3083.62 | | Cr II | 47 | 3093.846 | | Gd II | 10 | 3102.975 | | Ti II | 58 | | 3083.65
3083.670 | | O III
Ce II | 26
237 | 3093.888
3093.97 | | Fe I
Cr II | 261
47 | 3 10 3 . 3
3 10 3 . 37 7 | | Y II
Ce II | 78
151 | | 3083.68 | P | Fe III | 39 | 3093.989 | | Cu I | 3 | 3103.48 | | Cr II | 71 | | 3083.742 | | Fe I | 28 | 3094.08 | P | Fe I | 165 | 3103.60 | | V I | 56 | | 3084.007 | | Gd II | | 3094.08 | | Ne II | 24 | 3103.735 | | Co I | 73 | | 3084.09 | | Fe III | 40 | 3094. 156 | | Fe III | 78 | 3103.804 | | Ti II | 90 | | 3084.46 | | Cr II | 71 | 3094. 172 | | Cb II | 1 | 3103.983 | | Co I | 48 | | 3084.59 | | Cr I | 184 | 3094. 196 | | V II | 39 | 3103.994 | | V I | 56 | | 3084,63 | | 0 111 | 26 | 3094.555 | | Ru II | 3 | 3104.29 | | Cr II | 102 | | 3084.819 | | Ti I | 93 | 3094.692 | | V I | 56 | 3104.38 | | A II | 118 | | 3085.05
3085.089 | | A II
Ce III | 4 | 3094.79
3094.870 | | Zr I
Fe I | 36
315a | 3 104. 396
3 104. 46 | | Na II
Cl III | 17
3 | | 3085.34 | | Zr I | 20 | 3094.94 | | Cr II | 47,86 | 3104.58 | | La II | 17 | | 3085.36 | | Cr II | 47 | 3094.98 | | A II | 118 | 3104.593 | | Ti II | 90 | | 3085.47 | | V II | 34 | 3095.07 | | Zr II | 5 | 3104.70 | | Cr I | 163 | | 20) O.E. 601 | | Gd II | 10 | 3095. 22 | | Cr II | 86 | 9104 719 | | We II | 6 | | 3085.621
3086.210 | | V II | 66 | 3095. 270 | | Fe I | 314 | 3104.713
3104.805 | | Mg II
Mg II | 6 | | 3086.225 | | S1 III | 1 | 3095.716 | | Co I | 49 | 3104.82 | | YII | 59 | | 3086.311 | | Fe III | _ | 3095.81 | | 0 111 | 26 | 3104.906 | | V II | 39 | | 3086.393 | | Co I | 50 | 3095.82 | | Zr I | 36 | 3105.084 | | Ti II | 67 | | 3086.429 | | S1 III | , 1 | 3095.859 | | Cr I | | 3105. 166 | | Fe II | 82, 122 | | 3086,44 | | Zr II | 24 | 3095.88 | | Y II
V I | 11 | 3105.220 | | Ti I
Ni I | 181 | | 3086.507
3086.620 | | V II
Si III | 39
1 | 3095.902
3096.11 | | Cr II | 57
126 | 3105.469
3105.548 | | Fe II | 12
82 | | 3086.777 | | Co I | 11 | 3096. 296 | | Fe II | 97 | 3105.57 | | Cr I | 163 | | | | | | | | | | | | | ~ | | 3086.83
3086.858 | | Co I
Y II | 76
4 2 | 3096.402
3096.424 | | Co I
Ti II | 52
77 | 3105.929
3105.973 | | Ce I
V II | 2)
140 | | 3086.880 | | Fe III | 81 | 3096.531 | | Cr I | • • | 3106.11 | | VI | 56 | | 3087.02 | | Al I | 19 | 3096.72 | | C1 11 | 31 | 3106. 234 | | Ti II | 67 | | 3087.065 | | V I | 57 | 3096.740 | | Rh II | 4 | 3106.542 | | Fe I | 196 | | 3087.07 | | Ni II | 7 | 3096.77 | P | Sc II | 6 | 3106.559 | | Fe II | 68 | | 3087.659
3087.806 | | Fe III
Co I | 77
77 | 3096.786
3096.86 | | S1 III
Fe III | 1
65 | 3106.58
3106.806 | | Zr II
Ti I | 63
92 | | 3087.90 | | Cr II | 102 | 3096.902 | | Mg I | 5 | 3106.829 | | V II | 139 | | 3088.027 | | Ti II | 5 | 3097.063 | | Mn I | | 3106.974 | | Ce III | 4 | | 30 88.04 | | 0 111 | 26 | 3097. 118 | | Ni I | 11 | 3107.044 | | Co I | 49 | | 3088.114 | | VI | 56 | 3097.15 | | Ne II | 44 | 3107.142 | | V I | 57 | | 3088.23 | | Ne II | 24 | 3097. 186 | | Ti II | 67 | 3107.387 | | Sc II | 6 | | 3088.24 | | A II | 119 | 3097.415 | | Fe II | 96 | 3107.388 | | Ca I | 16 | | 3088.28 | | Zr II | 38 | 3097.45 | | Eu II | 6 | 3107.468 | | Ti I | 181 | | 3088.523 | | Al II | 20
05 | 3097.46 | P | S IV | 1 | 3107.529 | | Sc II
Co I | 33 | | 3089.00
3089.130 | | Zr II
V I | 25
37 | 3097.49
3097.626 | r | Fe I
Ti II | 165
77 | 3107.540
3107.58 | | Cr II | 125
125 | | 3089.204 | | Gd II | 5 4 | 3098.16 | | Cr II | 86 | 3107.586 | | Ru II | 3 | | 3 089.388 | | Fe II | 158 | 3098.191 | | Fe I | 313 | 3107.714 | | N1 I | 12 | | 3089.401 | | Ti II | 90 | 3098. 194 | | Co I | 10 | 3107.774 | | Mn I | 38 | | 3089.596 | | Co I | 10 | 3098.476 | | Nd II | 20 | 3107.950 | | Fe III | 29 | | 3089.633 | | V II | 112 | 3098.597 | | Tm II | 8 | 3108.230 | | Gd II | 54 | | 3089.649 | | Fe III | 40 | 3098.644 | | Gd II | 11 | 3108.36 | | Zr I | 38 | | 3089.75 | | Cr II | 195 | 3098.88 | | Cr II | 86 | 3108.360 | | Gd II | 93 | | 3089.954
3090.051 | | Gd II
Ti II | 93
119 | 3098.899
3098.93 | P | Gd II
Fe III | 10
51 | 3108.46
3108.511 | | La II
Se II | 16
36 | | 3090.031 | | Ti I | 93 | 3099.05 | r | Fe III | 65 | 3108.635 | | Man I | 38 | | 3090.209 | | Fe I | 313 | 3099.115 | | Ni I | 13 | 3108.66 | | Cr II | 55 | | 3090.251 | | Co I | 77 | 3099.180 | | CP II | 2 | 3108.704 | | V II | 39 | | 3090.40 | | v i | 15 | 3099.22 | | Zr II | 5 | 3108.78 | P | Fe III | 29 | | 3090.44 | | Zr I | 5 4 | 3099.667 | | Co I | 75 | 3108.82 | • | A II | 18 | | 3090.772 | | Fe III | 20 | 3099.898 | | Fe I | 28 | 3108.85 | | Fe III | 12 | | 3090.94 | | Cr II | 126 | 3099.968 | | Fe I | 28 | 3108.927 | | Ti II | 77 | | 3091.076 | | Mg I | 5 | 3099.97 | | A II | 00 | 3109.05 | | Fe I | 165 | | 3091.30
3091.437 | | Zr II
V I | 38
15 | 3100.304
3100.31 | P | Fe I
Fe III | 28
51 | 3109.11
3109.3 | | Hf II
Y II | 10
57 | | 3091.437 | | VI | 15 | 3100.31 | P | Fe III | 29 | 3109.32 | | Fe III | 8 | | 3091.578 | | Fe I | 28 | 3100.504 | - | Gd II | 12 | 3109.336 | | Cr I | 163 | | 309 1. 70 | | Y I | | 3100.666 | | Fe I | 28 | 3109.375 | | A II | 186 | | 3092.058 | | Gd II | 93 | 3100.666 | | Ti I | 92,93 | 3109.506 | | Co I | 50 | | 3092.22 | | C1 11 | 14 | 3100.838 | | Fe I | 196a | 3109.59 | | Fe III | 1 | | 3092.26 | | Hf II | 30 | 3100.938 | | V II | 39 | 3109.75 | | A II | | | 3092.519 | | Sc II | 36 | 3101.003 | | Fe I | 313 | 3109.92 | P | Ti II | 58
100 | | 3092.716 | | Al I
V I | 3 | 3101.185
3101.39 | | Gd II
Hf II | 93
12 | 3110.021
3110.052 | | Co I
Fe III | 109
39 | | 30 92.72
3092.729 | | Na II | 1 | 3101.39
3101.407 | | Gd II | 76 | 3110.032 | | V II | 139 | | 3092.785 | | Fe I | 29 | 3101.52 | P | Ti II | 58 | 3110.095 | | Ti II | 77 | | 200.0 040 | | A3 T | • | 9101 806 | | T4 T | 101 | 9110 278 | | Co II | 159 | I A Multiplet No. Type Element 1 A Type Element Multiplet No. I A Type Element | 1 A | туре | El emen t | Multiplet No. | I A | Type | r.i ement | | | •• | | • | | |----------------------|------|-----------------|-------------------|------------------------------|----------|-----------------|------------|-----------------------|----|-----------------|-----------------|--| | 3110.52 | | Zr II | 105 | 3119.60 | | As I | 1 | 3128.640 | | Ti II | 121 | | | 3110.620 | | Ti II | 67 | 3119.66 | | Ca III | 4 | 3128.686 | | V II
Cr II | 83
5 | | | 3110.65 | | Y 11
V 11 | 50,78
1 | 3119.660
3119.706 | | Fe II
Cr I | 183 | 3128.699
3128.789 | | YII | 51 | | | 3110.708
3110.821 | | Co I | 11 | 3119.725 | | Ti I | 137 | 3128.79 | | Zr II | 38 | | | 3110.85 | | Fe III | 29 | 3119.800 | | Ti II | 67 | 3128.901 | | Fe I | 54 | | | 3110.860 | | Cr I | 163 | 3119.82 | | C1 11 | 20 | 3129.013 | | Fe II | 96 | | | 3110.87 | | Hf II | 46 | 3119.837 | | Rh II
Gd II | 8
11 | 3129.04
3129.075 | | Fe III
Ti I | 8
192 | | | 3110.87
3111.15 | | Zr II
Zr II | 5
24 | 3119.941
3120.02 3 | | Fe II | 96 | 3129.16 | | Zr II | 23 | | | 0111.10 | | 2. 11 | ~* | 0100.010 | | | | | | | | | | 3111.283 | | T1 I | 181 | 3120.03 | P | Fe I | 161 | 3129.18 | P | Fe I | 161 | | | 3111.339 | | Co I | 73 | 3120.03 | | Fe III
Co I | 29
74 | 3129.314
3129.334 | | Ni I
Fe I | 12
52 | | | 3111.609
3111.686 | | Fe III
Fe I | 8
260 | 3120.10
3120.181 | | Gd II | 76 | 3129.368 | | Na II | 2 | | | 3111.95 | | Cr II | 55 | 3120.24 | | Fe III | 1 | 3129.44 | | 0 11 | 14 | | | 3112.05 | | Y II | 4 | 3120.371 | | Cr II | 5 | 3129.481 | | Co I | 74 | | | 3112.050 | | Ti II | 67 | 3120.435 | D | Fe I | 194
50 | 3129.696
3129.76 | | Gd II
Zr II | 9 3
5 | | | 3112.079
3112.125 | | Fe I
Mo I | 455
2 | 3120.72
3120.726 | P | Zr II
V II | 138 | 3129.933 | | YII | 51 | | | 3112.202 | | Ce II | 138 | 3120.74 | | Zr I | 37 | 3129.955 | | Gd II | 76 | | | | | | | | | | | 0.100 0.5 | | 7- T | 37 | | | 3112.482 | | Ti I | 92 | 3120.84
3121.05 | | Fe III
Cr II | 29
72 | 3130.05
3130.175 | | Zr I
Ti I | 180 | | | 3112.63
3112.81 | P | La II
Cr II | 156
125 | 3121.08 | | Fe III | . ~ | 3130, 262 | | V II | 1 | | | 3112.925 | • | V I | 56 | 3121. 138 | | V II | 1 | 3130.416 | | Be II | 1 | | | 3113.172 | | Gd II | 93 | 3121.415 | | Co I | 9 | 3130,561 | | Fe II | 66 | | | 3113, 31 | P | Fe I | 161 | 3121.515 | | F III
Ce III | 1
2 | 3130.73
3130.780 | | Eu II
Cb II | 1 | | | 3113.473
3113.50 | | Co I
Zr I | 48
37 | 3121.548
3121.566 | | Co I | 11 | 3130.804 | | Ti I | - | | | 3113.560 | | V II | 174 | 3121.599 | | T1 II | 4 | 3130.804 | | T1 II | 4 | | | 3113, 579 | | F III | 1 | 3121.62 | | C1 II | 20 | 3130.812 | | Gd II | 76 | | | 3113, 59 | | Cr 11 | 186 | 3121.71 | | 0 111 | 12 | 3131.064 | | Be II | 1 | | | 3113.59 | P | Fe I | 165 | 3121.71 | | V I | 56 | 3131. 11 | | Zr I | 37 | | | 3113.71 | • | 0 11 | 14 | 3121.76 | | Fe I | 102 | 3131.211 | | Cr I | 183 | | | 3114.05 | | Pd I | 4 | 3121.760 | | Gd II | 76 | 3131. 257 | | Tm II
Cr II | 53,55 | | | 3114.092 | | Ti I | 181
49 | 3121.84
3121.97 | | Cr II
Cr II | 72
55 | 3131.54
3131.719 | | Fe II | 107 | | | 3114.118
3114.124 | | Co I
N1 I | 49
24 | 3122.065 | | Ti II | 58 | 3131.81 | | Hf I | 3 | | | 3114. 295 | | Fe II | 82 | 3122, 542 | | Sc II | 46 | 3131.829 | | Co I | 48 | | | 3114.45 | | Y II | 49,58 | 3122.596 | | Cr II | 54
81 | 3131.845 | | Hg I
Cr II | 2
5 | | | 3114.680 | | Fe II | 82 | 3122.61 | | Zr II | 51 | 3132.058 | | 01 11 | · · | | | 3115.088 | | II tT | 58 | 3122.62 | | 0 11 | 14 | 3132.06 | | Zr I | 37 | | | 3115.16 | | V II | 111 | 3122.665 | | Fe I | 314 | 3 132. 12 | P | Cr II | 125 | | | 3115. 172 | | Nd II | E 4 | 3122.782 | | Au
I
V II | 1
173 | 3132. 218
3132. 22 | | Co I
Ne II | 7
13 | | | 3115.28
3115.352 | | Cr II
Fe II | 54 | 3122, 887
3122, 954 | | V II
Sc II | 173
39 | 3132.514 | | Fe I | 578 | | | 3115, 352 | | Nn I | 38 | 3123.074 | | Ti I | 67 | 3132.591 | | Mo I | 3 | | | 3115.492 | | Fe II | 96 | 3123. 18 | | Fe III | | 3132.793 | | V II | 122 | | | 3115.51 | | Cr I | 163 | 3123. 29 | | Ca II
Fe I | 10
164 | 3132.820
3132.86 | | Cr I
O III | 183
12 | | | 3115.65
3115.669 | | Cr II
F III | 46
1 | 3123.353
3123.715 | | Fe II | 70-2 | 3133.048 | | Fe II | 82 | | | | | | | | | | ~~ | 8188 004 | | Gd II | 9 | | | 3115.73 | | 0 111 | 12 | 3123.72 | | Cl II | 20
19.1 | 3133.094
3133.096 | | Sc II | 39 | | | 3115.73
3116.02 | | Zr II
V II | 75
139 | 3123.769
3123.989 | | Ti I
Gd II | 181
11 | 3133.329 | | V II | 1 | | | 3116.02 | | V II | 139 | 3124.02 | | 0 11 | 14 | 3133.49 | | Zr II | 63 | | | 3116, 141 | | Nd II | | 3124.08 | | Fe I | 165 | 3133.603 | | Nd II
Gd II | 76 | | | 3116, 250 | Б | Fe I | 165
261 | 3124, 250
3124, 762 | | Gd II
F III | 10
1 | 3133.852
3133.886 | | Tm II | 76
4 | | | 3116.39
3116.590 | P | Fe I
Fe II | 261
82 | 3124.762 | | Ge I | i | 3133.96 | P | Fe I | 161 | | | 3116.633 | | Fe I | 28 | 3124.978 | | Cr II | 5 | 3134.08 | P | Fe I | 160 | | | 3116.714 | | Ni I | 95 | 3125.01 | | V II | 84 | 3134. 108 | | N1 I | `25 | | | 2116 76 | | Cr II | 126 | 3125,02 | | Cr II | 70 | 3134.111 | | Fe I | 28 | | | 3116.76
3116.78 | | V II | 237 | 3125.02 | P | Fe I | 53 | 3134.15 | P | Fe I | 29 | | | 3116.95 | | Hf II | 33 | 3125.15 | | Ca II | 10 | 3134.17 | P | Fe II | 121 | | | 3117.28 | | Cr II | 46 | 3125.21 | | Zr II
V II | 24
1 | 3134.208
3134.32 | | F III
O II | 1
14 | | | 3117.455
3117.505 | | Ti I
Fe II | 92
22 6 | 3125.282
3125.46 | | Cr II | 55 | 3134.33 | | Cr II | 94 | | | 3117.505 | | Fe I | 29 | 3125,553 | | Ti I | 192 | 3134.654 | | Ti I | 91 | | | 3117.656 | | Ca I | 16 | 3125.653 | | Fe I | 28,160 | 3134.72 | | Hf II | 5
15 | | | 3117.669 | | Ti II | 67 | 3125.656 | | Ti I | 192
3 | 3134.819
3134.82 | | Mn II
O II | 15
14 | | | 3117.75 | | S IV | 1 | 3125.668 | | Hg I | J | 2104.05 | | | -• | | | 3117.899 | | Ti I | 92 | 3125.68 | P | Fe I | 194 | 3134.897 | | Nd II | • | | | 3117.974 | | Gd II | 76 | 3125.79 | | Cr II | 186 | 3134.90 | | A IV
V II | 1
122 | | | 3118.02 | | Ne II
Ti I | 16
181 | 3125.92
3126.02 | | Zr II
Sc II | 5
39 | 3134.928
3135.034 | | Gd II | 122 | | | 3118.130
3118.14 | | Cr II | 181
55 | 3126.02 | | Y II | 78 | 3135.069 | | Ti I | 180 | | | 3118.249 | | Co T | 11 | 3126.175 | | Fe I | | 3135.17 | | Y II | 11 | | | 3118.376 | ~ | VII | 1 | 3126.215 | | V II | 1 | 3135.35
3135.360 | | Cr II
Fe II | 124
82 | | | 3118.56
3118.600 | P | Ni I
Gd II | 94
93 | 3126. 25
3126. 27 | | Si III
Hf II | 11
7 | 3135.360
3135.483 | | re II
Na II | 82
3 | | | 3118.600
3118.636 | | Co I | 93
12 | 3126.27
3126.79 | | V II | 122 | 3135.507 | | Mn II | 15 | | | | | | | | _ | | | | | C- ** | 0.4 | | | 3118.652 | 70 | Cr II | 5 | 3126.84 | P | Fe I
Co I | 260
26 | 3135.74
3135.80 | | Cr II
Fe III | 94
77 | | | 3118.74
3118.75 | P | Fe II
Fe III | 121
51 | 3127.252
3127.526 | | Co I | 20 | 3135.80
3135.82 | | Ne II | 3 | | | 3118.73 | | Ti II | 27 | 3127.530 | | Ce II | 150 | 3135.863 | | Fe I | 194 | | | 3119.04 | P | Fe I | 315a | 3127.684 | | Ti I | 180 | 3135.875 | | Al II | . 19 | | | 3119.08 | | Gd II
Cr I | 10
163 | 3127.883 | | Ti II | 121
30 | 3135.91
3136.00 | | Cr I
8 III | 183
13 | | | 3119.246
3119.32 | | Cr I
V II | 163
110 | 3128.286
3128.288 | | Sc II
V II | 39
84 | 3136.00
3136.003 | | S III
Ca I | 13
15 | | | 3119.32
3119.336 | | Gd II | 10 | 3128.560 | | Gd II | 76 | 3136.028 | | Ti I | 91 | | | | | | | | | | | | | | | | Multiplet No. | 1 A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------------------------|------|-----------------|---------------|-------------------------------------|------|-----------------|-----------------|----------------------|--------|----------------|---------------| | 3136.17 | | Fe I | | 3144.488 | | Fe I | 161 | 3154.195 | | M4 ** | 40 : | | 3136.315 | | Mn II | 15 | 3144.68 | | 0 V | 2 | 3154.201 | | Ti II
Fe II | 10
66 | | 3136.43 | | Fe III | 39 | 3144.700 | | V II | 122 | 3154.387 | | F III | 4 | | 3136.465
3136.503 | | Mo II
V II | 2 | 3144.730 | _ | Ti II | 111 | 3154.41 | P | Fe I | 100 | | 3136.55 | | A II | 122 | 3144.74
3144.751 | P | Ti II
Fe II | 10
82 | 3154.510
3154.585 | | Fe I
Ni I | 161 | | 3136.680 | | Cr II | 5 | 3144.92 | P | Fe I | 195 | 3154.66 | P | Cr II | 78
54 | | 3136.726 | | Co I | 8 | 3145.00 | | Gd II | 10 | 3154.678 | | Co I | 108 | | 3136.77
3136.95 | | Ti II
Zr I | 27
54 | 3145.022
3145.057 | | Co I
Fe I | 50 | 3154.794 | | Co I | 73 | | 0200100 | | . . | 04 | 9140.091 | | re 1 | 455 | 3154.80 | | V II | 249 | | 3136.999 | | Co I | 48 | 3145.10 | | Cr II | 5 | 3154.82 | | Ne II | 14 | | 3137.3 28
3137.35 2 | | Co I
Ti I | 10
91 | 3145.121
3145.283 | | Ni I | 7 | 3155.12 | P | Fe I | 161 | | 3137.454 | | Co I | 108 | 3145.263
3145.32 | | Ce II
Hf II | 120
2 | 3155.149
3155.293 | | Cr I
Fe I | 115
193 | | 3137.55 | | Cr 11 | 54 | 3145.337 | | V II | ī | 3155.409 | | V II | 51 | | 3137.66 | | A II | 71 | 3145.402 | | Ti II | 10,111 | 3155.50 | P | T1 II | 27 | | 3137.755
3137.940 | | Co I
Gd II | 49
54 | 3145.405
3145.46 | P | Cb II
Fe I | 5 | 3155.63 | P | Ti II | 37 | | 3138.05 | | V II | 205 | 3145.515 | r | Ti I | 160
91 | 3155.670
3155.68 | | Ti II
Zr II | 10
63 | | 3138.094 | | Gd II | 10 | 3145.516 | | Gd II | 76 | 3155.704 | | Ce II | 217 | | 3138.203 | | Cr I | 183 | 0145 506 | | F III | 4 | | _ | | | | 3138.207 | | Fe II | 227 | 3145.536
3145.719 | | Ni I | 1
11 | 3155.80
3155.91 | P
P | Fe I
Ti II | 192a
121 | | 3138.40 | P | Fe I | 53 | 3145.77 | | Cr II | 85 | 3155.95 | • | Zr II | 49 | | 3138.44 | | O II | 14 | 3145.971 | | V II | 1 | 3155.950 | | Fe II | 67 | | 3138.46
3138.66 | | 8c II
Zr II | 39
5 | 3146.226
3146.407 | | V II
Ce II | 138
70 | 3156.11 | | F III
V I | 4 | | 3139.02 | | AII | 47 | 3146.47 | | A II | 49 | 3156.222
3156.248 | | V I
Os I | 4 | | 3139.10 | P | Fe I | 161 | 3146.475 | | Fe I | 160 | 3156.275 | | Fe I | 578 | | 3139.34
3139.39 | | Cl III
Pt I | 3
2 | 3146.748 | | Fe II
V II | 67 | 3156.464 | | Fe I | 454 | | - 100 • 00 | | 1 | ~ | 3146.818 | | • 11 | 138 | 3156.532 | | Gd II | 11 | | 3139.60 | P | Fe I | 161 | 3146.878 | | Gd II | 76 | 3156.59 | | Pt I | 2 | | 3139.661
3139.67 | | Fe I
Hf II | 155 | 3146.91 | | Sc II | 39 | 3156.68 | | Hf I | 5 | | 3139.729 | | Sc II | 6
39 | 3146.962
3147.05 | | F III
Ce III | 1
7 | 3157.00 | | Zr II
Fe I | 23 | | 3139.733 | | V II | 122 | 3147.060 | | Co I | 10 | 3157.040
3157.15 | P | Fe I | 160
144 | | 3139.77 | | Ò II | 14 | 3147 - 19 | P | Cr II | 54 | 3157.344 | | Tm II | 8 | | 3139.79
3139.87 | | Zr I
Ti I | 56
180 | 3147.227 | | Cr II
Si III | 5 | 3157.397 | P | Ti II | 4 | | 3139.908 | | Fe I | 100 | 3147.38
3147.792 | | Fe I | 11
455 | 3157.44
3157.52 | , | Sc II
Cr II | 32
93 | | 3139.91 | | Cr II | 54 | 3147.84 | | Cr II | 93 | 3157.82 | | Zr I | 36,55 | | 3139.947 | | Co I | 9 | 3147.86 | | C1 II | 10 | 0157 00 | | Fe I | 104 | | 3139.98 | P | Co I | 73 | 3147.931 | | Rh II | 8 | 3157.88
3157.900 | | V II | 164
50 | | 3140.04 | P | Ti II | 27 | 3148.033 | | Ti II | 4 | 3157.992 | | .Fe I | 159 | | 3140.08
3140.21 | | Fe III
Cr II | 94 | 3148.179 | | Mn I | 19 | 3158.03 | | Cr II | 70 | | 3140.272 | | Rh II | 124
8 | 3148.24
3148.420 | | A II
Fe I | 194 | 3158.156
3158.21 | P | Mo I
Fe I | 2
160 | | 3140.385 | | Fe I | 578 | 3148.445 | | Cr I | 115 | 3158.293 | - | Co I | 12 | | 3140.67 | | Cr II | 124 | 3148.46 | P | Fe I | 161 | 3158.32 | P | Fe II | 95 | | 3140.692
3140.715 | | Fe II
Co I | 227
75 | 3148.738
3148.81 | | V II
Zr I | 249
37 | 3158.772
3158.869 | | Co I
Ca II | 10
4 | | | | | | | | | • | 22001000 | | vu 11 | • | | 3140.77
3140.782 | | Hf II
Ca I | 31
15 | 3149.12 | | Cr II | 84 | 3158.99 | | Fe I | 452 | | 3141.07 | | V II | 205 | 3149.267
3149.310 | | Na II
Co I | 4
9 | 3159.10
3159.12 | | Cr II
Zr II | 5
126 | | 3141.164 | | Ca I | 15 | 3149.50 | P | Fe I | 453 | 3159.25 | P | Fe I | 259 | | 3141.247 | | Ce III | 2 | 3149.56 | | Si IV | 2 | 3159.254 | _ | Rh II | 2 | | 3141.35
3141.486 | | Ne II
V II | 47
152 | 3149.83
3149.87 | | Cr II
W II | 5 <u>4</u>
5 | 3159.32
3159.365 | P | Fe II
V II | 120
83 | | 3141.537 | | Ti I | 66 | 3150.11 | | Cr II | 54 | 3159.521 | | Ni I | 11 | | 3141.670 | | Ti I | 192 | 3150.20 | P | Fe I | 161 | 3159.59 | | Cr I | 92 | | 3141.80 | | Cr II | 175 | 3150.301 | | Fe I | 578a | 3159.662 | | Co I | 9,26 | | 3141.891 | | Cr I | 116 | 3150.568 | | V I | | 3159.86 | | Cr II | 54 | | 3142. 183 | | V II | 172 | 3150.738 | | Ca I | 15 | 3160.03 | | WII | 8 | | 3142.22
3142.220 | | Fe III
Fe II | 1
7 | 3151.036
3151.11 | | Tm II
Ti I | 28 | 3160.09
3160.11 | | T1 I
Cr II | 28
54 | | 3142.312 | | Ce II | 46 | 3151.16 | | Ne II | 16 | 3160.200 | | Fe I | 578 | | 3142.445 | | Fe I | 164 | 3151.259 | | N1 I | 4- | 3160.342 | | Fe I | 192a | | 3142.484
3142.670 | | V II
Mn I | 52 | 3151.280
3151.31 | | Ca I
W II | 15
16 | 3160.52
3160.60 | | C1 II
Y II | 57 | | 3142.74 | | Cr II | 85 | 3151.319 | | V II | 138
 3160.61 | | Cr I | 115 | | 3142.76 | | La II | 31 | 3151.353 | | Fe I | 311 | 3160.658 | | Fe I | 155 | | 3142.777 | | F III | 4 | 3151.500 | | Rh II | 2 | 3160.69 | | Gd II | 11 | | 3142.888 | | Fe I | 144 | 3151.86 | | Fe III | | 3160.77 | P | Fe I | 159 | | 3142.900 | | Gd II | 76 | 3151.867 | _ | Fe I | 7 | 3160.781 | | V II | 65,136 | | 3142.97
3143.131 | | Cr II
Gd II | 125
25 | 3152. 14
3152. 21 | P | Ti II
Cr II | 27
71 | 3160.92
3161 | P
P | Fe I
N V | 160
2 | | 3143.16 | P | Ti I | 28
28 | 3152.21
3152.251 | | Ti II | 10 | 3161.01 | £ | Zr II | 2
104 | | 3143.242 | | Fe I | 7 | 3152.525 | | Sm II | | 3161.039 | | Mn I | 19 | | 3143.350
3143.36 | | Ti I | 180 | 3152.707 | | Co I | 73 | 3161.205 | | Ti II | 10 | | 3143.477 | | Fe III
V II | 13
122 | 3152.881
3153.064 | | Cr I
Fe I | 116
99,452 | 3161.313
3161.369 | | V II
Gd II | 151
10 | | | | | | -2 | | - | ,- | | | | | | 3143.657
3143.68 | | Ru II
Cr II | 2
53 | 3153.200 | | Fe I | 161 | 3161.370
3161.38 | | Fe I
A II | 52
97 | | 3143.68 | P | Ti II | 37 | 3153.322 | | Fe I | 160 | 3161.38 | | C1 II | 97
11 | | 3143.74 | | Ne II | 24 | 3153.54 | | Cr I | 200 | 3161.45 | | A II | | | 3143.756
3143.91 | | Ti II
Cr II | 4
94 | 3153.549
3153.692 | | V I
Co I | 7 | 3161.55 | P | Fe I | 195 | | 3143.956 | | Ce III | 2 | 3153. 692
3153. 80 | | A II | 118 | 3161.638
3161.652 | | Gd II
Co I | 25
73 | | 3143.990 | | Fe I | 578 | 3154.04 | | Cr II | 53 | 3161.66 | P | T1 II | 27 | | 3144.37 | | Y II | 49 | 3154.10 | | Cr II | 69 | 3161.755 | | Ti II | 10 | | 8 | | | ÷. | | TNDT | IU LISI | | | | | | |-------------------------------------|------------|----------------|-------------------|----------------------|--------|-----------------|---------------|----------------------|------|-----------------|-----------------| | 1 A | Туре | Element | Multiplet No. | I, A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | | | D- T | 160 | 3170.337 | | Fe II | 6 | 3179.44 | | w II | 7 | | 3161.949 | | Fe I
Rh II | 160
1 | 3170.40 | | Sc II | 32 | 3179.45 | | Cr II | 8 2 | | 3162.284
3162.335 | | Fe I | 159,310 | 3170.715 | | Ni I | 78 | 3179.479 | | Fe I | 52 | | 3162.46 | | Cr II | 46 | 3171.016 | | Fe II | | 3179.504 | | Fe II | 157 | | 3162.57 | | Hf I | 2 | 3171.09 | | Gd II | 10 | 3179.538 | | Fe I | | | 3162.570 | | Ti II | 10 | 3171.14 | | N III | EO 540 | 3180.164 | _ | Fe II | 157 | | 3162.61 | | Hf II | 30 | 3171.353 | | Fe I
Ce II | 52,548
99 | 3180.17 | P | Fe III
Th II | 38
4 | | 3162.714 | | VII | 83 | 3171.615 | | Fe I | 160 | 3180.199 | | Fe I | 155 | | 3162.764 | | Gd II | 54
100 | 3171.659
3171.68 | | La III | 1 | 3180.223
3180.225 | | Ti II | 120 | | 3162.799 | | Fe II | 120 | 3111.00 | | | _ | 01001220 | | | | | 3163.024 | | V II | 84 | 3171.739 | | V II | 217 | 3180.290 | | СР ІІ | 5 | | 3163.091 | | Fe II | 7 | 3172.067 | | Fe I | 99,193 | 3180.290 | | Co I | 106 | | 3163.403 | | СРІІ | 1 | 3172.08 | _ | Cr II | 71 | 3180.521 | | Ca I | 14 | | 3163.61 | | A II | 118 | 3172.11 | P | Fe I
Gd II | 100
129 | 3180.701 | | Cr I | 7 | | 3163.731 | | Na II | 7 | 3172.169
3172.230 | | V II | 249 | 3180.72 | | O IV
Cr II | 9 | | 3163.756 | | Cr I
V II | 115
249 | 3172.30 | P | Fe I | 312 | 3180.73
3180.756 | | Fe I | 7 | | 3163.76
3163.77 | P | Cr II | 123 | 3172.731 | | Ti I | 65 | 3180.98 | P | o IV | 7 | | 3163.86 | P | Fe II | 79 | 3172.79 | | Mg II | 13 | 3181.05 | | A II | 47 | | 3163.93 | - | Cr II | 69 | 3172.828 | | Tm II | 8 | 3181.275 | | Ca II | 4 | | | | | | | | 116 7 | 5 | | | | • | | 3164.06 | | Cr I | 200 | 3172.94 | | Hf I
N III | 3 | 3181.428 | | Cr II
Fe I | 9
258 | | 3164.154 | | Ce II | 69 | 3172.97
3173.07 | | Y II | 51 | 3181.522 | | Zr II | 63 | | 3164.166 | | N1 I | 79
79 | 3173.140 | | Co I | 48 | 3181.58
3181.740 | | N1 I | 78 | | 3164.26 | | Fe II
Cr II | 46 | 3173.40 | | Fe I | 333 | 3181.84 | | Ti II | 122 | | 3164.28
3164.308 | | Fe I | 163 | 3173.56 | | Co I | 72 | 3181.85 | | .Fe I | 333 | | 3164.32 | | Zr II | 50 | 3173.58 | | Cr II | 83 | 3181.922 | | Fe I | 155,505 | | 3164.46 | | Ne II | 13 | 3173.58 | | Ne II | 13 | 3181.94 | | Zr II | 48 | | 3164.48 | | Cr II | 115 | 3173.607 | | Bu II | 3 | 3182.076 | | Fe I | 159,333 | | 3164.618 | | Ca I | 14 | 3173.608 | | Fe I | 333 | 3182.118 | | Co I | 73 | | | | m | • | 3173.66 | | C1 II | | 3182.42 | | Y II | 49 | | 3164.67 | | Fe III | 8
8 | 3173.663 | | Fe I | 101 | 3182.57 | | Ti II | 122 | | 3164.82 | | V II
Ti II | 0 | 3173.678 | | Rh II | 5 | 3182.59 | | V II | 217 | | 3164.91
3165.005 | | Fe I | 155 | 3174.077 | | V 11 | 84 | 3182.674 | | V II | 150 | | 3165.00 | P | Fe I | 194 | 3174.09 | | Fe III | 38 | 3182.86 | | Zr II | 23 | | 3165.16 | P | Fe I | 100 | 3174.125 | | F III | 2 | 3182.970 | | Fe I | 100 | | 3165.24 | P | T1 II | 37 | 3174.140 | | CoI | 138 | 3183.038 | | N1 I | 78 | | 3165.31 | | A II | | 3174.22 | P | Fe I | 578 | 3183.115 | | Fe II
Ni I | 7
78 | | 3165.45 | | Zr II | 63 | 3174.531 | | V II
F III | 217
2 | 3183.251
3183.26 | P | Zr II | 105 | | 3165.508 | | N1 I | 21 | 3174.725 | | F 111 | • | 3163.20 | | D. 11 | 200 | | 3165.51 | | C 11 | 9 | 3174.80 | | T1 II | | 3183.325 | | Cr II | 82 | | 3165.70 | | Né II | 13 | 3174.88 | | La II | 157 | 3183.406 | | ÝΙ | 14 | | 3165.72 | | S1 IV | 2 | 3174.905 | | Co I | 71 | 3183.523 | | Ce II | 216 | | 3165.86 | P | F III | 1 | 3175.046 | | Sn I | 1 | 3183.58 | P | Fe I | 192a | | 3165.860 | | Fe I | 160 | 3175.077 | | Fe II | 157 | 3183.916 | | Sm II
V I | 14 | | 3165.89 | | V II | 84 | 3175.16 | | P V | 1
2 | 3183.96 | | V I | 14 | | 3165.94 | | Mg II | 14 | 3175.317 | | Ru II
Fe I | 155 | 3183.982
3184.09 | | Ti II | 3 | | 3165.957 | | Fe II | R | 3 175.447
3175.66 | | Ti II | 120 | 3184.36 | | Cr II | 123 | | 3165.98
3165.99 | | Zr II
C II | 9 | 3175.84 | | Mg II | 13 | 3184.367 | | N1 I | 11 | | 3100.88 | | | - | | | _ | | | | | | | 3166.22 | P | Fe II | 79 | 3175.97 | | Fe I | 333 | 3184.43 | P | Fe II | 67 | | 3166.24 | P | Fe I | 155 | 3175.97 | | W II | 7 | 3184.631 | | Fe I | 155,162 | | 3166.29 | | Zr II | 48 | 3176.00 | | Fe III | 38 | 3184.896 | | Fe I
Fe II | 7
67 | | 3166.39 | | V II | 84 | 3176.16 | | Ne II
Ni I | 16
77 | 3185.095
3185.16 | | 8 III | 13 | | 3166.435 | | Fe I | 259
100 | 3176.292
3176.366 | | Fe I | 258 | 3185.16 | | 81 III | 8 | | 3166.59 | P | Fe I
Fe II | 6 | 3176.602 | | WI | 5 | 3185.315 | | .Fe II | 7 | | 3166.670
3166.948 | | Rh II | 5 | 3176.70 | P | Sc II | 32 | 3185.396 | | V I | 14 | | 3166.98 | P | Fe I | 455 | 3176.85 | | Hf II | 8 | 3185.72 | | O IV | 7 | | 3167.420 | | V II | 217 | 3176.86 | | Fe III | 38 | 3186.01 | | 81 III | | | | | | | A.R | | D., TT | 9 | 0102 40 | | V II | 64 | | 3167.49 | | V II | 236 | 3177.060 | | Ru II
Ce II | 2
103 | 3186.10
3186.126 | | Ce II | 167 | | 3167.54 | 7 0 | Fe III
Fe I | 28
99 | 3177.137
3177.22 | | WII | 6 | 3186.120 | | A II | 48 | | 3167.78
3167.853 | P | Fe II | 66 | 3177.260 | | Fe II | 79 | 3186.350 | | Co I | 8 | | 3167.853
3167.907 | | Fe I | 578 | 3177.266 | | Co I | | 3186.451 | | Ti I | 27 | | 3167.94 | P | Fe II | 82 | 3177.490 | | Gd II | 129 | 3186.740 | | Fe II | 6 | | 3167.95 | - | CII | 9 | 3177.52 | P | Fe I | 159 | 3186.75 | _ | Cr II | 69 | | 3168.060 |) | Co I | 108 | 3177.531 | _ | Fe II | 82 | 3186.82 | P | Fe I | 100 | | 3168.127 | , | V II | 8 | 3177.61 | P
P | Fe II
Fe II | 95
79 | 3186.86
3187.006 | | V II
Sm II | 63
21 | | 3168.21 | | Fe III | 94 | 3177.65 | F | 10 11 | | 2101.000 | | | | | 9180 840 | | Ti II | 10 | 3177.696 | | V II | 217 | 3187.16 | P | Fe I | 333 | | 3168.519
3168.86 | • | Fe I | 160 | 3177.80 | | O IV | 7 | 3187.216 | | Sm II | 13,40 | | 3168.94 | P | Fe I | 160 | 3177.90 | | Cr II | 40 | 3187.294 | | Fe II | 120 | | 3168.98 | | Mg II | 14 | 3177.96 | P | Fe I | 159 | 3187.592 | | Mo II | 2 | | 3169.09 | P | Fe I | 813 | 3178.015 | | Fe I | 156 | 3187.60 | ~ | Ne II
Re I | 3
52 | | 3169.183 | 3 | Ce II | 74 | 3178.03 | | Fe III | 38
63 | 3187.68 | P | Fe I
V II | 52
8 | | 3169.20 | | Cr II | 12 3
65 | 3178.10
3178.135 | | Zr II
Sm II | 63
21 | 3187.717
3187.743 | | He I | 3 | | 3169.21 | | V II
Ne II | 16 | 3178.125
3178.495 | | Mn I | 19 | 3187.787 | | Sm II | 31 | | 3169.30
3169.58 | | Cr I | 115 | 3178.545 | | Fe I | 454 | 3187.889 | | Rh II | 5 | | 0108.00 | | | | | | | | | | | | | 3169.58 | P | Fe I | 161 | 3178.630 | | T1 II | 120 | 3188.011 | | Cr I | 92 | | 3169.68 | | A: II | 47 | 3178.79 | | Cr II | 173 | 3188.10 | _ | V II | 49 | | 3169.766 | | Co I | 109 | 3178.970 | | Fe I | 192a | 3188.17 | P | O IV | 7
7 4 | | 3169.85 | | Cr II | 173 | 3179.055 | | Na II
Fe III | 7
38 | 3188.377 | | Co I
V II | 8 | | 3169.854 | | Ca I
Sm IÍ | 14
31 | 3179.08
3179.283 | | Cr I | 92 | 3188.522
3188.567 | | Fe I | 159 | | 3169. 878
3170. 16 | | Sm II
C III | 31
8 | 3179.203 | | Ti I | 65 | 3188.603 | | Rh II | 8 | | 0110.10 | | V 11 | 017 | 9170 999 | | Co II | 4 | 9100 AK | P | O TV | 7 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | ΙÁ | Туре | Element | Multiplet No. | |----------------------|--------|-----------------|---------------|----------------------|------|----------------|----------------|----------------------|------|----------------|---------------| | 3188.95 | | Si II | | 3196.532 | | Gd II | 9 | 3206.16 | | V II | | | 3189.04 | | C1 II | 65 | 3196.574 | | V II | 62 | 3206.344 | | Ti I | 179 | | 3189.24
3189.52 | | W II
Ti II | 6,10
120 | 3196.63
3196.930 | P | Fe II
Fe I | 95
155 | 3206.350
3206.466 | | Cb
II
Gd II | 5
129 | | 3189.638 | | Ce II | 97 | 3196.96 | | Cr II | 9 | 3206.77 | | Hf II | 56 | | 3189.74 | | Fe III | 55 | 3197.00 | | Fe I | 8 | 3206.825 | | Ti I | 179 | | 3189.752
3189.76 | | Co I
V II | 9
83 | 3197.08
3197.113 | | Zr II
Ni I | 126
24 | 3206.908
3206.952 | | Mn I
Ni I | 14
94 | | 3189.783 | | Na II | 4 | 3197.12 | | Cr II | 9 | 3206.98 | | Fe III | 94.
6 | | 3189.85 | | Cr II | 123 | 3197.518 | | Ti II | 3 | 3207.092 | | Fe I | 159 | | 9100 02 | | Fe I | 050 | 3197.53 | | Fe I | 711 | 9907 19 | P | 0 777 | 24 | | 3190.02
3190.403 | | Sc II | 259
42 | 3197.574 | | V II | 150 | 3207.12
3207.185 | P | O III
Sm II | 31
2 | | 3190.651 | | Fe I | 548 | 3198.00 | | Cr II | | 3207.248 | | WI | 9 | | 3190.686 | | V II | 8 | 3198.012 | | V I | 14 | 3207.297 | | Rh II | 1 | | 3190.69
3190.81 | | Cr II
Fe III | 174 | 3198.112
3198.266 | | Cr I
Fe I | 91
258 | 3207.337
3207.410 | | T1 I
V I | 90 | | 3190.825 | | Fe I | 548 | 3198.42 | | YII | 39 | 3207.61 | | A II | 14
132 | | 3190.84 | P. | Fe II | 120 | 3198.62 | | Ne II | 13 | 3207.649 | | Fe I | 382 | | 3190.86
3190.874 | | Ne II
Ti II | 13
26 | 3198.660
3198.726 | | Co I
Ti I | 26
191 | 3207.897 | | Ti I | 179 | | 3190.674 | | 11 11 | 20 | 01001120 | | •• • | 101 | 3208.02 | | Cr II | 114 | | 3191.005 | | Sc II | 42 | 3198.81 | _ | Fe III | 6 | 3208.13 | | La II | | | 3191.044 | | Gd II
Cb II | 129 | 3198.88
3198.917 | P | Ne II
Ir I | 13
7 | 3208.231 | | Cu I | 3 | | 3191.096
3191.11 | | Fe I | 1
258 | 3199.279 | | Ce II | 106 | 3208.32
3208.345 | | Zr II
V II | 4
8 | | 3191.180 | | Fe I | 452 | 3199.322 | | Co I | 9 | 3208.470 | | Fe I | 711 | | 3191.23 | | Zr I | 19 | 3199.34 | | Ti I | 191 | 3208.607 | | T1 II | 120 | | 3191.297
3191.374 | | Co I
Fe II | 7
79 | 3199.342
3199.37 | | N1 I
Sc II | 42 | 3208.62
3208.838 | | Cr II
Mo I | 9
2 | | 3191.39 | | La II | 157 | 3199.43 | | Ti I | 191 | 3208.91 | | MO I
Ni II | 2 | | 3191.41 | P | Fe I | 682 | 3199.50 | P | Fe I | 7 | 3208.99 | | Ne II | 14 | | 3191.45 | | C1 III | 3 | 3199.53 | | o iv | 7 | 3209.030 | | Ti I | 180 | | 3191.577 | | WI | 5 | 3199.530 | | Fe I | 156 | 3209.030 | | Fe I | 179
97 | | 3191.659 | | Fe I | 8 | 3199.54 | | 81 II | | 3209.13 | | La II | 114 | | 3191.875 | | Ni I | 125 | 3199.87 | | Cr II | 101 | 3209.21 | | Cr II | 9 | | 3191.93
3191.994 | | Zr II
Ti I | 50
27 | 3199.915
3199.93 | P | Ti I
Fe I | 27
156 | 3209.297
3209.34 | | Fe I
K III | 333,711 | | 3192.059 | | Fe II | 66 | 3199.99 | - | Hf II | 55 | 3209.38 | | Ne II | 5
16 | | 3192.12 | | Cr I | 13 | 3200.28 | | Y II | 10 | 3209.603 | | Fe II | 137 | | 3192.220
3192.26 | | Co I
Ti II | 72
25 | 3200.423
3200.45 | | N1 I
Cr II | 23
114 | 3209.64 | | O IV | 7 | | 3192.20 | | 11 11 | 28 | 0200.40 | | v. 11 | 114 | 3209.80 | | Co I | 70 | | 3192.417 | | Fe I | 100,711 | 3200.454 | | Gd II | 129 | 3209.912 | | Ni I | 94 | | 3192.68
3192.699 | | T1 II
V II | 120
83 | 3200.475
3200.67 | | Fe I
Zr II | 155, 162
37 | 3209.930 | | Ca I | 13 | | 3192.799 | | Fe I | 155 | 3200.790 | | Fe I | 8 | 3210.04
3210.219 | | S1 II
Co I | 7
106 | | 3192.84 | P | Fe I | 452 | 3200.95 | _ | 0 111 | 31 | 3210.230 | | Fe I | 159 | | 3192.917 | | Fe II | 6 | 3201.24
3201.26 | P | Cr I
Cr II | 79 | 3210.449 | | Fe II | 6 | | 3193.014
3193.02 | | Sm II
La II | 45 | 3201.20 | | V II | 114 | 3210.52
3210.62 | | Si III
Cr I | 13 | | 3193.10 | | 81 II | | 3201.594 | | Ti I | 90 | 3210.825 | | Tm II | 4 | | 3193.16 4 | | Co I | 26 | 3201.714 | | Ce II | 76 | 3210.830 | | Fe I | 156 | | 3193.174 | | Gd II | 54 | 3201.891 | | Fe I | 159 | 3210.98 | | Zr II | 63 | | 3193.200 | | V II | 83 | 3201.90 | | Fe III | 6 | 3211.01 | | Co I | 154 | | 3193.214 | | Fe I | 7 | 3201.95 | P | K III | 5
*0 | 3211.07 | | T1 I | 191 | | 3193.314
3193.41 | | Fe I
Cr II | 159
52 | 3201.97
3202.142 | F | Cr I
N1 I | 79
94 | 3211.072
3211.309 | | Fe II
Cr I | 95 | | 3193.48 | | YII | 48 | 3202.381 | | V I | 14 | 3211.494 | | Fe I | 220
162 | | 3193.53 | _ | Hf II | 2 | 3202.52 | | Cr II | 173 | 3211.693 | | Fe I | 711 | | 3193.74
3193.75 | P
P | Fe I
Ni I | 682
92 | 3202.535
3202.562 | | Ti II
Fe I | 26
547 | 3211.734 | | Sm II | | | 3193.76 | P | Fe II | 79 | 3202.66 | P | Fe I | 52 | 3211.872
3211.947 | | Fe I
Rh II | 98,711
6 | | 0400 000 | | m | | 2000 244 | | W | 00 | | | | | | 3193.809
3193.85 | P | Fe II
Fe II | 6
67 | 3202.711
3202.740 | | V II
F II | 62
8 | 3211.989 | | Fe I | 158 | | 3193.969 | - | Mo I | 3 | 3203.026 | | Co I | 9 | 3212.02
3212.121 | | Zr I
Ir I | 19
8 | | 3193.97 | _ | V II | 49 | 3203.05 | | C1 II | _ | 3212.186 | | Na II | 4 | | 3194.03
3194.099 | P | Fe I
Cu I | 156 | 3203.104
3203.33 | | He II
Y II | 1
10 | 3212.274 | | Gd II | 54 | | 3194.099 | | Hf II | 3
10 | 3203.39 | | Al I | 20 | 3212.40
3212.434 | | Y II
V I | 67
73 | | 3194.25 | | A II | 46 | 3203.435 | | Ti II | 3 | 3212.53 | | Cr II | 81 | | 3194.26
3194.422 | | Ti II
Fe I | 120
155 | 3203.509
3203.53 | | Fe II
Cr II | 79
46 | 3212.54 | | A II | 47 | | 01010122 | | | 100 | | | | 20 | 3212.56 | | La II | 122 | | 3194.56 | | T1 II | 120 | 3203.58 | | Ti I | 26 | 3212.70 | P | T1 II | 9 | | 3194.61
3194.63 | | Ne II
Cr II | 16
70 | 3203.67
3203.741 | | Hf II
Fe II | 21
196 | 3212.85 | | Zr II | 49 | | 3194.75 | | 0 IV | 7 | 3203.828 | | Ti I | 27 | 3212.884
3212.91 | | Mn I
Cr II | 14
114 | | 3194.76 | P | N1 I | 108 | 3203.89 | | Si II | 7 | 3213.145 | | Ti I | 90,191 | | 3194.76 | | Ti II | 04* | 3204.06
3204.196 | | P V
V I | 1 | 3213.145 | | T1 II | 3 | | 3194.825
3194.983 | | Ce II
Cb II | 217
1 | 3204.196 | | A II | 13
71 | 3213.311
3213.423 | | Fe II
N1 I | 6 | | 3195.50 | | V II | 1 | 3204.36 | | Zr II | 63 | 3213.423
3213.46 | | N1 1
Cr II | 91
153 | | 3195.573 | | N1 I | 12 | 3204.55 | P | Cr I | 79 | 3213.59 | | Ti II | 120 | | 3195.62 | | Y II | 10 | 3204.76 | | Fe III | 6 | 3213.70 | | Ne II | | | 3195.63 | | Hf II | 10
45 | 3204.870 | | Ti I | 90 | 3213.70
3213.771 | | Ne II
Fe I | 13
452 | | 3195.717 | | Ti II | 25 | 3205.03 | | A II | 133 | 3213.972 | | F III | 2 | | 3195.994 | | Ti II | 46 | 3205.11
3205.168 | | Cr II
Ti I | 114
26 | 3214.044 | | Fe I | 156,711 | | 3196.070
3196.147 | | Fe II
Fe I | 7
333 | 3205.400 | | Fe I | 26
155 | 3214.059
3214.07 | P | Ni I
Fe I | 93
158 | | 3196.182 | | Sm II | 40 | 3205.582 | _ | V I | 73 | 3214.125 | | Sm II | 25 | | 3196.37 | P | Cr I | 79 | 3205.64
3205.848 | P | Ti II
Ti I | 46
26 | 3214.14 | | Ti II | 84 | | 3196.40 | | Cr II | 9,115 | 3205.646 | | Ti II | 20
98 | 3214.19 | | Zr II | 3 | | 10 | | | | | | | | | | | | |----------------------|------|----------------|---------------------|-------------------------------|------|-----------------|---------------|----------------------|------|-----------------|------------------| | IA | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 3214.38 | | Ne II | 14 | 3223.332 | | CP II | 5 | 3231.528 | | Sm II | 13 | | 3214.396 | | Fe I | 7 | 3223.444 | | Fe II | 170 | 3231.599 | | Fe I
Cr II | 50
122 | | 3214.624 | | Fe I | 143 | 3223.519
3223.534 | | Ti I
Ni I | 179
92,94 | 3231.64
3231.69 | | Zr II | 3 | | 3214.750
3214.750 | | Ti II
V II | 3
8 | 3223.740 | | Gd II | 10 | 3231.702 | | Fe II | 80 | | 3215.145 | | Ca I | 13 | 3223.853 | | Fe I | 27 | 3231.71 | P | T1 II | 46 | | 3215.262 | | Sm II | 40 | 3224.05 | P | Fe I | 920 | 3231.75 | | C1 II
V II | 73
61 | | 3215.334 | | Ca I | 13 | 3224.241 | | Ti II
Gd II | 84
92 | 3231.952
3231.97 | | V II
Ne II | 61
11 | | 3215.375
3215.578 | | W I | 13
5 | 3224.297
3224.632 | | Co I | 71 | 3232.00 | | YII | 49 | | | | Сь ІІ | 1 | 3224.761 | | Mn I | 3 | 3232.055 | | 0s I | 3 | | 3215.595
3215.60 | | Fe III | 6 | 3224.82 | | Ne II | 43 | 3232.16 | P | Fe I | 258 | | 3215.637 | | Fe I | 332 | 3224.86 | P | Fe II | 178 | 3232.280 | | Ti II
Ne II | 36
11 | | 3215.940 | | Fe I | 156 | 3225.020 | | N1 I
Y II | 39
39 | 3232.38
3232.52 | | Sb I | 2 | | 3215.97 | P | O III
Fe I | 31
682 | 3225.17
3225.39 | | Cr II | 140 | 3232.61 | | Li I | 2 | | 3216.06
3216.08 | | 0 11 | 107 | 3225.44 | | Cr II | 45 | 3232.791 | | Fe II | 119 | | 3216.203 | | Ti I | 90 | 3225.460 | | Gd TI | ā | 3232.791 | | Ti I | 179 | | 3216.31 | P | O IV
Cr II | 7
82 | 3225.478
3225.607 | | Cb II
Fe I | 1
192,920 | 3232.874
3232.963 | | Co I
Ni I | 106
7 | | 3216.55 | | | | | | | | | | Ca III | 4 | | 3216.70 | | YII | 10 | 3225.789
3225.896 | | Fe I
Ca I | 155
13 | 3233.02
3233.053 | | Fe I | 620 | | 3216.75
3216.76 | | A II
O II | 107 | 3225.976 | | Na II | 17 | 3233.174 | | Ni I | 91,184 | | 3216.821 | | Ni I | 93 | 3226.00 | | A II | 46 | 3233.190 | | V I | 72 | | 3216.850 | | Sm II | 13 | 3226.034 | | Mn I | 14 | 3233.234 | | Cr I
S III | 25
3 | | 3216.88 | P | Ti II | 36 | 3226.106 | | V I
Ti I | 14
179 | 3233.24
3233.304 | | Fe I | 142 | | 3216.946 | | Mn I
Co I | 3
70 | 3226.128
32 26. 129 | | Ca I | 13 | 3233.324 | | Rh II | 2 | | 3216.996
3217.056 | | Ti II | 2 | 3226.240 | | Ti I | 27 | 3233.546 | | V II | 61 | | 3217.12 | | La Il | 156 | 3226.318 | | GG II | 75 | 3233.62 | | P III | 4 | | 3217.121 | | V I | 14 | 3226.36 | | Cr II | 114 | 3233.772 | | V II | 61 | | 3217.121 | | N II | 38 | 3226.378 | | Fe II | 178 | 3233.88 | | Ni I | 150 | | 3217.30 | | HrII | 4 | 3226.55 | | Cr I
Fe I | 25
8 | 3233.967
3233.968 | | Fe I
Mn I | 158 | |
3217.380 | | Fe I
Cr II | 157
9 | 3226.727
3226.771 | | Ti II | 3 | 3234.00 | | Si III | 6 | | 3217.44
3217.53 | P | Fe I | 254 | 3226.924 | | V II | 185 | 3234.06 | | Cr II | 63 | | 3217.70 | _ | A II | 132 | 3226,984 | | N1 I | 7 | 3234.119 | | Co I | 72 | | 3217.830 | | N1 T | 91 | 3226.986 | | Co I
Fe I | 124
156 | 3234.12
3234.165 | | Zr I
Ce II | 19
119 | | 3217.942
3218.10 | | Ti I
O II | 179
107 | 3227.067
3227.114 | | Ce II | 95 | 3234.17 | | s III | 3 | | | | WA TT | 70 | 3227.17 | P | Fe I | 247 | 3234.274 | | Ce II | 80 | | 3218.20
3218.21 | | Hf II
Ne II | 78
13 | 3227.23 | • | Cr I | 162 | 3234.50 | P | T1 II | 46 | | 3218.26 | P | Ti II | 46 | 3227.409 | | V I | 134 | 3234.504 | | VII | 61 | | 3218.270 | | Ti II | 84 | 3227.48 | | Cr II | 153 | 3234.517 | | Ti II | 2
8 | | 3218.34 | _ | Fe III | 87 | 3227.732
3227.752 | | Fe II
Co I | 6
8 | 3234.614
3234.649 | | Fe I
Ni I | 21 | | 3218.44
3218.614 | P | Ti II
Sm II | 46 | 3227.798 | | Fe I | 157 | 3234.923 | | Fe II | 1 | | 3218.68 | | Zr II | 35 | 3228.003 | | Fe I | 379 | 3234.926 | | Na II | 10 | | 3218.683 | | Ti I | 90 | 3228.090 | | Mn I
Ti I | 14
179 | 3235.003
3235.26 | | Mn I
Cr II | 139 | | 3218.70 | | Cr I | 92 | 3228.183 | | | | | | | | | 3218.869 | | V I | 72 | 3228.262 | | Fe I | 157 | 3235.33 | P | Fe I
Tm II | 309
8 | | 3218.944 | | Ce II | 75 | 3228.36
3228.564 | P | Ti II
Ce III | 46
1 | 3235.448
3235.532 | | Co I | 71,138 | | 3218.98
3219.13 | | Pd I
Cr II | 2
140 | 3228.600 | | Fe II | - | 3235.592 | | Fe I | 308 | | 3219.150 | | Co I | 8 | 3228.605 | | Ti II | 24 | 3235.753 | | N1 I | 11 | | 3219.212 | | T1 I | 179 | 3228.784 | | Sm II | 52 | 3235.783 | _ | Co I | 72 | | 3219.32 | _ | P III | 4 | 3228.81 | | Zr II
Fe I | 49
157 | 3235.95
3236.106 | P | Ti I
Gd II | 47
75 | | 3219.37
3219.58 | P | Fe I
Fe I | 308
156 | 3228.900
3229.123 | | Fe I | 8 | 3236.122 | | Ti II | 24 | | 3219.60 | P | Fe I | 254 | 3229.193 | | Ti II | 2 | 3236.17 | | Zr II | 104 | | 3219.616 | | Cr I | 220 | 3229.204 | | Cr I | 220 | 3236.223 | | Fe I | 7 | | 3219.77 | P | Fe I | 8 | 3229.36 | | Co I | 152 | 3236.403 | | Cb II | 1 | | 3219.79 | | Cr II
Fe I | 63
158 | 3229.363
3229.38 | | Ce II
Cr II | 94
46 | 3236.573
3236.61 | | Ti II
Zr II | 2
1 25 | | 3219.806
3219.811 | | N1 I | 94 | 3229.397 | | Ti II | 36 | 3236.638 | | Sm II | | | 3220.467 | | Ti II | 9 | 3229.50 | | Ne II | 43 | 3236.735 | | Ce II | 101 | | 3220.62 | | Co I | 152 | 3229.604 | | V I | 134 | 3236.778 | | Mn I | 14 | | 3220.66 | | Hf II | 30 | 3229.73
3229.78 | | Zr II
Fe I | 149
247 | 3236.806
3236.82 | | Tm II
A II | 13
83 | | 3220.772
3220.835 | | Ir I
Fe II | 5
106 | 3229.89 | | Cr II | 114 | 3237.028 | | Co I | 7 | | 3221.151 | | Ti I | 26 | 3229.994 | | Fe I | 546 | 3237.234 | | Fe I | 256 | | 3221.101 | | Ce II | 215 | 3230 | P | o v | 9 | 3237.402 | | Fe II | 81 | | 3221.273 | | N1 I | 185 | 3230.09 | P | Fe I | 27 | 3237.414 | | Mn I | F 0 | | 3221.378 | | Ru II | 3 | 3230.16 | P | Fe I
Ne II | 156
11 | 3237.54
3237.729 | | Zr II
Cr I | 50
114 | | 3221.380
3221.381 | | V II
Ti I | 109
179 | 3230.16
3230.210 | | Fe I | 158 | 3237.729 | | Fe II | 81 | | 3221.361 | | A II | 46 | 3230.496 | | Fe II | 95 | 3237.876 | | V II | 38 | | 3221.652 | | N1 I | 8 | 3230.55 | | Si III | 6 | 3238.087 | | Cr I | 114 | | 3221.76
3221.936 | P | Ti II
Fe I | 46
156 | 3230.559
3230.646 | | Sm II
V I | 21
13 | 3238.224
3238.31 | | Ti I
Fe III | 179
79 | | | | Ru II | 7 | 3230.719 | | Mn I | 14 | 3238.32 | P | Fe I | 545 | | 3221.978
3222 | P | 0 V | 7
5,9 | 3230.719 | | V II | 48 | 3238.32
3238.50 | | Cr I | 162 | | 3222.05 | P | Fe I | 451 | 3230.963 | | Fe I | 157 | 3238.535 | | Fe I | 397 | | 3222.069 | | Fe I | 156 | 3231.09 | P | Ni I | 106 | 3238.57 | | 0 111 | 9 | | 3222.42
3222.48 | | A II
Zr II | 1 3 2
104 | 3231.10
3231.20 | | S III
Y II | 3
65 | 3238.621
3238.74 | | Gd II
Fe III | 92
64 | | 3222.46
3222.741 | | Ti I | 26 | 3231.236 | | Ce II | 149 | 3238.77 | | Cr II | 63 | | 3222.843 | _ | T1 II | 2 | 3231.315 | | Ti II | 9 | 3239 | P | 0 V | 5 | | BAAA AA | | - T | 700 | 9991 940 | | west I I | 41) | 9090 000 | | Wa T | 744 740 | | | | | | | | | _ | | | | | |------------------------------|------|-----------------|----------------------|------------------------------|------|-----------------|---------------|---------------------------------------|------|-----------------|------------------| | Y A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | A I. | Type | Element | Multiplet No. | | | | | | 2040 740 | | 14- T | 4.4 | 3256.779 | | V I | 138 | | 3239.04
3239.101 | | Fe III
Rh II | 63
2 | 3248.516
3248.602 | | Mn I
Ti I | 14
89 | 3257.072 | | Gd II | 92 | | 3239.14 | | Cr I | 92 | 3248.602 | | Ti II | 66 | 3257.244 | • | Fe I | 27,451 | | 3239.256 | | Co I | 47 | 3248.70 | | Ti II | 9 | 3257.358 | | Fe II | 94 | | 3239.35 | P | Fe I | 379 | 3249 | P | 0 V | 9 | 3257.594 | | Fe I
Cr I | 90 | | 3239.436 | _ | Fe I | 157 | 3249.037 | P | Fe I
Fe II | 308
65 | 3257.822
3257.83 | | 8 II | 113
17 | | 3239.46
3239.657 | P | Fe I
Smr II | 157
48 | 3249.16
3249.204 | P | Fe I | 253 | 3257.893 | | v II | 108 | | 3239.664 | | Ti II | 24 | 3249.35 | | La II | 31 | 3257.894 | | Fe II | 178 | | 3239.833 | | V II | 61 | 3249.370 | | Ti II | 23 | 3257.90 | | C III | 6 | | 3239.87 | P | Fe II | 81 | 3249.440 | | N1 I | 10 | 3257.965 | | Na II | 14 | | 3240.013 | | Fe I | 545 | 3249.464 | | A II | 82 | 3258.01 | | Cr II | 152 | | 3240.07 | _ | Cr II | 140 | 3249.566 | | V I | 13 | 3258.035 | | Co I
Tm II | 47 | | 3240.11 | P | Fe I
Tm II | 158 | 3249.617
3249.657 | | V II
Fe II | 38
81 | 3258.048
3258.413 | | Mn I | 4
14 | | 3240.230
3240.399 | | Ma I | 13 | 3249.742 | | Gd II | 75 | 3258.62 | P | Fe I | 157 | | 3240.516 | | Rh II | 6 | 3249.82 | | AII | 47 | 3258.67 | | Si III | 12 | | 3240.616 | | Mn I | 14 | 3249.911 | | Fe II | 78 | 3258.77 | | Cr II | 159 | | 3240.71 | | T1 II | 9 | 3249.995 | | Co I | 26 | 3258.773 | | Fe II
Pd I | 81 | | 3240.785 | | V II | 61 | 3250.187 | | Gd II | 92 | 3258.80 | | Pu 1 | -5 | | 3240.84 | P | Ti I | 47 | 3250.27 | | Fe III | 37 | 3259.007 | | Ru II | 6 | | 3240.85 | P | Zr II | 12 | 3250.34 | P | Fe II | 78 | 3259.04 | | Ti I | 123 | | 3240.951 | | Cr I | 25 | 3250.372
3250.400 | | Sm II
Fe I | 2
142,379 | 3259.048
3259.20 | | Fe II
Co I | 81
153 | | 3241.01
3241.05 | | Zr II
Co I | 4
9 | 3250.42 | | Zr I | 19 | 3259.250 | | Gd II | 92 | | 3241.161 | | Sm II | 6 | 3250.44 | | Zr II | 125 | 3259.32 | | Cl III | 6 | | 3241.38 | | Cr II | 153 | 3250.51 | | CoI | 154 | 3259.42 | | T1 I | 123 | | 3241.43 | P | Fe I | 158 | 3250.58 | | Cr I | 114 | 3259.44 | _ | CIII | 6 | | 3241.50 | P | Fe I | 27 | 3250.63 <u>4</u>
3250.743 | | Fe I
Ni I | 95
39 | 3259.44
3259.60 | P | Fe II
Cr I | 178
25 | | 3241.530 | | Tm II | 4 | | | | | | | | | | 3241.586 | | Sm II | 22 | 3250.747 | | Mo II | 2 . | 3259.684 | | V II | 48 | | 3241.67 | | Si III | 6 | 3250.775 | | V II
Cr II | 171 | 3259.71
3259.75 | P | A II
Fe II | 04 | | 3241.685
3241.835 | | Fe II
Be II | 80
5 | 3250.79
3251.135 | | Mn I | 61
14 | 3259.975 | r | Cr I | 81
114 | | 3241.984 | | Ti II | 2 | 3251.236 | | Fe I | 93 | 3259.991 | | Fe I | 157 | | 3242.18 | | Zr II | 126 | 3251.32 | | Sc II | 5 | 3260.11 | | Zr I | 35 | | 3242.268 | | Fe I⁴ | 255 | 3251.34 | P | Fe II | 137 | 3260.231 | | Mn I | 14 | | 3242.30 | | Y 11 | 10 | 3251.46 | P | Zr II
Co I | 62 | 3260.259 | | Ti I
Ti II | 89 | | 3242.304
3242.72 | | Gd II
Pd I | 92
3 | 3251.656
3251.66 | | Pd I | 152
6 | 3260.259
3260.276 | | Fe Í | 45
250 | | 3242.834 | | Gd II | 75 | 3251.836 | | Cr I | 113 | 3260.286 | | Co I | 154 | | 3243.058 | | Ni I | 22 | 3251.869 | | V II | 108 | 3260.564 | | CP II | 101 | | 3243.118 | | Fe I | 192 | 3251.911 | | Ti II | 2 | 3260.814 | | Co I | 107 | | 3243.34 | | Ne II | 15 | 3252.12 | P | Fe I | 247 | 3260.975 | | Ce II | 258 | | 3243.36 | | W II | 13, 15 | 3252.40
3252.483 | P | Fe II
Ce II | 78
182 | 3260.98
3261.050 | | CG I | 8 | | 3243.370
3243.406 | | Ce II
Fe I | 214
381,710 | 3252.743 | | Gd II | 136 | 3261.081 | | V I | 1 | | 3243.513 | | Ti I | 179 | 3252.914 | | Ti II | 2 | 3261.332 | | Fe I | 712 | | 3243.579 | | Co I | 47 | 3252.928 | | Fe I | 252 | 3261.509 | | Fe II | 195 | | 3243.70 | | A II | 47 | 3252.94 | | 0 111 | 9 | 3261.56 | | Cr II | 159 | | 3243.723 | | Fe II | 119 | 3252.94 | P | Ti II | 23 | 3261.596 | | Ti II | 66,89 | | 3243.74 | P | VII | 48 | 3252.948 | | Mn I | 14 | 3261.80 | | V II | 109 | | 3243.780 | | Mn I | 14 | 3253.26
3253.401 | | Cr I
Sm II | 114 | 3262.009 | | Fe I | 710 | | 3243.803
3243.840 | | Ti I
Co I | 26
69 | 3253.41 | | La II | 114 | 3262 . 23
3262 . 284 | | C III
Fe I | 6 | | 3244.115 | | Cr I | 25 | 3253.416 | | Co I | 70 | 3262.290 | | Os I | 3 | | 3244.15 | | Ne II | 14 | 3253.44 | | 81 III | 12 | 3262.340 | | 8n I | 3 | | 3244.17 | P | Sc II | -5 | 3253.610 | | Fe I | 681 | 3262.44 | | Fe III | 74 | | 3244.190
3244.44 | | Fe I
Cl III | 156
6 | 3253.70
3253.839 | | Hf II
Fe I | 1
250 | 3262.515
3262.63 | | Gd II
Ti I | 75
88 | | | | | | | | | | | | | | | 3244.53
3244.69 | P | Ti I
Cr I | 47
114 | 3253.943
3253.954 | | Sm II
Fe I | 40
257 | 3263.04
3263.213 | | Fe III
Co I | 64
124 | | 3245 | P | 0 V | 11 4
9 | 3254.03 | | A II | 46 | 3263.238 | | VI | 124
12 | | 3245.13 | - | La II | 32 | 3254.039 | | Mn I | 12 | 3263.25 | P | Cr I |
25 | | 3245.31 | | Cr II | 62 | 3254.070 | | CP II | 1 | 3263.33 | | V II | 38 | | 3245.370 | | N1 I | 108 | 3254.202 | | Co I | 69 | 3263.365 | | CP II | | | 3245.485
3245.542 | | Cr I
Cr I | 25
113 | 3254.250
3254.261 | | Ti II
Fe I | 2
249 | 3263.373
3263.378 | | Gd II
Fe I | 75 | | 3245.750 | | Co I | 138 | 3254.32 | | Lu II | 4 | 3263.43 | | Ne II | 144
15 | | 3245.80 | P | Fe I | 920 | 3254.363 | | Fe I | 620 | 3263.45 | P | Fe I | 680 | | 3245.984 | | Fe I | 27 | 3254.377 | | Sm II | 6 | 3263.60 | | A ,II. | 46 | | 3246.005 | | Fe I | 8 | 3254.46 | P | Fe I | 158 | 3263.686 | | Ti II | 45 | | 3246.05 | P | Fe I | 309 | 3254.63 | | Co I | 154 | 3263.98 | | La II | 114 | | 3246.492 | | Fe I | 252 | 3254.734 | | Fe I
V I | 308 | 3264 | P | 0 V | 9 | | 324 6.674
3246.973 | | Ce II
Fe I | 130
95 | 3254.773
3254.77 3 | | A II | 13
38 | 3264.137
3264.22 | | Gd II
Fe III | 92
64 | | 3247.01 | | Cr II | 95
62 | 3254.95 | | Cr I | | 3264.26 | | Cr II | 61 | | 3247.170 | | Co. I | 70 | 3255.28 | | Hf II | 7 | 3264.291 | | Rh II | 5 | | 3247.171 | | Fe Il | 81 | 3255.30
3255.39 | | Cr II | 138 | 3284.44
3284 522 | | N1 I | 00 | | 3247.274 | | Cr I | 25 | | | Ne II | 23 | 3264.522 | | .Fe I | 90 | | 3247.297
3247.33 | | Fe I
Cr II | 157
81 | 3255.49
3255.62 | | Fe III
Cr II | 96
153 | 3264.711
3264.716 | | Mn I
Fe I | 13
157 | | 3247.33
3247.392 | | Fe II | 81
119 | 3255.678 | | Sc I | 9 | 3264.718 | | Co I | 157
47 | | 3247.478 | | Cb II | 5 | 3255.819 | | GG II | 92 | 3264.76 | P | Fe II | .1 | | 3247.540 | | Cu I | 1 | 3255.884 | | Fe II | 1 | 3264.81 | | Zr II | 62 | | 3247.55 | | A II | | 3256.137 | | Mn I | 14 | 3264.82 | P | Co I | 153 | | 3247.908
3248 15 | | V II | 109 | 3256.52
3256.52 | P | Fe I
Fe I | 158
307 | 3264.83
3264.842 | P | Co I | 9 | | 3248.15
3248.206 | | Ne II
Fe I | 15
157 | 3256.53 | • | Zr II | 397
49 | 3264.842
3265.046 | | Co I
Fe I | 105
8 | | | | | A | | | | | | | | <u> </u> | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Elem ent | Multiplet No. | |----------------------|------|----------------|---------------|----------------------|------|-----------------|-----------------------|------------------------------|------|-----------------|-------------------| | 3265.46 | | 0 111 | 8 | 3273.50 | | N1 I | 108 | 3280.91 | | Y II | 29 | | 3265.4 80 | | Ti I | 123 | 3273.52 | | O II
Fe III | 39
7 | 3281.120
3281.293 | | V II
Fe II | 136
1 | | 3265.55
3265.616 | P | Fe I
Fe I | 308
91 | 3273.53
3273.619 | | Sc I | 9 | 3281.585 | | Co I | 8 | | 3265. 67 | | La II | 45 | 3273.66 | | Hf II | 2 | 3281.607 | | Gd II | 92 | | 3265.893 | | V II | 74 | 3273.957 | | Cu I | 1 | 3281.72
3281.755 | | A II
V II | 47
136 | | 3265.899
3266.25 | | V I
Cr II | 138
121 | 3274.047
3274.183 | | T1 I
Gd II | 123
92 | 3281.83 | P | Fe I | 50 | | 32 66.39 | | Eu II | 24 | 3274.220 | | Na II | 14 | 3281.880 | | N1 I | 106 | | 3266.43 | | Ti II | 57 | 3274.24 | P | Fe I | 95 | 3281.94 | | 0 111 | 8 | | 3266.446 | | Ir I | 2 | 3274.452 | | Fe I | 710 | 3282.232 | | Co I | 47 | | 3266.633 | | Tm II | 8 | 3274.50 | | v ii | 163 | 3282.305 | | Gd II | 92 | | 3266.634 | | Cr I | 25 | 3274.640 | | Be II | 2 | 3282.329 | | Ti II
Zn I | 66
4 | | 3266. 88 | | Fe III | 7 | 3274.65 | | Fe III
Ca I | 96
12 | 3282.333
3282.51 | | Y II | 65 | | 3266.91
3266.938 | | V II
Fe II | 137
65 | 3274.661
3274.864 | | Ce II | 104 | 3282.534 | | V II | 72 | | 3267.035 | | Fe II | 80 | 3274.90 | | Ni II | 1 | 3282.696 | | N1 I | 7 | | 3267.31 | | O III | 8 | 3274.95 | | Fe III | 96 | 3282.725
3282.73 | | Fe I
Zr I | 44 9
19 | | 3267.401
3267.41 | | Tm II
Ti I | 13
64 | 3275.15
3275.20 | | Zr II
Ne II | 12
29 | 3282.777 | | Nd II | 41 | | 3207.41 | | ** 1 | 01 | 02.0.20 | | | | | | | | | 3267.480 | | Rh II | 6 | 3275.218 | _ | Nd II | | 3282.827
3282.84 | | Ni I
Zr II | 106
125 | | 3267.51 | | Sb I
Mo II | 2
6 | 3275.24 | P | Fe I
Ti II | 27
23 | 3282.891 | | Fe I | 680 | | 3267.639
3267.709 | | V II | 7 | 3275.293
3275.60 | P | N1 I | 107 | 3283.04 | | Cr II | 159 | | 3267.794 | | Mn I | | 3275.65 | | Zr II | 92 | 3283.11 | - | Al III | 10 | | 3267.945 | | Os I | 1 | 3275.66 | | Co I | 43 | 3283.14
3283.21 | P | Ti II
8n II | 57
2 | | 3268.064
3268.234 | | Ni I
Fe I | 95 | 3275.67
3275.685 | | O V
Fe I | 5
308 | 3283.22 | | P III | 2 | | 3268.234
3268.335 | | Gd II | 4 | 3275.776 | | Al II | 5 | 3283.30 | | Fe III | 14 | | 3268.48 | | Cr II | 62 | 3275 948 | | Fe I | 450 a | 3283.311 | | V I | 12 | | 9000 710 | | Fe II | 118 | 3275.92 | | Cr II | 151 | 3283.39 | | Hf II | 30 | | 3268.512
3268.61 | | re II
Ti I | 88 | 3276.08 | | Fe III | 7 | 3283.40 | P | Fe II | 118 | | 3268.722 | | Mn I | | 3276.12 | | V II | 7 | 3283.400 | | Tm II
Cl III | 7
2 | | 3268.92 | P | Fe II | 81 | 3276.25 | | 81 III
Ce II | 12
93 | 3283.41
3283.430 | | Fe I | 27 | | 3268.971 | | N1 I
A II | 91.
46 | 3276.251
3276.28 | | Cr II | 172 | 3283.463 | | CP II | | | 3269.05
3269.090 | | Ca I | 12 | 3276.37 | | Zr II | 35 | 3283.466 | | Co I | 107 | | 3269.240 | | Fé I | 710 | 3276.477 | | Fe I | 90 | 3283.573 | | Rh I
Fe III | 4 7 | | 3269.42 | P | Fe I | 95 | 3276.483 | | Co I
Fe II | 15 4
92 | 3283.75
3283.777 | | Co I | 47 | | 3269.494 | | Ge I | 1 | 3276.606 | | 10 11 | 02 | | | | | | 3269.60 | P | Rh II | 8 | 3276.747 | | Sm II | 48 | 3283.95
3284.360 | | La II
V I | 1 20
71 | | 3269.66 | _ | Zr I | 34 | 3276.774 | | Ti II
Cl II | 45
30 | 3284.432 | | N1 I | 96 | | 3269.75
3269.77 | P | Cr II
Cr II | 152
138 | 3276.81
3276.811 | | Tm II | 4 | 3284.57 | | OIII | 8 | | 3269.77 | | Ti II | 57 | 3276.998 | | Ti II | 8 | 3284.588 | | Fe I | 91 | | 3269.772 | | Fe II | 118 | 3277.082 | | V II | 137 | 3284.72
3284.996 | | Zr II
Fe II | 4
93 | | 3269.86 | | Ne II | 15 | 3277 . 23 | | N1 I
Fe II | 90
1 | 3285.022 | | V II | 108 | | 3269.904
3269.964 | | Sc I
Fe I | 9
90 | 3277.347
3277.448 | | V II | 194 | 3285.093 | | Nd II | | | 3270.115 | | VII | 94 | 3277.662 | | Co I | 152 | 3285.20 | | Fe I | 396 | | 0000 14 | | Cr II | 61 | 3277.69 | | 0 11 | 23 | 3285.224 | | Ce II | 148 | | 3270.14
3270.198 | | Co I | 152 | 3277.71 | | V II | 137 | 3285.425 | _ | Fe II | 1 | | 3270.23 | | Fe III | 63 | 3277.78 | | Bu II | 24 | 3285.54
3285.60 3 | P | Fe I
Na II | 248
4 | | 3270.351 | | Mn I | 00 | 3277.82 | | P III
Fe II | 2
65 | 3285.609 | | Tm II | 10 | | 3270.515
3270.562 | | Gd II
Ti I | 92
123 | 3277.853
3277.86 | | Cr I | 219 | 3285.664 | | Sm II | 21 | | 3270.69 | P | Fe I | 954 | 3277.939 | | V I | 12 | 3285.672 | | V II | 162 | | 3270.70 | | Cr I | 219 | 3278.04 | | Fe III | 7 | 3285.77
3285.85 | | Zr II
A III | 91
1 | | 3270.79
3270.98 | | Ne II
O II | 2
39 | 3278.105
3278.290 | | Co I
Ti II | 153
66 | 3285.89 | | Zr II | 62 | | 3210.50 | | 0 11 | •• | 02.01200 | | | | | | Cr II | 137 | | 3271.002 | | Fe I | 91 | 3278.43 | | Y I | 12 | 3285.96
3286.026 | | Fe I | 90 | | 3271.118
3271.124 | | N1 I
V II | 23
7 | 3278.553
3278.741 | | Mn I
Fe I | 144,250 | 3286.029 | | Ce II | 199 | | 3271.124 | | Zr II | 22 | 3278.79 | | Cr II | 113 | 3286.067 | | Ca I
Sm II | 12
48 | | 3271.151 | | Ce II | 146 | 3278.79 | | K III | 1 70 | 3286.229
3286.34 | | Cr II | 172 | | 3271.17
3271.498 | P | Ni I
Fe I | 108
680 | 3278.842
3278.89 | | Co I
Zr II | 72
1 49 | 3286.463 | | Fe I | 710 | | 3271.436 | | Rh II | 2 | 3278.922 | | Ti Í | 63 | 3286.545 | | Co I | 46 | | 3271.612 | | Rh I | 6 | 3278.922 | | Ti II | 23 | 3286.57
3286.71 | | W II
Y II | 1
65 | | 3271.637 | | V I | 12 | 3279.25 | | Si III | 12 | 0200111 | | | | | 3271.652 | | Ti II | 66 | 3279.254 | | Co I | 70 | 3286.755 | | Fe I | 91
90 | | 3271.666 | | Mo II | 6 | 3279.26 | | Zr II | 3 | 3286.756
3286.946 | | Ti II
Ni I | 89
19 | | 3271.693 | | Fe I | 49 | 3279.529 | | Gd II
Cr II | 92
121 | 3286.98 | P | N1 I | 107 | | 3271.778
3272.080 | | Co I
Ti II | 70
66 | 3279.54
3279.649 | | Fe II | 118 | 3287.117 | | Fe I | 396 | | 3272.21 | | Zr II | 3 | 3279.743 | | .Fe I | 449 | 3287.192 | | CoI | 71 | | 3272.25 | | 8 II | 17 | 3279.842 | | Ce II | 68
7 9 | 3287.192
3287.221 | | Gd II
N1 I | 136
55 | | 3272. 253 | ъ | Ce II | 73
62 | 3279.844
3279.97 | | 0 III | 73
29 | 3287.26 | | Pd I | 3 | | 3272.30
3272.405 | P | Zr II
Co I | 62
152 | 3279.97 | P | Ti II | 57 | 3287.31 | | Zr II | 12 | | | | | | | | 11.0 T- | • | 3287.37 | | Al III | 10 | | 3272.60
3272.71 | | Fe I
Fe I | 51
712 | 3279.98
3279.995 | | Hf II
Ti II | 9
35 | 3287.468 | | Fe II | 118 | | 3272.71
3272.76 | | Co I | 151 | 3280.22 | | P III | 6 | 3287.575 | | Co I | 154 | | 3272.77 | | Eu II | 24 | 3280.261 | | Fe I | 620 | 3287.59 | | O II
Ti II | 23
89 | | 3272.807 | | Sm II | 40
71 | 3280.391
3280.58 | | Ti I
Fe III | 88
7 | 3287.657
3287.70 | | Cr I | • | | 3273.027
3273.04 | | V I
Zr Il | 71
3 | 3280.58
3280.682 | | Ag I | í | 3287.827 | | Co I | 43 | | 3273.36 | | AII | 71 | 3280.75 | | Zr II | 34 | 3288.04 | | Cr II | 62
8 | | 3273.483 | | Sm II | | 3280.756 | | Mn I | 10 | 3288.142
3288.32 4 | | Ti II
V II | 89 | | 3273.499 | | Fe II | 118 | 3280.763 | | Fe I | 451 | 9690.06% | | | | | | | | | | | | | | | | 10 | |----------------------|------|----------------|---------------|----------------------|------|-----------------|-----------------|----------------------|------
----------------|---------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 3288.428 | | Ti II | 66 | 3299.11 | | Co I | 151 | 3307.717 | | Ti II | 8 | | 3288.575 | | Ti II | 66 | 3299.36 | | 0 111 | 3 | 3307.755 | | Cr I | 78 | | 3288.59 | P | Ti I | 63 | 3299.41 | P | Sc II | 35 | 3307.90 | | Cl II | 37 | | 3288.660 | | Fe I | 144 | 3299.413 | | Ti I | 61 | 3308.02 | | Eu II | 25 | | 3288.81 | | Fe III | 7 | 3299.44 | P | Ti II | 8 | 3308.15 | | Cr II | 137 | | 3288.81 | | Zr II
Fe I | 4,62
90 | 3299.511
3299.77 | | Fe I
Fe III | 49
96 | 3308.246
3308.391 | | V I
Tî I | 12
87 | | 3288.972
3288.985 | | V II | 109 | 3299.771 | | Fe II | 30 | 3308.4 | | Ϋ́II | 64 | | 3289.016 | | Mo I | 11 | 3300.056 | | Fe II | 228 | 3308.480 | | V II | 137 | | 3289.06 | | K III | 4 | 3300.148 | | Nd II | | 3308.482 | | Co I | 155 | | | | | | | | | | | | 0.3 77 | | | 3289.150 | | Gd II
Fe II | 75
65 | 3300.152
3300.20 | | Ce II
Fe III | 166
96 | 3308.517
3308.688 | | Gd II
Co I | 4
105 | | 3289.347
3289.36 | | Yb II | 1 | 3300.20 | | WI | 5 | 3308.75 | P | Fe I | 190 | | 3289.391 | | V II | 7 | 3300.905 | | V II | 60 | 3308.785 | - | Mn I | 11 | | 3289.442 | | Fe I | 380 | 3300.976 | | Gd II | 74 | 3308.806 | | Ti II | 7 | | 3289.80 | | C1 III | 2 | 3301.09 | | Fe III | 50 | 3308.814 | | Co I | 153 | | 3290.13 | | 0 11 | 23 | 3301.21 | | Cr II | 137 | 3308.86 | _ | PII | 4 | | 3290.23 | | Pt I | 1 | 3301.227 | | Fe I | 380 | 3308.91 | P | Ni I | 107 | | 3290.240 | | V II
Ni II | 108
5 | 3301.559
3301.56 | | Os I
O II | 1
23 | 3309.176
3309.32 | P | V I
Ni I | 55
105 | | 3290.54 | | N1 11 | • | 0001.00 | | 0 11 | 20 | 0000102 | - | | 200 | | 3290.69 | | N1 II | 1 | 3301.587 | | Ru I | 4 | 3309.32 | P | Ti I | 122 | | 3290.722 | | Fe I | 90 | 3301.66 | | V II | | 3309.40 | | Fe III | | | 3290.988 | | Æe I | 95 | 3301.678 | | Sm II | 21,48 | 3309.428 | | N1 I | | | 3291.001 | | Tm II | 3 | 3301.71 | | Ti II | 44
~ | 3309.501 | ъ | Ti I
Ti II | 87
44 | | 3291.04
3291.44 | P | V II
Fe I | 60
954 | 3301.734
3301.87 | | 8r I
Pt I | 7
7 | 3309.53
3309.582 | P | Gd II | 44
24 | | 3291.47 | • | A II | 554 | 3301.88 | | A III | 1 | 3309.730 | | Ti I | 190 | | 3291.676 | | V I | 12 | 3301.927 | | Fe I | 617 | 3309.78 | | Ne II | 7 | | 3291.75 | | Cr II | 68 | 3301.95 | | Bu II | 24 | 3309.804 | | Tm II | | | 3292.022 | | Fe I | 680 | 3302.096 | | Ti II | 8 | 3309.82 | | Cr I | 161 | | 9900 04 | | Fe III | 7 | 9900 45 | | Pd I | 3 | 3309.90 | | Zr II | 72 | | 3292.04
3292.078 | | re III
Ti I | 7
62 | 3302.15
3302.19 | | Pa I
Fe III | 3
37 | 3310.202 | | 27 II
N1 I | 72
38 | | 3292.210 | | Gd II | 74 | 3302.34 | | Na I | 2 | 3310.347 | | Fe I | 449 | | 3292.22 | | Co I | 153 | 3302.454 | | Tm II | 7 | 3310.496 | | Fe I | 679 | | 32 92.312 | | Mo II | 6 | 3302.588 | | Zn I | 4 | 3310.55 | | Ne II | 23 | | 3292.590 | _ | Fe I | 91 | 3302.66 | | Zr II | 85 | 3310.65 | | Cr II | 120,158 | | 3292.89 | P | Fe II | 136 | 3302.86 | | Cr I | 161 | 3310.661 | | Sm II | 31 | | 3293.146
3293.146 | | Fe I
V II | 51
235 | 3302.861
3302.94 | | Fe II
Na I | 1
2 | 3311.25
3311.30 | | A III
Ne II | 1
2 | | 3293.210 | | Co I | 154 | 3302.941 | | Zn I | 4 | 3311.34 | | Zr II | 34 | | | | | | | | | | | | | | | 3293.48 | P | T1 II | 57 | 3303.11 | | La II | 45 | 3311.451 | | Fe I | 27 | | 3293.66 | | A II
Ni I | 83
90 | 3303.278 | | Mn I | | 3311.708 | | Sc II | 41 | | 3293.674
3293.81 | | Cr I | 219 | 3303.466
3303.574 | | Fe II
Fe I | 1
449 | 3311.905
3311.929 | | Mn I
Cr II | 10
51 | | 3293.861 | | Co I | 107 | 3303.881 | | CoI | 47 | 3312.06 | | Cr I | 78 | | 3293.9 | | Y II | 64 | 3304.01 | | A II | 66 | 3312.148 | | Co I | 69 | | 3293.95 | | AII | | 3304.119 | | Cọ I | 154 | 3312.18 | | Cr II | 51 | | 3294.098 | | Co I | 154 | 3304.31 | _ | Fe III | *** | 3312.215 | | Ce II | 25 | | 3294.220
3294.44 | | Ru II
La II | 2
155 | 3304.36
3304.433 | P | Fe I
Fe II | 710
93 | 3312.232
3312.30 | | Fe I
O III | 450a
3 | | 0231.11 | | Du 11 | 100 | 00071400 | | 10 11 | 30 | 0012.00 | | 0 111 | .• | | 3294.50 | | Fe III | 14 | 3304.474 | | V II | 136 | 3312.320 | | N1 I | 106 | | 3294.536 | | Co I | 152 | 3304.523 | | Sm II | 2 | 3312.39 | | Y II | 65 | | 3294.85 | | Fe III | 37 | 3304.73 | | Cr II | 120 | 3312.415 | | Sm II | 21 | | 3295.03
3295.06 | P | Zr II
Fe II | 36
93 | 3304.836
3304.950 | | Ce II
N1 I | 103
108 | 3312.690
3312.707 | | T1 I
Fe II | 190
1 | | 3295.13 | | 0 11 | 23 | 3305.15 | | 0 11 | 23 | 3312.736 | | Sc. II | 41 | | 3295.24 | | Fe III | | 3305.15 | | Zr II | 2 | 3312.78 | | C1 II | 8 | | 3295.240 | | Fe II | 79 | 8305.185 | | Sm II | 35 | 3312.87 | | Hf I | 3 | | 3295.289 | | Ce II | 147 | 3305.22 | | Fe III | 7 | 3312.90 | P | Ti II | 56 | | 3295.427 | | Cr II | 51 | 3305.634 | | Fe II | 79 | 3312.992 | | N1 I | 106 | | 3295.813 | | Sm II | 13 | 3305.730 | | Co I | 152 | 3313.08 | | Cr II | 119 | | 3295.814 | | Fe II | 1 | 3305.75 | P | Fe I | 618 | 3313.116 | | Co I | 153 | | 3296.027 | | Mn I | 11 | 3305.77 | | 0 111 | 8 | 3313.33 | | Bu II | 24 | | 3296.052 | | V II | 162 | 3305.971 | | Fe I | 91 | 3313.344 | | Al II | 8 | | 3296.41
3296.467 | | Zr II
Fe I | 62
250 | 3306.053
3306.27 | | Ti II
Zr II | 44
3 | 3313.470
3313.524 | | Al II
Mn I | 8
30 | | 3296.668 | | Gd II | 21 | 3306.35 | P | Fe I | 544
544 | 3313.539 | | Sc II | 35 | | 3296.786 | | He I | 9 | 3306.356 | - | Fe I | 91 | 3313.70 | | Zr II | 61 | | 3296.806 | | Fe I | 619 | 3306.388 | | Sm II | 48 | 3313.721 | | Cr I | 161 | | 3296.826 | | Fe II | 92 | 3306.45 | | C1 II | 37 | 3313.723 | | Fe I | 50 | | 3296.882 | | Mn I | 12 | 3306.495 | | Fe I | 680 | 2212 721 | | CA TT | 04 | | 3296.883 | | Ce II | 12
247 | 3306.50 | | A II | 000 | 3313.731
3313.996 | | Gd II
Fe II | 24
1 | | 3297.528 | | V II | 108 | 3306.60 | | 0 11 | 23 | 3314 | P | O VI | 4 | | 3297.68 | P | T1 I | 122 | 3306.703 | | Fe I | 396 | 3314.06 | | Cr II | 158 | | 3297.684 | | Mo II | 6 | 3306.879 | | Ti I | 190 | 3314.070 | | Fe I | 736 | | 3297.74
3297.888 | | Ne II
Fe II | 2
91 | 3306.94 | | Fe III
Cr II | 73
150 | 3314.073
3314 345 | | Co I | 43,149 | | 3298 | P | 0 V | 91 | 3306.95
3306.98 | | La II | 150
17 | 3314.345
3314.393 | | Co I
Mn I | 152
30 | | 3298.02 | P | Ni I | 91 | 3307.013 | | N1 I | 107 | 3314.422 | | Ti I | 87 | | 3298.104 | | Sm II | | 3307.015 | | Fe I | 450 | 3314.450 | | Fe I | 250 | | 0000 100 | | p. • | 00 | | | o | | | | | | | 3298.133
3298.139 | | Fe I
V I | 90
12 | 3307.017
3307.044 | | Sm II
Cr II | 51 | 3314.49
3314.50 | | Zr II
S II | 47
17 | | 3298.139 | | Ti II | 12
44 | 3307.044 | | Co I | 69 | 3314.50
3314.523 | | Ti I | 17
87 | | 3298.224 | | Mn I | | 3307.234 | | Fe I | 617 | 3314.56 | P | Cr I | 182 | | 3298.318 | | Cr I | 161 | 3307.24 | | A II | 83 | 3314.57 | | Cr II | 150 | | 3298.680 | | Co I | 70 | 3307.362 | | Rh II | 5 | 3314.60 | | Ne II | 22 | | 3298.72 | | La II | _ | 3307.445 | | V II | 60 | 3314.721 | | Ce II | 146 | | 3298.738 | | V II | 7 | 3307.53 | | Fe III | 7 | 3314.742 | | Fe I | 680 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|-----------------|------------------------------|------|----------------|---------------|----------------------|--------|-----------------|--------------------| | 3314.862 | | v II | 136 | 3322.310 | | Ni I | 39 | 3330.40 | | 0 111 | 22,28 | | 3314.876 | | Mn I | 30 | 3322.40 | | K III | 1 | 3330.620 | | Sn I | 2 | | 3314.883 | | Al II | 8 | 3322.474 | | Fe I | 396 | 3330.668 | | Mn I | 9. | | 3314.981 | | Al II
Co I | 8
154 | 3322.69
3322.936 | | Cr II
Ti II | 51
7 | 3330.78
3330.880 | | Ne II
Y II | 19
85 | | 3315.035
3315.05 | | Pt I | 1 | 3322.98 | P | Ti II | 44 | 3331.07 | | Sc II | 35 | | 3315.17 | P | Fe I | 618 | 3322.99 | | Zr II | 34 | 3331.26 | P | N1 I | 107 | | 3315.176 | | V II | 71 | 3323.066 | | Fe II | 92 | 3331.32 | | N II | 22 | | 3315.19 | | Cr I | 78 | 3323.092 | | Rh I
Hf II | 4
79 | 3331.382 | | Gd II
Fe I | 8
191 | | 3315.237 | | Ti I | 190 | 3323.35 | | M1 11 | 10 | 3331.616 | | re 1 | 191 | | 3315.29 | | Cr II | 51 | 3323.39 | P | T1 II | 43 | 3331.62 | | Fe III | 73 | | 3315.324 | | Ti II | 65 | 3323.53 | | Cr II | 51 | 3331.778 | | Fe I | 144 | | 3315.44 | | C1 II | 8,37 | 3323.660 | | Ti I | 255 | 3331.90 | | Zr II | 11 | | 3315.516 | Forb | Al II | 8
93 | 3323.731
3323.737 | | V II
Fe I | 81
379 | 3332.111
3332.133 | | Ti II
Gd II | 65
73 | | 3315.53
3315.53 | P | Fe II
V II | 136 | 3323.75 | | Ne II | 7 | 3332.17 | | Mg I | 4 | | 3315.590 | | Gd II | 41 | 3323.896 | | Ti I | 255 | 3332.180 | | Ni I | | | 3315.608 | | Al II | 8 | 3324.01 | | S III | 2 | 3332.42 | | C1 11 | 8 | | 3315.663 | | Ni I | 22 | 3324.03 | P | Zr II | 62 | 3332.49 | | Hr I
O III | 28
2 | | 3315.80 | | Fe III | 73 | 3324.060 | | Cr II | 4 | 3332.73 | | піі | 2 | | 3316.18 | P | Fe II | 5 | 3324.10 | | Cr II | 120 | 3332.879 | | Cr I | 182 | | 3316.324 | - | Mn I | 11 | 3324.346 | | Cr II | 80 | 3333.00 | | 0 111 | 22 | | 3316.440 | | Mn I | 30 | 3324.372 | | Fe I | 617 | 3333.16 | | S1 II | 6 | | 3316.503 | | Cr I | 255 | 3324.541 | | Fe I
N II | 191
22 | 3333.27 | | Fe III
Co I | 18,73
25 | | 3316.579 | | Sm II
Sc II | 35 | 3324.58
3324.61 | | Ti I | 60 | 3333.388
3333.41 | P | Co I | 71 | | 3316.79
3316.86 | | C1 II | 37 | 3324.67 | P | Cr II | 92 | 3333.605 | - | Cr I | · · - | | 3316.873 | | v II | 137 | 3324.72 |
| Fe III | 96 | 3333.606 | | Y II | 64 | | 3316.875 | | Tm II | 7 | 3324.754 | | Ti I | 190 | 3333.608 | | V II | 59
50 | | 3317.038 | | Sc II | 41 | 3324.838 | | Fe II | 194 | 3333.635 | | Sm II | 52 | | 9917 101 | | Fe I | 139 | 3324.87 | | s III | 2 | 3333.64 | | C1 II | 8 | | 3317.121
3317.295 | | re i
V II | 7 | 3325.012 | | Fe II | 93 | 3333.912 | | Ti I | 25 | | 3317.305 | | Mn I | 30 | 3325.155 | | Ti I | 190 | 3334.12 | P | Co I | 101 | | 3317.693 | | Sc II | 41 | 3325.229 | | Ti I | 190 | 3334.146 | | Co I | 23 | | 3317.70 | | SII | 42 | 3325.240 | | Co I
Sm II | 70 | 3334.223 | | Fe I
Zr II | 190
58 | | 3317.797 | | Ce II
V II | 102
108 | 3325.258
3325.329 | | Ce II | 25 | 3334.25
3334.278 | | Fe I | 617 | | 3317.912
3317.93 | | Co I | 69 | 3325.365 | | Ti I | 255 | 3334.35 | | T1 I | 190 | | 3317.99 | | Hf II | 4 | 3325.468 | | Fe I | 191 | 3334.455 | | Ce II | 25 | | 3318.024 | | Ti II | 7 | 3326.16 | | 0 111 | 28 | 3334.471 | | Nd II | 42 | | | | | 40 | 3326.194 | | wI | 5 | 3334.62 | | Zr II | 21 | | 3318.032 | | Na II
Gd II | 16
24 | 3326.21 | | La II | 121 | 3334.690 | | Cr I | | | 3318.055
3318.14 | | N II | 22 | 3326.27 | | Co I | 46 | 3334.87 | | Ne II | 2 | | 3318.362 | | Ti I | 190 | 3326.564 | | Co I | 43 | 3334.925 | | Cr I | 160 | | 3318.398 | | Co I | 45 | 3326.590 | | Cr I | 182 | 3335.192 | | Ti II | 7 | | 3318.52 | | Zr II | 35 | 3326.639
3326.670 | | Ti I
Ni I | 87
108 | 3335.28
3335.403 | | Cr II
Fe I | 80
24 6 | | 3318.6
3318.60 | | Y II
Co I | 64
151 | 3326.68 | P | Ti II | 56 | 3335.46 | | Cr II | 92 | | 3318.62 | P | Fe II | 136 | 3326.74 | P | Sc II | 41 | 3335.482 | | V II | 161 | | 3318.862 | - | Fe II | 135 | 3326.762 | | T1 II | 7 | 3335.513 | | Fe I | 49 | | | | | | 0006 01 | | Zr II | 91 | 3335.59 | | N1 I | | | 3318.907 | | V II
Zr II | 137
4 | 3326.81
3326.991 | | Co I | 152 | 3335.72 | P | Fe I | 307 | | 3319.03
3319.083 | | Ti II | 8 | 3327.16 | | Ne II | 2 | 3335.776 | _ | Fe I | 379 | | 3319.156 | | Co I | 155 | 3327.308 | | Mo I | 9 | 3335.90 | P | Fe II | 76 | | 3319.258 | | Fe I | 449 | 3327.392 | | N1 I | 90 | 3335.93 | | Cr II | 119 | | 3319.478 | | Co I | 154 | 3327.498
3327.578 | | Fe I
Tm II | 190
12 | 3336.12
3336.124 | | Ne II
Sm. II | 46
31 | | 3319.561 | | Co I
Ne II | 45
10 | 3327.63 | | Fe II | 64 | 3336.13 | | A III | 3 | | 3319.75
3319.78 | | YII | 64 | 3327.67 | | Zr II | 11 | 3336.150 | | Os I | 3 | | 3319.822 | | Co I | 153 | 3327.685 | | Na II | 16 | 3336.16 | | C1 111 | 6 | | | | | | 9907 00 | | Y II | 18 | 0006 16 | | Cr II | 14 | | 3319.89 | | Eu II
Cl II | 24
8 | 3327.89
3 3 27.961 | | Fe I | 86 | 3336.16
3336.180 | | Gd II | 14
8 | | 3320.14
3320.155 | | Sm II | 8
20 | 3328.21 | | Hf II | 10 | 3336.25 | | Y II | 66 | | 3320.257 | | Ni I | 9 | 3328.270 | | Nd II | 40 | 3336.262 | | Fe I | 618 | | 3320.29 | | Ne II | 12 | 3328.326 | | Ti I | 255 | 3336.330 | _ | Cr II | 4 | | 3320.422 | | Sc II | 35 | 3328.351 | | Cr II
Ni I | 4
20· | 3336.34 | P
P | Fe II
Fe I | 76
45 0a | | 3320.438 | | Gd II | 7 4
6 | 3328.714
3328.79 | | N ÍI | 22 | 3336.54
3336.69 | r | Mg I | 4 | | 3320.57
3320.650 | | C1 III
Fe I | 190 | 3328.80 | | Cr I | 160 | 3336.78 | | 0 111 | 22,28 | | 3320.693 | | Mn I | 100 | 3328.867 | | Fe I | 617 | 3336.97 | | Cr I | 255 | | | | | | 8000 010 | | Co T | 152 | 0000 004 | | Gd II | 70 | | 3320.709 | | Sc II | 41 | 3329.013 | | Co I
Cr I | 152
182 | 3336.984 | | Ti II | 72
4 3 | | 3320.779 | | Ni I
V II | 108
149 | 3329.053
3329.06 | | C1 III | 2 | 3336.998
3337.014 | | Ni I | 43
17 | | 3320.780
3320.800 | | Fe I | 396 | 3329.07 | | La II | 120 | 3337.171 | | Co I | 25 | | 3320.800 | | Mo II | 6 | 3329.070 | | Fe II | | 3337.36 | P | Ni I | 122 | | 3321.013 | | Be I | 1 | 3329.12 | | C1 II | 37 | 3337.40 | | Ti I | 190 | | 3321.086 | | Be I | 1 | 3329.20
3329.215 | | Ne II
Mo II | 12
6 | 3337.49 | | La II
Fe I | 45
304 | | 3321.179 | | Sm II
Cr I | 40
182 | 3329.215
3329.3 | | S II | 17 | 3337.666
3337.76 | P | re I
V II | 304
136 | | 3321.19
3321.242 | | Cr I
Ni I | 182
92 | 3329.345 | | Gd II | 74 | 3337.845 | - | V II | 184 | | ******* | | | - | | | | | | | | | | 3321.347 | | Be I | 1 | 3329.45 | | Cr II | 150 | 3337.85 | | Ti II | 55 | | 3321.348 | | Gd II | 21 | 3329.455
3329.466 | | Ti II
Co I | 7
153 | 3337.93 | P | Zr II
Fe II | 74
5 | | 3321.491 | | Fe II
V II | 194
71 | 3329.532 | | Fe I | 542a | 3338.19
3338.41 | r | Zr II | 61 | | 3321.539
3321.588 | | Ti I | 87 | 3329.855 | | V I | 55 | 3338.519 | | Co I | 123 | | 3321.700 | | Ti II | 65 | 3329.89 | | Fe III | 18 | 3338.522 | | Fe II | 76 | | 3321.857 | | Eu II | 21 | 3329.93 | | Mg I | 4 | 3338.643 | | Fe I | 396 | | 3321.912 | | Co I | 106 | 3329.988
3330.30 | | Sr I
N II | 7
22 | 3338.72
3338.758 | | Fe III
Ni I | 54 | | 3322.198 | | Co I | 104,149 | 2220 240 | | Cd II | ~~ | 0000.100 | | NA T | 404 | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|------------------|----------------------|------|----------------|---------------|------------------------------|------|-----------------|---------------| | 3339.063 | | Nd II | 41 | 3347.298 | | Sm II | 48 | 3356.407 | | Fe I | 137 | | 3339.15 | | Co I | 148 | 3347.507 | | Fe I | 449 | 3356.464 | | Co I
Gd II | 104
24 | | 3339.202
3339.36 | | Fe I
Fe III | 190,446
7 | 3347.70 | | Fe III
P IV | 18
1 | 3356.513
3356.842 | | Co I | 151 | | 3339.54 | | Ti I | 178 | 3347.72
3347.837 | | Cr II | 4 | 3357.07 | | Fe III | 19 | | 3339.588 | | Fe I | 502 | 3347.927 | | .Fe I | 138 | 3357.215 | | Ce II | 164 | | 3339.780 | | Co I | 155
4 | 3348.05 | | 0 111 | 28
4 | 3357.26
3357.40 | | Zr II
Cr II | 3
79 | | 3339.804
3339.810 | | Cr II
Ru II | 2 | 3348.08
3348.112 | | O IV
Co I | 103 | 3357.40 | | Fe III | 63,72 | | 3339.84 | | Si II | 6 | 3348.372 | | V II | 136 | 3357.72 | | Cr II | 91 | | | | a. ** | 00 | | | m | 25 | 3357.82 | P | Fe I | 448 | | 3339.90
3340.344 | | Cr II
Ti II | 92
7 | 3348.535
3348.683 | | Ti I
Sm II | 20 | 3357.82 | r | Ne II | 12 | | 3340.42 | | C1 III | 2 | 3348.844 | | Ti II | 7 | 3357.965 | | Fe II | 117 | | 3340.55 | | Zr II | 3 | 3349.035 | | Ti II | 16 | 3358.003 | | Co I
Mo I | 123
9 | | 3340.566 | | Fe I
Sm II | 139
6 | 3349.072
3349.11 | | Cr I
O IV | 4 | 3358.130
3358.252 | | Fe II | 77 | | 3340.579
3340.74 | | 0 111 | 3 | 3349.17 | | Hf II | 20 | 3358.271 | | Ti I | 23 | | 3340.77 | | Ti I | 190 | 3349.322 | | Cr I | 159 | 3358.30 | | Hf II | 63 | | 3341.341 | | Co I
Ti I | 148 | 3349.34 | | Cr II
Ti II | 4
1 | 3358.434
3358.49 | | Gd II
A III | 41
3 | | 3341.554 | | 11 1 | 60,178 | 3349.399 | | 11 11 | • | 3000.40 | | | ŭ | | 3341.77 | | A II | 59 | 3349.68 | P | Cr II | 14 | 3358.501 | _ | Cr II | 4 | | 3341.868 | | Ce II | 198
24 | 3349.739 | | Fe I | 377
200 | 3358.56
3358.59 | P | Ti I
Co II | 169
2 | | 3341.875
3341.875 | | Ti I
Ti II | 16 | 3349.967
3350.097 | | Ce II
Gd II | 200
74 | 3358.62 | | WII | 13 | | 3341.906 | | Fe I | 303 | 3350.209 | | Ca I | 11 | 3358.620 | | Gd II | 8 | | 3341.98 | | Cr II | 119 | 3350.284 | | Fe I | 191 | 3358.72 | | N III | 5
72 | | 3342.151 | | Ti I
Fe I | 23
137 | 3350.361
3350.42 | | Ca I
Ni II | 11
1 | 3358.74
3358.78 | P | Fe III
Fe II | 5 | | 3342.225
3342.298 | | Fe I | 378 | 3350.42 | | Gd II | 7 | 3359.066 | - | Co I | 69 | | 3342.46 | | WII | 9 | 3350.548 | | Ti I | 178 | 3359.106 | | N1 I | 108 | | 5040 54 | | Cr II | 4 | 3 35 0.548 | | Ti II | 43 | 3359.18 | | Fe III | 72 | | 3342.51
3342.707 | | Ti I | 25 | 3350.68 | | 0 111 | 22 | 3359.284 | | Co I | 44 | | 3342.734 | | Co I | 105 | 3350.875 | | Sm II | | 3359.496 | | Fe I | 25 | | 3342.76 | P | Fe I | 396 | 3350.94 | | A II | 109 | 3359.50 | | V II
Sc II | 148
4 | | 3342.77
3343.09 | | N III
W II | 7
13 | 3350.99
3351.06 | P | O III
N1 I | 22
3 | 3359.679
3359.814 | | Fe I | 617 | | 3343.227 | | Cr I | 159 | 3351.138 | • | Co I | 151 | 3359.96 | | Zr II | 91 | | 3343.243 | | Fe I | 88 | 3351.246 | | Sr I | 7 | 3360.103 | | Fe II | 105 | | 3343.27 | | Sc II
V II | 35
234 | 3351.424 | | Mn I
Al II | 9
26 | 3360.15
3360.16 | P | O II
Ti II | 52
54 | | 3343.312 | | , | 201 | 3351.456 | | n | 20 | 0000.10 | - | | | | 3343.342 | | Cr I | 159 | 3351.529 | | Fe I | 89 | 3360.295 | | Cr II
Zr I | 21
53 | | 3343.379
3343.40 | | Ti I
W II | 178
8 | 3351.53
3351.596 | | V II
Cr I | 234
160 | 3360.45
3360.541 | | Ce II | 25 | | 3343.494 | | Sm II | Ü | 3351.67 | | Ti II | 124 | 3360.63 | | Ne II | 2 | | 3343.530 | | Co I | 151 | 3351.750 | | Fe I | 304 | 3360.711 | | Gd II | 8 | | 3343.678 | | Fe I | 44 9
9 | 3351.966 | | Cr I
Sn II | 5
2 | 3360.84 | | Fe III
Fe I | 72
142 | | 3343.731
3343.770 | | Mn I
Ti II | 7 | 3351.97
3352.048 | | Sc II | 4 | 3360.935
3360.990 | | Ti I | 24 | | 3343.81 | | Zr II | 85 | 3352.06 | | Hf II | 6 | 3361.07 | P | Ti II | 64 | | 3343.861 | | Ce II | 159 | 3352.071 | | Ti II | 54 | 3361.09 | | CII | 7 | | 3344.09 | P | Fe I | 450 | 3352.43 | P | Ti I | 169 | 3361.11 | | WII | 2 | | 3344.26 | | 0 111 | 22,28 | 3352.80 | | Co II | 2 | 3361.213 | | Ti II | 1 | | 3344.353
3344.43 | | Sm II
Ne II | 39
2 | 3352.929
3352.937 | | Fe I
Ti I | 190
25 | 3361.241
3361.263 | | N1 I
T1 I | 107
23 | | 3344.50 | | Cr I | 160 | 3353.026 | | Cr I | 255 | 3361.270 | | Sc II | 4 | | 3344.513 | | Ca I | 11 | 3353.12 | | Cr II | 4 | 3361.371 | | Mo I | 10
 | 3344.56 | | La II
Ti I | 45
25 | 3353.262
3353.268 | | Ce III
Fe I | 2
190 | 3361.50
3361.506 | | T1 I
V II | 178
70 | | 3344.62
3344.630 | P | Ti I | 178 | 3353.39 | | C1 II | 4 | 3361.553 | | Co I | 157 | | 3344.72 | | A III | 3 | 3353.63 | | Ne II | 23 | 3361.556 | | Ni I | 19 | | 3344.750 | | Mo I | 9 | 3353.65 | | Zr I | 18 | 3361.73 | | A II | 109 | | 3344.750 | | Ce II | 165 | 3353.734 | | Sc II | 12 | 3361.75 | | CII | 7 | | 3344.80 | | Zr II | 72 | 3353.776 | | V II | 107 | 3361.770 | | Cr II | 21 | | 3344.931 | | Ti I
Zn I | 178
4 | 3353.78 | | N III
Fe I | 5
378 | 3361.835
3361.90 | | Ti I
N III | 25
5 | | 3345.020
3345.14 | | Cr I | 218 | 3354.068
3354.185 | | Sm II | 39 | 3361.918 | | Ca I | 11 | | 3345.146 | | Co I | 45 | 3354.213 | | Co I | 152 | 3361.935 | | Sc II | 4 | | 3345.352 | | Mn I | 010 | 3354.29 | | N III | 5 | 3361.959 | | Fe I | 377 | | 3345.36
3345.49 | | Cr I
Ne II | 218
10 | 3354.31
3354.374 | | O IV
Co I | 8
23 | 3362.00
3362.1 3 1 | | Y II
Ca I | 36
11 | | | | | _ | | | | | | | | | | 3345.572
3345.679 | | Zn I
Fe I | 4
141 | 3354.39
3354.54 | P | Zr II
Ti II | 34
64 | 3362.213
3362.233 | | Cr I
Gd II | 54
8 | | 3345.86 | | WII | 17 | 3354.550 | r | He I | 8 | 3362.28 | | Ca I | 11 | | 3345.88 | | Ne II | 10,12 | 3354.621 | | Nd II | 71 | 3362.38 | | 0 111 | 22 | | 3345.899 | | V II | 244 | 3354.634 | | Ti I | 24 | 3362.619 | | Tm II | | | 3345.934
3345.985 | | Zn I Gd II | 4
8 | 3355.05
3355.228 | | Ne II
Fe I | 2
617 | 3362.63
3362.653 | P | O IV
Ti II | 8
64 | | 3345.965 | | Cr I | 112 | 3355.366 | | V II | 149 | 3362.70 | | Cr I | 54 | | 3346.09 | | Cr I | | 3355.47 | | N III | 7 | 3362.70 | | Zr II | 60 | | 3346.310 | | Co I | 45 | 3355.517 | | Fe I | 25 | 3362.764 | | Fe II | 78 | | 3346.403 | | Mo II | 6 | 3355.92 | | 0 111 | 28 | 3362.806 | | N1 I | 23 | | 3346.71 | | Cr I
Ti II | 112
7 | 3355.940 | | Co I
Zr II | 103
3 | 3362.89 | | Ne II
Sc II | 12
38 | | 3346.724
3346.78 | | Cr I | 112 | 3356.08
3356.196 | | Zr II
Ti I | 178 | 3363.501
3363.613 | | N1 I | 105 | | 3346.91 | P | Ti II | 43 | 3356.24 | P | Fe II | 105 | 3363.71 | | Cr II | 3 | | 3346.932 | | Co I | 153
87 | 3356.265 | | Fe II | O.E. | 3363.81 | | Zr II | 11
307 | | 3346.942
3346.99 | i | Fe I
Ca II | 87
9 | 3356.332
3356.35 | P | Fe I
Ce III | 25
2 | 3363.815
3363.83 | | Fe I
O III | 307
11 | | 3347.1 0 | | Sb I | 1 | 3356.35 | - | Ne II | 20 | 3363.974 | | Gd II | 107 | | 3347, 269 | | Mo II | 6 | 3356.352 | | V I | 54 | 3364.1 0 | P | Ti I | 169 | | 16 | | | | | FIND | INU LIS | 1 | | | | | |----------------------|-------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|----------------|--------------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Wultimlet Ne | | 1.7 | 1) pe | ыенено | muzuipieu no. | 1 A | Type | Біешенс | multiplet No. | | Type | Plement | Multiplet No. | | 3364.22 | P | Fe II | 5 | 3371.209 | | Sm II | 52 | 3379.762 | | Mo II | 6 | | 3364.22 | | K III | 5 | 3371.447 | | Ti I | 24 | 3379.825 | | Cr I | 54 | | 3364.241 | | Gd II | | 3371.85 | | 0 11 | 52 | 3379.825 | | Cr II | 21 | | 3364.30 | P | T1 II | 43 | 3371.87 | | Ne II | 22 | 3379.930 | | Ti II | 64 | | 3364.44 | | P IV
Ni I | 1
107 | 3371.90 | | S II | 7 | 3380.004 | | Fe I | 709 | | 3364.591
3364.639 | | Fe I | 245 | 3371.993
3372.070 | | N1 I
Fe I | 83 | 3380.111
3380.114 | | Fe I
Y II | 304
41 | | 3364.9 | | Ti II | 124 | 3372.070 | | Cr II | 91 | 3380.215 | | Mo II | 6 | | 3364.950 | | Nd II | | 3372.151 | | Sc II | 4 | 3380.25 | | Eu II | 23 | | 3365.014 | | Co I | 69 | 3372.208 | | Ti II | 16 | 3380.278 | | T1 II | 1 | | | | | | | | | | | | | | | 3365.413 | | Fe II | 78 | 3372.359 | | Fe I | 447 | 3380.515 | | Gd II | 74 | | 3365.54
3365.553 | | A II
V I | 109
54 | 3372.666 | | V II | 106 | 3380.574 | | N1 I | 37 | | 3365.591 | | Gd II | 8 | 3372.68
3372.70 | | Ca III
P II | 1
34 | 3380.711
3380.885 | | Sr II
Ni I | 4
7 | | 3365.640 | | Fe II | 194 | 3372.800 | | Ti II | 1 | 3380.91 | | La II | 45 | | 3365.766 | | N1 I | 38 | 3373.02 | | Pd I | 3 | 3381.003 | | Fe II | 177 | | 3365.79 | | N III | 5 | 3373.226 | | Co I | 122 | 3381.28 | | O IV | 3 | | 3365.863 | | Sm II | | 3373.42 | | Zr II | 74 | 3381.33 | P | O IV | 3 | | 3366.168 | | Ni I | 8 | 3373.455 | | Ce II | 244 | 3381.340 | _ | Fe I | 376,677 | | 3366.176 | | Ti I | 178 | 3373.51 | | Fe III | 18 | 3381.36 | P | Fe II | 5 | | 3366.176 | | Ti II | 54 | 3373.57 | | Sc II | 38 | 3381.49 | | Co I | 88 | | 3366.333 | | Sr I | 7 | 3373.729 | | Ce II | 212 | 3382.07 | | Cr I | 181 | | 3366.46 | | Sc II | 38 | 3373.87 | | A II | 108 | 3382.071 | | Co I | 123 | | 3366.532 | | Gd II | 74 | 3373.874 | | Fe I | 303 | 3382.19 | | Fe III | 72 | | 3366.554 | | Ce II | 99 | 3373.96 | | Cr I | 181 | 3382.312 | | T1 I | 86 | | 3366.59 | | A II
Fe I | 83
302 | 3373.969 | | Co I | 44 | 3382.399 | | Sm II | 20 | | 3366.790
3366.807 | | re I
Ni I | 302
108 | 3373.98
3374.06 | | N1 II
N III | 1
5 | 3382.403
3382.529 | | Fe I
V II | 84
107 | | 3366.870 | | Fe I | 87 | 3374.10 | | Ne II | 12 | 3382.683 | | Cr II | 3 | | 3366.880 | | V I | 54 | 3374.221 | | Fe I | 89 | 3382.69 | | 0 111 | 27 | | | | | | | | | | | | | | | 3366.960 | | Fe II | 177 | 3374.221 | | N1 I | 17 | 3382.79 | P | Cr II | 112 | | 3367.00 | | 0 11 | 52 | 3374.352 | | Ti II | 54 | 3382.890 | | Ag I | 1 | | 3367.02 | | Fe III | 10 | 3374.512 | | Tm II | 12 | 3383.15 | | 8b I | 1 | | 3367.05 | P | Ne II
Gd II | 12
4 | 3374.584 | | Gd II
Ni I | 72
106 | 3383.387 | P | Fe I
Ti II | 245 | | 3367.093
3367.111 | | Co I | 22 | 3374.642
3374.688 | | Gd II | 24 | 3383.57
3383.692 | P | Fe I | 63
85, 444 | | 3367.161 | | Fe I | 142 | 3374.71 | | Zr II | 61 | 3383.761 | | Ti II | 1 | | 3367.18 | | S III | 2 | 3374.77 | | 0 11 | 96 | 3383.85 | | 0 111 | 27 | | 3367.20 | | Ne II | 19 | 3374.93 | | Cr I | 181 | 3383.94 | | A II | 92 | | 3367.29 | P | Ni I | 96 | 3374.95 | | Cr II | 4 | 3383.981 | | Fe I | 83 | | | | W TTT | - | | | | | 0004.44 | | | | | 3367.36
3367.42 | | N III
Cr II | 5
79 | 3374.99 | | Cr II
Co I | 149
153 | 3384.14
3384.24 | | Hf II
Cr I | 44
54 | | 3367.53 | | Cr I | 54 | 3375.238
3375.50 | | 0 IV | 8 | 3384.617 | | Mo I | 9 | | 3367.54 | | Fe III | 17 | 3375.561 | | Ni I | 108 | 3384.65 | | Cr I | 54 | | 3367.661 | | Gd II | 91 | 3375.77 | | O II | 52 | 3384.658 | | Sm II | 30,39 | | 3367.666 | | VII | 170 | 3376.057 | | V I | 54 | 3384.70 | | Hr II | 9 | | 33 67.81 | | Ca III | 4 | 3376.17 | | WII | 10 | 3384.80 | P | Fe I | 25 | | 3367.81 | | Zr II | 11 | 3376.18 | _ | Cr I | | 3384.95 | | 0 111 | 27 | | 3367.892 | | N1 I
Cr II | 20
4 | 3376.24 | P | Fe II
Zr II | 78
80 | 3385.219
3385.31 | | Co I
Cr I | 22
236 | | 3368.054 | | OF II | 4 | 3376.25 | | ZF 11 | 60 | 3980.31 | | OF I | 230 | | 3368.09 | | s II | | 3376.27 | | Cr II | 78 | 3385.55 | | O IV | 3 | | 3368.25 | P | Fe I | 678 | 3376.33 | | La II | 46 | 3385.664 | | Ti I | 24 | | 3368.447 | | Fe II | 134 | 3376.331 | | N1 I | 104 | 3385.790 | | V II | 183 | | 3368.472 | | Ir I | 5 | 3376.397 | | Cr I | 254 | 3385.81 | | SII | | | 3368.568
3368.626 | | Sm II
Fe II | 30
177 | 3376.46 | | A II
Hf II | 109
31 | 3385.944
3386.129 | | Ti I
Rh II | 23
2 | | 3368.63 | | Zr I | 17 | 3376.68
3376.72 | | Cr II | 112,148 | 3386.22 | | C1 III | 11 | | 3368.67 | | Co I | 101 | 3376.82 | | 0 111 | 27 | 3386.24 | | Ne II | 12 | | 3368.73 | | Cr II | 91 | 3377.060 | | Co I | 42 | 3386.452 | | Fe II | 88 | | 3368.946 | | Sc II | 4 | 3377.127 | | Ce II | 213 | 3386.50 | | Cr I | 236 | | | | 5 . • | ••• | | | | _ | | | | | | 3368.983 | | Fe I | 376 | 3377.20 | | 0 II | 9 | 3386.724 | | Fe II | 110 | | 3369.05
3369.054 | | Cr II
Ti I | 68
25 | 3377.23
3377.36 | | Ne II
Cr II | 42
149 | 3387.061
3387.13 | | Co I
8 III | 119
2 | | 3369.055 | | Eu II | 20 | 3377.394 | | V I | 54 | 3387.410 | | Fe I | 306 | | 3369.14 | P | Fe I | 191 | 3377.45 | | Zr II | 11 | 3387.466 | | N1 I | 17 | | 3369.212 | | Ti II | 64 | 3377.485 | | Ti I | 25 | 3387.47 | | Co I | 45 | | 3369.27 | | Zr II | 85 | 3377.52 | | PII | 12 | 3387.60 | | Cl III | 2 | | 3369.295 | | Ru II | 2 | 3377.577 | | Ti I | 23 | 3387.72 | | Co II | 2 | | 3369.349
3369.40 | | Fe II
O III | 76
11 | 3377.625
3377.77 | | V I
Fe III | 54
97 | 3387.73
3387.834 | | Cr II
Ti II | 90
1 | | 3308.40 | | 0 111 | ** | 3311.11 | | 16 111 | <i>6</i> 1 | 00011001 | | ** ** | * | | 3369.455 | | Sm II | 35 | 3378.09 | | O IV | 4 | 3387.87 | | Zr II | 74 | | 3369.49 | | S III | 2 | 3378.209 | | Sc II | 38 | 3387.96 | | Cr II | 112 | | 3369.549 | | Fe I | 304 | 3378.28 | | Ne II | 7 | 3388.065 | | Gd II | 71 | | 3369.573 | | Ni I | 6 | 3378.30 | | Zr II | 73 | 3388.134 | | Fe II | 77 | | 3369.618 | | Gd II
Ti II | 21,73 | 3378.337 | | Cr II | 21 | 3388.163 | | Co I | 23 | | 3369.67
3369.80 | P | Fe II | 124
76 | 3378.676
3378.73 | P | Fe I
Fe I | 301
137 | 3388.18
3368.29 | | Co II
Zr II | 2
2 | | 3369.8086 | - | Ne I | 2 | 3378.736 | • | Co I | 121 | 3388.46 | | Ne II | 19 | | 3369.9081 | | Ne I | 2 | 3379.017 | | Fe I | 85 | 3388.54 | | A II | 96 | | 3370.23 | | 0 II | 52 | 3379.171 | | Cr I | 5 | 3388.71 | | Cr I | 54 | | | | . - | | | | _ | | : | | _ | _ | | 3370.322 | | Co I | 24 | 3379.172 | | Ce II | 98 | 3388.755 | ъ | Ti II | 53 | | 3370.38
3370.40 | | S III
V II | 2
88 | 3379.18
3379.216 | | Sc II
Ti I | 43
24 | 3388.81
3388.88 |
P | Fe I
Cr I | 140
90 | | 3370.40 | | Ti I | 23 | 3379.216
3379.371 | | Cr II | 24
21 | 3388.912 | | Gd II | 90
73 | | 3370.588 | | Os I | 4 | 3379.39 | | Ne II | 12 | 3388.966 | | Fe I | 502 | | 3370.786 | | Fe I | 304 | 3379.397 | | Sc II | 38 | 3389.325 | | Sm II | 52 | | 3370.94 | | Co II | 2 | 3379.48 | | AII | 59 | 3389.748 | | Fe I | 87 | | 3370.97 | | AII | 57 | 3379.564 | | Cr I | 54 | 3389.83 | | Hf II | 8 | | 3371.015 | | Co I | 151 | 3379.58 | | A II | _ | 3390.082 | _ | Fe II | 207 | | 3371 10 | | D IV | 7 | 2270 750 | | CAII | 0.1 | 9900 OK | | Vo I | 100 | | | | | | | | | | | | Plement | Multiplat No. | |----------------------|------|----------------|-----------------|-----------------------------|------|----------------|---------------|----------------------|------|-----------------|-----------------| | IA | Type | Kl ement | Multiplet No. | I A | Туре | Element | Multiplet No. | I A
3409.177 | Type | Element
Co I | Multiplet No. | | 3390.25 | P | 0 IV | 9
3 | 3399.54
3399.80 | | Cr II
Hf II | 1 | 3409.191 | | CP II | 3 | | 3390.37
3390.396 | r | Co I | 102 | 3399.951 | | Tm II | 12 | 3409.20 | | Fe I | 614 | | 3390.498 | | Gd II | 73 | 3399.991 | | Gd II | 22 | 3409.297 | | Gd II | 21 | | 3390.515 | | Ce II | 145 | 3400.08 | | Cr II | 67 | 3409.36
3409.40 | P | Cr I
Fe I | 445 | | 3390.56 | | Ne II | 12 | 3400.110 | | Na II
V I | 4
46 | 3409.578 | • | Ni I | 5 | | 3390.682
3390.77 | | Ti I
Cr I | 86
236 | 3400.395
3400.471 | | Co I | 42 | 3409.60 | P | Cr II | 8 | | 3390.783 | | Eu II | 200 | 3401.067 | | Gd II | 8 | 3409.646 | | Co I | 24 | | 3390.878 | | Ģđ II | 73 | 3401.166 | | N1 I | 107 | 3409.75 | | O IV | 3 | | | | | | | | | •• | 3409.79 | P | Cr II | 8 | | 3391.01 | | V II
N1 I | 121
5 | 3401.521
3401.617 | | Fe I
Co I | 26
44 | 3409.809 | _ | Ti II | 1 | | 3391.Q50
3391.11 | | Cr I | 236 | 3401.740 | | V II | 106 | 3409.84 | | 0 11 | 44 | | 3391.294 | | Gd II | 73 | 3401.76 | | Ni II | 4 | 3409.87 | | Y II | 63 | | 3391.303 | | Fe II | 117 | 3401.90 | | WII | 9 | 3410.031
3410.171 | | Fe I
Fe I | 542
735 | | 3391.372 | | Cr I | 254 | 3401.913 | | Co I
V II | 157
47 | 3410.171 | | Hf II | 30 | | 3391.434 | P | Cr II
Fe I | 3
678 | 3401.997
3402.064 | | Co I | 123 | 3410.26 | | Zr II | 11 | | 3391.84
3391.85 | - | A III | 6 | 3402.072 | | Gđ II | 91,149 | 3410.46 | _ | V II | 119 | | 3391.96 | | Zr II | 1 | 3402.256 | | Fe I | 614 | 3410.56 | P | Fe I | 244 | | | | m. 77 | 40 | 2400 80 | | Po II | 105 | 3410.74 | | Fe III | 61,62 | | 3391.989
3392.018 | | Eu II
Fe I | 17
499 | 3402.32
3402.422 | P | Fe II
Ti II | 53 | 3410.905 | | Fe I | 25 | | 3392.040 | | Th II | 5 | 3402.43 | | Cr II | 21 | 3411.01 | | Cr I | | | 3392.304 | | Fe I | 83 | 3402.464 | | Sm II | 39 | 3411.134 | | Fe I | 299 | | 3392.530 | | Gd II | 7 | 3402.52 | | Zr II | 85 | 3411.353
3411.38 | | Fe I
Ne II | 301
45 | | 3392,652 | | Fe I | .85
70 | 3402.571 | | V I
Zr II | 46
91 | 3411.68 | P | Ti II | 63 | | 3392.659
3392.713 | | V II
Ti I | 70
136 | 3402.87
3403.081 | | Gd II | 73 | 3411.76 | | La II | 155 | | 3392.78 | | Ne II | 7 | 3403.159 | | V II | 135 | 3411.76 | | O IV | 2 | | 3392.89 | | C1 II | 11 | 3403.29 | P | Cr II | 21 | 3411.88 | P | Fe I | 298 | | | | *** - | | | _ | ta. • | 000 | 3412.020 | | Gd II | 73 | | 3392.992 | | Ni∗I
Cr II | 20
21 | 3403.29 | P | Fe I
Fe I | 377
304 | 3412.339 | | Co I | 25 | | 3393.00
3393.12 | | Zr II | 3 | 3403.299
3403.322 | | Cr II | 3 | 3412.47 | P | N1 I | 90 | | 3393.382 | | Fe I | 376 | 3403.369 | | Ti I | 86 | 3412.583 | | Gd II | 70 | | 3393.45 | | C1 III | 11 | 3403.432 | | N1 I | 108 | 3412.633 | | Co I | 6 | | 3393.609 | | Fe I | 305,376 | 3403.51 | | Fe III | 61 | 3412.753
3412.934 | | Gd II
Cb II | 23
3 | | 3393.630
3393.641 | | Gd II
Nd II | 91 | 3403.58
3403.59 | | O IV
Cr. I | 2
254 | 3413.13 | | Ne II | 45 | | 3393.86 | | Cr II | 21 | 3403.69 | | Zr II | 59 | 3413.135 | | Fe I | 85 | | 3393.915 | | Fe I | 136 | 3404.301 | | Fe I | 25,301 | 3413.273 | | Gd II | 91 | | | | | | | | | | 3413.39 | | Zr II | 60 | | 3393.920
3394.085 | | Ce II
Fe I | 48
188 | 3404.34
3404.357 | | P II
Fe I | 12,21
83 | 3413.46 | P | N1 I | 124 | | 3394.26 | | 0 111 | 27 | 3404.43 | | V II | 243 | 3413.478 | | Ni I | 5 | | 3394.29 | | 8c II | 38 | 3404.60 | | Pd I | 2 | 3413.71 | | O IV | 2 | | 3394.32 | | Cr II | 21 | 3404.755 | | Fe I | 300 | 3413.74 | | Hf II
Ni I | 20
17 | | 3394.37 | P | Ti II | 63 | 3404.77 | | Ne II
Zr II | 51
11 | 3413.939
3414.02 | | Ti II | 127 | | 3394.574
3394.58 | | Ti II
Hf II | 1
7 | 3404.84
3404.923 | | Fe I | 300 | 3414.144 | | Fe II | 91 | | 3394.583 | | Fe I | 81 | 3404.97 | | Ti II | 63 | 3414.192 | | V II | 135 | | 3394.63 | | Zr II | 85 | 3405.038 | | Gd II | 91 | 3414.207 | | Gd II | 107 | | **** | | 0- 7 | 40 | 0407 064 | | M4 T | 00 | 3414.46 | | AII | 107 | | 3394.916
3394.92 | | Co I | 42
80 | 3405.094
3405.120 | | Ti I
Co I | 86
23 | 3414.65 | | Zr II | 73 | | 3394.99 | | Hr II | 63 | 3405.160 | | V I | 46 | 3414.66 | | Zr I | 17 | | 3395.120 | | Gd II | 91 | 3405.50 | P | N1 I | 122 | 3414.765 | | N1 I | 19 | | 3395.336 | | Fe II | 117 | 3405.74 | | 0 111 | 15 | 3414.82
3414.879 | | Ne II
V II | 20
135 | | 3395.370
3395.62 | | Co I
Cr II | 25
100 | 3405.83
3405.934 | | Fe I
Mo I | 299
9 | 3415.29 | | 0 111 | 15 | | 3395.87 | P | Fe I | 543 | 3405.97 | P | O IV | 3 | 3415.47 | | Cr II | 100 | | 3395.90 | P | Fe I | 189 | 3405.977 | | Ce II | 96 | 3415.519 | | Co I | 5 | | 33 96.184 | | N1 I | 122 | 3406.06 | | V II | 119 | 3415.530 | | Fe I | 83 | | 3396.187 | | Sm II | 44 | 3406.17 | P | Fe I | 376 | 3415.67 | P | N1 I | 123 | | 3396.34 | | Zr II | 58 | 3406.18 | • | Fe III | 61 | 3415.78 | | Co II | 2 | | 3396.386 | | Fe I | 25 | 3406.442 | | Fe I | 676 | 3415.91 | | V II | 169 | | 3396.457 | _ | Co I | 102 | 3406.76 | P | Fe II | 90 | 3416.021 | P | Fe II
Fe I | 16
708 | | 3396.50
3396.58 | P | Ni I
Bu II | 118
30 | 3406.803
3406.837 | | Fe I
V I | 85
46 | 3416.52
3416.674 | | Sc I | 708
21 | | 3396.66 | | Zr II | 103 | 3406.88 | | Ne II | 51 | 3416.688 | | Fe I | 142 | | 3396.71 | | Fe III | 18 | 3407.00 | | La II | 155 | 3416.87 | | Ne II | 21 | | 3396.83 | | 0 I.A | 3 | 3407.06 | P | Fe I | 377 | 3416.948 | | Gd II | 22 | | 3396.85 | | Rh I | 3 | 3407.205 | | Ti II | 1 | 3416.957 | | Ti II | 53 | | 3396.978 | | Fe I | 26 | 3407.22 | | Cr I | | 3417.154 | | Co I | 23 | | 3397.07 | | Lu II | 4 | 3407.30 | | N1 II | 4 | 3417.273 | | Fe I | 26 | | 3397.221 | | Fe I | 503 | 3407.38 | | 0 11 | 44 | 3417.330 | | Gd II | 91 | | 3397.499 | | Tm II
Fe I | 3
447 | 3407.461 | - | Fe I | 83 | 3417.353
3417.353 | | Co I
Ru I | 135
3 | | 3397.560
3397.580 | | V I | 54 | 3407.53
3407.56 | P | Fe I
Gd II | 81
91 | 3417.450 | | Ce II | 100 | | 3397.642 | | Fe I | 26 | 3407.61 | | Gd II | 24 | 3417.673 | | Co I | 122 | | 3397.77 | | La II | 128 | 3407.7 | | Y II | | 3417.71 | | Ne II | 20 | | 3397.82 | | Ni II | 8
50 | 3407.76 | | Hf II | 29 | 3417.795
3417.842 | | Co I
Fe I | 19
81 | | 3397.89 | | A II | 59 | 3407.960 | | Mn I | 26 | 0 # 1 1 1 0 4 5 | | 1 | 01 | | 3397.90 | | Ne II | 36 | 3408.01 | | Cr I | | 3417.88 | P | Ti I | 86 | | 3398.12 | P | Fe I | 615 | 3408.09 | | Zr II | 72 | 3417.9036 | | Ne I | 4. | | 3398.226 | | Fe I | 304 | 3408.13 | | 0 111 | 15 | 3418.02
3418.151 | P | Fe II
Sm II | 104 | | 3398.355
3398.634 | | Fe II
Ti I | 105
86 | 3408.136
34 08.14 | | N II
Pt I | 7
4 | 3418.176 | | Fe I | 577 | | 3398.811 | | Co I | 157 | 3408.676 | | Sm II | * | 3418.507 | | Fe I | 81 | | 3399.230 | | Fe I | 302 | 3408.678 | | СР 11 | 3 | 3418.514 | | Sm II | 47 | | 3399.336 | | Fe I | 85 | 3408.765 | | Cr II | 3 | 3418.528
3418.733 | | Sc I
Gd II | 21
7 | | 3399. 3 6 | | Zr I.I | 11 | 3408.955 | | V II | 120 | 3418.733 | | 34 II | • | | Mail-107 | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. |
--|--|------|---------|---------------|----------|------|---------|---------------|-----------------|------|---------|---------------| | 200.00 | | | | | | Þ | | | 3438.24 | | Hf II | 77 | | Main | | | | | | | | | | | | | | Main | | | | | | | | | | | | | | Section Per 1 | | | | | | | | | | | | | | Section Sect | | | | | 3428.94 | | | 99 | | | | | | Section Sect | | | | | | | | | | | | | | Section Sect | | | | | | | | | 3439.208 | | | 23 | | 340.00 0 11 | | | | | | | | | | | | | | 340.0.10 | 3420.54 | | La II | 126 | 3429.64 | | A II | 107 | | | Sc I | 21 | | Section Sect | | | | 105 | | | | | 3439.784 | | Gd II | 22 | | Section Sect | | | | | | | | | | | | | | Mail | | | | | | | Gd II | | | P | | | | Mail | | | | | | | | | | | | | | Mail | | | | | | | | | | | | | | Mail | | | | | | | | | | | | | | 9421.042 | | P | | | | | | | | P | | | | 9421.08 | 3421.24 | | Pd I | 3 | 3430.772 | | | | 3440.80 | | Ne II | 45 | | 1942-1968 Co 1 101 | | | | | | _ | | | 3440.989 | | Fe I | 6 | | 9421.64 A III 57 9431.186 75 II 12 9441.120 P C II 68 1421.64 A III 6 7 9431.286 | | | | | | | | | | | | | | 341.85 | | | | | · · | r | | | | ъ | | | | 9321.97 FP III 11 3431.069 SC I 21 3441.00 TP II 10 2422.069 M1 I 10 3021.46 P CF II 8 3441.00 TP | | | | | | | | | | P | | | | 5422-352 NI I 100 3931-45 P Fr II 8 3441-399 Cr I 50 5422-468 Fo I 444 3431-652 Fr II 50 3441-050 Tn II 50 5422-666 Fo I 454 3431-69 Cr I 53 3441-080 Mn II 3 3422-661 71 III 63 3431-69 Cr I 53 3441-081 Mn II 1 3442-044 Mn II 14 3422-761 64 II 8 3431-09 Cr I 73 3444-044 Mn II 14 3422-761 64 II 8 3432-039 Pr I 377 3444-044 Mn II 14 3422-761 64 II 8 3432-039 Pr I 377 3444-046 Pr I 136 3422-761 64 II 3 3432-039 Cr II 36 3442-049 Mn II 14 3422-761 341 342 3432-11 27 II 36 3442- | | | | | 3431.358 | | Sc I | 21 | | | | | | \$42,049 Fe I | | | | | | P | | | | | | | | Section | | | | | | | | | | | | 30 | | 3422.061 | | | | | | | | | | | | | | 3422.706 | | | | | | | | | | | | - | | 3422-799 | | | | | | | | | | | | | | 3422.751 | 3422.739 | | Cr II | 3 | 3431.995 | | | | • | | | | | 3422.900 | | | | | | _ | | | | | Fe I | | | 3432, 172 | | | | | | P | | | | | | | | 3432.35 | | | | | | | | | | | | | | 3423.711 Mi I 20 3432.41 Zr II 56 3442.72 P Fe II 76 3423.82 Zr II 2 3432.704 A II 107 3442.018 Co I 6 3423.83 Co II 2 3432.703 LI II 107 3442.070 Fe II 409,776 3423.82 La II 144 3432.07 Fe III 107 3442.070 Fe I 409,776 3422.9 La II 144 3432.07 Fe III 107 3442.07 | | | | | | | | | | | | | | 3423.85 | | | | | 3432.41 | | Zr II | 58 | | P | | | | 3423.855 Ce II 131 | | | | | | | | 107 | 3442.918 | | Co I | 6 | | 3423.9 La II 144 3432.97 Fe III 67 3421.02 Od II 7 3432.984 GG II 22 3433.203 CG I 3424.16 Y I 3428.094 Fe II 116 3432.095 CG I 3424.216 Y I 3428.096 Fe II 116 3432.096 CG II 3428.096 CG II 3428.097 Fe III 116 3432.096 CG II 3428.097 Fe III 116 3432.097 Fe III 117 3424.298 Fe II 118 3424.390 Fe III 118 3424.390 Fe III 118 3424.890 Fe II 188 | | | | | | | | 440 | | | | | | 3432.92 | | | | | | | | | | | | | | 3424.16 | | | | | | | | | | P | | 7 | | 3424.17 P Fe II 116 3453.045 Co I 23 3445.57 Zr II 73 3424.284 Fe I 81 3435.091 Co II 249 3445.600 Co III 1 1 3424.43 P Cr II 8 3453.50 Cr II 33 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.64 Pd I 11 3445.651 Al I 2 3424.600 Co I 102 3425.600 P III 8 8 3435.600 Co I 1 52 3445.70 Me II 42 3424.62 Zr II 8 8 3435.600 Cr II 52 3445.70 Me II 42 3424.62 Zr II 2 3435.707 V II 134 3445.700 P II 10 3425.000 P Fe I 541 3434 P O VI 9 3445.70 P Fe II 10 3425.000 P Fe I 541 3434 P O VI 9 3445.80 P Fe II 10 3425.000 P Fe I 3434.020 P Fe I 3434.020 P Fe I 3444.020 P Fe I 3444.020 P Fe I 3425.000 P Cr II 8 3434.12 Cr I 52 3444.10 Me II 12 3425.000 P Cr II 8 3434.40 V II 134 3444.300 P II I 10 3444.300 P Fe II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 P V II 134 3444.30 T II I 10 3425.000 P Cr II 8 3434.60 P Fe II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | P | | | | | | 99 | | 3424.43 P Cr II 8 3453.90 Cr II 3 3444.044 Cr I 22 3453.44 Pd I 11 3444.044 Cr I 22 3453.44 Pd I 11 3444.044 Tr I 120 3424.592 | | P | | | | | | | | | | | | 3424.590 Co I 103 3433.44 Pd I 11 3443.644 Ti I 120 3424.592 | | | | | | | | | | | | | | 3424.592 | | P | | | | | | | 0440 044 | | | | | 3424.64 | 3424.592 | | Ga II | 22 | 3433.558 | | Ni I | 19 | | | | | | 3424.82 | | | | | | | | | | | | | | 3425.099 | and the second s | | | | | | | | | | | | | 3425.022 | | | | | | _ | | | 3443. 83 | P | | | | 3425.070 V I 3434.029 Pe I 300 3444.10 0 III 15 3425.09 P Cr II 8 3434.46 V II 134 3444.30 TI I 122 3425.09 P Cr II 8 3434.46 V II 134 3444.30 TI II 6 3425.432 Cb II 7 3434.87 P Rh II 1 3444.30 TI II 120 3425.57 O IV 3 3434.89 P TI I 121 3444.40 TI I 120 3425.52 Fe II 5 3434.89 Rh I 2 3444.76 P Fe II 145 3425.624 Od II 91 3434.85 P Fe I 776 3444.871 Al I 2 3425.630 Th II 3 3435.89 P II 1 98 344.89 TI I 46 3425.930 Od II 23 3435.408 TI II 98 344.89 TI I 46 3425.930 Od II 23 3435.408 TI II 98 344.99 TI I 46 3426.99 P Fe I 502 3435.489 Rh I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 Rh I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.89 Rh I 53 3445.10 Cr I 51 3426.20 P II 3 3435.85 Fe II 1 3435.85 P Fe II 1 53 3445.00 P Cr II 140 3426.332 Fe II 1 111 3435.85 P Fe I 1 53 3445.50 P Cr II 146 3426.337 Fe I 135 3435.079 Cr I 53 3445.60 P Rh II 9 3426.342 Od II 73 3435.04 Fe I 191 3445.60 P Rh II 9 3426.342 Od II 73 3435.079 Cr I 52 3445.66 TI I 46 3426.337 Fe I 135 3436.04 Fe I 191 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9
3426.342 Od II 73 3436.07 Cr I 53 3445.66 TI 1 46 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 Cr I 51 3426.342 Od II 73 3436.09 V II 79 3446.08 Cr I 51 3426.342 Od II 73 3436.09 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.09 P Rh II 9 3426.342 Od II 91 3437.94 Fe II 91 3446.08 Cr I 56 3427.57 Fe I 616 3437.04 Fe I 197 3446.07 Fe II 64 3428.81 P Fe II 616 3437.95 Cr II 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | P | | | | | | | | 3425.082 Tm II 7 3434.112 Cr I 52 3444.281 N1 1 122 3425.082 Cb II 7 3434.46 V II 134 3444.306 T1 II 6 3425.432 Cb II 7 3434.57 P Rh II 1 121 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.630 Tm II 3 3435.38 V II 133 3444.891 T1 I 46 3425.630 Gd II 91 3434.60 T1 II 198 3445.99 T1 I 46 3425.90 Gd II 23 3435.492 T1 I 3445.492 T1 I 3445.04 Cr II 110 3425.96 Cr I 158 3435.492 T1 I 3445.04 Cr II 110 3425.96 P F II 134 545.492 T1 I 3445.04 Cr II 110 3425.99 P F I 502 3455.498 Rh II 53 3445.10 Cr I 51 3426.10 P F II 3 3435.55 S Cr I 5 3 3445.15 F I 81 3426.20 P II 3 3435.679 Cr I 52 3445.66 T1 I 46 3426.20 P II 3 3435.679 Cr I 52 3445.66 T1 I 46 3426.397 F I I 3426.392 Cr I 352 3435.498 Rh II 53 3445.56 Rh II I 9 3426.392 P Cr II 110 3435.55 S Cr I 52 3445.66 Rh II I 9 3426.208 Cr II 11 3 3435.679 Cr I 52 3445.66 Rh II I 46 3426.397 F I I 3 3435.679 Cr I 52 3445.66 Rh II I 9 3426.397 F I I 1 10 3435.679 Cr I 52 3446.08 Rh II 9 3426.392 P Cr II 11 10 3426.392 P Cr II 11 10 3426.692 P F II 1 11 11 11 11 11 11 11 11 11 11 11 1 | | | | 20 | | | | | | | | | | 3425.09 P Cr II 8 3434.46 V II 134 3444.306 T1 II 6 3425.09 Cr II 11 11 3425.57 | 3425.082 | | Tm II | 7 | 3434.112 | | Cr I | | | | | | | 3425.57 | | P | | | | _ | | | | | Ti II | | | 3425.582 Fe II 5 3434.883 Rh I 2 3444.76 P Fe II 145 3425.624 Od II 91 3434.895 P Fe II 776 3444.871 Al I 2 3425.630 Tm II 3 3435.498 P II 133 3444.871 Al I 2 3425.930 Od II 23 3435.408 TI II 98 3445 P N IV 7 3425.96 Cr I 158 3435.482 TI I 98 3445.04 Cr II 110 3426.99 P Fe I 502 3435.489 Cr I 53 3445.10 Cr II 51 3426.13 Cr II 311 3435.679 Cr I 52 3445.566 TI I 46 3426.20 P II 3 3435.679 Cr I 52 3445.566 TI I 46 3426.337 Fe I 135 3435.619 Cr I 53 3445.58 P Fe II 76 3426.3 | 3425.432 | | | 7 | 3434,57 | P | Kn II | 1 | 3444.34 | | Cr II | 111 | | 3425.624 0d II 91 3434.95 P Fe I 776 3444.871 Al I 2 3425.630 Tm II 3 3435.89 V III 133 3444.891 Al I 2 3425.930 Gd II 23 3435.406 Ti II 98 3445 P N IV 7 3425.96 Cr I 158 3435.432 Ti I 3445.04 Cr II 110 3426.96 P O VI 6 3435.489 Ni I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 Ni I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.679 Cr I 52 3445.20 P Cr II 146 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 136 3436.187 Cr I 53 3445.58 P Fe II 76 3426.3 | | | | | | P | | | | _ | | | | 3425.630 Th II 3 3435.88 V II 133 3444.899 Ti I 46 3425.930 Gd II 23 3435.408 Ti II 98 3445.999 Ti I 46 3425.930 Gd II 23 3435.408 Ti II 98 3445.01 Cr II 110 3426 P O VI 6 3435.432 Ti I 3445.01 Cr II 110 3426.99 P Fe I 502 3435.489 Ni I 53 3445.10 Cr I 51 3426.13 Cr II 111 3435.555 Sc I 21 3445.20 P Cr II 148 3426.20 P II 3 3435.679 Cr I 52 3445.20 P Cr II 148 3426.20 P II 3 3435.679 Cr I 52 3445.666 Ti I 46 3426.20 Cc II 44 3435.619 Cr I 53 3445.666 Ti I 46 3426.208 Cc II 44 3435.819 Cr I 53 3445.666 Ti I 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.337 Fe I 135 3436.112 Fe II 91 3446.08 Cr I 51 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.00 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 3426.383 Fe I 25,82 3436.393 V II 79 3446.08 Cr I 62 3426.583 Cc II 51 3436.393 V II 79 3446.283 Ni I 20 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Cr II 2 3426.81 P Fe II 103 3437.006 Ir I 3 3446.40 Cr II 2 3426.81 P Fe II 103 3437.006 Fe I 539 3446.40 Cr II 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.80 Cr II 11 11 33 3446.71 Fe II 26 3427.332 Cc III 2 3437.80 Cr II 11 11 3446.73 O III 25 3427.332 Cc III 2 3437.80 Cr II 11 11 3446.71 Fe I 244 3428.01 P Fe II 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.01 P Fe II 616 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3438.8 P O VI 7 34447.278 Fe I 82 | | | | | | P | | | | Р | | | | 3425.930 | 3425.630 | | Tm II | | | | | | | | | | | 3426 P O VI 6 3435.488 Cr I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 NI I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.555 8c I 21 3445.20 P Cr II 146 3426.20 P II 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.382 Gd II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.583 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.593 Fe I 25,82 3436.304 Ce II 94 3446.085 Mo II | | | | | | | | 98 | | P | | | | 3426.09 P Fe I 502 3435.489 Ni I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.555 8c I 21 3445.20 P Cr II 146 3426.20 P III 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.382 9d III 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb III 7 3436.394 V II 79 3446.088 Co I 162 | | ъ | | | | | | 50 | | | | | | 3426.13 | | | | | | | | | | | | | | 3426.20 P II 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.363 Fe I 25,82 3436.187 Cr I 52 3426.562 Cb II 7 3436.304 Ce II 94 3446.085 Co I 162 3426.637 Fe I 82 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.393 V II 79 3446.38 K I 4 3426.61 P Fe I 615 3437.006 Ir I 3 3446.38 K I 4 3426.81 P Fe II 103 3437.046 Fe I 539 3446.40 Co II 2 3426.81 P Fe II 103 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.16 Zr II 33 3446.721 Ce II 56 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.57 La II 132 3437.631 Fe I 187 3446.947 Fe I 26 3427.57 La II 132 3437.680 Co I 162 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 | | - | | | | | | | | D | | | | 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.283 Mi I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.61 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.61 P Fe II 615 3437.046 Fe I 539 3446.40 Co II 2 3426.61 P Fe II 103 3437.046 Fe I 539 3446.603 T1 I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.71 Ce II 56 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.77 Fe III 88 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.91 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.97 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.97 Fe I 81 3437.958 Fe I 614 3447.278 Fe I 82 3438.97 Fe I FE I 81 8438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe I 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 81 82 3438 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 614 3447.278 Fe II 62 3448.94 3448. | 3426.20 | | P II | | 3435.679 | | Cr I | | | • | | | | 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.697 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.81 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332< | | | | | | | | | 3445.58 | P | Fe II | 76 | | 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.283 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.322 Ce III 2 3437.280 Ni I 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.352 Gd II 91 3437.680 Co I 162 3446 | | | | | | | | | | - | | | | 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3428.01 | | | | | | | | | | P | | | | 3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.283 Ni I 20 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe
I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Od II 91 3437.631 Fe I 187 3446.791 Fe I 244 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.222 O III <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | • | | | | | | | | | | 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 0d II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.95 Fe I 614 3447.015 Cr I 52 3428.1 | 3426.583 | | Ce II | | | | | | | | | | | 3428.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 0d II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.222 | | _ | | | | | | | | | | | | 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 NI I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 24 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 62 | | | | | | | | | 3446.40 | | Co II | 2 | | 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 2b 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 62 3428.11 P Fe I 82 8447.278 Fe I 62 | | £° | | | | | | | | | | | | 3427.332 | 3427.121 | | Fe I | 81 | 3437.162 | | N II | 13 | | | | | | 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 3429.41 P Fe I 82 | | | Ce III | 2 | 3437.280 | | N1 I | 3 | | | | | | 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 3439.41 P Fe I 82 | | | | | | | | | | | Fe I | | | 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3438 P 0 VI 7 3447.278 Fe I 82 | | P | | | | | | | | | | | | 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 | | - | | | | | | | | | | | | 9499 41 B Po T 900 9499 10 B Po T 900 | 3428.37 | | Hf II | | 3438 | | O VI | | | | | | | WYTIANI W. I | 3428.41 | P | Fe I | | 3438.10 | P | Fe I | 300 | 3447.281 | | Co I | 181 | II...DING DIGI 19 | | | | | | | | | | | | 10 | |--------------------------------------|------|-----------------|----------------|----------------------|------|----------------|---------------|-----------------------|------|----------------|---------------| | IA | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 0447 400 | | Cr I | E0. | 0458 048 | | 0.1 77 | | 0.40# 0# | | | | | 344 7.430
344 7.594 | | He I | 52
7 | 3457.047
3457.088 | | Gd II
Y II | 77 | 3465.25
3465.562 | | V II
Ti II | 160
99 | | 3447.760 | | Cr I | 52 | 3457.090 | | Fe I | 374,835 | 3465.57 | | Cr I | 51 | | 3447.98 | | 0 11 | 27 | 3457.153 | | V II | 147 | 3465.62 | | N1 II | 4 | | 3448.05 | P | 0 III | 25 | 3457.16 | P | Ne II | 51 | 3465.63 | | Zr I | 17 | | 344 8.19
344 8.255 | P | Fe I
Tì I | 186
46 | 3457.298
3457.494 | | Ti I
Ti I | 46
46 | 3465.792 | | Co I | 5 | | 3448.358 | | Co I | 163 | 3457.494 | | Fe I | 187 | 3465.80
3465.863 | | A II
Fe I | 96
6 | | 3448.433 | | Fe II | 90 | 3457.56 | | Zr II | 20 | 3466.15 | | 0 111 | 25 | | 3 44 8.478 | | Fe I | 444 | 3457.62 | | Cr II | 135 | 3466.25 | | Cr II | 77,148 | | | | | | | | | _ | | | | | | 3448.503
3448.542 | | Sc I
Mo II | 21
1 | 3457.809 | | Mn II
O II | 9
81 | 3466.279 | | Fe I
Mn II | 185 | | 3448.63 | P | Fe III | 27 | 3457.99
3458.020 | | Ti I | 46 | 3466.336
3466.34 | | A II | 12
44,56 | | 3448.69 | _ | VII | 118 | 3458.028 | | Co I | 101 | 3466.498 | | Gd II | 53 | | 3448.786 | | Fe I | 372 | 3458.090 | | Cr I | 253 | 3466.501 | | Fe I | 24 | | 3448.82 | | Y II | 17 | 3458.13 | P | Fe II | 10 | 3466.59 | _ | V II | 58 | | 3448.869 | | Fe I
Ir I | 242
1 | 3458.18 | | Fe III
Al I | 100
2 | 3466.85
3466.90 | P | Fe II
O III | 156
25 | | 3448.967
3449.06 | P | Fe I | 442 | 3458.230
3458.304 | | Fe I | 139 | 3466.952 | | Gd II | 23 | | 3449.170 | - | Co I | 22 | 3458.474 | | Ni I | 19 | 3467.022 | | Cr I | 141,253 | | | | | | | | | | | | | | | 3449.28 | | Cr II | 111 | 3458.91 | | Fe III | 27 | 3467.09 | P | Cr II | 2 | | 3449.441
3449.5 | P | Co I
Mn II | 22
9 | 3458.93
3459.03 | | Zr II
Ti II | 58
125 | 3467.12
3467.260 | | Ni I
Ti I | 123
84 | | 3449.616 | • | Gd II | 7 | 3459.07 | | 0 11 | 81 | 3467.267 | | Gd II | 22 | | 3449.874 | | Ti I | 46 | 3459.29 | | Cr II | 136 | 3467.33 | | V II | 58 | | 3450.00 | P | Cr I | 90 | 3459.29 | P | Fe I | 576 | 3467.502 | | N1 I | 3 | | 3450.14 | P | Fe I | 242 | 3459.374 | | Ce III | 3 | 3467.715 | | Cr I | 110 | | 3450.328 | | Fe I
Gd II | 82
22 | 3459.38 | | Ne II
Fe I | 51 | 3467.732 | | N1 I
Sm II | 123
54 | | 3450.376
3450.735 | | Ti I | 46 | 3459.429
3459.431 | | re 1
Ti I | 297 | 3467.874
3467.88 | | Y II | 54
17 | | 2200.100 | | | 20 | 0.1001.101 | | | | 2401400 | | * | 4. | | 3450.84 | | Cr II | 60 | 3459.52 | | 0 111 | 25 | 3468.083 | | Gd II | 21 | | 3450.94 | | 0 111 | 25 | 3459.61 | P | Fe I | 577 | 3468.113 | | Ce II | 178 | | 3451.046 | | V II | 118 | 3459.911 | | Fe I | 501 | 3468.32 | | K II | 1 | | 3451.228
3451.233 | | Fe II
Gd II | 208
22 | 3459.95
3459.95 | P | Fe I
Zr II | 133
90 | 3468.476
3468.680 | | Ca I
Fe II | 10
114 | | 3451.318 | | Fe II | | 3459.98 | | 0 11 | 25 | 3468.849 | | Fe I | 242 | | 3451.33 | | 0 111 | 25 | 3460.03 | | Cr II | 60 | 3468.973 | | Co I | 159 | | 3451.41 | | В ІІ | 1 | 3460.039 | | Mn II | 1 | 3468.989 | | Gd II | 40 | | 3451.614 | | Fe II
Fe I | 207
139 | 3460.31 | | La II
Mn II | 119
3 | 3469.012 | | Fe I
Gd II | 614
39 | | 3451.628 | | re 1 | 109 | 3460.312 | | MII II | | 3469.307 | | 0u 11 | 38 | | 3451.66 | P | Fe I | 241 | 3460.430 | | Cr I | 141 | 3469.390 | | Fe I | 375 | | 3451.88 | | Re I | 2 | 3460.47 | | Re I | 2 | 3469.486 | | N1 I | 8 | | 3451.914 | | Gd II | 70 | 3460.719 | | Co I | 35 | 3469.528 | | V II | 58 | | 3451.915
3452.18 | | Fe I
Co I | 81
160 | 3460.76
3460.776 | | Pd I
Gd II | 2
73 | 3469.590
3469.683 | | Cr I
Co I | 141
137 | | 3452.18 | | La II | 30 | 3461.0 | | Y II | 40 | 3469.834 | | Fe I | 242 | | 3452.273 | | Fe I | 25 | 3461.173 | | Co I | 162 | 3469.94 | | Zr II | 59 | | 3452.31 | P | Fe III | 49 | 3461.28 | | Cr II | 148 | 3470.18 | | YII | 40 | | 3452.33 | P | Fe II | 89 | 3461.34 | | N IV | 7 | 3470.242 | | Fe II
V II | 89 | | 3452.470 | | Ti II | 99 | 3461.38 | | Eu II | 13 | 3470.263 | | V 11 | 58 | | 3452.55 | | Fe III | 88 | 3461.496 | | T1 II | 6 | 3470.27 | | A II | | | 3452.670 | | Al I | 2 | 3461.580 | | Ņ II | 6 | 3470.401 | | Cr I | 77 | | 3452.890 | | Ni I | 17 | 3461.652 | | Ni I | 17 | 3470.42 | | 0 11 | 27 | | 3453.022
3453.087 | | Fe I
V II | 301
132 | 3461.952 | | Gd II
Rh I | 23
3 | 3470.529
3470.657 | | Cr I
Rh I | 77
3 | | 3453.10 | | Ne II | 21 | 3462.040
3462.108 | | Tm II | J | 3470.72 | | Cr I | 77 | | 3453.17 | | La II | 46 | 3462.353 | | Fe I | 79 | 3470.81 | | 0 11 | 27 | | 3453.23 | | Cr I | 253 | 3462.494 | | Na II | 4 | 3470.83 | | P II | 12 | | 3453.31 | | O II
Cr I | 71
52 | 3462.65 | | Hf II | 6 | 3470.866 | | Nd II | 70 | | 3453.328 | | OF I | 32 | 3462.73 | | Cr II | 2 | 3470.894 | | Ce III | 1 | | 3453.514 | | Co I | 22 | 3462.748 | | Mn I | 41 | 3471.14 | | Zr II | 114 | | 345 3.595 | | Fe II | | 3462.804 | | Co I | 23 | 3471.18 | | Zr I | 15 | | 3453.654 | | Ti I | 46 | 3462.808 | | Fe I | 373 | 3471.27 | | Fe I
Ni II | 82 | | 3453. 665
3453.74 3 | | Tm II
Cr I | 7
52 | 3462.878
3462.997 | | Mn II
Gd II | 12
8 | 3471.35
3471.350 | | N1 II
Fe I | 4
130 | | 3453.78 | | v II | 132 | 3463.02 | | Zr II | 90 | 3471.382 | | Co I | 161 | | 3453.84 | P | Cr I | 90 | 3463.079 | | V II | 104 | 3471.49 | | Cr I | 77 | | 3454 | P | N IV | 7 | 3463.205 | | T1 I | 85 | 3471.59 | _ | AII | 57 | | 3454.10 | | A II
Gd II | 44
7 | 3463.305 | | Fe I | 48 | 3471.63 | P | Ni I
He I | 124
44 | | 3454.14 5 | | 90 II | • | 3463.330 | | Mn II | 12 | 3471.80 | | пе 1 | 44 | | 3454.16 | | N1 II | 1 | 3463.36 | | N IV | 7 | 3472.07 | | Cr II | 135 | | 3454.165 | | Ti I | 168 | 3463.499 | | Co I | 42 | 3472.196 | | Co I | 161 | | 3454.35 | | Fe III | 86 | 3463.52 | | W II | 7 | 3472.38 | | Hf I | 1 | | 3454.368 | | Ce III
Zr II | 2
59 | 3463.63 | | Al II
V II | 55
168 | 3472.48 | | Lu II
Ni I | 4
20 | | 3454.5
7
3454. 90 | | 0 III | 25 | 3463.831
3463.974 | | V II
Fe II | 168
4 | 3472.545
3472.5711 | | N1 I
Ne I | 20
2 | | 3454.904 | | Gd II | 7 | 3463.984 | | Gd II | 40 | 3472.707 | | Co I | 160 | | 3454.98 | | Cr II | 136 | 3464.02 | | Cr II | 2 | 3472.764 | | Cr I | 77 | | 3455.04 | | Mn I | 41 | 3464.043 | | Mn II | 12 | 3472.793 | | Ti I | 271 | | 34 55.12 | | 0 111 | 25 | 3464.132 | | Gd II | 90 | 3472.88 | | PII | 2 | | 3455.237 | | Co I | 6 | 3464.14 | | A II | 70 | 3472.886 | | Fe II | 156 | | 3455.281 | | Cr I | 51 | 3464.17 | | V II | 104 | 3472.906 | | Cr I | 111 | | 3455.602 | | Cr I | 51 | 3464.27 | | Fe III | 16 | 3473.01 | P | Fe ! | 576 | | 3455.755 | _ | Ti I | 46 | 3464.457 | | Sr II | 4 | 3473.219 | ъ | Gd II | 7
576 | | 3456.00
3456.390 | P | Fe II
Ti II | 4
99 | 3464.497
3464.72 | | Fe II
Re I | 114
2 | 3473.23
3473.497 | P | Fe I
Fe I | 576
26 | | 3456.390
3456.661 | | Ti I | 134 | 3464.72
3464.82 | | Cr I | 51 | 3473.437 | | Cr I | 77 | | 3456.68 | | Ne II | 28 | 3464.914 | | Fe I | 241 | 3473.82 | | Fe III | 27 | | 2456 024 | | Co. I | 5 | 2465 027 | | Mn II | 19 | 3473.825 | | Fe II | | | 20 | | | | | | | | | | | | |-------------------------------------|------|----------------|----------------|-------------------------------------|------|-----------------|---------------|----------------------|------|-----------------|------------------| | Î A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 3474.037 | | Mn II | 3 | 3481.536 | | Cr I | 110 | 3490.765 | | Ti I | 22 | | 3474.124 | | Mn II | 3 | 3481.558 | | Fe I | 132 | 3490.89 | | A II | 30 | | 3474.379 | | Cr I | | 3481.675 | | Ti I | 271 | 3491.053 | | T1 II | 6 | | 3474.41 | P | Fe II1 | 27 | 3481.750 | | Tm II | 10 | 3491.16
3491.19 | P | Fe III
Ti II | 103
118 | | 3474.530
3474.56 | | Co I
N IV | 24
7 | 3481.797 | P | Gd II
Fe II | 22
102 | 3491.19
3491.24 | F | A II | 44 | | 3474.763 | | Ca I | 10 | 3481.92
3481.96 | F | Ne II | 6 | 3491.316 | | Co I | 6 | | 3474.780 | | Rh I | 2 | 3482.05 | P | Fe II | 10 | 3491.54 | | A II | 44 | | 3474.84 | | La II | 143 | 3482.06 | | Mn II | 9 | 3491.954 | | Gd II | 6 | | 3474.87 | | Cr I | 141 | 3482.36 | | Fe 1H | 103 | 3491.987 | | Co I | 159 | | 3474.887 | | Sr II | 4 | 3482.39 | P | Fe II | 133 | 3492.24 | | O IV | 14 | | 3474.94 | | Fe III | 90 | 3482.426 | F | Fe II | 100 | 3492.39 | | Ti II | 125 | | 3474.94 | | OII | 8 | 3482.56 | P | Cr II | 148 | 3492.956 | | N1 I | 18 | | 3475.13 | | Cr II | 2 | 3482.58 | | Al I | 17 | 3493.163 | | V II | 6 | | 3475.25 | P | Fe II | 4 | 3482.58 | | Cr II | 67 | 3493.280
3493.29 | | Ti I
Fe I | 22
48 | | 3475.25
3475.36 | P | Ne II
Cr I | 35
141 | 3482.602
3482.70 | | Gd II
Si III | 40 | 3493.34 | P | Fe II | 102 | | 3475.450 | • | Fe I | 6 | 3482.73 | | Ni I | 120 | 3493.468 | | Fe II | 114 | | 3475.651 | | Fe I | 78 | 3482.905 | | Mn II | 3 | 3493.57 | P | Fe I | 327 | | 3475.74 | P | Fe II | 4 | 3482.98 | | N IV | 1 | 3493.69 | | Fe I | 297 | | 2475 067 | | Fe I | 106 979 | 9469 006 | | Fe I | 24 | 3494.15 | | Fe I | 137 | | 3475.867
3476.252 | | V II | 186,373
58 | 3483.006
3483.010 | | Ti I | 22 | 3494.25 | P | Fe I | 185 | | 3476.336 | | Fe I | 133,835 | 3483.410 | | Co I | 23 | 3494.404 | | Gd II | 7 | | 3476.360 | | Co I | 161 | 3483.54 | | Zr II | 33 | 3494.52 | | Cr II | 2 | | 3476.452 | | T1 I | 85 | 3483.59 | P | Zr II | 103 | 3494.66 | | O II
Fe II | 70
16 | | 3476.63 | | Ni I | 123
6 | 3483.62 | P | N1 I
N1 I | 120
6 | 3494.672
3494.703 | | Ni I | 154 | | 3476.704
3476.74 | | Fe I | 44 | 3483.774
3483.80 | | Co I | 5 | 3494.967 | | Cr I | 109 | | 3476.842 | | Ce II | 132 | 3483.80 | | Ti II | 125 | 3495.16 | P | Fe I | 102 | | 3476.853 | | Fe I | 242 | 3484.15 | | Cr II | 2 | 3495.285 | | Fe I | 238 | | | | | _ | | _ | A | 400 | 3495.37 | | Cr II | 2 | | 3476.982 | | Ti II | 6 | 3484.16 | P | Cr II
Fe III | 185 | 3495.37
3495.44 | | 0 11 | 70 | | 3477.007
3477.161 | | Fe I
Cr I | 139
141 | 3484.18
3484.32 | | V II | 100
168 | 3495.56 | | Cr II | ••• | | 3477.181 | | Ti II | 6 | 3484.348 | | Fe II | 115 | 3495.6 | P | N1 II | 4 | | 3477.514 | | V II | 58 | 3484.39 | | La II | 113 | 3495.616 | | Fe II | 115 | | 3477.69 | | Ne II | 21 | 3484.65 | | V II | 6 | 3495.682 | | Co I
Hf II | 22
10 | | 3477.828 | | Rh II | 4 | 3484.84 | | Fe I | 185 | 3495.75
3495.754 | | Ti I | 84 | | 3477.836 | | Co I
Fe I | 161
82 | 3484.90 | | N IV
Fe I | 1
138 | 3495.831 | | Mn II | 3 | | 3477.850
3477.864 | | Ni I | 124 | 3484.97
3485.054 | | Ce II | 44 | 3495.94 | | Hf II | 30 | | 01111001 | | | | 01001001 | | | | | | | | | 3477.98 | P | Fe I | 836 | 3485.110 | | N1 I | 118 | 3495.960 | | Ti I
Co I | 22
136 | | 3478.17 | | Cr II | 109 | 3485.16 | | Hf II | 43
57 | 3496.070
3496.08 | | YII | 3 | | 34 78.24
34 78.29 | | A II
Zr II | 45
2 | 3485.31
3485.342 | | Zr II
Fe I | 57
78 | 3496.18 | | Zr II | 1 | | 3478.292 | | N1 I | 173 | 3485.368 | | Co I | 162 | 3496.19 | | Fe I | 186 | | 3478.382 | | Fe I | 185 | 3485.689 | | T1 I | 84 | 3496.27 | _ | 0 11 | 7 | | 3478.50 | | Zr II | 84 | 3485.700 | | Co I | 68 | 3496.27 | P | V II
Fe III | 131
103 | | 3478.55 | P | Fe II | 16 | 3485.728 | | Fe II | 133 | 3496.29
3496.29 | P | Ti II | 118 | | 3478.555 | | Co I
N IV | 120
1 | 3485.82
3485.867 | P | V II
V I | 131
81 | 3496.350 | - | N1 I | 118 | | 3478.69 | | | • | 04001001 | | | | | | | | | 3478.74 | | PII | 2,18 | 3485.888 | | N1 I | 17 | 3496.60 | P | Fe I | 572 | | 3478.744 | | Co I | 67 | 3485.916 | | V II | 6 | 3496.67 | P | Fe II
Co I | 88
19 | | 3478.77 | | Cr I | 141 | 3486.08 | P | Fe II | 102 | 3496.681
3496.794 | | Co I | 161 | | 3478. 788
3478. 79 | | Fe I
Cb II | 137
7 | 3486.14
3486.556 | | W II
Fe I | 11
79 | 3496.814 | | Mn II | 3 | | 3478.906 | | Rh I | 6 | 3486.93 | | Si III | ,,, | 3497.00 | P | V II | 131 | | 3478.918 | | Ti I | 84 | 3487.008 | | V I | 81 | 3497.00 | | Zr II | 10 | | 3478.9 61 | | V II | 182 | 3487.11 | | Fe III | 90 | 3497.031 | P | V II
Fe I | 146
78 | | 3478.97 | | He I | 43 | 3487.33 | | A II | 56
55 | 3497.115
3497.137 | F | Fe I | 78 | | 3478.98 | | Hf II | 61 | 3487.57 | | Hf II | JJ | 5.0101 | | | · - | | 3479.02 | | Zr II | 20 | 3487.598 | | Ca I | 10 | 3497.340 | | S III | | | 3479.14 | | Cr I | 141 | 3487.712 | | Co I | 65 | 3497.39 | | V II
Hf I | 131 | | 3479.264 | | N1 I | 105 | 3487.721 | _ | He I | 42 | 3497.49
3497.536 | | Mn II | 1
3 | | 3479.27 | | Al I | 17 | 3487.80
3487.990 | P | Ti I
Fe II | 119
4 | 3497.536 | P | Fe II | 114 | | 34 79.29
34 79.39 | | Hf II
Zr II | 2
46 | 3487.990
3488.18 | | 0 II | 7 | 3497.81 | P | Fe II | 133 | | 3479.53 | | Ne II | 49 | 3488.293 | | Ni I | 121 | 3497.843 | _ | Fe I | 6 | | 3479.567 | | Cb II | 6 | 3488.453 | | Cr I | 109 | 3497.89 | P | Fe I | 499 | | 3479.683 | | Fe I | 443,812 | 3488.553 | | Ce II | 187 | 3497.90
3498.12 | P | Zr II
V II | 58,84
131 | | 3479.78 | | Al I | 17 | 3488.676 | | Mn II | 3 | 3400 • 16 | • | | | | 3479.82 | | C1 II | | 3488.92 | | Fe III | 60 | 3498.18 | P | Fe I | 326 | | 3479.837 | | V II | 6 | 3489.07 | | Cr II | 135 | 3498.19 | P | N1 I | 2 | | 3479.914 | | Fe II | 4 | 3489.07 | P | Fe III | 26 | 3498.641 | - | He I | 40 | | 3480.012 | | Co I | 67 | 3489.17 | P | Fe II | 102 | 3498.83
3498.942 | P | V II
Ru I | 117
4 | | 3480.183 | | N1 I | 123,124 | 3489.281 | | Gd II
Co I | 106
36 | 3499.099 | | Ti I | 84 | | 348 0.28
348 0.40 | | Cr I
Zr II | 141
58 | 34 89.399
3489.4 5 | | Cr II | 109, 185 | 3499.49 | | A II | 5 | | 3480.52 | | A II | 56
57 | 3489.48 | P | Fe III | 27 | 3499.57 | | Fe III | 26 | | 3480.525 | | Ti I | 84 | 3489.670 | | Fe I | 442 | 3499.58 | | Zr II | 9 | | 3480.547 | | Gd II | 23 | 3489.739 | | Ti II | 6 | 3499.67 | | A III | 2 | | 9400 | | | • | 6400 | | 7 40 | 0 | 3499.823 | | V II | 5 | | 348 0.55
348 0.75 | | A III
Ne II | 2 | 3489.79
3489.84 | | Pd I
O IV | 8
14 | 3499.877 | | Fe II | 115 | | 3480.75
3480.897 | | Ne II
Ti II | 49
22 | 3489.84
3489.947 | | V II | 131 | 3500.15 | | Zr II | 123 | | 3481.11 | | K III | 3 | 3490.04 | P | Fe I | 331 | 3500.29 | | Fe III | 48 | | 3481.12 6 | | Ti I | 271 | 3490.45 | | P II | 19 | 3500.340 | | Ti II | 6 | | 3481.14 | | Zr II | 46 | 3490.47 | P | Fe I | 835 | 3500.5
3500.564 | | O II
Fe I | 80
238 | | 3481.17
3481.275 | | Pd I
Gd II | 2
22 | 3490.575 | | Fe I | 6
41 | 3500.564
3500.852 | | re I
Ni I | 23 6
6 | | v-101.2/0 | | un (I | 22. | 3400.62 | | He T | 41 | 30001002 | | • | - | | ΙA | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|---------------|---------------|----------------------|------|----------------|------------------|-----------------------|--------|----------------|-------------------| | 3501.33 | | Zr I | 14 | 3509.843 | | Co I | 22 | 3518.632 | | Gd II | 7 | | 3501.416 | | F II | 3 | 3509.844 | | Ti II | 88 | 3518.634 | | N1 I | 124 | | 35 01.453 | | Ce II
O II | 87
70 | 3509.870
3509.971 | | Fe I
Mn II | 78
9 | 3518.68
3518.75 | | Fe I
Hf II | 327
43 | | 3501.67
3501.73 | | Co II | 2 | 3510.00 | | La II | 15 | 3518.86 | | Fe I | 78 | | 3501.75 | | Fe III | 26,48 | 3510.133 | | Gd II | 21 | 3519.077 | | Ce II | 92 | | 3502.2 | P | o iv | 13 | 3510.18 | P | Fe I | 836 | 3519.24 | | Tl I | 2 | | 3502.278 | | Co I | 21 | 3510.262 | | СРІІ | 10 | 3519.25 | | Fe III
Zr I | 54
13 | | 3502.381
3502.46 | P | He I
Fe I |
39
576 | 3510.338
3510.40 | | Ni I
Cr I | 18
263 | 3519.60
3519.67 | P | Ti II | 118 | | 3502.40 | r | re 1 | 010 | 3310.40 | | 0. 1 | 200 | 0010101 | - | | | | 3502.524 | | Rh I | 2 | 3510.426 | | Co I | 6 | 3519.72 | P | Fe II | 88 | | 3502.595 | | N1 I | 3 | 3510.443 | | Fe I | 139 | 3519.766 | | N1 I | 5 | | 3502.63 | _ | Co I | 6 | 3510.46 | | Zr II
Cr I | 20
109 | 3519.85
3519.939 | | Fe III
Ti I | 59
22 | | 3502.85 | P | Fe I
F II | 577
3 | 3510.538
3510.840 | | Ti II | 88 | 3520.00 | | A II | 56 | | 3502.954
3502.998 | | Co I | 135 | 3511.227 | | Sm II | 12 | 3520.022 | | V II | 5 | | 3503.00 | | PII | 2 | 3511.25 | P | Fe II | 102 | 3520.075 | | Co I | 4 | | 3503.095 | | FII | 3 | 3511.42 | | A. 11 | 57 | 3520.253 | | Ti II | 98 | | 3503.206 | | Gd II | 90 | 3511.55 | | Zr II
N1 I | 124
152 | 3520.4717
3520.522 | | Ne I
Ce II | 7
55 | | 3503.36 | | Cr II | 157 | 3511.613 | | NI I | 102 | 3020.022 | | 00 11 | 00 | | 3503.38 | | Cr I | 109 | 3511.626 | | Ti I | 22 | 3520.547 | | V II | 57 | | 3503.474 | | Fe II | 4 | 3511.748 | | Fe I | 238 | 3520.55 | | Cr I | 235 | | 3503.58 | | A III | 2 | 3511.84 | | Cr II | 2
26 | 3520.72 | | La II
Fe I | 127
238 | | 3503.61 | | Ne II
Co I | 28
88 | 3511.93
3511.94 | | Fe III
Ni I | 124 | 3520.85
3520.87 | | Zr II | 19 | | 3503.717
3503.760 | | Ti I | 22 | 3512.08 | | Fe I | 327 | 3520.9 | P | O IV | 13 | | 3503.96 | F | Fe III | 48 | 3512.13 | | VII | 193 | 3520.91 | P | Zr II | 59 | | 3504.40 | | Fe III | 48 | 3512.219 | | Gd II | 38 | 3521.09 | | Eu II | 24 | | 3504.432 | | V II | 6
371 | 3512.239
3512.34 | P | Fe I
Fe III | 326
26 | 3521.264
3521.27 | | Fe I
A II | 24
56 | | 3504.455 | | Fe I | 9/1 | 3012.34 | r | F6 111 | 20 | 5021.21 | | | 00 | | 3504.48 | | Sb I | 2 | 3512.496 | | Gd II | 89 | 3521.28 | P | Zr II | 84 | | 3504.596 | | Ce III | 6 | 3512.511 | | He I | 38 | 3521.53 | | Cr I | 263 | | 3504.728 | | Co I | 135 | 3512.640 | | Co I | 21 | 3521.567 | | Co I | 20 | | 3504.773 | | Ti I | 167
131 | 3512.67
3512.68 | P | Zr II
Fe I | 57
327 | 3521.64
3521.731 | P | Fe II
Co I | 10
24,100 | | 3504.866
3504.890 | | Fe I
Ti II | 88 | 3512.70 | - | Cr I | 109 | 3521.833 | | Fe I | 78 | | 3505.065 | | Fe I | 498 | 3512.74 | P | Fe I | 613 | 3521.836 | | V II | 57 | | 3505.133 | | Co I | 160 | 3512.80 | P | Fe I | 330 | 3521.880 | | Ce II | 211 | | 3505.22 | | Hf II | 7 | 3512.93 | | La II | 44
501 | 3521.98 | | A II
Nd II | 45
71 | | 35 05.44 | | C1 II | 64 | 3512.95 | | Fe I | 901 | 3522.044 | | NG II | 11 | | 3505.45 | P | Ti II | 6 | 3513.0 3 | | Cr II | 107 | 3522.05 | P | Fe II | 10 | | 3505.47 | | Zr II | 90 | 3513.065 | | Fe I | 48 | 3522.063 | | Mo II | 1 | | 3505.512 | | Gd II | 22 | 3513.09 | | Ti II | 6 | 3522.13 | | Cr II
Cl II | 184.
64 | | 3505.614 | | F I!
Zr II | 3
1 | 3513.22
3513.478 | | C1 II
Co I | 64
5 | 3522.14
3522.268 | | Fe I | 326 | | 3505.67
3505.690 | | VI | 81 | 3513.59 | P | Fe I | 327 | 3522.72 | | Ne II | 35 | | 3505.901 | | Ti II | 88 | 3513.638 | | Ir I | 2 | 3522.73 | P | Fe I | 538 | | 3506.02 | | 0 11 | 70 | 3513.69 | | C1 II | 6 <u>4</u> | 3522.856 | | Co I | 159 | | 3506.04 | | Zr II | 84 | 3513.820 | | Fe I
V II | 24
117 | 3522.896
3523.02 | | Fe I
Hf I | 330
3 | | 3506.23 | | Fe I | 327 | 3513.877 | | V 11 | 11. | 3020.02 | | | · · | | 3506.310 | | Co I | 21 | 3513.88 | | K III | 1 | 3523.074 | | N1 I | 34 | | 3506.40 | | Fe I | | 3513.933 | | N1 I | 17 | 3523.18 | P | Fe I | 673 | | 3506.48 | | Zr II | 84 | 3513.933 | | N1 II
Co II | 1
1 | 3523.30
3523.423 | | Fe I
Co I | 326
21 | | 3506.498
3506.57 | | Fe I
V. II | 130
193 | 3514.21
3514.29 | P | Fe III | 27 | 3523.444 | | N1 I | 16 | | 3506.58 | P | Fe I | 327 | 3514.39 | - | AII | 44 | 3523.47 | P | N1 I | 154 | | 3506.61 | | Cr II | 108,157 | 3514.422 | | V II | 57 | 3523.701 | _ | Co I | 66 | | 3506.643 | | Ti I | 22 | 3514.48 | P | Fe I | 47 | 3524.04 | P | Fe I
Fe I | 238
239 | | 3506.843 | | V I
Fe III | 81
48 | 3514.62
3514.64 | | Fe I
Zr II | 183
114 | 3524.075
3524.196 | | Gd II | 239
6 | | \$306.93 | | 14 111 | 40 | 2012.04 | | 2. 11 | | 0022.200 | | | | | 3507.14 | P | Fe I | 835 | 3514.87 | | Fe III | 26 | 3524.236 | _ | Fe I | 130 | | 3507.316 | | Rh I | 2 | 3515.054 | _ | N1 I | 19 | 3524.54 | P | Cr II | 107 | | 3507.37 | | P II
Fe II | 18
16 | 3515.41
3515.421 | P | Fe I
Cb II | 243
6 | 3524.541
3524.646 | | N1 I
Mo II | 18
1 | | 3507.387
3507.39 | | Fe I | 500 | 3515.538 | | Be I | 7 | 3524.713 | | VII | 5 | | 3507.39 | | Lu II | 1 | 3515.57 | | Fe III | 54 | 3524.87 | | Ţ1 II | 118 | | 3507.426 | | T1 I | | 3515.818 | | Fe II | 208 | 3525.161 | | Ťi I | 167 | | 3507.534 | | V II | 159 | 3516.00 | | V II | 6
54 | 3525.17
3525.44 | | Fe III
Cr I | 60 | | 3507.66
3507.694 | | Zr II
Ni I | 58
3 | 3516.05
3516.234 | | Ni I | 123 | 3525.81 | | Zr II | 9 | | 00011001 | | | • | 00101101 | | | | | | | | | 3507.945 | | Ce II | 51 | 3516.403 | | Fe I | 442 | 3525.856 | | Fe I | 329 | | 3507.964 | | Y II | 47 | 3516.55 | _ | Fe I | 326 | 3525.872 | | Co I
Fe I | 63
24 0 | | 3508.09 | | Cr I
Fe II | 4 | 3516.58
9516.675 | P | Fe III
Co I | 5 <u>4</u>
65 | 3526.016
3526.039 | | Fe I | 6 | | 3508.213
3508.470 | | Ce II | 114 | 3516.675
3516.838 | | Ti I | 167 | 3526.13 | | C1 II | 64 | | 3508.494 | | Fe I | 442 | 3516.92 | | O H | 69 | 3526.167 | | Fe I | 24 | | 3508.52 | | Fe I | 239 | 3516.95 | _ | Pd I | 1 | 3526.23 | | Fe I | 327
328 | | 3508.67 | P | Cr II | 77
12 | 3517.03
3517.14 | P | Ni I
La III | 123
1 | 3526.377
3526.465 | | Fe I
Fe I | 326
131 | | 3508.731
3508.81 | | Eu II
Cr I | 13 | 3517.14
3517.298 | | V II | . <u>.</u> | 3526.540 | | Ni I | 155 | | 3508.81 | | Of I | | -JI. 1 250 | | | | | | | | | 3508.852 | | Ku II | 13 | 3517.327 | | He I | 37 | 3526.673 | _ | Fe I | 326 | | 3508.94 | | C1 II | 64 | 3517.380 | | Ce II | 230
1 | 3526.69 | P
P | Fe I
Fe I | 497
321 | | 3509
3500 034 | P | O VI | 5
117 | 3517.48
3517.53 | P | Co II
V II | 57 | 3526.78
3526.847 | r | Co I | 4 | | 3509.024
3509.12 | | Fe I | 326 | 3517.890 | | Gd II | 88 | 3526.96 | P | Fe I | 835 | | 3509.20 | P | V II | 117 | 3517.90 | | A II | 5 | 3527.08 | | Cr I | 274 | | 3509.32 | | Zr I | 15 | 3518.23 | P | Fe I | 575 | 3527.11 | | P II | 21
103 | | 3509.39 | ~ | C1 II | 64 | 3518.340 | | Co I
P II | 36
2 | 3527.42
3527.792 | | Zr II
Fe I | 103
326 | | 3509.73
3509.78 | P | Fe I
A II | 327
44 | 3518.61
3518.62 | | Cr II | 107 | 3527.867 | | A 11 | 117 | | 9009.10 | | ** | | | | | | | | | | | 22 | | | | | FIND | ING LIST | | | | | | |------------------------------------|------|---------------|------------------|----------------------|------|----------------|----------------|---------------------------|------|----------------|------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | | | | | - | | -300 | 22 00 | mururpico no. | | -, p | | | | 3527.90 | P | Fe I | 296 | 3538.142 | | Rh I | 8 | 3550.82 | | La II | 15 | | 3527.982
3528.024 | | Ni I
Rh I | 6
3 | 3538.238 | | V II | 4 | 3551.11 | P | Fe I | 321 | | 3528.23 | | Cr II | 109 | 3538.31 | | Fe I
Fe I | 775 | 3551.16 | | P II
Ne II | 12,21 | | 3528.24 | P | Fe I | 182 | 3538.55
3538.77 | | Fe I | 137
811 | 3551.52
3551.534 | | Ne II
Ni I | 25
5 | | 3 528.54 5 | | Gd II | 23 | 3538.86 | | Mg II | 12 | 3551.666 | | Co I | 67 | | 3 528. 602 | | Os I | 1 | 3539.00 | | Cr II | 157 | 3551.94 | | Zr II | 1 | | 3528.891 | | N1 I | 154 | 3539.05 | | Zr II | 102 | 3552.00 | | Al II | 53 | | 3528.94 | P | Fe I | 23 | 3539.086 | | Ce II | 118 | 3552.112 | | Fe I | 499 | | 3529.032 | | Co I | -5 | 3539.589 | | Th II | 1 | 3552.42 | P | Fe I | 182 | | 3529.38 | | Tl I | 2 | | | | | | _ | | | | 3529.531 | | Fe I | 537 | 3539.94
3540.121 | | Ne II
Fe I | 50 | 3552.50 | P | Cr II
Eu II | 89 | | 3529.57 | | WII | 12 | 3540.28 | P | Cr II | 329
89 | 3552.516
3552.70 | | Hf II | 19
7 | | 3529.625 | | N1 I | 76 | 3540.530 | • | V I | 45 | 3552.70 | | ΥI | 8 | | 3529.73 | | Cr II | 89 | 3540.709 | | Fe I | 23 | 3552.720 | | Co I | 6 | | 3529. 735 | | V I | 53 | 3540.961 | | Cb II | 4 | 3552.828 | | Fe I | 321 | | 3529.816 | | Co I | 22 | 3541.083 | | Fe I | 326 | 3552.85 | P | Ti II | 15 | | 3529.818 | | Fe I
Zr II | 326 | 3541.22 | P | Fe I | 47 | 3552.953 | | Cr I | | | 3529.99
3530.03 | | Cl III | 84
10 | 3541.341 | | V II | 145 | 3552.989 | | Co I | 67 | | 0000.00 | | 01 111 | 10 | 3541.44 | | Ti IV | | 3553.10 | | Pd I | 9 | | 3530.22 | | Zr I | 52 | 3541.765 | | F II | 6 | 3553.161 | | Co I | 137 | | 3530.25 | | P II | 21 | 3542.00 | | Ni I | 119 | 3553.271 | | V I | 53 | | 3530.385 | | Fe I | 32 6 | 3542.076 | | Fe I | 326 | 3553.483 | | Ni I | 16 | | 3530.45 | | V II | 57 | 3542.152 | | Eu II | 17 | 3553.51 | | Mg II | 11 | | 3530.487
3530.580 | | He I
Ti I | 36
22 | 3542.243 | | Fe I | 128 | 3553.716 | | Gd II | 89 | | 3530.595 | | Ni I | 22
121 | 3542.28 | | Ne II | 50 | 3553.741 | | Fe I | 810 | | 3530.600 | | Sm II | 20 | 3542.480
3542.56 | P | V II
Fe I | 145
321 | 3553.968
3554.09 | | Cr I
Zr II | 157
83 | | 3530.67 | | La II | 12 | 3542.65 | • | Zr II | 113 | 3554.122 | | Fe I | 23 | | 3530.75 | | K II | 7 | 3542.657 | | VI | 45 | 3554.39 | | Ne II | 18 | | | | | | | | - | · - | | | _ | | | 3530.765 | | V II | 5 | 3542.768 | | Gd II | 51 | 3554.394 | | He I | 34 | | 3530.85 | | Zr II | 114 | 3542.90 | | Ne II | 34 | 3554.43 | | Lu II | 7 | | 3531.151 | | Eu II
A II | 24 | 3542.976 | _
 Co I | 19 | 3554.44 | P | Fe I | 395 | | 3531. 22
3531.4 3 | | Fe I | 5
182 | 3543.09 | P | Fe I | 182 | 3554.50 | | Fe I | 325 | | 3531.44 | | Cr I | 263 | 3543.16
3543.256 | | A II
Co I | 64 | 3554.50
3554.524 | P | Fe II
He l | 176
34 | | 3531.48 | | V II | 4 | 3543.352 | | Nd II | 04 | 3554.65 | P | Fe I | 154 | | 3531.848 | | Mn I | 18 | 3543.39 | | Fe I | 183 | 3554.802 | _ | Gd. II | 52 | | 3531.998 | | Mn I | 18 | 3543.500 | | v i | 53 | 3554.922 | | Fe I | 326 | | 3532.121 | | Mn I | 18 | 3543.669 | | Fe I | 734 | 3554.993 | | Ce II | 117 | | 9599 10 | | A II | E~ | | | n | _ | | _ | | 440 | | 3532.19
3532.285 | | V II | 57
192 | 3543.948 | | Rh I | 6 | 3555.08 | P | Fe II
V I | 113
53 | | 3532.647 | | Fe II | 132 | 3544.001
3544.631 | | Y II
Fe I | 56
239 | 3555.142
3555.18 | | WII | 11 | | 3532.65 | | N I | | 3544.88 | P | Fe I | 154 | 3555.93 | | Co II | 1 | | 3532.69 | P | Fe II | 75 | 3544.985 | - | Gd II | 51 | 3556.083 | | YII | 46 | | 3532.8 88 | | Cr I | | 3545.03 | | Co II | 1 | 3556.120 | | Co I | 117 | | 3533.008 | | Fe I | 326 | 3545.16 | | Ni I | 76 | 3556.130 | | Cr II | 7 | | 3533.043 | _ | Na II | 1 | 3545.190 | | V II | 5 | 3556.184 | | Ti I | | | 3533.19
3533.201 | P | Fe II
Fe I | 75
326 | 3545.339 | | V I | 53 | 3556.49 | | PII | 21 | | 0000.201 | | | 020 | 3545.58 | | A II | 70 | 3556.54 | P | Zr 11 | 19 | | 3533.22 | | Zr I | 14 | 3545.603 | | Ce II | 44 | 3556.61 | | Zr II | 9 | | 3533.356 | | Co I | 5 | 3545.639 | | Fe I | 321 | 3556.68 | | Fe I | 325 | | 3533.67 | | P II | 21 | 3545.797 | | Gd II | 2 | 3556.800 | | V II | 5 | | 3533.676 | | V I | 53 | 3545.832 | | Fe I | 536 | 3556.877 | | Fe I | 327 | | 3533.757 | | V I
Ti II | 53 | 3545.84 | | A II | 106 | 3556.91 | | A II | 29 | | 3533.868
3533.97 | | 0 II | 98
69 | 3546.15 | P | Cr II | 134 | 3556.92 | | O III
Gd II | 24 | | 3534.051 | | Ce II | 44 | 3546.190
3546.21 | | Ce II
Fe I | 131
183 | 3557.053
3557.26 | | La II | 22
29 | | 3534.14 | | V II | 12 | 3546.22 | | Ne II | 27 | 3557.548 | | Fe II | 176 | | 3534.52 | | Fe I | 811 | 3546.707 | | Co I | 41 | 3557.796 | | Tm II | 10 | | | | | | | | | | | | | | | 3534.688 | | Mo II | 1 | 3547.029 | | Ti I | 133 | 3557.84 | | Ne II | 6 | | 3534.769
3534.014 | | Co I | 118 | 3547.07 | | V II | 69 | 3557.85 | P | Cr II | 76
570 | | 3534.914
3535.04 | | Fe I
Mg II | 48
12 | 3547.10 | | Cr II | 134 | 3558.08
3559 190 | P | Fe I
Gd II | 572
69 | | 3535.04 | | Zr I | 59 | 3547.203
3547.69 | | Fe I
Zr I | 321,613
13 | 3558.189
3558.21 | P | Fe I | 239 | | 3535.18 | P | VII | 4 | 3547.802 | | Mn I | 18 | 3558.22 | P | Cr II | 89 | | 3535.304 | | CP I | 4 | 3547.98 | | Cr I | | 3558.468 | | Gd II | 51 | | 3535.33 | | A II | 44 | 3548.029 | | Mn I | 18 | 3558.518 | | Fe I | 24 | | 3535.408 | | Ti II | 98 | 3548.037 | | Fe I | 496 | 3558.538 | | Sc II | 3 | | 3535.522 | | Tm II | | 3548.185 | | N1 I | 3,20 | 3558.60 | | Cr I | | | 3535.54 | | Hf II | 9 | 3548.202 | | Mn I | 18 | 3558.772 | | Co I | 20 | | 3535.628 | | Fe II | 75 | 3548.202
3548.438 | | Co I | 41 | 3559.101 | | Sm II | 20 | | 3535.653 | | Sm II | 44 | 3548.51 | | A II | 56 | 3559.21 | | Cr I | | | 3535.729 | | Sc II | 11 | 3548.55 | P | Fe II | 132 | 3559.328 | | Ce II | 243 | | 3536.30 | | PII | 20 | 3548.731 | | Cr I | 76 | 3559.45 | P | Fe I | 321 | | 3536.556 | | Fe I | 326 | 3549.02 | | YII | 9 | 3559.506 | | Fe I | 498 | | 3536.576 | | Tm II | 3 | 3549.030 | | V II | 103 | 3559.53 | | A II | 70
07 | | 3536.820
3536.838 | | He I
F II | 35
6 | 3549.08 | _ | WII | 13 | 3559.597 | | Co I | 97 | | 3536.89 | | r II
Cr I | 6
50 | 3549.27
3549.365 | P | Ti II
Ga II | 117 | 3559.781
3559 93 | | Cr I
P II | 89
21 | | 2200.38 | | ~- · | 50 | 3549.365 | | Gd II | 7 | 3559.93 | | r 11 | 21 | | 3536.94 | | Zr II | 10 | 3549.51 | | Zr II | 84 | 3559.930 | | N1 I | 1 18 | | 3537.243 | | N1 I | 153 | 3549.61 | | Mg II | 11 | 3560.07 | P | Fe I | 321 | | 3537.25 | | Cr I | 50 | 3549.72 | | SIII | | 35 60. 3 06 | | Co I | 64 | | 3537.491 | | Fe I | 239 | 3549.868 | | Fe I | 48 | 3560.42 | | O IV | 12 | | 3537.634
3537.707 | | Ni I
Co I | 120
68 | 3550.03 | _ | AII | 68 | 3560.594 | | V II | 4 | | 3537.707
3537.729 | | Fe I | 68
239 | 3550.11 | P | Zr II | 124 | 3560.68 | | Cl III | 10
675 | | 3537.729 | | Ca III | 239 | 3550.19
3550.46 | P | Ti II
Zr I | 117 | 3560.705
3560.798 | | Fe I
Ce II | 675
51 | | 3537.896 | | Fe I | 327 | 3550.592 | | Co I | 12
4 | 3560.798
3560.855 | | Os I | 6 | | 0500 00 | | N . YY | | | | | - | 2200.000 | | | | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | |----------------------|--------|----------------|-------------------|----------------------|------|----------------|-----------------|----------------------|-----------|-----------------|----------------| | 3561.04 | | A II | 106 | 3570.77 | | A II | 69 | 3581.91 | | Gd II | 69
497 | | 3561.11 | | Zr II | 82 | 3571.037 | | V I
Pd I | 122
1 | 3581.916
3582.08 | | Fe I
Zr II | 101 | | 3561.23 | | Ne II
Ti II | 31
15 | 3571.16
3571.228 | | Fe I | 46 | 3582.201 | | Fe I | 612 | | 3561.575
3561.65 | | Hr II | 1 | 3571.26 | | Ne II | 31 | 3582.34 | P | Fe I | 568 | | 3561.751 | | Ni I | 2 | 3571.37 | _ | Cr II | 107 | 3582.35 | | A II
Fe I | 56
181 | | 3561.910 | | Ti II | 42 | 3571.64 | P | Cr II
V I | 89
122 | 3582.56
3582.69 | | Fe I | 328 | | 3562.091 | | Ce II
Co I | 36
115 | 3571.653
3571.869 | | N1 I | 5 | 3583.098 | | Rh I | 3 | | 3562.097
3562.19 | | A II | 106 | 3571.933 | | Gd II | 4 | 3583.337 | | Fe I | 574 | | 3562.29 | | Cr I | 308 | 3571.97 | P | Cr I | 157 | 3583.394 | _ | Sm II | 20 | | 3562.48 | | Cr I | 281 | 3571.995 | _ | Fe I | 321
182 | 3583.54
3583.676 | P | Fe II.
Mn I | 101
25 | | 3562.4 8 | _ | P II | 22
237 | 3572.32
3572.46 | P | Fe I
Fe III | 105 | 3583.704 | | v I | 45 | | 3562.60
3562.912 | P | Fe I
Co I | 64 | 3572.47 | | Zr II | 1 | 3584.01 | P | Cr II | 107 | | 3562.950 | | He I | 33 | 3572.48 | | WII | 3 | 3584.259 | | Sm II
Cr I | 12 | | 3563.36 | | O IV | 12 | 3572.523 | | Sc II
Fe I | 3
325 | 3584.366
3584.53 | | Y II | 9 | | 3563.61 | P | Fe I
V II | 325
4 | 3572.60
3572.734 | | Pb I | 3 | 3584.663 | | Fe I | 294 | | 3563.71
3563.92 | | Cr II | 134 | 3572.748 | | Cr I | 75 | 3584.790 | | Fe I | 322 | | 3564.046 | | Gd II | 52 | 3573.09 | | Zr II | 9 | 3584.801 | | Co I | 6 | | 3564.11 | | Fe I | 48 | 3573.27 | P | N1 I | 123 | 3584.960 | | Fe I
Gd II | 395,611
7 | | 3564.115 | | Co I | 159 | 3573.403 | | Fe I
V I | 673
122 | 3584.962
3584.98 | | C II | 23 | | 3564.30 | | Cr I
A II | 281
43 | 3573.516
3573.557 | | v ii | 78 | 3585.154 | | Co I | 21 | | 3564.34
3564.51 | P | Fe I | 183 | 3573.643 | | Cr I | 75 | 3585.193 | | Fe I | 438
13 | | 3564.54 | P | Fe II | 113 | 3573.737 | | Ti II
Fe I | 15
181 | 3585.31
3585.320 | | Cr II
Fe I | 23 | | 3564.56 | P
P | Fe I
Ni I | 183
73 | 3573.842
3573.896 | | Fe I | 611 | 3585.54 | | Cr II | 13 | | 3564.67
3564.947 | P | Co I | 19 | 3574.039 | | Cr I | 74,308 | 3585.708 | | Fe I | 23 | | 3564.953 | | Cr I | 308 | 3574.23 | | Ne II | 9 | 3585.808 | | Co I | 100 | | 3565.02 | | A II | 57 | 3574.245 | | T1 I | 247 | 3585.83 | | C II
Ti I | 23 | | 35 65.15 | | Cr I | 50 | 3574.340 | P | V II
Fe I | 78
181 | 3585.852
3585.91 | | Mo IJ | 1 | | 3565.31 | | Cr II
Ti II | 107
76 | 3574.37
3574.38 | • | Cr I | 202 | 3586.082 | | Co I | 87 | | 3565.326
3565.381 | | Fe I | 24 | 3574.64 | | Ne II | 9 | 3586.10 | P | Fe I | 497 | | 3565.41 | | Zr II | 102 | 3574.805 | | Cr I
Cr I | 75
74 | 3586.114
3586.12 | | Fe I
Fe III | 611
36 | | 3565.55 | | Cr I
Fe I | 50,281
321,328 | 3574.935
3574.967 | | Co I | 21 | 3586.23 | | Cr I | 157 | | 3565.583
3565.83 | P | Fe I | 571 | 3575.11 | | Fe I | 321 | 3586.28 | | Zr I | 12 | | 3565.84 | | Ne II | 34 | 3575.249 | | Fe I | 322 | 3586.543 | | Mn I
Al II | 8
7 | | 3566.00 | | Ti II | 42 | 3575.361
3575.374 | | Co I
Fe I | 4
496 | 3586.557
3586.708 | Forb | Al II | 7 | | 3566.052
3566.10 | | Fe II
Cr I | 155
284 | 3575.69 | P | Cr II | 107 | 3586.75 | P | Fe I | 325 | | 3566.10 | | Zr I | 15 | 3575.79 | | Zr I | 12 | 3586.811 | Forb
P | Al II
Sc II | 7
40 | | 3566.148 | | Fe II | 132 | 3575.850
3575.952 | | Cb I
Ni I | 4
120 | 3586.83
3586.912 | • | Al II | 7 | | 3566.177
3566.177 | | V II | 45
4 | 3575.976 | | Fe I | 321,328 | 3586.936 | | Al II | 7 | | 3566.31 | P | Fe I | 127 | 3576.00 | P | Cl II
Cr II | 78
171 | 3586.985
3587.068 | | Fe I
Al II | 23
7 | | 3566.37 | | Cr II | 76 | 3576.23 | • | | | | | T1 II | 15 | | 3566.372 | | Ni I
P II | 36
22 | 3576.340
3576.38 | | Sc II
Ti II | 3
76 | 3587.130
3587.16 | P Forb | i He I | 32 | | 3566.43
3566.472 | | Tm II | 6 | 3576.44 | | Ti IV | | 3587.165 | | Al II | 7 | | 3566.59 | | Fe I | 181 | 3576.62 | | A II | 56 | 3587.186 | | Co I | 35
1 | | 3566.836 | | Sm II | 0.08 | 3576.760
3576.762 | | Fe I
Ni II | 613a
4 | 3587.186
3587.195 | Forb | Al II | 7 | | 3567.045
3567.116 | | Fe I
Gd II | 325
89 | 3576.772 | | Gd II | 51 | 3587.252 | | He I | 31 | | 3567.171 | | SII | 56 | 3576.88 | | Zr II | 9 | 3587.253 | | Fe I
Al II | 325
7 | | 3567.36 | | Fe I | 183 | 3577.220 | | V II
Ni I | 78
3 | 3587.309
3587.342 | | Al II | ż | | 3567.654 | | Gd II | 51 | 3577.240 | | | | | | He I | 31 | | 3567.701 | | Sc II | 3
3 | 3577.260
3577.458 | | Co I
Ce II | 41
51 | 3587.396
3587.424 | | re I | 134 | | 3567.84
3568.04 | | Lu
I
Cl II | 3
78 | 3577.438 | | V II | 69 | 3587.450 | | Al II | 7 | | 3568.14 | | Zr II | 46 | 3577.857 | | V II | 78 | 3587.504 | | Nd II
Fe III | 36 | | 3568.271 | | Sm II | 47 | 3577.880
3578.03 | | Mn I
Co II | 8
1 | 3587.53
3587.68 | | C II | 23 | | 3568.36
3568.423 | | Cr I
Fe I | 284
321 | 3578.076 | | Co I | 117 | 3587.69 | P | Fe I | 322 | | 3568.426 | | Co I | 61 | 3578.22 | | Zr II | 83 | 3587.75 | | Y I
Fe I | | | 3568.53 | | Ne II
Fe I | 9
673 | 3578.380
3578.596 | | Fe I
Gd II | 321
21 | 3587.752
3587.78 | | C1 II | 78 | | 3568.828 | | | | 3578.636 | | V II | 78 | 3587.931 | | N1 I | 16 | | 3568.940
3568.97 | P | V I
Fe II | 122
113 | 3578.67 | P | Fe I | 127 | 3587.95 | P | Fe II | 10 | | 3568.977 | • | Fe I | 294 | 3578.687 | | Cr I | 4 | 3587.98 | | Zr II
V II | 10
78 | | 3569.03 | | Hf II | 7 | 3578.687 | | Ti II
La II | 117
155 | 3588.13
3588.23 | P | Fe I | 47 | | 3569.083 | | V I
Cr I | 53
281 | 3578.89
3578.903 | 1 | Co I | 41 | 3588.30 | _ | Cr II | 107 | | 3569.14
3569.370 | 1 | Co I | 35 | 3579.029 | | Co I | 41 | 3588.32 | | Zr II | 10
56 | | 3569.493 | | Mn I | 18 | 3579.549 |) | Gd II | 89
573 | 3588.44
3588.52 | P | A II
Fe I | 394 | | 3569.566
3569.804 | i | Gd II
Mn I | 51
18 | 3579.83
3580.10 | P | Fe I
La II | 155 | 3588.615 | | Fe I | 325 | | 3569.94 | | A II | 57 | 3580.277 | , | СР І | 4 | 3588.80 | | Zr II | 57 | | 3569.99 | | Fe I | 135 | 3580.618 | 3 | Gd II | 89 | 3588.918
3588.92 | | Fe I
C II | 322
23 | | 3570.041 | 1 | Mn I | 18 | 3580.71
3580.927 | , P | Sc II
Sc II | 4 0
3 | 3589.107 | , | Fe I | 23 | | 3570 10 | | La II
Fe I | 142
24 | 3580.927 | | Sm II | | 3589.215 | , | Ru I | 4 | | 3570.100
3570.245 | | Fe I | 326 | 3581.195 | | Fe I | 23
56 | 3589.456 | | Fe I
Sc II | 295
3 | | 3570.34 | | P II | 18 | 3581.62
3581.645 | | A II
Fe I | 56
295 | 3589.635
3589.67 | • | CII | 23 | | 3570.57 | P
P | Cr II
Fe I | 89
154 | 3581.68 | • | La II | 136 | 3589.745 | i | V II | 4 | | 3570.60
3570.662 | | w I | 3,5 | 3581.80 | | C II | 23 | 3589.77 | | Fe III | | | | | | | | | | | | | | | | 24 | | | | | 111 | ING DIS | | | | | | |-----------------------|------|---------------|---------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|---------------| | I A | Туре | Element | Multiplet No. | IA | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 3589.973 | | Mn I | 25 | 3601.666 | | Cr I | 74 | 3609.687 | | Ce II | 179 | | 3590.08 | | Fe I | 440 | 3601.692 | | Sm II | 20 | 3609.752 | | Co I | 147 | | 3590.29 | P | Fe I | 497 | 3601.782 | | Mn I | 25 | 3609.788 | | Nd II | 141 | | 3590.46 | | Si III | 7 | 3601.916 | | Al III | 1 | 3610.052 | | Cr I | 49 | | 3590.468 | | Gd II | 22 | 3601.93 | | YII | 9 | 3610.07 | | C1 II | 20 | | 3590.47 | | Ne II | 32 | 3602.079 | | Co I | 4 | 3610.154 | | Ti I | 58 | | 3590.475 | | Sc II | 3 | 3602.10 | | Cl III | i | 3610.159 | | Fe I | 321 | | 3590.598 | | Ce II | 232 | 3602.10 | | Fe I | 322 | 3610.25 | | La II | | | 3590.66 | | Fe I | 953 | 3602.281 | | N1 I | 3 | 3610.299 | | Wn I | 8 | | 3590.87 | | C II | 23 | 3602.46 | | Fe I | 322 | 3610.33 | P | Fe II | 112 | | 3590.99 | | Fe I | 573 | 3602.534 | | Fe I | 324,391 | 3610.38 | P | Fe II | 175 | | 3591.345 | | Fe I | 321 | 3602.574 | | Cr I | 74 | 3610.462 | | N1 I | 18 | | 3591.485 | | Fe I | 568 | 3602.60 | P | Fe II | 101 | 3610.703 | | Fe I | 323 | | 3591.746
3591.912 | | Co I
Gd II | 134 | 3602.61 | P | Cr I | 140 | 3610.76 | | Gd II | 89 | | 3592.012 | | V II | 51
4 | 3602.70 | P
P | Fe I
Fe I | 390 | 3610.794 | | Th II | 3 | | 3592.486 | | Fe I | 237 | 3602.77
3603.20 | P | re I
Eu II | 370 | 3610.85 | P | Cr II | 171 | | 3592.595 | | Nd II | 20. | 3603.205 | | Fe I | 16
295 | 3611.06
3611.418 | | Y II
Ni I | 9
119 | | 3592.603 | | Sm II | 39 | 3603.46 | | A II | 57 | 3611.54 | P | N1 I | 2 | | 3592.68 | | Fe I | 569 | 3603.572 | | Fe I | 181 | 3611.57 | - | Eu II | 15 | | 3592.709 | | Gd II | 69,89 | 3603.61 | | Cr II | 13 | 3611.58 | | V II | | | 3592.881 | | Fe I | 77 | 3603.72 | | Cl II | 78 | 3611.701 | | Co I | 115 | | 3592.92 | | Y I | 8 | 3603.745 | | Cr I | 74 | 3611.72 | | Fe III | 36 | | 3593.02 | P | Cr II | 13 | 3603.80 | | Cr II | 13 | 3611.84 | | A II | 30 | | 3593.022 | | Ru I | 4 | 3603.828 | | Fe I | 496 | 3611.90 | | Zr II | 113 | | 3593.093 | | Ti II | 76 | 3603.845 | | Ti I | 20 | 3612.068 | | Fe I | 325 | | 3593.15 | | Fe III | 36 | 3603.86 | | Cr II | 13 | 3612.34 | | La II | 125 | | 3593.32 3 | | V II | 4 | 3603.88 | | Fe III | 36 | 3612.34 | | Zr II | 146 | | 3593.33 | | Fe I | 571 | 3603.91 | | A II | 43,68 | 3612.35 | | Ne II | 26 | | 3593.445 | | Gd "II | 52 | 3604.21 | P. | Fe II | 175 | 3612.352 | | Al III | 1 | | 3593.488
3593.5259 | | Cr I
Ne I | 4
7 | 3604.284 | | Ti I | 21 | 3612.470 | _ | Rh I | 1 | | 3593.60 | | N II | 7
26 | 3604.285 | | Sm II | 47 | 3612.51 | P | Fe I | 613a | | 3593.76 | | A II | 117 | 3604.375
3604.383 | | V II
Fe I | 130 | 3612.609 | | Cr I | 252 | | 3593.80 | P | Fe I | 182 | 3604.469 | | Co I | 323 | 3612.741 | | NT I | 6 | | 3594.10 | P | Fe I | 154 | 3604.51 | | C1 II | 136
78 | 3612.85 | | Cl III
Fe I | 1 | | 3594.13 | P | Sc II | 40 | 3604.54 | | Cr I | 49,89 | 3612.940
3613.03 | | 8 II | 46,77 | | 3594.18 | | Ne II | 34 | 3604.95 | P | Cr I | 74 | 3613.08 | P | Fe I | 4
322 | | 3594.41 | | A II | 23 | 3604.96 | P | Fe I | 77 | 3613.08 | • | Zr II | 1 | | 3594.462 | | 8 11 | 16 | 3605.015 | | Co I | 97 | 3613.15 | | Fe I | 324 | | 3594.632 | | Fe I | 322 | 3605.05 | P | Cr I | 49 | 3613.21 | | Cr II | 13 | | 3594.87 | P | Co I | 135 | 3605.333 | | Cr I | 4 | 3613.26 | | Cr II | 13 | | 3594.870 | _ | Co I | 4 | 3605.370 | | Co I | 20 | 3613.3 0 | P | T1 II | 76 | | 3594.89 | P | Sc II | 40 | 3605.41 | P | Cr I | 49 | 3613.392 | | Gd II | 69 | | 3595.119 | | Mn I | 8 | 3605.450 | | Fe I | 294 | 3613.43 | | Zr II | 8,45 | | 3595.294
3595.66 | | Fe I
Fe I | 322 | 3605.46 | _ | Y II | 46 | 3613.45 | P | Fe I | 672 | | 3595.87 | | Fe I | 322 | 3605.50 | P
P | Fe I | 322 | 3613.490 | | Gd II | 87 | | 3595.991 | | 8 11 | 181
4 | 3605.50
3605.52 | P | Sc II | 40 | 3613.641 | | He I | 6 | | 3596.048 | | Ti II | 15 | 3605.665 | r | Cr I
Gd II | 252
4 | 3613.669
3613.70 | | Cr I
Zr I | 89
33 | | 3596.179 | | Ru I | 4 | 3605.691 | | Mn I | 25 | 3613.701 | | Ce II | 110 | | 3596.194 | | Rh I | ī | 3605.89 | | A II | 30 | 3613.80 | | Mg II | 110
2 | | 3596.20 | | Fe I | 181 | 3606.062 | | Ti I | 303 | 3613.836 | | Sc II | 2 | | 3596.351 | | Mo II | 1 | 3606.18 | P | Fe II | 175 | 3613.95 | P | Fe I | 612 | | 3596.510 | | Co I | 118 | 3606.38 | P | Fe I | 233 | 3614.10 | | Co I | 64 | | 3596.55 | | T1 II | 76 | 3606.5224 | | A I | 5 | 3614.21 | | Gd II | 51 | | 3597.05 | | Fe I | 569 | 3606.53 | P | Fe I | 133 | 3614.26 | | Cr II | 132 | | 3597.147 | | Rh I | 5 | 3606.679 | | Fe I | 294 | 3614.34 | | Co I | 134 | | 3597.24 | P | Fe I | 856 | 36 06.786 | | Ti I | 20 | 3614.550 | | Fe I | | | 3597.39 | P | 8c II | 40 | 3606.852 | | N1 I | 120,173 | 3614.673 | | Nd II | 38 | | 3597.42 | | Hf II | 54 | 3607.04 | _ | Co I | 67 | 3614.77 | P | Fe I | 395 | | 3597.50
3597.705 | | Al II
Ni I | 52
10 | 3607.05 | P | Fe II | 101 | 3614.79 | | Zr II | 9 | | 3598.196 | | Ce II | 18
116 | 3607.25
3607.30 | P | Cr I
V II | 140 | 3614.873 | - | Fe II | 112 | | 3598.22 | | Fe III | 105 | 3607.39 | | Zr II | 77 | 3615.01 | P | Fe I | 154 | | 3598.71 | | Fe I | 674 | 3607.537 | | Mn I | 83 | 3615.09 | | C1 II | 70 | | 3598.714 | | Ti I | 59 | 3607.625 | | Ce II | 8
178 | 3615.19 | | Fe I
Co I | 569 | | 3598.93 | | Fe I | 568 | 3607.92 | P | Cr I | 140 | 3615.387
3615.45 | P | Cr II | 66 | | 3598.98 | | Fe I | 322 | 3608.146 | _ | Fe I | 325,438 | 3615.64 | • | Mg II | 147
2 | | 3599.304 | | He I | 30 | 3608.307 | | Co I | 20 | 3615.645 | | Cr I | 3 | | 3599.395 | | Cr I | 89 | 3608.32 | | V II | 242 | 3615.66 | | Fe I | 46 | | 3599.442 | | He I | 30 | 3608.401 | | Cr I | 252 | 3615.817 | | Nd II | 69 | | 3599.49 | | Fe III | 36 | 3608.49 | P | Fe II | 175 | 3615.88 | | N II | 26 | | 3599.530 | | N1 I | 121 | 3608.494 | | Mn I | 8 | 3616.15 | P | Fe I | 569 | | 3599.624 | | Fe I | 809 | 3608.58 | P | Cr I | 140 | 3616.152 | | Bu II | 28 | | 3599.91 | | Zr II | 123 | 3608.66 | | Cr II | 133 | 3616.29 | P | Cr II | 147 | | 3599.974 | | Ce II | 219 | 3608.7 | P | N1 II | . 4 | 3616.326 | | Fe I | 132 | | 3600.22 | ъ | A II | 115 | 3608.753 | | Gd II | 69 | 3616.572 | | Fė I | | | 3600.48
3600.583 | P | Fe I
Ce II | 498
236 | 3608.766
3608.861 | | Tm II
Fe I | 3.
23 | 3616.916
3617.09 | | 8 II
Fe I | 56
535 | | 3600.74 | | | | | | | | | | | | | 3600.803 | | Y II
Co I | 9
63 | 3608.89
3608.96 | P | Ti II
C III | 76
10 | 3617.164
3617.317 | | Gd II
Fe I | 89 | | 3600.93 | | Fe III | 36 | 3609.04 | | Cr I | 49 | 3617.32 | | Cr II | 147 | | 3600.963 | | Gd II | 69 | 36 09.09 | | N II | 26 | 3617.522 | | WI | 8 | | 3601.07 | | La II | 44 | 3609.314 | | N1 I | 16 | 3617.53 | P | Fe I | 323 | | 3601.16
3601.19 | | Ti I | 172 | 3609.46 | P | Fe I | 322 | 3617.788 | | Fe I | 496 | | 3601.18
3601.42 | P | Zr I
Fe I | 13 | 3609.479 | | Cr I | 49 | 3617.97 | P | Fe I | 181 | | 3601.42
3601.51 | • | A II | 127
4 | 3609.491 | | Sm II | 30 | 3618.010 | _ | Co I | 36 | | 3601.623 | | A) TIT | <u> </u> | 3609.56 | | Pd I | 2 | 3618.30 | P | Fe I | 324 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------------------------------|--------|----------------
-----------------------|--|--------|----------------|--------------------|----------------------|--------|----------------|-------------------| | 1 A | 13 po | | • | 0000 10 | P | Sc II | 18 | 3637.15 | | La II | 55 | | 3618.49 | _ | K II
Fe I | 1
569 | 3629.10
3629.12 | P | Zr II | 113 | 3637.251 | | Fe I | 180 | | 3618.62
3618.769 | P | Fe I | 23 | 3629.51 | | Gd II | 69 | 3637.319 | | Co I
Fe I | 117
229 | | 3618.88 | | Ċ1 II | 77 | 3629.741 | | Mn I
Ni I | 8
182 | 3637.73
3637.83 | | Sb I | 1 | | 3618.91 | P | Fe I
V II | 130
158 | 3629.906
3629.99 | P | Fe II | 111 | 3637.862 | | Fe I | 385 | | 3618.924
3618.96 | P | Fe I | 77 | 3630.03 | | Zr II | 10 | 3637.89 | | A II
Ti I | 18 | | 3619.284 | • | Mn I | 8 | 3630.26 | P | Ni I
Fe I | 180
323 | 3637.966
3638.15 | | S III | 10 | | 3619.392 | | N1 I | 35 | 3630.353
3630.67 | P | re I
Fe I | 126 | 3638.16 | P | Fe I | 324 | | 3619.460 | | Cr I | 48 | 0000101 | _ | | | | | Fe I | 294 | | 3619.514 | | CP II | 4 | 3630.740 | | Sc II | 2
9 | 3638.296
3638.49 | P | re 1
Ti I | 118 | | 3619.66 | P | Fe I | 130 | 3630.748
3630.974 | | Ca I
Ca I | 9 | 3638.70 | - | 0 111 | 35 | | 3619.76 | P | Fe I
Fe I | 180
324 | 3631.103 | | Fe I | 322 | 3638.767 | | Sm II | • | | 3620.00
3620.23 | r | Fe I | 324 | 3631.126 | | Sm II | | 3638.80 | | Pt I
V I | 6
83 | | 3620.27 | | Fe III | 25 | 3631.194 | | Ce II
Na II | 88
2 | 3639.024
3639.14 | P | Mn I | 7 | | 3620.422 | | Co I
V II | 116
181 | 3631.266
3631.390 | | Co I | 4 | 3639.19 | | C1 II | 77 | | 3620.496
3620.82 | | A II | 67 | 3631.41 | | PII | 22 | 3639.443 | | Co I
Pb I | 64
1 | | 3620.87 | P | Fe I | 611 | 3631.464 | | Fe I | 23 | 3639.568 | | FU I | • | | 0000 00 | P | Fe I | 323 | 3631.48 | P | Cr II | 170 | 3639.76 | P | Sc II | 18 | | 3620.88
3620.95 | r | Y I | 8 | 3631.482 | | VII | 76 | 3639.802 | | Cr I
A II | 47
116 | | 3621.06 | | A II | 4 | 3631.49 | | Cr II
Cr II | 12
12 | 3639.85
3640.18 | | Gd II | 23 | | 3621.19 | P | Fe I
V II | 574
76 | 3631.72
36 3 1.9 48 | | Co I | 133 | 3640.388 | | Fe I | 295 | | 3621.203
3621.22 | | Co II | 1 | 3631.959 | | WI | 3 | 3640.39 | | Cr I
F II | 47
11 | | 3621.229 | | Sm II | 12 | 3631.999 | | Ti I
S III | 1 | 3640.891
3641.01 | | Cr I | 47 | | 3621.273 | | Fe II | 144
294 | 3632.022
3632.042 | | Fe I | 496 | 3641.096 | | v I | 115 | | 3621.463
3621.51 | | Fe I
Cr II | 98 | 3632.106 | | Ce II | 114 | 3641.22 | P | Fe II | 111 | | 0021.01 | | | | | | V II | 76 | 3641.330 | | Ti II | 52 | | 3621.718 | _ | Fe I
O VI | 808
3 | 3632.126
3632.292 | | Fe II | 112 | 3641.39 | | Gd II | 86 | | 3622
3622.00 | P
F | Fe I | 233 | 3632.46 | | Cr I | 49 | 3641.42 | _ | W II | 1
323 | | 3622.001 | - | Fe I | 295 | 3632.558 | | Fe I | 437
33 | 3641.45
3641.470 | P | Fe I
Cr I | 47 | | 3 622.145 | | Ce II | 71
42 | 36 32. 75
3632.839 | | Ne II
Co I | 147 | 3641.641 | | Ni I | 6 | | 3622.15
3622.289 | | A II
V II | 144 | 3632.839 | | Cr I | 49 | 3641.66 | | La II | 136 | | 3622.45 | | Cr II | 171 | 3632.979 | _ | Fe I | 135
390 | 3641.784
3641.830 | | Co I
Cr I | 99
47 | | 3622.504 | | Sm II | 6 | 363 3. 07
3633.13 | P | Fe I
Y II | 2 | 3641.985 | | F II | 11 | | 3 622.54 | | Bu II | 18 | 5050110 | | | | | | | | | 3622.69 | | Cl III | 1 | 3633.16 | P | Cr II | 147
116 | 3642.387
3642.675 | | N1 I
T1 I | 75
19 | | 3622.81 | P | Fe II | 175 | 3633.340
3633.458 | | Co I
Ti I | 110 | 3642.785 | | Sc II | 2 | | 3622. 850
3623. 03 | | Mo II
V II | 1
77 | 3633.49 | | Zr II | 102 | 3642.798 | | FII | 11 | | 3623. 03 | | Fe I | 180 | 3633.64 | P | Fe I | 395 | 3643.181
3643.22 | | Co I
Cr II | 99
1 | | 3623.316 | | Sm II | 12 | 3633.837
3633.99 | P | Fe I
Ti II | 44 0
116 | 3643.4 | | Y II | 55 | | 3623.440
3623.51 | P | Fe I
Fe I | 233,438
393 | 36 34.04 | • | Cr II | 147 | 3643. 4 7 | | Mo II | 1 | | 3623.772 | • | Fe I | 323 | | P Forb | He I | 29 | 3643.627 | | Fe I
Fe I | 385
233 | | 3623.792 | | Mn I | 8 | 3634.13 | | V II | 180 | 3643.716 | | | 200 | | 3623.837 | | Ce II | 235 | 3634.235 | | He I | 28 | 3643.80 | P | Fe I | 670 | | 3623.837 | | Ce II | • | 3634.290 | | Sm II
Fe I | 19
369 | 3643.82
3643.864 | P | Fe I
V I | 46
83 | | 3623.87 | | Zr I | 12
6 | 3634.326
3634.373 | | He I | 28 | 3643.89 | | Ne II | 5 | | 3623.98
3624. 00 | | Lu II
Hf II | 18 | 3634.52 | P | Fe I | 323 | 3643.941 | | N1 I | 174 | | 3624.06 | P | Fe I | 570 | 3634.698 | | Fe I
Pd I | 1 | 3644.12
3644.19 | P
P | Cr II
Fe II | 98
131 | | 3624.111 | | Ca I
Fe III | 9
93 | 3634.71
3634.713 | | Co I | 146 | 3644.35 | _ | Hr II | 6 | | 3624.25
3624.30 | | Fe I | 133 | 3634.757 | | Gd II | 69 | 3644.410 | 1 | Ca I | 9
5 | | 3624.337 | | Co I | 41 | 3634.83 | | A II | 29 | 3644.47 | | He II | J | | 3624.688 | | Fe II | | 3634.928 | | Sm II | 6 | 3644.58 | P | Fe I | 235 | | 3624.72 | P | Ni I | 121 | 3634.941 | _ | N1 I | 33 | 3644.699 |) | Ti I
Cr II | 1 | | 3624.733 | | Ni I | 2 | 3635.08
3635.13 | P | Fe I
A II | 919
4 | 3644.70
3644.765 | 3 | Ca I | 9 | | 3624.826
3624.890 | | Ti II
Fe II | 52
1 44 | 3635.144 | | Mo II | 5 | 3644.798 | | Fe I | 570 | | 3624.955 | | Co I | 21 | 3635.19 | | Fe I | 490 | 3644.86 | P | Ne II
Ťi II | 41
116 | | 3625.140 | | Fe I | 323 | 3635, 202
3635, 28 | P | Ti I
Fe I | 20
324 | 3644.87
3644.990 | | Ca I | 9 | | 3625.26
3625.30 | P | Ga II
Cr II | 69
98 | 3635.281 | - | Cr I | 3 | 3645.090 |) | Fe I | 323,495 | | 3625.608 | | V II | 76 | 3635.334 | | Y II | 46 | 3645.190 |) | Co I | 61 | | | _ | C- 11 | 147 | 3635.36 | P | Ti II | 62 | 3645.20 | | 0 111 | 35 | | 3625.92
3626.020 | P | Cr II
Co I | 147
41 | 3635.43 | P | Cr II | 98 | 3645.290 | | Sm II | 19 | | 3626.085 | | Ti I | 20 | 3635.462 | | Ti I | 19
116 | 3645.313
3645.383 | | Sc II
Sm II | 2
35 | | 3626.32 | | Gd II | 69 | 3635.64
3635.67 | P | T1 II
A II | 68 | 3645.43 | | La II | 14 | | 3626.53
3627.014 | | 8 III
8m II | 30 | 3635.82 | P | Fe F | 321 | 3645.44 | | Co I | 97 | | 3627.05 | - | Fe I | 808 | 3636.186 | i | Fe I | 77,568
47 | 3645.49
3645.59 | 4 | Fe I
Cr I | 323,391,441
48 | | 3627.168 | | Fe II | 193
905 | 3636.21
3636.23 | | Cr I
Fe I | 47
774 | 3645.59 | 6 | v I | 137 | | 3627.35
3627.63 | E, | Fe I
Mg I | 395
45 | 3636.23 | | Zr II | 9 | 3645.62 | | Gd II | 17 | | 3027.03 | | | | | _ | | 200 | 3645.78 | P | Fe II | 112 | | 3627.71 | | Ti II | 62
76 | 3636.49
3636.50 | P
P | Fe I
Fe I | 568
4 7 | 3645.82 | | Fe I | 496 | | 3627.71
3627.80 | | V II
Co I | 76
19 | 3636.590 | | Cr I | 47 | 3645.90 | 5 | V II | 76
7 | | 3627.80 | | Sm II | 12 | 3636.61 | P | Fe II | 111
403 | 3645.98
3646.10 | | H
Fe I | 7
324 | | 3628.06 | | Ne II | 41 | 3636.650
3636.713 | | Fe I
Co I | 493
64 | 3646.10
3646.16 | | Cr I | 48 | | 3628.09 | | Fe I
Ce II | 77
113 | 3636.90 | P | Fe II | 112 | 3646.19 | 1 | Gd II | 2 | | 3628.24
3628.71 | | Y II | 9 | 3636.995 | 5 | Fe I | 233 | 3646.19 | | Ti I
Eu II | 18
13 | | 9600 92 | | Fe T | 438 | 3637.05 | | A II | | 3646.75 | • | 24 11 | 05 | | 2 | 26 | | | | | FIND. | ING LIS. | 1 | | | | | |-----|-------------------|------|----------------|------------------|---------------------|-------|----------------|---------------|----------------------|------|----------------|----------------| | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 3 | 646.848 | | V II | 180 | 3656.261 | | Cr I | 46 | 3664.69 | | Fe I | 390 | | | 646.965 | | Ce II | 66 | 3656.319 | | Al II | 51 | 3664.86 | P | Ti II | 116 | | | 647.081 | | Co I | 118 | 3656.35 | P | Fe I | 323 | 3664.95 | | Cr II | 156 | | | 647.40 | | Cr II | 1 | 3656.50 | P | Fe II | 111 | 3664.98 | | Fe III | 24 | | | 647.427
647.43 | P | Fe I
Fe I | 46
497 | 3656.61
3656.666 | | S III
H | 6
7 | 3665.142 | | V I | 115 | | | 647.56 | P | Fe I | 497
574 | 3656.706 | | v i | 115 | 3665.180
3665.22 | | Nd II
La II | | | | 647.658 | | Co I | 4 | 3656.73 | P | Ti I | 118 | 3665.35 | | Hf II | 18 | | 3 | 647.71 | | Ni I | | 3656.77 | P | Fe II | 131 | 3665.43 | | Cr I | 48 | | 3 | 647.77 | | Lu I | | 3656.95 | | CI III | 1 | 3665.48 | P | Cr II | 1 | | 3 | 647.84 | P | Fe I | 569 | 3656.962 | | Co I | 21 | | | | | | | 647.844 | r | Fe I | 23 | 3657.143 | | Fe I | 130 | 3665.812 | | Tm II
Ni I | 10 | | | 648.07 | | C1 II | 77 | 3657.269 | | H | 7 | 3665.924
3665.980 | | Cr I | 48 | | 3 | 648.22 | P | Fe I | 978 | 3657.574 | | Ru II | 1 | 3666.02 | P | Cr II | 145 | | | 648.35 | | Hf II | 39 | 3657.59 | | WII | 2 | 3666.097 | | Н | 5 | | | 648.534 | | Cr I | 47 | 3657.698 | | N1 I | 183 | 3666.11 | P | Ti II | 74 | | | 648.80
648.86 | P | T1 II
T1 II | 7 <u>4</u>
83 | 3657.89
3657.926 | | Fe I
H | 395 | 3666.19 | | Cr I | 46 | | | 648.966 | | V I | 115 | 3657.94 | | Cr II | 7
170 | 3666.215 | | Rh I
Fe I | 3 | | | 648.997 | | Cr I | 47 | 3657.987 | | Rh I | 1 | 3666.24
3666.29 | P | Fe I | 179,389
672 | | | | | | | | | | | | | | 5, 2 | | | 649.01 | Р. | Ti II | 14 | 3658.02 | P | Fe I | 438 | 3666.537 | | Sc II | 2 | | | 649.184
649.20 | Forb | Al II
O III | 12 | 3658.097 | | Ti I | 19 | 3666.592 | | Ti II | 116 | | | 849.232 | Forb | Al II | 35
12 | 3658.19
3658.266 | | Cr II
V II | 98,146
116 | 3666.642 | _ | Cr I | 46 | | | 649.304 | 10.0 | Fe I | 5 | 3658.3 | | Al III | 20 | 3666.85
3666.944 | P |
Fe I
Fe I | 393
46 | | | 649.329 | | Co I | 146 | 3658.38 | | C1 II | 7 | 3667.06 | | Zr II | 8 | | 36 | 649.44 | | Gd II | 69 | 3658.55 | | Fe I | 231 | 3667.252 | | Fe I | 570 | | | 549.508 | | Fe I | 291 | 3658.641 | | Н | 7 | 3667.40 | | Zr II | 32 | | | 349.527 | _ | Sm II | 47 | 3659.02 | | Hf II | 44 | 3667.684 | | Н | 5 | | 30 | 549.70 | P | Fe I | 391 | 3659.227 | | Ce II | 54 | 3667.741 | | V I | 114 | | 31 | 350.031 | | Fe I | 394 | 3659.423 | | Н | 6 | 3667.932 | | Sm II | 30 | | | 350.13 | | C1 II | 7 | 3659.516 | | Fe I | 180 | 3667.981 | | Ce II | 40 | | 36 | 550.144 | | Hg I | 3 | 3659.602 | | Cb II | | 3667.999 | | Fe I | 438,569 | | | 350.188 | | Sm II | 25 | 3659.765 | | Ti II | 75 | 3668.029 | | Cr I | 46 | | | 350.19 | | La II | 12 | 3659.84 | | Cl II | 7 | 3668.03 | | C1 II | 7 | | | 350.19
350.280 | | N I
Fe I | 180 | 3659.93
3660.279 | | Ne II
H | 33
6 | 3668.088 | | Tm II | 2 | | | 350.37 | | Cr II | 156 | 3660.33 | | Fe I | 323 | 3668.214
3668.216 | | Fe I
Ni I | 568
182 | | | 650.45 | | Y II | 75 | 3660.404 | | Mn I | | 3668.46 | | Zr II | 9 | | 36 | 50.70 | | 0 111 | 35 | 3660.41 | P | Fe I | 229 | 3668.489 | | YII | 46 | | | . Fo 80 | | g., yy | 440 | 0000 44 | | A TT | 140 | | | | | | | 50.73
50.90 | | Zr II
A II | 146
43 | 3660.44
3660.631 | | A II
Ti I | 116
18 | 3668.58 | P | Fe I
Ce II | 231 | | | 50.95 | | Gd II | 69 | 3660.641 | | Ce II | 42 | 3668.719
3668.830 | | Pr II | 38 | | | 50.998 | | Sm II | 51 | 3660.85 | | Fe III | 93 | 3668.893 | | Fe I | 229 | | 3€ | 51.03 | P | Fe I | 571 | 3660.92 | | Zr II | 32 | 3668.965 | | Ti I | 18 | | | 51.065 | Forb | Al II | 12 | 3661.05 | | Hf II | 26 | 3669.049 | | S II | 16 | | | 51.096 | | Al II | 12 | 3661.17 | P | Fe II | 111 | 3669.151 | | Fe I | 437 | | | 51.10
51.182 | | Fe I
Cb II | 322,674
4 | 3661.20
3661.221 | | Zr I
H | 12
6 | 3669.241 | | N1 I | 2 | | | 51.254 | | Co I | 85 | 3661.25 | P | Fe I | 952 | 3669.399
3669.410 | | Mn I
V II | 116 | | | | | | | | | | | 33337120 | | | 110 | | | 51.469 | | Fe I | 295 | 3661.33 | | Zr II | 102 | 3669.466 | | H | 5 | | | 51.50 | ъ | Zr II | 122 | 3661.353
3661.36 | | Ru I | 2 | 3669.523 | | Fe I | 29.1 | | | 51.67
51.68 | P | Ni I
Cr II | 153
1 | 3661.365 | | Fe I
Sm II | 179
6 | 3669.62 | P | A II | 42 | | | 51.798 | | Sc II | 2 | 3661.383 | | V II | 191 | 3669.68
3669.69 | P | Fe I
Cr II | 436
1 | | | 51.90 | P | Ti I | 118 | 3661.44 | | Cr II | 156 | 3669.838 | • | Mn I | 7 | | | 51.971 | | He I | 27 | 3661.73 | | Hf II | 62 | 3670.035 | | Fe I | 369 | | | 52. 119 | _ | He I | 27 | 3661.951 | | Ni I | 16 | 3670.041 | | Co I | 64 | | | 52.26
52.541 | P | Fe'I
Co I | 494
4 | 3662.005
3662.08 | | S III
La II | 6
12 | 3670.071 | | Fe I | 435 | | • | 02.041 | | 00 1 | * | 0002.00 | | 24 11 | | 3670.16 | P | Cr II | 6 | | 36 | 52.65 | | Fe III | | 3662.14 | | Zr II | 101 | 3670.23 | P | Fe I | 47 | | | 52.748 | _ | Fe II | | 3662.158 | | Co I | 115 | 3670.28 | | Cl III | 1 | | | 52.81 | P | Ti II | 116 | 3662.237 | | Ti II | 75
6 | 3670.427 | | N1 I | 4 | | | 53.00
53.108 | | O III
Ce II | 35
38 | 3662.258
3662.26 | | H
Gd ÍI | 6
4 | 3670.517 | | Mn I
Mo II | 7 | | | 53.35 | P | Fe I | 229,324 | 3662.39 | | Cr I | 46 | 3670.668
3670.677 | | Sm II | 1 | | | 53.497 | | Ti I | 19 | 3662.62 | P | Cr II | 1 | 3670.810 | | Fe I | 133 | | 36 | 53.614 | | Tm II | 10 | 3662.693 | | Sm II | | 3670.840 | | Sm II | 11 | | | 53.62 | P | Sc II | 18 | 3662.73 | P | Fe I | 490 | 3671.01 | | A II | 115 | | 36 | 53.670 | | Ce II | 50 | 3662.840 | | Cr I | 46 | 3671.12 | P | Cr II | 6 | | 36 | 53.763 | | Fe I | 180 | 3662.90 | P | Fe I | 436 | 3671 00 | | GA II | 9 | | | 53.85 | P | Cr II | 156 | 3662.905 | - | Sm II | 39 | 3671.20
3671.205 | | Gd II
V I | 2
70 | | | 53.912 | | Cr I | 47 | 3663.206 | | Cr I | 46 | 3671.28 | | Zr II | 45 | | 36 | 54.441 | | Co I | 63 | 3663.25 | | Fe I | 439 | 3671.478 | | H | 5 | | | 54.51 | | S II | 4 | 3663.274 | | Hg I | 2 | 3671.51 | | Fe I | 570 | | | 54.592 | | Ti I | 18 | 3663.406 | | H
Fo I | 6 | 3671.672 | | Ti I | 19 | | | 54.62
54.66 | | Gd II
Fe I | 4 77 | 3663.458
3663.47 | | Fe I
S II | 229,231
16 | 3671.94 | | Cr I | 217 | | | 54.995 | | Al II | 77
12 | 3663.594 | | V I | 114 | 3672.14
3672.166 | | S II
Ce II | 4
49 | | | 55.29 | | A II | 82 | 3663.64 | | Zr I | 12 | 3672.166 | | Nd II | 70 | | | | _ | | | | | | | 23.2.000 | | | | | | 55.35 | P | Fe I | 131 | 3663.95 | | Fe I | 435 | 3672.403 | | V I | 115 | | | 55.465
55.56 | | Fe I
Zr II | 369
71 | 3663.98
3664.09 | | Fe III | 24 | 3672.65 | | Zr II | 1 | | | 55.56
55.851 | | Zr II
Ce II | 71
51 | 3664.09
3664.095 | | Ne II
Ni I | 1
4 | 3672.69 | | Fe I | 180 | | | 55.92 | P | Cr I | 46 | 3664.20 | | PII | 18 | 3672.789
3673.19 | | Ce II
Eu II | 233
28 | | | 56.05 | | A II | 67 | 3664.254 | | Sc II | 10 | 3673.19 | | A II | 117 | | 268 | 56.135 | | H | 7 | 3664.537 | | Fe I | 391 | 3673.35 | P | Fe II | 174 | | 36/ | 56.152 | | Gd II | 1 | 3664.60 | | Gd II | | 3673 404 | | V T | 114 | | I A | Туре | Element | Multiplet No. | IA | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |------------------------------|--------|-----------------|-----------------|----------------------|--------|----------------|---------------|----------------------------|------|----------------|-------------------| | 3673.59 | | Cr I | 217 | 3683.67 | | Cr I | 216 | 3693.364 | | Co I | 64 | | 3673.68 | P | Fe I | 978 | 3683.71 | n | Ca II
Fe I | 18 | 3693.476 | | Co I
Cr I | 95
45 | | 3673.761 | P | H
Fe II | 5
131 | 3683.77
3684.1 | P | Li II | 996
2 | 3693.56
3693.667 | | Mn I | 40 | | 3673.77
3673.83 | P | Cl II | 7 | 3684.108 | | Fe I | 292 | 3693.78 | P | Fe I | 46 | | 3674.06 | P | N1 I | 15 | 3684.25 | | Cr II | 145 | 3693.79 | P | Fe I | 490 | | 3674.15 | P | N1 I | 32 | 3684.332 | | V I | 114 | 3693.932 | | N1 I | 15 | | 3674.634 | | Eu II | 11 | 3684.479
3684.903 | | Co I
Y II | 99
62 | 3693.989
3694.005 | | Sm II
Fe I | 2
394 | | 3674.691 | | V II
Zr II | 9 3
9 | 3684.960 | | Co I | 116 | 3694.005 | P | Ti I | 177 | | 3674.74 | | 21 11 | • | 00011010 | | | | 00011120 | _ | | | | 3674.766 | | Fe I | 369 | 3685.049 | | Mn II | 8 | 3694.11 | | Ca II | 18 | | 3674.92 | P | Ti I | 177 | 3685.192 | | Ti II | 14 | 3694.115 | | Mn I
Cr I | 24
45 | | 3675.00 | P | Cr II | 1
10 | 3685.212
3685.47 | P | Mn I
Ti I | 7
177 | 3694.12
3694.19 | | Yb II | 45
1 | | 3675.265
3675.307 | | Sc II
Ca I | 28 | 3685.548 | • | Cr I | 44 | 3694.22 | | Ne II | î | | 3675.44 | P | Fe I | 229 | 3685.66 | P | Fe I | 231 | 3694.27 | | La II | 124 | | 3675.497 | | V I | 114 | 3685.804 | | Nd II | | 3694.31 | | Ca II | 18 | | 3675.64 | | Y II | 84 | 3685.964 | | Ti I | 117 | 3694.445 | | Ti I | 117 | | 3675.700 | _ | V I | 29 | 3685.998 | | Fe I
Cr I | 385
44 | 3694.622
3694.911 | | V I
Ce II | 114
63 | | 3675.76 | P | Fe I | 996 | 3686.18 | | OF 1 | 77 | 2094-911 | | 06 11 | 00 | | 3676.27 | | P II | 19 | 3686.20 | | Mn II | 8 | 3694.98 | | Cr II | 169 | | 3676.314 | | Fe I | 228 | 3686.260 | | Fe I | 131 | 3695.054 | | Fe I | 229,5340 | | 3676.33 | | Cr I | 89 | 3686.262 | | V I | 70 | 3695.158 | | V II
V I | 116,179 | | 3676.365 | _ | H
C- TT | 4 | 3686.477
3686.555 | | Co I
Cu II | 134
2 | 3695.335
3695.37 | | 0 111 | 114
21 | | 3676.50 | P | Cr II
Co I | 1
145 | 3686.67 | | Cr II | 118 | 3695.507 | | Fe I | 225,707 | | 3676.552
3676.684 | | V I | 115 | 3686.71 | | T1 I | 222 | 3695.86 | | Cr I | 217 | | 3676.879 | | Fe I | 389 | 3686.803 | | Cr I | 44 | 3695.865 | _ | V I | 29 | | 3676.959 | | Mn I | | 3686.833 | | H | 4 | 3696 | P | N IV | 12
128 | | 3677. 309 | | Fe I | 773 | 3687.039 | | Pr II | | 3696.03 | | Fe I | 126 | | 3677.477 | | Fe I | 125 | 3687 . 100 | | Fe I | 75 | 3696.29 | P | N1 I | 74 | | 3677.630 | | Fe I | 291 | 3687.252 | | Cr I | 44 | 3696.39 | | Ti II | 73 | | 3677.69 | | Cr II | 12 | 3687.354 | | Ti I | 19 | 3696.568 | | Mn I | 24 | | 3677.793 | | Sm II | | 3687.458 | | Fe I | 21 | 3696.6 | n | Y II
Ni I | 74
74 | | 3677.835 | | Co I | 116 | 3687.473
3687.545 | | V I
Cr I | 114
45 | 3696.65
3696.78 | P | Cr II | 131 | | 3677.86
3677.93 | | Cr II
Cr II | 12
12 | 3687.656 | | Fe I | 291 | 3696.81 | P | Fe I | 434 | | 3677.980 | | Co I | 20 | 3687.74 | | Gd II | 20 | 3696.885 | | Ti I | 177 | | 3678.13 | | S II | | 3687.78 | | Eu II | | 3696.913 | | N1 I | 172 | | 3678.240 | | Ca I | 28 | 3687.802 | | Ce II | 143 | 3697.09 | | Ne II | 41 | | | | D. 11 | 29 | 3688.01 | P | Cr II | 1 | 3697.154 | | H | 3 | | 3678.259
3678.27 | | Eu II
A II | 42 | 3688.069 | • | V I | 29 | 3697.426 | | Fe I | 389 | | 3678.342 | | Sc II | 45 | 3688.11 | | Cr I | 45 | 3697.45 | | Fe III | 35 | | 3678.46 | P | Mn I | 7 | 3688.27 | P | Ti I | 177 | 3697.49 | | Zr II | 7 | | 3678.862 | | Tm II | 12 | 3688.307 | | Mo II | 5
5 | 3697.510 | | Fe I
V II | 670
204 | | 3678.863 | | Fe I | 131
101 | 3688.415
3688.418 | | Ni 1
Smr II | 11 | 3697.72
3697.73 | | Gd II | 4 | | 3678.91
3678.98 | | Zr II
Fe I | 101
124 | 3688.42 | | Eu II | 2 | 3697.850 | | СРІ | 3 | | 3679.070 | | Cr I | 45 | 3688.44 | | Cl II | 56 | 3697.88 | | s III | | | 3679.14 | P | Ti I | 177 | 3688.457 | | Cr I | 48 | 3698.00 | | Cr II | 118 | | | | va. 7 | 000 | 9600 476 | | Fe I | 669 | 3698.03 | P | Fe I | 75 | | 3679.33 | P | Fe I
Cr II | 228
118 | 3688.476
3688.71 | | Fe III | 93 | 3698.17 | • | Zr II | 71 | | 3679.34
3679.355 | r | Н | 4 | 3688.877 | | Fe I | 179 | 3698.183 | | Ti I | 222 | | 3679.424 | | Ce II | 257 | 3689 | P | N IV | 12 | 3698.39 | | Hr II | 42 | | 3679.500 | | Eu II | | 3689.02 |
P | Fe I
Y II | 178
75 | 3698.611 | | Fe I
Ce II | 491
51 | | 3679.53 | | Fe I
Zr II | 393,490
122 | 3689.2
3689.302 | | Cr I | 48 | 3698.650
3698.70 | | 0 111 | 21 | | 3679.64
3679.673 | | Ti II | 75 | 3689.305 | | N1 I | 173 | 3699.017 | | Co I | 145 | | 3679.80 | | Ne II | 41 | 3689.37 | P | Fe I | 391 | 3699.147 | | Fe I | 490 | | 3679.819 | | Cr I | 48 | 3689.457 | | Fe I | 369,386 | 3699.37 | | 8 111 | | | 0000 015 | | Fe I | 5 | 3689.63 | | Cr I | 216 | 3699.41 | P | Fe I | 996 | | 3679.915
3680.06 | | A II | 115 | 3689.671 | | Ti I | 222 | 3699.476 | - | v I | 70 | | 3680.113 | | V I | 114 | 3689.897 | | Fe I | 533 | 3699.55 | P | Fe I | 436 | | 3680.19 | | Cr I | 48 | 3689.916 | | Ti I | 18 | 3699.72 | | Hf II | 18 | | 3680.675 | | Fe I | 568 | 3690.032
3690.095 | | Ru II
Fe I | 1
231 | 3699.73
3699.9 0 | P | Gd II
Fe II | 20
131 | | 3680.801
3680.98 | P | Fe I
Fe II | 111 | 3690.281 | | V I | 29 | 3699.920 | • | Ce II | 223 | | 3681.272 | • | Ti I | 177 | 3690.35 | | Pd I | 7 | 3699.952 | | Pr II | 11 | | 3681.54 | | K II | 1 | 3690 . 450 | | Fe I | 497,570 | 3700.055 | | Ti I | 400 | | 3681.64 | | Fe I | 390 | 3690.60 | | Fe III | 85 | 3700.126 | | V II | 102 | | 0001 001 | | Cr I | 89 | 3690.70 | | v II | 190 | 3700.14 | | Fe III | 84 | | 3681.691
3681.774 | | Fe I | OB | 3690.715 | | Co I | 86 | 3700.256 | | Tm II | 6 | | 3681.87 | | Fe I | 951 | 3690.730 | | Fe I | 807 | 3700.337 | _ | V II | 116 | | 3682.05 | | C1 III | 1 | 3690.98 | P | Zr II | 82 | 3700.42 | P | Cr II | 1 | | 3682.101 | _ | W I | 4 | 3691.18
3691.53 | P
P | Fe I
Fe I | 229
707 | 3700.61
3700.909 | P | Fe I
Rh I | 569
2 | | 3682.15 | P
P | Fe I
Fe I | 386
385 | 3691.557 | • | H | 4 | 3700.922 | | Sm II | - | | 3682.17
3682.2 2 6 | ۲ | Fe I | 772 | 3692 | P | o v | 8 | 3700.96 | | V II | 102 | | 3682.25 | | Hf I | 1 | 3692.17 | | A II | 68 | 3701 | P | 0 V | 8 | | 3682.56 | | A II | 29 | 3692.221 | | Sm II | 29 | 3701.086 | | Fe I | 385 | | | ** | p. ** | 101 | 3692.225 | | v I | 29 | 3701.15 | | Hf II | 61 | | 3682.66
3682.67 | P | Fe II
Zr II | 131
44 | 3692.33 | | ÀII | 4 | 3701.364 | | Tm II | 2 | | 3682.810 | | Н 11 | 4 | 3692.357 | | Rh I | 1 | 3701.63 | P | N1 I | 138 | | 3683.047 | | Co I | 99 | 3692.44 | | 0 I | 6 | 3701.730 | | Mn I | 7
136 | | 3683.054 | | Fe I | 5 | 3692.60 | | Zr II
Mo II | 56
5 | 3701.81
3701.81 | | La II
Ne II | 136
40 | | 3683.126 | | V I | 29
11 | 3692.645
3692.812 | | Mo II | 7 | 3701.81 | | Cr II | 168 | | 3683.267
3683.39 | | Eu II
Cl III | 11
12 | 3693.008 | | Fe I | 439 | 3702 | P | 0 V | 16 | | 3683.39
3683.469 | | Pb I | 1 | 3693.09 | | Cr I | 216 | 3702.033 | | Fe I | 369 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|------------------|----------------------|------|----------------|-----------------|----------------------|--------|----------------|---------------| | 3702.237 | | Co I | 145 | 3710.46 | | P II | 37 | 3718.21 | | A II | 131 | | 3702.291 | | Ti I | 83 | 3710.47 | | Zr II | 122 | 3718.380 | | Ce II | 37 | | 3702.500 | | Fe I | 46,75 | 3710.60 | | Cr I | 88 | 3718.407 | | Fe I | 292 | | 3702.553 | | Mo II | 5 | 3710.869 | | Sm II | 19 | 3718.86 | | Zr II | 9 | | 3702.75
3702.942 | | O III
Ti I | 14
132 | 3710.870
3711.074 | | Eu II
Na II | 1 4
3 | 3718.877
3718.92 | | Sm II
Pd I | 38
3 | | 3703 | P | o v | 8 | 3711.074 | | Pr II | 18 | 3718.930 | | Mn I | · · | | 3703.217 | | Al II | 18 | 3711.118 | | V II | 102 | 3719.27 | | Hf II | 7 | | 3703.323 | | YII | 62 | 3711.225 | | Fe I | 228 | 3719.45 | | Gd II | | | 3703.37 | | 0 111 | 21 | 3711.29 | | Cr II | | 3719.53 | | Gd II | 17 | | 3703,43 | P | Fe I | 704 | 3711.30 | P | Fe I | 75 | 3719.74 | | Mo II | 5 . | | 3703.52 | r | CIII | 12 | 3711.30 | r | Fe III | 99 | 3719.797 | | Ce II | 52 | | 3703.556 | | Fe I | 291,292 | 3711.411 | | Fe I | 494 | 3719.935 | | Fe I | 5 | | 3703.584 | | V I | 29 | 3711.543 | | Sm II | 25 | 3720.17 | P | Fe II | 23 | | 3703.697 | | Fe I | 389 | 3711.646 | | Co I | 63 | 3720.29 | P | Zr II | 32 | | 3703.824 | | Fe I | 369 | 3711.751 | _ | V II | 116 | 3720.384 | | Ti I | 177 | | 3703.832 | | V II | 15
3 | 3711.92 | P | Fe I
Zr II | 178
8 | 3720.43 | | A II
Cl III | 42
5 | | 3703.855
3704.010 | | Fe I | 495 | 3711.95
3711.973 | | н | 3 | 3720.45
3720.69 | P | Rh II | 7 | | 3704.060 | | Co I | 35 | 3711.974 | | Fe II | 192 | 3720.86 | • | 0 111 | 21 | | | | | | | | | | | | | | | 3704.295 | | Ti I | 117 | 3712.109 | | Sm II | | 3720.93 | _ | V I | 98 | | 3704.336 | | Fe I | 609 | 3712.177 | _ | Co I | 84 | 3721.03 | P | N1 I | 181 | | 3704.463
3704.699 | | Fe I
V I | 290
29 | 3712.39
3712.48 | P | Fe II
O III | 15
21 | 3721.189
3721.278 | | Fe I
Fe I | 491
75,705 | | 3704.73 | | 0 111 | 21 | 3712.50 | | Cr I | 269 | 3721.358 | | VI | 11 | | 3704.79 I | Porb | He I | 26 | 3712.533 | | V II | 157 | 3721.396 | | Fe I | 131 | | 3704.80 | P | Fe I | 950 | 3712.70 | | Gd II | 20 | 3721.398 | | Y II | 75 | | 3704.848 | | Tm II | 9 | 3712.75 | | O II | 3 | 3721.512 | | Fe I | 389 | | 3705.003 | | He I | 25 | 3712.764 | | Sm II | 25 | 3721,606 | | Fe I | 437 | | 3705.035 | | A, I | 29 | 3712.97 | | Cr II | 12 | 3721.632 | | Ti II | 13 | | 3705.12 | P | Ni I | 30 | 3713.018 | | Cb I | 3 | 3721.69 | | Źr II | 44 | | 3705.140 | _ | He I | 25 | 3713,03 | | A II | 114 | 3721.847 | | Sm II | | | 3705.26 | P | Fe I | 704 | 3713.04 | | Cr II | 12 | 3721.86 | | Ne II | 37 | | 3705.40 | P | Cr II | 118 | 3713.09 | | Ne II | 5 | 3721.940 | | H | 3 | | 3705.40 | | Hf II | 62 | 3713.103 | | Al III | 4 | 3721.95 | | 0 111 | 21 | | 3705.45 | | Cl III
Ti I | 1
222 | 3713.336 | | N1 I
Bu II | 74
12 | 3721.998 | | V I
Fe I | 91
291 | | 3705.53
3705.567 | | Fe I | 5 | 3713.45
3713.54 | | La II | 26 | 3722.028
3722.068 | | Gd II | 291
119 | | 3705.70 | P | Fe I | 610 | 3713.56 | | VI | 98 | 3722.16 | | V II | 15 | | 3705.71 | P | Fe I | 293 | 3713.696 | | N1 I | 74 | 3722.23 | P | Fe I | 490 | | 4 | | | | | | | 1.12 | | _ | | | | 3705.81 | | La II
V I | 55 | 3713.734 | | Ti I
V I | 116 | 3722.24 | P | Fe I
N1 I | 127 | | 3705.83
3706.026 | | Ca II | 11 4
3 | 3713.957
3714 | P | N IV | 11
12 | 3722.484
3722.564 | | Fe I | 18
5 | | 3706.035 | | V I | 104 | 3714.03 | • | 0 111 | 14 | 3722.568 | | Ti I | 17 | | 3706.06 | | P II | 20 | 3714.13 | | Zr I | 12 | 3722.601 | | V I | 91 | | 3706.219 | | T1 II | 73 | 3714.3 | | YII | 61 | 3722.759 | | Ce II | 90 | | 3706.752 | | Sm II | 47 | 3714.39 | | Cr I | 269 | 3722.77 | P | Fe I | 707 | | 3706.91 | | Mn II
A II | 8
4 | 3714.74
3714.77 | | A II
Zr II | 3
18 | 3722.79
3723.324 | | Sb I
V I | 1
98 | | 3706.94
3706.979 | | Sm II | * | 3714.808 | | NA II | 35 | 3723.38 | P | N1 I | 183 | | | | | | | | | | | | | | | 3707.01 | | Co I | 85 | 3714.87 | | La II | 55 | 3723.40 | | Cr II | 144 | | 3707.048 | | Fe I | 385,392 | 3714.904 | | Eu II | 11 | 3723.506 | | Nd II | | | 3707.13
3707.167 | | Cr II
Sm II | 169
35 | 3715.08
3715.19 | | O III
Cr II | 14
20 | 3723.63
3723.631 | | P II
Ti II | 22
72 | | 3707.24 | | 0 111 | 14 | 3715.371 | | Ti I | •• | 3723.92 | P | Fe II | 14 | | 3707.34 | | Cl III | 9 | 3715.45 | | Cr II | 145 | 3724.106 | | Ti II | 73 | | 3707.465 | | Co I | 96 | 3715.476 | | V II | 15 | 3724.26 | P | N1 I | 183 | | 3707.549 | | Ti I | 177 | 3715.499 | | N1 I | 183 | 3724.380 | | Fe I | 124 | | 3707.828 | | Fe I | .5
76 | 3715.53 | | La II
Ti I | 43 | 3724.51 | | A II
Ti I | 131 | | 3707.918 | | Fe I | 76 | 3715.795 | | -1 1 | 116 | 3724.570 | | ** 1 | 131 | | 3708.06 | | Mn II | 8 | 3715.86 | | P II | 1 | 3724.81 | | Mn II | 8 | | 3708.18 | P | Fe I | 228 | 3715.911 | | Fe I | 124 | 3724.827 | | N1 I | 182 | | 3708.410 | _ | Sm II | -5 | 3716.36 | | Gd II | 2 | 3724.902 | | Sm II | 5 | | 3708.45 | P | Fe I | 436 | 3716.365 | | Ce II | 40 | 3724.94 | | Eu II | 2 | | 3708.602
3708.625 | | Fe I
Ti I | 178,225
268 | 3716.442
3716.531 | | Fe I
Cr I | 388,705
269 | 3724.984
3725.05 | | V II
La II | 102
13 | | 3708.654 | | Sm II | 19 | 3716.60 | | K II | 2 | 3725.061 | | Tm II | 417 | | 3708.721 | | V I | 104 | 3716.71 | P | Fe I | 434 | 3725.155 | | Ti I | 83 | | 3708.823 | | Co I | 98 | 3716.91 | | YII | 76. | 3725.29 | | Mn II | 8 | | 3709.03 | P | Fe I | 390 | 3716.930 | | Ce II | 242 | 3725.30 | | 0 111 | 14 | | 3709.13 | | Gd II | 51 | 3717 | P | 0 V | 8 | 3725.304 | | Fe II | 130 | | 3709.13
3709.246 | | Fe I | 21 | 3717.02 | - | Zr II | 82 | 3725.498 | | Fe I | 534 | | 3709.25 | P | Cr II | 6 | 3717.03 | | P IV | 3 | 3725.65 | P | Fe I | 75 | | 3709.27 | | Zr II | 45 | 3717.06 | | CP II | | 3725.675 | | Ce II | 231 | | 3709.286 | | Ce II | 40 | 3717.17 | _ | AII | 67 | 3725.81 | | O IV | 6 | | 3709-335 | | V II
8 III | 102 | 3717.19
3717.250 | P | Fe I
Ti I | 704
116 | 3725.901 | P | Fe II
O V | 6 | | 3709.371
3709.52 | | 0 111 | 1
21 | 3717.259
3717.393 | | Ti I | 116
17 | 3726
3726.06 | P
P | Fe I | 8
433 | | 3709.535 | | Fe I | 435 | 3717.53 | | Mn II | 8 | 3726.235 | - | Cb I | 3 | | 3709.64 | | Ne II | 1 | 3717.55 | | VI | 114 | 3726.653 | | Co I | 40 | | | | . - | | ***** | | | . - | | | | | | 3709.665 | | Fe I | 225 | 3717.63 | | P III
P IV | 10 | 3726.805 | | Sm II | 19 | | 3709.88
3709.90 | | Mn II
A II | . 8
67 | 3717.63
3717.69 | | Fu II | 3 | 3726.85
3726.89 | P | Cr I
Fe I | 73
75 | | 3709.933 | | Ce II | 40 | 3717.79 | P | Fe I | 997 | 3726.926 | | Ru I | 76
2 | | 3709.963 | | Ti I | 83 | 3717.775 | | 8 111 | 6 | 3726.927 | | Fe I | 385 | | 3710.01 |
P | Cr II | 6 | 3717.84 | P | Fe I | 706 | 3726.931 | | Mn I | 24 | | 3710.186 | _ | Ti I | 222 | 3717.915 | | Tm I | | 3727.03 | P | Fe I | 668 | | 3710.22 | P | Cr II | 6 | 3717.94 | | C1 II | 63 | 3727.04 | P | Fe II | 192 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---|------|----------------|---------------|--------------------------------------|--------|----------------|---------------------------|----------------------|------|-----------------|-----------------------| | 3727.09 | В | Fe I | 387 | 3736.017 | | V II | 102 | 3746.931 | | Fe I | 386 | | 3727.33 | | 0 11 | 3 | 3736.280 | | Be I | 6 | 3747 | P | 0 V | 8 | | 3727.35 | | V II | 21 | 3736.41
3736.45 | | La II
Cr I | 142
215 | 3747.00 | P | Fe I | 388 | | 3727.37
3727.53 | | Cr II
Fe I | 117
705 | 3736.56 | | Cr II | 20 | 3747.264
3747.40 | P | Cr I
Fe III | 289
71 | | 3727.62 | | Fe I | 21 | 3736.78 | | Ó IV | 6 | 3747.48 | - | Hf II | 27 | | 3727.67 | | Fe I | 225 | 3736.813 | | N1 I | 30 | 3747.55 | | YII | 8 | | 3727.72 | | Zr II | 112 | 3736.901
3737.133 | | Ca II
Fe I | 3
5 | 3747.66 | | N IV
S III | 8 | | 3727.80
3728.03 | | Fe I
Ru I | 386
2 | 3737.141 | | Sm II | • | 3747.90
3747.96 | | La II | 1 | | 0120.00 | U | 1 | ~ | | | | | | | | | | 3728.13 | | Nd II | | 3737.55 | | Cr II
Hf II | 117
75 | 3747.982 | | V I | 97,98 | | 3728.33 | | V II
Ce II | 116
47 | 3737.88
3737.89 | | A II | 131 | 3748.010
3748.056 | | Ti II
Ce II | 107
1 60 | | 3728.42
3728.46 | | Sm II | 54 | 3737.992 | | V I | 91 | 3748 . 101 | | Ti I | 166 | | 3728.49 | | 0 111 | 30 | 3738.003 | | Al II | 11 | 3748.18 | | Cr I | 88 | | 3728.66 | | Fe I | 227 | 3738.08
3738.13 | | Eu II
Zr II | 17 | 3748.264 | | Fe I
Ca I | 5 | | 3728.67
3728.67 | | P II
P IV | 22
3 | 3738.308 | | Fe I | 609 | 3748.374
3748.46 | | C1 II | 27
6 | | 3728.67 | | Ti I | 116 | 3738.38 | | Cr II | 20 | 3748.489 | | Fe II | 154 | | 3728.82 | | 0 111 | 30 | 3738.51 | P | Fe I | 918 | 3748.492 | | Fe I | 805 | | 3728.84 | n | Co I | 133 | 3738.757 | | v I | 97 | 3748.614 | | Cr I | 43 | | 3728.88 | | Mn I | 24 | 3738.901 | | Ti I | 166 | 3748.68 | | Cr II | 11 | | 3728.93 | 3 | N1 I | 181 | 3739.117 | | Sm II | ~= | 3748.73 | | 8 111 | _ | | 3729.03 | | O IV | 6 | 3739.120
3739.13 | | Fe I
K II | 75
1 | 3748.81
3748.88 | | C1 III | 5
105 | | 3729.03
3729.29 | | V I
A II | 91
10 | 3739.193 | | Pr II | _ | 3748.91 | P | Fe I | 289 | | 3729.34 | | Fe I | 530 | 3739.197 | | Sm II | 5 | 3748.969 | | Fe I | 386 | | 3729.34 | | 0 11 | 62 | 3739.229
3739.317 | | Ni I
Fe I | 2
74 | 3748.998 | | Cr I | 43 | | 3729.49
3729.70 | | Mn II
O III | 8
30 | 3739.527 | | Fe I | 1-2 | 3749.045
3749.487 | | Ni I
Fe I | 1
21 | | 0.200 | | | | | | | | | | | | | 3729.74 | | Zr II
Ti I | 8 | 3739.6
3739.782 | | T1 II
N1 I | 107
180 | 3749.49
3749.55 | P | O II
Zr II | 3
112 | | 3729.80
3730.38 | | Fe I | 17
533 | 3739.80 | | CP I | 3 | 3749.930 | r | Co I | 95 | | 3730.43 | | Ru I | 2 | 3739.92 | | 0 11 | 31 | 3750.00 | | C1 II | 6 | | 3730.46 | | Fe I | 389 | 3739.940
3740.061 | | Pb I
Fe I | 2
532a, 707 | 3750.154 | | H | 2 | | 3730.47
3730.64 | | Co I
8 II | 62 | 3740.241 | | V I | 98 | 3750.349
3750.50 | | Ca I
A II | 27
3 | | 3730.75 | | N1 I | 2 | 3740.247 | | Fe I | 667 | 3750.56 | | Cr II | · · | | 373 0.80 | 7 | Cr I | 2 | 3741.059 | | Ti I
Sm II | 17 | 3750.65 | | 2r II | 18 | | 3730.81 | .0 | Tm II | 11 | 3741.288 | | 9m 11 | | 3750.677 | | Fe I | 225 | | 3730.84 | ŀ | Gd II | 20 | 3741.31 | | Eu II | 11 | 3750.74 | | 8 III | 1 | | 3730.94 | | Fe I | 228 | 3741.427
3741.504 | | Nd II
V I | 124 | 3750.763 | | Mrn I
V II | 24 | | 3731.15
3731.25 | | Fe I
Sm II | 950
11 | 3741.56 | P | Fe II | 15 | 3750.88
3751.059 | | Fe I | 21
667 | | 3731.26 | | Zr II | 112 | 3741.633 | | Ti II | 72 | 3751.06 | | A II | 81 | | 3731.26 | 8 | Co I | 96 | 3741.69 | | 0 II | 38 | 3751.09 | P | Fe I | 74 | | 3731.37 | | Fe I
La II | 225 | 3741.727
3742.07 | | Ce II
Fe I | 241
225 | 3751.222
3751.26 | | V II
Ne II | 100
1 | | 3731.42
3731.64 | | V II | 137
101 | 3742.14 | P | Fe I | 978 | 3751.60 | | Cr II | 117 | | 3731.93 | | Mn I | | 3742.20 | P | Cr II | 6 | 3751.60 | | Zr II | 71 | | 3731.95 | 'n | Al II | 11 | 3742.280 | | Ru I | 2 | 3751.625 | | Co I | 98 | | 3731.98 | | V II | 92 | 3742.34 | | No II | 5 | 3751.812 | | Tm I | •• | | 3732.03 | | Cr I | 2 | 3742.393 | | Cb I
Fe I | 3 | 3751.820 | | Fe I | 287 | | 3732.13 | | Fe I
O III | 532
14 | 3742.56
3742.621 | P | Fe I | 389
387 | 3752.420
3752.524 | | Fe I
Os I | 385, 39 2
2 | | 3732.13
3732.39 | | Co I | 62 | 3742.937 | | Fe I | 704 | 3752.65 | P | N III | 11 | | 3732.39 | | Fe I | 76 | 3742.968 | _ | Cr I | 43 | 3752.679 | | Nd II | 33 | | 3732.45 | | 0d II
V 1I | 5 | 37 42.99
3743.20 | P
P | Cr II
Cr II | 6
6 | 3752.860
3753.10 | | Ti I
Al II | 17
39 | | 3732.76
3732.86 | | He I | 15
24 | 3743.364 | - | Fe I | 21 | 3753.154 | | Fe I | 177 | | | | | | 0740 40 | | D- 111 | | | | | | | 3732.99 | | Re I | 24 | 3743.40
3743.468 | | Fe III
Fe I | 806 | 3753.18
3753.26 | P | Fe III
Cr II | 83
20 | | 3733.08
8733.20 | | Gd II
Fe I | 225 | 3743.47 | | Gd II | 2 | 3753.367 | • | Ca I | 20
27 | | 3733.31 | .9 | Fe I | 5 | 3743.556 | | Eu II | 11 | 3753.53 | | A II | 80,128 | | 3733.36 | | A II | 68 | 3743.578
3743.610 | | Cr I
V II | 43
21 | 3753.610 | | Fe I
Ţi I | 73
17 | | 3733.4 8
3733. 60 | | Co I
V II | 98
116 | 3743.78 | P | Fe I | 290 | 3753.623
3753.83 | | Ne II | 17
38 | | 3733.73 | | C1 II | 63 | 3743.868 | | Sm II | 18,34 | 3754.06 | | A II | 115 | | 3733.76 | | Ti I | 166 | 3743.884
3744.066 | | Cr I
Tm I | 43 | 3754.12
3754.346 | P | Rh II
Co I | 7
132 | | 3 733.91 | .U | Al II | 11 | 0.11.000 | | | | 0102.020 | | 00 1 | 132 | | 8734.12 | | Tm II | 6 | 3744 . 105 | | Fe I
P III | 3 85
1 0 | 3754.506 | | Fe I | 386 | | 3734.13 | | Co I
H | 96
3 | 37 44. 22
37 44. 42 | | K II | 3 | 3754.59
3754.62 | | Cr II
N III | 20
4 | | 3734. 37
3734. 42 | | v i | 97 | 3744.490 | | Cr I | 43 | 3754.67 | | 0 111 | 2 | | 3734.45 | | Ru II | 1 | 3744.562 | | N1 I | 180 | 3754.89 | P | Fe I | 949 | | 3734.56 | | Al II | 50 | 3744.66
3744.73 | | Ne II
O IV | 40
6 | 3755.13
9755.276 | | Cr II
Sm II | 20
34 | | 3734.71
3734.80 | | Al II
O III | 50
21 | 3744.73
3744.98 | | Hf II | 76 | 3755.276
3755.425 | | Ce II | 34
128 | | 3734. 80 | | Al II | 50 | 3745.36 | P | Fe II | 131 | 3755.447 | | to I | 96 | | 3734.86 | | Fe I | 21 | 3745. 49 1 | | Co I | 34 | 3755.54 | | Mo II | 5 | | 3734.94 | ļ. | Ne II | 1 | 3745.561 | | Fe I | 5 | 3755.56 | | Gd II | 85 | | 3735.15 | 8 | V II | 102 | 3745.605 | | Sm II
V II | 2
15 | 3755.563 | | Fe II | 154 | | \$735.32
\$735.40 | | Fe I
A JI | 388
3 | 3745.806
3745.83 | | N III | 4 | 3755.61
3755.701 | | Ca II
V I | 8
124 | | 3 735.49
3 735.66 | | Ti I | J | 3745.901 | | Fe I | 5 | 3755.81 | | Cr I | 72 | | 3735.71 | P | Fe I | 127 | 3745.97 | | Zr II | 112 | 3755.82 | P | O IV | 6 | | 3735.85 | | La II | 29
95 | 3746.46
3746.486 | | A II
Fe I | 1 3 0
73 | 3756.069
3756.10 | | Fe I
He I | 74
66 | | 373 5.92
3 7 3 5.94 | | Co I
O II | 95
62 | 3746.56 | P | Fe II | 14 | 3756.411 | | Sm I | 2 | | 3735.98 | | Sm II | 29 | 3746.92 | | A II | 67 | 3756.411 | | Sm II | 44 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------------------------|------|----------------|---------------|----------------------|--------|----------------|---------------|-----------------------------------|------|-----------------|------------------| | 3756.55 | | Cr II | 144 | 3765.542 | | Fe I | 608 | 3775.860 | | Fe I | 287 | | 3756.83 | | Cr I | 72 | 3765.62 | | Cr II | 20 | 3776.062 | | Ti II | 72 | | 3756.860
3756.939 | | Tm II
Fe I | 9
805 | 3765.70
3765.93 | | Fe I
Eu II | 608
11 | 3776.454
3776.527 | | Fe I
Mn I | 7 4
6 | | 3756.96 | | Zr II | 8 | 3766.092 | | Fe I | 226 | 3776.56 | | Y II | 8 | | 3757.093 | | WI | 3 | 3766.13 | | AII | 29 | 3776.80 | | SII | 51 | | 3757.174
3757.21 | | Cr I
O III | 43
2 | 3766.29
3766.445 | | Ne II
Ti I | 1
82 | 3777.061 | | Fe I
Ne II | 432 | | 3757.459 | | Fe I | 668 | 3766.514 | | Ce II | 124 | 3777.16
3777.32 | | Cr I | 1
41 | | 3757.529 | | Sm II | | 3766.65 | | Cr II | 20 | 3777.43 | | Fe III | 95 | | 3757.60 | P | N III | 11 | 3766.665 | | Fe I | 386 | 3777.448 | | Fe I | 223 | | 3757.66 | P | N III | 11 | 3766.71 | | Zr I | 10 | 3777.543 | | Co I | 96 | | 3757.662
3757.684 | | Cr I
Ti II | 43
72 | 3766.83 | | Zr II | 7 | 3777.55 | | A II | 81 | | 3757.80 | | Zr II | 120 | 3766.92
3767.04 | | Hf II
Gd II | 75
20 | 3777.60
3777.64 | | Hf I | 31
1 | | 3757.862 | | Ce II | 48 | 3767.05 | | La II | 151 | 3777.919 | | Ru II | î | | 3757.929 | | WI | 4 | 3767.18 | P | Cr II | 20 | 3777.93 | | Cr I | 41 | | 3758.044
3758.11 | P | Cr I
Fe I | 43
704 | 3767.194
3767.358 | | Fe I
Sm II | 21
46 | 3778.063 | | N1 I
Sm II | 15 | | 3758.22 | - | V II | 100 | 3767.36 | | K 11 | 2 | 3778.136
3778.320 | | Fe I | 367 | | 3758.235 | | Fe I | 21 | 3767.431 | | Cr I | 42 | 0770 057 | | V II | 0.1 | | 3758.31 | | Gd II | 20 | 3767.57 | | C1 II | 6 | 3778.357
3778.37 | P |
Fe II | 21
192 | | 3758.36 | | Ca II | 8 | 3767.720 | | A 11 | 100 | 3778.509 | | Fe I | 664 | | 3758.45
3758.72 | | O IV
Cr I | 6
12 | 3767.73
3767.755 | P | Fe I
Sm II | 918 | 3778.684 | | V I | 28 | | 3758.9 | | Y II | 74 | 3767.89 | | Zr II | 31 | 3778.69
3778.697 | | Cr II
Fe I | 73 | | 3758.944 | | Nd II | | 3768.030 | | Fe I | 73 | 3778.90 | | SIII | 5 | | 3758.9 68
3759. 00 | | Sm II
Gd II | 2 | 3768.08
3768.13 | | Cr I | 42 | 3779.213 | _ | Fe I | 290 | | 3759.08 | | La II | 13 | 3768.23 | | Cl II
Fe I | 6
368 | 3779.23
3779.35 | P | N III
Cl III | 11
8 | | 3759. 155 | | Fe I | 855 | 0700 040 | | O 7 | | | | | | | 3759.291 | | Ti II | 13 | 3768.240
3768.39 | | Cr I
Gd II | 43
2 | 3779.424
3779.444 | | Fe I
Fe I | 222
665 | | 3759.460 | | Fe II | 154 | 3768.57 | P | Cr II | 6 | 3779.486 | | Fe I | 74 | | 3759.556
3759.684 | | Cb I
Co I | 3
131 | 3768.62 | | Cr I | 42 | 3779.58 | P | Fe II | 23 | | 3759.87 | | 0 111 | 2 | 3768.71
3768.734 | | P II
Cr I | 1
43 | 3779.648
3780.09 | | V I
Hf II | 69
18 | | 3760.031 | | Ru I | 2 | 3768.81 | | He I | 65 | 3780.391 | | Nd II | 19 | | 3760.052
3760.133 | | Fe I
W I | 177
3 | 3769.00 | | Cr I
Ce II | 42 | 3780.53 | | La II | 141 | | 3760.24 | | v II | 21 | 3769.046
3769.13 | | Cl II | 50
6 | 3780.53
3780.6 7 | | Zr I
La II | 8
55 | | 3760.401 | | Co I | 40 | 3769.37 | P | Cr II | 6 | 3780.763 | | Sm II | | | 3760.404 | | Ce II | 109 | 3769.45 | - | Gd II | 37 | 3780. 770 | | WI | 8 | | 3760.534 | | Fe I | 76 | 3769.455 | | N1 II | 4 | 3780.84 | | A II | 54 | | 376 0.694
3 760.694 | | Ce II
Sm II | 92
18,51 | 3769.644
3769.695 | | Nd II
Pr II | 67
16 | 3780.927 | | Sm II | 38 | | 3760.71 | | Gd II | 37 | 3769.995 | | Fe I | 387 | 3781.188
3781.23 | | Fe I
Cl II | 7 4
72 | | 3760.92 | _ | Gd II | 20 | 3770. 3 05 | | Fe I | 287 | 3781.379 | | Cb II | 9 | | 3761.06
3761.12 | P | Fe I
Eu II | 706 | 3770.37 | P | N III | 11 | 3781.393 | | V I | 10,97 | | 3761.12 | | V II | 11
129 | 3770.405
3770.412 | | Fe I
Ti II | 177
107 | 3781.510
3781.597 | | Fe II
Mo I | 130
8 | | 3761.320 | | Ti II | 13 | 3770.517 | | Mo I | 8 | 3781.620 | | Ce II | 163 | | 3761.331 | | Tm II | 2 | 3770.54 | | AII | 42 | 3781.68 | | He II | 5 | | 3761.416 | | Fe I | 227 | 3770.632 | | H | 2 | 3781.938 | | Fe I | 917 | | 3761.442
3761.62 | | V I
Ca III | 97
3 | 3770.69
3770.974 | | Gd II
V II | 21 | 3782.139 | | Ti I | 82 | | 3761.69 | | Cr II | 11 | 3771.08 | | N III | 4 | 3782.195
3782.24 | | 0s I
Zr II | 3
44 | | 3761.72 | * | Ca I | 8 | 3771.3 6 | | Hf II | 29 | 3782.302 | | YII | 61 | | 3761.82
3761.866 | | P II
Ti II | 1
107 | 3771.45
3771.50 | P
P | N III
Fe I | 11 | 3782.34 | | Gd II | 202 | | 3761.867 | | Pr II | 101 | 3771.652 | r | Ti I | 607
17 | 3782.450
3782.524 | | Fe I
Ce II | 388
142 | | 3761.90 | | Cr II | 11 | 3771.98 | | Zr II | 4.4 | | | | | | 3761.913 | | Tm II | 2 | 3772.06 | | Zr II | 44
31 | 3782.6
3782.608 | | S II
Fe I | 23
491 | | 3762 | P | 0 V | 8 | 3772.530 | | Ni I | 15 | 3782.72 | | Zr II | 120 | | 3762.205
3762.41 | | Fe I
Si IV | 705
3 | 3772.854
3772.962 | | Pr II
V II | 100 | 3782.78 | | Hf II
S II | 26
41 | | 3762.51 | | Hf II | 101 | 3773.12 | | La II | 141 | 3783.16
3783.19 | | K II | 41
2 | | 3762.588 | | Sm II | 25 | 3773.13 | | Si IV | 3 | 3783.347 | | Fe II | 14 | | 3762.618
3762.62 | P | N1 I
N III | 11 | 3773.364
3773.68 | | Fe I
Cl II | 531 | 3783.530 | | Ni I | 30 | | 3762.63 | • | 0 11 | 31 | 3773.699 | | Fe I | 6
386 | 3783.561
3784.250 | | Tm II
Nd II | . 11 | | 3762.894 | | Fe II | 192 | 3773.80 | | Fe III | 34 | 3784.27 | P | Fe I | 607 | | 3763.00 | | Gd II | 1 | 3773.80 | | V II | 129 | 3784.81 | • | La II | 13 | | 3763.13 | | Cb II | 10 | 3774.00 | | 0 111 | 2 | 3784.886 | | He I | 64 | | 3763.141
3763.33 | | V I
Gd II | 98
37 | 3774.25
3774.294 | | C1 II
Sm II | 6
43 | 3785.01 | | 0 II | 95 | | 3763.356 | | Mo I | 8 | 3774.3 | | Al II | 33 | 3785.421
3785.706 | | Mn I
Fe I | 45
608 | | 3763.377 | | Mn I | 24 | 3774.33 | | YII | 7 | 3785.78 | P | Fe I | 704 | | 3763.475
3763.52 | | Nd II
A II | 54 | 3774.331
3774.38 | P | Ti I
O IV | 16
6 | 3785.950 | | Fe I | 177 | | 3763.57 | P | Fe I | 128 | 3774.38
3774.52 | r | S III | 6
10 | 3786.043
3786.176 | | Ti I
Fe I | 57
367 | | 3763.790 | | Fe I | 21 | 3774.54 | | A II | | 3786.22 | | Cr I | 71 | | 3764.09 | | Fe II | 29 | 3774.599 | | Co I | 96 | 3786.253 | | Ti I | 165 | | 3764.117
3764.21 | P | Ce II
Fe I | 41
74 | 3774.645
3774.650 | | Mn I | 45
10 | 3786.33 | P | Ti II | 12 | | 3764.21 | • | Sm II | 34 | 3774.650
3774.678 | | Ti II
V II | 12
129 | 3786.37
3786.40 | P | Fe II
A II | 15 | | 3764.38 | | Zr I | 10 | 3774.823 | | Fe I | 73 | 3786.632 | | A II
Ce II | 3
51 | | 3764.60
3764.911 | | Gá II | 85 | 3775.03 | | PII | 19 | 3786.678 | | Fe I | 22 | | 3764.811
3765.044 | | Pr II
Ce II | 208 | 3775.187
3775.572 | | V I
Ni I | 97
33 | 3786.70 | | P II | 1 | | 3765.27 | | A II | 42 | 3775.724 | | Tl I | 1 | 3786.94
3787.064 | | Fe III | 71 | | | | | | | | | | | | | | 31 | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|------|----------------|---------------|----------------------|------|----------------|----------------------|----------------------|------|----------------|-----------------| | 3787.164 | | Fe I | 916 | 3796.90 | | Fe I | 667 | 3807.505 | | v I | 28 | | 3787.203 | | Sm II | 5 | 3796.99 | | Cr I | 41 | 3807.534 | | Fe I | 73 | | 3787.235 | | VII | 100 | 3797.126 | | Cr I | 139 | 3807.65 | | Gd II | 85 | | 3787.56 | | Gd II | 20 | 3797.283 | | Sm II | 11 | 3807.926 | | Cr I | 139 | | 3787.883 | | Fe I | 21 | 3797.517 | | Fe I | 607 | 3808.102 | | Co I | 17 | | 3787.89 | P | Cr II | 6 | 3797.716 | | Cr I | 139 | 3808.124 | | Ce II | 59 | | 3788.125 | | Sm II
Rh I | 25
6 | 3797.730 | | Sm II
H | 2 | 3808.286
3808.521 | | Fe I
V I | 489
9 | | 3788.474
3788.70 | | YII | 7 | 3797.900
3797.948 | | Fe I | 222 | 3808.61 | | A II | 3 | | 3788.753 | | Ce II | 47 | 3797.95 | | Hf II | 29 | 3808.7 | | YII | 73 | | 3788.804 | | Ti I | 16 | 3798.127 | | Cb I
Mo I | 3
1 | 3808.731
3808.772 | | Fe I
Nd II | 222 | | 3788.864
3788.91 | | Cr I
Fe III | 139
102 | 3798.259
3798.276 | | mo I
Ti I | 115 | 3808.79 | | La II | 43 | | 3789.178 | | Fe I | 289 | 3798.36 | P | Fe II | 14 | 3809.043 | | Fe I | 367 | | 3789.293 | | Ti I | 115 | 3798.513 | | Fe I | 21 | 3809.224 | | Ce II | 204 | | 3789.49 | | Cr I | 41 | 3798.60 | P | Fe II | 23 | 3809.49 | | A II | 42 | | 3789.570 | | Fe I | 226 | 3798.661 | | V I
Tm II | 80
11 | 3809.51
3809.592 | | Cl II
Mn I | 62
6 | | 3789.723
3789.82 | P | Cr I
Fe I | 24
702 | 3798.752
3798.80 | | Cl II | 62 | 3809.597 | | v i | 28 | | 3790.095 | • | Fe I | 22 | 3798.901 | | Ru I | 1 | 3809.67 | | S II | 50 | | 3790.138 | | Cb I | 3 | 3799.009 | | Eu II | 11 | 3810.10 | n | C1 II | 62 | | 3790.215 | | Mn I | 6 | 3799.038 | | Ce II
Pd I | 136
1 | 3810.21
3810.59 | P | Fe II
Hf II | 143
96 | | 3790.228
3790.24 | P | Cr I
Fe I | 139
224 | 3799.17
3799.259 | | Mn I | 6 | 3810.724 | | Tm II | 9 | | 3790.324 | • | VI | 28 | 3799.311 | | Rh I | 8 | 3810.759 | | Fe I | 665 | | 3790.454 | | Cr I | 139 | 3799.347 | | Ru I | 1 | 3810.90 | P | Fe I | 224 | | 3790.469 | | V I | 69 | 3799.39 | | AII | 54 | 3810.96 | | 0 111 | 2 | | 3790.656 | | Fe I | 387 | 3799.542 | | Sm II | 22 | 3811.05 | | Fe I | 223, 287 | | 3790.756
3790.83 | | Fe I
La II | 73,127
12 | 3799.549
3799.81 | | Fe I
Ti II | 21
13 | 3811.065
3811.073 | | Co I
Nd II | 31
69 | | 3790.96 | | Ne II | 30 | 3799.912 | | v i | 28 | 3811.22 | | A II | 81 | | 3791.17 | | Gd II | 85 | 3800.02 | | Ne II | 39 | 3811.32 | | N1 I | 15 | | 3791.209 | | СР І | 2 | 3800.122 | | Ir I | 1 | 3811.35 | | 0 VI | 1 | | 3791.26 | | 0 111 | 2 | 3800.240 | | Mn II | 14 | 3811.385 | | T1 I
Nd II | 165
31 | | 3791.326
3791.376 | | V I
Cr I | 10
139 | 3800.303
3800.370 | | Pr II
Sm II | 43 | 3811.774
3811.80 | P | Fe I | 701 | | 3791.370 | | Zr I | 8 | 3800.39 | | Hf II | 18 | 3811.80 | | SII | | | 3791.41 | | Si III | -5 | 3800.43 | | Fe III | 47 | 3811.892 | | Fe I | 287 | | 3791.504 | | Fe I | 223 | 3800.552 | | Mn I | 45 | 3812.067 | | Sm II
Y II | 10
61 | | 3791.72 | | Gd II | 46 | 3 800.73 | | Zr II | 17 | 3812.18 | | | | | 3791.73
3792.025 | | Fe I
Sm II | 703
5 | 3800.883
3800.887 | | Y II
Sm II | 61
29 | 3812.250
3812.470 | | Cr I
Co I | 214
40 | | 3792.023 | | Cr I | 139 | 3801.022 | | Sn I | 2 | 3812.964 | | Fe I | 22 | | 3792.156 | | Fe I | 287 | 3801.093 | | Ti I | 165 | 3813.059 | | Fe I | 2 22 | | 3792.32 | | Zr II | 81 | 3801.21 | | Cr II | | 3813.07 | P | Fe I | 176 | | 3792.326 | | Ce II | 129 | 3801.29 | | Gd II | 170 | 3813.12 | | V II
Ti I | 128
189 | | 3792.337
3792.42 | | Ni I
Cr I | 2
71 | 3801.529
3801.633 | | Ce II
Mn II | 172
14 | 3813.261
3813.390 | | Ti II | 12 | | 3792.46 | | s II | 50 | 3801.681 | | Fe I | 367 | 3813.402 | | Be I | 5 | | 3792.524 | | Pr II | | 3801.804 | | Fe I | 367 | 3813.45 | P | V I | 28 | | 3792.56 | | Y II | 61 | 3801.907 | | Mn I | | 3813.492 | | v I | 9 | | 3792.834 | | Fe I | 74 | 3801.975 | | Fe I | 704 | 3813.50 | | He II | 4 | | 3792.87 | | N III | 11 | 3802.08 | | P III | 10
666 | 3813.638 | | Fe I
Y II | 283
72 | | 3793.217
3793.28 | P | Rh I
Fe I | 9
386 |
3802.283
3802.65 | | Fe I
S II | 666
50 | 3813.8
3813.891 | | Fe I | 85 4 | | 3793.289 | • | Cr I | 139 | 3802.883 | | v i | 67 | 3813.94 | P | Fe I | 176 | | 3793.354 | | Fe I | 388 | 3802.928 | | Сь І | 3 | 3813.97 | | Gd II | 2 | | 3793.37 | | Hf II | 1 | 3802.958 | | Mn II | 14 | 3813.98 | | Zr II
Cr II | 100 | | 3793.478
3793.52 | | Fe I
Fe III | 387
71 | 3803.097
3803.14 | | Ce II
O II | 37
34 | 3814.00
3814.121 | | Fe II | 153 | | 3793.608 | | Ni I | 4 | 3803.19 | | A II | 129 | 3814.42 | | Ra II | 1 | | 3793.61 | | P II | 1 | 3803.24 | P | Fe I | 122 | 3814.457 | | Co I | 62 | | 3793.614 | | V I | 9 | 3803.474 | | Nd II | 66 | 3814.526 | | Fe I | 22 | | 3793.75 | | C1 II | 067 | 3803.474 | | V I
V I | 28
68 | 3814.580
3814.622 | | Ti II
Cr I | 12
214 | | 3793.872
3793.879 | | Fe I
Cr I | 367
139 | 3803.784
3803.881 | | Mn II | 14 | 3814.725 | | Nd II | 211 | | 3793.971 | | Sm II | 11 | 3803.902 | | V I | 10 | 3814.855 | | T1 I | 189 | | 3794.340 | | Fe I | 177 | 3804.013 | | Fe I | 702 | 3814.97 | | Zr II | 8 | | 3794.366
3794.48 | | V II
O II | 100
34 | 3804.476
3804.589 | | Mn II
V I | 1 4
97 | 3815.012
3815.38 | | Rh II
V II | 7
166 | | | | | | | | | | | | | 71 | | 3794.608
3794.69 | | Cr I
S III | 139
10 | 3804.798
3805.24 | | Cr I
Cl II | 139
62 | 3815.433
3815.495 | | Cr I
Eu II | 11 | | 3794.09 | | La II | 10
12 | 3805.24 | | Fe I | 608 | 3815.514 | | V I | 28 | | 3794.964 | | VI | 9,28 | 3805.359 | | Nd II | 19 | 3815.831 | | Ce II | 37 | | 3795.004 | | Fe I | 21 | 3805.626 | | Sm II | 10 | 3815.842 | | Fe I | 45 | | 3795.10 | | P II | 1 | 3805.765 | | He I | 63
75 | 3816.166
3816.173 | | Pr II
Cr I | 40 | | 3795.169 | | Tm II
Ce II | 6
50 | 3806.07
3806.203 | | Hf II
Fe I | 75
731 | 3816.25 | | La II | 134 | | 3795.256
3795.37 | | A III | 5 | 3806.30 | | Ne II | 30 | 3816.318 | | Co I | 62 | | 3795.759 | | Tm II | 6 | 3806.55 | | Cr I | 24 | 3816.340 | | Fe I | 73 | | 3795.903 | | Ti I | 115 | 3806.56 | | Si III | 5 | 3816.458 | | Co I | 62 | | 3796.00 | | Fe I | 176 | 3806.697 | | Fe I | 607 | 3816.64 | | Gd II
O III | 1
18 | | 3796.11 | | Si III | 5
• | 3806.719 | ъ | Mn I
Fe I | 6
224 | 3816.75
3816.753 | | Mn I | 18
6 | | 3796.33
3796.37 | | He II
Gd II | 5
2 | 3806.76
3806.796 | P | V I | 68 | 3816.876 | | Co I | 86 | | 3796.37 | | Zr II | 71 | 3806.82 | P | Fe II | 153 | 3816.92 | P | Fe I | 387 | | 3796.48 | | V II | 167 | 3806.829 | | Cr I | 214 | 3817.20 | | Hf II | 62
168 | | 3796.55 | P | Fe II | 143 | 3807.144 | | Ni I | 33 | 3817.24 | | La II | 168 | | I A | Туре | Element | Multiplet No. | I A Ty | pe Element | Multiplet No. | I A | Type | Element | Multiplet | |----------------------|------|----------------|------------------|--------------------------|------------------|----------------|----------------------|--------|----------------|--------------------| | 3817.59
3817.639 | | Zr II
Ti I | 18
189 | 3827.079
3827.27 | Fe II
Zr II | 153 | 3836.10
3836.112 | | C II
Ce II | 13
60 | | 3817.64 | | Fe I | 701 | 3827.46 | P II | 26 | 3836.332 | | Fe I | 664 | | 3817.844 | | Cr I
V I | 40 | 3827.51 | Zr II | 121 | 3836.541 | | Nd II | 16 | | 3817.844
3817.940 | | Co I | 10
131 | 3827.572
3827.62 | Fe I
Cl II | 284
69 | 3836.76
3836.763 | | Zr II
Ti I | 16 | | 3818.244 | | V I | 9 | 3827.67 P | Fe II | 128 | 3836.91 | | Gd II | 20 | | 3818.27
3818.281 | | N I
Pr II | 11 | 3827.825
3828.180 | Fe I
Ti I | 45
189 | 3837.132
3837.210 | | Fe I
Ce II | 222
112 | | 3818.34 | | Y II | 7 | 3828.44 | Fe III | 70,95 | 3837.80 | | S III | 5 | | 3818.40 | | C1 II
Ne II | 62 | 3828.510 | Fe I
V I | 287 | 3838.094 | | He I | 61 | | 3818.44
3818.481 | | Cr I | 39
4 0 | 3828.559
3828.836 | V I
V I | 9
67 | 3838.198
3838.28 | | Tm II
Zr II | 11
17 | | 3818.78 | | Zr II | 111 | 3828.883 | Mo I | 8 | 3838.2918 | | Mg I | 3 | | 3818.862
3819.04 | | Cb II
A II | 10
129 | 3829.125 | Fe I
W I | 948 | 3838.2943 | | Mg I | 3 | | | Forb | He I | 23 | 3829.133
3829.27 | C1 II | 3
9 | 3838.316
3838.37 | | S III
Cl II | 5
69 | | 3819.50 | P | Fe I | 703 | 3829.3549 | Mg I | 3 | 3838.39 | | N II | 30 | | 3819.564
3819.57 | P | Cr I
Cr I | 70
88 | 3829.458
3829.47 P Fo | Fe I
orb He I | 366,663
21 | 3838.542
3838.941 | | Ce II
Sm II | 114
34 | | 3819.606 | | He I | 22 | 3829.53 | v II | 3 | 3838.981 | | Nd II | 28 | | 3819.62
3819.67 | P | Fe I
Eu II | 122 | 3829.655 | V II | 3 | 3839.002 | | V I | 44 | | 3819.761 | | He I | 1
22 | 3829.680
3829.77 | Mn I
Ne II | 6
39 | 3839.259
3839.614 | | Fe I
Fe I | 529
995 | | 3819.84 | | Zr II | 81 | 3829.771 | Fe I | 221 | 3839.64 | | Gd II | 20 | | 3819.908 | | Co I | 130 | 3829.80 | N II | 30 | 3839.777 | | Mn I | 6 | | 3819.963
3819.97 | | Cr I | 28
40 | 3830.032
3830.293 | Cr I
Sm II | 10 | 3840.140
3840.20 | P | V I
Fe I | 66
1 2 0 | | 3820.25 | | C1 II | 69 | 3830.39 | N I | 11 | 3840.439 | • | Fe I | 20 | | 3820.299 | | V I | 44 | 3830.43 | A II | 3,128 | 3840.44 | P | V I | 44 | | 3820.428 | | Fe I
Hf I | 20 | 3830.45 | 0 11 | 34 | 3840.70 | | Cr I | 70 | | 3820.74
3820.871 | | Ce II | 5
208 | 3830.719
3830.757 | Pr II
Fe I | 224 | 3840.72
3840.752 | | La II
V I | 28
9 | | 3820.874 | | Cr I | 40 | 3830.80 | C1 II | 69 | 3841.051 | | Fe I | 45 | | 3821.181 | | Fe I | 608 | 3830.850 | Fe I | 284 | 3841.082 | | Mn I | 6 | | 3821.487
3821.582 | | V I
Cr I | 28
40 | 3831.017
3831.032 | V II
Cr I | 3
24 | 3841.17
3841.277 | | Lu I
Cr I | 3
69 | | 3821.68 | | 0 11 | 34 | 3831.41 | SII | | 3841.35 | P | Fe II | 128 | | 3821.834
3821.92 | P | Fe I
Fe II | 222
14 | 3831.501
3831.690 | Sm II
Ni I | 43
31 | 3841.458
3841.54 | | Co I
A II | 32
54 | | 3822.009 | | v i | 9 | 9091 75 | Fe III | 109 | 2941 900 | | v i | | | 38 22.026 | | Ti I | 189 | 3831.75
3831.80 | Gd II | 3 | 3841.890
3842.03 | | Cr I | 8
70 | | 3822.07 | | N I | 11 | 3831.840 | Ср ІІ | 10 | 3842.037 | | Al II | 49 | | 3822.10
3822.17 | | Cr I
Gd II | 40
19 | 3831.85
3832.12 | S III
C II | 5
13 | 3842.047
3842.20 | | Co I
Gd II | 33 | | 3822.262 | | Rh I | 8 | 3832.2996 | Mg I | 3 | 3842.20 | | N II | 30 | | 3822.41 | _ | Zr I | 10 | 3832.3037 | Mg I | 3 | 3842.213 | | Al II | 49 | | 3822.63
3822.737 | P | O I
Fe II | 36 | 3832.31
3832.32 | Pd I
Cr I | 1
24 | 3842.317
3842.82 | | Al II
O II | 49
12 | | 3822.888 | | VI | 28 | 3832.745 | Ce II | 115 | 3842.90 | P | Fe I | 222 | | 3822.987 | | Mo I | 8 | 3832.835 | v I | 80 | 3842.975 | | Fe I | 221 | | 3823.213
3823.41 | | V I
Zr II | 28
44 | 3832.873
3832.89 | N1 I
Y II | 1
7 | 3843.000 | | Sc II
Zr II | 1
7 | | 3823.469 | | 0 I | 36 | 3832.94 | Zr II | 7 | 3843.03
3843.16 | P | Sc II | 17 | | 3823.513 | | Mn I | 6 | 3833.02 P | Fe II | 23 | 3843.259 | | Fe I | 528 | | 3823.522
3823.571 | | Cr I
Pr II | 24
14 | 3833.059
3833.10 | Sc II
O II | 1
13 | 3843.26
3843.500 | | Cl II
Sm II | 49 | | 3823.72 | | Zr II | 31 | 3833.186 | Ti I | 10 | 3843.58 | | 0 11 | 43
13 | | 3823.893 | | Mn I | 6 | 3833.226 | V I | 67 | 3843.64 | | Cr I | 87 | | 3823.903 | | Ce II | 115 | 3833.311 | Fe I | 221 | 3843.692 | | Co I | 84 | | 3823.990
3824 | P | V I
N IV | 44
10 | 3833.40
3833.49 | Cl II
Cr I | 69
11 | 3843.72
3843.80 | P | Fe I
Gd II | 703
17 | | 3824.074 | - | Fe I | 224 | 3833.574 | He I | 62 | 3843.983 | | Mn I | 6 | | 3824.175 | | Sm II | 18 | 3833.674 | T1 I | | 3844.276 | | N1 I | 137 | | 3824.306
3824.425 | | Fe I
O I | 607
36 | 3833.71
3833.757 | Cr I
Mo I | 70
8 | 3844.438
3844.48 | P | V I
V II | 7
20 | | 3824.444 | | Fe I | 4 | 3833.80 | He II | 4 | 3844.579 | - | Gd II | 20 | | 3824.47 | _ | C1 111 | 9 | 3833.828 | Sm II . | 29 | 3844.58 | | N1 I | 181 | | 3824.73
3824.78 | P | Fe I
Y II | 221
72 | 3833.862
3833.87 | Mn I
Zr II | 6
100 | 3844.75
3844.892 | | A II
V I | 54
44 | | 3824.882 | | Ср І | 2 | 3833.889 | Rh I | 9 | 3845.170 | | Fe I | 124 | | 3824.913 | | Fe II | 29 | 3834.22 P | V I | 80 | 3845.18 | P | Fe II | 127 | | 3825.090
3825.249 | | 0 I
0 I | 36
36 | 3834.225 | Fe I
N I | 20 | 3845.21
3845.21 | P | Fe I
S II | 701 | | 3825.390 | | Cr I | 70 | 3834.24
3834.24 | O VI | 11
1 | 3845.42 | | A II | 22
9 | | 3825.404 | | Fe I | 123 | 3834.364 | Mn I | 6 | 3845.42 | | Cl II | 25 | | 3825.530
3825.70 | | O I
A II | 36
129 | 3834.46 P | Fe I
Ce II | .663
49 | 3845.468
3845.68 | | Co I
Fe III | 34
35 | | 3825.884 | | Fe I | 20 | 3834.556
3834.735 | Cr I | 49
70 | 3845.69 | | C1 II | 35
25 | | 3826.05 | | Gd II | 19 | 3834.81 P | Fe II | 129 | 3845.692 | | Fe I | 771 | | 3826.202
3826.292 | | Sm II
Pr II | 51 | 3835.058 | WI | 2 | 3845.84 | | C1 II | 25 | | 3826.416 | | Nd II | 33 | 3835.09
3835.386 | La II
H | 55
2 | 3845.974
3846.00 | | V I
La II | 26 | | 3826.425 | _ | Cr I | 70 | 3835.497 | Co I | 114 | 3846.001 | | Fe I | 703 | | 3826.63
3826.701 | P | Fe I
Mo I | 176
8 | 3835.560 | V I | 44 | 3846.29 | P
D | Fe I | 947 | | 3826.774 | | WO I | 8
44 | 3835.725
3835.96 | Sm II
Zr I | 18
8 | 3846.31
3846.412 | P | Fe II
Fe I | 128
804 | | 3826.83 | | A II | 54 | 3836.054 | v I | 44 | 3846.438 | | Ti I | | | 3826.836 | | Fe I | 283 | 3836.070 | Cr I | 70 | 3846.516 | | Y II | 83 | No. _____ | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I, A | Туре | Eleme nt | Multiplet No. | |-------------------------------------
------|----------------|---------------|----------------------|------|----------------|---------------|-----------------------------|------|-----------------|------------------| | 3846.803 | •• | Fe I | 664 | | | 0 11 | 12 | 3867.839 | | Ru I | 9 | | 3846.949 | | Fe I | 176 | 3856.16
3856.281 | | Cr I | 69 | 3867.925 | | Fe I | 221 | | 3847.01 | | Zr I | 10 | 3856.373 | | Fe I | 4 | 3867.986 | | WI | 7 | | 3847.086 | | F II | 1 | 3856.515 | | Rh I | 7 | 3868.243 | | Fe I | 430 | | 3847.252 | | Mo I | 8 | 3856.796 | | Co I | 60 | 3868.397 | | Ti I | 175 | | 3847.323 | | V I
V II | 7
156 | 3857.032 | | Ce II | 158 | 3868.53 | | A II
Cl 1I | 90
84 | | 3847.323
3847.38 | | N II | 30 | 3857.18 | | O II
Ce II | 13
127 | 3868.62
3868.84 | | CII | 18 | | 3847.501 | | WI | 4 | 3857.240
3857.26 | P | Y II | 16 | 3869.045 | | Nd II | 34 | | 3847.511 | | Sm II | 34 | 3857.631 | - | Cr I | 69 | 3869.085 | | Mo I | 8 | | 3847.89 | | 0 11 | 12 | 3857.912 | | Sm II | 28 | 3869.10 | | N I | | | 3848.023 | | Tm II | 2 | 3858.07 | | He II | 4 | 3869.275 | | Ti I | 175 | | 3848.194 | | YII | 72 | 3858.133 | | Ti I | 176 | 3869.562 | | Fe I | 284 | | 3848.233 | | Nd II | 19 | 3858.301 | | N1 I | 32 | 3869.590 | | Fe I | 284
80 | | 3848.24
3848.29 | P | Mg II
Fe I | 5
224 | 3858.32 | P | A III
Fe I | 5
565 | 3869.61
3870.057 | | A II
Al II | 7 4 | | 3848.524 | • | Nd II | | 3858.48
3858.90 | r | Cr I | 138 | 3870.267 | | Cr I | 11 | | 3848.597 | | Ce II | 36 | 3859.21 | | Fe I | 175 | 3870.506 | | Ca I | 26 | | 3848.779 | | Sm II | | 3859.24 | | Mg I | 21 | 3870.534 | | Co I | 129 | | 3848.983 | | Cr I | 69 | 3859.26 | | 8 11 | 30 | 3871.078 | | V I | 66 | | 3849.02 | | La II | 12 | 3859.33 | | Al II | 38 | 3871.54 | | Gd II | 1 | | 3849.26 | | Zr I | 6 | 3859.341 | | V I | 44 | 3871.60 | | N1 I | 181 | | 3849.324 | | V I
Cr I | 138 | 3859.36 | P | Sc II | 1 | 3871.62 | | C II
La II | 18
13 | | 3849.365
3849.52 | | Hr II | 61 | 3859.913 | | Fe I
Fe II | 4
128 | 3871.64
3871.750 | | Fe I | 429 | | 3849.534 | | Cr I | 24 | 3860.12
3860.13 | P | Cr I | 39 | 3871.778 | | Sm II | 18 | | 3849.58 | | Ni II | 11 | 3860.15 | | SII | 41 | 3871.819 | | He I | 60 | | 3849.758 | | V II | 33 | 3860.46 | | Fe III | 109 | 3872.15 | | AII | 54 | | 3849.969 | | Fe I | 20 | 3860.64 | | 8 II | 50 | 3872.308 | | Y II | 61 | | 3849.987 | | F II | 1 | 3860.64 | | s III | 5 | 3872.45 | | 0 11 | 11 | | 3850.042 | | Cr I | 69 | 3860.74 | P | Fe I | 701 | 3872.504 | | Fe I | 20 | | 3850.40 | | Mg II | 5 | 3860.80 | | C1 11 | 25 | 3872.55 | | Hf II | 27 | | 3856.409 | | V II
A II | 11
10 | 3860.915 | | Fe II | 05 | 3872.552
3872.62 | | Ca I Gd II | 26
19 | | 3850.57
3850.69 | | Gd II | 2 | 3860.98 | | Cl II
Ti I | 25 | 3872.748 | | V I | 43 | | 3850.81 | | 0 11 | 12 | 3861.079
3861.164 | | Co. I | 33 | 3872.76 | P | Fe II | 29 | | 3850.820 | | Fe I | 22 | 3861.18 | | Eu II | | 3872.835 | | WI | 4 | | 3850.825 | | Pr II | | 3861.341 | | Fe I | 283,663 | 3872.923 | _ | Fe I | 284 | | 3850.93
3850.945 | | S II
Co I | 50.
17 | 3861.40 | | C1 II
.Fe I | 25
663 | 3872.98
3 873.120 | P | Fe II
Co I | 128
18 | | | | | | 3861.60 | | .Fe 1 | 003 | 00101120 | | | | | 3850.97 | | C1 II | 25 | 3861.95 | | C1 II | 84 | 3873.203 | | Ti I | 176
3 | | 3850.97
3851.04 | | Gd II
O II | 2
12 | 3862.054 | - | Sm II | 10 | 3873.74
3873.763 | | K II
Fe I | 175 | | 3851.171 | | V I | 44 | 3862.17 | P | Cr II
V I | 129
8 | 3873.953 | | Co I | 18 | | 3851.38 | | C1 II | 25 | 3862.223
3862.592 | | 81 II | 1 | 3874.053 | | Fe I | 120 | | 3851.47 | | O II | 13 | 3862.823 | | Ti I | 175 | 3874.10 | | O II | 11 | | 3851.58 | | Fe I | | 3863.056 | | CP II | 9 | 3874.37 | _ | Zr II | 89 | | 3851.617 | | Pr II
F II | 1 | 3863.072 | | N1 I | 181 | 3874.41
3874.570 | P | Cr II
Cr I | 143
138 | | 3 851.667
3 851.69 | | C1 II | 25 | 3863.327
3863.409 | | Nd II
Nd II | 27
26 | 3874.76 | P | Cr II | 143 | | 3851.748 | | Nd II | 35 | | | Fe II | 152 | 3875.0 3 6 | | Ce II | 162 | | 3851.848 | | Co I | 128 | 3863.413
3863.50 | | 0 II | 12 | 3875.075 | | V I | 7 | | 3851.880 | | Sm II | 29 | 3863.607 | | Co I | 131 | 3875.14 | | Cr I | 138 | | 3852.10 | | A II | 3 | 3863.70 | P | Fe I | 565 | 3875.193 | | Sm II | _ | | 3852.218 | | Cr I
Gd II | 24
2 | 3863.745 | | Fe I | 280 | 3875.26
3875.262 | | A II
Ti I | 2
15,175 | | 3852.45
3852.574 | | Fe I | 73 | 3863.81 | | V II
V I | 33
66 | 3875.426 | | V I | 43 | | 3852.58 | | Cr I | 11 | 3863.866
3863.88 | | Zr I | 8 | 3875.46 | | Gd II | 50 | | 3852.805 | | Pr II | | 3863.953 | | Fe II | 127,152 | 3875.545 | | Sm. II | 17 | | 3853.038 | | Ti I | 176 | 3864.115 | | Mo I | 1 | 3875.67 | | V II | 20 | | 3853.07 | | Zr II | 81 | 3864.13 | | 0 11 | 11 | 3875.807 | | Ca I | 26 | | 3853.09 | | 8 11 | 30 | 3864.30 | P | Fe I | 565 | 3875.82 | | 0 11 | 13 | | 3853.164 | | Ce II
Cr I | 39
69 | 3864.300 | _ | y I | 64 | 3875.902
3876.043 | | V I
Fe I | 7
22 | | 3853.176
3853.462 | | Fe I | 429 | 3864.31
3864.33 | P | Fe I
Zr I | 221
10 | 3876.051 | | C II | 33 | | 3853.657 | | 81 II | 1 | 3864.335 | | wi | 3 | 3876.086 | | VI | 8 | | 3853.719 | | Ti J | 176 | 3864.45 | | 0 11 | 12 | 3876.188 | | CII | 33 | | 3854.177 | | Gd II | 50 | 3864.49 | | La II | 141 | 3876.409 | | C II | 33
3 | | 3854.187
3854.209 | | Ce II
Sm II | 62 | 3864.60
3864.68 | | O II | 84
12 | 3876.65
3876.670 | | Lu II
C II | 33 | | | | Cr I | - 69 | | | | | 3876.671 | | Fe I | 121 | | 3854.220
3854.322 | | Ce II | 61 | 3864.75
3864.862 | | RF II
V I | 98
7 | 3876.831 | | Co I | 17,62 | | 3854.375 | | Fe I | 567 | 3865.458 | | Pr II | • | 3876.974 | | Ce II | 82 | | 3854.75 | | C1 II | 84 | 3865.526 | | Fe I | 20 | 3877.11 | | Hf II | 75 | | 3854.905 | | Pr II | | 3865.59 | | Cr II | 167 | 3877.225 | | Pr II | | | 3854.91 | | La II | 55
30 | 3865.72 | | V II | 20 | 3877.591 | | Ti I
Zr I | 175
58 | | 3855.08
3855.18 | | N II
A II | 30
81 | 3866.01 | | Cr II | 130
17 | 3877.60
3878.021 | | Zr I
Fe. I | 20 | | 3 855.18
3 855.286 | | Cr I | 69 | 3866.160
3866.446 | | Al II
Ti I | 17
176 | 3878.180 | | He I | 59 | | 3855.329 | | Fe I | 283 | 3866.54 | | Cr II | 130 | 3878.19 | P | Fe I | 565 | | 3855.370 | | v i | 7 | 3866.744 | | v II | 11 | 3878.22 | | C II | 33 | | 3855.43 | | Zr II | 18 | 3867.219 | | Fe I | 488 | 3878.28 | | Y II | 7 | | 3855.56 | | GG II | 2 | 3867.26 | | Gd II | 50 | 3878.372 | | Ce II | 48
4 | | 3855.571 | P | Cr I
Cr I | 69
138 | 3867.32 | _ | Hf II | 53
221 | 3878.575
3878.58 | | Fe I
Mg I | 20 | | 3855.65
3855.841 | | V I | 9 | 3867.45
3867.477 | P | Fe I
He I | 221
20 | 3878.582 | | NA II | | | 3855.846 | | Fe I | 567 | 3867.56 | | 8 I | | 3878.61 | P | T1 I | 164 | | 3856.021 | | 81 II | 1 | 3867.602 | | V I | 7 | 3878.663 | | Fe I | 175
33 | | 3656.07 | | N II | 30 | 3867.631 | | He I | 20 | 3878.715 | | V. II | U U | | 0·4 | | | | | | 2.00 220 | • | | | | | |----------------------|--------|-----------------|---------------|----------------------|------|-----------------|---------------------|-----------------------------|------|----------------|-----------------| | 1 A
3878.750 | Гуре | Element
Co I | Multiplet No. | I A | Type | Element
Ti I | Multiplet No. | I A | Type | Element | Multiplet No. | | 3879.04 | | Zr I | 6 | 3889.948
3889.990 | | Ce II | 15
50 | 3900.546
3900.63 | | T1 II
A II | 34
54 | | 3879.222 | | Cr I | 138 | 3890.080 | | Sm II | 17 | 3900.64 | | Hf II | 103 | | 3879.60 | | C II | 33 | 3890.184 | | v i | 8 | 3900.680 | | Al II | 1 | | 3880.34 | | A II | 54 | 3890.241 | | Mg I | 47 | 3900.790 | | Tm II | 9 | | 3880.466 | | Pr II | | 3890.32 | | Zr I | 8 | 3900.958 | | Ti I | 15 | | 3880.59 | | C II | 33 | 3890.39 | | Fe I | 567 | 3901.03 | P | Fe I | 834 | | 3880.766 | | Sm II
Nd II | 10
32 | 3890.528 | | Tm II | 1 | 3901.152 | _ | V I | 126 | | 3880.779
3880.82 | | Hf II | 32
6 | 3890.580
3890.82 | | Nd II
Cr I | 262 | 3901.33
3901.775 | P | V II
Mo I | 20
8 | | 3881.04 | | v II | 143 | 3890.844 | | Fe I | 280 | 3901.850 | | Nd II | | | 3881.214 | | Cr I | 138 | 3890.940 | | Nd II | | 3902.09 | P | Sc II | 9 | | 3881.383 | | Sm II | 33 | 3891.119 | | V I | | 3902.108 | | Cr I | 238 | | 3881.399
3881.402 | | Ti I
W I | 15
2 | 3891.210 | | Sm II
V I | 22 | 3902.250 | | V I | 7 | | 3881.84 | | Gd II | 36 | 3891.227
3891.25 | | V II | 43
20 | 3902.398
3902.558 | | Gd II
V I | 19
43 | | 3881.856 | | Cr I | 138 | 3891.39 | | Zr I | 11 | 3902.915 | | Cr I | 23 | | 3881.869 | | Co I | 18 | 3891.40 | | A II | 2 | 3902.948 | | Fe I | 45 | | 3881.92
3881.94 | | N1 II
Gd II | 13
50 | 3891.781
3891.928 | | Ba II
Fe I | 4
733 | 3902.968
3903.164 | | Mo I
Cr I | 1
23 | | 3881.97 | | Zr II | 134 | 3891.97 | | A II | 2 | | | V 11 | | | 3882.147 | | Ti I | 175 | 3891.976 | | MgI | 47 | 3903.27
3903.417 | | Sm II | 11 | | 3882.197 | | 0 11 | 12 | 3891.98 | P | V II | 11 | 3903.77 | | Zr II | 7 | | 3882.28 | P | Ti II | 34 | 3892.118 | | Co I | 130 | 3903.902 | | Fe I | 429 | | 3882.313 | | T1 I | 176 | 3892.14 | | Cr II | 167 | 3904.02 | | Mg I | 19 | | 3882.446 | | Ce II | 87 | 3892.321 | | 8 11 | 50 | 3904.340 | | Ce II | 91 | | 3882.45 | | 0 11 | 11 | 3892.859 | | V I | 7 | 3904.64 | P | N1 I | 29 | | 3882.892 | | Ti I
Tm I | 176 | 3892.898 | | Fe I | 283 | 3904.785 | | Ti I | 56 | | 3883.132
3883.15 | | O II | 12 | 3892.98
3893.067 | | Fe I
Co I | 567
11 4 | 3904.79
3904.790 | | P III
Co I | 9
171 | | 3883.208 | | V II | 11 | 3893.14 | | A II | 91 | 3905.01 | P | Fe I | 703 | | 3883: 282 | | Fe I | 663 |
3893.316 | | Fe I | 364 | 3905.18 | P | Fe I | 564 | | 3883.292 | | Cr I | 23 | 3893.376 | | Mg I | 47 | 3905.527 | _ | Si I | 3 | | 3883.43 | | V II | 20 | 3893.391 | | Fe I | 430 | 3905.64 | | Cr II | 167 | | 3883.437 | | Tm II | 5 | 3893.53 | | 0 11 | 11 | 3905.66 | P | Fe I | 153 | | 3883.660 | | Cr I | 138 | 3893.924 | | Fe I | 175 | 3905.88 | P | Cr II | 128 | | 3883.77 | | C III | 18
15 | 3894.005 | | Fe I
Cr I | 663 | 3905.886 | | Nd II | | | 3883.80
3883.80 | | C1 11 | 55 | 3894.035
3894.073 | | Co I | 23
34 | 3906.037 | | Fe II
Co I | 173
17 | | 3884.090 | | Ti I | 175 | 3894.19 | | Pd I | 8 | 3906.287
3906.482 | | Fe I | 4 | | 3884.359 | | Fe I | 282 | 3894.49 | | Fe I | 566 | 3906.748 | | Fe I | 664 | | 3884.465 | | V I | 65 | 3894.627 | | Nd II | 29 | 3906.748 | | v i | 42,43 | | 3884.601 | | Co I | 32 | 3894.696 | | Gd II | 1 | 3906.95 | | 8 II | 3 | | 3884.66 | | Fe I | 565 | 3894.976 | | Co I | 18 | 3906.97 | P | Fe I | 567 | | 3884.847
3885.07 | P | V II
Fe I | 33
732 | 3895.03 | | P III | 9 | 3907.10 | | Eu II | 5 | | 3885.084 | | Cr I | 138 | 3895.114
3895.12 | | Ce II
Cr II | 210
1 4 3 | 3907.289 | | Ce II
O II | 253 | | 3885.09 | | La II | 151 | 3895.16 | | Cr II | 106 | 3907.45
3907.464 | | O II
Fe I | 11
284 | | 3885.154 | | Fe I | 430 | 3895.230 | | Gd II | 50 | 3907.476 | | Sc I | 8 | | 3885.190 | | Pr II | 18 | 3895.243 | | Ti I | 176 | 3907.52 | | V II | 178 | | 3885.218 | | Cr I | 23 | 3895.26 | _ | A II | 55 | 3907.65 | P | Ti II | 97 | | 3885.275 | | Co I | 31 | 3895.44 | P | Fe I | 565 | 3907.778 | | Cr I | 262 | | 3885.286 | | Sm II
Zr I | 46
7 | 3895.59 | P | Ti I
Fe I | 164
4 | 3907.937 | | Fe I | 280 | | 3885.41
3885.512 | | Fe I | 124 | 3895.658
3895.662 | | Mg I | 47 | 3908.033 | | Pr II
Ce II | 11 | | 3885.76 | P | Fe I | 567 | 3895.791 | | Gd II | •• | 3908.408
3908.431 | | Pr II | 65
11 | | 3885.770 | | V I | 65 | 3896.11 | P | Fe II | 23 | 3908.54 | P | Fe II | 29 | | 3885.87 | P | N1 I | 1 | 3896.155 | | VI | 43 | 3908.543 | | Ce II | 127 | | 3885.93
3885.95 | P
P | Fe I
Ti I | 946
164 | 3896.155
3896.30 | | O II | 10
11 | 3908.68
3908.755 | P | Fe I
Cr I | 153
23 | | | _ | | | | | | | | _ | | | | 3885.99
3886.284 | | C III
Fe I | 15
4 | 3896.53
3896.63 | P | Zr I
Fe I | 9
834 | 3908.90 | P | Fe I | 153 | | 3886.37 | | La II | 40 | 3896.804 | • | Ce II | 188 | 3908.931
3909.25 | P | N1 I
Cr II | 117
129 | | 3886.587 | | V I | 64 | 3896.804 | | Y II | 86 | 3909.313 | r | Ce II | 133 | | 3886.789 | | Cr I | 23 | 3896.977 | | Smr II | -5 | 3909.664 | | Fe I | 565 | | 3886.825 | | Mo I | 8 | 3897.075 | | V I | 126 | 3909.830 | | Fe I | 364 | | 3886.94 | P | Cr I | 86 | 3897, 290 | | Ti I | 175 | 3909.894 | | VΙ | 7,63 | | 3887.051 | | Fe I
Gd II | 20
3 | 3897.449 | | Fe I | 429 | 3909.910 | | Ba I | 8 | | 3887.157
3887.347 | | Tm I | 1 | 3897.581
3897.896 | | Ti I
Fe I | 176
280 | 3909.93 3
3910.52 | P | Co I
Fe I | 3
562 | | 3887.365 | | Ti I | 176 | 3897.92 | | K II | 1 | | | V I | | | 3887.44 | | Ke II | 4 | 3898.012 | | Fe I | 20 | 3910.790
3910.81 | | La II | 42
43 | | 3887.866 | | Nd II | 31 | 3898.019 | | V I | 126 | 3910.81 | | Fe I | 284 | | 3887.993 | | D | 1 | 3898.120 | | Mg I | 47 | 3911.00 | P | Fe I | 562 | | 3888.020 | | T1 I | 175 | 3898.143 | | A I | 63 | 3911.169 | | Nd II | • | | 3888.42 | | Fe I | 565 | 3898.273 | | Ce II | 52 | 3911.18 | P | Fe I | 564 | | 3888.517 | | Fe I | 45 | 3898.278 | | V I | _ | 3911.185 | | T1 I | 175 | | 3888.646
3888.825 | | He I
Fe I | 2
488 | 3898.292
3898.485 | | Cb II
Co I | 9
58 | 3911.32 | | Cr II | 129 | | 3889.051 | | H
Le 1 | 2 | 3898.485
3898.487 | | Ti I | 13 | 3911.32
3911.362 | | 8 II
Ti I | 176 | | 3889.141 | | Ca I | 42 | 3899.037 | | Fe I | 175 | 3911.58 | | A II | 54 | | 3889.18 | | C III | 15 | 3899.09 | P | 8 111 | 5 | 3911.699 | | Fe I | 664 | | 3889.33 | P | Fe I | 562 | 3899.140 | | V II | 33 | 3911.810 | | Sc I | 8 | | 3889.330 | _ | Pr II | 14 | 3899.27 | | 8 III | 12 | 3911.95 | | Cr I | | | 3889.38 | P | Fe I | 660 | 3899.668 | | Ti I | 15, 175 | 3911.960 | | 0 11 | 17 | | 3889.65
3889.671 | P | N1 I
N1 I | 180
15 | 3899.709 | | Fe I | 4 | 3912.088 | | 0 11 | 17 | | 3889.671
3889.90 | P | Cr II | 15
129 | 3900 . 175 | | V I
Nd II | 126 | 3912.191 | | Ce II | 192 | | | _ | 44 | 2 | 3900.226 | | 11 | | 9012 207 | | V T | 49 49 | | Ì A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------------------------|--------|---------------|-----------------|----------------------|----------|------------------|-------------------|--------------------------------------|--------|----------------|---------------| | 3912.424 | | Ce II | 60 | 3923.03 | P | Fe I | 661 | 3934.14 | | Zr II | 7 | | 3 912.589
39 12.886 | | Ti I
V I | 175
42 | 3923.109
3923.246 | | Ce II
Gd II | 191
50 | 3934.228 | | Ti I | 15 | | 3912.898 | | Pr II | 17 | 3923.39 | P | Ti II | 97 | 3934.41
3934.46 | P | N III
Ce II | 8
3 | | 3912.979 | | Ni I | 15 | 3923.48 | | He II | 4 | 3934.80 | | Zr II | 43 | | 3 913.464
3913. 635 | | Ti II
Fe I | 34
120 | 3923.483
3923.50 | | 3 II
Ca I | 55
7 | 3934.823 | | Nd II | • | | 3913.92 | | Cl II | 68 | 3923.503 | | Sc II | 9 | 3934.824
3935.141 | | Gd II
V I | 1
90 | | 3914.273 | | Fe I | 567 | 3923.91 | | Hf II | 18 | 3935.18 | P | Cr II | 10 | | 3914.333 | | A II | 33 | 3923.92 | | Zr II | 100 | 3935.31 | | Fe I | 362 | | 3914.334 | | Ti I | 15 | 3924.05 | | 8 11 | 3; | 3935.64 | | Hf II | 43 | | 3914.36 | | Zr II | 134 | 3924.075 | | Mn I | | 3935.717 | | Ba I | 8 | | 3914.42 | P | Fe I | 652 | 3924.18 | P | Ni I | 240 | 3935.764 | | Sm II | 28 | | 3914.480
3914.50 | P | Fe II
Fe I | 3
660 | 3924.44
3924.527 | | 81 III
T1 I | 13 | 3935.77 | | Al I
Fe I | 18 | | 3914.73 | - | Fe I | 662 | 3924.644 | | Ce II | 190 | 3935.815
3935.86 | P | Fe I | 362
564 | | 3914.751 | | T1 I | 14 | 3924.65 | P | Cr II | 129 | 3935.914 | | He I | 57 | | 3914.76
3914.949 | | A II
Ce II | 2
78 | 3924.658
3925.09 | | V I
La II | 90
135 | 3935.942 | | Fe II | 173 | | 3914.96 | | Cr I | 137 | 3925.151 | | CoI | 131 | 3935.964
3936 | P | Co I
C IV | 32
2 | | | _ | | | | | | | | | | | | 3915.30
3915.384 | P | Cr II
Ir I | 128
6 | 3925.201
3925.216 | | Fe I
Smr I | 567
2 | 3936.07 | | Zr II
La II | 42 | | 3915.503 | | Co I | 113 | 3925.240 | | V I | 8 | 3936.22
3936.282 | | VI | 13
42 | | 3915.843 | | Cr I | 136 | 3925.456 | | Pr II | 11 | 3936.79 | P | Fe I | 564 | | 3915.879
3915.94 | | Ti I
Zr II | 15
17 | 3925.55 | P | Fe I
Fe I | 660 | 3936.95 | | Cr II | 128 | | 3916.05 | | La II | 42 | 3925.646
3925.71 | | A II | 364
105 | 3937.329
3937.575 | | Fe I
Nd II | 278
19 | | 3916.243 | | Cr I | 23 | 3925.87 | | C1 III | 4 | 3937.870 | | Ba I | 8 | | 3916.418 | | V II
Tm I | 10 | 3925.946 | | Fe I | 364 | 3938.005 | | Ti I | 246 | | 3916.476 | | 1m 1 | 2 | 3926.001 | | Fe I | 562 | 3938.086 | | Ce II | 205 | | 3916.508 | | Gd II | 20 | 3926.319 | | Ti I | 292 | 3938.289 | | Fe II | 3 | | 3916.61 | P | GG II | 50 | 3926.32 | | V II | 165 | 3938.400 | | Mg I | 18 | | 3916.64
3916.70 | | Zr I
Cl II | 6
68 | 3926.467
3926.497 | | Mn I
V II | 44
11 | 3938.52
3938.621 | | N III
Al II | 8
73 | | 3916.733 | | Fe I | 806 | 3926.530 | | He I | 58 | 3938.76 | P | N1 I | 240 | | 3916.980 | | Cr I | 137 | 3926.58 | P | 0 II | 11 | 3938.856 | | Co I | 171 | | 3917.115
3917.185 | | Co I
Fe I | 113
20 | 3926.649
3927.383 | | Cr I
Ce II | 313
43 | 3938.969
3939.066 | | Fe II
Al II | 190
73 | | 3917.29 | | Bu II | 10 | 3927.61 | P | Fe I | 282 | 3939.49 | | 8 11 | 45 | | 3917.442 | | Sm II | 9 | 3927.922 | | Fe I | 4 | 3939.51 | P | 8c II | 9 | | 3917.47 | | Af II | 76 | 3927.926 | | V I | 90 | 3939.85 | | La II | 134 | | 3917.57 | | C1 II | 68 | 3927.93 | P | Fe I | 361 | 3940.044 | | Fe I | 731 | | 3917.596 | | Cr I | 137 | 3928.085 | | Fe I | 565 | 3940.32 | P | T1 II | 97 | | 3918.10
3918.19 | | Hf II
8 II | 7
29 | 3928.279
3928.615 | | Smr II
Sr III | 17
8 | 3940.338
3940.882 | | Ce II
Fe I | 50 | | 3918.236 | | Gd II | 50 | 3928.62 | | A II | 10 | 3940.887 | | Co I | 20
18 | | 3918.276 | | Ce II | 12,248 | 3928.636 | | Cr I | 23 | 3941.15 | | Cr I | 213 | | 3918.319
3918.418 | | Fe I
Fe I | 124 | 3928.87 | D | Eu II | 10 | 3941.283 | | Fe I | 562 | | 3918.51 | P | Fe II | 364
191 | 3928.97
3929.114 | P | Ti I
Fe I | 175
280 | 3941.478
3941.490 | | Mo II
Cr I | 4
23 | | | _ | | | | _ | | | | | | | | 3918.54
3918.58 | P
P | Cr I
Fe I | 136
362 | 3929.15
3929.208 | P | Ti II
Fe I | 97
659 | 3941. 512
3941. 728 | | Nd II
Co I | 27
17 | | 3918.644 | • | Fe I | 430 | 3929.22 | | La II | 27 | 3941.86 | | N1 I | 171 | | 3918.856 | | Pr II | 11 | 3929.53 | | Zr I | 7 | 3941.874 | | Sm II | 1 | | 3918.977
3919.005 | | C II
N II | 4
17 | 3929.54
3929.583 | | Tr II
Tr II | 142
11 | 3941.92
3942.006 | | Zr II
V I | 55
63 | | 3919.069 | | Fe I | 430 | 3929.734 | | V II | -10 | 3942.14 | | o iv | 10 | | 3919.15 | P | Cr I | 136 | 3929.875 | | T1 I | 13 | 3942.151 | | Ce II | 37 | | 3919.159
3 919.287 | | Cr I
O II | 23
17 | 3030.023
3930.076 | | V I
Co I | 63
59 | 3942.443
3942.746 | | Fe I
Ce II | 364
57 | | 00101201 | | · | - ' | 00001010 | | ••• | 00 | 00201740 | | 00 11 | 37 | | 3919.813 | | Ce II | 60 | 3930.299 | | Fe I | 4 | 3942.78 | | N III | 8 | | 3919.822
3920.260 | | Ti I
Fe I | 130
4 |
3930.31
3930.50 | P | Fe II
Eu II | 3
5 | 3943.08
3943.141 | | Eu II
Ce II | 22
113 | | 3920.37 | | 8 111 | 8 | 3930.63 | P | O IV | 10 | 3943.21 | | Cr I | 135 | | 3920.487 | | V I
Pr II | 42 | 3930.66 | P | Y II
Cr II | 16
120 | 3943. 239 | | Sm II | 9 | | 3920.524
3920.645 | | Fe I | 12
153 | 3930.88
3931.088 | P | Ce II | 129
49 | 3943.3 39
3943.48 | P | Fe I
V II | 72
11 | | 3920.677 | | C II | 4 | 3931.122 | | Fe I | 565 | 3943.664 | - | V I | 42 | | 3920.839
3920.965 | | Fe I
Nd II | 567 | 3931.24 | | A II
V I | 2 | 3943.888 | | Ce II | 234 | | 3920.900 | | NG 11 | | 3931.340 | | V 1 | 90 | 3944.009 | | Al I | 1 | | 3921.02 | P | Zr IJ | 42 | 3931.369 | | Ce II | 61 | 3944.126 | | Ni I | 151 | | 3921.022 | | Cr I | 23 | 3931.938 | | 8 II | 29 | 3944.25 | | Cr I | 135 | | 3 921.27
3921.423 | | Fe I
Ti I | 220
14 | 3931.97
3932.007 | | Al I
Ti II | 18
34 | 3944.27
3944.748 | | A II
Fe I | 2
361 | | 3921.54 | | La II | 40 | 3932.30 | | 8 11 | 30 | 3944.890 | | Fe I | 430 | | 3921.731 | | Ce II | 195 | 3932.40 | | Hf II | ୍ ନ
199 | 3945.048 | | 0 II
8 II | 6 | | 3921.80
3921.905 | | Zr I
V I | 8
4 2 | 3932.53
3932.55 | | La II
A II | 123
90 | 3945.05
3945.08 | | S II
Fe III | 33
69 | | 3922.005 | | Ce II | 50 | 3932.59 | P | Fe I | 153 | 3945.10 | | CII | 32 | | 3922.08 | P | Fe I | 153 | 3932.629 | | Fe I | 280,652 | 3945.11 | | Cr II | 142 | | 3922.09 | P | Fe I | 564 | 3933.19 | | A II | 53 | 3945.119 | | Fe I | 280 | | 3922.09
3922.36 | • | Zr II | 143 | 3933.294 | | 8 11 | 55 | 3945.21 | P | Fe II | 3 | | 3922.397 | | Sm II | 38 | 3933.38 | | P III | 9 | 3945.27 | P
n | V II | 165 | | 3922.431
3922.54 | | V I
A II | 42
11,53 | 3933.38
3933.606 | | Sc I
Fe I | 8
488,562 | 3945.29
3945.326 | P | O IV
Co I | 10
29 | | 3922.63 | | S II | 60 | 3933.65 | | Hf II | 6 | 3945.3 6 | | Hf II | 109 | | 3922.68 | P | Fe I | 429 | 3933.664 | | Ca II | 1 | 3945.495 | | Cr I | 135 | | 3 922.72
3 922.755 | | P III
Co I | 9
32 | 3933.731
3933.918 | | Ce II
Co I | 81
17 | 3945. 968
3946. 00 | | Cr I
Hf II | 134
115 | | | | | | 200.010 | | | | 2010 10 | | | | | | | | | | | | | | _ | | W 744-7-4 Ma | |-----------------------|----------|----------------|--------------------|----------------------|------|-----------------|----------------------|-------------------------------------|--------|----------------|--------------------| | A Í | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | | 3946.18 | P | Ni I | 1 | 3956.82 | P | O IV | 10
176 | 3968.36
3968.38 | P | A II
Fe I | 2
219 | | 3946.21 | | YII | 24 | 3956.901
3957.027 | | Ce II
Fe I | 562 | 3968.43 | • | He II | 3 | | 3946.35
3946.406 | | C II
Al II | 31,32
63 | 3957.053 | | Ca I | 6 | 3968 • 470 | | Ca II | 1 | | 3946.511 | | Sm II | 17 | 3957.62 | | Fe I | 56 4 | 3968.63 | | CII | 37 | | 3946.633 | | Co I | 60 | 3957.64 | _ | P III | 9 | 3968.78 | | Fe III
D | 120
1 | | 3946.681 | | Ce II | 255 | 3957.66 | P | Fe II
Gd II | 13
19 | 3968.995
3969.061 | | Cr I | 38 | | 3946.98 | | 8 II | 45 | 3957.672
3957.928 | | Co I | 18 | 3969.116 | | Co I | 128 | | 3947.002
3947.10 | | Fe I
Fe III | 561
23,69 | 3958.001 | | NA II | 25 | 3969.261 | | Fe I | 43 | | 3947.125 | | Co I | 58 | 3958.08 | | Cr I | 307 | 3969.293 | | Gd II | 20 | | 3947.301 | | o I | 3 | 3958.101 | | Tm II | 1 | 3969.38 | _ | C II | 37 | | 3947.393 | | Fe I | 153 | 3958.206 | | Ti I | 13
16 | 3969.38 | P
P | Fe II
Fe II | 3
3 | | 3947.489 | | 0 I | 3 | 3958.24
3958.266 | | Zr II
Ce II | 160 | 3969.40
3969.43 | P | Fe III | 120 | | 3947.5043
3947.533 | | A I
Fe I | 2
361,426 | 3958.39 | | AII | 65 | 3969.628 | | Fe I | 657 | | 3947.594 | | 0 I | 3 | 3958.60 | P | N1 I | 150 | 3969.748 | | Cr I | 38 | | 3947.60 | | C II | 31 | 3958.66 | | Pd I | 8
7 | 3970.07 | | Cr I
H | 213
1 | | 3947.633 | | Pr II | 11 | 3958.865
3959.01 | P | Rh I
Sc II | 49 | 3970.074
3970.10 | | Ta I | ī | | 3947.770 | | Ti I | 14 | | • | | | | | | 202 | | 3947.838 | | Sm II | 33 | 3959.436 | _ | Gd II | 49
556 | 3970.15 | | V II | 203
38 | | 3948.00 | P | Fe I | 652 | 3959.46
3959.523 | P | Fe I
Gd II | 44 | 3970.20
3970.391 | | Fe I | 488 | | 3948.105 | | Fe I
Sm II | 562
9 | 3959.527 | | 8m II | | 3970.503 | | N1 I | 151 | | 3948.113
3948.15 | | CII | 32 | 3960.284 | | Fe I | 913 | 3970.528 | | Sm II | 1 | | 3948.28 | P | Fe I | 561 | 3960.37 | | V II | 189 | 3970.69 | _ | 8 11 | 45,54 | | 3948.48 | P | Fe I | 560 | 3960.763 | | Cr I | 68 | 3970.99 | P | Fe I
Gd II | 107 4
50 | | 3948.670 | | Ti I | 13 | 3960.895
3960.914 | | Fe II
Ce II | 212
84 | 3971.062
3971.164 | | Pr II | 27 | | 3948.779
3948.901 | | Fe I
Ca I | 604
6 | 3960.997 | | Co I | 128 | 3971.255 | | Cr I | 67 | | | | 4 7 | 2 | 3961.147 | | Fe I | 361 | 3971.325 | | Fe I | 277 | | 3948.9788
3949.10 | i | A I
La II | 41 | 3961.503 | | Mo II | 4 | 3971.397 | | Sm II | 43 | | 3949.14 | | Fe I | 730 | 3961.523 | | Al I | 1 | 3971.684 | | Ce II | 133 | | 3949.23 | P | Fe I | 153 | 3961.55 | | 8 111 | 8 | 3971.754 | | Gd II
Fe I | 49
281 | | 3949.275 | | Tm I | 2 | 3961.59 | | O III
La II | 17 | 3971.82
3971.98 | | Eu II | 5 | | 3949 438 | | Pr II
C II | 16
31 | 3962.03
3962.12 | | N1 I | 199 | 3972.130 | | Ti I | 81 | | 3949.45
3949.64 | | Cr I | 136 | 3962.19 | | Cr I | 68 | 3972. 16 4 | | Pr II | 13 | | 3949.954 | | Fe I | 72 | 3962.353 | _ | Fe I | 566 | 3972.171 | | N1 I | 29
37 | | 3949.96 | | C1 II | 36 | 3962.42 | P | Fe I | 560 | 3972.44 | | C II | 31 | | 3950.35 | | Y II | 6 | 3962.445 | _ | Pr II | 28 | 3972.506 | _ | Co I | 171 | | 3950.42 | | 8 II | 45 | 3962.65 | P | Fe I
Ti I | 913
12 | 3972.53 | P | Co I
Ca I | 173
41 | | 3950.78 | P | Fe I | 153 | 3962.851
3962.995 | | Sma II | 12 | 3972.570
3972.58 | | K II | 4 | | 3951.097
3951.154 | | Cr I
Nd II | 136
19 | 3963.04 | | La II | | 3972.688 | | Cr I | 67 | | 3951.164 | | Fe I | 661 | 3963.108 | | Fe I | 562 | 3972.920 | | Fe I | 803 | | 3951.51 | | P III | 9 | 3963.114 | | Nd II | 39 | 3973.144 | | Co I | 58
6 | | 3951.59 | | Y II | 16 | 3963.13
3963.13 | | 0 II
8 II | 43
45 | 3973.263
3973.269 | | Nd II | 19 | | 3951.717
3951.765 | | Co I
Cr I | 171
1 36 | 3963.35 <u>4</u> | | T1 I | 81 | 3973.562 | | N1 I | 31 | | | | | | 3963.43 | P | Fe I | 654 | 3973.642 | | V II | . 9 | | 3951.968 | | O I | 10
30 | 3963.626 | • | VI | | 3973.650 | | Nd II | 37 | | 3951.987
3952.00 | | Gd II | 1 | 3963.628 | | Os I | 3 | 3973.655 | | Fe I | 769 | | 3952.08 | | C II | 32 | 3963.690 | | Cr I | 38 | 3973.707 | | Ca I | 6 | | 3952.195 | | Nd IÌ | 23 | 3964.09 | P | Fe II
Fe III | 29 | 3973.84 | | GQ II | 37
50 | | 3952.326 | | Co I | 16
10 | 3964.11
3964.261 | | Pr II | 33 | 3973.981
3974.160 | | Fe II | 29 | | 3952.367
3952.399 | | Cb II
Cr I | 136 | 3964.269 | | T1 I | 12 | 3974.397 | | Fe I | 564 | | 3952.573 | | Ce II | 113,177 | 3964.35 | P | Cr II | 10 | 3974.48 | _ | A II | 9 | | 3952.606 | | .Fe I | 278 | 3964.522 | | Fe I | 361 | 3974.65 | P | Fe I | 526 | | 3952.704 | | Fe I | 362 | 3964.57 | P | Fe II | 29 | 3974.650 | _ | Ni I | 198 | | 3952.74 | | A II | 89 | 3964.64 | P | Cr II
He I | 10
5 | 3974.66 | P | O IV
Co I | 10
18 | | 3952.917 | | Co I
O I | 28
30 | 3964.727
3964.825 | | Pr II | 8 | 3974.726
3974.76 | | A II | 8 | | 3952.982
3953.056 | | 0 I | 30 | 3964.90 | | Eu II | 10 | 3974.766 | | Fe I | 72 | | 3953.156 | | Fe I | 430 | 3964.96 | | Hf II | 54 | 3975.029 | | Fe II | 191 | | 3953.163 | | Cr I | 136 | 3965.011 | | Co I | 31 | 3975.21 | | Fe I
Ti I | 153
186 | | 3953.50 | P | Fe I | 770 | 3965.236
3965.263 | | Co I
Pr II | 3 0
8 | 3975. 69
3975. 85 | P | Fe I | 977 | | 3953.516
3953.525 | | Pr II
Nd II | 9 | 3965.446 | | Fe I | 658 | 3976.01 | | Cr I | 38 | | | | Ce II | 141 | 3965.511 | | Fe I | 565 | 3976.270 | | Sm II | 9 | | 3953.660
3953.76 | P | Fe III | 69 | 3965.83 | P | Fe I | 122 | 3976.30 | | Cr I | 280 | | 3953.76
3953.863 | | Fe I | 362 | 3966.045 | | Sm II | 24 | 3976.392 | | Fe I | 487 | | 3954.21 | | Cl II | 82 | 3966.066 | | Fe I | 45 | 3976.430 | | Sm II | 33 | | 3954.372 | } | 0 II | 6 | 3966.37 | n | Pt I
Fe II | 4
3 | 3976.564 | | Fe I
Fe I | 655
729 | | 3954.38 | | Fe III | 120 | 3966.43
3966.532 | P | Fe I | 562,652,766 | 3976.615
3976.665 | | Cr I | 38 | | 3954.596
3954.687 | | 0 I | ვს
ვი | 3966.573 | | Pr II | 8 | 3976.836 | | Nd II | 21 | | 3954.715 | i | Fe I | 606 | 3966.630 | | Fe I
Zr I | 282,562
8 | 3976.865 | | Fe I
Fe III | 431,662
69 | | 3955.22 | P | Fe I | 527 | 3966.65 | | | | 3976.88 | | | | | 3955.352 | | Fe I | 562 | 3966.72 | | K II
Fe I | 5
65 9 | 3977.10
3977.184 | | O IV
Co I | 10
113 | | 3955.77 | P
P | Fe I
Zr II | 219
17 | 3966.824
3967.048 | | Ce II | 84 | 3977.184 | | Os I | 4 | | 3955.82
3955.851 | | N II | 17
6 | 3967.423 | | Fe I | 804 | 3977.30 | | C 11 | 38 | | 3955.956 | | Fe I | 488 | 3967.441 | | 0 11 | 22 | 3977.3 2 | | Zr I | 46 | | 3956. 270 |) | Co I | 2 | 3967.69 | | Y II | 82
561 | 3977.732 | | V II | 10 | | 3956.284 | | Ce II | 202 | 3967.964
3968.11 | | Fe I
V II | 561
9 | 39 77.743
39 78.28 | | Fe I
P III | 72
8 | | 3956.3 36 | , | Ti I | 13 | 9500.11 | | V AA | v | 95(0.40 | | 4 . 444 | • | | I A | Туре | Element | Multiplet No. | I A | Туре | El ement | Multiplet No. | I A | Туре | Element | Multiplet No. |
-------------------------------------|------|-----------------|------------------|---------------------------------------|------|----------------|----------------------|----------------------|----------|----------------|-------------------| | 3978.650 | | Ce II | 175 | 3987.98 | -• | Yb I | 2 | | -, 50 | | • | | 39 78.650 | | Co I | 175 | 3987.98
3988.18 | | A II | 2
65 | 3996.607
3996.79 | P | Sc I
Fe I | 7 | | 3978. 677 | | Cr I | 67 | 3988.51 | | La II | 40 | | P | | 1074 | | 3978.864 | | Co I | 173 | 3988.68 | | Zr I | 46 | 3996.968
3997.054 | | Fe I
Pr II | 945 | | 3978.87 | | CII | 37 | 3988.833 | | v i | 89 | 3997.126 | | V II | 9
9 | | 3979.08 | | La II | 140 | 3989.06 | | Sc II | 8 | 3997.17 | | PIII | 9 | | 3979.12 | P | Fe I | 426 | 3989.24 | P | Fe I | 561 | 3997.394 | | Fe I | 278 | | 3979.200 | | Sm II | 51 | 3989.29 | | Zr I | 6 | 3997.43 | | YII | 24 | | 3979.22 | | Cr I | 307 | 3989.444 | | Ce II | 240 | 3997.48 | P | Fe I | 563 | | 39 79.324 | | Cr I | 280 | 3989.581 | | Ti I | 81 | 3997.49 | P | Fe I | 556 | | 3979.36 | | A II | 90 | 3989.60 | P | Fe I | 605 | 3997:764 | | Gd II | 67 | | 3979.40 | | Hf II | 97 | 3989.718 | | Pr II | 12 | 3997.901 | | Co I | 32 | | 3 979.42
3 979.479 | | Fe III
Nd II | 120 | 3989.758 | | Ti I | 12 | 3997.97 | | 8 111 | | | 3979.51 | | Cr II | 57
183 | 3989.803
3989.859 | | V II
Fe I | 32
768 | 3998.00 | | Si II | | | 3979.518 | | Co I | 3 | 3989.958 | | Mn I | 33 | 3998.054
3998.46 | P | Fe I
Fe I | 276 | | 3979.65 | | Fe I | 561 | 3989.986 | | Cr I | 268 | 3998.51 | r | Hf II | 606
59 | | 3979.798 | | Cr I | 67 | 3990.103 | | Nd II | 19 | 3998.554 | | Co I | 33 | | 3979.86 | | 8 II | 59 | 3990.16 | | Cr I | 280 | 3998.635 | | Ti I | 12 | | 3980.14 | | Fe III | 120 | 3990.184 | | Ti I | 186 | 3998.69 | | N III | 16 | | 3980.35 | | C II | 37 | 3990.19 | | C1 II | 76 | 3998.730 | | v i | 8£ | | 3980.56 | | Al III | 12 | 3990.299 | | Co I | 58 | 3998.79 | | SII | 59 | | 3980.65 | | Fe I | 153 | 3990.379 | _ | Fe I | 527 | 3998.85 | | Cr I | 307 | | 3980.821 | | Ti I | 186 | 3990.55 | P | Fe I | 556 | 3998.98 | _ | Zr II | 16 | | 3980.895
3981.106 | | Ce II
Fe I | 194
22 | 3990.566
3990.81 | | V I
Fe III | 89
46 | 3999.00 | P | Cr II | 10 | | 3981.233 | | Cr I | 22
67 | 3990.81
3990.94 | | S II | 46
45 | 3999.07 | P | Cr II | 10 | | 3981.36 | | La II | 139 | 3991.123 | | Cr I | 4 5
38 | 3999.195
3999.242 | | V II
Ce II | 202 | | 3981.466 | | Ti I | 188 | 3991.14 | | Zr II | 30 | 3999.242
3999.336 | | Ce II
Ti I | 57
188 | | 3981.61 | P | Fe II | 3 | 3991.47 | | V 11 | 10 | 3999.679 | | Cr I | 100 | | 3981.62 | P | Fe I | 428 | 3991.50 | | Cl III | 7 | 3999.92 | | C 111 | | | 3981.761 | | Ti I | 12 | 3991.528 | | Co I | 173 | 3999.98 | | N I | | | 3981.775 | | Fe I | 278 | 3991.67 3 | | Cr I | 38 | 4000.02 | | Fe I | 360 | | 3981.94 | | C1 II | | 3991.684 | | Co I | 17 | 4000.266 | | Fe I | 556 | | 3981.998 | | Ti II | 11 | 3991.743 | | Nd II | 19 | 4000.466 | | Fe I | 426 | | 3982.01 | | Zr II | 142 | 3991.77 | | Si II | | 4000.493 | | Nd II | 64 | | 3982.063
3982.355 | | Pr II
Nd II | 28 | 3991.831 | | Co I | 129 | 4000.59 | | Cr I | 295 | | 3982.478 | | na II
Ti I | 67
11 | 3991.965 | | V II
Co I | 202,227 | 4001.049 | | Ce II | 193 | | 3982.583 | | Mn I | 33 | 3992.014
3992.06 | | A II | 3
2 | 4001.17
4001.24 | | V II | 202
6 | | **** | | | • | | | | | | | | Ü | | 39 82.59
39 82.719 | | O II | 6
6 | 3992.11
3992.114 | | Cr I
Ir I | 38
5 | 4001.257
4001.444 | | Gd II | 49 | | 3982.901 | | Ce II | 172 | 3992.386 | | Ce II | 134 | 4001.444 | | Cr I
C III | 268 | | 3983.008 | | 6d II | 49 | 3992.395 | | Fe I | 604 | 4001.666 | | Fe I | 72 | | 3983.138 | | Sm II | 38 | 3992.64 | P | Fe I | 219 | 4002.073 | | Fe II | 29 | | 3983.237 | | Cr I | 213 | 3992.801 | | V I | 89 | 4002.466 | | Ti I | 188 | | 3983.35 | | Fe I | 485 | 3992.845 | | Cr I | 67 | 4002.48 | | Cr II | 166 | | 3983.7 | | Al II | 32,48 | 3992.913 | | Ce II | 226 | 4002.549 | | Fe II | 190 | | 3983.77
3983.83 | P | S III
Fe I | 8
42 6 | 3993.21 3
3993. 3 08 | | Gd II
Sm II | 1
4 | 4002.55 | | Zr I | 46 | | | - | | | | | | | 4002.665 | | Fe I | 320,655 | | 3983.907 | | Cr I | 38 | 3993.401 | | Ba I | 8 | 4002.940 | | V II | 9 | | 3983.960 | | Fe I | 277 | 3993.526 | | S II | 29 | 4002.95 | | Zr II | 142 | | 3984.03
3984.140 | | Hf II
N1 I | 19 | 3993.796 | | Ti I | 186 | 4003.33 | | Cr II | 194 | | 3984.177 | | Mn I | 171
33 | 3993.822
3993.952 | | Ce II
N1 I | 12
170 | 4003.41 | | Fe III | 15 | | 3984.313 | | Ti I | 186 | 3993.968 | | Cr I | 67 | 4003.596
4003.64 | | Co I
N III | 130 | | 3984.335 | | VI | 89 | 3994.00 | P | Fe I | 560 | 4003.764 | | Fe I | 16
7 28 | | 3984.338 | | Cr I | 38 | 3994.117 | | Fe I | 526 | 4003.771 | | Ce II | 188 | | 3984.46 | P | Fe I | 219 | 3994.165 | | Gd II | 49 | 4003.789 | | Ti I | 188 | | 3984.600 | | V I | 89 | 3994.27 | P | Fe I | 320 | 4003.850 | | Gd II | 104 | | 3984.675 | | Ce II | 252 | 3994.50 | | La II | 78 | 4003.89 | | 8 II | 45 | | 3964.76 | | Zr II | 7 | 3994.542 | | Co I | 17 | 4003.921 | | Cr I | 268 | | 3984.858 | _ | Ru I | 9 | 3994.56 | P | Ti I | 186 | 4004.010 | | Nd II | | | 3984.93 | P | Fe I | 561 | 3994.683 | | Ti I | 188 | 4004.15 | P | Fe II | 127 | | 3985.241
3985.246 | | Mn I
Ti I | 33 | 3994.684
3004.81 | | Nd II | 90 404 | 4004.832 | | Fe I | 601 | | 3985.32 | P | Fe I | 219 | 3994.81
3994.834 | | Pr II | 89,101
11 | 4004.976 | D | Fe I | 486,557 | | 3985.393 | | Fe I | 661 | 3994.996 | | N II | 12 | 4005.04
4005.246 | P | Fe III
Fe ! | 45
43 | | 3985.46 | | O II | 22 | 3995.10 | | K II | 1 | 4005.38 | P | Fe I | 123 | | 39 85.580 | | Ti I | 188 | 3995.17 | | O IV | 10 | 4005.49 | P | Fe I | 219 | | 3985.74 | P | Cr II | 10 | 3995.199 | | Fe I | 604 | 4005.64 | P | Fe III | 45 | | 3985.783 | _ | V II | 202 | 3995.306 | | Co I | 31 | 4005.7 | - | Al II | 89 | | 3985.96 | P | Cr II | 10 | 3995.48 | P | Sc II | 49 | 4005.712 | | V II | 32 | | 39 85.97 | _ | 8 111 | 8 | 3995.49 | P | Sc II | 16 | 4005.952 | | Ti I | 187 | | 3986. 03 | P | Cr II | 10 | 3995.586 | | Tm II | 5 | 4006.136 | _ | N1 I | | | 3986. 176
3986. 18 | P | Fe I
Fe I | 655
560 | 3995.656
3995.74 | | Ba I
La II | 8 | 4006.16 | P | Fe I | 564 | | 3986.2 01 | • | Mo II | 4 | 3995.74
3995.83 | P | Ni I | 27
238 | 4006.314 | | Fe I
Fe I | 603 | | 3986.30 | P | Fe I | 560 | 3995.860 | - | Al II | 47 | 4006.631
4006.768 | | re I
Fe I | 488
320 | | 39 86 . 3 95 | | Mn I | 33 | 3995.996 | | Fe I | 279 | 4007.04 | P | Cr II | 194 | | 3966.682 | | Sm II | 17 | 3996.075 | | Al II | 47 | 4007.195 | | Ti I | 187 | | 3986.7533 | | MgI | 17 | 3996.159 | _ | Al II | 47 | 4007.193 | | Fe I | 119 | | 3986.826 | | Mn I | 33 | | Forb | Al II | 47 | 4007.277 | | Fe I | 277 | | 3987.090 | | N1 I | 137 | 3996.26 | P | Fe I | 561 | 4007.36 | | Hf II | 88 | | 3 987.098 | | Mn I | 33 | 3996.28 | P | Fe I | 427 | 4007.435 | | Nd II | 001 | | 39 87.117 | | Co I | 16
10 | 3996.320 | | Gd II | A 72 | 4007.589 | | Ce II | 221 | | 3987.214
3987.428 | | Gd II
Sm II | 19
28 | 3996.32 3
3996.36 | P | Al II
Fe II | 47
190 | 4007.64 | | La II
A II | 65 | | 3987.484 | | Mn I | 28 | 3996.381 | | Al II | 47 | 4007.66 | <u> </u> | A II | 65
189 | | | | | | | | | | | | | | | 38 | | | | FII | ADING LIS | • | | | | | |----------------------|--------|-----------------|---------------|-----------------------|-----------------|-------------------|----------------------|------|----------------|-------------------| | I A | Туре | Element | Multiplet No. | I A Тур | e Element | Multiplet No. | I A | Type | Element | Multiplet No. | | 4007.81 | D Forb | He I | 56 | 4020.06 | C1 II | 76 | 4031.456 | | Fe II | 151 | | 4007.81 | P FOFD | пе I
Ti I | 187 | 4020.25 | Hf II | 40 | 4031.633 | | Al II | 72 | | 4008.17 | | V II | 32 | 4020.399 | Sc I | 7 | 4031.68 | | La II | 40 | | 4008.41 | P | Sc II | 16 | 4020.490 | Fe I | 913 | 4031.73
4031.753 | P | Fe I
Ti I | 427
185 | | 4008.46 | _ | Hf II | 54 | 4020.872 | Nd II
Co I | 19
16 | 4031.703 | | Nd II | 200 | | 4008.60 | P | Sc II
Pr II | 16
28 | 4020.898
4021.13 | c II | 27 | 4031.968 | | Fe I | 655 | | 4008.714
4008.769 | | WI | 6 | 4021.330 | Nd II | 36 | 4032.46 | | Fe I | 320 | | 4008.81 | | Fe III | | 4021.622 | Fe I | 120,557 | 4032.628 | | Ti I | 297 | | 4008.913 | | Gd II | | 4021.75 P | Fe III | 45 | 4032.636 | | Fe I | 44 | | 4008.926 | | Ti I | 12 | 4021.812 | Ti I
Fe I | 185
278 | 4032.812
4032.946 | | S II
Fe II | 59
126 | | 4009.270 | | He I
S II | 55
55 | 4021.869
4021.925 | v i | 96 | 4032.975 | | Ga I | 1 | | 4009.39
4009.54 | P | Fe I | 556 | 4022.052 | N1 I | 238,241 | 4033.073 | | Mn I | 2 | | 4009.58 | | Al II | 37 | 4022.263 | Cr I | 268 | 4033.18 | P | 0 II
Fe I | 50
21 8 | | 4009.653 | | Ti I | 11 | 4022.333 | Gd II | 100 | 4033.19
4033.263 | P | Cr I | 36 | | 4009.714 | | Fe I | 72
27 | 4022.36
4022.36 | Cr II
Fe III | 183
4 5 | 4033.55 | | Sb I | 1 | | 4009.90
4009.984 | | C II
Ni I | 150 | 4022.45 | Fe I | 173 | 4033.68 | | P II | 17 | | 4010.18 | | Fe I | 915 | 4022.744 | Fe I | 556,654 | 4033.83 | | AII | 52 | | 4010.77 | | Fe I | 219,320 | 4023.002 | Nd II | _ | 4033.857 | | Pr II
Ti I | 19
208 | | 4011.089 | | Co I | 2 | 4023.231 | Sm II
V II | 4
32 | 4033.883
4033.95 | | Cr I | 36 | | 4011.23 | | A II
Fe I | 53
218 | 4023.388
4023.399 | Co I | 59 | 4034.012 | | Nd II | 23 | | 4011.416
4011.534 | | Ti I | 10 | 4023.58 | La II | 79 | 4034.10 | | Zr II | 42 | | 4011.69 | | Eu II | 22 |
4023.688 | Sc I | 7 | 4034.490 | | Mn I | 2 | | 4011.71 | | Fe I | 153 | 4023.739 | Cr I | 268 | 4034.84 | | Zr II | 70
208 | | 4011.89 | P | Fe I | 424 | 4023.986 | He I | 54 | 4034.884
4035.087 | | Ti I
N II | 39 | | 4012.10
4012.16 | | K II
Fe I | 2
601 | 4023.99
4023.99 | Ni I
Zr I | 170
46 | 4035.09 | | 0 11 | 51 | | | | | | | 0 11 | 99 | 4035.110 | | Sm II | 33 | | 4012.250 | | Nd II
Ti II | 10
11 | 4024.04
4024.109 | Fe I | 277 | 4035.25 | P | Fe I | 831 | | 4012.372
4012.389 | | Ce II | 206 | 4024.45 | Zr II | 54 | 4035.47 | | AII | 33 | | 4012.467 | | Fe II | 126 | 4024.491 | Ce II | 49 | 4035.54 | P | Fe II | 22 | | 4012.49 | | Cr I | 268 | 4024.552 | Fe II | 127 | 4035.54 | | Fe III
Co I | 119
173 | | 4012.50 | | Cr II | 183 | 4024.573 | Ti I
F II | 12
2 | 4035.542
4035.631 | | v 11 | 32 | | 4012.51
4012.704 | | Mo I
Nd II | 12 | 4024.727
4024.735 | Fe I | 560 | 4035.728 | | Mn I | 5 | | 4012.786 | | Ti I | 186 | 4024.785 | Nd II | 24 | 4035,82 | P | Fe III | 45 | | 4013.24 | P | Ti I | 186 | 4024.92 | Zr I | 46 | 4035.828 | | Ti I | 208 | | 4013.587 | | Ti I | 187 | 4025.010 | F II | 2 | 4035.96 | P | Ni I | 150 | | 4013.641 | | Fe I | 557 | 4025.012 | Cr I | 37 | 4035.98 | P | Fe I
P II | 426
16 | | 4013.798 | | Fe I | 485 | 4025.07 | Fe III | 53 | 4036.23
4036.37 | P | Fe I | 279 | | 4013.798 | | Gd II | 22 | 4025.07 P
4025.114 | Ti I
Ni I | 208
240 | 4036.53 | - | C1 II | 76 | | 4013.80
4013.822 | | Mg II
Fe I | 486 | 4025.114 | Ti II | 11 | 4036.59 | | La II | 59 | | 4013.82 | | AII | 2 | 4025.44 | Cr I | 37 | 4036.779 | | VII | 9 | | 4013.89 | P | Fe I | 120 | 4025.44 | Ni I | 117 | 4036.80 | | Cr I | 36
36 | | 4013.942 | | Co I | 58 | 4025.49 P For | rb He I
F II | 19
2 | 4037.294
4037.332 | | Cr I
Gd II | 49 | | 4013.953 | | Gd II | 17 | 4025.495 | | | | | | | | 4014.28 | | Fe I | 426,427 | 4025.60 | He II | 3 | 4037.665 | | Ce II
Fe I | 218
118 | | 4014.489 | | Sc II | 8 | 4025.67 P | Fe III | 45 | 4037.725
4037.897 | | Gd II | 49 | | 4014.534 | | Fe I
Cr I | 802
268 | 4025.87
4026.080 | La II
N II | 42
40 | 4038.03 | | Cr II | 194 | | 4014.668
4014.899 | | Ce II | 157 | 4026.166 | Cr I | 37 | 4038.124 | | Nd II | 31 | | 4015.20 | P | Fe II | 142 | 4026.189 | He I | 18 | 4038.27 | P | Ni I | 150 | | 4015.377 | | T1 I | 185 | 4026.362 | He I | 18 | 4038.545 | | V II
Fe I | 155
600,728 | | 4015.389 | | Pr II | 32 | 4026.40 | 0 II | 51 | 4038.622
4038.82 | | A II | 2 | | 4015.50
4015.877 | | Ni II
Ce II | 12
256 | 4026.435
4026.5 | Mn I
Al II | 24 | 4039.100 | | Cr I | 251 | | 4016.264 | | Ti I | 186 | 4026.539 | Ti I | 185 | 4039.12 | | Fe III | 45 | | 4016.264 | | Fe I | 560 | 4027.032 | Co I | 3 | 4039.30 | | Cr I | 251 | | 4016.54 | | Fe I | 277 | 4027.103 | Cr I | 37 | 4039.302 | | Al II | 62 | | 4016.81 | P | Fe I | 428 | 4027.20 | Zr I | 46 | 4039.357 | | Pr II
Al II | 15
62 | | 4016.82 | | V II | 202 | 4027.30 | V II | 201 | 4039.397
4039.574 | | V II | 32 | | 4016.943 | | Ti I
Fe I | 208
279 | 4027.426
4028.332 | Ti I
Ti II | 87 | 4039.83 | | ΥÏ | 5 | | 4017.096
4017.156 | | Fe I | 527 | 4028.411 | Ce II | 47 | 4039.94 | | Fe I | 276 | | 4017.27 | | CII | 27 | 4028.791 | s II | 45 | 4040.24 | | Zr II | 54 | | 4017.29 | | V II | 216 | 4029.16 | Hf II | 23 | 4040.310 | | Ti I | 185 | | 4017.56 | | Ni I | 171 | 4029.32 P | | 170 | 4040.650 | | Fe I | 655 | | 4017.58 | | Eu II | 10 | 4029.64 P | | 87
556 562 | 4040.762
4040.796 | | Ce II
Nd II | 138
30 | | 4017.596 | | Ce II | 163 | 4029.640 | Fe I
Zr II | 556,563
41 | 4041.288 | | Fe I | 603,654 | | 4017.771
4017.96 | | Ti I
Cr II | 185
166 | 4029.68
4030.03 | Zr I
Zr I | 41
46 | 4041.31 | | 0 11 | 50 | | 4017.90 | | Mn I | 5 | 4030.03 | Fe I | 72 | 4041.321 | | N II | 39 | | 4018.282 | | Fe I | 560 | 4030.28 P | Cr II | 19 | 4041.361 | ~ | Mn I | 5 | | 4018.38 | | Zr II | 54 | 4030.470 | Nd II | 32 | 4041.64 | P | Fe II
Sm II | 172
22 | | 4018.49
4018.50 | P | Fe II
Cl III | 13
7 | 4030.499
4030.512 | Fe I
Ti I | 560
185 | 4041.675
4041.79 | | Cr I | 36 | | | | | | | | | 4041.84 | P | Fe II | 13 | | 4018.826 | | Nd II
Fe I | ´19
219 | 4030.755 | Mn I
Al II | 2
72 | 4041.84 | • | Fe I | 602 | | 4019.05
4019.05 | | re I
V II | 219
201 | 4030.867
4030.90 P | | 943 | 4042.135 | | Ce II | 252 | | 4019.055 | | Ni I | 72 | 4031.130 | Cr I | 268 | 4042.20 | | A II | 28 | | 4019.137 | | Th II | 3 | 4031.135 | Al II | 72 | 4042.246 | | Cr I | 36 | | 4019.288 | | Co I | 16 | 4031.210 | Al II | 72 | 4042.584 | | Ce II | 140 | | 4019.30 | P | Co I | 18 | 4031.243 | Fe I | 186 | 4042,635 | | V I
Sm II | 96
4 | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------------------------|--------|----------------|------------------|-----------------------|------|----------------|-----------------------|----------------------|--------|----------------|----------------------| | 4042.91 | | A II | 33 | 4053.28 | | Fe III | 119 | 4062.90 | | 0 11 | 50 | | 4042.91 | | La II | 66 | 4053.294 | | Gd II | | 4063.174 | | Co I | 18 | | 4043.502 | | Cu II | 3 | 4053.45 | | Cr II | 19 | 4063.286 | | Fe I
Gd II | 698 | | 4043.537
4043.57 | | N II
Zr I | 39
32 | 4053.506
4053.56 | | Ce II
A II | 36
53 | 4063.390
4063.528 | | Mn I | 5 | | 4043.596 | | Nd II | 34 | 4053.59 | | Fe III | 98 | 4063.59 | | Gd II | 48 | | 4043.69 | P | Fe I | 122 | 4053.59 | | V II | 215 | 4063.597 | | Fe I | 43 | | 4043.696
4043.775 | | Cr I
Ti I | 306
208 | 4053.642
4053.814 | | Gd I
Ti II | 5
87 | 4063.931
4063.94 | P | V I
Cr II | 121
19 | | 4043.901 | | Fe I | 276,557 | 4053.82 | | Fe I | 485 | 4064.07 | P | Fe Ţ | 423 | | | _ | | | | | | | | | 0- T | 40 | | 4043.98
4044. 01 | P
P | Fe I
.Fe II | 559
172 | 4054.10
4054.11 | | O II
Cr II | 50,98
19 | 4064.16
4064.2 | | Zr I
C I | 46
7 | | 4044.145 | • | KI | 3 | 4054.11 | | Fe I | 557 | 4064.203 | | Ti I | 80 | | 4044.4182 | | AI | 4 | 4054.55 | | 0 11 | 98 | 4064.22 | P | T1 I | 254 | | 4044.49 | P | Fe I
P II | 1073
30 | 4054.555 | | Sc I | 6
2 | 4064.350
4064.374 | | T1 II
N1 I | 106
179 | | 4044.49
4044.57 | | Zr I | 46 | 4054.618
4054.833 | | Co I
Fe I | 698 | 4064.45 | | 8 111 | 110 | | 4044.614 | | Fe I | 359 | 4054.845 | | Pr II | 30 | 4064.46 | | Fe I | 44 | | 4044.64 | P | Fe I | 484 | 4054.883 | | Fe I | 698 | 4064.576 | | Sm II
P II | 24,33 | | 4044.75 | | N II | 39 | 4054.991 | | Ce II | 82 | 4064.64 | | P 11 | 16 | | 4044.818 | | Pr II | 8 | 4055.011 | | Ti I | 80 | 4064.75 | P | Fe II | 39 | | 4044.96 | | 0 11 | 51 | 4055.03 | | Zr I | 46 | 4064.99 | | Y II | 24 | | 4045.133
4045.139 | | Mn I
Fe I | 48
125 | 4055.046 | | Fe I
Mn I | 218
48 | 4065.070
4065.09 | | V II
Au I | 215
3 | | 4045.139 | | Gd II | 49 | 4055.214
4055.543 | | Mn I | 5
5 | 4065.094 | | Ti I | 80 | | 4045.16 | P Forb | He I | 17 | 4055.98 | | Fe I | 914 | 4065.1 | | CI | 7 | | 4045.206 | | Mn I
Co I | 31 | 4056.027 | | Mo I
C III | 12
24 | 4065.14
4065.402 | | A II
Fe I | 65
698 | | 4045.386
4045.59 | P | Fe I | 31
559 | 4056.06
4056.07 | | Cr III | 24
182 | 4065.595 | | Ti I | 207 | | 4045.63 | | Zr II | 30 | 4056.212 | | Ti II | 11 | 4065.716 | | Cr I | 279 | | 4045 045 | | .Fe I | 40 | 40.80 080 | | V II | 14 | 4066.02 | P | Fe I | 695 | | 4045.815
4046.07 | P | Fe I | 43
557 | 4056.270
4056.53 | | V II
Fe I | 14
320 | 4066.16 | P | Cr II | 182 | | 4046.15 | - | 0 11 | 50 | 4056.543 | | Pr II | 26 | 4066.328 | | Fe II | 214 | | 4046.19 | | Cr I | 36 | 4056.793 | | Cr I | 306 | 4066.365 | | Co I | 30 | | 4046.269
4046.341 | | V II
Ce II | 177
81 | 4056.8
4057.00 | | Al II
N II | 88
39 | 4066.597
4066.737 | | Fe I
Sm II | 424
28 | | 4046.46 | P | Fe I | 1075 | 4057.074 | | v i | 121 | 4066.938 | | Cr I | 66 | | 4046.557 | | Hg I | 1 | 4057.19 | | Cr I | 156 | 4066.979 | | Fe I | 358 | | 4046.629
4046.760 | | Fe I
Cr I | 487
36 | 4057.195 | | Co I
Ni I | 3
89 | 4067.03
4067.05 | P | V II
Cr II | 9
193 | | 4040.700 | | Or 1 | 30 | 4057.347 | | NI I | 99 | 4007.00 | - | 0. 11 | 100 | | 4046.81 | P | Fe II | 126 | 4057.356 | | Fe I | 277 | 4067.051 | | N1 II | 11 | | 4047.160 | | Smr II
K I | 16
3 | 4057.39 | | P III | 1
212 | 4067.275
4067.279 | | Fe I
Ce II | 217
22 | | 4047.214
4047.315 | | Fe I | 117,853 | 4057,457
4057,5052 | | Fe II
Mg I | 16 | 4067.39 | | La II | 26 | | 4047.51 | | A II | 66 | 4057.51 | | Fe III | 33 | 4067.49 | P | Fe I | 422 | | 4047.64 | | Y I | 6 | 4057.612 | _ | Ti I | 254 | 4067.60 | P
P | Fe I
Fe I | 655
1103 | | 4047.792
4047.88 | P | Sc I
Y II | 7
6 | 4057.66
4057.72 | P | Fe I
A II | 729
9 | 4067.85
4067.87 | r | CIII | 16 | | 4047.948 | - | WI | 4 | 4057.80 | | N IV | 3 | 4067.984 | | Fe I | 559 | | 4047.96 | | Hf II | 104 | 4057.81 | | Cr I | 251 | 4068.003 | | Mn I | 5 | | 4048.02 | P | Cr II | 182 | 4057.812 | | Pb I | 1 | 4068.144 | | Ti I | 207 | | 4048.22 | _ | 0 11 | 50 | 4057.950 | | Mn I | 29 | 4068.334 | | Sm II | 42 | | 4048.56 | P | Cr I | 251 | 4058.08 | | La II | 54 | 4068.541
4068.661 | | Co I
Ti I | 58
254 | | 4048.68
4048.755 | | Zr II
Mn I | 43
5 | 4058.139
4058.183 | | T1 I
Co I | 254
16 | 4068.7 | | Sc III | 204 | | 4048.780 | | Cr I | 251 | 4058.219 | | Gd I | 5 | 4068.836 | | Ce II | 82 | | 4048.831 | | Fe II | 172 | 4058.227 | _ | Fe I | 558 | 4068.97 | | C III | 16 | | 4048.999
4049.03 | | Mn I
V II | 48
215 | 4058.46
4058.600 | P | Fe I
Co I | 91 4
58 |
4068.981
4069.08 | | Ti I
Fe I | 299
557 | | 4049.14 | | Cr II | 193 | 4058.7 | | SII | 54 | 4069.267 | | Nd II | 20 | | | | | | | | | | 4000 000 | | 0 77 | 40 | | 4049.336
4049.399 | | Fe I
Ti I | 218
185 | 4058.766
4058.77 | | Fe I
S II | 120
52 | 4069.636
4069.883 | | O II
Fe II | 10
188 | | 4049.429 | | Gd II | 50 | 4058.772 | | Cr I | 251 | 4069.897 | | 0 11 | 10 | | 4049.44 | _ | Hf II | 53 | 4058.912 | | Ca I | 40 | 4070.03 | P | Fe II | 22 | | 4049.71
4049.783 | P | N1 I
Cr I | 169
251 | 4058.930
4058.933 | | Mn I
Cb I | 5
1 | 4070.094
4070.279 | | Ce II
Mn I | 5 | | 4049.858 | | Gd II | | 4059.07 | | Cl III | 7 | 4070.288 | | Gd II | 49 | | 4050.02 | | Cr I | 36 | 4059.27 | | PIII | 1 | 4070.30 | | C III | 16 | | 4050.08
4050.11 | | La II
S II | 85
4 5 | 4059.321
4059.370 | | Co I
Gd II | 2
118 | 4070.390
4070.45 | P | Gd II
Fe I | 17
525 | | 1000.11 | | 0 11 | •• | 2000.010 | | | 220 | | | | | | 4050.32 | | Zr II | 43 | 4059.392 | | Mn I | 29 | 4070.766 | | Fe I | 558 | | 4050.67
4050.963 | | Hf II
V I | 59
121 | 4059.726
4059.961 | | Fe I
Nd II | 767
63 | 4070.90
4071.0 | P | Cr II
Ni II | 193
11 | | 4051.06 | | V II | 32 | 4060.09 | P | Ti I | 254 | 4071.000 | • | Cr I | 306 | | 4051.08 | | Fe II | 98 | 4060.263 | | Ti I | 8C | 4071.09 | | Zr II | 54 | | 4051.145 | • | Nd II | 66 | 4060.58 | | O II | 97
156 | 4071.20
4071.211 | | O II
Ti I | 49
254 | | 4051.18
4051.21 | ₽
P | N1 I
Fe II | 239
172 | 4060.62
4060.98 | | Cr I
O II | 156
97 | 4071.22 | | Hf II | 74 | | 4051.34 | - | V II | 215 | 4061.085 | | Nd II | 10 | 4071.469 | | Ti I | 254 | | 4051.352 | | V I | 121 | 4061.3 | | Sc III | | 4071.52 | | Fe I | 218 | | 4051.923 | | Fe I | 700 | 4061.742 | | Mn I | 29 | 4071.541 | | v 1 | 96 | | 4051.97 | | Cr II | 19 | 4061.77 | P | Cr II | 19 | 4071.740 | | Fe I | 43 | | 4052.22 | | Cl II | 61 | 4061.787 | | Fe II | 189 | 4071.814
4072.01 | | Ce II
A II | 81
33 | | 4052.312
4052.466 | | Fe I
Fe I | 700,852
563 | 4062.08
4062.09 | | P II
Mo I | 17
12 | 4072.01 | | PII | 16 | | 4052.472 | | Mn I | 48 | 4062.223 | | Ce II | 34 | 4072.164 | | 0 11 | 10 | | 4052.664 | _ | Fe I | 52 4 | 4062.446 | | Fe I | 359 | 4072.40 | | A II
Fe I | 41, 52
698 | | 4052.72
4052.930 | P | Fe I
Ti I | 557
208 | 4062.590
4062.817 | | Gd II
Pr II | 26 | 4072.518
4072.56 | | re 1
Cr II | 698
26 | | -100% 93U | | ** 1 | ₩ 0 | 4002.017 | | 11 | ~~ | | | | | | 40 | | | | | FIND | ING TIP | 1 | | | | | |----------------------|------|----------------|---------------|----------------------|------|----------------|------------------------|----------------------|------|---------------|-----------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | | | | - | 4000 40 | | A II | 8 | 4095.975 | | Fe I | 217 | | 4072.913 | | Ni I
Ce II | 197
109 | 4082.40
4082.44 | | Fe I | 906 | 4096.118 | | Fe I | 911 | | 4072.917
4073.195 | | Gd II | 34 | 4082.456 | | Ti I | 80 | 4096.18 | | O II | 48 | | 4073.055 | | N II | 38 | 4082.593 | | Co I | 16 | 4096.21 | P | Fe I | 18
65 | | 4073.477 | | Ce II | 4 | 4082.600 | | Sm II | 54
38 | 4096.47
4096.543 | | A II
O II | 21 | | 4073.759 | | Gd II | 44 | 4082.85
4082.944 | | N II
Mn I | 5
5 | 4096.63 | | Zr II | 15 | | 4073.760
4073.90 | | Fe I
O III | 558
23 | 4083.233 | | Ce II | 60 | 4096.822 | | Pr II | 29 | | 4074.356 | | Ti I | 254 | 4083.554 | | Fe I | 117 | 4096.96 | P | Fe I | 173 | | 4074.374 | | WI | 6 | 4083.584 | | Sm II | 24 | 4097.02 | P | Fe I | 700 | | | | _ | | | | Mrs. T | 5 | 4097.099 | | Fe I | 558 | | 4074.53 | | C II
Fe I | 36
912 | 4083.628
4083.67 | P | Mn I
Mn II | 2 | 4097.12 | | Ca II | 17 | | 4074.70
4074.794 | P | Fe I | 512
524 | 4083.71 | P | Fe I | 1103 | 4097.15 | | A II | 100 | | 4074.89 | | C II | 36 | 4083.71 | | Y I | 6 | 4097.21 | | Hf II | 17 | | 4074.897 | | N1 I | 28 | 4083.780 | | Fe I | 697 | 4097.260 | | O II
N III | 20,48
1 | | 4075.116 | | Nd II | 62 | 4083.907 | P | O II
Fe I | 49
557 | 4097.31
4097.65 | | Cr I | 97 | | 4075.272
4075.45 | | Nd II
Si II | 19 | 4084.17
4084.391 | r | Mo I | 12 | 4097.791 | | Ru I | 9 | | 4075.63 | P | Cr II | 19 . | 4084.498 | | Fe I | 698 | 4097.96 | | Cr I | 97 | | 4075.66 | | V II | 14 | 4084.58 | P | Fe II | 151 | 4098.18 | | Cr I | 97 | | 4075.714 | | Ce II | 57 | 4084.66 | | 0 11 | 21 | 4098.183 | | Fe I | 558 | | 4075.845 | | Sm II | 51 | 4085.011 | | Fe I | 358 | 4098.27 | | 0 11 | 46 | | 4075.853 | | Ce II | 206 | 4085.124 | | 0 11 | 10 | 4098.44 | | Cr II
Ca I | 165
25 | | 4075.868 | | 0 11 | 10 | 4085.232 | P | Ce II
Fe I | 172
276 | 4098.533
4098.54 | | Fe III | 101 | | 4075.92
4075.95 | P | Cr I
Fe II | 66
21 | 4085.26
4085.312 | r | Fe I | 559 | 4098.606 | | Gd II | 49 | | 4076.00 | r | C II | 36 | 4085.38 | | Eu II | 10 | 4098.73 | | La II | 138 | | 4076.061 | | Cr I | 279 | 4085.38 | P | Fe I | 486 | 4098.77 | | Ne II | 53 | | 4076.124 | | Co I | 16 | 4085.564 | | Gd II | 50 | 4098.900 | | Gd II | 49
91 | | 4076.232 | | Fe I | 486 | 4085.67 | | V II | 214 | 4098.981 | | Ce II | 91 | | 4076.370 | | T1 I | 9 | 4085.68 | | Zr II | 54 | 4099.016 | | Cr I | 108 | | 4076.498 | | Fe I | 218 | 4085.815 | | Nd II | 16 | 4099.08 | | Fe I | 600,651 | | 4076.636 | | Fe I | 558 | 4085.98 | | Fe I
Cr II | 1073
26 | 4099.166
4099.25 | | Ti I
S III | 207
11 | | 4076.64 | | A II
La II | 52
11 | 4086.14
4086.300 | | Co I | 20
58 | 4099.44 | | 8 111 | | | 4076.71
4076.78 | | Si II | ** | 4086.69 | | Ne II | 54 | 4099.47 | | A II | 79 | | 4076.810 | | Fe I | 557 | 4086.72 | | La II | 10 | 4099.54 | | La II | 78 | | 4076.83 | | N II | 38 | 4087.099 | | Fe I | 694 | 4099.77 | | Mg I
V I | 46
27 | | 4076.87 | _ | Cr II | 19 | 4087.16 | n | O II
Fe II | 48
28 | 4099.796
4099.94 | | N I | 10 | | 4076.89 | P | Fe I | 559 | 4087.27 | P | re II | 20 | 4000.04 | | | 20 | | 4076.96 | | A II | 64 | 4087.297 | | Ce II | 59 | 4099.99 | P | Fe I | 698 | | 4077.05 | | Zr II | 54 | 4087.35 | | N II | 37 | 4100.04 | | He II
Fe I | 3 | | 4077.089 | | Cr I | 66 | 4087.60 | | Na II
Cr II | 4
19 | 4100.17
4100.240 | | Nd II | 57 | | 4077.148
4077.35 | | T1 I
La II | 207
41 | 4087.63
4087.79 | P | Fe I | 832 | 4100.30 | | Ne II | 54 | | 4077.38 | | Ϋ́I | 7 | 4088 . 291 | _ | Co I | 2 | 4100.35 | | Fe I | 320 | | 4077.470 | | Ce II | 60 | 4088.567 | | Fe I | 906 | 4100.35 | P | Fe I | 1103 | | 4077.50 | | Cr II | 19 | 4088.75 | P | Fe II | 39 | 4100.52 | | Fe III
D | 107
1 | | 4077.677 | | Cr I
8r II | 279
1 | 4088.863
4088.90 | | Si IV
Cr II | 1
19 | 4100.621
4100.745 | | Fe I | 18 | | 4077.714 | | 91 II | • | 4000.00 | | | | | | | | | 4078.321 | | Ce II | 19 | 4089.225 | | Fe I | 422 | 4100.746 | - | Pr II
Fe I | 4
173 | | 4078.365 | | Fe I | 217 | 4089.295 | | 0 II | 48 | 4100.91
4100.918 | P | Cb I | 1 | | 4078.444
4078.471 | | Gd II
Ti I | 15
80 | 4089.49
4089.63 | | Cr II
Cr I | 1 64
260 | 4101.00 | | V II | 176 | | 4078.700 | | Gd I | 5 | 4090.085 | | Fe I | 700 | 4101.163 | | Cr I | 108 | | 4078.862 | | 0 11 | 10 | 4090.305 | | Cr I | 66 | 4101.272 | | Fe I | 698 | | 4079.18 | P | Fe I | 700 | 4090.34 | P | Fe I | 44 | 4101.684 | | Fe I
H | 120
1 | | 4079.241 | | Mn I | 5 | 4090.52 | | Zr II
V I | 29
41 | 4101.737
4101.764 | | In I | 1 | | 4079.422
4079.60 | | Mn I
A II | 5
33 | 4090.579
4090.75 | P | Fe I | 943 | 4101.772 | | Ce II | 5 | | 2018+UU | | | | | • | | | | | | | | 4079.708 | | Ti I | 207 | 4090.947 | | Ce II | 174 | 4102.158 | | Mo I | 12 | | 4079.726 | | Cb I | 1 250 | 4090.984 | | Fe I
P II | 695
17 | 4102.159
4102.38 | | V I
Y I | 41
7 | | 4079.848
4079.88 | | Fe I
Cl II | 359
61 | 4091.53
4091.561 | | Fe I | 357 | 4102.713 | | WI | 2 | | 4080.04 | | P III | 1 | 4091.945 | | VI | 52 | 4102.74 | P | N1 I | 255 | | 4080.08 | P | Fe I | 944 | 4092.174 | | Cr I | 180 | 4102.926 | | Si I | 2 | | 4080.221 | | Cr I | 66 | 4092.266 | | Sm II | 1 | 4103.017 | | 0 II | 20 | | 4080.226 | | Fe I | 558 | 4092.386 | | Co I
V I | 29
52 | 4103.085
4103.37 | | F II
N III | 4
1 | | 4080.227
4080.435 | | Nd II
Ce II | 18
36 | 4092.407
4092.512 | | Fe I | 18 | 4103.525 | | F II | 4 | | | | | | | | Co T | OR | 4109 61 | P | Fe I | 831 | | 4080.44
4080.44 | | Hf II
V II | 6
214 | 4092.633
4092.694 | | Ca I
V I | 25
27 | 4103.61
4103.62 | P | Fe I | 650 | | 4080.48 | | Ne II | 53 | 4092.848 | | Co I | 59 | 4103.724 | - | FII | 4 | | 4080.56 | | Cr I | 156 | 4092.940 | | 0 11 | 10 | 4103.85 | | Cr I | 180 | | 4080.600 | | Ru I | 7 | 4093.06 | | Cr I | 260 | 4103.871 | | F II | 4 | | 4080.67 | | A II | | 4093.16 | | Hf II | 6 | 4103.91 | | A II | 52,64 | | 4080.886 | | Fe I | 557 | 4093.497 | | V I | 52 | 4104.132 | P | Fe I
Fe II | 356 ,558
39 | | 4081.018
4081.10 | | Pr II
O III | 14
23 | 4093.62
4093.90 | P | N1 I
Mg II | 1
29 | 4104.18
4104.23 | r | Cl III | 7 | | 4081.19 | | Fe III | 119 | 4093.955 | | Ce II | 160 | 4104.46 | P | Fe I | 422 | | | | | | | | | | | | 0 11 | 200 | | 4081.21
4081.22 | | Cr II
Zr I | 165
46 | 4094.18 | | O II
Tm I | 10 | 4104.743
4104.77 | P | O II
Fe I | 20
320 | | 4081.22
4081.222 | | Zr I
Ce II | 40 | 4094.188
4094.478 | | Gd II | 48 | 4104.77 | • | V I | 112 | | 4081.42 | P | Fe II | 188 | 4094.930 | | Ca I | 25 | 4104.867 | | Cr I | 108 | | 4081.737 | | Cr I | 66 | 4095.17 | | S III | | 4104.97 | | Fe I | 694 | | 4081.74 | | Ca III | 4 | 4095.27 | P | Fe I | 1075 | 4104.996 | |
Ce II | 156
20 | | 4082.125 | | Fe I | 698 | 4095.486 | | V I | 41 | 4105.000 | D | O II | 20
700 | | | | | | | | | | | | | | | İ A | Туре | Klement | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|--------|-----------------|--------------------|----------------------|------|-----------------|---------------|----------------------|------|----------------|--------------------------| | 4105.843 | | Tm I | | 4115.376 | | Gd II | 117 | 4124.072 | | v i | 52 | | 4106.03 | | 0 11 | 10 | 4115.89 | P | Fe I | 910 | 4124.081 | | N II | 65 | | 4106.05 | | Cr I | 180 | 4115.982 | | N1 I | 255 | 4124.09 | | AII | 41 | | 4106.134
4106.266 | | Ce II
Fe I | 160
217 | 4116.104
4116.39 | | S1 IV
A II | 1
124 | 4124.73 | | Lu I
Fe II | 3 | | 4106.437 | | Fe I | 697 | 4116.39 | | V I | 27 | 4124.793
4124.91 | | Y II | 22
1 4 | | 4106.582 | | Nd II | 57 | 4116.547 | | F II | 5 | 4125.10 | | Hf II | 94 | | 4106.71 | | Cr I | 260 | 4116.60 | P | V I | 27 | 4125.23 | P | Fe I | 173 | | 4106.83
4106.881 | | Cl III
Ce II | 7
139 | 4116.66 | | Cr II
V I | 181
27 | 4125.4 | | 8 III | 11 | | 4100.001 | | 06 11 | 100 | 4116.703 | | • • | 21 | 4125.622 | | Fe I | 1103 | | 4107.07 | | 0 11 | 47 | 4116.97 | | Fe I | 558 | 4125.776 | | Ce II | 126 | | 4107.387 | | Sm II | 50 | 4117.013 | | Ce II | 35 | 4125.884 | | Fe I | 35 4 | | 4107.428
4107.477 | | Ce II
Mo I | 138
12 | 4117.09
4117.288 | | P II
Ce II | 17
77 | 4126.099 | | Cr I | 65 | | 4107.487 | | V I | 52 | 4117.32 | | Fe I | 484 | 4126.192
4126.521 | | Fe I
Cr I | 695
35 | | 4107.492 | | Fe I | 354 | 4117.71 | | Fe I | 833 | 4126.88 | | Fe I | 354 | | 4107.75 | P | Fe I | 831 | 4117.872 | | Fe I | 700,1103 | 4126.925 | | Cr I | | | 4108.13
4108.31 | P
P | Fe I
Fe I | 559
833 | 4118.10
4118.144 | | Ne II
Ce II | 54
11 | 4127.08 | | Cr II | 181 | | 4108.39 | • | Zr I | 32 · | 4118.182 | | V I | 112 | 4127.09
4127.09 | P | A II
Ti I | 41
114 | | | | | | | | | | | | | | | 4108.400 | | Cr I
Gd II | 65
117 | 4118.45 | P | Cr I | 85 | 4127.302 | | Cr I | 35 | | 4108.401
4108.488 | | CoI | 2 | 4118.481
4118.549 | | Pr II
Fe I | 8
801 | 4127.367
4127.49 | | Ce II
P II | 4
16 | | 4108.554 | | Ca I | 39 | 4118.551 | | Sm II | 54 | 4127.531 | | Ti I | 296 | | 4108.75 | | 0 11 | 48 | 4118.643 | | V I | 41 | 4127.54 | | 8 111 | | | 4109.070 | | Fe I
Nd II | 558
17 | 4118.774 | | Co I | 28 | 4127.57 | | Y II | 15 | | 4109.073
4109.173 | | F II | 5 | 4118.904
4119.015 | | Fe I
Ce II | 559
89 | 4127.612
4127.643 | | Fe I
Cr I | 357
65 | | 4109.19 | | PII | 30 | 4119.219 | | FII | 5 | 4127.721 | | Gd II | 117 | | 4109.405 | | Sh II | 28 | 4119.221 | | 0 11 | 20 | 4127.80 | | Hf II | 41 | | 4109.455 | | Nd II | 10 | 4119.44 | | Cr I | 65 | 4127.807 | | Fe I | 558,727 | | 4109.54 | | Mg II | 21 | 4119.457 | | A I | 41 | 4128.053 | | 81 II | 3 | | 4109.584 | | Cr I | 65 | 4119.53 | P | Fe II | 21 | 4128.067 | | Ce II | 136 | | 4109.706 | | Co I | 1 | 4119.66 | P | Fe I | 320 | 4128.071 | | V I | 27 | | 4109.786
4109.808 | | V I
Fe I | 27
357 | 4119.784
4119.877 | | Ce II
Ce II | 22
83 | 4128.14
4128.31 | | Mn II
Y I | 2
5 | | 4109.81 | P | v I | 41 | 4120 | P | 0 V | 4 | 4128.65 | | A II | 3 | | 4109.83 | | Ca II | 17 | 4120.037 | | Ti I | 253 | 4128.735 | | Fe II | 27 | | 4109.95
4109.98 | | Fe III
Cr I | 260 | 4120.211 | | Fe I | 423 | 4128.858 | | V I | 112 | | 4100.00 | | 0. 1 | 200 | 4120.279 | | 0 11 | 20 | 4128.87 | P | Mn II | 2 | | 4109.98 | | N I | 10 | 4120.538 | | V I | 41 | 4128.870 | | Rh I | 8 | | 4110.00
4110.05 | | N II
Zr II | 44
30 | 4120.554 | | O II | 20 | 4129.166 | | Ti I | | | 4110.00 | | 0 II | 30
37 | 4120.613
4120.654 | | Cr I
Nd II | 65
57 | 4129.176
4129.21 | | Ce II
Cr I | 227
97 | | 4110.33 | | Ca II | 17 | 4120.78 | | PII | 17 | 4129.22 | | Fe I | 698 | | 4110.381 | | Ce II | 28 | 4120.812 | | He I | 16 | 4129.231 | | Sm II | 24 | | 4110.472
4110.532 | | Nd II
Co I | 15
29 | 4120.829 | | Ce II | 112 | 4129.34 | | O II | 19 | | 4110.795 | | 0 11 | 20 | 4120.97
4120.993 | | Fe III
He I | 118
16 | 4129.46
4129.70 | P | Fe I
A II | 695
77 | | 4110.87 | | Cr I | 97 | 4121.0 | | 8 11 | 2 | 4129.73 | | Eu II | 1 | | 4110.903 | | Mn I | 37,47 | 4121.31 | | Fe III | | 4129.96 | P | Cr I | 97 | | 4111.01 | | Cr II | 18,26 | 4121.318 | | Co I | 28 | 4130.035 | • | Fe I | 44,486 | | 4111.06 | P | Fe I | 689 | 4121.45 | | Zr I | 32 | 4130.372 | | Gd II | 19,49 | | 4111.36 | | Cr I
Ce II | 97 | 4121.48 | | 0 11 | 19 | 4130.47 | P | Cr I | 97 | | 4111.394
4111.438 | | Gd II | | 4121.637
4121.682 | | Ti I
Rh I | 9 | 4130.538
4130.648 | | Co I
Ba II | 16
4 | | 4111.56 | | 8 111 | | 4121.7 | P | 0 V | 11 | 4130.706 | | Ce II | 209 | | 4111.67 | | Cr I | 97 | 4121.806 | | Fe I | 356 | 4130.77 | | PII | 17 | | 4111,785
4111.902 | | V I
Fe II | 27
188 | 4121.817
4121.95 | | Cr I
B II | 108
2 | 4130.86
4130.884 | | Cl II
81 II | 60
3 | | | | | | 4121.00 | | - | - | 4100.004 | | 01 11 | · · | | 4112.018 | | Os I | 5 | 4122.00 | P | Fe I | 765 | 4131.099 | | Ce II | 112 | | 4112.029
4112.04 | | 0 II
Eu II | 21
10 | 4122.05
4122.06 | | C III
Fe III | 17
118 | 4131.17
4131.244 | P | Fe II
Ti I | 188
253 | | 4112.09 | P | Fe I | 766 | 4122.143 | | Ti I | 296 | 4131.31 | | ۷r II | 54 | | 4112.17 | ·P | Fe I | 275 | 4122.162 | | Cr I | 65 | 4131.360 | | Cr I | 261 | | 4112.35
4112.59 | | Fe I
Cr II | 695
18 | 4122.522
4122.638 | | Fe I
Fe II | 356
28 | 4131.430
4131.73 | | Mn I
A II | 37
32 | | 4112.708 | | Ti I | 9 | 4122.757 | | Mn I | 47 | 4131.74 | | La II | 167 | | 4112.83 | | A II | 8 | 4122.98 | | Fe III | 118 | 4131.75 | P | Fe I | 1075 | | 4112.972 | | Fe I | 1103 | 4123 | P | 0 V | 4 | 4131.94 | P | Fe I | 695 | | 4113.210 | | Zn I | 9 | 4123.069 | | Na II | 19 | 4131.97 | P | Fe I | 558 | | 4113.23 | | Fe III | | 4123.188 | | V I | 112 | 4132.017 | | v I | 27 | | 4113.24 | | Cr II
La II | 18
166 | 4123.23 | | La II | 41 | 4132.060 | | Fe I | 43
20 | | 4113.28
4113.45 | | Fe III | 100 | 4123.230
4123.279 | | Ce II
Mn I | 162
47 | 4132.155
4132.275 | | Co I
Gd II | 3 0
4 9 | | 4113.518 | | V I | 52 | 4123.287 | | Ti I | 302 | 4192.41 | | Cr II | 26 | | 4113.58 | | Hf II | 24 | 4123.38 | | Zr II | 54 | 4132.48 | | Cl II | 29 | | 4113.726
4113.82 | | Ce II
O II | 137
37 | 4123.387
4123.488 | | Cr I
Ce II | 108
22 | 4132.50
4132.54 | P | La II
Fe I | 150
1 103 | | 4113.82
4113.826 | | Nd II | 37
25 | 4123.488
4123.54 | | Hf II | 95 | 4132.806 | • | O II | 1103
19 | | 4113.876 | | Mn I | 47 | 4123.543 | | Mn I | 37 | 4132.903 | | Fe I | 357 | | 4113.876
4113.902 | | Sm II | 16 | 4123.543
4123.559 | | T1 I | 296 | 4132.903
4132.94 | P | Fe I | 44 | | 4114.00 | | N I | 10 | 4123.566 | | V I | 27 | 4133.006 | | Sc I | 20 | | 4114.449 | | Fe I
A II | 357
1 24 | 4123.748 | | Fe I | 217,422 | 4133.33
4133.361 | | La II
Nd Il | 19 | | 4114.52
4114.95 | | Na II | 20 | 4123.812
4123.872 | | Cb I
Ce II | 1
60 | 4133.65 | | Ne II | 53 | | 4114.957 | | Fe I | 695 | 4123.881 | | Nd II | 65 | 4133.66 | | C1 II | 60 | | 4114.99 | | K II | 2 | 4123.90 | | 0 V | 4 | 4133.669 | | N II | 65 | | 4115.185 | | V I | 27 | 4123.956 | | Sm II | 46 | 4133.800 | | Ce II | 4 | | 42 | | | | | FIND | ING LIB | T | | | | | |----------------------|------|------------------|----------------------|----------------------|--------|----------------|-------------------|------------------------------------|--------|----------------|------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | | _ | V2- V | 017 | 4146.20 | | Cr I | 260 | 4158.5906 | | AI | 2 | | 4134.19
4134.343 | P | Fe I
Fe I | 217
3 | 4146.20 | | Ce II | 203 | 4158.76 | | o v | 11 | | 4134.433 | | Fe I | 482.697 | 4146.47 | | Cr I | 108 | 4158.798 | | Fe I | 695 | | 4134.488 | | V I | 27 | 4146.695 | | Cr I | 107 | 4158.90 | | Hf II
Ce II | 41
246 | | 4134.681 | | Fe I | 357 | 4146.94 | | s II | 65 | 4159.033
4159.407 | | Al II | 71 | | 4134.72 | | KII | 1 | 4147.09 | P | Cl II
Fe II | 60
141 | 4159.450 | | Al II | 71 | | 4135.325
4135.443 | | Nd II
Ce II | 188 | 4147.26
4147.34 | P | Fe I | 693 | 1159.634 | | Ti I | 206 | | 4135.68 | | Zr I | 50 | 4147.43 | | A II | 9 | 4159.686 | | V I | 25 | | 4135.77 | P | Cr II | 163 | 4147.49 | P | Fe I | 832 | 4159.725 | | Al II | 71 | | 4135.77 | | Fe I | 1073 | 4147.532 | | Mn I | 37 | 4159.809 | | Al II
Al II | 71
71 | | 4135.784 | _ | Os I | 3 | 4147.673 | | Fe I | 42
832 | 4160.239
4160.263 | | Al II | 71 | | 4135.9 | P | 0 V
V I | 11
26 | 4148.27
4148.52 | P | Fe I
Cr I | 241 | 4160.28 | P | Fe II | 149 | | 4136.386
4136.512 | | Fe I | 694 | 4148.75 | P | Ni I | 89 | 4160.56 | | P II | 31 | | 4136.894 | | T1 I | 221 | 4148.859 | | v I | 26 | 4160.561 | _ | Fe I | 419 | | 4137.002 | | Fe I | 726 | 4148.901 | | Ce II | 28 | 4160.62
4160.78 | P
P | Fe II
Fe I | 39
1116 | | 4137.090 | | CP I | 1 | 4148.91 | | S III
K II | 6 | 4160.78 | • | N II | 50,51 | | 4137.104
4137.257 | | Mn I | 37 | 4149.19
4149.22 | | Zr II | 41 | 4161.05 | | Cr II | 162 | | 4137.284 | | Ti I | 253 | 4149.372 | | Fe I | 694 | 4161.080 | | Fe I | 689 | | 4137.42 | P | Fe I | 1103 | 4149.445 | | Ti I | 296 | 4161.175 | | Ce II | 22 | | 4137.63 | | N I | 6 | 4149.45 | | Cr I | 261 | 4161.20 | P | Zr II
Cr II | 42
127 | | 4137.646 | | Ce II | 2 | 4149.49 | P
P | Fe I
Fe I | 9 4 2
3 |
4161.27
4161.34 | P | N1 I | 86 | | 4137.93
4137.97 | P | Fe III
Fe I | 118
320 | 4149.76
4149.831 | P | Sm II | 8 | 4161.415 | | Cr I | 305 | | 4138.21 | P | Fe II | 150 | 4149.897 | | Al III | 5 | 4161.488 | | Fe I | 422 | | 4138.40 | P | Fe II | 39 | 4149.917 | | Al III | 5 | 4161.524 | | Ti II | 21 | | 4138.52 | | N1 I | 237 | 4149.936 | _ | Ce II | 158, 189 | 4161.56 | P | Cr II
8r II | 127
3 | | 4138.84 | | Fe L | 117 | 4150.08 | P | V II | 37 | 4161.796 | | | | | 4139.37 | | Fe III | 118 | 4150.138 | | Al III | 5 | 4161.94 | | La II
V II | 175 | | 4139.452 | | Co I | 94 | 4150.258 | | Fe I | 695 | 4162.072
4162.39 | | 8 II | 65 | | 4139.48 | | Ti I
Cb I | 221
1 | 4150.366
4150.429 | | N1 I
Co I | 178
16 | 4162.40 | | Hf II | 60 | | 4139.702
4139.933 | | Fe I | 18 | 4150.429 | | Ti I | 253 | 4162.698 | | S II | 44,65 | | 4140.24 | P | Fe I | 418 | 4150.67 | | Ne II | 53 | 4162.732 | | Gd II | 17 | | 4140.304 | | Sc I | 20 | 4150.809 | | Ti I | 221 | 4162.80 | P | C III
Fe I | 21
476a | | 4140.42 | P | Ti I | 221 | 4150.963 | | Ti I
Zr II | 206
42 | 4162.93
4163.092 | F | Gd II | 44 | | 4140.441
4140.450 | | Fe I
Gd II | 694,695
48 | 4150.97
4151 | P | 0 V | 4 | 4163.16 | P | Cr I | 35 | | | | | | | | | 400 | 4163.35 | P | F9 I | 1073 | | 4140.51
4140.74 | | Fe III
O II | 118
19 | 4151.00 | | Cr II
N I | 163
6 | 4163.516 | • | Ce II | 35 | | 4141.017 | | Gd II | 117 | 4151.46
4151.52 | | Eu II | 10 | 4163.625 | | Cr I | 35 | | 4141.25 | Forb | Al III | 17 | 4151.60 | P | Fe II | 149 | 4163.644 | | T1 II | 105 | | 4141.257 | | Pr II | 10 | 4151.79 | P | Fe II | 12 | 4163.655 | | V II | 175 | | 4141.352 | | Fe I | 480 | 4151.957 | | Fe I | 764 | 4163.658
4163.676 | | Cb I
Fe I | 1
274,699 | | 4141.73 | | La II
Hf II | 4 0
87 | 4151.970 | | Ce II
La II | 2
40 | 4163.94 | | Cr I | 241 | | 4141.84
4141.862 | | Fe I | 422 | 4151.98
4152.07 | P | Fe I | 1049 | 4164.015 | | V II | 37 | | 4141.96 | | 0 11 | 106 | 4152.172 | - | Fe I | 18 | 4 16 4 . 1 34 | | Ti I | 163 | | 4142.08 | | 0 11 | 106 | 4152.209 | | Sm II | 16 | 4164.1800 | | A I | 2 | | 4142.15 | | Al III | 16 | 4152.355 | | Sc I | 20 | 4164.192 | P | Pr II
Fe I | 8
694 | | 4142.184 | | N1 I
Cr I | 212
305 | 4152.43 | | C III | 21
1 | 4164.24
4164.54 | | Pt I | 6 | | 4142.193
4142.24 | | 0 11 | 106 | 4152.575
4152.775 | | Cr I | 261 | 4164.636 | | N1 I | 28 | | 4142.291 | | S II | 44 | 4152.78 | | La II | 78 | 4164.661 | | СРІ | 1 | | 4142.320 | | N1 I | | 4152.98 | P | Fe II | 45 | 4164.79 | | Fe III | 118 | | 4142.398 | | Ce II | 10 | 4153.067 | | Cr I | 35 | 4164.80
4164.96 | | Fe I
S III | 418 | | 4142.47
4142.480 | | Cr I
Ti I | 179
296 | 4153.098
4153.302 | | 8 II
0 II | 44
19 | 4165.11 | | 8 11 | 64 | | 4142.628 | | Fe I | 1103 | 4153.328 | | v i | 26 | 4165.184 | | Sc I | 20 | | 4142.66 | | V I | 26 | 4153.332 | | Sm II | 54 | 4165.519 | | Cr I | 305 | | 4142.86 | | ΥI | 5 | 4153.510 | | Gd II | 117 | 4165.606 | | Ce II | 10 | | 4142.90 | | V II | 226 | 4153.67 | P | Ce II | 159 | 4166.003
4166.311 | | Ba II
Ti I | 4
163 | | 4143.048 | P | Ti I
Fe II | 253
188 | 4153.816 | | Cr I | 35
605 | 4166.37 | | Zr I | 45 | | 4143.07
4143.136 | r | Pr II | 4 | 4153.906
4154.109 | | Fe I
Fe I | 695
694 | 4166.73 | | PII | 16 | | 4143.280 | | T1 I | 253 | 4154.502 | | Fe I | 355 | 4166.86 | | Fe III | 118 | | 4143.418 | | Fe I | 523 | 4154.812 | | Fe I | 694 | 4167.159 | | Gd II | 18 | | 4143.42 | P | N I | 6 | 4154.862 | | Gd II | 67 | 4167.2604 | | MgI | 15 | | 4143.50 | P | Fe I | 697 | 4154.865 | | Ti I | 221 | 4167.2712 | | Mg I
Y I | 15
7 | | 4143.52 | | O II | 106 | 4154.98 | | Fe III | 0.50 | 4167.52
4167.67 | P | Ti II | 21 | | 4143.759
4143.77 | | He I
La II | 53
54 | 4155.217
4155.525 | | Sm II
Mn I | 8,50
37 | 4167.69 | P | Fe II | 149 | | 4143.77 | | 0 11 | 106 | 4155.532 | | Ce II | 29 | 4167.80 | | Cr I | 107 | | 4143.83 | P | Fe I | 354 | 4156.083 | | Nd II | 10 | 4167.804 | | Ce II | 29 | | 4143.87 | | Fe III | 44 | 4156.11 | | A II | 52 | 4167.862 | | Fe I | 599 | | 4143.871
4144.164 | | Fe I
Ru I | 43
7 | 4156.24 | | Zr II | 29
14 | 4168.122
4168.31 | | Cb I
Cr I | .1
261 | | 4144.164
4144.492 | | Ce II | 3 | 4156.265
4156.3 | | Nd II
Li II | 1 4
3 | 4168.409 | | 8 11 | 44 | | 4144.553 | | Nd II | 61 | 4156.460 | | Fe I | 693 | 4168.41 | | Fe III | 118 | | 4144.995 | | Ce II | 9 | 4156.50 | | C III | 21 | 4168.424 | | Al II | 61 | | 4145.100 | | S II | 44 | 4156.54 | | o II | 19 | 4168.511 | | Al II | 61 | | 4145.209 | | Fe I | 274 | 4156.670 | | Fe I | 419 | 4168.625 | n | Fe I
Fe II | 689
22 | | 4145.74
4145.764 | | Fe III
N II | 65 | 4156.8 | | N II | 50,51
354 | 4168.66
4168.942 | P | Fe I | 22
694 | | 4145.77 | | Cr II | 162 | 4156.803
4157.788 | | Fe I
Fe I | 354
695 | 4168.971 | | He I | 52 | | 4145.90 | | 0 11 | 106 | 4157.788 | | C1 II | 380 | 4168.98 | | A II | | | 4146 071 | | E ₂ Y | 400 | | | | | 4400 00 | - 7 | F. Y | | | 1 | | | | | | LIND | ING DIG | - | | | | 70 | |--|-----------|------|---------|---------------|----------|------|---------|---------------|----------|------|---------|---------------| | 1999-199 | ĭ A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | | 1909.7732 C. II 2010 2779.45 C. II 205 1111.0000 A I 7 7 7 7 7 7 7 7 7 | 4169.330 | | Ti I | 163 | 4179.419 | | v i | 25 | 4190.738 | | Si II | | | 4680-777 | | | | | | | | | | | | | | 1985-258 C 1 278 277 289 58 11 39 139 | | | | | | | | | | | | | | 1300.00 P | | | | | | | | | | | | | | 170.08 | | _ | | | | | | | | | | | | A370.502 C T 279 | | Р | | | | | | | | | | | | 1470.06 | | | | | | P | | | | | | | | 177.06 | | P | Cr II | 18 | | | | | | | | | | 177.06 | 4170 86 | | Cr II | 101 | 4190 41 | ъ | Po T | 074 | 4101 605 | | D- T | AFF | | 4371-058 | | | | | | r | | | | | | | | 4171.070 | | | | | | | Pr II | | | | | | | 1471-1680 Fe 941 | | | | | | | | | | | | | | 1771-1872 P | | | | | | P | | | | | | | | A171-194 | | | Pr II | | | • | | | | | | | | 1471-162 | | | | | | _ | | | | | | 79 | | 4170.048 | | | | | | | | | | р | | 193 | | 4172-120 | | | | | 11011.20 | - | -0 - | 000 | 4150.01 | • | 20 11 | 100 | | 1472-730 P | | | | | | _ | | | | | | | | 4172.073 | | P | | | | Р | | | | | | | | 1472.000 | | | | | | | | | | | | | | 4172-244 | | | | | | | | |
 | | | | ### ### ### ### ### ### ### ### ### ## | | | | | | ъ | | | | ъ | | | | 4173-05 P Fe I 909-1073 4182.98 | | | | | | P | | | | P | | | | 4173.18 P Fo I 688 | | | | | | | A II | | | | | | | 1479.3284 OB I 4 4853.20 P Fe II 231 4135.015 Fe II 478 1477.3292 Fe I 305 4135.2084 TI I 200 4135.015 Fe II 478 1477.3770 SG II 1 10 4135.416 V II 37 4105.615 Fe II 478 1477.3770 SG II 1 10 4135.416 V II 37 4105.616 Fe II 1 10 10 11 11 11 11 11 11 11 11 11 11 1 | 4173.05 | P | Ti II | 96 | 4183 | P | N IV | 14 | 4195.337 | | Fe I | 693 | | 1479.3284 | 4173.18 | P | Fe I | 698 | 4183.025 | | Fe I | 697 | 4195.41 | | Cr II | 161 | | 1477.379 Nd II 10 4193.31 Zr I 51 4100.70 N III 6 4193.31 Zr I 51 4100.70 N III 6 4193.31 Zr I 51 4190.70 N III 6 4193.31 Zr I 51 4190.83 V II 19 4173.305 N II 57 4190.83 V II 19 7 I | | | Os I | | | P | | | | | | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | | | | | | | | | | | | 4173.55 | | | | | | | | | | | | | | ## 1473.557 ## 71 | | | | | | | | | | | | | | 4173.76 N II | | | | | | | | | 4196.26 | | | 42 | | 4173.76 | | | | | | | | | | | | | | #173.77 #173.285 #1 | | | | | | | | | | | | | | 4173-926 Fe I 19 | | | | | | | | | | | | | | 4174 P N IV | | | | | | | | | | P | | | | 4174-042 | | P | | | | | | | | | | | | 4174.088 T1 II 105 | | | | | | | | | | | | | | 4174.14 Y I 6 4185.456 O II 80 4197.58 P Fe I 576 4174.15 Cr I 305 4185.60 P Cr II 163 4197.68 C Cr I 349 4174.27 Fe III 4185.61 C III 43 4197.688 C C II 136 4174.30 B III 4185.61 C III 43 4197.688 C C II 136 4174.30 B III 2 4185.65 P Fe I 1004 4197.688 C C II 136 4174.31 P Mn II 2 4185.61 P T II 220 4197.98 C C II 200 4174.32 P T II 220 4186.08 P T II 1 220 4197.98 C C II 200 4174.31 P II 1 220 4186.08 P T II 1 220 4197.98 C C II 200 4174.31 P II 1 220 4186.08 P T II 1 220 4198.28 Fe I 693 4174.491 C T I 241 4186.08 P T II 127 4188.28 Fe I 693 4174.941 C T I 278 4186.59 C I I 129 4186.39 C C I I 241 4174.941 C T I 278 4186.59 C I I 107 4188.425 C C I 274 4175.588 C I I 5 4186.70 C I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | P | | | | 4174.15 Cr I 305 4185.60 P Cr II 163 4197.47 Cr I 249 4174.27 Fe III 4185.61 Cl II 43 4197.688 Ce II 136 4174.27 Fe III 4185.66 P Fe I 1104 4197.681 Od II 136 4174.300 S II 4185.66 P Fe I 1104 4197.681 Od II 136 4174.300 S II 4185.66 P Fe I 104 4197.681 Od II 136 4174.300 S II 4186.08 P Fe I 104 4197.681 Od II 136 4174.30 Hr I 3 4186.00 P T1 I 200 4197.688 Ce II 200 4174.419 Fe I 799 4186.03 M4 II 24 4188.174 Si II 200 4174.419 Fe I 799 4186.03 M4 II 24 4188.174 Si II 1474.419 Fe I 799 4186.08 PC II 127 4188.288 Fe I 693 4174.785 Cr I 241 4186.189 Cr I 128 4186.08 Fe I 693 4174.785 Cr I 241 4186.189 Cr I 129 4188.310 Fe I 152 4174.618 Cr I 281 4186.389 | | ٠ | | | | | | | | P | | | | 4174.300 S II 4185.66 P Fe I 1104 4197.681 04 II 4174.31 P Mn II 2 4185.66 P Fe I 1104 4197.681 04 II 4174.31 P Mn II 2 4185.66 P Fe I 1104 4197.685 P TI II 96 4174.313 HF I 3 4186.01 P TI I 220 4197.998 C II 209 4174.419 Fe I 799 4186.033 Nd II 24 4198.174 81 II 4174.419 Fe I 799 4186.033 Nd II 24 4198.174 81 II 4174.479 TI I 220 4186.01 P TI I 122 4198.286 Fe I 693 4174.795 CF I 241 4186.119 TI I 122 4198.310 Fe I 152 4174.917 Fe I 19 4186.24 K II 1 4198.317 A I 4 4174.941 CF I 278 4186.359 CF I 249 4198.310 Fe I 152 4175.538 GG I 5 4186.70 ZF II 97 4198.525 CF I 24 4175.538 GG I 5 4186.70 ZF II 97 4198.525 CF I 24 4175.640 Fe I 364 4187.05 C III 18 4198.645 Fe I 693 4175.69 P Fe I 694 4187.324 CF I 32 4198.699 CF II 1 | | | | | | P | | | | • | | | | 4174.31 P Nn II 2 4185.95 S II 220 4197.99 C II 309 4174.433 NI I 3 4186.01 P T1 I 220 4197.99 C II 209 4174.419 F F I 799 4186.03 NA II 24 4198.174 S III 4174.472 T1 I 220 4186.08 P C II 127 4198.288 F I 693 4174.495 C I 241 4186.119 T1 I 127 4198.288 F I 693 4174.495 C I 241 4186.119 T1 I 127 4198.288 F I 1 693 4174.491 C I 279 4186.38 C I 1 4198.3170 A I 4 4174.917 F I 19 4186.34 K II 1 4198.3170 A I 4 4174.917 C I 279 4186.389 C I 1 29 4198.310 C II 207 4175.227 C I 1 261 4186.599 C I I 1 1 4198.425 C I 2 2 4175.227 C I 1 261 4186.599 C I I 1 1 4198.431 C II 207 4175.508 C I 1 5 4186.70 C I II 97 4198.285 C I 1 249 4175.606 R I I 39 4187.044 F I 152 4198.611 V I 24 4175.640 F I 1 594 4187.386 C I 93 4198.611 V I 24 4175.640 F I 1 694 4187.386 C I 93 4198.611 V I 24 4175.640 F I 1 694 4187.386 C I 93 4198.601 C I I 03 4176.080 C I I 135 4187.92 C I I 88 4198.09 C I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | _ | | | | | | 136 | | 4174.433 | 4174.300 | | 8 11 | | 4185.66 | P | Fe I | 1104 | 4197.681 | | Gd II | | | 4174-419 Fe I 799 4186.039 M II 24 4198.174 SI II 34 4174-472 Ti I 220 4186.08 P C II 127 4198.288 Fe I 693 4174.975 Cr I 241 4186.119 Ti I 129 4198.210 Fe I 152 4174.981 Cr I 278 4186.08 P C II 1 1 4198.210 Fe I 152 4174.981 Cr I 278 4186.359 Cr I 240 4189.310 Fe I 152 4174.981 Cr I 278 4186.359 Cr I 240 4189.325 Cr I 2 2 4175.538 Gd I 5 4186.70 Zr II 97 4189.425 Cr I 240 4175.638 Gd I 5 4186.70 Zr II 97 4189.625 Cr I 240 4175.606 Nd II 39 4187.044 Fe I 152 4188.611 V I 24 4175.606 Nd II 39 4187.044 Fe I 152 4188.611 V I 24 4175.606 Nd II 39 4187.246 Cr I 93 4188.659 Cr I 1 28 4175.690 Cr I 106 4187.246 Cr I 93 4188.699 Cr II 7 3 4175.690 Cr II 106 4187.230 Cr II 85 4188.794 Cr II 7 3 4175.690 Cr II 106 4187.320 Cr II 85 4188.794 Cr II 107 4175.690 Cr II 108 4187.323 Cr II 86 4189.02 P Cr II 180 4176.44 P Fr I 144 4187.323 Cr II 86 4189.02 P Cr II 180 4176.44 P Fr I 689 4187.323 Cr II 86 4189.09 P Fr II 141 4176.44 P Fr I 689 4187.80 P Fr I 694 4187.90 P Fr I 694 4187.90 P Fr I 695 4187.80 P Fr I 694 4189.09 P Fr II 141 4176.44 P Fr I 689 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 699 R II 17 7 1 199.09 R II 18 14 1477.37 P Fr I 689 4187.80 P Fr I 699 4188.09 R Fr I 7 1 18 1 18 1 18 1 18 1 18 1 18 1 18 | | P | | | 4185.95 | | S II | | 4197.95 | P | Ti II | 96 | | 4174.472 | | | | | | P | | | | | | 209 | | 4174-795 | | | | | | ъ | | | | | | 60.9 | | 4174.917 Fe I 19 4186.24 K III 1 4198.3170 A I 4 4174.941 Cr I 278 4186.599 Cr I 249 4198.425 Cr I 2 4175.227 Cr I 261 4186.599 Cr II 1 4198.425 Cr I 2 4175.528 | | | | | | • | | | | | | | | 4175.227 | | | | | 4186.24 | | K II | 1 | | | AI | 4 | | 4175.538 | | | | | | | | | | | | | | 4175.606 Nd II 39 4187.044 Fe I 152 4198.611 V I 24 4175.640 Fe I 354 4187.05 C III 18 4198.645 Fe I 693 4175.989 P Fe I 694 4187.246 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.144 N II 42 4187.56 Zr I 45 4199.09 Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.571 Fe I 695 4187.68 Hf II 73 4199.27 V II 5 4176.571 Fe I 696 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Nd II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 TI I 220 4199.918 Tm II 1 4177.327 TI I 163 4188.88 Al III 15 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 12 4189.10 Fe II 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.09 P Fe I 993 4177.50 Fe I 18 4189.50 Co I 2 4200.09 P Fe I 993 4177.50 Fe II 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4200.40 P TI II 96 4179.59 Fe II 21 4189.67 A II 424 4200.78 P Fe I 444 4179.50 Cr I 250 4189.81 V I 24 4200.78 P Fe I 446 4179.082 V II 19 4190.66 Cr I 169 4201.65 Zr I 45 4179.082 Fe III 19 4190.66 Cr I 19 4200.99 Fe I 689 4179.082 Fe III 19 4190.66 Cr I 19 4200.67 Fe II 45 | | | | | | | | | | | | | | 4175.89 P Fe I 694 4187.248 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.164 N II 42 4187.56 Zr I 45 4199.09 P Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.93 Re II 1 4177.357 Ti I 163 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.50 Co I 2 4189.50 Co I 2 4200.06 Fe III 417.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4200.00 P Fe I 993 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 18 4189.50 Co I
2 4200.08 Fe III 4177.50 Fe II 19 4180.66 Cr I 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.40 P | 4175.606 | | Nd II | 39 | 4187.044 | | Fe I | | | | | | | 4175.89 P Fe I 694 4187.248 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.164 N II 42 4187.56 Zr I 45 4199.09 P Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.93 Re II 1 4177.357 Ti I 163 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.50 Co I 2 4189.50 Co I 2 4200.06 Fe III 417.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4200.00 P Fe I 993 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 19 4180.66 Cr I 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.40 P | 4175, 640 | | Fe I | 354 | 4197 05 | | C III | 10 | 4100 648 | | Fo T | 600 | | 4175.945 | 4175.89 | P | Fe I | | | | | | | | | | | 4176.164 N II 42 4187.56 Zr I 45 4199.08 P Fe II 141 4176.44 P Fe II 149 4187.56 Zr I 45 4199.08 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.089 Nd II 15 4176.57 P Fe I 689 4187.68 Hf II 73 4199.27 Y II 5 4176.793 V I 6 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.918 Tm II 1 4177.357 Ti I 163 4188.82 Cl III 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al IIII 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.59 P Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.59 Co I 2 4188.518 Pr II 8 4200.06 Fe III 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4178.019 Sm II 16,50 4188.71 S II 44,64 4200.675 A II 4200.39 Fe II 4477.09 P Fe II 28 4188.58 O II 36 4200.675 A II 4200.39 Fe II 4477.09 P Fe II 28 4188.58 O II 36 4200.675 A II 4200.675 A II 2200.40 P T II II 26 4178.50 P Fe II 28 4188.58 O II 36 4200.675 P Fe II 44 4178.50 P Fe II 28 4188.58 O II 36 4200.675 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe III 44 4189.50 C C II 169 4200.60 P II 16 68 4200.50 P Fe II 44 4178.50 P F | | | | | 4187.31 | | | 5 | 4198.724 | | Ce II | 3 | | 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Md II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 Ti I 220 4199.918 Tm II 1 4177.321 Nd II 10 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 AI III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.70 P Fe II 18 4189.64 Fe I 940 4200.03 Cr I 4177.70 P Fe II 18 4189.67 A II 4200.03 Fe III 4178.39 A II 7 4189.78 O II 36 4200.40 P Ti II 96 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.75 Ti I 220 4179.062 V II 19 4190.66 Cr I 184 4200.99 P Fe I 44 4179.062 V II 19 4190.66 Cr I 169 4201.65 Tr I 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 689 4179.062 V II 19 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe I 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689 4179.26 Fe III 44 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689 | | | | | | | | | | | | | | 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.571 Fe I 695 4187.68 Hf II 73 4199.27 Y II 5 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Od II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 Ti I 220 4199.918 Tm II 1 4177.357 Ti I 163 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.57 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.59 Fe I 18 4189.667 A II 4200.38 Fe III 96 4177.00 P Fe II 21 4189.67 A II 4200.38 Fe III 96 4178.390 V II 25 4189.71 S II 44,64 4200.40 P TI II 96 4178.855 Fe II 28 4189.96 Cr I 166 4200.752 Ti I 220 4179.05 Cr I 250 4190.29 Ti II 21 4200.88 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 64 4179.062 V II 19 4190.66 Cr I 84 4200.90 Fe I 689 4179.05 Fe II 14 4190.66 Cr I 169 4201.85 Cr I 689 4179.05 Fe III 19 4190.66 Cr I 169 4201.85 Cr I 45 4179.062 V II 19 4190.66 Cr I 169 4201.55 Cr I 45 4179.05 Fe III 44 4190.66 Cr I 169 4201.55 Cr I 45 4179.05 Fe III 44 4190.66 Cr I 169 4201.55 Cr I 45 4179.062 V II 19 4190.66 Cr I 35 4201.55 La II | 4176.44 | | Fe II | | | | | | | r | | | | 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 0d II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.684 Ti I 220 4199.918 Tm II 1 1 4177.357 Ti I 163 4188.82 Cl III 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.54 V II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4188.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.597 Fe I 1 18 4189.57 A II 4200.38 Fe III 4177.597 Fe I 1 18 4189.57 A II 4200.40 P Ti II 96 4177.599 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.390 V II 25 4189.541 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.56 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.67 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.60 Cr I 35 4201.50 La II | | P | | | 4187.616 | | Tm I | | 4199.099 | | Nd II | 15 | | 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 Re II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 T1 I 220 4199.918 Tm II 1 4177.357 T1 I 163 4188.82 C1 II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.70 P Fe II 18 4189.66 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179.05 Cr I 250 4199.96 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.80 Fe I 689 4179.25 Fe III 44 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III | | | | | | | | | | | | | | 4177.17 | | P | | | | | | | | P | | | | 4177.321 Nd II 10 4188.694 T1 I 220 4199.918 Tm II 1 4177.357 T1 I 163 4188.82 C1 II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 A1 III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 C0 I 2 4200.06 Fe III 4177.59 C0 I 2 4189.518 Pr II 8 4200.09 P Fe I 993
4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P T1 II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P O V 4 4189.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 35 4201.50 La II | | | | | | | | | | | | • | | 4177.357 Ti I 163 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.855 Fe II 25 4189.841 V I 24 4200.6751 A I 24 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.66 Cr I 35 4201.85 Zr I 45 4179.25 Fe III | | | | | | | | | | | | | | 4177.50 Hf II 51 4188.88 AI III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N IIII 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4200.09 P Fe I 993 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 24178.855 Fe II 28 4189.841 V I 24 4200.6751 A I 24178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 169 4201.45 Zr I 45 4179.25 Fe III 44 4190.66 Cr I 35 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | | | | | | | | | | | | | | 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 96 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.464 Ni I 89 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I | 4177.50 | _ | | 51 | 4188.88 | | Al III | | | | | | | 4177.59 | | P | | | | | | • | | | | | | 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 169 4201.45 Zr I 45 4179.25 Fe III 44 4190.66 Cr I 35 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | | | | | | | | | | P | | 903 | | 4178.019 | 4177.597 | _ | Fe I | 18 | 4189.564 | | Fe I | | | • | | 900 | | 4178.39 A II 7 4189.788 O II 36 4200.464 Ni I 89 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.666 Cr I 35 4201.50 La II | | P | | | | | | 44 ** | 4200.38 | _ | Fe III | | | 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.666 Cr I 35 4201.50 La II | #1(0.01A | | Oct 11 | 10,50 | 4189.71 | | s II | 44,64 | 4200.40 | P | Ti II | 96 | | 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | | | | | | | | | 4200.464 | | N1 I | 89 | | 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | | | | | | | | | | | | 2 | | 4179.05 | | P | | | | | | | | D | | | | 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689
4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45
4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | 4179.05 | | Cr I | 250 | | | | | | r | | | | 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II | | | | | 4190.40 | | V II | 25 | 4200.930 | | Fe I | 689 | | 101100 1011 | | | | 1.8.8 | | | | | | | | 45 | | | | | | 179.250 | | | | | | | | ** | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|------|----------------|----------------------|----------------------|------|-----------------|---------------|----------------------|------|----------------|------------------------| | 4201.73 | | Fe I | 799 | 4213.86 | | Zr I | 45 | 4225.956 | | Fe I | 521 | | 4201.851 | | Rb I | 2 | 4214.041 | | Ce II | 203 | 4226.14 | | Fe III | 44 | | 4201.99
4202.031 | | A II
Fe I | 8,124
42 | 4214.73
4215.023 | | N I
Gd II | 5
32 | 4226.426
4226.44 | | Fe I
Cl I | 352
9 | | 4202.031 | | Ni I | 179 | 4215.430 | | Fe I | 274,419 | 4226.570 | | Ge I | 4 | | 4202.350 | | V II | 25 | 4215.524 | | Sr II | 1 | 4226.65 | | A II | 113 | | 4202.4 | | Al II | 87 | 4215.556 | | Rb I | 2 | 4226.728 | _ | Ca I | 2 | | 4202.755
4202.944 | | Fe I
Ce II | 476a,521
186 | 4215.69
4215.76 | | N III
Zr II | 6
68 | 4226.76
4226.827 | P | Cr I
Al II | 105
46 | | 4202.944 | | Sm II | 42 | 4215.77 | | Cr II | 18 | 4226.918 | Forb | Al II | 46 | | | | | | | | | | | | | | | 4203.30
4203.43 | | Fe I
A II | 418 | 4215.92
4215.975 | | N I
Fe I | 5
273 | 4227.02
4227.14 | P | A II
Fe II | 113
45 | | 4203.465 | | Ti I | 220 | 4216.04 | | Ba II | 17 | 4227.140 | • | Gd II | 43 | | 4203.570 | | Fe I | 19 | 4216.186 | | Fe I | 3 | 4227.34 | P | T1 II | 33 | | 4203.590 | _ | Cr I | 35 | 4216.365 | _ | Cr I | 132 | 4227.42 | P | Fe I | 689 | | 4203.67
4203.730 | P | Fe I
Tm I | 1245 | 4217
4217.07 | P | C IV
Cr II | 11
18 | 4227.420
4227.434 | | Al II
Fe I | 46
693 | | 4203.750 | | Fe I | 850 | 4217.09 | | 0 I | 33 | 4227.509 | | Al II | 46 | | 4203.987 | | Fe I | 355 | 4217.15 | | Ne II | 52 | 4227.545 | Forb | Al II | 46 | | 4204.03 | | La II | 53 | 4217.195 | | Gd II | 49 | 4227.654 | | Ti I | 278 | | 4204.19 | | Cr I | 35 | 4217.23 | | 8 11 | 44 | 4227.719 | | Nd II | 19 | | 4204.20 | | V II | 25 | 4217.282 | | Nd II | 57 | 4227.73 | | Cr II | 155 | | 4204.471 | | Cr I
Cl II | 272
43 | 4217.34 | P | Ti II
A II | 96 | 4227.746
4227.749 | | Ce II
N II | . 8
3 3 | | 4204.54
4204.66 | P | Cr II | 43
127 | 4217.45
4217.551 | | Fe I | 693 | 4227.76 | | Zr I | 45 | | 4204.69 | | YII | 1 | 4217.56 | | La II | 78 | 4227.875 | | Al II | 46 | | 4204.83 | P | Cr II | 180 | 4217.591 | | Ce II | 19 | 4227.945 | | Al II | 46 | | 4204.857
4205.05 | | Gd II
Eu II | 46
1 | 4217.626
4218.12 | P | Cr I
Fe I | 132
19 | 4227.999
4228.18 | | Al II
A II | 46
8 | | 4205.05 | P | V II | 25 | 4218.12 | P | Ti II | 33 | 4228.200 | | Nd II | 3 6 | | | | | | | | | | | _ | | | | 4205.07 | | C1 II
V II | 67
37 | 4218.21 | P | Fe I
A II | 172
64 | 4228.71
4229.516 | P | Fe I
Fe I | 690
416,649 | | 4205.080
4205.19 | | A II | 111 | 4218.69
4218.710 | | VI | 24 | 4229.704 | | Sm II | 4 | | 4205.37 | P | Mn II | 2 | 4219.364 | | Fe I | 800 | 4229.760 | | Fe I | 41 | | 4205.48 | P | Fe II | 22 | 4219.383 | _ | WI | 3 | 4229.803 | | Gd II | 117 | | 4205.546
4205.595 | | Fe I
Nd II | 689
19 | 4219.41
4219.51 | P | Fe I
V I | 419
24 | 4229.81
4229.89 | | Cr II
A II | 26 | | 4205.91 | | Zr II | 133 | 4219.59 | P | Fe I | 763 | 4229.955 | | CoI | 1 | | 4205.92 | | Fe III | 22 | 4219.74 | P | Fe I | 832 | 4230.29 | | Cr I | 106 | | 4205.92 | P | Ti II | 33 | 4219.76 | | Ne II | 52 | 4230.35 | | N I | 5 | | 4206.128 | | Sm II | 38 | 4220.047 | | v II | 25 | 4230.39 | P | N1 I | 150 | | 4206.21 | | Ca II | 16 | 4220.05 | P | Fe I | 994 | 4230.481 | | Cr I | 132 | | 4206.375 | | Mn II | 7 | 4220.13 | | Ca II | 16 | 4230.584 | | Fe I
La II | 478 | | 4206.43
4206.59 | | Ne II
Hf II | 53
74 | 4220.258
4220.32 | | Nd II
Fe III | 32 | 4230.95
4230.98 | | 8 II | 83
67 | | 4206.702 | | Fe I | 3 | 4220.347 | | Fe I | 482 | 4231.040 | | Ni. I | 136 | | 4206.739 | | Pr II | 8 | 4220.45 | | Cr I | 106 | 4231.165 | | V II | 25 | | 4206.899
4207.130 | | Cr I
Fe I | 352 | 4220.659
4220.92 | | Sm II
Ne II | 15,50
52 | 4231.35
4231.525 | | C I
Fe I | 17
6 4 7 | | 4207.130 | P | Mn II | 2 | 4221.572 | | Cr I | 155,248 | 4231.60 | | Ne II | 52 | | | | | | | | | | | | | | | 4207.35
4207.51 | | Cr II
Cr I | 26
133 | 4221.696
4222.00 | | N1 I
Cr II | 86
180 | 4231.64
4231.745 | | Zr II
Ce II | 99 | | 4207.61 | | La
II | 133 | 4222.15 | | P III | 3 | 4232.065 | | V II | 225 | | 4208.03 | | C1 II | 43 | 4222.219 | | Fe I | 152 | 4232.222 | | Cr I | 29 4 | | 4208.357 | | Cr I | 249 | 4222.39 | | Fe III | | 4232.378 | | Nd II
Hf II | 8 | | 4208.610
4208.99 | | Fe I
Zr II | 689,696
41 | 4222.41
4222.599 | | Zr II
Ce II | 80
36 | 4232.43
4232.460 | | V I | 72
111 | | 4209.02 | | Cr II | 162 | 4222.67 | | A II | 77 | 4232.724 | | Fe I | 3 | | 4209.368 | | Cr I | 248 | 4222.732 | | Cr I | 132 | 4232.866 | | Cr I | 132 | | 4209.409 | | Ce II | 3 | 4222.78 | | 0 I | 33 | 4232.952 | | V I | 111 | | 4209.649 | | Mo II | 3 | 4222.97 | | K II | 7 | 4232.96 | P | Cr II | 180 | | 4209.74 | | V II | 25 | 4222.98 | | Pr II | 4 | 4233.167 | | Fe II | 27 | | 4209.756 | | Cr I | 155 | 4223.020 | | Gd II | 141 | 4233.25 | | Cr II | 31 | | 4209.84
4209.857 | P | Cr II
V I | 180
24 | 4223.04
4223.47 | | N I
Cr I | 5
132 | 4233.32
4233.608 | | O I
Fe I | 33
152 | | 4210.00 | | A II | 78 | 4223.73 | P | Fe I | 417 | 4233.996 | | Co I | 1 | | 4210.22 | | La II | | 4224.09 | P | Cr II | 31 | 4234.000 | | V I | 6,111 | | 4210.352 | | Fe I | 152 | 4224.176 | | Fe I | 689 | 4234.09 | | C1 II | 24 | | 4210.352
4210.39 | P | Sm II
Fe I | 8
482 | 4224.27
4224.30 | P | Zr II
Fe I | 29
1104 | 4234.196
4234.251 | | Nd II
V II | 20
24 | | | _ | | | | - | | | 1011101 | | | | | 4210.62 | | Zr II | 97 | 4224.43 | | P II | 16 | 4234.515 | | Cr I | 178 | | 4210.77
4210.87 | | Cr I
Fe III | 106 | 4224.509
4224.51 | | Fe I
V II | 689
25 | 4234.524
4234.55 | | V I
V II | 6
200 | | 4211 | P | 0 V | 4 | 4224.514 | | Cr I | 155 | 4234.573 | | Sm II | 42 | | 4211.286 | | Nd II | 57 | 4224.57 | | Ne II | 52 | 4234.727 | | Ce II | 170 | | 4211.349 | | Cr I
Fe III | 133 | 42-1.63 | P | Fe I
N I | 274 | 4235.140 | | Mn I
Mn I | 23
23 | | 4211.51
4211.729 | | Ti I | 104
279 | 4224.74
4224.795 | | N I
Ti I | 5
301 | 4235.290
4235.49 | | Mn 1
Cl II | 23
71,83 | | 4211.80 | P | Fe II | 21 | 4224.85 | | Cr II | 162 | 4235.54 | | Fe III | • | | 4211.88 | | Zr II | 15 | 4224.92 | | C1 II | 83 | 4235.54 | P | N1 I | 256 | | 4212.001 | | Gd II | 15 | 4225.02 | P | Ni I | 169 | 4235.65 | P | Fe I | 215 | | 4212.06 | P | Fe I | 697 | 4225.148 | - | Gd II | 14 | 4235.73 | - | Y II | 5 | | 4212.063 | | Ru I | 6 | 4225.228 | | V II | 37 | 4235.756 | _ | V I | 111 | | 4212.44
4212.95 | | Si IV
Pd I | 5
7 | 4225.327
4225.328 | | Pr II | 8 | 4235.84 | P | Fe I | 172
5 | | 4212.95
4213.036 | | Ce II | 169 | 4225.328
4225.460 | | Sm II
Fe I | 22
693 | 4235.94
4235.942 | | Y I
Fe I | 5
152 | | 4213.179 | | Cr I | 155 | 4225.67 | | K II | 4 | 4235.96 | P | Fe I | 692 | | 4213.42 | P | Fe I | 274 | 4225.71 | P | Fe I | 1102 | 4235.98 | _ | Cr I | 132 | | 4213.5 | | 8 11 | 44 | 4225.79 | P | Fe I | 118 | 4236.33 | P | Cr II | 17 | | | | | | | FIND. | ING LIS | r | | | | | 45 | |----------------------|--------|-----------------|---------------|------------------------|-------|----------------|---------------------------|----------------------|------|----------------|-------------------|-----| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet | Ņo. | | 4000 50 | | Zr II | | | _ | | - | 4050 000 | | Fe I | 689 | | | 4236.56
4236.66 | P | Fe I | 110
907 | 4247.31
4247.367 | P | Fe I
Nd II | 172
8 | 4259.988
4260.135 | | Fe I | 476a | | | 4236.745 | | Sm II | 53 | 4247.43 | P | Fe II | 125 | 4260.19 | | Cr I | 240 | | | 4236.76 | | Fe I | 906 | 4247.432 | | Fe I | 693 | 4260.47 | P | Mn II | .2 | | | 4236.82
4236.930 | | V II
N II | 18
48 | 4247.56
4248.228 | | C III
Fe I | 11
482 | 4260.479
4260.73 | P | Fe I
Fe I | 152
351 | | | 4237.049 | | N II | 48 | 4248.344 | | Cr I | 131 | 4260.738 | • | Ti I | 251 | | | 4237.085 | | Fe I | 19 | 4248.40 | P | Fe I | 19 | 4260.75 | | V II | 18,24 | | | 4237.162
4237.21 | | Fe I
Fe III | 104 | 4248.676
4248.72 | P | Ce II
Fe I | 1
939 | 4260.854
4261.164 | | Os I
Ce II | 1
19 | | | | | | | 4240.12 | r | re 1 | <i>5</i> 0 <i>5</i> | #£01.10# | | | | | | 4237.23
4237.27 | | A II
Cr I | 32
106 | 4248.73
4248.820 | | Cr I
V II | 105
24 | 4261.22
4261.354 | | Cl II
Cr I | 66
96 | | | 4237.57 | P | Al II | 23 | 4249.114 | | Ti I | 252 | 4261.609 | | Ti I | 252 | | | 4237.663 | _ | Sm II | 8 | 4249.32 | P | Fe I | 117 | 4261.615 | | Cr I | | | | 4237.67
4237.710 | P | Fe I
Cr I | 418
132 | 4249.33 | | Hf II | 39 | 4261.796 | P | Pr II
Cr II | 23
17 | | | 4237.786 | | Ti I | 252 | 4249.57
4249.81 | P | P IV
Cr I | 2
155 | 4261.80
4261.92 | P | Cr II | 31 | | | 4237.889 | | Ti I | 284 | 4249.92 | - | 8 11 | 66 | 4262.092 | | Gd II | 44 | | | 4238.027 | | Fe I | 689,696 | 4249.95 | | Fe III | | 4262.133 | | Cr I | 84,178 | | | 4238.38 | | La II | 41 | 4249.99 | | La II | 79 | 4262.38 | | Cr I | 154 | | | 4238.61
4238.69 | P
P | Fe I
Cr II | 849
17 | 4250.125 | | Fe I | 152 | 4262.677
4262.72 | | Sm II
Hf II | 37
15 | | | 4238.78 | r | Fe III | 104 | 4250.68
4250.689 | | Ne II
Mo II | 52
3 | 4263.134 | | Ti I | 162 | | | 4238.782 | | Gd II | | 4250.790 | | Fe I | 42 | 4263.141 | | Cr I | 247 | | | 4238.79 | P | Mn II | 2 | 4250.90 | P | Fe I | 478 | 4263.40 | | KII | 2 | | | 4238.816
4238.957 | | Fe I
Cr I | 693
131 | 4251.1852 | P | A I
Fe II | 2 | 4263.427
4263.49 | P | Ce II
Cr II | 254
17 | | | 4238.957
4239.01 | P | Fe I | 131
274 | 4251.49
4251.618 | P | re II
Ti I | 12
162 | 4263.49
4263.59 | r | La II | 17
84 | | | 4239.31 | | Zr I | 45 | 4251.733 | | Gd II | 15 | 4263.836 | | V II | 24 | | | 4239.36 | P | Fe I | 907 | 4251.769 | | Ti I | 251 | 4263.895 | | Fe II | | | | 4239.5 | | 0 111 | 1 | 4251.88 | P | Fe I | 216 | 4264.19 | P | Cr II | 17 | | | 4239.725 | | Mn I | 23 | 4252.05 | P | Ti II | 95 | 4264.209 | | Fe I | 692 | | | 4239.735
4239.847 | | Fe I
Fe I | 416
18,273 | 4252.107 | | N1 I
Cr I | 136 | 4264.370
4264.50 | | Ce II
V II | 239
24 | | | 4239.912 | | Ce II | 2 | 4252.243
4252.302 | | Co I | 131
1 | 4264.743 | | Fe I | 993 | | | 4239.95 | P | Fe I | 476a | 4252.62 | | Cr II | 31 | 4264.88 | | YII | 71 | | | 4239.95 | | Ne II | 52 | 4253.02 | | Mn II | 7 | 4264.91 | | Zr II | 98 | | | 4240.35
4240.372 | | Zr I
Fe I | 45
764 | 4253.28
4253.356 | | N I
Ce II | 4
77 | 4265.075
4265.170 | | Sm II
V I | 15 | | | 4240.456 | | Ca I | 38 | 4253.366 | | Gd II | 46 | 4265.260 | | Fe I | 993,994 | | | 4240,705 | | Cr I | 105,178 | 4253.51 | | C1 II | 24 | 4265.273 | | Ti I | 252 | | | 4240.75 | | Al II | 36 | 4253.52 | P | Fe I | 690 | 4265.723 | | Ti I | 162 | | | 4241.019 | | Pr II | 9 | 4253.55 | P | Fe I | 1245 | 4265.924 | | Mn I | 23 | | | 4241.112
4241.20 | | Fe I
La II | 351
163 | 4253.593 | | Gd II | 4 | 4266.227
4266.23 | P | Ti I
Cr II | 252
37 | | | 4241.20 | | Zr I | 45 | 4253.612
4253.74 | | 0 II | 101 | 4266.2867 | r | A I | 4 | | | 4241.276 | | Gd II | 117 | 4253.93 | P | Fe I | 905 | 4266.44 | | Cr I | 199 | | | 4241.38 | | C1 II | 24 | 4253.98 | | 0 II | 101 | 4266.53 | | A II | 7 | | | 4241.68
4241.787 | | Zr I
N II | 45
47,48 | 4254.346
4254.41 | | Cr I
V II | 1
18 | 4266.716
4266.72 | | Nd II
Zr II | 58
80 | | | 4241.93 | | Hf II | 108 | | | | | | | | | | | 4242.153 | | Tm II | 5 | 4254.420
4254.7 | | Pr II
N I | 27
4 | 4266.82
4266.88 | | Cr I
Fe III | 105 | | | 4242.20 | | Ne II | 52 | 4254.938 | | Fe I | 419,477 | 4266.968 | | Fe I | 273 | | | 4242.38 | | Cr II | 31 | 4255.01 | | 8 11 | 44 | 4267.02 | | CII | 6 | | | 4242.47
4242.588 | | Mg II
Fe I | 20
273 | 4255.20 | | Fe III | 440 | 4267.27 | _ | C II | 6 | | | 4242.723 | | Ce II | 58 | 4255.499
4255.502 | | Fe I
Cr I | 41 6
105 | 4267.30
4267.47 | P | Zr II
A II | 1 32
52 | | | 4242.730 | | Fe I | 649 | 4255.62 | | A II | 63 | 4267.802 | | 8 11 | 49 | | | 4242.82 | | Cr I | 131 | 4255.784 | | Ce II | 81 | 4267.830 | | Fe I | 482 | | | 4242.894 | | V II | 200 | 4256.025 | | Ti I | 252 | 4267.95 | | Ba II | 11 | | | 4243.368 | | Fe I
Pr II | 906
33 | 4256.156
4258.16 | | Ce II | 172 | 4268.01 | | Zr I | 45
1 | | | 4243.528
4243.60 | | B III | 33
1 | 4256.16
4256.212 | | Cr II
Fe I | 192
690 | 4268.032
4268.096 | | Co I
Ir I | 1 4 | | | 4243.71 | | A II | 63,78 | 4256.239 | | NG II | 59 | 4268.10 | | Hf II | 86 | | | 4243.786 | | Fe I | 994 | 4256.32 | P | Fe I | 172 | 4268.446 | | Co I | 127 | | | 4243.85
4244.17 | | Fe III
Ne II | 62 | 4256.393
4256.620 | | Sm II
Cr I | 37
131 | 4268.643
4268.731 | | V I
Gd. 11 | 88
68 | | | 4244.26 | | Mn II | 7 | 4256.79 | | Fe I | 1102 | 4268.744 | | Fe I | 649 | | | 4244.33 | | Cr I | 240 | 4257.02 | | V II | 200 | 4268.788 | | Cr I | 271 | | | 4244.374 | | W .I | 1 | 4257.121 | | Ce II | 123 | 4268.928 | | Ti I | 252 | | | 4244.53
4244.55 | P | Fe II
P II | 12
30 | 4257.368
4257.42 | | Cr I
8 II | 131
66 | 4268.93
4268.99 | | Cr II
C I | 192
16 | | | 4244.702 | | Sm II | 30
27 | 4257.42
4257.659 | | Mn I | 23 | 4269.02 | | Cr I | 240 | | | 4244.80 | | N1 II | 9 | 4257.82 | | Ne II | 52 | 4269.28 | | Cr II | 31 | | | 4245.258 | | Fe I | 352 | 4258.05 | | Zr II | 15 | 4269.50 | | La II | 76 | | | 4245.358
4245.84 | | Fe I
Hf II | 691
72 | 4258.155
4258.320 | | Fe II
Fe I | 28
3 | 4269.67
4269.76 | | Hf II
8 II | 26
49 | | | 4245.976 | | Ce II | 158 | 4258.35 | P | Fe II | 21 | 4269.87 | P | Fe I | 690 | | | 4246.02 | P | Fe I | 649 | 4258.523 | | Ti I | 252 | 4269.951 | | Cr I | 154 | | | 4246.090 | | Fe .1 | 906 |
4258.619 | | Fe I | 351 | 4270.139 | | Ti I | 251 | | | 4246.16 | | F II
Cr II | 9 | 4258.956 | | Fe I | 419 | 4270.189
4270.31 | P | Ce II
Fe I | 204
215 | | | 4246.41
4246.568 | | Od II | 31
67 | 4259 · 15
4259 · 18 | | Cr I
8 II | 131
66 | 4270.31
4270.39 | P | Fe II | 215
125 | | | 4246.59 | P | Fe I | 689 | 4259.203 | | Mn II | 7 | 4270.427 | | Co I | 29 | | | 4246.68 | | P III | 3 | 4259.312 | ~ | V I | 6 | 4270.565 | | Nd II | 12
66 | | | 4246.711
4246.79 | P | Ce II
Fe I | 77
216 | 4259.34
4259.3618 | P | Fe I
A I | 416
9 | 4270.61
4270.64 | | C1 HI | 66
23 | | | 4246.829 | - | 8c II | 7 | 4259.52 | | C1 II | 42,52 | 4270.716 | | Ce II | 21 | | | 4046 070 | | NA TT | 1/ | 4050 749 | | Co TT | 170 | 4271 061 | | Cr I | 184 | | | I A | Type | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|------------|----------------|---------------------------|----------------------|------|----------------|---------------|-------------------------------------|------|----------------|----------------| | 4271.47 | | Fe III | | 4283.010 | | Ca I | 5 | 4294.432 | | s II | 49 | | 4271.554 | | V I | 88 | 4283.13 | _ | 0 II | 67 | 4294.623 | | WI | 6 | | 4271.65
4271.764 | P | Fe I
Fe I | 70
42 | 4283.40
4283.70 | P | Fe I
S III | 215 | 4294.76
4294.767 | | N III
Sc II | 15 | | 4271.704 | P | Ti II | 95 | 4283.75 | | 0 11 | 67 | 4294.78 | | Zr I | 45 | | 4271.95 | , P | Fe I | 171 | 4283.772 | | Mn II | 6 | 4294.82 | | O II
Fe I | 54
500 | | 4272.1690 | | A I
Pr II | 4
15 | 4283.87
4284.055 | P | Fe I
V I | 19
88 | 4294.93 9
4295.3 7 | P | Cr II | 598
37 | | 4272.271
4272.440 | | Ti I | 44 | 4284.084 | | Mn I | 23 | 4295.751 | - | Ti I | 44 | | 4272.789 | | Nd II | 11 | 4284.21 | | Cr II | 31 | 4295.757 | | Cr I | 64 | | 4000.00 | | Hf II | 14 | 4284.415 | | Fe I | 417 | 4295.888 | | N1 I | 178 | | 4272.85
4272.910 | | Cr I | 96 | 4284.425 | | Mn II | 6 | 4296.05 | | La II | 53 | | 4273.17 | | 0 11 | 68 | 4284.51 | | N III | | 4296.069 | | Ce II | 172 | | 4273.312 | | Ti I
Fe II | 251
27 | 4284.518
4284.683 | | Nd II
N1 I | 10
86 | 4296.076
4296.107 | | Gd II | 46
120 | | 4273.317
4273.42 | | Fe III | 121 | 4284.725 | | Cr I | 96 | 4296.11 | | C II | 42 | | 4273.52 | | Zr II | 28 | 4284.988 | | Ti I | 148 | 4296.30 | | Cr I | 176 | | 4273.87 | | Fe I | 478 | 4284.991
4285.19 | P | S III
Ni I | 4
86 | 4296.30
4296.567 | | Gd II
Fe II | 117
28 | | 4274.13
4274.408 | | O II
Ti I | 68
252 | 4285.366 | r | Ce II | 11 | 4296.680 | | Ce II | 2 | | 12. 1. 100 | | | | | | | | | | | | | 4274.584 | | Ti I
Cr I | 44,162 | 4285.445
4285.496 | | Fe I
Sm II | 597
27 | 4296.74
4296.743 | | Zr II
Sm I | 98
3 | | 4274.803
4275.19 | | A II | 1
77 | 4285.70 | | 0 11 | 78 | 4296.786 | | Ce II | 57 | | 4275.52 | | O II | 67 | 4285.782 | | Co I | 1 | 4296.86 | | Fe III | 121 | | 4275.561 | | Ce II | 206 | 4285.832
4285.96 | | Fe I
C II | 904
42 | 4297.050 | | Cr I
Gd II | 64 | | 4275.57
4275.64 | | Cr II
La II | 31
40 | 4286.006 | | Ti I | 44 | 4297.173
4297.60 | | Ba II | 7 | | 4275.72 | | Fe I | 215 | 4286.13 | | Fe III | 121 | 4297.681 | | V I | 120 | | 4275.90 | | 0 II | 68 | 4286.13 | | V II | 23 | 4297.711 | | Ru I | 5 | | 4275.973 | | Cr I | 240 | 4286.311 | | Fe II | | 4297.738 | | Cr I | 247 | | 4276.21 | | 0 11 | 68 | 4286.440 | | Fe I | 414 | 4297.764 | | Pr II | 7 | | 4276.441 | | Ti I | 148 | 4286.51 | | Zr II | 69 | 4297.99 | | A II | 400 | | 4276.51 | | C1 II | 66 | 4286.640
4286.97 | | Sm II
La II | 42
75 | 4298.029
4298.040 | | V I
Fe I | 120
520 | | 4276.657
4276.684 | | Ti I
Fe I | 252
976 | 4286.976 | | Fe I | 976 | 4298.21 | P | Fe I | 476a | | 4276.71 | | 0 11 | 54,67 | 4287.405 | | Ti I | 44 | 4298.515 | | N1 I | 178 | | 4276.958 | | V I | 88 | 4287.71 | P | Ti I | 45 | 4298.664 | | Ti I
Ni I | 44
28 | | 4277.246
4277.279 | | Mo I
Nd II | 7
17 | 4287.80
4287.893 | | Ba II
Ti II | 16
20 | 4298.767
4298.986 | | Ca I | 5 | | 4277.322 | | Th II | 2 | 4288.005 | | Ni I | 178 | 4299.17 | P | Ti I | 45 | | | | | | 4000 440 | | Fe I | 273 | 4000 177 | | F II | 7 | | 4277.37
4277.40 | | Zr II
O II | 40
67,68 | 4288.148
4288.161 | | Ti I | 273
43,79 | 4299.177
4299.229 | | Ti I | 1 4 8 | | 4277.41 | P | Fe I | 214 | 4288.21 | | N III | , | 4299.242 | | Fe I | 152 | | 4277.55 | | A II | 32 | 4288.53 | | PII | 33 | 4299.25 | P | Fe I
Ce II | 597
47 | | 4277.68 | | Fe I
O II | 172
67 | 4288.65
4288.72 | | Mo I
N III | 7 | 4299.362
4299.49 | P | Fe I | 47
648 | | 4277.90
4278.01 | P | Fe I | 1102 | 4288.78 | P | Ti I | 45 | 4299.636 | - | T1 I | 43 | | 4278.10 | | Cr II | 161 | 4288.78 | | v ii | 17 | 4299.65 | | Fe I | 416 | | 4278.128 | | Fe II
Ti I | 32
291 | 4288.83
4288.962 | | O II
Fe I | 54
214 | 4299.718
4300.052 | | Cr I
Ti II | 96
41 | | 4278.231 | | 11 1 | 231 | 4200.002 | | | 211 | | | | | | 4278.234 | | Fe I | 691 | 4289.068 | | Ti I | 44 | 4300.1011 | | A I | 4 | | 4278.38 | P | Fe I
S II | 351 | 4289.18
4289.29 | P | Zr II
Fe I | 117
117 | 4300.197
4300.21 | P | Mn II
Fe I | 6
975 | | 4278.54
4278.829 | | Ti I | 49
252 | 4289.364 | r | Ca I | 5 | 4300.331 | • | Ce II | 134 | | 4278.866 | | Ce II | 111 | 4289.454 | | Ce II | 135 | 4300.44 | _ | La II | 9 | | 4278.893 | _ | V II | 225 | 4289.721 | | Cr I | 1 | 4300.52 | P | Ti I
Ti I | 205
44 | | 4278.94
4279.023 | P | Cr II
Mo II | 17
3 | 4289.919
4289.938 | | Ti I
Ce II | 205
111 | 4300.566
4300.66 | | A II | 36,76 | | 4279.3 | | YII | 70 | 4290.222 | | Ti II | 41 | 4300.828 | | Fe I | 976 | | 4279.480 | | Fe I | 993 | 4290.382 | | Fe I | 416 | 4301.089 | | Ti I | 44 | | 4279.678 | | Sm II | 27 | 4290.40 | | Ne II | 57 | 4301.130 | | V II | 225 | | 4279.864 | | Fe I | 351 | 4290.55 | | N III | • • | 4301.178 | | Cr I | | | 4279.927 | | Sc II | 15 | 4290.80 | | N III | 0.54 | 4301.81 | | Zr II | 109
41 | | 4280.069
4280.141 | | Ti I
Ce II | 252
225 | 4290.870
4290.933 | | Fe I
T1 I | 351
44 | 4301.928
4302.100 | | Ti II
Pr II | 41
32 | | 4280.141 | | La I | 5 | 4291.214 | | Ti I | 45,147 | 4302.12 | P | Ni I | 102 | | 4280.33 | P | Cr II | 17 | 4291.25 | _ | 0 11 | 55 | 4302.123 | | W I | 7 | | 4280.405
4280.490 | | Cr I
Gd II | 247
15 | 4291.44
4291.45 | P | Fe I
S II | 273
49 | 4302.191
4302.527 | | Fe I
Ca I | 520
5 | | 4280.53 | | Fe I | 598 | 4291.466 | | Fe I | 3,41 | 4302.81 | | 0 11 | 100 | | | _ | | | 4004 70 | | 63 TT | 40 | 4000.00 | | 7- T | 48 | | 4280.63
4280.789 | P | Fe I
Sm II | 41 6
4 6 | 4291.76
4291.816 | | Cl II
V I | 19
120 | 4302.88
4302.979 | | Zr I
Ti I | 45
79 | | 4281.009 | | Sm II | 40 | 4291.88 | | Ti I | 251 | 4303.06 | | 0 11 | 100 | | 4281.03 | P | Cr II | 17 | 4291.964 | | Cr I | 240 | 4303.166 | | Fe II | 27 | | 4281.099 | | Mn I | 23 | 4292.00 | ъ | C II | 41 | 4303.235 | | Co I
Nd II | 1 | | 4281.371
4281.40 | | Ti I
O II | 44
54 | 4292.13
4292.182 | P | Fe I
Sm II | · 70
32 | 4303.573
4303.82 | | 0 II | 10
54 | | 4281.60 | P | Fe I | 171 | 4292.23 | | 0 11 | 78 | 4304.07 | | C1 II | 19 | | 4282.20 | | Zr I | 45 | 4292.246 | | Mn II | 6 | 4304.087 | | Gd II | 128 | | 4282.21 | | Zr II | 132 | 4292.293 | | Fe I | 70 | 4304.11 | | La II | 165 | | 4282.406 | | Fe I | 71 | 4292.676 | | Ti I | 79 | 4304.15 | P | Fe I | 647 | | 4282.440 | | Pr II | 19 | 4292.747 | | Gd II | 128 | 4304.15 | | v II | 213 | | 4282.443 | | Nd II | 10 | 4292.767 | | Ce II | 205 | 4304.552 | | Fe I | 414 | | 4282.570
4282.63 | | Nd II
S II | 13
49 | 4292.885
4293.14 | | Zn I
Zr II | 3
110 | 4304.81
4304.87 | P | Fe III
Fe I | 121
598,756 | | 4282.702 | | Ti I | 162 | 4293.228 | | Mo I | 7 | 4304.895 | - | Gd II | 000,100 | | 4282.82 | | 0 11 | 54 | 4293.565 | ~ | Cr I | 96 | 4305.00 | _ | K II | 5 | | 4282.90
4282.96 | | A II
O II | 7
67 | 4294.04
4294.101 | P | Fe I
Ti II | 214
20 | 4305.13
4305.20 | P | Fe I
Fe I | 272
760 | | - AU NO 10 U | | , II | ٠, | | | ^* | ₩0 | 40001 2U | | | 100 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | |------------------------------------|------|----------------|-------------------|-------------------------------------|------|----------------|--------------------|-------------------------------------|--------|----------------|----------------| | 4305.453 | | Cr I | 96 | 4319.45 | P | fе I | 214 | 4331.13 | | 0 11 | 66,75 | | 4305.455
4305.46 | | Fe I
N I | 476 | 4319.51
4319.631 | | Hf II
J II | 52
· 2 | 4331.231 | | Co I | 168 | | 4305.474 | | Ti I | 147 | 4319.641 | | Cr I | 96 | 4331.25
4331.47 | | A II
O II | 7
41 | | 4305.53 | | 0 II | 55 | 4319.69 | | A II | 87 | 4331.529 | | Fe II | | | 4305.715
4305.763 | | Sc II
Pr II | 15
8 | 43 19.717
43 19.93 | | Fe II
O II | 220
61 | 4931.55 | | V II | 36 | | 4305.910 | | Ti I | 44 | 4320.13 | P | Fe I | 1170 | 4331.645
4331.79 | | N1 I
V II | 52
23 | | 4306.214 | | V I | 5 | 4320.36 | P | Fe I | 691 | 4331.89 | | 0 11 | 41 | | 4306.340 | | Gd I | 4 | 4320.52 | | Fe I | 691 | 4331.93 | | Mg II | 27 | | 4306.58 | P. | Fe I | 691 | 4320.592 | | Cr I | 96 | 4332.0 | | Al II | 31 | | 1306.724 | | Ce II | 1 | 4320.69 | | Hf II | 40 | 4332.06 | | A II | 1 | | 1306.945 | | Ti I | 43 | 4320.723 | | Ce II | 125 | 4332.569 | | Cr I | 176 | | 1307.08
1307.184 | P | Fe I
V I | 690
5 | 4320.745
4320.965 | | Sc II
Ti II | `15
41 | 4332.71 | | S III
O II | 4 | | 4307.20 |
| Al II | 85 | 4321.110 | | Gd II | 46 | 4332.76
4332.823 | | O II | 65
5 | | 4307.31 | | 0 II | 53 | 4321.238 | | Cr I | 83 | 4332.88 | P | Fe II | 33 | | 4307.42
4307.741 | | Cl II
Ca I | 19
5 | 4321.341 | | Fe II | 220 | 4333.06 | P | Fe I | 1135 | | 4307.778 | | Nd II | 63 | 4321.36
1321.37 | | Hf II
N III | 86
10 | 4333.28
4333.5612 | | Zr II
A I | 132
9 | | | | | | | | | | 100010010 | | | J | | 4307.900
4307.906 | | Ti II
Fe I | 41
42 | 4321.617 | | Cr I
Ti I | 177 | 4333.76 | | La II | 24 | | 4308.233 | | Gd II | 42
47 | 4321.655
4321.95 | | T1 I
C II | 235
28 | 4333.84
4333.913 | | 8 II
Pr II | 49
8 | | 4308.514 | | Ti I | 79 | 4322.02 | | VII | 17 | 4334.153 | | Sm II | 27 | | 4308.54 | P | Fe I | 70 | 4322.195 | | Gd II | 15 | 1334.29 | | O II | 63,64 | | 4308.94
4308.96 | | Zr II
O II | 88
64 | 4322.51
4322.66 | | La II
Ne II | 25
63 | 4334.65 | _ | Hf II | 69 | | 4309.012 | | Sm II | 15 | 4322.70 | P | Fe I | 215 | 4334.77
4334.840 | P | V II
Ti I | 36
43 | | 4309.036 | | Fe I | 849 | 4323.284 | | Sm II | 8 | 4334.96 | | La II | 77 | | 4309.06 | | C1 II | 52 | 4323.35 | | C1 I | 9 | 4335 | P | n v | 3 | | 4309.071 | | T1 I | 235 | 4323.37 | P | Fe I | 171 | 4335.15 | | Hf II | 6 | | 4309.10 | | KII | 7 | 4323.440 | _ | Ti I | 79 | 4335.290 | | Gd II | 128 | | 4309.11 | | A II | 36 | 4323.523 | | Cr I | | 4335.3380 | | AI | 9 | | 43 09.25
43 09.32 | | A II
Ba II | 99
11 | 4323.551
4323.62 | | Pr II
Zr II | 23
141 | 4335.46 | P | Fe I | 477 | | 4309.382 | | Fe I | 414 | 4323.81 | | Fe III | 32 | 4335.53
4335.89 | | N III
Fe I | 10
991 | | 4309.46 | P | Fe I | 478 | 4323.93 | | N III | 10 | 4336.255 | | Ce II | 89 | | 4309.62 | | Y II
Ce II | 5 | 4324.064 | | Gd II | 68 | 4336.26 | | C1 II | 19 | | 4309.739
4309.795 | | V I | 126
5 | 4324.36
4324.961 | P | Fe II
Fe I | 147
70 | 4336.36
43 3 6.48 | | Zr II
N I | 119 | | | | | | | | | | 20001 20 | | | | | 4310.37 | P | Fe I | 994 | 4325.010 | | Sc II | 15 | 4336.51 | _ | A II | | | 4310.37
4310.373 | | Fe III
Ti I | 121
79 | 4325.075
4325.1 | P | Cr I
Mn II | 104:
6 | 4336.60
4336.66 | P | Fe I
Hf II | 990
74 | | 4310.699 | | Ce II | 133 | 4325.134 | - | Ti I | 235 | 4336.86 | P | Fe I | 692 | | 4310.72 | P | V II | 36 | 4325.22 | | V II | 233 | 4336.865 | | 0 11 | 2 | | 4310.981
4311.654 | | Gd II
Ti I | 15
205 | 4325.361
4325.566 | | N1 I
Gd II | 116
10 3 | 4337.049 | | Fe I | 41 | | 4312.10 | | 0 11 | 79 | 4325.607 | | N1 I | 86 | 4337.10
4337.33 | | A II
Ti II | 113
94 | | 4312.23 | | Zr II | 99 | 4325.64 | | Zr II | 108 | 4337.510 | | Gd II | 128 | | 4312.469 | | Cr I | 177 | 4325.65 | | Cr I | 176 | 4337.52 | P | Fe I | 214 | | 4312.550 | | Wn I | 23 | 4325.7 | | Li JI | 5 | 4337.566 | | Cr I | 22 | | 4312.861 | | Ti I | 41 | 4325.70 | | C III | 7 | 4337.63 | | Zr II | 119 | | 4313.034
4313.04 | P | Fe Il
Fe I | 220
273 | 4325.73
4325.74 | | Ba II
Fe I | 17
2 | 4337.777 | | Ce II | 82 | | 4313.11 | r | N I | 213 | 4325.765 | P | Fe I | 42 | 4337.78
4337.916 | | La II
Ti II | 138
20 | | 4313.30 | | V 11 | 23 | 4325.766 | | Nd II | 10 | 4338.24 | | A II | 88 | | 4313.43 | | 0 11 | 78 | 4325.77 | | 0 11 | 2 | 4338.260 | | Fe I | 70 | | 4313.50
4313.845 | | C II
Gd I | 28
4 | 4325.88
4325.95 | P | C II
Fe I | 28
598 | 4338.476
4 33 8.52 | | Ti I
Si III | 204
3 | | 4314.084 | | Sc II | 15 | 4326.359 | • | Ti I | 43 | 433 8.67 | | He II | 3, | | 4044 40 | | 64 777 | | 4000 445 | | 0 7 | • | | | | | | 4314.18
4314.289 | | Si IV
Fe II | 4
32 | 4326.445
4326.74 | | Sr I
Ba II | 6
7 | 4338.694
4338.697 | | Pr II
Nd II | 31
68 | | 4314.356 | | Ti I | 45 | 4326.756 | | Mn II | 6 | 1338.70 | P | Fe II | 32 | | 4314.511 | D. | Nd II | 9 | 4326.762 | | Fe I | 413 | 4338.799 | _ | Cr I | 198 | | 4314.74
4314.801 | P | Ti I
Ti I | 43
43 | 4326.826
4326.986 | | Ce II
Ti I | 224
43 | 4338.84
4339.13 | P
P | Fe I
Co I | 117
1 | | 4314.979 | | Ti II | 41 | 4327.04 | P | Fe II | 20 | 4339.287 | F | D | 1 | | 4315.087 | | Fe I | 71 | 4327.100 | | Fe I | 761 | 4339.317 | | Ce II | 34 | | 4315.35 | | 0 II
0 II | 64,79
78 | 4327.125
4327.48 | | Gd II
O II | 15
41 | 4339.450 | | Cr I | 22 | | 4315.80 | | U 11 | 10 | | | | | 4339.52 | | N III | 10 | | 4315.90 | _ | La II | 41 | 4327.89 | | 0 11 | 41 | 4339.56 | | Zr II | 41 | | 4315.95
4316.052 | P | Fe I
Gd II | 171
4 3 | 4327.92
4328.15 | | Fe I
N III | 597
10 | 43 39.718
433 9.78 | | Cr I
Ne II | 22
62 | | 4316.258 | | V II | 23 | 4328.22 | | 81 IV | 4 | 4340.018 | | Ti I | 174 | | 4316.266 | | Gd II | 67,68 | 4328.62 | _ | 0 11 | 61 | 4340.03 | | KII | 4 | | 4316.807 | P | Ti II
Fe I | 94
762 | 432 8.91
432 9.016 | P | Cr II
Sm II | 37
15 | 4340.130 | | Cr I
8 III | 64 | | 4317.04
4317.139 | • | O II | 3 | 4329.415 | | Pr II | 27 | 4340.3 0
4340.3 6 | | S III
O II | 4
77 | | 4317.32 | | Zr II | 40 | 4329.54 | P | Fe I | 70 | 4340 . 468 | | H | 1 | | 4317.42 | | C II | 28 | 4329.62 | | Ba II | 17 | 4340.49 | P | Fe I | 272 | | 4317.65 | | 0 11 | 53 | 4330.024 | | v i | 5 | 4340.51 | P | Fe I | 691 | | 4317.70 | | N I | | 4330.14 | | N III | 10 | 4341.013 | | V I | 5 | | 4318.216 | | Fe II
Ti I | 220 | 4330.264
4330.44 | | T1 II
N III | 94
10 | 434 1.09 | | Cr II | 179
61 | | 4318.631
4318.652 | | Ca I | 235
5 | 4330.445 | | Ce II | 82 | 4341.1 3
4341.2 3 | P | Zr I
Fe I | 61
691 | | 4318.68 | | s II | 49 | 4330.606 | | Gd II | 46 | 4341.282 | • | Gd II | 14 | | 4318.77 | P | Cr II | 37 | 4330.708 | | Ti II
Ni I | 41
140 | 4341.369 | | T1 II | 32
50 | | 4318.81
4318.92 | P | Fe I
C II | 215
28 | 4330.720
4330.81 | P | N1 I
Fe I | 149
475 | 4341,42
4341.48 | | Ne II
Cr I | 59
64 | | 4318.936 | | Sm II | 27 | 4330.962 | | Fe I | 597 | 4341.57 | P | Fe I | 644 | | | | | | | | | | | | | | | 48 | | | | | FIND | ING LIS | r | | | | | |----------------------|------|----------------|-----------------------|----------------------|------|----------------|---------------|-------------------------------------|-------|-----------------|------------------------| | | | Plament. | Multiplet No. | | | Element | Multiplet No. | I A | Туре | Klement | Multiplet No. | | IA | Type | Element | Multiplet No. | ı A | Type | Flement | mulciplet No. | 1 4 | 1, pc | 3200110 | | | 4342.00 | | 0 11 | 77 | 4355.308 | | Ti I | 174 | 4368.14 | | CII | 45 | | 4342.071 | | Nd II | 8 | 4355.911 | | N1 I | 149 | 4368.14 | _ | C III | | | 4342.179 | | 6d II | 15 | 4355.943 | | V I | 5 | 4368.20 | P | Cr II
Ce II | 37
227 | | 4342.23 | | Zr II
O II | 98
103 | 4356.711 | | Al II
Cr I | 60
130 | 4368.234
4368.252 | | Cr I | 130 | | 4342.83
4342.832 | | V I | 103 | 4356.760
4356.807 | | Al II | 60 | 4368.262 | | Fe II | | | 4342.84 | | 8 II | 43 | 4357.24 | P | Al III | 9 | 4368.30 | | 0 I | 5 | | 4343.163 | | Cr I | 64 | 4357.25 | | 0 11 | 18,63,64 | 4368.312 | | Ni I | 102 | | 4343.22 | P | Fe I | 644 | 4357.50 | P | Fe I | 1170 | 4368.327 | | Pr II
Nd II | 5
11 | | 4343.257 | | Fe I | 645 | 4357.525 | | Cr I | 198 | 4368.632 | | NG II | 11 | | 4343.36 | | o II | 75,103 | 4357.53 | P | Fe I | 994 | 4368.66 | P | Fe I | 644 | | 4343.62 | | C1 II | 19 | 4357.574 | • | Fe II | | 4368.67 | P | VII | 188 | | 4343.699 | | Fe I | 517 | 4357.85 | P | N1 I | 256 | 4368.89 | | Cr I | 198 | | 4343.798 | | Ti I | 204 | 4358.169 | | Nd II | 10 | 4368.941 | | Ti I
O II | 245
26 | | 4343.86 | P | Fe I | 756 | 4358.27 | | N I | 1 | 4369.28
4369.29 | P | Fe I | 1244 | | 4343.987 | | Mn II
Ti II | 6
2 0 | 4358.343
4358.40 | | Hg I
Ò II | 64
64 | 4369.404 | • | Fe II | 28 | | 4344.291
4344.300 | | Gd II | 44 | 4358.505 | | Fe I | 412 | 4369.52 | | C1 I | 8 | | 4344.42 | | 0 11 | 65 | 4358.53 | | A II | 87 | 4369.61 | P | Fe II | 148 | | 4344.487 | | Gd II | 31 | 4358.66 | | Cr I | 176 | 4369.682 | | T1 I | 290 | | | | Cr I | 22 | | | Nd II | 57 | 4369.73 | P | Fe I | 976 | | 4344.507
4345.085 | | Cr I | 198 | 4358.699
4358.73 | | Y II | 5 | 4369.77 | • | Ne II | 56 | | 4345.1682 | | A I | 9 | 4358.95 | P | Fe I | 987 | 4369.771 | | Gd II | 15 | | 4345.562 | | O II | 2 | 4359.12 | P | Fe II | 202 | 4369.774 | | Fe I | 518 | | 4345.6 | P | Mn II | 6 | 4359.152 | | Gd II | 47,68 | 4370.041 | | N1 I | 149 | | 4345.858 | | Sm II | .7 | 4359.38 | | 0 11 | 26 | 4370.27 | | V II
A II | 31
39 | | 4345.963 | | Ce II
Ti I | 251
234 | 4359.585 | | Ni I
Cr I | 86
22 | 4370.76
4370.875 | | MnI | 17 | | 4346.104
4346.458 | | Gd L | 23 4
4 | 4359.631
4359.636 | | tel II | 67 | 4370.95 | | Hf II | 26 | | 4346.50 | P | Fe II | 202 | 4359.74 | | Zr II | 79 | 4370.96 | | Zr II | 79 | | | - | | | | | | | | _ | | | | 4346.558 | | Fe I | 598 | 4359 795 | | Pr II | 26 | 4371.00 | P | Fe I | 69
57 | | 4346.61Ò | | Ti I | 204 | 4359.929 | | Tm I | 1 | 4371.069
4371.10 | | Nd II
Fe III | 57
4 | | 4346.833 | | Cr I
Al II | 10 4
70 | 4359.992 | P | Cr I
Fe II | 198
148 | 4371.10
4371.130 | | Co I | 93 | | 4346.866
4346.89 | | V II | 17 | 4360.03
4360.16 | r | Ce II | 245 | 4371.17 | P | V II | 36 | | 4346.918 | | Al II | 70 | 4360.487 | | Ti I | 204 | 4371.279 | | Cr I | 22 | | 4347.223 | | Al II | 70 | 4360.49 | | 8 II | | 4371.28 | P | Cr I | 304 | | 4347.239 | | Fe I | 2 | 4360.690 | | Be II | 4 | 4371.33 | | CI | 14 | | 4347.310 | | Gd II | 103 | 4360.720 | | Sm II | 23 | 4371.36 | | A II
C II | 1
45 | | 4347.316 | | Al II | 70 | 4360.80 | | Zr I | 31 | 4371.59 | | 0 11 | *** | | 4347.425 | |
O II | 16 | 4360.813 | | Fe I | 903 | 4371.65 | | O II | 76 | | 4347.490 | | Pr II | 30 | 4360.917 | | Gd II | 16 | 4372.09 | | AII | 86 | | 4347.785 | | Al II | 70 | 4361.025 | | Be II | 4 | 4372.208 | _ | Ru I | 13 | | 4347.801 | | Sm II | 37 | 4361.031 | | Co I | 1 | 4372.22 | P | Fe II
Ti I | 33
277 | | 4347.802 | | Al II | 70 | 4361.249 | | Fe II
8 III | 4 | 4372.383
4372.4 | | Fe III | 122 | | 4347.854
4348.11 | | Fe I
A II | 828
7 | 4361.53 | | Ce II | 157 | 4372.401 | | Ce II | 169 | | 4348.36 | | N III | 10 | 4361.661
4361.710 | | 8r I | 6 | 4372.49 | | C II | 45 | | 4348.64 | P | Zr II | 132 | 4361.85 | | C III | | 4372.50 | | AII | 63 | | 134 8.939 | | Fe I | 414 | 4361.913 | | Co I | 1 | 4372.88 | P | V II | 13 | | 4040 00 | P | Fe II | 202 | 4000 040 | | Sm II | 45 | 4372.91 | | Cl II | 52 | | 4349.28
4349.426 | P | 0 II | 202 | 4362.040
4362.07 | | A II | 39 | 4372.994 | | Fe I | 473 | | 4349.789 | | Ce II | 59 | 4362.10 | | Ni II | 9 | 4373.230 | | V I | 140 | | 4349.97 | | V II | 3 6 | 4362.93 | | Cr II | 179 | 4373.254 | | Cr I, | 22 | | 4350.465 | | Sm II | 46 | 4362.95 | | Cr I | 82 | 4373.462 | | Sm II | 42 | | 4350.52 | | Hf II | 72 | 4363.05 | | LA II | 133 | 4373.563 | | Fe I
Cr I | 214, 413
304 | | 4350.834 | | Ti II
Cr I | 94
22 | 4363.134 | | Cr I
Cl I | 103
8 | 4373.656
4373.818 | | Ce II | 202 | | 4351.051
4351.269 | | 0 11 | 16 | 4363.30
4363.525 | | V I | 23 | 4373.90 | P | Fe I | 904 | | 4351.295 | | Nd II | 10 | 4363.644 | | Mo II | 3 | 4374.158 | | Cr I | 104 | | | | | | | | | | | | | | | 4351.37 | P | Fe I
Fe I | 691 | 4364.01 | | Y II
Cr I | 70
130 | 1374.243
1374.28 | | Gd II
C II | 83
4 5 | | 4351.549
4351.764 | | Fe II | 413
27 | 4364.14
4364.140 | | Gd II | 33 | 1374.455 | | Sc II | 14 | | 4351.770 | | Cr I | 22 | 4364.17 | | Y II | 70 | 374.495 | | Fe I | 648 | | 4351.849 | | Pr II | 23 | 4364.59 | | Al III | 9 | :374.61 | P | Cr II | 179 | | 4351.8941 | | Mg I | 14 | 4364.658 | | Ce II | 135 | 4374.825 | | Ti II | 9 3 | | 4351.9056 | | Mg I | 14 | 4364.66 | | La II | 53 | 4374.87 | | A II
Co I | 77
150 | | 4352.1 | | C I
Sm II | 15 | 4364.73 | | 8 III
6- T | 7 | 4374.918
4374.923 | | Nd II | 15 | | 4352.101
4352.23 | | A II | 1 | 4364.87
4364.89 | P | Cr I
Fe II | 153
202 | 4374.94 | | Y II | 13 | | 1002120 | | | | 2002.00 | • | | | | | | | | 4352.25 | | As II | 7 | 4365.56 | | Fe III | 4 | 4375.00 | | N II | 16 | | 4352.68 | P | Cr II | 37 | 4365.72 | | Ne II | 57 | 4375.039 | | Nd II | 8 | | 4352.70 | | Fe III | 4 220 | 4365.745 | | V I | 79
415 | 4375.304
4375.333 | | V I
Cr I | 140
103 | | 4352.733
4352.737 | | Ce II
Fe I | 220
71 | 4365.902
4366.165 | | Fe I
Fe II | 415
216 | 4375.33 | P | Ti II | 104 | | 4352.737
4352.872 | | V I | 5 | 4366.165
4366.315 | | NG II | 12 | 4375.425 | - | Ti I | 219 | | 4353.60 | | 0 11 | 76 | 4366.33 | | Cr I | 153 | 4375.48 | P | Fe I | 797 | | 4353.66 | | N III | 10 | 4366.45 | | Zr I | 61 | 4375.540 | | Co I | 143 | | 4353.983 | | Cr I | 198 | 4366.896 | | 11 C | 2 | 4375.918 | | Ce II | 134 | | 4354.064 | | Ti I | 204 | 4366.91 | | A II | 36 - | 4375.932 | | Fe I | 2 | | 4354.28 | P | Fe I | 975 | 4367.07 | P | Fe I | 1170 | 4375.96 | | A II | 17 | | 4354.358 | | Fe II | 213 | 4367.07
4367.36 | P. | N1 I | 88 | 4376.78 | | C II | 46 | | 4354.40 | | La II | 58 | 4367.581 | - | Fe I | 414 | 4376.782 | | Fe I | 471,904 | | 4354.540 | | Mg I | 13 | 4367.657 | | Ti II | 104 | 4376.798 | | Cr I | 304 | | 4354.56 | | 8 111 | 7 | 4367.87 | | A II | 98 | 4377.330 | | Fe I | 990 . | | 4354.609 | | Sc II | 14 | 4367.90 | | Hf II | 15 | 4377.549 | | Cr I | 83 | | 4354.979
4355.03 | P | V I
Fe II | 103
202 | 4367.906 | | Fe I | 41 | 4377. 765 | | Mo II
Fe I | 3
6 45 | | 4355.03
4355.09 | r | Fu II | 202
22 | 4367.966
4368.031 | | Cb II
Sm II | 8
37 | 4377.7 96
4377. 95 | | Ne II | 65 | | 4355.096 | | Ca I | 37 | 4900.031 | | V T | о.
Б | 1279 01 | | 0 11 | 102 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------------------------------|------|----------------|--------------------|----------------------------------|------|-----------------|-------------------|-------------------------------------|--------|----------------|---------------------------| | 4378.10 | | La II | 77 | 4391.84 | | s II | 43 | 4406.67 | | Gd II | 103 | | 4378.236
4378.41 | | Sm II
O II | 53
102 | 4391.87
4391.94 | P. | Fe I
Ne II | 992
57 | 4407.278
4407.637 | | Ce II
V I | 6 <u>4</u>
22 | | 4378.73 | P | Fe I | 759 | 4392.074 | | V I | 23 | 4407.678 | | Ti II | 51 | | 4379.09 | | N III
V I | 17
22 | 4392.26 | P | Cr I | 130 | 4407.714 | | Fe I
Cr I | 68
129 | | 4379.238
4379.25 | | A II | 63 | 4392.31
4392.58 | P | Fe I
Fe I | 757
973 | 4407.72
4407.911 | | Be I | 129
4 | | 4379.50 | | Ne II | 56 | 4393.03 | P | Fe I | 473 | 4408.204 | | V I | 22 | | 4379.74
4379. 78 | | A II
Zr II | 7
88 | 4393.45
4393.534 | | Na I
Cr I | 17
102 | 4408.248
4408.419 | | Gd II
Fe I | 44
68 | | 2010110 | | | | 20001001 | | | 202 | 11001110 | | | | | 4379.782
4379.90 | | Cr I
Cl I | 1 3 0
7 | 4393.70
4393.835 | P | Fe I
V I | 899
4 0 | 4408.511
4408.844 | | V I
Pr II | 22
4 | | 4379.97 | | CIII | 14 | 4393.925 | | Ti I | 244 | 4408.92 | | V II | 224 | | 4380.060 | | Ce II | 155 | 4394.057 | _ | Ti II | 51 | 4409.123 | | Fe I | 645 | | 4380.38
4380.55 | | Mg I
Cr I | 12
1 3 0 | 4394.31
4394.65 | P | Fe I
A II | 975
87 | 4409.22
4409.30 | | Ti II
Ne II | 61
57 | | 4380.642 | | Gd II | 68 | 4394.719 | | Gd II | 44 | 4409.519 | | Ti II | 61 | | 4381.04
4381.112 | | V I
Cr I | 23
64 | 4394.779
4394.83 | | Ce II
Cr I | 259
130 | 4409.84
4410.026 | | Mig I
Ru I | 48
5 | | 4381.290 | | Nd II | 56 | 4394.855 | | Ti I | 78 | 4410.06 | | CII | 40 | | 4381.79 | P | Fe II | 9 | 4394.94 | | Zr I | 61 | 4410.304 | | Cr I | 129 | | 4382.02 | P | Fe I | 938 | 4395.031 | | T1 II | 19 | 4410.516 | | N1 I | 88 | | 4382.061
4382.167 | | Gd II
Ce II | 46
2 | 4395.22 8
4395.288 | | V I
Fe I | 22
828 | 4410.641
4410.967 | | Ce II
Cr I | 33
102 | | 4382.31 | | Fe III | 4 | 4395.417 | | Cr I | 129 | 4411.052 | | Nd II | 8 | | 4382.33 | P | V II | 36 | 4395.514 | | Fe I | 991,992 | 4411.080 | | Ti II | 115 | | 4382.777
4382.853 | | Fe I
Cr I | 799a
64 | 4395.78
4395.788 | | Fe III
Pr II | 4
29 | 4411.093
4411.20 | | Cr I
C II | 129
39 | | 4382.95 | | Zr II | 109 | 4395.848 | | T1 II | 61 | 4411.21 | | La II | 138 | | 4383.10 | | Zr II | 97 | 4395.95 | | 0 11 | 26 | 4411.34 | | 8 I | 5 | | 4383.119 | | Gd II | 67 | 4397.251 | | Cr I | 129 | 4411.52 | | C II | 39 | | 4383.17
4383.24 | | Eu II
C III | 27
14 | 4397.27 | P | Fe II
Ti IV | 33 | 4411.786
4411.878 | | Co I
Mun I | 27 | | 4383.44 | | La II | 76 | 4397.37
4397.51 | | Gd II | | 4411.936 | | Ti II | 61 | | 4383.547 | | Fe I | 41 | 4397.94 | | Ne II | 56 | 4412.155 | | Pr II | 8 | | 4383.79
4384.08 | | A II
Ne II | 16
60 | 4398.02
4398.314 | | Y II
Ti II | . 5
61 | 4412.250
4412.265 | | Cr I
Nd II | 22
9 | | 43 84. 13 | P | Fe I | 1101 | 4398.52 | | V II | 187 | 4412.43 | P | Fe I | 69 | | 4384.33
4384.54 3 | P | Fe II
Ni I | 32
86 | 4398.625
4398.787 | | N1 I
Ce II | 102
81 | 4412.436
4412.54 | | T1 I
Ne II | 5 <u>4</u>
55 | | | _ | | | | | | | | | | | | 4384. 6
4384. 643 | P | Ni II
Mg II | 10
10 | 4399.14
4399.203 | | Cl II
Ce II | 46
81 | 4413.04
4413.20 | | Zr I
Ne II | 61
57,65 | | 4384.682 | | Fe I | 474 | 4399.44 | | Zr II | 67 | 4413.40 | P | Fe I | 1046 | | 4384.722
4384.813 | | V I
Sc II | 5,22
14 | 4399.607 | | N1 I
T1 II | 196 | 4413.600 | | Fe II
Pr II | 32
26 | | 4384.977 | | Cr I | 22 | 4399.767
4399.823 | | Cr I | 51
129 | 4413.765
4413.784 | | Nd II | 22 | | 4385.00 | | Ne II | 56 | 4399.86 | P | Fe II | 20 | 4413.866 | _ | Cr I | 234 | | 4385.08
4385.20 | | A II
La II | 98
75 | 4400.09
4400.18 | | A II | 1
67 | 4414.03
4414.17 | P
P | Fe I
V II | 825
13 | | 43 85.260 | | Fe I | 415 | 4400.26 | | N1 I | 146 | 4414.20 | P | N1 I | 88 | | 4385.381 | | Fe II | 27 | 4400.355 | | 8c II | 14 | 4414.23 | P | Fe I | 475 | | 4385.45 | P | V II | 30 | 4400.575 | _ | V I | 22 | 4414.29 | | PII | 25 | | 4385.663
4386.434 | | Tm I | 50
1 | 4400.63
4400.828 | P | Ti II
Nd II | 93
10 | 4414.3 7
4414.4 32 | | Nd II | 60
3 | | 4386.461 | _ | N1 I | 168 | 4400.870 | | N1 I | 149 | 4414.47 | P | Fe I | 643 | | 4386.57
4386.6 | P | Fe II
Fe I | 26
899 | 4401.02
4401.293 | | A II
Fe I | 1
828 | 4414.54
4414.879 | | Zr II
Mn I | 79
22 | | 4386.835 | | Ce II | 57 | 4401.35 | | Zr II | 68 | 4414.909 | | 0 11 | 5 | | 4386.858
4387.213 | | Ti II
V I | 104
40 | 4401.447
4401.547 | | Fe I
N1 I | 350
86 | 4415.125
4415.37 | | Fe I
S II | 41
53 | | | | | | | | | | | | | | | 4387.380
4387.496 | | Cr I
Cr I | 8 4
103 | 4401.74
4401.97 | | A II
P II | 76
24 | 4415.559
4416.474 | | Sc II
V I | 14
22 | | 4387.674 | | Gd II | 15 | 4402.86 | | SII | 43 | 4416.535 | | Ti I | 161 | | 4387.897
4387.928 | | Fe I
He I | 476
51 | 4402.875
4403.03 | | Fe II
Cl I | 6 | 4416.77
4416.817 | | Ne II
Fe II | 61
27 | | 4388.007 | | Ce II | 5 | 4403.35 | | Zr II | 79 | 4416.975 | | 0 II | 5 | | 4388.077 | | Ti I | 219 | 4403.360 | | Sm II |
22 | 4417.274 | | Ti I | 161 | | 4388.16
4388.24 | | K II | 7
14 | 4403.372
4403.498 | | Cr I
Cr I | 128 | 4417.31
4417.37 | | P II
Hf II | 24
51 | | 4388.412 | | Fe I | 830 | 4403.54 | | Ti IV | | 4417.398 | | Co I | 150 | | 4388.50 | | Zr II | 140 | 4403.605 | | Pr II | 34 | 4417.718 | | Ti II | 40 | | 4389.12 | P | V II | 13 | 4404.10 | P | Fe I | 987 | 4418.340 | | Ti II | 51 | | 4389.244
4389.76 | | Fe I
Cl I | 2
7 | 4404.276
4404.397 | | T1 I
T1 I | 218,219
78 | 4418.432
4418.60 | P | Fe I
Fe Î | 412
89 9 | | 4389.870 | | N1 I | 87 | 4404.68 | | V II | 30 | 4418.784 | | Ce II | 2 | | 4389.974
4390.14 | | V I
Na I | 22
17 | 4404.752
4404.81 | | Fe I
Zr II | 41
118 | 4418.84
4419.032 | | S III
Gd II | 4
15 | | 4390.322 | | N1 I | 136 | 4404.911 | | Ti I | 161 | 4419.10 | | Cr I | 128 | | 4590.460
4390.585 | | Fe I
Mg II | 413
10 | 4404.932
4405.011 | | Co I
V I | 127
23 | 4419.16
4419.30 | P | La II
Fe I | 89
893 | | | | | | | | | | | • | | | | 4390.858
4390.953 | | Sm II
Gd II | 15
32 | 4405.02
4405.23 | P | Fe I
Ba II | 2
16 | 4419.59
4419.78 | P | Fe III
Fe I | 4
644 | | 4390.954 | | Fe I | 414 | 4405.23
4405.40 | P | Fe I | 991 | 4419.935 | | V I | 21 | | 4390.977 | | Ti II | 61 | 4405.694 | | Ti I | 78 | 4419.94 | | Na I | 16 | | 4391.110
4391.114 | | Nd II
Th II | 24
6 | 4405.849
4406.02 | | Pr II
O II | 4
26 | 4420.45
4420.468 | | Zr I
Os I | 61
1 | | 4391.26 | | Fe III | 42 | 4406.147 | _ | V I | 40 | 4420.526 | | Sm II | 32 | | 4391.568
4391.661 | | Co I
Ce II | 150
81 | 4406.22
4406.26 | P | V II
Cr I | 30 ·
152 | 4420.665
4420.75 | P | Sc II
Fe II | 14
9 | | | | | | -=00180 | | | | | - | | - | 50 | 30 | | | | | | | | | | | | |----------------------|--------|---------------|---------------|----------------------|------|---------------|---------------|----------------------|------|----------------|------------------------| | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 4421.138 | | Sm II | 37 | 4431.922 | | Mn I | 40 | 4444.207 | | V I | 21 | | 4421.231 | | Pr II | 13 | 4432.089 | | T1 II | 51 | 4444.259 | | Sm II | | | 4421.24 | | Gd II | 103 | 4432.175 | | Cr I | 81 | 4444.267 | | Ti I | 218 | | 4421.337
4421.38 | | Co I
Ne II | 150
66 | 4432.26
4432.41 | | Ne II
S II | 74
43 | 4444.393
4444.559 | | Ce II
Ti II | 19
31 | | 4421.573 | | V I | 22 | 4432.41 | | Fe I | 797 | 4444.563 | | Fe II | 201 | | 4421.754 | | Ti I | 218 | 4432.739 | | N II | 55 | 4444.704 | | Ce II | | | 4421.949 | | Ti II | 93 | 4432.80 | P | Fe I | 471 | 4445.26 | P | Fe II | 9 | | 4422.477 | | V I | 79 | 4432.82 | | Al II | 84 | 4445.48
4445.711 | | Fe I
Co I | 2
150 | | 4422.570 | | Fe I | 350 | 4432.90 | P | Fe I | 271 | 4445.711 | | CO 1 | 100 | | 4422.59 | | Y II | 5 | 4432.95 | | La II | 11 | 4445.77 | P | V II | 13 | | 4422.697 | | Cr I | 234 | 4433.223 | | Fe I | 830 | 4445.88 | | Zr II | 96 | | 4422.76 | | Hf II | 103 | 4433.39 | P | Fe I | 412 | 4446.248 | | Fe II | 187 | | 4422.823 | | Ti I | 78 | 4433.48 | | N II | 55 | 4446.387
4446.46 | | Nd II
Ne II | 49
56 | | 4422.882
4423.000 | | Fe I
Ni I | 646
168 | 4433.501
4433.578 | | Mo II
Ti I | 3
267 | 4446.487 | | Gd II | 14 | | 4423.145 | | Fe I | 412 | 4433.635 | | Gd II | 82 | 4446.71 | | F II | 10 | | 4423.212 | | V I | 40 | 4433.793 | | Fe I | 825 | 4446.842 | | Fe I | 828 | | 4423.22 | P | T1 II | 61 | 4433.83 | | A II | 123 | 4446.90 | P | Fe I | 596 | | 4423.31 | | Na I | 16 | 4433.885 | | Sm II | 41 | 4447.033 | | N II | 15 | | 4423.318 | | Cr I | 128 | 4433.968 | | Cr I | 128 | 4447.134 | | Fe I | 69 | | 4423.678 | | Ce II | 21 | 4433.991 | | MgII | 9 | 4447.18 | | F II | 10 | | 4423.73 | | K II | 5 | 4434.003 | | Ti I | 113,161 | 4447.722 | | Fe I | 68 | | 4423.858 | | Fe I | 830 | 4434.323 | | Sm II | 36 | 4447.8 | | A1 II | 83 | | 4423.9 | | P II
Cr I | 31
82 | 4434.75 | | Cr I | 128 | 4447.82
4448.21 | P | 0 III
0 II | 33
35 | | 4424.075
4424.102 | | Gd II | 67 | 4434.960
4435.151 | | Ca I
Fe I | 4
2 | 4448.47 | | A II | 127 | | 4424.194 | | Fe I | 757 | 4435.58 | | Eu II | 4 | 4448.88 | | AII | 127 | | 4424.281 | | Cr I | 129 | 4435.688 | | Ca I | 4 | 4448.97 | P | Fe I | 891 | | 4424.339 | | Sm II | 45 | 4435.84 | | La II | 8 | 4449.143 | | T1 I | 160 | | | | 7. 7 | 242 | | | | 40 | 4440 996 | | Ce II | 202 | | 4424.401
4424.62 | P | Ti I
V II | 243
30 | 4436.025
4436.138 | | Mn I
V I | 40
21 | 4449.336
4449.573 | | V I | 202
62 | | 4424.84 | r | N1 I | 262 | 4436.225 | | Ga II | 117 | 4449.663 | | Fe II | 222 | | 4425.129 | | Cr I | 152 | 4436.352 | | Mn I | 22 | 4449.867 | | Pr II | 4 | | 4425.441 | | Ca I | 4 | 4436.48 | | Mg II | 19 | 4449.985 | | Ti I | 159 | | 4425.662 | _ | Fe I | 798 | 4436.586 | | Ti I | 160 | 4450.13 | | N1 I
N1 I | 178 | | 4425.75
4425.79 | P
P | Fe I
Fe I | 555
899 | 4436.64
4436.931 | | Ti I
Fe I | 267
516 | 4450.301
4450.320 | | Fe I | 236
476 | | 4425.840 | r | Ti I | 78 | 4436.981 | | N1 I | 86 | 4450.487 | | Ti II | 19 | | 4425.95 | | PII | 24 | 4437.549 | | He I | 50 | 4450.732 | | Ce II | 3 | | | | | | | | | | | _ | | | | 4426.005 | | V I | 22 | 4437.570 | | Ni I | 168 | 4450.77
4450.896 | P | Fe I
Ti I | 972
160 | | 4426.01
4426.054 | | A II
Ti I | 7
161 | 4437.612
4437.837 | | Ce II
V I | 169
21 | 4451.545 | | Fe II | 100 | | 4426.151 | | Gd II | 14 | 4438.044 | | Sr I | 6 | 4451.566 | | Nd II | 50 | | 4426.18 | | Hf II | 87 | 4438.12 | | AII | 123 | 4451.586 | | Min I | 22 | | 4427.098 | | T1 I | 128 | 4438.13 | | 0d 11 | 67 | 4451.61 | P | V II | 30 | | 4427.12 | P | T1 I | 78 | 4438.232 | | Ti I | 218 | 4451.978 | | Nd II
V I | 6 | | 4427.21
4427.30 | P | N II
Fe I | 56
828 | 4438.266
4438.353 | | Gd II
Fe I | 44
828 | 4452.008
4452.32 | P | V I
Fe I | 87
898 | | 4427.312 | r | Fe I | 2 | 4438.48 | | Cl I | 6 | 4452.377 | • | 0 11 | 5 | | | | | _ | | | | - | | | | | | 4427.52 | | La II | 76 | 4438.53 | P | Fe I | 969 | 4452.45 | | PII | 31 | | 4427.606 | | Gd II | 66 | 4439.13 | P | Fe II | 32 | 4452.62 | P | Fe I
Hf II | 969 | | 4427.71 | P | Cr I
Ti II | 129
61 | 4439.30 | | Ne II
V II | 65
46 | 4452.70
4452.727 | | Sm II | 94
26 | | 4427.90
4427.917 | r | Ce II | 171 | 4439.42
4439.45 | | A II | 127 | 4453.005 | | Mn I | 22 | | 4427.97 | | N II | 55 | 4439.643 | | Fe I | 515 | 4453.312 | | Ti I | 113 | | 4427.995 | | Mg II | 9 | 4439.87 | | 8 111 | 7 | 4453.35 | | V II | 199 | | 4428.501 | | Cr I | 129 | 4439.883 | | Fe I | 116 | 4453.708 | | T1 I | 160 | | 4428.515
4428.54 | | V I
Ne II | 21
57,61 | 4439.95 | | Ne II
A II | 61 | 4453.931
4454.382 | | Gd II
Pr II | 6 4
5 | | 4420.04 | | Ne II | 37,01 | 4440.09 | | A 11 | 76,127 | 7101.00£ | | | · · | | 4428.57 | P | Fe I | 973 | 4440.1 | | 0 111 | 33 | 4454.383 | | Fe I | 350 | | 4428.74 | P | Fe I | 899 | 4440.345 | | Ti I | 159 | 4454.629 | | Sm II | 49 | | 4429.11 | P | V II | 13 | 4440.41 | | V II | 224 | 4454.655 | | Fe I | 902 | | 4429.20
4429.238 | P | Fe I
Pr II | 987
2,4 | 4440.45 | | Zr II
Fe I | 79
829 | 4454.781
4454.80 | | Ca I
Zr II | 4
4 0 | | 4429.270 | | Ce II | 19 | 4440.479
4440.840 | | Fe I | 992 | 4455.012 | | Mn I | 28 | | 4429.32 | | Fe I | 972 | 4440.883 | | Ce II | 238 | 4455.032 | | Fe I | 974 | | 4429.34 | | Zr II | 118 | 4440.972 | | Fe I | 645 | 4455.258 | | Fe II | | | 4429.60 | | Ne II | 74 | 4441.272 | | Ti I | 160 | 4455.318 | | Mn I | 28 | | 4429.796 | | V I | 22 | 4441.56 | P | Fe I | 987 | 4455.321 | | Ti I | 113 | | 4429.90 | | La II | 38 | 4441 609 | | v i | 21 | 4455.45 | | Cr I | 127 | | 4429.938 | | Cr I | 23 4 | 4441.683
4441.73 | P | T1 II | 40 | 4455.79 | | La II | 53 | | 4430.023 | | Ti I | 267 | 4441.81 | | C IV | 4 | 4455.821 | | Mn I | 28 | | 4430.18 | | A II | 7 | 4441.99 | | N II | 55 | 4455.85 | P | Fe II | 140 | | 4430.197 | | Fe I | 472 | 4442.268 | | Cr I | 102 | 4455.887 | | Ca I | 4 | | 4430.366 | | Ti I | 113 | 4442.343 | | Fe I | 68 | 4456.331 | | Fe I | 516
50 | | 4430.486
4430.51 | P | Cr I
Cr I | 234
128 | 4442.441
4442.50 | | N1 I
Zr II | 87
53 | 4456.394
4456.43 | | Nd II
S II | 50
43 | | 4430.618 | - | Fe I | 68 | 4442.67 | | Ne II | 56 | 4456.53 | | V II | 199 | | 4430.90 | | Ne II | 56 | 4442.72 | P | Ce II | 19 | 4456.612 | | Ca I | 4 | | | | . | _ | | | | | | _ | . | | | 4430.95 | | Fe III | 4 | 4442.835 | | Fe I | 69 | 4456.63 | P | Fe I | 973 | | 4431.02
4431.02 | | A II
S II | 1
32 | 4442.99
4443.05 | | Zr II
O II | 88
35 | 4456.650
4456.84 | P | Ti II
Cr II | 115
16 | | 4431.284 | | Ti I | 32
218 | 4443.07 | | Hf II | งบ | 4456.95 | | Ne II | 61 | | 4431.369 | | 8c II | 14 | 4443.197 | | Fe I | 350 | 4457.045 | | Mn I | 28 | | 4431.48 | | Zr I | 61 | 4443.707 | | Cr I | 234 | 4457.179 | | Nd II | 18 | | 4431.608 | | Co I | 143 | 4443.743 | | Ce II | 171 | 4457.42 | | Zr II | 79 | | 4431.626 | | Fe II | 222 | 4443.802 | | Ti II | 19 | 4457.428 | | Ti I | 113 | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | |--------------------------------------|------|----------------|--------------------------|----------------------|--------|----------------|--------------------|------------------------------------|------|----------------|-------------------|--| | 4457.759 | | v i | 101 | 4467.98 | | P II | 25 | 4481.056 | | Gd II | 44 | | | 4458.101 | | Fe I | 992 | 4468.010 | | V I | 87 | 4481.129 | | Mg II | 4 | | | 4458.262 | | Mn I | 28 | 4468.38 | | Cr
I
Ti II | 127
31 | 4481.21
4481.23 | | La II
Ni I | 146
168 | | | 4458.336 | | Pr II
Sm II | 8
7 | 4468.493
4468.712 | | Pr II | 20 | 4481.261 | | Ti I | 146 | | | 4458.517
4458.538 | | Cr I | 127 | 4468.759 | | VI | 102 | 4481.273 | | Tm II | 1 | | | 4459.037 | | N1 I | 86 | 4468.91 | | Ne II | 61 | 4481.327 | | Mg II | 4 | | | 4459.121 | | Fe I | 68 | 4469.160 | | Ti II | 18 | 4481.44 | | Cr I | 270
827 | | | 4459.34 | | Cr I | 63 | 4469.32 | | O II
C1 I | 59,94
15 | 4481.621
4481.83 | | Fe I
A II | 39 | | | 4459.738 | | Cr I | 127 | 4469.37 | | 01 1 | 10 | 4401.00 | | | 00 | | | 4459.760 | | V I | 21 | 4469.381 | | Fe I | 830 | 4482.02 | | Cl II | 85 | | | 4459.96 | | N II | 21 | 4469.547 | | Co I
V I | 150
87 | 4482.04 | | Zr II
Fe I | 131
2 | | | 4460.12 | P | Fe I
V I | 271
62 | 4469.710
4469.850 | | V I
Ce II | 230 | 4482.171
4482.257 | | Fe I | 68 | | | 4460.16
4460.213 | P | V I
Ce II | 2 | | P Forb | He I | 15 | 4482.40 | P | Ti II | 30 | | | 4460.292 | | V I | 21 | 4470.138 | | Mn I | 22 | 4482.688 | | T1 I | 113 | | | 4460.377 | | Min I | 28 | 4470.39 | P | V II | 30 | 4482.750 | | Fe I | 828 | | | 4460.55 | P | Fe I | 1100 | 4470.483 | | N1 I
T1 II | 86
40 | 4482.878
4483.328 | | Cr I
Gd II | 197
62 | | | 4460.5 6
446 0.769 | | A II
Cr I | 1
63 | 4470.864
4471.238 | | Ti I | 146 | 4483.424 | | SII | 43 | | | 44001100 | | | | | | | _ | | | | 004 | | | 4461.085 | | Mn I | 28 | 4471.240 | | Ce II
Gd II | 8
82 | 4483.50
4483.67 | | V II
P II | 224
25 | | | 4461.138 | | Ce II
Fe I | 10
471 | 4471.29
4471.477 | | He I | 14 | 4483.78 | P | Fe I | 898 | | | 44 61.205
44 61.22 | | Zr II | 67 | 4471.52 | | Ne II | 65 | 4483.900 | | Ce II | 3 | | | 4461.37 | | Fe I | 725 | 4471.550 | _ | Co I | 150 | 4483.918 | | Co I | 150 | | | 4461.43 | P | Fe II | 26 | 4471.68 | P | Fe I | 2 | 4484.227 | | Fe I
Co I | 828
27 | | | 4461.56 | | O III | 33
2 | 4471.688
4471.81 | P | He I
Fe I | 14
972 | 4484.513
4484.54 | | Ni I | 102 | | | 4461.654
4461.80 | P | Fe I
Fe I | 2
412 | 4472.09 | • | Ca II | 6 | 4484.68 | | Cr I | 151 | | | 4461.80
4461.989 | r | Fe I | 471,825,902 | 4472.52 | P | Fe I | 39 | 4484.93 | P | Fe II | 9 | | | | | | | 4470 57 | P | Fe I | 411 | 4485.013 | | Ti I | 184 | | | 4462.022 | | Mn I
Ti I | 28
8 | 4472.57
4472.721 | r | re 1
Fe I | 595,900 | 4485.013
4485.15 | | Eu II | 26 | | | 4462.099
4462.20 | P | Fe I | 824 | 4472.792 | | Mn I | 22 | 4485.44 | | Zr II | 79 | | | 4462.363 | • | V I | 87 | 4472.921 | | Fe II | 37 | 4485.679 | _ | Fe I | 830 | | | 4462.407 | | Nd II | 54 | 4473.015 | | Sm II | 26
82 | 4485.97 | P | Fe I
Hf II | 825
23 | | | 4462.460 | _ | N1 I | 86 | 4473.782 | | Cr I
La II | 63
133 | 4486.14
4486.352 | | Hr II
Gd II | 23
135 | | | 4462.76 | P | V II
Cr I | 13
127 | 4474.03
4474.045 | | V I | 110 | 4486.65 | | Hf II | 107 | | | 4462.774
4462.90 | | Fe III | 106 | 4474.194 | | Fe II | 171 | 4486.66 | | 8 11 | 43 | | | 4462.95 | | PII | 25 | 4474.714 | | V I | 101 | 4486.909 | | Ce II | 57 | | | 4400 000 | | Nd II | 50 | 4474.77 | | A II | 38 | 4487.01 | P | Fe I | 988 | | | 4462.985
4463.14 | P | ra II
Fe I | 471 | 4474.852 | | T1 I | 113,184 | 4487.28 | | Y I | 14 | | | 4463.16 | P | Fe I | 901 | 4474.95 | | 0 111 | 37 | 4487.36 | P | Fe I | 824 | | | 4463.247 | - | Gd II | 83 | 4475.19 | P | Ti I | 184
63 | 4487.46 | | B III
Cr I | 2
63 | | | 4463.391 | | Ti I | 160 | 4475.20
4475.22 | P | Cr I
Ne II | 65 | 4487.46
4487.47 | | Y I | 14 | | | 4463.4 10
4463.42 7 | | Ce II
N1 I | 20
102 | 4475.24 | | V II | 198 | 4487.72 | | 0 11 | 104 | | | 4463.539 | | Ti I | 160 | 4475.27 | | PII | 24 | 4487.74 | P | Fe I | 594 | | | 4463.582 | | S II | 43 | 4475.28 | | Cl II | 41 ,85
7 | 4487.821 | | Pr II
Cr I | 3
29 3 | | | 4464.32 | | A II | 199 | 4475.31 | | C1 I | • | 4488.051 | | | | | | 4464.425 | | 8 11 | | 4475.345 | | Cr I | 95 | 4488.09 | | O II | 104 | | | 4464.458 | | Ti II | 40 | 4475.518 | | Ti I | 184 | 4488.140 | | Fe I
N II | 819
21 | | | 4464.669 | | Cr I | 127 | 4475.70
4475.72 | | V II
Y I | 199
14 | 4488.15
4488.27 | P | Ti I | 184 | | | 4464.677 | P | Min I
Fe I | 22
555 | 4475.72
4475.99 | P | Fe I | 899 | 4488.319 | - | Ti II | 115 | | | 4464. 69
4464. 747 | F | A I | 110 | 4476.021 | - | Fe I | 350 | 4488.401 | | Gd II | 82 | | | 4464.773 | | Fe I | 472 | 4476.08 | | 0 II | 87 | 4488.898 | | V I | 86,110 | | | 4464.907 | | Cr I | 127 | 4476.082 | D | Fe I
Ti I | 830
184 | 4488.917
4489.089 | | Fe I
Ti I | 213,827
146 | | | 4464.97 | | Eu II
Nd II | 27
5 | 4476.61
4477.02 | P | Cr I | 6 3 | 4489.185 | | Fe II | 37 | | | 4465.075 | | na II | J | | | | | | | | | | | 4465.15 | | Cr I | 267 | 4477.45 | | Y I | 14
21 | 4489.471 | | Cr I
O II | 86 | | | 4465.33 | P | Fe I | 1099 | 4477.74
4477.88 | | N II
O II | 21
88 | 4489.48
4489.741 | | Fe I | 2 | | | 4465.357 | | Cr I
Y II | 127
81 | 4477.88 | P | V II | 13 | 4489.87 | | Al II | 107 | | | 4465.4
4465.40 | | 0 II | 94 | 4478.040 | | Fe I | 69 | 4490.00 | | Cl II | 41 | | | 4465.54 | | N II | 21 | 4478.319 | | Co I | 150 | 4490.081 | | Mn I
Fe I | 22
469 | | | 4465.601 | | Nd II | 13 | 4478.48 | | S III
Sm II | 7 | 4490.084
4490.24 | P | re I
Fe I | 319 | | | 4465.78 | | Cr II
Ti I | 191
1 4 6 | 4478.657
4478.795 | | Gd II | 15 | 4490.541 | • | N1 I | 134,235 | | | 4465.807
4466.11 | | PII | 24 | 4479 | P | N IV | 6 | 4490.56 | | Cr I | 267 | | | | _ | | | 4470 00 | P | Fe I | 987 | 4490.60 | | Hf II | 74 | | | 4466.13 | P | Cr I
Cr I | 34
127 | 4479.00
4479.01 | P | Fe I | 899 | 4490.63 | P | Fe I | 891 | | | 4466.465
4466.183 | | Cr I
Fe I | 901 | 4479.29 | - | Ca II | 6 | 4490.773 | | Fe I | 974,974 | | | 4466.32 | | 0 11 | 87 | 4479.359 | | Ce II | 203 | 4490.815 | D1 | V I | 86
7 | | | 4466.394 | | N1 I | 168 | 4479.432 | | Ce II | 124
828.848 | 44 90.90
44 90.99 | Forb | Al III
A II | 39 | | | 4466.41 | | Hf II | 72
44 | 4479.612
4479.724 | | Fe I
Ti I | 828,848
146 | 4490.99
4491.10 | P | Ce II | 19 | | | 4466.547 | | Gd II
Fe I | 44
3 50 | 4479.724 | | Al III | 8 | 4491.164 | | V I | 62 | | | 4466.554
4466.57 | P | re I
Fe I | 2 | 4479.968 | | Al III | 8 | 4491.25 | | O II | 86
37 | | | 4466.65 | - | K II | 6 | 4479.97 | P | Fe I | 974 | 4491.401 | | Fe II | 31 | | | 4488 004 | | Co I | 150 | 4480.142 | | Fe I | 515 | 4491.678 | | Cr I | 95 | | | 4466.881
4466.939 | | Fe I | 992 | 4480.263 | | Cr I | 197 | 4491.858 | | Cr I | 8 3
197 | | | 4467.227 | | Gd II | 82 | 4480.27 | P | Fe I | 823 | 4492.312 | | Cr I
S II | 197
58 | | | 4467.342 | | Sm II | 53 | 4480.350 | D | Cu I
Fe II | 8
20 | 4492.3
4492.40 | | N I | 50 | | | 4467.36 | | Fe III | 106
1048 | 4480.46
4480.570 | P | re II
Ni I | 20
211 | 4492.427 | | Pr II | 23 | | | 4467.446
4467.537 | | Fe I
Ce II | 1048
17 | 4480.600 | | Ti I | 146 | 4492.540 | | Ti I | 184 | | | 4467.561 | | Cr I | 127 | 4480.687 | | Fe II | | 4492.693 | n | Fe I | 969
639 | | | 4467.83 | | S III | 7 | 4480.85 | | AII | 104 | 4492.98 | P | Fe I | 706 | | | 52 | | | | | LINDI | NO LIS. | ı | | | | | |----------------------|------|----------------|------------------|-----------------------|--------|----------------|--------------------|----------------------|------|----------------|-------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 4493.53 | | Ti II | 18 | 4507.854 | | Ca I | 24 | 4521.924 | | Ni I | 116 | | 4493.579 | | Fe II | 222 | 4507.95 | | Cr I | 267 | 4521.94 | | Gd II | 135 | | 4494.05 | P | Fe I | 973 | 4508.083 | | Ce II | 153 | 4522 | P | o v | 15 | | 4494.180 | | Na I | 15 | 4508.21 | n | Ne II | 68 | 4522.00 | | Cr I | 173 | | 4494.41
4494.47 | P | Zr II
Fe I | 130
411 | 4508.26
4508.283 | P | Fe II
Fe II | 222
38 | 4522.3238
4522.37 | | A I
La II | 7
8,7 4 | | 4494.568 | • | Fe I | 68 | 4508.48 | | La II | 52 | 4522.59 | | Eu II | 4 | | 4494.67 | | N I | | 4509.0 | | S II | 48 | 4522.634 | | Fe II | 38 | | 4494.71 | | La I | 11 | 4509.082 | | Gd II | 84 | 4522.66 | | Ne II | 68 | | 4494.746 | | Co I | 168 | 4509.13 | P | Fe I | 21 3 | 4522.798 | | Ti I | 42 | | 4494.853 | | Gd II | 14 | 4509.287 | | V I | 110 | 4522.82 | | Gd II | 103 | | 4495 | P | N IV | 6 | 4509.306 | | Fe I | 514,937 | 4523.037 | | Sm II | 3 | | 4495.006 | | Ti I | | 4509.446 | | Ca I | 24 | 4523.077 | | Ce II | 2 | | 4495.04 | | Cr I | 101 | 4510.160 | | Pr II | 20 | 4523.403 | | Fe I | 829 | | 4495.275 | | Cr I | 275 | 4510.210 | | Mn II | 17 | 4523.60 | _ | N III | 3 | | 4495.386
4495.389 | | Fe I
Ce II | 319,970
154 | 4510.380
4510.7333 | | Gd II
A I | 30
9 | 4523.74 | P | N1 I
Sm II | 99
41 | | 4495.44 | | Zr II | 79 | 4510.82 | P | Fe I | 823 | 4523.912
4524.218 | | V I | 99 | | 4495.46 | P | Ti II | 40 | 4510.92 | | N III | 3 | 4524.344 | | Mo I | 6 | | 4495.52 | P | Fe II | 147 | 4511.04 | P | Fe I | 970 | 4524.68 | | S II | 40 | | 4495.566 | | Fe I | 827 | 4511 176 | | Ti I | | 4504 500 | | M4 TT | 20 | | 4495.9 | | S II | 827
48 | 4511.176
4511.29 | | Ne II | 70 | 4524.732
4524.74 | | Ti II
Hf II | 60
104 | | 4495.986 | | Fe I | 825 | 4511.310 | | In I | 1 | 4524.74 | | Sn I | 5 | | 4496.062 | | V I | 110 | 4511.37 | | Ne II | 70 | 4524.81 | P | V II | 21 2 | | 4496.146 | | Ti I | 146 | 4511.82 | P | Cr II | 191 | 4524.841 | | Cr I | 276 | | 4496.245 | | Ti I | 8 | 4511.829 | | Sm II | 14 | 4524.928 | | Ba II | 3 | |
4496.429
4496.75 | P | Pr II
Ti I | 4,25
184 | 4511.903 | | Cr I
Ca I | 150
24 | 4524.946 | | S II | 40 | | 4496.862 | r | Cr I | 104 | 4512.282
4512.535 | | Al III | 3 | 4525.142
4505.15 | P | Fe I
Fe I | 826
819 | | 4496.864 | | V I | 86 | 4512.72 | | V II | 212 | 4525.15
4525.168 | r | V I | 110 | | | | | | | | | | 2020.200 | | - | | | 4496.96 | | Zr II | 40 | 4512.734 | | Ti I | 42 | 4525.21 | P | Ti II | 18 | | 4496.989 | | Mn II | 17 | 4512.995 | | N1 I | 163 | 4525.31 | _ | La II | 76 | | 4497.30 | | C1 II
B III | 41,85 | 4513.21 | | Cr I
Y I | 150
15 | 4525.75 | P | Fe II | 9 | | 4497.58
4497.657 | | Na I | 3
15 | 4513.58
4513.715 | | Ti I | 15
112 | 4525.875 | | Fe I
Cr I | 319
196 | | 4497.709 | | Ti I | 184 | 4513.72 | P | Fe I | 213 | 4526.108
4526.12 | | La II | 50 | | 4497.849 | | Ce II | 19 | 4513.89 | | Cr I | 175 | 4526.20 | | C1 I | 15 | | 4497.88 | | S II | 53 | 4513.90 | P | N1 I | 131 | 4526.374 | | Ti I | 127,184 | | 4498.276 | _ | Gd II | 31 | 4514.189 | | Fe I | 514 | 4526.40 | P | Fe I | 969 | | 4498.54 | P | Fe I | 988 | 4514.191 | | V I | 110 | 4526.466 | | Cr I | 33 | | 4498.55 | | A II | 13 6 | 4514.373 | | Cr I | 287 | 4526.563 | | Fe I | 471 | | 4498.730 | | Cr I | 81 | 4514.505 | | Gd II | 103 | 4526.565 | | Tm II | 1 | | 4498.76 | | La II | 94 | 4514.531 | | Cr I | 95 | 4526.58 | P | Fe II | 171 | | 4498.897 | | Mn I | 22 | 4514.80 | | Ne II | 55 | 4526.794 | | Co I | 177 | | 4498.94
4499.18 | | Ne II
P II | 6 4
11 | 4514.89
4515.094 | | N III
Sm II | 3 | 4526.935 | | Ca I
Y I | 36
14 | | 4499.29 | | S III | 7 | 4515.17 | P | Fe I | 319 | 4527.25
4527.305 | | Ti I | 42 | | 4499.475 | | Sm II | 23 | 4515.19 | P | Fe II | 20 | 4527.339 | | Cr I | 33,82 | | 4500.295 | | Cr I | 150 | 4515.337 | | Fe II | 37 | 4527.348 | | Ce II | 108 | | 4500.32 | P | Ti II | 18 | 4515.440 | | Cr I | 126 | 4527.455 | | T1 I | 7 | | 4500.86 | P | v II | 30 | 4515.558 | | v i | 100 | 4505 451 | | Cr I | 174 | | 4501.112 | r | Cr I | 81 | 4515.610 | | Ti I | 184 | 4527.471
4527.648 | | CP II | 8 | | 4501.256 | | V I | 86 | 4516.02 | | CIII | 9 | 4527.796 | | Fe I | 641 | | 4501.270 | | T1 II | 31 | 4516.08 | P | Fe I | 639 | 4527.80 | | Y I | 14 | | 4501.692 | | N1 I | 115 | 4516.27 | P | Fe I | 819 | 4527.86 | | N III | 13 | | 4501.788 | | Cr I | 81 | 4516.38 | _ | La II | | 4527.90 | P | Fe I | 897 | | 4501.808
4501.972 | | Nd II
V I | 53
62 | 4516.45
4516.56 | P
P | Fe I
Cr II | 825
191 | 4527.919 | | Co I
S III | 156
· 7 | | 4502.16 | | La II | 154 | 4516.93 | | CIII | 9 | 4527.96
4527.990 | | V I | • | | 4502.220 | | Mn I | 22 | 4517.094 | | Co I | 150 | 4528 | P | N IV | 6 | | | | | | | | | | | | | | | 4502.52 | | Ne II | 56 | 4517.10 | | Gd II
V II | 135 | 4528.472 | | Ce II | 1 | | 4502.592
4502.95 | | Fe I
A II | 796
63 | 4517.35
4517.43 | P Forb | V II
He I | 211
13 | 4528.51
4528.619 | | V II
Fe I | 56
68 | | 4503.05 | | Cr I | 310 | 4517.530 | 1 1010 | Fe I | 472 | 4528.76 | P | Fe I | 595 | | 4503.13 | P | V II | 13 | 4517.595 | | Pr II | 2 | 4528.82 | P | Fe I | 468 | | 4503.762 | | Ti I | 184 | 4517.60 | P | Fe I | 992 | 4528.911 | | Al III | 3 | | 4504.23 | P | Fe I | 988 | 4517.79 | | Ne II | 55 | 4529.08 | | V II | 198 | | 4504.27 | | C1 II | 41 | 4517.81 | | Ni I | 103 | 4529.176 | | Al III | 3 | | 4504.52
4504.838 | P | Cr II
Fe I | 16
555 | 4518.022
4518.18 | | T1 I
N III | 42
3 | 4529.301 | | V I
Tm II | 95
5 | | 20021000 | | | 000 | 4010.10 | | ., | · · | 4529.376 | | 111111 | ŭ | | 4505.00 | | Ca I | 24 | 4518.30 | P | Ti II | 18 | 4529.465 | | Ti II | 82 | | 4505.22 | | Cr I | 151 | 4518.38 | | V II | 212 | 4529.56 | P | Fe II | 171 | | 4505.33 | | K II | 4 | 4518.45 | _ | Fe I | 593 | 4529.562 | | Fe I | 987 | | 4505.715 | | Ti I | 184 | 4518.58 | P | Fe I | 69 | 4529.589 | | V I | 99 | | 4505.75
4505.95 | | Nd II
Y I | 3
14 | 4518.58
4518.63 | | Lu I
Cr I | 34,100 | 4529.7
4520.851 | | O III
Cr I | 32
33 | | 4505.95
4505.997 | | Cu II | 14 | 4518.700 | | Ti I | 112 | 4529.851
4530.034 | | Mn II | 33
17 | | 4506.302 | | Ni I | 133 | 4518.9 | | SII | 47 | 4530.12 | P | Cr I | 126 | | 4506.333 | | Gd II | 44 | 4519.02 | | Hf II | | 4530.403 | | N II | 59 | | 45 06.50 | | 0 11 | | 4519.19 | | C1 II | 41 | 4530.54 | | La II | 73 | | 4506 500 | | W | - | 4540 086 | | Q- TT | 40 | | | , | 0.5 | | 4506.582
4506.624 | | Nd II
Ca I | 7 | 4519.633 | | Sm II
Cr I | 49
1 2 6 | 4530.57 | | A II
Cr I | 35
33 | | 4506.74 | P | Ti II | 24
30 | 4519.83
4519.986 | | NI I | 51 | 4530.688
4530.755 | | Cr I | 33 | | 4506.853 | - | Cr I | 288 | 4520.070 | | Gd II | 82 | 4530.75 | | P II | 25,35 | | 4506.931 | | Gd II | 13 | 4520.225 | | Fe II | 37 | 4530.785 | | Cu I | 8 | | 4507.11 | | Zr I | 31 | 4520.24 | P | Fe I | 471 | 4530.84 | | N III | 3 | | 4507.19 | P | Cr II | 16 | 4520.37 | P | Ti II | 30 | 4530.949 | | Co I | 150 | | 4507.195 | | Fe II | 213 | 4521.141 | | Cr I | 277,287 | 4531.152 | | Fe I | 39 | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------------------------------|------|----------------|------------------|----------------------|------|-----------------|-------------------|-----------------------|------|-----------------|------------------------| | 4531.82 | | Cr I | 275 | 4545.335 | | Cr I | 33 | 4561.03 | | A II | 51 | | 4532.188 | | V II | 212 | 4545.394 | | V I | 109 | 4561.20 | | Cr I | 34 | | 4532.75 | | Cr I | 212 | 4545.49 | P | Cr II | 16 | 4561.461 | | Pr II | 23 | | 4533.143 | | Fe I | 641 | 4545.54 | P | Fe I | 894 | 4561.54 | | Cr I | 277 | | 4533.18 | | Hf II | 25 | 4545.956 | | Cr I
Co I | 10 | 4561.88
4562.05 | | S II
Ne II | 64 | | 4533.238
4533.3 | | Ti I
S II | 42
47 | 4545.985
4546.36 | | N III | 142
13 | 4562.360 | | Ce II | 1 | | 4533.81 | | PII | 25 | 4546.47 | P | Fe I | 1047 | 4562.5 | | La II | 161 | | 4533.966 | | Ti II | 50 | 4546.68 | P | Fe I | 989 | 4562.637 | | Ti I | 7 | | 4533.985 | | Co I | 150 | 4546.930 | | N1 I | 261 | 4563.245 | | Cr I | 246 | | 4534.154 | | Pr II | 20 | 4547.022 | | Fe I | 39 | 4563.427 | | Ti I | 266 | | 4534.166 | | Fe II | 37 | 4547.234 | | Ni I | 146 | 4563.657 | | Cr I | 172 | | 4534.26 | | Mg II
N III | 26
3 | 4547.34
4547.78 | | N III
A II | 3
76 | 4563.761
4563.78 | | Ti II
A II | 50 | | 4534. 57
4534. 62 | P | Fe I | 1169 | 4547.850 | | Ti I | 270 | 4564.166 | | Cr I | 312 | | 4534.66 | • | Ne II | 58 | 4547.851 | | Fe I | 755 | 1564.216 | | Ti I | 112 | | 4534.782 | | Ti I | 42 | 4548.094 | | Ti I | 270 | 4564.43 | | AII | 85 | | 4535.11 | | N III | 13 | 4548.764 | | T1 I | 42 | 4564.592 | | V II | 56 | | 4535.146 | | Cr I | 33 | 4549.214 | | Fe II | 186 | 4564.715 | | Fe I | 823 | | 4535.215 | | V II | 210 | 4549.467 | | Fe II | 38 | 4564.78 | | N II | 14 | | 4535.38 | | Hf II | 72 | 4549.50 | | La I | 11 | 4564.832 | _ | Fe I | 472 | | 4535.47 | | Ne II | 55 | 4549.547 | | 8 11 | | 4565.13 | P | N1 I | 88 | | 4535.50
4535.51 | | Fe III
A II | 86 | 4549.622
4549.644 | | T1 II
V I | 82 | 4565.22
4565.324 | | P II
Fe I | 36
641 | | 4535.574 | | Ti I | 42 | 4549.658 | | Co I | 150 | 4565.43 | | Zr II | 116 | | 4535.721 | | Cr I | 33,276 | 4549.82 | P | Ti II | 39 | 4565.45 | P | Ni I | 99 | | 4535.75 | | Zr I | 30 | 4550.954 | | Gd II | 44 | 4565.49 | | Ne II | 55 | | 4535.87 | P | Ti I | 112 | 4551.236 | | N1 I | 236 | 4565.512 | | Cr I | 21 | | 4535.920 | | Ti I | 42
1 | 4551.297 | | Ce II
Gd II | 229
62 | 4565.578
4565.684 | | Co I
Fe I | 150
554 | | 4535.921 | | Pr II | 1 | 4551.455 | | 0d 11 | | | | | | | 4536.051 | | Ti I | 42 | 4551.667 | | Fe I | 972 | 4565.73 | | Mn I
Cr II | 52
39 | | 4536.509 | | Fe I
Cr I | 896
190 | 4551.860
4552.25 | P | V I
Ti II | 82
30 | 4565.78
4565.842 | | Ce II | 21 | | 4536.55
4536.78 | | C1 II | 41 | 4552.37 | • | As II | 4 | 4566.03 | P | Fe I | 1169 | | 4537.663 | | VI | 82 | 4552.378 | | S II | 40,48 | 4566.206 | | Sm II | 32 | | 4537.67 | | A II | 123 | 4552.453 | | Ti I | 42 | 4566.520 | | Fe I | 641 | | 4537.677 | | Fe I | 594 | 4552.536 | | N II | 58 | 4566.602 | _ | Cr I | 125 | | 4537.751 | | Ne I | 11
45 | 4552.544 | | Fe I
S III | 2 | 4566.68
4566.990 | P | Fe I
Fe I | 212
723 | | 4537.952
4538.20 | P | Sm II
Fe I | 1071 | 4552.654
4552.659 | | Sm II | 23 | 4567.415 | | Ni I | 102 | | | | | | | | | | | | W4 TT | 40 | | 4538.58 | P | Fe I
V II | 972
212 | 4553.01
4553.056 | | Zr I
V I | 31
133 | 4567.606
4567.872 | | Nd II
Si III | 49
2 | | 4538.64
4538.73 | | A II | 104 | 4553.16 | | Ne II | 55 | 4567.90 | | La I | 11 | | 4538.764 | | Fe I | 115 | 4553.175 | | N1 I | 135 | 4568 | P | O IV | 15 | | 4538.84 | | Fe I | 969 | 4553.48 | P | Fe I | 472 | 4568.312 | | Ti II | 60 | | 4538.87 | | La II | 149 | 4553.949 | | Cr I | 276 | 4568.545 | | Pr II | 33 | | 4538.95 | P | Fe I | 10 48 | 4553.96 | | Zr II
Ba II | 1 3 0
1 | 4568.62
4568.789 | P | Fe I
Fe I | 989
55 4 | | 4539.096
4539.62 | | Ti I
Cr II | 39 | 4554.033
4554.28 | | 0 V | 7 | 4568.842 | | Fe I | 894 | | 4539.755 | | Ce II | 108 | 4554.467 | | Fe I | 319 | 4569.01 | | Ne II | 69 | | 453 9.788 | | Cr I | 33 | 4554.509 | | Ru I | 5 | 4569.06 | P | Fe I | 593 | | 4540.014 | | v 1 | 100 | 4554.81 | | P II | 28 | 4569.42 | | C1 II | 35 | | 4540.016 | | Gd II | 135 | 4554.830 | | Cr I | 173 | 4569.50 | | O III
Cr I | 36
173 | | 4540.376 | | Ne I
Ti I | 17
8 | 4554.989
4555.02 | | Gd II
Cr II | 82
44 | 4569.530
4569.644 | | Cr I | 173 | | 4540.483
4540.502 | | Cr I | 33 | 4555.069 | | Ti I | 266 |
4569.82 | | Fe III | 82 | | 4540.71 | | La II | 81 | 4555.09 | | Cr I | 149 | 4569.849 | | Nd II | 5 | | 4540.719 | | Cr I | 150 | 4555.30 | | Cr I | 212 | 4570.02 | | LaI | 11 | | 4540.873 | | Ti I | 112 | 4555.30 | | 0 III | 34 | 4570.024
4570.30 | | Co I
Cr I | 178
125,190 | | 4541.071 | | Cr I | 33 | 4555.421 | | Cs I | 2 | 4070.30 | | | | | 4541.269 | | Nd II | 58 | 4555.486 | _ | Ti I | 42 | 4570.34 | | Fe III
V I | 66
109 | | 4541.31
4541.513 | | Hf II
Cr I | 36
149 | 4555.75
4555.890 | P | Fe I
Fe II | 640
37 | 4570.425
4570.70 | | Hf II | 86 | | 4541.513 | | Fe II | 38 | 4555.922 | | Cu II | 1 | 4570.906 | | Ti I | 266 | | 4541.59 | | He II | 2 | 4556.129 | | Fe I | 410,820,974 | 4570.97 | | La II | 38 | | 4541.671 | | Na I | 14 | 4556.136 | | Nd II | 6 | 4570.977 | | Gd II | 84 | | 4541.953 | | Fe I | 593 | 4556.169 | | Cr I | 173 | 4570.98
4871.0056 | | Cr I
Mg I | 173
1 | | 4542.22
4542.422 | | Zr I
Fe I | 49
894 | 4556.735
4556.765 | | Nd II
V II | 12
198 | 4571.0956
4571.105 | | mg I
Cr I | 125 | | 4542.603 | | Nd II | 001 | 4556.939 | | Fe I | 638 | 4571.24 | P | Cr II | 16 | | 4542.621 | | Cr I | 149,275 | 4557.237 | | Sc I | | 4571.44 | P | Fe I | 319 | | 4542.720 | | Fe I | 827 | 4557.857 | | T1 I | 270 | 4571.676 | | Cr I | 32 | | 4542.77 | P | Cr II | 16 | 4558.04 | | P II | 29 | 4571.783 | | V I | 109 | | 4543.22 | P | Fe I | 893 | 4558.080 | | Gd II | 44
262,263 | 4571.83
4571.971 | | Cr I
Ti II | 246
82 | | 4543.74 | | Cr I
Co I | 100 | 4558.092
4558.108 | | T1 I
Fe I | 894,974 | 4572.13 | | C1 11 | 35 | | 4543.810
4543.91 | | A II | 142
95 | 4558.46 | | La II | 39 | 4572.16 | | Cr I | 190,246 | | 4543.948 | | Sm II | 32 | 4558 • 46 | | A 11 | 212 | 4572.277 | | Ce II | 1 | | 4544.009 | | T1 II
Ne II | 60
64 | 4558.58
4558.659 | P | Fe II
Cr II | 20
44 | 4572.671
4572.83 | P | Be I
Cr II | 3
16 | | 4544.11 | | | | | | | | | | | | | 4544.48 | ъ. | C1 II | 48
970 | 4558.83
4559.09 | | Cr II
Fe III | 44 | 4572.86
4572.92 | P | Fe I
A II | 819
94 | | 4544.5 0
4544. 619 | P | Fe I
Cr I | 33 | 4559.28 | | La II | 53 | 4573.14 | | Fe III | | | 4544.688 | | Ti I | 42 | 4559.920 | | Ti I | 112 | 4573.38 | _ | Cr I | 246 | | 4544.70 | P | Cr II | 16 | 4559.945 | | N1 I | 115 | 4573.63 | P | Cr II
Hf II | 16
40 | | 4544 .80 | | N III | 12 | 4560.096 | | Fe I
Cr I | 823
211 | 4573.81
4573.993 | | Sc I | T V | | 4544. 961
454 5.08 | | Ce II
A II | 123
15 | 4560.26
4560.280 | | Ce II | 211
8 | 4574.03 | | N1 I | 87 | | 4545.144 | | Ti II | 30 | 4560.710 | | V I | 109 | 4574.240 | | Fe I | 554 | | 4545.218 | | Na I | 14 | 4560.959 | | Ce II | 2 | 4574.32 | | Ta I | 1 | | | | | | | | | | | | | | | 54 | | | | 1 | LIND | ING LIST | | | | | | |--------------------------|------|-----------------|---------------|------------------|-------|----------|------------------|----------|-------|---------|---------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | | -,,, | DICMONT | Marorprov Not | | 13 pe | Diemeno | murorprov nov | • • | -, po | 220 | | | 4574.45 | | Cr I | 148 | 4500 017 | | Cr II | 44 | 4602.005 | | Fe I | 39 | | | | | | 4588.217 | _ | | | | | | 93 | | 4574.49 | | Ne II | 64 | 4588.40 | P | Cr II | 16 | 4602.11 | | 0 11 | | | 4574.49 | | Zr II | 139 | 4588.730 | | Co I | 15 | 4602.51 | _ | Cr I | 210 | | 4574.724 | | Fe I | 115 | 4589.689 | | Al II | 45 | 4602.75 | P | Fe II | 19 | | 4574.777 | | Si III | 2 | 4589.750 | | Al II | 45 | 4602.944 | | Fe I | 39 | | 4574.87 | | La II | 23 | 4589.76 | | Pr II | 23 | 4602.99 | | Li I | 6 | | 4575.121 | | Cr I | 196 | 4589.79 | | P II | 24,36 | 4603.2 | P | n v | 1 | | 4575.52 | | Zr I | 5 | 4589.89 | | Cr II | 44 | 4603.34 | P | Fe I | 348 | | 4575.80 | | Fe I | 593,970 | 4589.93 | | A II | 31 | 4603.956 | - | Fe I | 410 | | | | Fe II | 38 | | | | 50 | | P | Fe I | 348 | | 4576.331 | | re II | 36 | 4589.961 | | Ti II | 50 | 4604.23 | P | re 1 | 940 | | | | | | | | | | | | _ | | | 4576.500 | | Mo I | 6 | 4590.00 | P | Cr II | 16 | 4604.42 | | Zr I | 29 | | 4576.551 | | Ti I | 262 | 4590.505 | | V II | 210 | 4604.58 | | Cr I | 190 | | 4576.76 | | Cr I | 1 4 8 | 4590.68 | | Fe III | 52 | 4604.85 | P | Fe I | 846 | | 4577.13 | P | V II | 56 | 4590.69 | | Cr I | 125 | 4604.994 | | Ni I | 98 | | 4577.173 | | V I | 4 | 4590.8 | | S II | 47 | 4605.10 | P | Fe I | 348 | | 4577.690 | | Sm II | 23 | 4590.971 | | 0 11 | 15 | 4605.352 | - | V II | 56 | | | P | Fe II | | | | | 10 | | | Mn I | 00 | | 4577.78 | r | | 54 | 4591.05 | | SII | 400 | 4605.363 | | | | | 4578.139 | | Pr II | 10 | 4591.220 | | VI | 133 | 4605.78 | | La II | 52 | | 4578.334 | | Cr I | 24 6 | 4591.2 6 | P | Fe II | 17 | 4605.79 | | Hf II | 22 | | 4578.558 | | Ca I | 23 | 4591.394 | | Cr I | 21 | 4605.99 | P | Fe I | 893 | | | | | | | | | | | | | | | 4578.728 | | V I | 109 | 4591.818 | | Sm IÍ | 14 | 4606.146 | | v i | 4 | | 4579.05 | P | Fe I | 988 | 4591.991 | | V I | 95 | 4606.231 | | N1 I | 100 | | | P | Fe I | | | | Cr II | | | | Cr I | 303 | | 4579.07 | P | | 640 | 4592.09 | | | 44 | 4606.375 | | | | | 4579.198 | | V I | 109 | 4592.529 | | N1 I | 98 | 4606.402 | | Ce II | 6 | | 45 79. 344 | | Fe I | 319,936 | 4592.54 | | Cr I | 303 | 4606.514 | | Sm II | 1 | | 4579.39 | | A II | 17 | 4592.655 | | Fe I | 39 | 4606.59 | P | V II | 45 | | 4579.446 | | CP II | 8 | 4593.195 | | Cs I | 2 | 4607.08 | P | Fe I | 724 | | 4579.523 | | Fe II | | 4593.44 | | A II | 51 | 4607.153 | | N II | 5 | | | | Cr I | 246 | | | C 111 | 01 | | | Sr I | 2 | | 4579.59 | - | | 24 6 | 4593.47 | | | 064 | 4607.331 | | Fe I | | | 4579.68 | P | Fe I | 894 | 4593.544 | | Fe I | 971 | 4607.655 | | re 1 | 554,969 | | | | | | | | | | | | | | | 4579.825 | | Fe I | 469 | 4593.544 | | Sm II | 36 | 4607.94 | | Y II | 80 | | 4580.05 | | La II | 53 | 4593.84 | | Cr I | 190 | 4608.030 | | Gd II | 144 | | 4580.055 | | Fe II | 26 | 4593.932 | | Ce II | 6 | 4608.21 | | Cl III | 13 | | 4580.056 | | Cr I | 10 | 4594.03 | | Bu I | 1 | 4608.45 | | K II | 7 | | | | | | | | | 4 | | | Co I | 57 | | 4580.139 | | Co I | 27 | 4594.103 | | V I | 4 | 4608.908 | | | | | 4580.35 | | Ne II | 72 | 4594.4 03 | | Cr I | | 4609.148 | | Nd II | 3 | | 4580.394 | | V I | 4 | 4594.44 7 | | Nd II | 52 | 4609.26 | P | Ti II | 39 | | 4580.458 | | Ti II | 60 | 4594.51 | P | Ti I | 262 | 4609.42 | | 0 II | 93 | | 4580.4 6 | P | Fe I | 34 8 | 4594.633 | | Co I | 176 | 4609.60 | | A II | 31 | | 4580.600 | | Fe I | 827 | 4594.908 | | N1 I | | 4609.646 | | V I | 61 | | 20001000 | | | 02. | 10011000 | | | | 20001020 | | | | | 4500 610 | | NA T | 140 | 4504 050 | | Fe I | 690 | 4600 7 | | Al II | 44 | | 4580.619 | | N1 I | 146 | 4594.959 | | | 638 | 4609.7 | | | | | 4581.063 | | Cr I | 148 | 4595.05 | | Cr I | 190,211 | 4609.894 | | Cr I | 303 | | 45 81.086 | | Gd II | 44 | 4595.160 | | Mo I | 6 | 4610.14 | | 0 11 | 92 | | 4581.32 | | ΥI | 15 | 4595.21 | P | Fe I | 8 4 6 | 4610.59 | P | Fe II | 170 | | 4581.380 | | Co I | 156 | 4595.291 | | Sm II | 45 | 4610.925 | | v I | 39 | | 4581.402 | | Ca I | 23 | 4595.363 | | Fe I | 594 | 4611.05 | P | Fe I | 641 | | 4581.517 | | Fe I | 555 | 4595.590 | | Cr I | 286 | 4611.19 | P | Fe I | 319 | | | | | | | _ | | | | r | | 318 | | 45 81.596 | | Co I | 150 | 4595.68 | P | Fe II | 38 | 4611.25 | | A II | | | 45 81.77 | | P II | 9 | 4595.951 | | N1 I | 101 | 4611.285 | | Fe I | 826 | | 4582.12 | P | Fe II | 19 | 4596.059 | | Fe I | 820 | 4611.29 | P | Fe I | 819 | | | | | | | | | | | | | | | 4582.38 | | Gd II | 82 | 4596.09 | | Fe III | | 4611.35 | P | Fe I | 17 | | 4582.502 | | Ce II | 7 | 4596.0970 | | AI | 9 | 4611.968 | | Cr I | | | 4582.53 | | Gd II | 65 | 4596.174 | | 0 11 | 15 | 4612.473 | | Nd II | 3 | | 4582.835 | | Fe II | 37 | 4596.37 | | v II | 210 | 4612.64 | | Fe I | 349 | | | | | | | | | | | | PII | 9 | | 4582.941 | | Fe I | 348 | 4596.38 | | Cr I | 210 | 4612.84 | | | | | 4583.443 | | Ti II | 39 | 4596.433 | | Fe I | 8 23 | 4612.89 | | Ne II | 64 | | 4583.72 | P | Fe I | 472 | 4596.90 | | Cr I | 171 | 4613.11 | | O II | 93 | | 4583.783 | | V I | 109 | 4596.903 | | Co I | 177 | 4613.210 | | Fe I | 554 | | 4583.829 | | Fe II | 38 | 4596.978 | | Gd II | 44 | 4613.373 | | Cr I | 21 | | 4583.89 | | Cr I | 125 | 4597.013 | | Nd II | 51 | 4613.38 | | La II | 50 | | 1000.00 | | v. ₁ | 120 | #091.010 | | | . 01 | *010.00 | | | ••• | | 4500.00 | | Po TT | 00 | 4800 00 | | Po T | 400 | 4010 47 | | 8 111 | 10 | | 4583.99 | P | Fe II | 26 | 4597.06 | P | Fe I | 17 | 4613.47 | | | | | 4584.095 | | Cr I | 172 | 4597.91 | | Gd II | 44 | 4613.67 | | 0 11 | 92 | | 4584.28 | | C1 II | | 4598.122 | | Fe I | 554 | 4613.74 | | Hf II | 10 3 | | 4584.445 | | Ru I | 6 | 4598.33 | P | Fe I | 17 | 4613.868 | | N II | 5 | | 4584.732 | | Fe I | 820 | 4598.37 | P | Fe I | 970 | 4613.95 | | Zr II | 67 | | 4584.75 | | Cr I | 125 | 4598.441 | | Cr I | 172 | 4614.15 | | Cr I | 148 | | 4584.824 | | Fe I | 822 | 4598.528 | | Fe II | 219 | 4614.216 | | Fe I | 638 | | 4584.934 | | Cr I | | | P | Fe I | 819 | | | Cr I | 245 | | | | | 196 | 4598.74 | r | | | 4614.523 | | | | | 4585.03 | | C1 II | 34 | 4598.77 | _ | A II | 3 8 | 4614.58 | | N1 I | 99 | | 4585.088 | | Cr I | 212 | 4598.99 | P | Ti I | 2 62 | 4614.73 | | Cr I | | | | | | | | | | | | | | | | 4585.59 | P | Fe I | 468 | 4599.00 | | Cr I | 171 | 4615.441 | | Sm II | 49 | | 4585.72 | | Cr I | 211 | 4599.226 | | Ti I | _ | 4615.690 | | Sm II | 22 | | | | Al II | | | | Cr I | 171 | 4615.98 | | Ne II | 64,67 | | 4585.820 | | | 45 | 4599.25 | | | 171 | | | | | | 4585.871 | | Ca I | 23 | 4599.46 | | Hf II | 92 | 4616.137 | | Cr I | 21 | | 4585.923 | | Ca I | 23 | 4600.104 |
 Cr I | 32 | 4616.64 | | Cr II | 44 | | 4585.94 | | V I | 61 | 4600.11 | | Ne II | 64 | 4616.95 | | Fe III | 108 | | 4586.138 | | Cr I | 172 | 4600.19 | | V II | 56 | 4617.269 | | Ti I | 145 | | 4586.25 | | Hf II | 23 | 4600.28 | P | Ti II | 60 | 4617.94 | | Ni I | 115 | | | | | | | • | | | | n | | | | 4586.364 | | V I | 4 | 4600.372 | | N1 I | 98 | 4618.12 | P | V II | 56 | | 4586.95 | P | Ti I | 2 66 | 4600.59 | | La II | 1 4 8 | 4618.52 | | V II | 25 2 | | | | _ | | | | _ | | | | _ | | | 4586.99 | | Cr I | | 4600.752 | | Cr I | 21 | 4618.568 | | Fe I | 1151 | | 4587.132 | | Fe I | 795 | 4600.937 | | Fe I | 591 | 4618.765 | | Fe I | 409 | | 4587.72 | P | Fe I | 971 | 4601.00 | | Cl I | 15 | 4618.800 | | v r | 39 | | 4587.86 | | Cr I | 125 | 4601.021 | | Cr I | 32 | 4618.83 | | Cr II | 44 | | | | A II | | | | | | | | | | | 4587.90 | | | 16 | 4601.05 | | Gd II | 44 | 4618.85 | | CII | 50 | | 4587.91 | | PII | 15,35 | 4601.15 | _ | Cr I | 172 | 4619.294 | | Fe I | 821 | | 4587.91 | | P III | 7 | 4601.34 | P | Fe II | 43 | 4619.329 | | Co I | 27 | | 4588.082 | | Al II | 45 | 4601.478 | | N II | 5 | 4619.4 | P | N V | 1 | | 4588.13 | | Ne II | 68 | 4601.97 | | P II | 15 | 4619.525 | | Ti I | 261 | | 4588.194 | | Al II | 45 | 4601.97 | | Zr II | 138 | 4619.551 | | Cr I | 81
81 | | -200 · 101 | | | a'U | #00T+01 | | II | ¥00 | 4019:001 | | OF I | 0.1 | | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-------------------------------------|------|----------------|---------------------|----------------------|-----------|----------------|--------------------|----------------------|--------|-----------------|---------------| | 4619.64 8 | | v i | | 4634.16 | | N III | 2 | 4649.54 | P | Cr I | 233 | | 4619.048
4619.771 | | VI | 4 | 4634.21 | | V II | 210 | 4649.828 | | Fe I | 592 | | 4619.87 | | La II | 76 | 4634.59 | | Cr I | 171 | 4650.016 | | Ti I | 145 | | 4620.13 | P | Fe I | 468 | 4634.60 | P | Fe II | 25 | 4650.04 | P | Fe II | 146 | | 4620.38 | | Ni I | 163 | 4634.73 | | Ne II
La II | 67
133 | 4650.16
4650.544 | | C III | 1
59 | | 4620.513 | | Fe II | 38
32 | 4634.95
4635.176 | | V I | 133
4 | 4650.646 | | Al II | 59
59 | | 4621.00
4621.28 | | Cr I
O II | 32
92 | 4635.328 | | Fe II | 186 | 4650.841 | | 0 11 | 1 | | 4621.39 | | Fe III | 108 | 4635.539 | | Ti I | 261 | 4651.285 | | Cr I | 21 | | 4621.392 | | N II | 5 | 4635.62 | P | Fe I | 319 | 4651.35 | | C 111 | 1 | | 4621.41 | P | Cr II | 25 | 4635.7
4635.846 | | Al II
Fe I | 97
34 9 | 4651.42
4651.517 | P | V II
Pr II | 45
6 | | 4621.63
4621.893 | P | Fe I
Cr I | 989
32 | 4635.845 | | re I
Ti II | 38 | 4652.158 | | Cr I | 21 | | 4621.893
4621.963 | | Cr I | 32,244 | 4636.42 | | La II | 101 | 4652.280 | | Fe II | 219 | | 4622.40 | P | Fe II | 17 | 4636.66 | P | Fe I | 513 | 4652.816 | | Mn II | 18 | | 4622.491 | | Cr I | 233 | 4637.182 | | Cr I
Ti I | 32
261 | 4653.0
4653.49 | P | Al II
Fe I | 81
17 | | 4622.71
4622.71 | | Hf II
P II | 70
3 6 | 4637.209
4637.25 | | A II | 201
31 | 4653.49
4654.14 | r | Si IV | 7 | | 4622.71
4622.761 | | Cr I | 36
81 | 4637.512 | | Fe I | 554 | 4654.23 | | 0 I | 18 | | 4623.020 | | Co I | 156 | 4637.772 | | Cr I | 32 | 4654.286 | | Ce II | 154 | | 4623.098 | | Ti I | 145 | 4637.887 | | Ti I | 261 | 4654.501 | | Fe I
O I | 38
18 | | 4624.11 | | S II
V I | 90 | 4638.016
4638.12 | | Fe I
Si III | 822
13 | 4654.56
4654.57 | | N II | 18
11 | | 4 624.404
4 624.42 | | V I
Fe III | 39
108 | 4638.854 | | 0 II | 1 | 4654.628 | | Fe I | 554,821 | | 4624.42
4624.561 | | Co I | 141 | 4639.001 | | Gd II | 64,102 | 4654.736 | | Cr I | 186 | | 4624.657 | | v i | 94 | 4639.150 | | Mn II | 18 | 4654.986 | | Gd II | 65 | | 4624.86 | | Zr II | 116 | 4639. 3 26 | | Al II
Ti I | 69
1 45 | 4655.05
4655.36 | | Al II
O I | 106
18 | | 4624.899 | | Ce II
Fe I | 27
554 | 4639.369
4639.384 | | Al II | 145
69 | 4655.49 | | La II | 75 | | 4625.052
4625.30 | | re 1
Cr I | 171 | 4639.538 | | Cr I | 186 | 4655.661 | | N1 I | 115 | | 4625.44 | P | Fe I | 974 | 4639.669 | | Ti I | 145 | 4655.712 | | Ti I | 261 | | 4625.549 | - | Fe II | 219 | 4639.725 | | Al II | 69 | 4655.75 | P | Ti II | 38 | | 4625.65 | | Cr I | 244 | 4639.833 | a. | Al II
Ti I | 69
1 4 5 | 4656.048
4656.189 | | Ti I
Cr I | 145
147 | | 4625.71 | | C II
Co I | 49
176 | 4639.944
4640.062 | | V I | 145
39 | 4656.189
4656.468 | | Ti I | 6 | | 4625.767
4625.911 | | Fe II | 176
186 | 4640.14 | | HP II | 74 | 4656.74 | | S II | 9 | | 4625.925 | | Cr I | 244 | 4640.309 | | v r | 94 | 4656.80 | | Si II | | | 4626.188 | | Cr I | 21 | 4640.362 | | Al II | 69
60 | 4656.837 | | Cr I
Fe II | 311
43 | | 4626.36
4626.467 | P | Fe I
Mo I | 636
6 | 4640.384
4640.431 | | Al II
Ti I | 69
261 | 4656.974
4657.210 | | Ti II | 59 | | | | v i | 39 | 4640.55 | | Cr I | 171 | 4657.38 | | N1 I | 254 | | 4626.480
4626.53 | | V I
Fe III | 39
108 | 4640.64 | | N III | 2 | 4657.390 | | Co I | 156 | | 4626.544 | | Mn I | 230 | 4640.67 | | Cr I | 244 | 4657.598 | | Fe I | 346 | | 4626.565 | | Tm II | | 4640.735 | ~ | V I | 39
947 | 4657.64 | | Zr I | 64
15 | | 4626.61 | | P II | 15 | 4641.22 | P
Forb | Fe I
K I | 347
2 | 4657.94
4658.03 | P | A II
Fe II | 15
170 | | 4626.758 | n | Fe I
Fe II | 4 10
170 | 4641.77
4641.811 | FUFD | O II | 2
1 | 4658.03 | F | Lu I | 2 | | 4626.78
4626.81 | P | re II
Cr I | 170
209 | 4641.90 | | N III | 2 | 4658.12 | | P II | 15 | | 4627.02 | P | Fe I | 637 | 4642.011
4642.235 | | Cr I
Sm II | 244
36 | 4658.29
4658.64 | | Fe I
C IV | 591
8 | | 4627.22 | | Bu I | 1 | | ** - | | | | | | | | 4627.48 | | V II | 210 | 4642.27
4642.58 | Forb
P | K I
Fe I | 2
688 | 4659.38
4660 | P | K II
C IV | 5
9 | | 4627.66
4627.85 | | Gd II
Ne II | 43
73 | 4643.086 | • | N II | 5 | 4660.93 | P | Fe II | 146 | | 4627.85
4627.86 | P | Fe II | 5 4 | 4643.20 | P | Fe I | 38 | 4661.19 | P | Fe II | 170 | | 4628.160 | | Ce II | 1 | 4643.468 | | Fe I | 820 | 4661.22 | D | C1 I
Fe I | 15
347 | | 4628.4410 | | A I | 9 | 4643.69
4644.09 | P | Y I
Fe II | 4
31 | 4661.33
4661.538 | P | re I
Fe I | 1207 | | 4628.473
4628.60 | Р | Cr I
Fe I | 186
819 | 4644.09
4644.82 | ,F | Zr I | 64 | 4661.635 | | 0 11 | 1 | | 4628.69
4628.71 | P | P II | 28 | 4645.193 | | Ti I | 145 | 4661.78 | | Zr II | 129 | | 4628.751 | | Pr II | 1 | 4645.28 | | La II | 8 | 4661.88 | | Eu I | 1 | | 4628.821 | | Fe II | 219 | 4645.971 | | V I | 4 | 4661.933 | | Mo I | 6 | | 4628.908 | | Co I | 15 | 4646.059 | | Pr II | 22 | 4661.975 | D Fact | Fe I | 409
13 | | 4629.07 | _ | Zr II | 139 | 4646.174
4646.326 | | Cr I
Gd II | 21
82 | 4662.0
4662.51 | P Forb | Na I
La II | 13
8 | | 4629.29
4629.336 | P | Ti II
Fe II | 38
37 | 4646.326 | | V I | 39 | 4662.71 | P | Ti II | 38 | | 4629.336 | | Ti I | 145 | 4646.495 | | Cr I | 147 | 4662.74 | P | T1 II | 38 | | 4629.359 | | Co I | 156 | 4646.684 | | Sm II | 26 | 4662.767 | | Mo I | 6 | | 4629.7 | | Al II | 35 | 4646.808 | n | Cr I | 186
145 | 4663.054
4663.183 | | Al II
Fe I | 2
754 | | 4629.814
4629.90 | P | Zn I
Fe II | 8
170 | 4646.94
4647 | P
P | N1 I
C IV | 145
6 | 4663.328 | | Cr I | 186 | | | | | | 4647.34 | | Ne II | 72 | 4663.403 | | Co I | 156 | | 4629.98
4630.125 | P | N1 I
Fe I | 223
115 | 4647.40 | | C III | 1 | 4663.53 | | C III | 5 | | 4630.125
4630.52 | | CII | 49 | 4647.40 | | T1 IV | | 4663.700 | | Fe II | 44 | | 4630.537 | | N II | 5 | 4647.42 | P | N1 I | 148 | 4663.76 | | La II
Fe III | 82
52 | | 4630.785 | _ | Fe I | 969 | 4647.437
4647.50 | | Fe I
La II | 409
77 | 4663.78
4663.832 | | re III
Cr I | 52
186 | | 4631.03 | P | Fe I
Si IV | 1071
6 | 4647.50
4647.585 | | Mn II | 18 | 4664.14 | | Hf II | 14 | | 4631.38
4631.49 | | S1 IV
Fe I | 1152 | 4647.72 | P | Fe I | 722 | 4664.272 | | Gd II | 127 | | 4631.5 | | Al II | 97 | 4647.759
4648.126 | | Nd II
Cr I | 46
32 | 4664.32
4664.647 | P | Ni I
Pr II | 147
27 | | 4631.895 | | Fe II | 219 | | | | | | מ | Fe I | 347 | | 4632.14 | P | Fe I | 754
171 | 4648.160
4648.17 | | Sm II
S II | 1
36 | 4664.71
4664.79 | P
P | re I
Fe II | 17 | | 4632.180 | P | Cr I
Fe I | 171
8 2 0 | 4648.23 | P | Fe II | 38 | 4664.798 | | Cr I | 186 | | 4632.83
4632.915 | r | Fe I | 39 | 4648.62 | | Al II | 82 | 4664.811 | ~ | Na I | 12 | | 4633.05 | P | Fe I | 17 | 4648.659 | | N1 I | 98 | 4665 | P
P | C IV
Fe I | 7
1115 | | 4633.2 | | Al II | 97 | 4648.868
4648.933 | | Cr I
Fe II | 32
25 | 4665.24
4665.56 | P | Fe I | 1044 | | 4633.286 | | Cr I
Fe I | 186
410 | 4648.933
4649.06 | | A II | 51 | 4665.8 | P Forb | Na I | 13 | | 4633.764
4633.99 | | re I
Zr I | 410
5 | 4649.139 | | 0 11 | 1 | 4665.80 | P | Fe II | 26 | | 4634.11 | | Cr II | 44 | 4649.461 | | Cr I | 32 | 4665.87 | | Si III | 13 | | | | | | • | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------------------------|------|-----------------|--------------------|----------------------|------|-----------------|-----------------|----------------------|------|----------------|---------------| | 4665.90 | | C III | 5 | 4681.908 | | Ti I | 6 | 4700.42 | P | Fe I | 67 | | 4665.902
4666.149 | | Cr I
V I | 233 | 4681.990 | | Cu II | 4 | 4700.608 | | Cr I | 62 | | 4666.215 | | Cr I | 9 4
99 | 4682.12
4682.28 | | La II
Ra II | 37
1 | 4700.80 | | PII
 14 | | 4666.28 | | AII | 51 | 4682.29 | | A II | • | 4701.052
4701.159 | | Fe I
Mn I | 820
21 | | 4666.448 | | Gd II | 101 | 4682.32 | | YII | 12 | 4701.23 | | 0 11 | 58 | | 4666.512 | | Cr I | 186 | 4682.361 | | Co I | 156 | 4701.336 | | N1 I | 101 | | 4666.750
4666.8 | | Fe II
Al II | 37 | 4682.58 | | Fe I | 384 | 4701.536 | | N1 I | 235 | | 4666.994 | | N1 I | 105
146 | 4682.68
4683.018 | | Hf II
Si III | 102
13 | 4701.65
4701.76 | | Al III
O II | 6
58 | | | | | | | | | | 1101110 | | 0 11 | 90 | | 4667.181 | | Cr I | 99 | 4683.43 | | Zr I | 63 | 4701.90 | P | Fe I | 688 | | 4667.28
4667.459 | | N II
Fe I | 11
822 | 4683.565
4683.774 | | Fe I
Si III | 346
13 | 4701.92 | | Cr I | 170 | | 4667.53 | P | Ti I | 77 | 4684.457 | | V I | 94 | 4702.3164
4702.57 | | A I
N II | 9
68 | | 4667.585 | | Ti I | 6 | 4684.484 | | Ti I | 203 | 4702.9758 | | Mg I | 11 | | 4667.766 | | Ni I | 163 | 4684.605 | | Ce II | 228 | 4702.9831 | | Mg I | 11 | | 4668.07
4668.142 | P | Fe I
Fe I | 826
554 | 4684.605
4684.77 | | Cr I
Cr II | 146
178 | 4702.9909 | | Mg I | 11 | | 4668.357 | | Ti I | 77 | 4685.03 | P | Fe I | 347 | 4703.03
4703.18 | | Zr II
O II | 138 | | 4668.560 | | Na I | 12 | 4685.19 | | Zr II | 129 | 4703.13 | | La II | 40
76 | | 4660 70 | | | | | | _ | | | | | | | 4668.58
466 8.91 | | S II
La II | 36
76 | 4685.265
4685.682 | | Ca I
He II | 51 | 4703.3 6 | | AII | | | 4669.174 | | Fe I | 821 | 4685.837 | | Ge I | 1
3 | 4703.576
4703.62 | | Nd II
Hf II | 55
72 | | 4669.273 | | V I | 4 | 4685.95 | P | Fe II | 50 | 4703.808 | | Ni I | 133 | | 4669.33 | | 0 11 | 90 | 4686.218 | | Ni I | 98 | 4704.33 | | N II | 68 | | 4669.336
4669.396 | | Cr I
Sm II | 186
7 | 4686.921 | | Ti I
V I | 203 | 4704.386 | | Co I | 178 | | 4669.502 | | Ce II | . (| 4686.926
4687.183 | | Sm II | 93
3 | 4704.395 | | Ne I | 11 | | 4669.53 | | O II | 89 | 4687.30 | P | Fe I | 17 | 4704.397
4704.958 | | Sm II
Fe I | 1
821 | | 4669.650 | | Sm II | 26 | 4687.387 | | Fe I | 347 | 4705.099 | | V I | 136 | | 4669.67 | | Cr I | 170 | 4607 67 | P | Fe I | 0.47 | | | | | | 4669.977 | | Ru I | 11 | 4687.67
4687.80 | P | re I
Zr I | 347
43 | 4705.355 | | O II
Fe I | 25 | | 4670.170 | | Fe II | 25 | 4687.82 | P | Ti I | 111 | 4705.464
4705.50 | | N1 I | 752
101 | | 4670.404 | | Sc II | 24 | 4688.38 | P | Fe I | 1071 | 4705.93 | | N1 I | 128 | | 4670.483 | | V I | 39 | 4688.392 | | Ti I | 306 | 4706.102 | | Cr I | 170 | | 4671.25
4671.36 | P | Fe III
Cr II | 58
178 | 4688.45
4688.45 | P | V II
Zr I | 4 5
5 | 4706.178 | - | V I | 94 | | 4671.686 | - | Cu II | 4 | 4688.65 | | La II | 92 | 4706.31
4706.41 | P | Fe I
N II | 890
68 | | 4671.688 | | Mn I | 21 | 4689.374 | | Cr I | 186 | 4706.542 | | Nd II | 3 | | 4671.82 | | La II | 80 | 4689.46 | P | Ti II | 38 | 4706.574 | | V I | 119 | | 4671.94 | P | Sc II | 48 | 4690.146 | | Fe I | 820 | 4700 007 | | Sc I | | | 4672.02 | P | Fe I | 1045 | 4690.38 | P | Fe I | 17 | 4706.967
4707.281 | | Fe I | 22
554 | | 4672.081 | | Pr II | 21 | 4690.827 | | Ti I | 76 | 4707.487 | | Fe I | 346 | | 4672.75 | n | 0 I | 17 | 4690.97 | | 0 11 | 58 | 4707.541 | | Pr II | 5 | | 4672.83
4673.169 | P | Fe I
Fe I | 40
820 | 4691.17
4691.336 | | La II
Ti I | 23
75 | 4707.754 | | Cr I | 195 | | 4673.28 | P | Fe I | 822 | 4691.414 | | Fe I | 409 | 4707.78
4707.80 | | Zr I
O II | 63
89 | | 4673.462 | | Be II | 6 | 4691.47 | | 0 11 | 58 | 4708.040 | | Cr I | 186 | | 4673.555 | | Cu II | 4 | 4691.55 | P | Fe II | 17 | 4708.663 | | Ti II | 49 | | 4673.70 | | 0 I | 17 | 4692.45 | P | Ti I | 77 | 4708.854 | | Ne I | 11 | | 4673.75 | | 0 11 | 1 | 4692.50 | | La II | 75 | 4708.94 | | Ba II | 15 | | 4673.91 | | CIII | 5 | 4692.97 | | Cr I | 99 | 4708.972 | | Fe I | 889 | | 4674.41
4674.599 | | Zr II | 139 | 4693.190 | | Co I | 156 | 4708.976 | | T1 I | 203 | | 4674.65 | P | Sm II
Fe I | 14
40 | 4693.628
4693.670 | | Sm II
Ti I | 14
6 | 4709.092 | | Fe I | 821 | | 4674.84 | - | ΥÏ | 4 | 4693.949 | | Cr I | 99 | 4709.336
4709.45 | | Sc I
N II | 22
25,68 | | 4674.98 | | N II | 11 | 4694.13 | | s 1 | 2 | 4709.484 | | Ru I | 14 | | 4675.118 | | Ti I | 77 | 4694.55 | | N II | 61 | 4709.714 | | Nd II | 7 | | 4675.45
4675.639 | | Hf II
Ni I | 92
115 | 4695.153
4695.45 | | Cr I
S I | 99
2 | 4709.715 | | Mn I | 21 | | 20.000 | | | 110 | 1000110 | | ~ 1 | ~ | 4710.04 | | Ne II | 73 | | 4676.234 | | 0 11 | 1 | 4695.91 | | N II | 68 | 4710.04 | | 0 11 | 24 | | 4676.911 | | Sm II
O II | 3 | 4696.12 | P | Ce II | 153 | 4710.058 | | Ne I | 11 | | 4677.00
4677.528 | | O II
Co I | 91
15 | 4696.25
4696.36 | | S I
O II | 2
1 | 4710.08 | | Zr I
Ti I | 43 | | 4677.59 | P | Fe I | 1072 | 4696.71 | P | Sc II | 48 | 4710.186
4710.24 | | Cr I | 75,203
145 | | 4677.67 | | S III | 10 | 4696.923 | | Ti I | 203 | 4710.286 | | Fe I | 409 | | 4677.858 | | Tm II
N II | 5 | 4697.062 | | Cr I | 62 | 4710.566 | | V I | 119 | | 4677.93
4678.160 | | Cq I | 62
2 | 4697.395
4697.62 | | Cr I
Cr II | 195
177 | 4711.68 | P | Ti I | 111 | | 4678.41 | P | Fe I | 688 | 4698.276 | | Sc II | 13 | 4711.732
4711.91 | | Sc I
Zr I | 22
64 | | | | _ | | | | | | | | | •• | | 4678.852 | ъ | Fe I | 821 | 4698.389 | | Co I | 156 | 4711.975 | | Gd II | 64 | | 4678.94
4678.95 | P | Ce II
P II | 153
28 | 4698.408
4698.456 | | N1 I
Cr I | 235
186 | 4712.060 | | Ne I | 16 | | 4679.229 | | Fe I | 688 | 4698.48 | | 0 11 | 40 | 4712.069
4712.104 | | Ni I
Fe I | 131
467 | | 4679.73 | P | Ti I | 77 | 4698.615 | | Cr I | 62,146 | 4712.13 | | N II | 68 | | 4679.87 | P | Cr II | 25 | 4698.62 | _ | N II | 68 | 4712.92 | | La II | 38 | | 4679.96
4680.127 | P | Fe I | 1071 | 4698.64 | P | Cr II | 25
50 | 4713.057 | | Sm II | 49 | | 4680.127
4680.138 | | Ce II
Zn I | 18
2 | 4698.67
4698.766 | P | Ti II
Ti I | 59
75 | 4713.143 | ъ | He I | 12 | | 4680.297 | | Fe I | 39 | 4698.86 | p | Ti I | 75
203 | 4713.18
4713.26 | P | Fe II
Y II | 26
22 | | | | | | | | | | -1.10.20 | | | 22 | | 4680 458 | | Ce II | 2 | 4698.947 | | Cr I | 146 | 4713.373 | | He I | 12 | | 4680.475
4680.49 | | Fe I
Cr I | 34 6
186 | 4699.180
4699.21 | | Co I
O II | 27
25 40 | 4713.84 | P | Ni I | 128 | | 4680.539 | | WI | 1 | 4699.589 | | Cr I | 25,40
292 | 4713.996
4714.074 | | Ce II
Fe I | 250
1206 | | 4680.734 | | Nd II | 4 | 4699.62 | | La II | 39 | 4714.074 | | V I | 1206
119 | | 4680.870 | _ | Cr I | 170 | 4699.72 | | Hf II | 71 | 4714.182 | | Fe I | 591 | | 4681.05
4681 32 | P | Ni I
S II | 143 | 4700.1 | | Ne II | 67 | 4714.421 | | N1 I | 98 | | 4681.32
4681.52 | | A II | 8
76 | 4700.12
4700.171 | | N II
Fe I | 68
935 | 4714.53 | | Fe III | 57 | | 4681.786 | | Ru I | 6 | 4700.171 | | S II | 935
52 | 4714.83
4715.12 | | Ce II
Cr II | 17
179 | | | | | | | | | - | 10.12 | | V: 11 | 178 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|--------------------|---------------------|--------|----------------|---------------|----------------------|------|----------------|-------------------| | 4715 005 | | Ti I | 6 | 4730.711 | | Cr I | 145 | 4748.525 | | v 1 | 113 | | 4715.295
4715.344 | | Ne I | 16 | 4730.92 | | As II | 3 | 4748.67 | | C1 II | 75
85 | | 4715.589 | | Nd II | 49 | 4731.172 | | Ti I | 202 | 4748.73 | | La II
Cr I | 65
195 | | 4715.778 | | N1 I | 98 | 4731.36 | | Hf II
Fe II | 38
43 | 4749.25
4749.25 | P | Fe I | 1098 | | 4715.900 | | V I | 136
13 | 4731.439
4731.77 | P | Fe I | 67 | 4749.68 | - | Co I | 156 | | 4716.13
4716.226 | P | Sc II
S II | 13
9 | 4731.809 | - | N1 I | 163 | 4749.93 | | Fe I | 1206 | | 4716.44 | | La II | 52 | 4732.051 | | Co I | 15 | 4750.49 | P | Fe II | 206 | | 4716.576 | | Gd II | 102 | 4732.08 | | A II
Zr I | 38
48 | 4750.990
4751 | P | V I
N V | 113
5 | | 4716.644 | | V I | 51 | 4732.34 | | Zr I | -10 | 4101 | • | ., . | • | | 4716 650 | | Si III | | 4732.465 | | N1 I | 235 | 4751 | P | O VI | 10 | | 4716.658
4716.85 | P | Fe I | 6 34 | 4732.53 | | Ne II | 67 | 4751.04 | | Cr I | 290 | | 4717.031 | | Sc I | 14 | 4732.60 | _ | Gd II | 65 | 4751.34 | | O II
V I | 24
94 | | 4717.58 | | La II | 87 | 4732.96 | P
P | T1 II
N IV | 29
11 | 4751.574
4751.822 | | Na I | 11 | | 4717.688 | | Cr I | 170 | 4733
4733.426 | • | Ti I | 202 | 4752 | P | N IV | 11 | | 4717.692
4717.718 | | V I
Sm II | 119
41 | 4733.596 | | Fe I | 38 | 4752.084 | | Cr I | | | 4718.16 | | Ca II | 7 | 4734.094 | | Sc I | 14 | 4752.124 | | N1 I | 165 | | 4718.329 | | Sm II | 53 | 4734.100 | | Fe I | 1133
4 | 4752.426
4752.70 | | N1 I
O II | 132
24 | | 4718.429 | | Cr I | 186 | 4734.177 | | Pr II | 4 | 4102.10 | | 0 11 | | | 4710 40 | | N II | 68 | 4734.427 | | Gd II | 43 | 4752.7313 | | Ne I | 21 | | 4718.43
4719.040 | | Gd II | 43 | 4734.52 | | Y II | | 4752.87 | | Cr I | 194 | | 4719.10 | | Hf II | 15 | 4734.682 | | Ti I | 233 | 4753.06 | | Zr I
Sc I | 66
5 | | 4719.12 | | Zr I | 66 | 4734.75 | | C II
Co I | 48
156 | 4753.152
4753.957 | | V I | 113 | | 4719.37 | | Ne II | 67 | 4734.828
4734.94 | | Zr II | 138 | 4754.042 | | Mn I | 16 | | 4719.515
4719.80 | | Ti II
Zr II | 59
116 | 4735.67 | | Hf II | 25 | 4754.358 | | Co I | 156 | | 4719.838 | | Sm II | 3 | 4735.75 | | Hf II | 59 | 4754.38 | | Ti I | 202 | | 4719.93 | | La II | 81 | 4735.846 | | Fe I | 1042 | 4754.635 | | Pr II
Cr I | 4
168 | | 4720.15 | P | Fe II | 54 | 4735.93 | | A II | 6 | 4754.743 | | Cr 1 | 100 | | | | D 77 | 8 | 4736.13 |
 Cr I | 195 | 4754.768 | | N1 I | 141 | | 4720.26
4720.56 | P | P II
Fe I | 8
1114 | 4736.50 | | Ni I | 99 | 4755.12 | | S II | 35 | | 4720.830 | r | Sc I | 14 | 4736.780 | | Fe I | 554 | 4755.137 | | Cr I | 124 | | 4720.997 | | Fe I | 1071,409 | 4737 | P | C IV | 12 | 4755.347 | | Gd II
Cl II | 134
13 | | 4721.14 | | Cr I | 232 | 4737.282 | | Ce II
Cr I | 145 | 4755.64
4755.728 | | Mn II | 5 | | 4721.273 | | Gd II | 83
75 | 4737.350
4737.59 | | V II | 16 | 4756.113 | | Cr I | 145 | | 4721.43
4721.524 | | C1 II
V I | 108 | 4737.633 | | Fe I | 590 | 4756.519 | | N1 I | 98 | | 4721.59 | | N II | 68 | 4737.642 | | Sc I | 14 | 4756.722 | | Co I | 180 | | 4721.62 | | A II | 85 | 4737.769 | | Co I | 57 | 4757.326 | | Cr I | 290 | | | | | • | 4738.11 | | C II | 1 | 4757.37 | | v I | 113 | | 4722.159
4722.278 | | Zn I
Sr I | 2
5 | 4738.29 | | Mn II | 5 | 4757.50 | | V I | 113 | | 4722.333 | | Bi I | 2 | 4738.41 | | C1 II | 75 | 4757.565 | | WI | 7 | | 4722.58 | | Ca II | 7 | 4738.52 | P | Fe II | 170 | 4757.582 | | Fe I
Cr I | 634,1115
231 | | 4722.603 | | Ti I | 75 | 4739.108 | | Mn I
Cl II | 21
13 | 4757.591
4757.791 | | Gd II | 45 | | 4722.652 | | Bi I | 2 | 4739.42
4739.48 | | Zr I | 43 | 4757.841 | | Ru I | 12 | | 4722.741
4722.877 | | Cr I
V I | 195
108 | 4739.49 | | Ce II | 157 | 4757.842 | | Ce II | | | 4723 | P | N IV | 11 | 4739.49 | | PII | 14 | 4758.120 | | Ti I | 233 | | 4723.06 | | Cr I | 145 | 4739.59 | | Mg II | 18 | 4758.42 | | Ni I | 193 | | | | m | | 4739.80 | | La II | 64 | 4758.421 | | Cu II | 1 | | 4723.171 | | Ti I
Cr I | 75
292 | 4740 | P | N IV | 11 | 4758.742 | | V I | 51 | | 4723.18
4723.37 | P | Ni I | 162 | 4740.165 | | N1 I | 99 | 4758.913 | | Ti I | 41 | | 4723.88 | P | N1 I | 167 | 4740.27 | | La II | 8 | 4759.272 | | Ti I
Cr I | 233
124 | | 4724.07 | P | Fe II | 17 | 4740.343
4740.40 | | Fe I
Cl II | 409
51 | 4759.74
4759.74 | | Ti I | 202 | | 4724.416 | | Cr I
La II | 145
50 | 4741.018 | | Sc I | 14 | 4759.907 | | Cr I | 169 | | 4724.42
4724.679 | | Ti I | 203 | 4741.081 | | Fe I | 688 | 4760.07 | P | Fe I | 384 | | 4725.090 | | Ce II | 153 | 4741.089 | | Cr I | 292 | 4760.15 | P | Fe II | 169
114 | | 4725.67 | | Cr I | 195 | 4741.34 | P | N1 I | 166 | 4760.23 | P | N1 I | 114 | | | | 10°- 7 | 1104 | 4741.533 | | Fe I | 34 6 | 4760.59 | | Hf II | 85 | | 4725.94
4725.95 | | Fe I
Cr I | 11 34
99 | 4741.71 | | OII | 25 | 4760.98 | | Y I | 4 | | 4726.165 | | Fe I | 384 | 4741.922 | | Sr I | 5 | 4761.242 | | Cr I | 169
176 | | 4726.725 | | Gd II | 148 | 4742.00 | | Ge II
Ti I | 2
202 | 4761.42
4761.526 | | Cr II
Mn I | 176
21 | | 4726.91 | _ | A II | 14
695 | 4742.129
4742.32 | P | Ti I | 202
111 | 4761.67 | | Zr II | 107 | | 4727.01
4727.153 | P | Fe I
Cr I | 6 3 5
99 | 4742.4 | • | 8 11 | 8 | 4761.73 | | Cr I | 194 | | 4727.21 | | c II | 48 | 4742.631 | | v I | 128 | 4762 | P | N IV | 11 | | 4727.405 | | Fe I | 821 | 4742.791 | _ | Ti I | 233 | 4762.376 | | Mn I
C I | 21
6 | | 4727.476 | | Mn I | 21 | 4742.93 | P | Fe I | 1072 | 4762.41 | | 0 1 | | | | | WA T | 146 | 4743.08 | | La II | 75 | 4762.627 | | Ni I | 71 | | 4727.851
4727.9 | P | Ni I
Mn II | 146
5 | 4743.112 | | Cr I | 290 | 4762.727 | | Pr II | 26 | | 4727.936 | | Co I | 15 | 4743.28 | P | Fe II | 31 | 4762.77 | | Ti II | 17 | | 4728.41 | | La II | 22 | 4743.814 | _ | Sc I | 14 | 4762.78
4763.38 | | Zr I
S II | 66
35 | | 4728.42 | | Ni I | 115 | 4744.13
4744.64 | P
P | Fe I
Fe I | 1168
17 | 4763.624 | | Nd II | 54 | | 4728.468 | | Gd II
Fe I | 65
-822 | 4744.90 | * | CII | 1 | 4763.79 | P | Fe II | 50 | | 4728.555
4728.769 | | Sc I | 522
1 4 | 4744.925 | | Pr II | 3 | 4763.84 | P | Ti II | 48 | | 4728.768 | | Fe I | 1043a | 4745.129 | | Fe I | 67 | 4763.865 | | Nd II | 6
1 4 6 | | 4729.226 | | Sc I | 14 | 4745.308 | | Cr I | 61 | 4763.950 | | N1 I | 740 | | | | w. • | 005 | 4745.680 | | Sm II | 7 | 4764.294 | | Cr I | 231 | | 4729.291 | L | N1 I
8 II | 235
46 | 4745.806 | | Fe I | 821,1068 | 4764.535 | ; | Ti II | 48 | | 4729.45
4729.544 | L | V I | 93 | 4746.115 | | Co I | 182 | 4764.648 | | Cr I | 124
5 | | 4729.699 | | Fe I | 688 | 4746.638 | | V I | 113 | 4764.7
4764.89 | P | Mn II
A II | 15 | | 4729.72 | 3 | Cr I | 169 | 4747.00
4747.143 | | Cr I
Ce II | 168 | 4765.30 | | C1 II | 13 | | 4730.026 | 35 | Mg I | 10
72 | 4747.143 | | Ti I | 75 | 4765.485 | 5 | Fe I | 40 | | 4730.24
4730.361 | | Ne II
Mn II | 72
5 | 4747.680 | | Ti I | 233 | 4765.78 | | Hf II | 84 | | 4790.30 | | V I | 108 | 4747.941 | | Na I | 11 | 4765.859 | , | Mn I | 21 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet Ne | |--------------------------------------|--------|----------------|-----------------|----------------------|------|----------------|----------------------|----------------------|------|---------------|--------------------| | 4766.43 0 | | Mn I | 21 | 4786.908 | **pe | Gd II | 65 | 4804.12 | Type | S II | Multiplet No. | | 4766.62 | | СІ | 6 | 4787.50 | P | Fe I | 408 | 4804.529 | | Fe I | 8
794 | | 4766.63 | | Cr I | 231 | 4787.64 | P | Ti I | 40 | 4804.59 | P | Fe I | 721 | | 4766.635 | | V I | 113 | 4787.74 | | Cr I | 168 | 4804.64 | • | Cr I | 61 | | 476 6.66 | P | Cr I | 124 | 4787.84 | | Fe I | 384 | 4805.105 | | Ti II | 92 | | 4766.87 | P | Fe I | 688 | 4788.126 | | N II | 20 | 4805.18 | P | Cr II | 25 | | 4767.142 | | Co I | 182 | 4788.69 | | Zr I | 43 | 4805.24 | | Cr I | 283 | | 4767. 280
4767. 3 0 | P | Cr I
Ti II | 231 | 4788.757 | | Fe I | 588 | 4805.416 | | Ti I | 260 | | 4767.860 | r | Cr I | 29
231 | 4788.9258
4789 | P | Ne I
C IV | 15
5 | 1805.817
4805.88 | | Gd II
Zr I | 60
43 | | 4768.072 | | Co I | 156 | 4789.354 | | Cr I | 31 | 4806.07 | | A II | 6 | | 4768.334 | | Fe I | 821 | 4789.654 | | Fe I | 753 | 4806.165 | | Gd II | 116 | | 4768.397 | | Fe I | 384 | 4789.68 | P | Ce II | 228 | 4806.255 | | Cr I | 61 | | 4768.68 | | C1 II | 4 0 | 4789.803 | | T1 I | 41 | 4806.33 | P | T1 II | 17 | | 4769.775 | | T1 I | 233 | 4790.218 | | Ne I | 32 | 4806.75 | P | Ti I | 40 | | 4769.80
4770.00 | | Cr I
C I | 283
6 | 4790.337 | _ | Cr I | 31 | 4806.996 | | N1 I | 163 | | 4770.670 | | Cr I | 124 | 4790.56
4790.72 | P | Fe I
Hf II | 1068
60 | 4807.14 | | Hf II | 57 | | 4771.09 | | Cl II. | 40 | 4790.75 | P | Fe I | 6 32 | 4807.243
4807.537 | | Fe I
V I | 634,1098 | | 4771.103 | | Ti I | 41 | 4791.00 | - | Ni I | 71 | 4807.725 | | Fe I | 113
688 | | 4771.108 | | Co I | 156 | 4791.150 | | Gd II | 65 | 4808.155 | | Fe I | 633 | | 4771.57 | | Cr I | 124 | 4791.250 | | Fe I | 633 | 4808.52 | | N1 I | 114 | | 4771.66 | | C1 II | 45 | 4791.500 | | Sc I | 5 | 4808.531 | | Ti I | 305 | | 4771.702 | | Fe I
C I | 67 | 4791.584 | | Sm II | 7 | 4808.864 | | N1 I | 160 | | 4771.72
4772.32 | | C I
Zr I | 6
43 | 4792.02 | | 8 II | 46 | 4809.00 | | La II | 37 | | 4772.54 | | 0 I | 16 | 4792.04
4792.06 | | Cl II
P II | 18
36 | 4809.14 | | Fe I
Hf II | 933 | | 4772.57 | | O IV | 9 | 4792.12 | | A II | 62 | 4809.18
4809.26 | P | Fe I | 59
10 39 | | 4772.728 | | Gd II | 133 | 4792.24 | P | Ti I | 40 | 4809.32 | F | Cr I | 230 | | 4772.77 | P | Fe II | 31 | 4792.39 | P | Ti II | 48 | 4809.94 | | Fe I | 793 | | 4772.817 | | Fe I | 38,467 | 4792.482 | | Ti I | 260 | 4810.06 | | C1 II | 1 | | 4772.89 | | N1 I | 162 | 4792.513 | | Cr I | 168 | 4810.17 | | V II | 35 | | 4772.89 | | 0 I | 16 | 4792.63 | | Au I | 3 | 4810.286 | | N II | 20 | | 4773.412
4773.52 | P | N1 I
Fe I | 167
408 | 4792.855 | | Co I | 158 | 4810.534 | | Zn I | 2 | | 4773.76 | r | 0 I | 16 | 4793.47
4793.656 | | N1 I
N II | 158 | 4810.733 | | Cr I | 144 | | 4773.942 | | Ce II | 17 | 4793.96 | P | Fe I | 20
512 | 4810.760
4811.04 | | Fe II
Fe I | 169 | | 4774.222 | | N II | 20 | 4794.22 | _ | O IV | 9 | 4811.074 | | Ti I | 467
158 | | 4774.557 | | Cr I | 124 | 4794.36 | P | Fe I | 115 | 4811.14 | | V II | 197 | | 4775.141 | | Cr I | 230 | 4794.54 | | C1 II | 1 | 4811.343 | | Nd II | 3 | | 4775.53 | | Cr I | 283 | 4794.84 | P | Ti II | 29 | 4811.57 | | C1 II | 74 | | 4775.87 | | CI | 6 | 4795.62 | | Ne II | 71 | 4811.61 | | Au I | 3 | | 4775.87 | P | Fe I | 1115 | 4795.84 | | N1 I | 128 | 4811.881 | | Sr I | 5 | | 4776.075 | | Fe I | 635 | 4795.853 | | Co I | 185 | 4811.999 | | N1 I | 130 | | 4776.311 | | Co I
Fe I | 158 | 4796. 169 | | Cr I | 283 | 4812.240 | | Ti I | 260 | | 4776.34
4776.364 | | V I | 1206
113 | 4796.210
4796.378 | | Ti I
Co I | 260 | 4812.35 | | Cr II | 30 | | 4776.519 | | νī | 128 | 4796.67 | | La II | 1 4
63 | 4812.84
4812.906 | | C I
Ti I | 5
41 | | 4777.57 | | Cr I | 124 | 4796.84 | | Cr I | 283 | 4812.940 | | Cu II | 8 | | 4777.78 | P | Cr II | 25 | 4796.930 | | V I | 113 | 4813.00 | | VII | 248 | | 4777.846 | | Sm II | 3 | 4797.157 | | Nd II | 60 | 4813.07 | | O IV | 9 | | 4778.233 | | Co I | 186 | 4797.69 | | Cr I | 230 | 4813.11 | | Fę I | 6 30 | | 4778.259 | | Ti I | 232 | 4797.973 | | V I | 93 | 4813.290 | | 81 III | 9 | | 4778.50 | | Cr I | 124 | 4797.983 | | Ti I | 260 | 4813.45 | P | Co I | 142 | | 4778.93
4779.09 | | C1 II
O IV | 4 0
9 | 4798.25
4798.269 | | O IV
Fe I | 9 | 1813.476 | _ | Co I | 158 | | 4779.11 | | SII | 8 | 4798.40 | | Cl II | 1042
13 | 4813.72 | P | Fe I
V II | 1243 | | 4779.347 | | Sc I | 5 | 4798.535 | | Ti II | 17 | 4813.952
4813.966 | | Co I | 197
158 | | 4779.444 | | Fe I | 720 | 4798.736 | | Fe I | 38 | 4814.265 | | Cr I | 144 | | 4779.710 | | N II | 20 | 4799.06 | P | Fe I | 1098 | 4814.617 | | N1 I | 98 | | 4779.87 | | Cr I | 124 | 4799.30 | |
Y I | 13 | 4814.80 | | Ge II | •2 | | 4779.979 | | Co I | 158 | 4799.412 | | Fe I | 888 | 4815.05 | | Zr I | 44 | | 4779.986 | | Ti II | 92 | 4799.423 | | Nd II | 2 | 4815.22 | P | Fe I | 720 | | 4780.60
4780.81 | P
P | Fe II
Fe I | 50 | 4799.786 | | V I | 3 | 4815.515 | | 8 11 | 9 | | 4781.04 | r | YI | 633
13 | 4799.797
4799.83 | | Ti I
Ni I | 242
161 | 4815.62 | | Zr I | 43 | | 4781.168 | | N II | 20 | 4799.859 | | Gd II | 126 | 4815.808
4815.900 | | Sm II
Co I | 14
142 | | 4781.32 | | C1 II | 40 | 4799.918 | | Cd I | 2 | 4815.92 | | Ni I | 131 | | 4781.432 | | Co I | 57 | 4799.94 | P | V II | 29 | 4816.012 | | Sm II | 41 | | 4781.718 | | Ti I | 41 | 4800.100 | | Gd II | 133 | 4816.41 | | Cr I | 283 | | 4781.82 | | C1 II | 13 | 4800.14 | _ | Fe I | 384 | 4816.47 | P | Ti I | 40 | | 4781.95 | _ | Ne II | 71 | 4800.55 | P | Fe I | 590 | 4816.47 | | Zr II | 66 | | 4782.79 | P | Fe I | 588 | 4800.652 | _ | Fe I | 1042 | 4816.67 | P | Fe I | 588 | | 4783.06 | | Cr I | 283 | 4800.77 | P | O IV | 9 | 4817.22 | | Hr II | 69 | | 4783.306
4783.420 | | Ti I
Mn I | 41
16 | 4801.030
4801.05 | | Cr I
Gd II | 168 | 4817.33 | | C I | 5 | | 4783.43 | | O IV | 9 | 4801.05
4801.150 | | Pr II | 65
36 | 4817.773
4817.847 | | Fe I
N1 I | 67
254 | | 4784.320 | | Sr I | 5 | 4801.63 | P | Fe I | 1115 | 4817.847
4818.26 | P | Fe II | 254
11 | | 4784.480 | | v i | 3 | 4801.80 | | 0 I | 15 | 4818.66 | P | Fe I | 719 | | 4784.70 | P | Cr I | 168 | 4801.90 | P | Ti I | 40 | 4819.46 | | C1 II | 1 | | 4784.94 | | Zr I | 44 | 4601.93 | P | T1 I | 40 | 4819.60 | | 8 11 | 46,52 | | 4785.070 | | Co I | 186 | 4802.20 | _ | 0 I | 15 | 4819.64 | | Y I | 13 | | 4785.42
4785.44 | | Lu II
Cl II | 5 | 4802.53 | P | Fe I | 1206 | 4819.740 | | 81 III | 9 | | 4785.44
4785.963 | | Fe I | 40
1044 | 4802.575
4802.81 | | Gd II
8 III | 43 | 4819.79 | | Cl II | 13 | | 4786.293 | | Ni I | 50 | 4802.883 | | Fe I | 888,934 | 4820.336
4820.410 | | Nd II
Ti I | 47
128 | | 4786.515 | | VI | 113 | 4803.00 | | 0 I | 15 | 4821.01 | P | Ti II | 126
29 | | 4786.541 | | N1 I | 98 | 4803.272 | | N II | 20 | 4821.143 | - | N1 I | 254 | | 4786.58 | | Y II | 22 | 4803.536 | | Gd II | 102 | 4991 00 | | T4 T | 004 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------------------------------|------|----------------|--------------------|----------------------|--------|----------------|--------------------|----------------------|------|----------------|---------------------| | 4000 00 | | čr I | 144 | 4840.329 | | Fe I | 1068 | 4858.24 | P | Fe I | 1069 | | 4822. 06
4822.3 9 | P | Ti II | 110 | 4840.874 | | Ti I | 53 | 4858.27 | P | Fe I | 1098 | | 4822.66 | P | Fe I | 633 | 4840.89 | P | Fe I | 1070
266 | 4858.74
4858.88 | | N III
N III | 9
9 | | 4823.31 | | Y II | 22 | 4841.52
4841.65 | P
P | Cr I
Fe I | 633 | 4859.030 | | Nd II | 3 | | 4823.396 | | V II
Mn I | 223
16 | 4841.67 | P | Ni I | 164 | 4859.038 | | Pr II | 25 | | 4823.516
4823.84 | | PII | 13 | 4841.701 | | Sm I | 2 | 4859.12 | | Fe I | 1068 | | 4823.93 | P | o IV | 9 | 4841.73 | | Cr I | 266 | 4859.18 | | La II
Si II | 86 | | 4824.05 | | La II | 50 | 4841.80 | | Fe I
Zr II | 1070
138 | 4859.28
4859.31 | P | Fe I | 632 | | 4824.07 | | S II | 52 | 4841.98 | | 21 11 | 100 | 4000.01 | • | | | | 4824.13 | | Cr II | 30 | 4842.01 | | N1 I | 260 | 4859.323 | | He II | 2 | | 4824.162 | | Fe I | 888 | 4842.19 | P | Fe I | 511 | 4859.748 | | Fe I | 318 | | 4824.20 | | Ge II | 2 | 4842.50 | P | V II
Fe I | 248
1098 | 4859.84
4860.029 | | Y I
D | 13
1 | | 4824.29 | _ | Zr I | 43 | 4842.71
4842.78 | P | Fe I | 1069 | 4860.20 | | Cr II | 30 | | 4824.97 | P | Cr II
Ti I | 25
250 | 4843.155 | | Fe I | 687 | 4860.35 | | N II | 67 | | 4825.445
4825.482 | | Nd II | 3 | 4843.165 | | Ni I | 50 | 4860.37 | | Cr I | 31 | | 4825.51 | | Cr I | 144 | 4843.19 | | Mn I | 43
105 | 4860.90
4860.98 | P | La II
Fe I | 8
688 | | 4825.593 | _ | Mn I | 43 | 4843.26
4843.29 | | O II
La II | 98 | 4861.03 | r | 0 11 | 57 | | 4825.71 | P | Fe II | 30 | 1010110 | | | | | | | | | 4825.91 | | Ra I | 1 | 4843.39 | P | Fe I | 794 | 4861.205 | | Cr I | 31 | | 4826.649 | | Pr II | 20 | 4843.454 | | Co I
Ba II | 158
15 | 4861.33
4861.332 | | N III
H | 9
1 | | 4826.73 | | CI | 5
22 | 4843.46
4843.53 | P | Ni I | 235 | 4861.842 | | Cr I | 31 | | 4826.87
4826.896 | | La II
Mn I | 43 | 4843.829 | - | WI | 1 | 4862.054 | | Mn I | 43 | | 4827.338 | | Ne. I | 10 | 4843.989 | | Ti I | 217 | 4862.54 | P | Fe I | 1070 | | 4827.458 | | V I | 3 | 4844.00 | | Hf II
Fe I | 16
750 | 4862.60
4863.653 | P | Fe I
Fe I | 1069
687 | | 4827.597 | | Ti I | 250 | 4844.016
4844.208 | | Sm II | 26 | 4863.75 | P | Ti I | 217 | | 4828.05
4828.66 | | Zr I
Cr I | 44
31 | 4844.31 | P | V II | 29 | 4863.78 | P | Fe I | 384 | | 4020.00 | | 0. 1 | 41 | | | | | | | | 440 | | 4828.923 | | Si III | 9 | 4844.315 | | Mn I
Ce II | 43
8 | 4863.931 | | Ni I
Ti I | 113
201 | | 4829.028 | | N1 I | 131 | 4844.87
4845.01 | P | 0 II | 30 | 4864.187
4864.282 | | N1 I | 128 | | 4829.23 | | K II
Cr I | 1
31 | 4845.17 | | N1 I | 115 | 4864.32 | | Cr II | 30 | | 4829.376
4829.568 | | Sm II | 36 | 4845.656 | | Fe I | 588,888 | 4864.38 | | PII | 13 | | 4829.68 | P | Fe I | 1038 | 4845.67 | | Y I | 13 | 4864.741 | P | V I
V I | 3
50 | | 4830.40 | P | Fe II | 206 | 4846.29
4846.47 | P | Cr I
Fe II | 208
25 | 4864.83
4864.95 | r | 0 11 | 29 | | 4830.51 | P | La II
Fe II | 51
54 | 4846.574 | • | · Ce II | 17 | 4865.02 | | Gd II | 65 | | 4831.11
4831.15 | P | N1 I | 100 | 4847.09 | P | Fe I | 67 | 4865.43 | | Hf II | 93 | | | | | | 4048 44 | | Ba II | 14 | 4865.620 | | Ti II | 29 | | 4831.183 | | N1 I | 111 | 4847.14
4847.177 | | Cr I | 144 | 4865.96 | | A II | 85 | | 4831.627
4831.642 | | Cr I
V I | 208
3 | 4847.296 | | CaI | 50 | 4866.07 | | Zr I | 44 | | 4832.065 | | Ti I | 250 | 4847.61 | P | Fe II | 30 | 4866.267 | _ | Ni I | 111 | | 4832.075 | | Sr I | 4,5 | 4847.760 | | Sm II
A II | 53
6 | 4866.77 | P | Fe I
N III | 1093
9 | | 4832.236 | | Cu II | 1 | 4847.90
4848.24 | | Cr II | 30 | 4867.18
4867.53 | P | Fe I | 38 | | 4832.276
4832.427 | | Nd II
V I | 3 | 4848.41 | P | Ti I | 217 | 4867.59 | | A II | 62 | | 4832.54 | P | Cr I | 266 | 4848.46 | | Hf II | . 83 | 4867.64 | P | Fe I | 587 | | 4832.704 | | N1 I | 146 | 4848.487 | | Ti I | 201 | 4867.73 | P | Fe II | 30 | | | | Fe I | 888,1098 | 4848.821 | | V I | 78 | 4867.79 | P | v II | 29 | | 4832.734
4832.97 | P | Cr II | 176 | 4848.898 | | Fe I | 114 | 4867.839 | | Nd II | 46 | | 4833.027 | - | V I | 78 | 4849.12 | P | N1 I | 112 | 4867.870 | | Co I | 158 | | 4833.21 | P | Fe II | 30 | 4849.18
4849.4 | P | Ti II
Ne II | 29
71 | 4868.264
4868.38 | P | Ti I
Fe I | 231
38 | | 4834.232 | | Gd II
Co I | 65
57 | 4849.67 | P | Fe I | 793 | 4868.700 | - | Sr I | 10 | | 4834.359
4834.511 | | Fe I | 115 | 4850.58 | | La II | 51,88 | 4868.82 | P | Fe II | 30 | | 4834.618 | | Sm II | 45 | 4850.84 | | Ba II | 15 | 4869.153 | P | Ru I
Fe I | 11
751 | | 4834.82 | P | N1 I | 158 | 4851.10
4851.36 | | Mg II
Zr I | 25
43 | 4869.45
4869.8 | r | Ne II | 71 | | 4835.68 | | Cr I | 229 | 4001.00 | | | | | | | | | 4835.85 | | 8 II | 46 | 4851.465 | | Cr I | 208 | 4870.05 | P | Fe I | 985 | | 4835.862 | | Fe I | 1068 | 4851.483
4852.560 | | V I
Ni I | 3
130 | 4870.129
4870.71 | P | Ti I
Fe II | 231
30 | | 4835.982 | | Nd II
Ti I | 1
241 | 4852.69 | | ΥI | 13 | 4870.796 | - | Cr I | 143 | | 4836.125
4836.18 | P | Cr I | 266 | 4853.30 | P | N1 I | 207 | 4870.845 | | N1 I | 131 | | 4836.22 | | Cr II | 30 | 4853.52 | P | Cr I | 61
99 | 4871.27 | P | Fe II
Fe I | 25
318 | | 4836.27 | | N1 I | 114 | 4853.74
4854.18 | P | Ní I
Fe I | 1243 | 4871.323
4871.58 | | 0 11 | 57 | | 4836. 79
4836. 857 | | Cl II
Cr I | 13
1 44 | 4854.365 | - | Sm II | 36 | 4871.94 | P | Fe I | 630 | | 4837.42 | P | Ti I | 250 | 4854.604 | | Mn I | 43 | 4872.02 | | Cr I | 30 | | | | | | 4054 65 | | Zr II | 78 | 4872.144 | | Fe I | 318 | | 4837.65 | P | Fe I | 12 43
85 | 4854.65
4854.727 | | Ti I | 217 | 4872.493 | | Sr I | 4 | | 483 7.65
483 7.948 | P | N1 I
Co I | 15 | 4854.87 | | Y II | 22 | 4872.69 | P | Fe I | 1115 | | 4838.09 | P | Fe I | 630 | 4854.89 | | Fe I | 1043 | 4872.91 | P | Fe I | 1097 | | 4838.244 | | Mn I | 43 | 4855.045 | | Sr I | 10
61 | 4873.27
4873.339 | P | N1 I
Gd II | 112
65 | | 4838.519 | | Fe I | 687 | 4855.146
4855.235 | | Cr I
Co I | 14 | 4873.339 | | Ni I | 111 | | 4838.651
4838.81 | P | Ni I
Fe I | 260
1167 | 4855.414 | | N1 I | 130 | 4873.58 | | N III | 9 | | 4839.08 | F | V II | 223 | 4855.54 | P | Fe II | 25 | 4873.74 | P | Fe I | 633 | | 4839.251 | | Ti I | 217 | 4855.683 | | Fe I | 687 | 4874.025 | | Ti II | 114 | | | | M1 TT | 440 | 4855.95 | P | Ti II | 114 | 4874.35 | P | Fe I | 467 | | 4839.251
4839.549 | | Ti II
Fe I | 110
588 | 4856.012 | - | Ti I | 231 | 4874.651 | | Cr I | 167 | | 4839.616 | | Gd II | 126 | 4856.19 | | Cr II | 30 | 4874.805 | | V II | 197 | | 4839.62 | | Lu II | 2 | 4856.49
4856.76 | | 0 II
0 II | 29
29 | 4874.809
4875.32 | P | N1 I
Fe I | 98
10 38 | | 4839.77 | P | Fe I | 1206
13 | 4856.76
4857.04 | | C1 II | 7 4 | 4875.462 | - | VΙ | 3 | | 483 9.87
484 0.00 | P | Y I
Fe II | 13
30 | 4857.34 | | Cr I | 61 | 4875.49. | P | V II | 248 | | 4840.02 | - | La II | 37 | 4857.382 | | N1 I | 111
200 | 4875.72
4875.89 | P | Fe I
Fe I | 12 43
687 | |
4840.22 | | Cr I | 266 | 4857.60 | | Cr II | 200 | 4075 066 | | CA II | 126 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|--------|----------------|---------------------|----------------------|------|----------------|---------------|------------------------------|--------|---------------|--------------------| | 4876.06 | | 8r I | 4 | 4896.71 | | N III | 9 | 4919.867 | | Ti I | 200 | | 4876.19 | P | Fe I | 631 | 4896.77 | | C1 II | 17 | 4920.272 | | Co I | 57 | | 4876.325 | | 8r I | 5 | 4898.52 | | Al II | 96 | 4920.28 | P . | Cr II | 36 | | 4876.41
4876.48 | P | Cr II
Cr II | 3 0
30 | 4898.76
4899.520 | | Al II
Co I | 104
92 | 4920.35
4920.509 | P Forb | He I
Fe I | 49
318 | | 4877.08 | • | A II | 112 | 4899.64 | | Al II | 96 | 4920.692 | | Nd II | 2 | | 4877.61 | P | Fe I | 384 | 4899.90 | P | Fe II | 30 | 4920.945 | | Cr I | 143 | | 4878.049 | | Gd II | 64 | 4899.910 | | T1 I | 157 | 4920.98 | | La II | 7 | | 4878.132 | | Ca I | 35 | 4899.92 | | La II | 7 | 4921.074 | _ | Ru I | 11 | | 4878.218 | | Fe I | 318 | 4899.934 | | Ba II | 3 | 4921.18 | P | N1 I | 100 | | 4879.121 | | Pr II | 20 | 4900.03 | P | Ti I | 295 | 4921.29 | | Ta I | 5 | | 4879.90 | | A II | 14 | 4900.13 | | Y II | 22 | 4921.69 | | Si II | - | | 4880.06 | | Cr I | 167 | 4900.47 | | 8 11 | 46 | 4921.768 | | T1 I | 200 | | 4880.20 | | La II
Co I | 153 | 4900.50 | P | Cr I | 202 | 4921.80 | | La II | 7 | | 4880.25
4880.30 | P | V II | 15
29 | 4900.624
4900.625 | | V I
Ti I | 118
295 | 4921.929
4922.14 | | He I
Cl II | 48
17 | | 4880.560 | - | V I | 50 | 4900.83 | P | Cr I | 202 | 4922.18 | P | Fe I | 1110 | | 4880.922 | | Ti I | 201 | 4900.97 | | Ni I | 98 | 4922.267 | | Cr I | 143 | | 4881.25 | | Zr I | 44 | 4901.30 | | 8 11 | 46 | 4922.3 | | Ne II | 71 | | 4881.3 | | Li II | 4 | 4901.65 | | Cr II | 190 | 4923.578 | | Gd II | 126 | | 4881.44 | | Y II | 12 | 4902.77 | | Al II | 96 | 4923.921 | | Fe II | 42 | | 4881.554 | | V I | 3 | 4902.89 | P | VII | 29 | 4924.043 | | Zn II | 3 | | 4881.726 | | Fe I | 588,1041 | 4903.10 | P | Fe I | 589 | 4924.08 | | S II | 7 | | 4881.81 | | N III | 9 | 4903.239 | | Cr I | 31 | 4924.28 | | C1 II | 12 | | 4881.925
4882.151 | | Fe I | 113,133
687 | 4903.317
4903.71 | | Fe I
Al III | 318
11 | 4924.60
4924.776 | | O II
Fe I | 28
114 | | 4882.183 | | Ϋ́Ι | 50 | 4903.85 | P | Fe II | 30 | 4924.83 | | Cl II | 39 | | 4882.25 | | A II | | 4904.172 | | Co I | 141 | 4925 | P | 0 V | 10 | | 4882.326 | | Ti I | 231 | 4904.285 | | v i | 50 | 4925.17 | | C1 II | 12 | | 4882.462 | | Ce II | | 4904.350 | | V I | 118 | 4925.28 | | Fe I | 1065 | | 4882.704 | | Co I | 158 | 4904.413 | | N1 I | 129 | 4925.32 | | S II | 7 | | 4883.415 | | V II | 209 | 4904.447 | | VI | 118 | 4925.396 | | Ti I | 157 | | 4883.61 | | Zr I | 44 | 4904.51 | | Hf II | 83 | 4925.578 | | N1 I | 141 | | 4883.69 | | Y II | 22 | 4904.75 | | A II | 34 | 4925.657 | | V I | 50 | | 4883.73 | | S II
V II | 46 | 4904.76 | | Cl II | 17 | 4925.90 | | Zr II | 107 | | 4884.06
4884.14 | | N III | 197
9 | 4905.09
4905.15 | | Zr I
Fe I | 43
986 | 4926.02
4926.148 | | Ta I
Ti I | 6
39 | | 4884.57 | | Cr II | 30 | 4906.11 | | ΥÏ | 13 | 4926.82 | P | Fe I | 8 44 | | 4884.915 | | Ne I | 20,35 | 4906.80 | P | Fe I | 1096 | 4926.94 | P | V II | 29 | | 4884.949 | | Cr I | | 4906.88 | | 0 11 | 28 | 4926.99 | | Hf II | 13 | | 4885.082 | | Ti I | 157 | 4906.88 | | Si II | | 4927.17 | | P II | | | 4885.435 | | Fe I | 966 | 4907.125 | | Co I | 14 | 4927.42 | | Fe I | 1 3
792 | | 4885.63 | | S II | 15 | 4907.17 | | C1 II | 39 | 4927.56 | | Fe III | 43 | | 4885.776 | | Cr I | 30 | 4907.743 | | Fe I | 687 | 4928.290 | | Co I | 158 | | 4885.957 | | Cr I | 143 | 4907.888 | | Ru I | 11 | 4928.342 | _ | Ti I | 200 | | 4886.17
4886.335 | P | Fe I
Fe I | 4 67
1066 | 4908.46 | P | Ti I
Fe I | 295 | 4928.62
4928.895 | P | V II
Ti I | 29
39 | | 4886.725 | | N1 I | 158 | 4908.61
4908.67 | r | Zr II | 115
145 | 4930.04 | P | Fe I | 6 3 1 | | 4886.821 | | v i | 50 | 4908.74 | | Fe III | 111 | 4930.183 | | Cr I | 259 | | 4886.92 | P | Fe II | 54 | 4909.105 | | Ti I | 39 | 4930.331 | | Fe I | 985 | | 4886.992 | | Ni I | 141 | 4909.387 | | Fe I | 985 | 4930.821 | | Ni I | 193 | | 4887.013 | | Cr I | 143 | 4909.726 | | Cu II | 960
5 | 4931.653 | | Cu II | 195
5 | | 4887.189 | | Fe I | 1065 | 4909.87 | | Cr I | 61 | 4932.00 | | CI | 13 | | 4887.37 | P | Fe I | 1037 | 4910.027 | | Fe I | 687 | 4932.029 | | V I | 50 | | 4887.72
4887.73 | | Zr I | 43 | 4910.328 | | Fe I | 1068 | 4933 | P | N V | 7 | | 4888.29 | | Cr I
A II | 31
135 | 4910.570
4910.838 | | Fe I
Gd II | 1068
64 | 4933.19
4933.24 | P | Fe I
A II | 1070
6 | | 4888.530 | | Cr I | 31 | 4911.205 | | Ti II | 114 | 4933.348 | | Fe I | 1065 | | 4888.542 | | Gd II | 126 | 4911.34 | | La II | 87 | 4933.878 | | Fe I | 968 | | 4888.651 | | Fe I | 1066 | 4911.52 | P | Fe I | 1098 | 4934.023 | | Fe I | 1068 | | 4889.009 | | Fe I | 67,749 | 4911.593 | | Ru I | 11 | 4934.086 | | Ba II | 1 | | 4889.06 | | A II | 15 | 4911.664 | | Zn II | 3 | 4934.46 | | Hf II | 16 | | 4889.113 | | Fe I | 985 | 4911.786 | | Fe I | 984 | 4934.83 | | La II | 72 | | 4889.15 | | Re I | 1 | 4912.030 | | N1 I | 111 | 4934.89 | | Cr I | 259 | | 4889.690
4889.73 | | Cu II
Cr I | 1
61 | 4912.38 | | V II | 222 | 4935.03 | P | N I
Fe I | 9 | | 4890.45 | P | N1 I | 114 | 4912.399
4912.49 | | Co I
Cr II | 14
190 | 4935.42
4935.61 | r | La II | 886
50 | | 4890.762 | - | Fe I | 318 | 4912.52 | P | Fe I | 1040 | 4935.830 | | Ni I | 177 | | 4890.93 | | 0 11 | 28 | 4913.248 | | Sm II | 53 | 4936.13 | | A II | 34 | | 4891.43 | | La II | 95 | 4913.366 | | Fe II | 218 | 4936.155 | | Gd II | 116 | | 4891.496 | | Fe I | 318 | 4913.616 | | Ti I | 157 | 4936.334 | | Cr I | 166 | | 4891.55 | P | Cr II | 36 | 4913.970 | | N1 I | 132 | 4936.41 | | Ta I | 11 | | 4891.828 | | Ti I | 201 | 4914.32 | | A II | 112 | 4936.99 | | C1 II | 12 | | 4891.97 | | Cr I | 61 | 4914.32 | | C1 II | 17 | 4937.196 | | Cu II | 6 | | 4891.980 | | Sr I | 10 | 4914.385 | | Nd II | 52 | 4937.337 | | N1 I | 114 | | 4892.11
4892.86 | | Gd II
Fe I | 116
1070 | 4914.90
4915.236 | | N I
Ti I | 9 | 4937.719
4938.04 | | Ti I
Ti I | 39
173 | | 4893.065 | | Ti I | 231 | 4915.236
4916.67 | P | Fe I | 157
986 | 4938.04
4938.100 | | Sm II | 17 3
23 | | 4893.12 | | Zr I | 43 | 4916.78 | - | Gd II | 125 | 4938.183 | | Fe I | 9 6 6 | | 4893.44 | | Y I | 13 | 4917.15 | | S II | 15 | 4938.283 | | Ti I | 289 | | 4000 == | | The | 1005 | | | | | 46 | | | | | 4893.59
4893.70 | P
P | Fe I
Fe I | 1096 | 4917.25 | | Fe I | 1066 | 4938.820 | | Fe I | 318 | | 4893.780 | r | re I
Fe II | 1113
36 | 4917.72
4918.00 | | Cl II
Fe I | 17 | 4939.244
49 3 9.46 | P | Fe I
Fe I | 1065,1070 | | 4893.90 | | Ti I | 201 | 4918.363 | | re 1
Ni I | 1070
177 | 4939.40 | • | Fe I | 10 43
16 | | 4893.968 | | Ce II | 31 | 4918.373 | | Cu II | 5 | 4940 | P | 0 V | 10 | | 4894.218 | | V I | 118 | 4918.712 | | N1 I | 113 | 4941.015 | | Ti I | 173 | | 4894.30
4894.43 | | Gd II
Zr II | 65 | 4918.98 | | Al II | 103 | 4941.03 | P | Cr II | 36 | | | | ~- 11 | 107 | 4918.999 | | Fe I | 318 | 4941.12 | | 0 II | 33 | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Type | Element | Multiplet No. | |--------------------------------|------|----------------|--------------------------|----------------------|--------|----------------|------------------------|----------------------|------|-----------------|----------------| | 4941.920 |) | N1 I | 114 | 4967.944 | | Sr I | 4 | 4997.099 | | Ti I | 5 | | 4942.418 | | Min I | 20 | 4968.50 | | V II | 68 | 4997.23 | | N II | 64 | | 4942.47 | | S II | 7 | 4968.566 | | Ti I | 173 | 4997.81
4998.233 | | Ba II
Ni I | 14
111 | | 4942.495 | | Cr I | 9 | 4968.575 | | Gd II
Fe I | 12 4
887 | 4998.373 | | Gd II | 133 | | 4942.59 | P | Fe I
A II | 1097
75 | 4968.709
4968.76 | | 0 I | 14 | 4998.43 | P | Al II | 30 | | 4942. 96
4943 | P | N V | 9 | 4969.65 | | PII | 13 | 4998.55 | | Cr I | 123 | | 4943.06 | - | 0 11 | 33 | 4969.927 | | Fe I | 1066 | 4999.114 | | Fe I | 1040 | | 4943.074 | 4 | T1 I | 52 | 4970.12 | | C1 II | 12 | 4999.46 | | La II
Ti I | 37 | | 4943.24 | | C1 II | 47 | 4970.39 | | La II | 37 | 4999.504 | | 11 1 | 38 | | 4943.24 | | K II | 7 | 4970.496 | | Fe I | 883 | 4999.69 | | Hf II | 35 | | 4943.42 | | P II | 13 | 4970.66 | P | Fe I | 985 | 5000.335 | | Ni I | 145 | | 4944.388 | 8 | Ti I | 173 | 4971.354 | | Ni I
Ce II | 274 | 5000.73
5000.91 | P | Fe II
Zr II | 25
95 | | 4944.59
4945 | P | Cr I
N V | 259
10 | 4971.475
4971.668 | | Sr I | 4 | 5000.97 | | Al II | 79 | | 4945.29 | P | Fe I | 466 | 4971.92 | | Li I | 5 | 5000.991 | | Ti I | 173 | | 4945.38 | | Hf II | 15 | 4971.935 | | Co I | 158 | 5001.128 | | NII | 19 | | 4945.458 | | N1 I | 145 | 4972.16 | _ | A II | 6 | 5001.15
5001.469 | | Lu I
N II | 19 | | 4945.65 | | Fe I
Ni I | 1113
1 4 8 | 4972.39
4972.90 | P
P | Fe I
Fe I | 1096
631 | 5001.489 | | Ca II | 15 | | 4946.037 | • | NI I | 140 | 4012.00 | • | | 301 | | | | | | 4946.394 | 4 | Fe I | 687 | 4973.051 | | Ti I | 173 | 5001.871 | | Fe I | 965 | | 4946.47 | | La II | 36 | 4973.108 | | Fe I | 984 | 5002.02
5002.12 | | Fe III
La II | 92 | | 4947.58 | | V II
Cr I | 197
202 | 4973.16
4973.4 | P Forb | V II
Na I | 209
10 | 5002.12 | | V I | 132 | | 4947.91
4947.99 | | Ti I | 202
39 | 4973.4 | rroid | Gd II | 64 | 5002.692 | | N II | 1 | | 4948 . 18 | | Ti I | 200 | 4974.47 | | Co I | 92 | 5002.800 | | Fe I | 687 | |
4948.54 | | Fe III | | 4975.344 | | Ti I | 283 | 5003.751 | _ | N1 I | 50 | | 4948.62 | | Sm II | 49 | 4975.415 | | Fe I | 586 | 5003.85
5004.034 | P | Fe I
Fe I | 211 | | 4948.64 | | Cr I
Zr I | 202
28 | 4976.155
4976.345 | | N1 I
N1 I | 112
49 | 5004.034 | | Co I | 1112
141 | | 4948.77 | | ZF I | 20 | 4570.040 | | | *** | 00011201 | | | | | 4948.84 | 8 | Fe II | | 4976.71 | P | N1 I | 254 | 5004.264 | | Fe II | | | 4949.45 | | A II | 62 | | P Forb | Na I
Fe I | 10 | 5004.38
5004.907 | | Cr I
Mn I | 122
20 | | 4949.58 | | Cr I | 259
4 | 4977.653
4977.731 | | re I
Ti I | 985
173 | 5004.907 | | N II | 19,6 | | 4949.76
4950.11 | | La I
Fe I | 687 | 4978.11 | P | Fe I | 986 | 5005.160 | | Ne I | 29 | | 4951.66 | | V 11 | 29 | 4978.191 | | Ti I | 173 | 5005.18 | P | Ti II | 71 | | 4952 | P | n V | 8 | 4978.541 | | Na I | 9 | 5005.60 | | K II | 2 | | 4952.06 | | La II | 92 | 4978.606 | _ | Fe I
Fe I | 966 | 5005.720
5006.126 | | Fe I
Fe I | 984
318 | | 4952.33 | | N1 I
Sm II | 113
32 | 4978.70
4979.58 | P | re I
Fe I | 1035
883 | 5006.120 | | WI | 1 | | 4952.37 | 1 | Om 11 | 02 | 2010100 | | | | | | | | | 4952.64 | | Fe I | 1068,1111 | 4979.84 | P | Fe I | 465 | 5006.71 | P | S II
Fe I | 57 | | 4952.78 | | Cr II | 14 | 4980.161
4980.30 | P | Ni I
Cr I | 112
123 | 5006.72
5006.787 | P | re 1
Cu II | 211
10 | | 4953.179
4953.20 | | Co I
Ni I | 111 | 4981.30 | P | Cr I | 123 | 5007.209 | | Ti I | 38 | | 4953.37 | | Ti I | 39 | 4981.38 | P | Ti II | 71 | 5007.286 | | CoI | 14 | | 4953.71 | | Cr I | 166 | 4981.732 | | Ti I | 38 | 5007.289 | | Fe I | 966, 1065 | | 4953.73 | | Cu II | 9 | 4982.13 | | Y II
Fe I | 20
1067 | 5007.316
5009.35 | | N II
A II | 24
6 | | 4953.97
4954.02 | | Fe II
Gd II | 168
114 | 4982.507
4982.813 | | Na I | 9 | 5009.54 | | S II | 7 | | 4954.02 | | C II | 25 | 4983.258 | | Fe I | 1067 | 5009.652 | | Ti I | 5 | | | _ | .n. • | 4000 | 4000 60 | P | Cr I | 202 | 5010.045 | | N1 I | 111 | | 4954.30
4954.33 | | Fe I
P II | 1093
13 | 4983.63
4983.855 | r | Fe I | 1066 | 5010.202 | | Ti II | 113 | | 4954.81 | | Cr I | 166 | 4984.126 | | N1 I | 143 | 5010.30 | P | Fe I | 211 | | 4955.78 | | 0 11 | 33 | 4984.905 | | Gd II | 64 | 5010.620 | | N II | 4 | | 4957.03 | | Ne I | 25 | 4985.261 | ъ | Fe I | 984 | 5010.821
5010.961 | | Gd II
N1 I | 59
144 | | 4957.15
4957.30 | | Ba II
Fe I | 10
318 | 4985.46
4985.503 | P | Cr II
Cu II | 36
6 | 5010.901 | P | Fe I | 144
1066 | | 4957.60 | | Fe I | 318 | 4985.553 | | Fe I | 318 | 5011.24 | | N II | 64 | | 4957.68 | | Fe I | 1066 | 4985.60 | | As II | 3 | 5012.026 | | NII | 64 | | 4958.26 | P | Ti I | 52 | 4985.98 | P | Fe I | 1094 | 5012.071 | | Fe I | 16 | | 4958.78 | 18 | Gd II | 6 4 | 4986.24 | | Fe I | 1070 | 5012.16 | P | Fe I | 1070 | | 4959.13 | | Nd II | 1 | 4986.82 | | La II | 22 | 5012.464 | | N1 I | 111 | | 4959.52 | 2 | C II | 25 | 4986.90 | P | Fe I | 1092 | 5012.611 | n | Cu II | 7 | | 4959.68
4961.39 | | Co I
Nd II | 1 4
22 | 4987.377
4987.62 | P | N II
Fe I | 24
1094 | 5012.68
5013.00 | P | Fe I
Ba II | 1093
10 | | 4961.39
4961.90 | | Fe I | 845 | 4987.83 | P | Fe I | 966 | 5013.284 | | Ti I | 173 | | 4961.93 | | Sm II | 41 | 4987.853 | | Co I | 14 | 5013.316 | _ | Cr I | 60 | | 4962.10 | | Al II | 80 | 4988.963 | | Fe I | 1066 | 5013.38 | P | Ti II
Ti II | 113 | | 4962.26
4962.56 | | Sr I
Fe I | 4
1097 | 4989.140
4991.067 | | Tí I
Tí I | 173
38 | 5013.712
5014.03 | | 8 11 | 71
15 | | 2000100 | | | | | | | | | | | | | 4963.75 | | V II | 221 | 4991.11 | P | Fe II | 25
64 | 5014.185
5014.277 | | Ti I
Ti I | 5
38 | | 4964.34 | | Cr II
Ti I | 36
173 | 4991.22
4991.27 | | N II.
La II | 6 <u>4</u>
57 | 5014.277 | | La II | 159 | | 4964.71
4964.90 | | C II | 25 | 4991.277 | | Fe I | 1065 | 5014.620 | | v I | 132 | | 4964.92 | | Cr I | 9 | 4991.86 | P | Fe I | 1094 | 5014.950 | | Fe I | 965 | | 4965.04 | 17 | Gd II | 143 | 4991.94 | _ | 8 11 | 7 | 5015.04 | - | Gd I | 6 | | 4965.12 | | A II | 14 | 4992.80 | P | Fe I
Fe II | 1110
3 6 | 5015.30
5015.675 | P | Fe I
He I | 968
4 | | 4965 . 14
4965 . 40 | | N1 I
V II | 147
209 | 4993.355
4993.51 | | S I | 3 U | 5016.162 | | Ti I | 38 | | 4965.86 | | Wn I | 20 | 4993.687 | | Fe I | 1111 | 5016.387 | | N II | 19 | | | | | | 4004 400 | | Fe I | 18 | 5016.48 | P | Fe I | 1089 | | 4966.08 | | V II
Fe I | 29
687 | 4994.133
4994.14 | | re I
Lu II | 16
2 | 5016.48 | • | A II | 251 | | 4966.30 | | Fe I | 986 | 4994.358 | | N II | 24,64 | 5017.16 | | A II | 37 | | 4966.58 | | Ço I | 14 | 4995.062 | | Ti I | 216 | 5017.591 | | N1 I | 111 | | 4966.80 | 0 | Ċr I | 259 | 4995.41 | P | Fe I | 1113 | 5017.63 | D | A II | 13 | | 4967.30 | | T1 I | 5
14 | 4995.52
4995.65 | P | C1 II
N1 I | 12
145 | 5018.02
5018.294 | P | Fe I
Ni I | 884
162 | | 4967.40
4967.58 | | O I
Ni I | 14
141 | 4995.89 | P | T1 II | 145
71 | 5018.43 | P | Fe I | 585 | | 4967.86 | | 0 I | 14 | 4996.82 | - | La II | 93 | 5018.434 | | Fe II | 42 | | 4967.89 | | Fe I | 1067 | 4996.850 | | N1 I | 144 | 5018.78 | | 0 I | 13 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|-----------------|----------------|----------------------|------|----------------|----------------|----------------------|------|----------------|-----------------| | 5019.18 | P | Fe I | 1242 | 5040.902 | | Fe I | 1092, 1094 | 5070.249 | | Sc I | 13 | | 5019.20 | | Cr I | 20 | 5041.063 | | Si II | 5 | 5070.957 | | Fe II | | | 5019.34 | | 0 I | 13 | 5041.074 | | Fe I | 16 | 5071.023 | | Gd II | 114 | | 5019.361
5019.478 | | Gd II
Fe II | 81
168 | 5041.077 | P | N1 I
Fe I | 158
1328 | 5071.23 | P | Hf II
Co I | 23 | | 5019.74 | P | Fe I | 966 | 5041.32
5041.33 | P | Fe I | 1110 | 5071.40
5071.475 | r | Ti I | 14
110 | | 5019.855 | | V II | 232 | 5041.620 | - | Ca I | 34 | 5072.077 | | Fe I | 1089 | | 5019.979 | | Ca II | 15 | 5041.66 | | CI | 4 | 5072.30 | | Ti II | 113 | | 5020.028 | | Ti I | 38 | 5041.759 | | Fe I | 36 | 5072.690 | | Fe I | 1095 | | 5020.13 | | 0 I | 13 | 5042.195 | | N1 I | 131 | 5072.920 | | Cr I | 8 | | 5020.368 | | Gd II | 64 | 5042.589 | | Mn I | 20 | 5073 | P | N IV | 17 | | 5020.67 | P | Fe I | 629 | 5043.578 | | Ti I | 38 | 5073.60 | | N II | 10 | | 5020.819 | | Fe I | 748 | 5044.008 | | Ce II | 16 | 5073.78 | | Fe III | 5 | | 5021
5021.141 | P | C IV
Ca II | 3
15 | 5044.221
5044.8 | | Fe I
C II | 318
35 | 5074.063
5074.757 | | Fe II
Fe I | 205
1094 | | 5021.60 | P | Fe I | 1093 | 5045.098 | | N II | 4 | 5075.17 | P | Fe I | 1089 | | 5021.68 | P | Fe I | 1067 | 5045.400 | | Ti I | 38 | 5075.304 | | Ce II | 14 | | 5021.894 | | Fe I | 629 | 5046.61 | _ | Zr I | 62 | 5075.814 | | Sc I | 13 | | 5021.903
5022.244 | | Cr I
Fe I | 8
965 | 5047.14
5047.2 | P | Fe I
C II | 1242
35 | 5075.829
5075.92 | | Fe II
Hf II | 16 | | 00221212 | | | 800 | 3047.2 | | 0 11 | 00 | 3073.82 | | 111 11 | 10 | | 5022.82 | P | T1 II | 71 | 5047.28 | | s II | 15 | 5076.15 | | Cr II | 201 | | 5022.871 | | Ce II | 16 | 5047.308 | | V II | 127 | 5076.288 | | Fe I | 1089 | | 5022.871
5022.874 | | Ti I
Fe II | 38 | 5047.736
5048.04 | | He I
La II | 47
90 | 5076.321
5077.410 | | N1 I
Co I | 143
184 | | 5023 | P | CIV | 3 | 5048.082 | | Ni I | 161 | 5078.25 | | C1 II | 16 | | 5023.11 | | N II | 64 | 5048.208 | | T1 I | 199 | 5078.28 | | Zr I | 62 | | 5023.133 | | Gd II | 64 | 5048.454 | | Fe I | 984 | 5078.53 | P | Fe I | 744 | | 5023.226
5023.39 | | Fe I
Ti I | 1095
199 | 5048.752 | | Cr I
Ni I | 20
195 | 5078.711 | | Cr I | 4000 | | 5023.476 | | Fe I | 1150 | 5048.851
5048.91 | | V II | 209 | 5079.002
5079.226 | | Fe I
Fe I | 1092
66 | | | | | | 3013101 | | | 200 | 00101220 | | | 00 | | 5024.842 | | T1 I | 38 | 5049.825 | | Fe I | 114 | 5079.65 | | Hf II | 71 | | 5025.08 | P | Fe I | 1110 | 5050.13 | P | Fe I | 963 | 5079.681 | | Ce II | 15 | | 5025.54
5025.570 | | Cr I
Ti I | 20
173 | 5050.878
5051.29 | P | Gd II
Fe I | 114
1089 | 5079.742 | | Fe I
N1 I | 16 | | 5025.665 | | N II | 19 | 5051.527 | r | N1 I | 144 | 5079.961
5080.21 | | La II | 60
80 | | 5025.73 | P | Fe I | 466 | 5051.636 | | Fe I | 16 | 5080.44 | | Hf II | 83 | | 5026.50 | | N1 I | 158 | 5051.778 | | Cu II | 7 | 5080.523 | | N1 I | 143 | | 5027.136 | | Fe I | 1065 | 5051.900 | | Cr I | 8 | 5080.95 | P | Fe I | 585 | | 5027.19
5027.212 | | S II
Fe I | 1
883 | 5052.122
5052.879 | | C I
T1 I | 12
199 | 5081.111
5081.39 | P | N1 I
T1 I | 194 | | 00211212 | | | 000 | 0002.078 | | | 100 | 3001.38 | - | 11 1 | 109 | | 5027.34 | P | Fe I | 968 | 5052.97 | P | Fe I | 585 | 5081.554 | | Sc I | 13 | | 5027.51 | P | Fe I | 960 | 5053.300 | | W I | 1 | 5081.86 | P | Fe I | 962 | | 5027.66
5027.785 | P | Cr I
Fe I | 202
1110 | 5054.070
5054.647 | | Ti I
Fe I | 171,294
884 | 5081.920 | | Fe II
Ni I | 221 | | 5028.00 | | Cr I | 122 | 5056.00 | | Fe I | 1149 | 5082.354
5082.68 | P | Fe I | 130
466 | | 5028.129 | | Fe I | 791 | 5056.020 | | Si II | 5 | 5083.342 | - | Fe I | 16 | | 5029.623 | | Fe I | 718 | 5056.27 | | KII | 3 | 5083.713 | | Sc I | 13 | | 5029.812 | | Mn I | 20 | 5056.353 | | Si II | 5 | 5084.081 | _ | N1 I | 162 | | 5030.740
5030.75 | | Fe II
Fe III | | 5056.856
5057.03 | | Fe I
Hf II | 1111
71 | 5084.55
5085 02 | P | Fe I
Al II | 932 | | 0000110 | | | | 0001100 | | | ,, | 5085.02 | | AI II | 43 | | 5030.784 | | Fe I | 585 | 5057.49 | | Fe I | 1067,1150 | 5085.333 | | Ti I | 109 | | 5031.019 | | Sc
II | 23 | 5057.83 | P | Fe I | 1185 | 5085.479 | | N1 I | 130 | | 5031.030
5031.290 | | Fe I
Gd II | 746,883
114 | 5058.00
5058.03 | | Fe I
Ni I | 967
141 | 5085.547
5085.68 | P | Sc I
Fe I | 13 | | 5031.562 | | Gd II | 64 | 5058.18 | | Hf II | 37 | 5085.695 | • | Co I | 1093
14 | | 5031.901 | | Fe I | 1150 | 5058.50 | | Fe I | 884 | 5085.824 | | Cd I | 2 | | 5032.41 | | SII | 7 | 5060.079 | | Fe I | 1,1095 | 5085.93 | P | Fe I | 963 | | 5032.748
5032.794 | | N1 I
Fe II | 207 | 5060.635 | | Cu II
Fe II | 1 | 5086.69 | | Fe III | 5 | | 5032.754 | | CII | 17 | 5061.794
5062.07 | | A II | 6 | 5086.77
5086.951 | P | Fe I
Sc I | 1067
13 | | | | | | | | | · | 00001001 | | 50 I | 10 | | 5034.06 | | Co I | 91 | 5062.112 | | Ti I | 199 | 5087.055 | | Ti I | 109 | | 5034.33 | | Hf II | 26 | 5062.862 | | Gd II | 64 | 5087.25 | | Fe II | | | 5034.415
5035.025 | | Pr II
Fe I | 37
885 | 5062.91
5063.296 | | La II
Fe I | 50
1066 | 5087.42
5088.16 | P | Y II
Fe I | 20 | | 5035.374 | | Ni I | 143 | 5063.30 | | Fe III | 5 | 5088.260 | r | Cu II | 1066
6 | | 5035.773 | | Fe II | | 5064.068 | | T1 I | 294 | 5088.534 | | N1 I | 190 | | 5035.908 | | Ti I | 110 | 5064.321 | | Sc I | 13 | 5088.956 | | N1 I | 162 | | 5035.961
5036.294 | | Ni I
Fe I | 145 | 5064.654
5064.69 | | T1 I
Au I | 5 | 5089.278 | | Fe II | | | 5036.468 | | Ti I | 110 | 5064.92 | | Zr I | 1
62 | 5089.837
5090.55 | | Nd II
A II | 46
122 | | | | | | | | | | 0000100 | | | 100 | | 5036.92 | | Fe II | 36 | 5064.95 | P | Fe I | 1095 | 5090.56 | | La II | 100 | | 5036.931 | | Fe I | 465 | 5065.020 | | Fe I | 1094 | 5090.787 | | Fe I | 1090 | | 5037.0
5037.33 | | C II
Ta I | 17
12 | 5065.201 | | Fe I
Cu II | 883 | 5091.14 | | Cr II | 201 | | 5037.65 | | Ta I | 2 | 5065.448
5065.910 | | Cr I | 11
60 | 5091.282
5091.72 | P | Co I
Fe I | 14
745 | | 5037.7505 | | Ne I | 14 | 5065.985 | | Ti I | 110 | 5091.73 | P | Fe I | 745
717 | | 5037.81 | P | T1 II | 71 | 5066.28 | P | Fe I | 882 | 5091.890 | | Cr I | 20 | | 5038.400 | | Ti I | 110 | 5066.99 | | La II | 162 | 5092.251 | | GG II | 114 | | 5038.599
5038.81 | P | Ni I
Fe I | 166
510 | 5067
5067.082 | P | N V
Cu II | 6
7 | 5092.797 | | Nd II | 48 | | 0000.01 | • | | 010 | 00011002 | | vu 11 | , | 5093.41 | | Cr I | 20 | | 5038.87 | P | Cr I | 20 | 5067.162 | | Fe I | 1092 | 5093.470 | | Fe II | 205 | | 5039.05 | | CI | 4 | 5067.714 | | Cr I | 60 | 5093.646 | | Fe II | | | 5039.259 | | Ni I | 142 | 5067.82 | | N1 I | 141 | 5093.65 | | Al II | 43 | | 5039.266
5039.959 | | Fe I
Ti I | 687
5 | 5068.10
5068.290 | | C1 II
Cr I | 16
20 | 5094.416
5004.055 | | N1 I | 164 | | 5040.25 | P | Fe I | 1093 | 5068.332 | | Ti I | 20
294 | 5094.955
5096.063 | | Co I
Gd II | 92
59 | | 5040.642 | | Ti I | 38 | 5068.774 | | Fe I | 383 | 5096.17 | P | Fe I | 1242 | | 5040.744 | | Ru I | 11 | 5069.12 | | Ti II | 113 | 5096.716 | | Sc I | 13 | | 5040.76 | | N II | 19 | 5069.351 | - | Ti I | 199 | 5096.874 | | N1 I | 111 | | 5040.82 | | Hf II | 14 | 5069.60 | P | Fe I | 211 | 5096.998 | | Fe I | 1092 | | I A | Туре | Element | Multiplet No. | I Å | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|-----------------|---------------|-----------------------|--------|---------------|---------------|----------------------|--------|------------------|----------------------------| | 5097.29 | | Cr II | 24 | 5123.723 | _ | Fe I | 16 | 5146.06 | | 0 I | 28,39 | | 5097.375 | | Fe II
Cl II | 16 | 5124.05
5124.17 | P
P | Fe II
Fe I | 167
1035 | 5146.12
5146.30 | P
P | Fe II
Fe I | 35
1150 | | 5098.34
5098.38 | | Gd II | 114 | 5124.60 | P | Fe I | 585 | 5146.478 | - | N1 I | 162 | | 5098.594 | | Fe I | 984 | 5124.718 | | Co I | 197 | 5146.753 | | Co I | 170 | | 5098.703 | | Fe I | 66 | 5124.98 | | Zr II
Fe I | 87
1090 | 5147.09
5147.483 | | Fe II
Ti I | 4 | | 5099.091
5099.228 | | Fe I
Sc I | 965
13 | 5125.130
5125.211 | | Ni I | 160 | 5148.061 | | Fe I | 1090 | | 5099.30 | | C1 II | 16 | 5125.56 | | Gd II | 99 | 5148.19 | P | Fe II | 52 | | 5099.322 | | N1 I | 141 | 5125.715 | | Co I | 181 | 5148.234 | | Fe I | 1095 | | 5099.946 | | Ni I | 161 | 5125.84 | | A II | 122 | 5148.65 | | N1 I | 158 | | 5100.34 | | Al II | 43 | 5126.13 | | 8 11 | 57 | 5148.724 | | v i | 123 | | 5100.66 | P | Fe II | 35 | 5126.19 | P | Fe II
Co I | 53 | 5148.838 | | Na I
Mn I | 8
32 | | 5100.704
5100.706 | | Fe II
Fe III | | 5126.201
5126.218 | | Fe I | 170
1089 | 5149.13
5149.33 | | Fe III | 32 | | 5100.840 | | Fe II | 185 | 5126.598 | | Fe I | 961 | 5149.538 | | Fe II | | | 5100.937 | | Gd II | 114 | 5127.32 | | Fe III | 5 | 5149.796 | | Co I
Gd II | 39
115 | | 5100.95
5101.121 | | Fe II
Sc I | 13 | 5127.363
5127.367 | | Fe I
Ti I | 16
230 | 5149.841
5150.19 | P | Fe I | 789 | | 5101.48 | | Fe II | | 5127.68 | P | Fe I | 1 | 5150.843 | | Fe I | 16 | | 5102.24 | P | Fe I | 65 | 5127.866 | | Fe II | 167 | 5150.86 | | Al III | 14 | | 5102.971 | - | Ni I | 49 | 5128.03 | | Ni I | 113 | 5150.890 | | Mn I | 32 | | 5103.04 | | C1 II | 16 | 5128.53 | | Hf II | 58 | 5150.93 | P | Fe II
C II | 35
16 | | 5103.30
5103.45 | | S II
Gd I | 7
& | 5128.530
5129.143 | | V I
Ti II | 123
86 | 5151.08
5151.83 | | Cr I | 19 | | 5104.03 | P | Cr II | 38 | 5129.383 | | N1 I | 159 | 5151.87 | | V II | 196 | | 5104.038 | | Fe I | 465 | 5129.520 | | Pr II | 38 | 5151.915 | | Fe I
Ti I | 16
4 | | 5104.08
5104.21 | | Cl II
Fe I | 16
1092 | 5129.658
5130.28 | | Fe I
Gd II | 965
115 | 5152.185
5152.20 | | PII | 7 | | 5104.45 | | N II | 34 | 5130.389 | | N1 I | 177 | 5153.235 | | Cu I | 7 | | 8104 AT | P | Fe I | 1000 | K190 E9 | | 0 I | 29,39 | 5153.402 | | Na. I | 8 | | 5104.47
5105.541 | r | re I
Cu I | 1090
2 | 5130.53
5130.596 | | Nd II | 29,39
75 | 5153.402 | | Cr II | 24 | | 5105.80 | | As II | 4 | 5130.91 | P | Fe I | 1149 | 5154.061 | | Ti II | 70 | | 5106.23 | | La I | 9 | 5131.28 | P | Ti II
Fe I | 86
66 | 5154.40
5155.136 | P | Fe II
Ru I | 35
10 | | 5106.233
5107.406 | | Gd II | 127
81 | 5131.475
5131.770 | | Ni I | 114 | 5155.140 | | Ni I | 206 | | 5107.452 | | Fe I | 16 | 5132.19 | | V II | 127 | 5155.764 | | N1 I | 210 | | 5107.54 | | La II
Fe I | 164
36 | 5132.67
5132.931 | P | Fe II
Ti I | 35
230 | 5155.845
5156.0 | | Gd I
Fe III | 6
5 | | 5107.645
5107.70 | | Cr I | 19 | 5132.96 | | C 11 | 16 | 5156.040 | | Sr I | 11 | | | | | • | #400 OO | | Es T | 040 | #4#A 0A | | Hf II | 83 | | 5107.80
5108.903 | | As II
Co I | 6
181 | 5133.22
5133.29 | P | Fe I
C II | 818
16 | 5156.06
5156.10 | | Fe II | 60 | | 5108.91 | | Gd II | 114 | 5133.42 | | Zr I | 27 | 5156.366 | | Co I | 180 | | 5108.93 | | Cr I | 60 | 5133.467 | | Co I
Fe I | 180
1092 | 5156.74 | | La II
Gd II | 7
114 | | 5109.427
5109.662 | | T1 I
Fe I | 109
1089 | 5133.692
5135.10 | | Lu I | 2 | 5156.76
5157.28 | | V 11 | 127 | | 5110.36 | P | Fe I | 790 | 5135.125 | | Pr II | 37 | 5157.43 | | La II | 97 | | 5110.382 | | Pr II | 38 | 5136.09 | | Fe I | 1036
5 | 5157.993 | | N1 I
Al II | 111
58 | | 5110.414
5110.43 | | Fe I
Cr II | 1
199 | 5136.47
5136.788 | | Ta I
Fe II | 35 | 5158.187
5158.854 | | Co I | 188 | | | | | | | | | | | | Fe I | 1091 | | 5110.61
5110.751 | | Hf II
Cr I | 106
60 | 5137.075
5137.09 | | Ni I
Cr II | 48
201 | 5159.066
5159.350 | | V I | 123 | | 5110.768 | | Pr II | 35 | 5137.26 | | CII | 16 | 5159.93 | | Fe II | | | 5111.930 | P | Gd II
O VI | 114 | 5137.388 | | Fe I
Cr I | 1090
207 | 5159.95
5160.02 | P | Fe I
O II | 1095
32 | | 5112
5112.28 | r | Zr II | 12
95 | 5137.94
5138.431 | | VI | 123 | 5160.105 | | Gd II | 115 | | 5112.490 | | Cr I | 19 | 5138.71 | | Cr I | 19 | 5160.824 | | Fe II | 167 | | 5113.130
5113.232 | | Cr I
Co I | 60
91 | 5139.21
5139.255 | | C II
Ni I | 16
129 | 5160.896
5161.18 | P | 0d II
Fe II | 115
35 | | 5113.36 | | C1 II | 16 | 5139.260 | | Fe I | 383 | 5161.765 | • | Cr I | 60 | | | | m | 400 | F400 400 | | F- T | 000 | F160 000 | | Fe I | 1000 | | 5113.448
5114 | P | Ti I
O V | 109
1 | 5139.468
5139.654 | | Fe I
Cr I | 383
207 | 5162.288
5162.34 | | Cl II | 1089
33 | | 5114.07 | | CII | 51 | 5140.839 | | Gd II | 115 | 5162.38 | P | Fe I | 210 | | 5114.10 | P | Fe III
Fe I | 5
1242 | 5141.55
5141.63 | P | Fe I
Ta I | 930
6 | 5162.47
5162.80 | | Gd II
A II | 140
126 | | 5114.52
5114.55 | r | La II | 36 | 5141.750 | | Fe I | 114 | 5162.93 | P | Ni I | 159 | | 5115.397 | | N1 I | 177 | 5141.84 | | A II | 37 | 5163.61 | | La II | 7 | | 5115.788
5116.06 | | Fe I
Cr II | 789
24 | 5142.263
5142.33 | | Cr I
S II | 60
1 | 5163.74
5163.90 | | Fe III
Al III | 2
19 | | 5116.700 | | Sm II | 56 | 5142.541 | | Fe I | 1090,1092 | 5164.542 | | Gd II | 97 | | 5117.107 | | Fe II | | 5142.763 | | Ru I | 11 | 5164.56 | | Fe I | 1166 | | 5117.107 | | Ce II | 23 | 5142.771 | | Ni I | 161 | 5164.56 | | Hf II | 83 | | 5117.937 | | Mn I | 32 | 5142.932 | _ | Fe I | 16 | 5164.69 | P | Fe II | 167 | | 5119.12
5119.55 | | C II | 20
51 | 5142.98
5143.49 | P | N1 I
C II | 113
16 | 5164.70
5164.922 | P | Fe I
Fe I | 210
1033 | | 5119.90 | P | Fe I | 960 | 5143.73 | P | Fe I | 65 | 5165.140 | | Nd II | 77 | | 5120.34 | P | Fe II | 35 | 5144.413 | _ | Al II | 68 | 5165.156 | | Co I | 39 | | 5120.420
5120.89 | P | Ti I
Fe I | 288
1150 | 5144.47
5144.672 | P | Cr II
Cr I | 38
60 | 5165.422
5165.82 | | Fe I
A II | 1089
75 | | 5120.89 | r | Ni I | 177 | 5144.875 | | Al II | 68 | 5166.227 | | Cr I | 207
| | | | | | 8444 00 0 0 | | Ne I | 34 | 5166.286 | | Fe I | 1 | | 5121.646
5121.69 | | Fe I
C II | 1095
12 | 5144.9376
5144.998 | | Ne I | 68 | 5166.286
5167.28 | | Le II | 95 | | 5121.96 | P | Fe I | 745 | 5145.011 | | Ne I | 34 | 5167.321 | 3 | Mg I | 2 | | 5122.082
5122.121 | | T1 I
Cr I | 230
19 | 5145.105
5145.16 | | Fe I
C II | 66
16 | 5167.491
5167.70 | P | Fe I
Fe I | 37
717 | | 5122.767 | | Co I | 170 | 5145.36 | | A II | 13 | 5167.96 | | Cr I | 207 | | 5122.99 | | La II | 36 | 5145.42 | | Lá I | 9 | 5168.18 | P
P | Fe I
Fe I | 96 4
9 60 | | 5123.21
5123.28 | P | Y II
Fe I | 21
1150 | 5145.465
5145.654 | | Ti I
Al II | 109
68 | 5168.19
5168.24 | r | re I
N II | 960
70 | | - AU - AU | • | | | 51151001 | - | | 204 | 5160 CO | | C= T | 10 | D_k | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I Å | Туре | Element | Multiplet No. | |----------------------|--------|----------------|------------------|----------------------|--------|---------------|--------------------|----------------------|--------|----------------|------------------------| | 5168.660 | | N1 I | 112 | 5191.60 | | Zr II | 95 | 5214.64 | | Cr I | 189 | | 5168.901 | | Fe I | 1 | 5192.000 | | Cr I
Fe I | 201
383 | 5215.185
5215.29 | | Fe I
Cr I | 553
206 | | 5169.030
5169.30 | P | Fe II
Fe I | 42
1032 | 5192.350
5192.524 | | Ni I | 111 | 5215.928 | | V II | 55 | | 5169.733 | • | Fe II | 1002 | 5192.621 | | Nd II | 75 | 5216.17 | | Cr I | 189 | | 5170.08 | P | Fe I | 1241 | 5192.75 | | Si II | | 5216.278 | | Fe I | 36 | | 5170.08 | | N II
Ru I | 70
11 | 5192.971
5193.004 | | T1 I
V I | 4
125 | 5216.512
5216.84 | | N1 I
A II | 113
126 | | 5171.028
5171.13 | P | V II | 115 | 5193.03 | | C1 II | 33 | 5216.99 | | Fe III | | | 5171.46 | _ | N II | 70 | 5193.43 | P | V II | 115 | 5217.36 | P | V II | 115 | | F4F4 F00 | | En T | 0.0 | 5193.488 | | Cr I | 206 | 5217.395 | | Fe I | 553 | | 5171.599
5171.62 | P | Fe I
Fe II | 36
3 5 | 5193.89 | | Fe III | 5 | 5217.69 | P | Fe I | 965 | | 5172.21 | P | Fe I | 210 | 5194.043 | | Ti I | 183 | 5217.83 | | La II | | | 5172.32 | | N II | 66 | 5194.43 | | Fe III | 5 | 5217.927 | | Fe I | 880 | | 5172.6 | | Al III | 18 | 5194.57 | | Hf II
V I | 69
125 | 5217.93
5218.202 | | C1 II
Cu I | 3
7 | | 5172.6843
5172.89 | | Mg I
La II | 2
100 | 5194.824
5194.943 | | Fe I | 36 | 5218.51 | P | Fe I | 1240 | | 5173.002 | | Fe II | 185 | 5195.110 | | Pr II | 38 | 5219.008 | | Co I | 170 | | 5173.15 | | C1 II | 33 | 5195.307 | | Pr II | 38 | 5219.053 | | Pr II | 37 | | 5173.37 | | N II | 66 | 5195.394 | | V I | 125 | 5219.40 | | Gd I | 6 | | 5173.742 | | Ti I | 4 | 5195.471 | | Fe I | 1092 | 5219.697 | | T1 I | 4. | | 5173.83 | | La II | 158 | 5196.100 | | Fe I | 1091 | 5220.070 | | Cu I | 7 | | 5173.898 | | Pr II | 35 | 5196.24 | P | Fe I | 406 | 5220.113 | | Pr II | 35 | | 5174.46 | | N II | 70
1 | 5196.43
5196.443 | | Y II
Cr I | 28
207 | 5220.297
5220.307 | | Gd II
N1 I | 80
114 | | 5175.71
5175.78 | P
P | Fe I
Ni I | 188 | 5196.57 | | Cr I | 207 | 5220.912 | | Cr I | 201 | | 5175.839 | • | Gd II | 114 | 5196.591 | | Mn I | 32 | 5221.34 | | C1 II | 3 | | 5175.85 | | C1 II | 50,81 | 5197.165 | | N1 I | 204 | 5221.43 | P | Fe I | 1 | | 5175.89 | | N II | 66 | 5197.216
5197.569 | | Mn I
Fe II | 32
49 | 5221.75
5221.753 | P | Fe I
Cr I | 628
1 93 | | 5176.00 | | 0 11 | 32 | 3197.309 | | 10 11 | 40 | 0221.700 | | V. 1 | 100 | | 5176.085 | | Co I | 92 | 5197.768 | | Gd I | 6 | 5222.39 | | Cr I | 206 | | 5176.26 | P | Cr II | 38 | 5197.93 | P | Fe I | 1091 | 5222.40 | P | Fe I
Cr I | 112
59 | | 5176.28 | | A II
Gd II | 37
60 | 5198.714
5198.843 | | Fe I
Fe I | 66
7 4 3 | 5222.676
5222.685 | | Ti I | 183 | | 5176.285
5176.565 | | Ni I | 209 | 5198.89 | | 8 11 | 57 | 5223.191 | | Fe I | 880 | | 5177.230 | | Fe I | 930 | 5199.211 | | Gd II | 115 | 5223.623 | | Ti I | 183 | | 5177.30 | | La I | 9 | 5199.50 | | N II | 66 | 5224.082 | | Cr I | 201 | | 5177.430 | | Cr I
Fe III | 201 | 5199.68
5200.188 | | V II
Cr I | 55
201 | 5224.14
5224.30 | P
P | Ti I
Fe I | 37
65 | | 5177.73
5177.83 | | Cr I | 206 | 5200.42 | | Y II | 20 | 5224.301 | - | T1 I | 183 | | | | | | | | | | | | | | | 5178.104 | ъ | Gd II | 114 | 5200.549
5201.00 | | Gd II
S II | 147
39 | 5224.541
5224.558 | | Cr I
Ti I | 59,193
183 | | 5178.71
5178.798 | P | Fe II
Fe I | 35
1166 | 5201.096 | | Ti I | 183 | 5224.680 | | wī | 1 | | 5178.843 | | Gd II | 147 | 5201.32 | | s II | 39 | 5224.928 | | Ti I | 183 | | 5178.95 | P | Fe II | 35 | 5202.27 | | Fe I | 1090 | 5224.94 | | Zr I | 27 | | 5179.136 | | N1 I | 202 | 5202.339
5202.51 | | Fe I
Si II | 66 | 5224.941
5225.032 | | Cr I
Cr I | 201
201 | | 5179.50
5179.919 | | N II
Gd II | 66,70
100 | 5202.94 | | V II | 142 | 5225.533 | | Fe I | 1 | | 5180.065 | | Fe I | 1166 | 5203.86 | | P III | 5 | 5225.821 | | Cr Į | 58 | | 5180.34 | | N II | 66 | 5204.14 | | La II | 96 | 5226.06 | | Fe I | 716 | | 5180.53 | P | Fe II | 35 | 5204.46 | | A II | 126 | 5226.20 | | La II | 96 | | 5181.77 | • | Si II | 00 | 5204.518 | | Cr I | 7 | 5226.42 | P | Fe I | 406 | | 5181.86 | | Hf I | 1 | 5204. 582 | | Fe I | 1 | 5226.534 | | Ti II | 70 | | 5181.97 | P | Fe II | 53 | 5204.95 | P
P | Fe I
Fe I | 407
1112 | 5226.868
5226.891 | | Fe I
Cr I | 38 3
193 | | 5181.995
5183.21 | | Zn I
N II | 7
70 | 5205.31
5205.73 | P | Y II | 20 | 5227.10 | | Cr I | 59 | | 5183.41 | | Cr I | 19 | 5206.039 | | Cr I | 7 | 5227.15 | P | Fe I | 114 | | 5183.42 | | La II | 36 | 5206.059 | | Ti I | 276 | 5227.192 | | Fe I | 37 | | 5183.6042 | | Mg I | 2 | 5206.15 | P
P | Cr I
Cr I | 59
206 | 5227.53
5227.70 | | Fe III
V II | 115 | | 5183.72 | | Ti II | 86 | 5206.52 | r | 01 1 | 200 | 3221.10 | | , 11 | 110 | | 5184.17 | P | Fe I | 1147 | 5206.562 | | Pr II | 38 | 5227.75 | _ | Cr I | 58 | | 5184.292 | | Fe I | 1089 | 5206.73 | ъ | O II
Fe I | 32
1005 | 5227.87 | P | Ti II
Cr I | 103
193 | | 5184.585
5184.590 | | Ni I
Cr I | 159
201 | 5206.80
5207.852 | P | Ti I | 1095
183 | 5228.082
5228.408 | | Fe I | 1091 | | 5184.97 | | N II | 66 | 5207.95 | P | Fe I | 880 | 5228.427 | | Nd II | 46 | | 5185.09 | | Si II | | 5208.07 | P | Cr I | 59 | 5229.57 | | Fe III | 113 | | 5185.90 | | Ti II | 86 | 5208.436
5208.601 | | Cr I
Fe I | 7
553 | 5229.857
5230.210 | | Fe I
Co I | 553,10 90
39 | | 5186.17
5186.329 | | N II
Ti I | 70
183 | 5208.601
5209.90 | P | Fe I | 584 | 5230.228 | | Cr I | 58 | | 5186.592 | | Ni I | 205 | 5210.042 | | Co I | 167 | 5230.363 | | Co I | 187 | | | | | | F040 000 | | Ti I | 4 | 5230.967 | | Ti I | 215 | | 5186.915 | | Gd II | 114 | 5210.386
5210.488 | | Gd II | 115 | 5231.41 | | Fe I | 787 | | 5187.237
5187.452 | | Gd II
Ce II | 114
15 | 5210.488 | | Co I | 187 | 5232.50 | | Cr II | 43 | | 5187.75 | | Hf II | 23 | 5210.87 | | Cr II | 24 | 5232.946 | | Fe I | 383 | | 5187.86 | | N1 I | 159 | 5210.88 | P | Cr II | 38 | 5233.817 | | Ti I | 37 | | 5187.922 | | Fe I | 1032 | 5211.22
5211.544 | P | Ti I
Ti II | 37
103 | 5234.088
5234.195 | | V I | 131
74 | | 5188.21
5188.700 | | La II
Ti II | 95
70 | 5211.544
5211.832 | | Co I | 184 | 5234.195
5234.27 | | La I | 10 | | 5188.848 | | Ca I | 49 | 5211.85 | | La I | 9 | 5234.28 | P | V II | 55 | | 5189.61 | P | Ti I | 215 | 5212.27 | | Cr I | 189 | 5234.620 | | Fe II | 49 | | 5100 70 | | C1 II | 33 | 5212.271 | | Ti I | 215 | 5235.188 | | Co I | 83 | | 5189.70
5190.42 | | N II | 33
66 | 5212.271 | | Nd II | 44 | 5235.3 | | Fe III | 113 | | 5190.56 | | 0 11 | 32 | 5212.61 | | s II | 39 | 5235.392 | | Fe I | 210,1031 | | 5191.081 | | Gd II | 115 | 5212.699 | | Co I | 170 | 5235.45 | - | N1 I | 208 | | 5191.41 | | P II
Nd II | 7
45 | 5212.75
5212.997 | | Ta I
Ti I | 1
215 | 5236
5236.189 | P | N IV
Fe I | 5
1034 | | 5191.448
5191.46 | | Na II
Cr II | 45
24 | 5212.997
5213.08 | P | V II | 215
55 | 5236.189
5236.38 | P | Fe I | 1146 | | 5191.460 | | Fe I | 383 | 5213.35 | P | Fe I | 1165 | 5236.63 | | Cr I | 205 | | 5191.58 | P | Fe II | 52 | 5213.80 | P | Fe I | 962 | 5237.34 | | Cr II | 43 | | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-------------------------------------|--------|-----------------|-----------------|----------------------|--------|-----------------|---------------|----------------------|--------|----------------|-----------------| | 5238.25 | P | Fe I | 962 | 5261.754 | | Cr I | 237 | 5278.955 | | Fe II | 184 | | 5238.560 | P | Ti I
Fe II | 37,183 | 5262.104 | | Ti II
Ca I | 70
00 | 5278.99 | ъ. | SI | 4 | | 5238.58
5238.971 | P | Cr I | 41
59 | 5262.244
5262.48 | P | Fe II | 22
52 | 5279
5279.11 | P | 0 VI
La II | 14
90 | | 5239.823 | | Sc II | 26 | 5262.61 | P | Fe I | 1149 | 5279.11 | P | Fe I | 58 4 | | 5239.942 | | Ti I | 37 | 5262.89 | P | Fe I | 628 | 5279.92 | - | Cr II | 43 | | 5240.3 6 | P | Fe I | 584 | 5263.314 | | Fe I | 553 | 5280.00 | | V II | 195 | | 5240.468 | | Cr I
V I | 237 | 5263.483 | | Ti I | 183 | 5280.08 | | Cr II | 43 | | 5240.878
5240.94 | | Cr I | 131
193 | 5263.750
5263.874 | | Cr I
Fe I | 309
788 | 5280.21
5280.289 | | Al II
Cr I | 95
192 | | | | | 200 | 02001011 | | | 100 | 3200.208 | | 01 1 | 192 | | 5240.97 | P | V II | 55 | 5263.99 | | v II | 115 | 5280.364 | | Fe I | 880 | | 5241.19 | | V II
Cr I | 241 | 5264.14 | | Mg II | 17 | 5280.62 | P | V II | 55 | | 5241.458
5241.90 | P | Fe I | 59
1150 |
5264.152
5264.239 | | Cr I
Ca I | 18
22 | 5280.631 | n | Co I | 172 | | 5242.4 95 | | Fe I | 843 | 5264.49 | P | V II | 55 | 5280.91
5281 | P
P | Fe I
N IV | 210
5 | | 5243.3 | | Fe III | 113 | 5264.801 | _ | Fe II | 48 | 5281.18 | P | Fe I | 1240 | | 5243.395 | | Cr I | 201 | 5264.95 | | Hf II | 70 | 5281.18 | | N I | 14 | | 5243. 50
5243. 798 | P | Cr II
Fe I | 38 | 5265.160 | P | Cr I
Fe I | 201 | 5281.692 | | N1 I | 231 | | 5244. 5 | | C III | 1089
4 | 5265.25
5265.42 | P | Fe I | 407
1145 | 5281.796
5282.1 | | Fe I
Fe III | 383
113 | | | | | - | 0203112 | • | | 1110 | 0202.1 | | re 111 | 113 | | 524 5 | P | N IV | 5 | 5265.523 | | Ço I | 38 | 5282.378 | | Ti I | 74 | | 5245.4 9 | ъ. | A II | 40 | 5265.557 | | Ca I | 22 | 5282.52 | | N III | 15 | | 5245. 62
5245. 72 | P
P | Fe I
Fe I | 1149
715 | 5265.710
5265.722 | | Ce II
Cr I | 23
18 | 5283.076
5283.441 | | Gd I
Ti I | 6
156 | | 5246.00 | P | Fe I | 628 | 5265.748 | | N1 I | 141 | 5283.441 | | Fe I | 553 | | 5246.143 | | Ti I | 282 | 5265.786 | | Co I | 170 | 5283.77 | | Al II | 95 | | 5246.574 | | Ti I | 37 | 5265.94 | P | Fe I | 210 | 5284.092 | | Fe II | 41 | | 5246.75 | | Cr II
Fe I | 23 | 5265.967
5266.118 | | Ti I | 156 | 5284.27 | P | Fe I | 875 | | 5247. 052
5247. 10 | | Hf II | 1
92 | 5266.302 | | V I
Co I | 139
172 | 5284.380
5284.416 | | Ti I
Fe I | 74
842 | | | | | <i>5</i> ~ | 32001002 | | | ~·~ | 5284.416 | | | O'E& | | 524 / . 293 | | Ti I | 183 | 5266.49 | P | Ti I | 36 | 5284.62 | P | Fe I | 1032 | | 524 7.564 | | Cr I | 18 | 5266.506 | | Co I | 83 | 5284.85 | | Fe III | | | 524 7.921 | | Co I
Fe II | 39 | 5266.562 | | Fe I
Cr II | 383
38 | 5285.12 | P | Fe I | 1166 | | 5248.028
5248.402 | | Ti I | 37,156 | 5267.10
5267.28 | P | Fe I | 1146 | 5285.34
5285.38 | | Ca II
Cr I | 14
285 | | 5249.099 | | Fe I | 1166 | 5267.322 | _ | Gd II | 60 | 5285.48 | | C1 II | 32 | | 5249.22 | | V II | 220 | 5268.06 | | O III | 19 | 5285.60 | P | Fe I | 961 | | 5249.40 | | Cr II | 23 | 5268.348 | | N1 I | 273 | 5285.63 | | Cr I | 192 | | 5249.43
5249.585 | | NG II
C II | 30
75 | 5268.498
5268.62 | | Co I
Ti II | 172
103 | 5285.752 | | Sc I
Al II | 23
102 | | 0240.000 | | NG II | 70 | 0200.02 | | 11 11 | 103 | 5285.85 | | A1 11 | 102 | | 5249.6 | | C III | 23 | 5269.15 | | Fe III | 112 | 5286.42 | P | v II | 54 | | 5250.003 | | Co I | 190 | 5269.541 | | Fe I | 15 | 5286.74 | | Fe III | 110 | | 5250.212
5250.650 | | Fe I
Fe I | 1
66 | 5269.93
5270.06 | P | Ti I
Fe I | 156
877 | 5286.92 | | A II
Cr I | 13
225 | | 5250.816 | | Nd II | 80 | 5270.00 | r | Ca I | 22 | 5287.188
5287.574 | | Co I | 225
175 | | 5250.95 | | Ti I | 37 | 5270.322 | | Be II | 3 | 5287.62 | | Cr I | 309 | | 5251.180 | | Gd I | 6 | 5270.360 | | Fe I | 37 | 5287.785 | | Co I | 187 | | 5251,49 | | Ti I | 37 | 5270.59 | | N III | 15
3 | 5288.21 | P | N1 I | 202 | | 5251.738
5252.04 | P | Pr II
Ti II | 20
103 | 5270.843
5271.18 | | Be II
La I | 4 | 5288.24
5288.31 | P | Fe I
V II | 818
195 | | 0202101 | - | | 100 | | | | _ | 0200101 | | | 200 | | 5252.105 | | Ti I | 4 | 5271.26 | P | V II | 55 | 5288.38 | P | Fe I | 406 | | 5252.14 | _ | Gd II | 99 | 5272.0 | | Fe III
Cr I | 113 | 5288.533 | _ | Fe I | 929 | | 5253.03
5253.25 | P
P | Fe I
Fe I | 113
875 | 5272.010
5272.413 | | Fe II | 225
185 | 5289
5289.27 | P | O VI
Cr I | 16
192 | | 5253.479 | • | Fe I | 553 | 5272.56 | | C III | 4 | 5289.28 | | Ti I | 36 | | 5253.49 | | P II | 10 | 5272.60 | | N III | 15 | 5289.82 | | Y II | 20 | | 5253.55 | | CII | 30 | 5272.86 | _ | Fe III | | 5289.98 | | Hf II | 100 | | 5253.55
5254.652 | | C III
Co I | 4
187 | 5273
5273.176 | P | N V
Fe I | 4
553 | 5290.74
5290.79 | P | V II
Fe I | 207
1147 | | 5254.918 | | Cr I | 201 | 5273.170 | | Fe I | 11 4 | 5290.79 | r | La II | 6 | | | | | | | | | | | | | | | 5254.92 | P | Fe II | 49 | 5273.431 | | Nd II | 75 | 5291 | P | O VI | 18 | | 5254.956
5255 122 | | Fe I
Cr I | 1
225 | 5273.439
5273.62 | P | Cr I
Fe I | 201
1147 | 5291.78
5202 | P | Fe III
O VI | 17 | | 5255.132
5255.325 | | Mn I | 225
32 | 5273.62 | - | Ce II | 15 | 5292
5292.10 | r | Pr II | 24 | | 5255.510 | | Nd II | 43 | 5274.99 | | Cr II | 43 | 5292.630 | | Pr II | 37 | | 5255.68 | P | Fe I | 1089 | 5275.00 | | Fe I | 1029 | 5292.861 | | Mn I | 36 | | 5255.76 | P | Fe I
Gd I | 1091 | 5275.08
5275.11 | P | O I
Cr I | 27
192 | 5292.865
5293.03 | P | Cr I
Fe I | 205
1165 | | 5255.805
5255.811 | | Ti I | 6
183 | 5275.11 | r | Cr I | 94 | 5293.03 | r | Nd II | 75 | | 5256.030 | | Gd II | 114 | 5275.30 | P | Fe I | 742 | 5293.383 | | Cr I | 192 | | | | | | | | | | | | | | | 5256.89 | P | Fe II | 41 | 5275.54 | | Re I
V II | 1 | 5293.973 | | Fe I
Mn II | 1031
11 | | 5257.07
5257. 36 | | Cr I
C II | 205
30 | 5275.65
5275.689 | | V II
Cr I | 195
94 | 5294.216
5294.555 | | Mn 11
Fe I | 875 | | 5257.50 | P | V II | 55 | 5275.994 | | Fe II | 49 | 5294.97 | | Si II | J. J | | 5257.621 | | Co I | 188 | 5276.03 | | Cr I | 94 | 5295.292 | | Mn II | 11 | | 5257.65 | P | Fe I | 788 | 5276.183 | | Co I | 190 | 5295.30 | P | Sc II | 22 | | 5258.333
5250.00 | P | Sc I | 23
1149 | 5276.2
5276.42 | | Fe III
Al II | 113
67 | 5295.316
5295.781 | | Fe I
Ti I | 1146
74 | | 5259.09
5259.38 | r | Fe I
La II | 1149
21 | 5276.42
5276.81 | | Al II | 67 | 5295.781
5296.09 | | P II | 7 | | 5259.62 | | CII | 30 | 5276.879 | | Nd II | 81 | 5296.48 | | A II | 110 | | | | | | <u> </u> | _ | | 4440 | | | c | ** | | 5259.743 | | Pr II | 35 | 5277.31
5277.32 | P
P | Fe I
Fe I | 1149
584 | 5296.686
5296.968 | | Cr I
Mn II | 18
11 | | 5259.976
5260.25 | | Ti I
Fe III | 298 | 5277.32
5277.40 | • | Zr I | 27 | 5290.908
5297.236 | | Ti I | 156 | | 5260.25
5260.375 | | Ca I | 22 | 5277.59 | P | Fe I | 983 | 5297.360 | | Cr I | 94 | | 5260.44 | | Hf II | 36 | 5277.68 | | Al II | 67 | 5297.86 | | N III | 15 | | 5260.771 | | Mn I | 32 | 5278.10 | | S I | 4 | 5297.976 | P | Cr I
O VI | 94
15 | | 5260.91
5260.91 | | Al III
N III | 13
15 | 5278.262
5278.265 | | Cr I
Fe II | 309
225 | 5298
5298.06 | r | Hf II | 15
49 | | 5260.91
5261.49 | P | Fe I | 406 | 5278.62 | | Al II | 95 | 5298.269 | | Cr I | 18 | | | _ | | | | | | | | | | | | 66 | | | | | LIND. | ING LIST | | | | | | |----------------------|------|----------------|-----------------|----------------------|--------|----------------|---------------|----------------------|------|-----------------|-----------------| | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 5298.44 | P | Cr I | 94 | 5322.78 | P | Cr II | 24 | 5346.56 | P | Fe II | 49 | | 5298.789 | = | Fe I | 875 | 5322.81 | _ | V II | 240 | 5347.499 | n | Co I | 196 | | 5298.93 | | N III | 15 | 5323.51 | P | Fe I
Ti I | 113
36 | 5347.71
5347.806 | P | Ni I
Ce II | 145
227 | | 5299.00 | | 0 I | 26
11 | 5323.958
5324.185 | | Fe I | 553 | 5348.069 | | Mn I | 36 | | 5299.278 | | Mn II
Hf II | 11
14 | 5324.165 | | Hf II | 36 | 5348.319 | | Cr I | 18 | | 5299.85
5299.9 | | Fe III | 113 | 5324.61 | | Al II | 101 | 5348.40 | | Hf II | 22 | | 5300.012 | | Ti I | 74 | 5325.276 | | Co I | 192 | 5348.67 | | Gd I | 6 | | 5300.41 | P | Fe I | 1240 | 5325.559 | - | Fe II | 19 | 5349.08 | | Ta I
Sc I | 5
17 | | 5300.749 | | Cr I | 18 | 5325.71 | P | V II | 54 | 5349.294 | | GC 1 | 11 | | 5301.042 | | Co I | 39 | 5325.949 | | Co I | 194 | 5349.472 | | Ca I | 33 | | 5301.33 | P | Fe I | 1162 | 5326.154 | | Fe I | 407,785 | 5349.702 | | Sc I | 4 | | 5301.67 | | Gd I | 6 | 5326.247 | | Co I | 175 | 5349.742 | | Fe I | 1163 | | 5301.936 | | Sc I | 4 | 5326.793 | ъ. | Fe I | 1147 | 5349.75 | | V II
Zr II | 54
115 | | 5301.97 | | La II | 36 | 5327.25
5327.45 | P
P | Fe I
N II | 875
69 | 5350.10
5350.36 | | Zr II | 115 | | 5302.279 | | Nd II
Fe I | 80
553 | 5327.86 | P | Fe I | 1145 | 5350.37 | | V II | 54 | | 5302.307
5302.320 | | Mn II | 11 | 5328.042 | | Fe I | 15 | 5350.38 | | Gd I | 7 | | 5302.5 | | Fe III | 113 | 5328.339 | | Cr I | 94 | 5350.527 | | Tl I | 1 | | 5302.62 | | La II | 86 | 5328.38 | | Ta I | 2 | 5351.072 | | Ti I | 300 | | | | 0.1 7 | P | E000 E94 | | Fe I | 37 | 5351.21 | | N II | 69 | | 53 02.76. | | Gd I
V II | 6
54 | 5328.534
5328.70 | | N I | 13 | 5351.21 | P | Ni I | 177 | | 5303.26
5303.419 | | Fe II | 225 | 5328.70 | P | Ni I | 129 | 5352 | P | o v | 13 | | 5303.43 | | Gd II | 80 | 5328.98 | | 0 I | 12 | 5352.046 | | Co I | 172 | | 5303.54 | | La II | 36 | 5329.12 | | Cr I | 94 | 5353.26 | | Gd I | 7 | | 5304.11 | P | Fe I | 983 | 5329.59 | | 0 I | 12 | 5353.386 | | Fe I | 1062
70 | | 5304.211 | | Cr I | 225 | 5329.719 | | Cr I | 94 | 5353.415 | | Ni I
Co I | 198 | | 5304.26 | P | Fe II | 184 | 5329.994 | | Fe I
Ce II | 1028
13 | 5353.500
5353.534 | | Ce II | 15 | | 5304.923 | P | Gd II
O IV | 62
11 | 5330.582
5330.66 | | 0 I | 12 | 5353.78 | | Fe III | 10 | | 530 5.3 | P | 0 10 | ** | 0000100 | | | | | | | | | 5305.41 | P | Fe I | 877 | 5330.779 | | Ne I | 9 | 5354.01 | P | Co I | 91 | | 5305.77 | | A II | 93 | 5331.20 | P | Fe I | 817 | 5354.66 | P | Cr II | 29 | | 5305.85 | | Cr II | 24 | 5331.456 | - | Co I | 39 | 5354.67 | | Ta I
Sc I | 6
19 | | 5306.6 | | Fe III | 113 | 5331.48 | P | Fe I
As II | 210
3 | 5355.752
5356.100 | | Sc I | 17 | | 5307.121 | | Tm I
Cr I | 237 | 5331.54
5332.65 | | V II | 54 | 5356.14 | | C1 II | -
· | | 5307.281
5307.30 | | Ca II | 14 | 5332.652 | | Co I | 170 | 5356.77 | | N I | 13 | | 5307.30 | | Gd I | 6 | 5332.673 | | Fe I | 1031 | 5356.976 | | Nd II | 80 | | 5307.365 | | Fe I | 36 | 5332.903 | | Fe I | 36 | 5357.195 | | Sc II | 30 | | 5307.53 | P | Mn I | 36 | 5333.15 | P | Fe I | 1023 | 5357.35 | | V II | 54 | | 5308.44 | | Cr II | 43 | 5333.30 | | Gd I | 7 | 5357.790 | | Gd II | 62 | | 5308.71 | P | Fe I | 1091 | 5333.647 | | Co I | 190 | 5358.10 | P | Fe I | 628 | | 5309.267 | | Ru I | 10 | 5333.70 | | C1 II | 15 | 5359.200 | | Co I | 194 | | 5309.47 | | Cr I | 285 | 5333.77 | P | Fe I | 464 | 5361.174 | | Nd II | 46 | | 5310.219 | | Co I | 196 | 5334.228 | _ | Sc II | 30 | 5361.35 | | Ba II
Nd II | 6
7 4 | | 5310.70 | | Cr II | 43 | 5334.32 | P | Fe I
Mn I | 1064
36 | 5361.474
5361.637 | | Fe I | 1143 | | 5310.76 | | Al II | 94
27 | 5334.804
5334.821 | | Co I | 191 | 5361.724 | | Ti I | 35 | | 5311.42
5311.461 | | Zr I
Nd II | 80 | 5334.88 | | Cr II | 43 | 5362.4 | P | O IV | 11 | | 5311.60 | | Hf II | 37 | 5336.163 | | Co I | 191 | 5362.56 | | Zr I | 27 | | | | | | | | | | 5000 00 | | e 11 | 61 | | 5311.78 | | Zr II | 95 | 5336.7 | | C II
Ti II | 11
69 | 5362.69
5362.781 | | S II
Co I | 61
198 | | 5312.32 | | Al II | 94 | 5336.809
5337.713 | | Fe II | 48 | 5362.864 | | Fe II | 48 | | 5312.650 | | Co I
Cr I | 197
225 | 5337.79 | | Cr II | 43 | 5362.98 | | Cr I | 258 | | 5312.878
5313.239 | | Ti I | 74 | 5338.326 | | Ti I | 35 | 5363.80 | | Fe III | | | 5313.41 | | Fe I | 1239 | 5338.66 | | N II | 69 | 5364.874 | | Fe I | 1146 | | 5313.43 | | N II | 69 | 5339.29 | | Ca II | 20 | 5365.403 | 7 | Fe I | 786 | | 5313.59 | | Cr II | 43 | 5339.40 | P | Fe I | 1162 | 5366.651 | - | Ti I
Fe I | 35
1146 | | 5313.76 | P | Ti II | 81 | 5339.528
5339.92 | | Co I
Fe III | 199 | 5367.470
5367.53 | P | V II | 53 | | 5313.839 | | Fe I | 1238 | 0009.92 | | 10 111 | | 0007700 | _ | | | | 5314.45 | | N III | 15 | 5339.935 | | Fe I | 553 | 5367.78 | | Cr I | 258 | | 5315.07 | | Fe I | 1147 | 5340.20 | | N II | 69 | 5367.95 | P | T1 II | 80 | | 5315.618 | | Fe II | 225 | 5340.437 | | Cr I | 225 | 5368.10 | P | Cr II | 29 | | 5315.78 | P | Fe I | 877 | 5340.66 | | La II | 91 | 5368.546 | | Cr I
Co I | 258
167 | | 5316.07 | | Al II | 94 | 5340.68 | | Ti I
Fe III | 36 | 5368.904
5368.97 | | Pt I | 6 | | 5316.07 | | P II
Fe II | 6
4 9 | 5340.92
5341.026 | | Fe I | 37 | 5369.25 | P | Cr II | 29 | | 5316.609
5316.772 | | Co I | 152 | 5341.040 | | Sc I | 19 | 5369.591 | | Co I | 39 | | 5316.777 | | Fe II | 48 | 5341.065 | | Mn I | 4 | 5369.635 | | Ti I | | | 5317.095 | | Mn I | 36 | 5341.096 | | Ne I | 9 | 5369.965 | | Fe I | 1146 | | | | | | | | | 000 | 5070 OF 6 | | Cr I | | | 5317.394 | _ | Fe I | 584 | 5341.22 | | V II
Co I | 239
199 | 5370.356
5371.43 | P | Fe I | 1163 | | 5317.53 | P | Fe I
Fe II | 1032 | 5341.328
5341.492 | | Ti I | 316 | 5371.48 | • | Cr I | 258 | | 5318.025
5318.04 | P | Fe I | 406 | 5342.05 | P | Sc II | .30 | 5371.493 | | Fe I | 15 | | 5318.267 | - | Fe II | -50 | 5342.703 | | Co I | 190 | 5371.621 | | Gd II | 60 | | 5318.337 | | Sc II | 22 | 5342.961 | | Sc I | 4 | 5371.84 | | Al II | 42 | | 5318.41 | | Cr II | 23 | 5343 | P | 0 V | 13 | 5371.935 | | Nd II | 79 | | 5318.61 | P | V II | 53 | 5343.00 | | Gd I | 7 | 5372.216 | | Gd II
N I | 99
13 | | 5318.775 | ъ | Cr I | 225 | 5343.284
5343.383 | | Ne I
Co I | 9
190 | 5372.66
5373.704 | | r I
Fe I | 13
1166 | | 5319.22 | P | Fe I | 1029 | 2020.000 | | | | 30.01101 | | | | | 5319.818 | | Nd II | 75 | 5344.570 | | Co I | 191 | 5373.715 | | Cr I | 258,302 | | 5320.048 | | Fe I | 877 | 5344.73 | | PII | 6 | 5374.78 | P | Fe I | 785 | | 5320.70 | | S II | 38 | 5344.761 | _ | Cr I | 225 | 5375.346 | | Sc I | 19 | | 5320.78 | | YII | 20 | 5345.61 | P | Cr I
S II | 225 | 5375.393
5375.68 | | Gd II
Fe III | 99 | | 5320.96 | | N II
Fe I | 69 | 5345.67
5345.807 | | S II
Cr I | 38
18 | 5375.68
5376 | P | 0 V | 13 | | 5321.106
5321.496 | | re 1
Gd I | 1165
6 | 5346.12 | P | Cr II | 24 | 5376.59 | P | Ti I | 3 | | 5321.777 | | Gd I | 6 | 5346.30 | | Hf II | 92 | 5376.849 | | Fe I | 1132 | | | | | | | | | | | _ | | | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------------------------|------|-----------------|-----------------------|-------------------------------------|------|---------------|------------------|----------------------|--------|----------------|------------------------| | 5378. 07 | P | Cr II | 29 | 5405.778 | | Fe I | 15 | 5435.79 | P | Fe II | 48 | | 5378.12 | _ | PII | 23 | 5406.36 | P | Fe I | 1026 | 5435.871 | | N1 I | 70 | | 5379.19
5379.580 | P | Ti II
Fe I | 102
928 | 5406.77
5407.424 | P | Fe I
Mn I | 1148
4 | 5436.299
5436.594 | | Fe I
Fe I | 1161
113 | | 5380.242 | | CI | 11 | 5407.44 | | A II | | 5436.703 | | Ti I | 51 | | 5380.97 | | La II | 56 | 5407.520 | | Co I | 192 | 5436.80 | | Fe III | 110 | | 5381.020 | | Ti II
Co I | 69
56 | 5407.62
5408.119 | | Cr II
Co I | 23
112 | 5436.83 | P | 0 I | 11 | | 5381.105
5381.262 | | Pr II | 37 | 5408.59 | | 0 I | 53 | 5437.19
5438.04 | P | Fe I
Fe I | 1145
1237 | | 5381.77 | | La II | 91 | 5408.842 | | Fe II | 184 | 5438.310 | _ | Ti I | 108 | | F004 F76 | | Co I | 196 | #400 010 | | Ti I | 3 | F.100 | | | | | 5381.776
5381.91 | | La II | 91 | 5408.940
5409.125 | | Fe I | 1147 | 5438.41
5439.30 | | Si II
V II | 53 | | 5382.52 | P | Fe II | 184 | 5409.224 | | Ce II | 23 | 5440.53 | P | Ti I | 107 | | 5382.750 | | Fe I | 741 | 5409.28 | P | Cr II | 29 | 5441.17 | | Gd II | 146 | | 5382.96 | P | Ti I | 155 | 5409.609 | | Ti I | 155 | 5441.321 | | Fe I | 1144 | | 5383.374
5383.82 | | Fe I
N II | 1146
23 | 5409.66
5409.791 | | P II
Cr I | 6
18 | 5442.274
5442.413 | | Nd II
Cr I | 76
204 | | 5384.22 | P | Fe I | 817 | 5410 | P | 0 VI | 13 | 5443.41 | P | Fe I | 1059 | | 5384.634 | | Ti I | 35 | 5410.39 | P | Cr II | 29 | 5443.42 | | C1 II | 2 | | 5384.89 | | V II | 53 | 5410.76 | | 0 I | 51,52 | 5443.88 | | Fe III | 110 | | 5385.14 | | Zr I | 26 | 5410.913 | | Fe I | 1165 | 5444.07 | | Hf II | 69 | | 5385.28 | | Cr I | | 5411.227 | | N1 I | 222 | 5414.096 | | Mn I | 31 | | 5385.58 | P | Fe I | 927 | 5411.39 | P | Fe I | 670 | 5444.25 | | C1 II | 2 | | 5386.341
5386.87 | | Fe I
P II | 1064
6 | 5411.524
5412.56 | P | He II
Fe I | 2
1237 | 5444.585
5444.99 | | Co I
Cl II | 196
2 | | 5386.958 | | Fe I | 875 | 5412.80 | P | Fe I | 1162 | 5445.045 | | Fe I | 1163 | | 5386.978 | | Cr I | 191 | 5413.47 | | Ta I | 5 | 5445.97 | P | Fe II | 53 | | 5387.136 | | Fe II | | 5413.687 | | Mn I
Fe II | 42 | 5446.46 | P | Ti II | 68 | | 5387.35
5387.51 | | Fe III
Fe I | 1031 | 5414.089
5414.91 | P | Fe I | 48
874 | 5446.57
5446.58 | P
P | Cr II
Fe I | 35
11 44 | | 5501.01 | | | | | - | | | | - | | | | 53 87.573 | | Cr I | 191 | 5415.201 | | Fe I | 1165 | 5446.593 | | Ti I | 3,259 | | 5388.350 | | N1 I
Al II | 70
34 | 5415.277 | | V I
Nd II | 130
80 | 5446.76
5446.87 | P | Cr I
Fe I | 204
37 | | 5388.48
5388.521 | | Mn I | 36 | 5416.381
5417 | P | 0 V | 13 | 5446.920 | r | Fe I | 15 | | 5389.180 | | Ti I | 35 | 5417.03 | | Fe I | 1148 | 5447.59 | | La II | 112 | | 5389.461 | | Fe I | 1145 | 5418.01 | | Zr II | 94 | 5448.882 | | Ti I | 259 | | 5389.996 | | Ti I
Cr I | 155
191 | 5418.802
5419.189 | | Ti II
Ti I | 69
258 | 5449.155
5450.66 | | Ti I
P II | 107
23 | | 5390.394
5391. 06 | P | Ti I | 155 | 5419.19 | | Ta I | 6 | 5450.836 | | Sr I | 9 | | 5391.350 | | Cr I | 191,302 | 5419.36 | | Cr II | 22,29 | 5451.115 | | Nd II | | | E001 00 | | Hf II | 48 | 5419.876 | | Gd II | 99 | 5451.60 | P | Fe II | 184 | | 5391.36
5391.4 93 | | Fe I | 1062 | 5420.362 | | Mn I | 4 | 5451.965 | r | Ti I | 265 | | 5391.60 | | Ba II | 6 | 5420.90 | | Cr II | 23 | 5452.03 | | Ti II | 109 | | 5391.78 | P | Fe I | 270 | 5421.05 | _ | Ba II | 6 | 5452.119 | | Fe I | 870 | | 5392.075
5392.12 | | Sc I
Cl II | 19
28 | 5421.4 0
5421. 559 | P | Fe I
Nd II | 874
79 | 5452.12
5452.305 | | N II
Co I | 29
175 | | 5392.12 | | N1 I | 250 | 5421.85 | P | Fe I | 1183 | 5453.255 | | N1 I | 231 | | 5392.95 | P | Cr II | 29 | 5422.15 | P | Fe I | 1145 | 5453.338 | | Co I | 194 | | 5393.174 | | Fe I | 553 | 5422.47 | | Ti II | 80
2 | 5453.646 | | Ti I | 108 | | 5393.391 | | Ce II | 24 | 5423.25 | | C1 II | 2 | 5453.81 | | S II | 6 | | 5393.659 | | Gd II | 100 | 5423.52 | | C1 II | 2 | 5453.98 | P | Fe I | 1064 | | 5394.321 | | Gd II | 63 | 5423.73 | P | Fe I | 927
7 | 5454.05 | P | Ti II
N II | 68 | | 5394. 674
5394. 682 | | Mn I
Fe I | 1
1031 | 5423.82
5424.072 | | La II
Fe I | 1146 | 5454.26
5454.41 | | AII | 29 | | 5395.25 | | Fe I | 1143 | 5424.15 | P | Fe I | 1026 | 5454.573 | | Co I | 195 | | 5395.41 | P | Cr II | 29 | 5424.36 | | C1 II | 2 | 5455.09 | P | Fe I | 627 | | 5396.3 | n | T1 II
T1 II | 80
102 | 5424.551
5424.56 | P | Ba I
Ni I | 9
231 | 5455.14
5455.433 | | La I
Fe I | 3
1145 | | 5396.59
5396.600 | P | Ti I | 3 | 5424.654 | • | Ni I | 70 | 5455.613 | | Fe I | 15 | | 5396.90 | P | Fe I | 464 | 5425.269 | | Fe II | 49 | 5455.80 | | Cr II | 50 | | F007 000 | | m t | 155 | 5495 90 | P | Cr II | 29 | 5455 015 | | Nd II | 69 | | 5397.093
5397.131 | | Ti I
Fe I | 155
15 | 5425.29
5425.621 | • | Co I | 196 | 5455.815
5456.11 | | Si II | 83 | | 5397.60 | | A II | | 5425.93 | | PII | 6 | 5456.27 | | Ç1 II | 2 | | 5397.60 | | Fe I | 841 | 5426.256 | | Ti I | 3 | 5456.48 | | Fe I | 817 | | 5398.285 | | Fe
I
Ti IV | 1145 | 5427.832
5428.64 | | Fe II
S II | 6 | 5457.02
5457.10 | | C1 II
V II | 2
53 | | 5398.82
5399.489 | | Mm I | 42 | 5428.71 | P | Fe I | 1032 | 5457.47 | | C1 II | 2 | | 5400.509 | | Fe I | 1145 | 5428.79 | | Ba II | 9 | 5457.471 | | Mn I | 4 | | 5400.5620 | | Ne I
Cr I | 3
191 | 5428.85
5429.139 | | Ni I
Ti I | 161
259 | 5458.68
5460.502 | | La II
Ti I | 99
3 | | 5400.608 | | 01 1 | 101 | 0420:100 | | ••• | 200 | 01001002 | | | · · | | 5400.67 | | SII | 61 | 5429.43 | P | Fe I | 1029 | 5460.644 | | Mn I | 31 | | 5401.05 | n | Mg II
Fe I | 24
1146 | 5429.52
5429.699 | P | Fe I
Fe I | 1062
15 | 5460.742
5460.8 | | Hg I
Fe III | 1
68 | | 5401.27
5401.32 | P | Ti I | 35 | 5429.83 | P | Fe I | 1162 | 5460.909 | | Fe I | 464 | | 5401.945 | | V I | 130,139 | 5430.14 | | Fe III | | 5461.31 | | Ta I | 4 | | 5402.000 | | Co I | 195 | 5430.41
5431 536 | P | Cr II | 29
80 | 5461.54
5461.80 | P | Fe I
Fe I | 1145
817 | | 5402.113
5402.27 | | Fe II
Fe III | | 5431.526
5432 | P | Nd II | 80
13 | 5461.80
5462.487 | ۳ | re 1
Ni J | 817
192 | | 5402.27 | | Ta I | 1 | 5432.09 | _ | V II | 53 | 5462.62 | | N II | 29 | | 5402.57 | | Lu I | 2 | 5432.318 | | Ti I | 265 | 5462.970 | | Fe I | 1163 | | 5402.69 | | A II | | 5432.347 | | Cr I | 204 | 5463.282 | | Fe I | 1163 | | 5402.78 | | Y II | 35 | 5432.548 | | Mn I | 1 | 5463.38 | | Hf II | 14 | | 5403.823 | | Fe I | 1029 | 5432.77 | | S II | 6 | 5463.974 | | Cr I | 204 | | 5404.023 | p. | Ti I
Fe I | 259
1145 | 5432.950 | ъ | Fe I
Fe II | 1143
55 | 5464.286
5464.36 | P | Fe I
Cr II | 1030
35 | | 5404.12
5404.144 | P. | re I
Fe I | 11 4 5
1165 | 5432.98
5434.527 | P | re II
Fe I | 55
1 5 | 5464.37 | • | La II | 49 | | 5404.87 | | 0 I | 53 | 5435.16 | | 0 I | 11 | 5465.04. | P | Fe I | 840 | | 5404.95 | | Ta I | 13 | 5435.17 | P | Fe I | 1161 | 5466.021 | | Fe II | 4444 | | 5405.004 | | Cr I | 191 | 5435.27 | | Ta I | 9 | 5466.404 | | Fe I | 1144 | | 68 | | | | | LIND | ING LIST | Ľ | | | | | |----------------------|----------|---------------|--------------------------|----------------------|--------|---------------|-----------------|----------------------|--------|---------------|---------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 5466.46 | | y I | 12 | 5490.65 | P | Ti II | 68 | 5519.83 | P | Fe II | 52 | | 5466.5 5 | | s II | 11 | 5490.840 | - | Ti I | 3 | 5520.19 | P | Fe I | 1144 | | 5466.94 | | Fe II | | 5491.84 | | Fe I | 1031 | 5520.496 | | Sc I
Fe I | 15
839 | | 5466.993 | | Fe I | 784,817 | 5492.43 | | Ti IV
O I | 62 | 5521.14
5521.28 | P
P | Fe I | 1162 | | 5467.76 | P | Fe I
Ni I | 741
192 | 5492.8
5492.82 | P | Ti II | 68 | 5521.44 | • | N1 I | 175 | | 5468.101
5468.37 | P | Ce II | 24 | 5493.22 | • | Hf II | 113 | 5521.56 | P | YII | 27 | | 5468.44 | P | Ti II | 102 | 5493.33 | P | Fe I | 873 | 5521.765 | | Sr I | 9 | | 5468.92 | | Si II | | 5493.45 | | La II | 4 | 5522.46 | | Fe I
Co I | 1108
112 | | 5469.09 | P | Fe I | 1131 | 5493.508 | | Fe I | 1061 | 5523.310 | | CO 1 | 112 | | 5469.29 | P | Fe I | 1143 | 5493.850 | | Fe I | 464,1062 | 5524.25 | P | Fe I | 1059 | | 5469.29
5469.305 | r | Co I | 56 | 5494.35 | P | V II | 53 | 5524.35 | | Hŗ II | 25 | | 5469.72 | | Gd II | 60 | 5494.468 | | Fe I | 1024 | 5524.990 | _ | Co I | 192 | | 5470.17 | | Fe I | 1144 | 5494.726 | | T1 I | 108
231 | 5525.14 | P
P | Fe II
Fe I | 56
1107 | | 5470.460 | | Co I | 175 | 5494.890 | | N1 I
Co I | 166 | 5525.48
5525.552 | P | Fe I | 1062 | | 5470.50 | | Ti I
Gd II | 108
63 | 5495.682
5495.70 | | N II | 29 | 5525.90 | P | Cr II | 22 | | 5470.53
5470.638 | | Mn I | 4 | 5495.8720 | | A I | 14 | 5526.06 | | Sc I | 18 | | 5470.81 | P | Fe II | 52 | 5496.020 | | V I | 2 | 5526.22 | | S II | 11 | | 5471.198 | | Ti I | 106 | 5496.24 | | Si II | | 5526.26 | | N II | 63 | | E470 007 | | Ce II | 24 | 5496.57 | P | Fe I | 1281 | 5526.809 | | Sc II | 31 | | 5472.297
5472.63 | | Cr II | 50 | 5497.42 | • | YII | 27 | 5527.07 | P | Fe I | 464 | | 5472.696 | | Ti I | 107 | 5497.519 | | Fe I | 15 | 5527.54 | | Y I | 12 | | 5472.720 | | Fe I | 1108 | 5497.70 | P | Fe II | 204 | 5527.606 | | Ti I
V I | 265
1 | | 5473 | P | o v | 13 | 5497.86 | P
P | Cr II
Ti I | 22
51 | 5527.72
5528.3876 | | MgI | 9 | | 5473.18 | P | Fe I | 1064
27 | 5497.92
5498.18 | r | S I | 12 | 5528.3986 | | Mg I | 9 | | 5473.40
5473.517 | | Y II
Ti I | 259 | 5498.19 | P | Fe II | 24 | 5528.4094 | | MgI | 9 | | 5473.517 | | Ti II | 109 | 5499.39 | P | N1 I | 176 | 5528.89 | P | Fe I | 1161 | | 5473.59 | | s II | 6 | 5499.60 | P | Fe I | 1159 | 5529.15 | | Fe I | 872 | | | | P. 1 | 1060 | 5499.72 | | P II | 6 | 5529.80 | P | Fe I | 344 | | 5473.908 | P | Fe I
Fe I | 1062
131 4 | 5500.43 | | Gd II | 99 | 5529.94 | P | T1 II | 68 | | 5474.09
5474.228 | | Ti I | 108 | 5500.61 | P | Cr II | 35 | 5529.940 | | Fe II | 224 | | 5474.449 | | Ti I | 259 | 5501.34 | | La I | 3 | 5530.10 | | V II | 247 | | 5474.734 | | Nd II | 82 | 5501.469 | | Fe I | 15 | 5530.27 | | N II
Co I | 63
38 | | 5475.57 | | Ni I | 159 | 5501.54 | | S I
Cr II | 12
50 | 5530.780
5531.949 | | Fe I | 1281 | | 5476.298 | | Fe I
Fe I | 1029
1062 | 5502.05
5502.88 | | Al II | 78 | 5532.13 | P | Fe I | 344 | | 5476.571
5476.69 | | Lu II | 2 | 5503.18 | | Cr II | 50 | 5532.17 | | La II | 106 | | 5476.906 | | N1 I | 59 | 5503.397 | | Fe II | | 5532.65 | | Fe III | 56 | | | | | | **** | | Ti I | 287 | 5532.752 | | Fe I | 783 | | 5477.089 | P | Co I
Cr II | 175
50 | 5503.897
5504.120 | | N1 I | 175 | 5533.01 | | Mo I | 4 | | 5477.45
5477.67 | P | Fe II | 49 | 5504.184 | | Sr I | 9 | 5534.68 | | Fe I | 871,1063 | | 5477.695 | | Ti I | 265 | 5504.21 | | Mn I | 31 | 5534.794 | | Sr I | 9 | | 5477.82 | | Zr II | 115 | 5505.75 | P | Fe I | 1162 | 5534.860 | | Fe II | 55 | | 5478.13 | | N II | 29 | 5505.869 | | Mn I | 4
1145 | 5535.382 | | V I
N II | 1
63 | | 5478.35 | | Cr II | 50 | 5505.893
5506.268 | | Fe I
Fe II | 1145 | 5535.39
5535.419 | | Fe I | 626,1029 | | 5478.48
5478.6 | | Fe I
C II | 1062
34 | 5506.51 | | Mo I | 4 | 5535.484 | | Ba I | 2 | | 5479.95 | P | Fe I | 1282 | 5506.782 | | Fe I | 15 | 5535.66 | | La II | 71 | | | | | | | | | 40 | 5536.0 | | C II | 10 | | 5480.10 | | N II | 29 | 5507.01 | | S I
P II | 12
23 | 5536.01 | | K II | 6 | | 5480.30
5480.503 | , | Ba II
Cr I | 9
204 | 5507.15
5507.753 | | v I | 129 | 5536.59 | P | Fe I | 345 | | 5480.502
5480.72 | , | La II | 90 | 5508.11 | | 0 111 | 16 | 5536.77 | | S II | 11 | | 5480.75 | | YII | 27 | 5508.60 | | Cr II | 50 | 5537.11 | | Ni I | 188 | | 5480.865 | • | Sr I | 9 | 5508.88 | P | Cr I | 224
6 | 5537.756 | | Mn I
Gd II | 4 | | 5480.872 | | Fe I | 1062 | 5509.67
5509.91 | | S II
Y II | 19 | 5538.32
5538.54 | | Fe I | 839,1064 | | 5480.893
5481.252 | | Ni I
Fe I | 191
1058 | 5510.001 | | N1 I | 190 | 5539.28 | | Fe I | 871 | | 5481.396 | | Mn I | 4,31 | 5510.174 | | Mn I | 31 | 5539.831 | | Fe I | 1130 | | | | | | | _ | E- T | 1000 | ##40 OF4 | | e= T | 9 | | 5481.426 | | Ti I
Fe I | 265
1061 | 5510.23
5510.58 | P | Fe I
Gd II | 1023
132 | 5540.051
5540.16 | | Sr I
N II | 63 | | 5481.451
5481.862 | | Ti I | 106 | 5510.68 | | Cr II | 23 | 5540.74 | | Si II | 9 | | 5481.989 | | Sc I | 16 | 5511.795 | | Ti I | 108,275 | 5541.030 | | Sc I | 18 | | 5482.26 | P | Fe I | 873 | 5512.085 | | Ce II | 24 | 5541.19 | _ | PII | 23 | | 5482.27 | | La II | 4 | 5512.277 | _ | Fe I | 1143 | 5541.58 | P
P | Fe I
Fe I | 627
1064 | | 5482.471 | | V I | 2 | 5512.40 | P | Fe I
Ti I | 1148
106 | 5543.03
5543.04 | P | Fe I | 926 | | 5483.111
5483.354 | | Fe I
Co I | 1061
39 | 5512.529
5512.69 | | Cr I | 121 | 5543.184 | • | Fe I | 926 | | 5483.55 | • | Li II | 1 | 5512.71 | | 0 I | 25 | 5543.49 | | N II | 63 | | | | <u> </u> | 00 | PP-10 | | Co T | 48 | \$E40.00 | P | Cr II | 35 | | 5483.56 | . | P II
Co I | 23
175 | 5512.979
5513.86 | P | Ca I
Fe I | 925 | 5543.86
5543.930 | r | Fe I | 1062 | | 5483.962
5484.618 | | Sc I | 16 | 5514.215 | - | Sc I | 15 | 5544.61 | | YII | 27 | | 5485.6 | - | Fe III | 68 | 5514.350 | | Ti I | 106 | 5544.76 | P | Fe II | 166 | | 5485.65 | | Li II | 1 | 5514.536 | | Ti I | 106 | 5544.865 | | V I | 38 | | 5485.699 | | Nd II | 79 | 5514.712 | | WI | 1 | 5545.01 | | Gd II | 98
26 | | 5486.136 | 3 | Sr I | 9 | 5514.80
5515.083 | | Ni I
V I | 189
2 | 5545.11
5545.26 | P | N I
Fe II | 26
24 | | 5486.6
5486.86 | | O I
La II | 63
68 | 5515.083
5515.371 | | V I | 1 | 5545.26 | • | V I | 38 | | 5487.00 | | VII | 53 | 5515.990 | | Co I | 195 | 5545.937 | | Co I | 191 | | | | | | | | o_ * | 2 | EE40 00 | | Y II | 27 | | 5487.16
5487.40 | P | Fe I
Fe I | 1143
870 | 5516.09
5516.29 | P | Sm. I
Fe I | 1057 | 5546.02
5546.512 | | Fe I | 1145 | | 5487.49
5487.52 | | re I
Fe I | 870
1064 | 5516.29
5516.771 | K. | Mn I | 4 | 5547.00 | | Fe I | 1061 | | 5487.747 | | Fe I | 1025 | 5517.08 | | Fe I | 1109 | 5547.080 | | VI | 38 | | 5487.915 | | V I | 129 | 5518.11 | P | Ti I | 265 | 5548.474 | | Nd II | 73 | | 5488.14 | P | Fe I | 1183 | 5518.491 | | Ce II | 26 | 5549.55 | P | Fe I | 1159 | | 5486.210 | | Ti I | 265 | 5518.57 | P | Fe I | 1314 | 5549.66 | P | Fe I | 1314
15 | | 5488.97 | P | Cr II | 35 | 5518.74 | | S II | 61 | 5549.68 | | Sc I | 15 | FINDING LIST | | | | | | FIND. | MG PIO | • | | | | 35 | |-------------------------------------|--------|----------------|--------------------|----------------------|--------|----------------|-------------------
------------------------------|------|---------------|----------------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | | • • | | • | | • • | | | #004 00B | | v i | 37 | | 5551.29
5551.77 | P
P | Fe I
Fe I | 714
1059 | 5587.865
5587.9 | | Ni I
Fe III | 70 | 5624.605
5624.895 | | V I | 37 | | 5551.95 | • | N II | 63 | 5588.07 | P | Fe I | 1109 | 5625.326 | | N1 I | 221 | | 5551.985 | | Mn I | ~ | 5588.25 | | PII | 27 | 5625.43 | | N I
A II | 24
121 | | 5552.12
5552.25 | | Hf I
Sc II | 7
25 | 5588.757
5589.00 | P | Ca I
Fe I | 21
1160 | 5625:74
5626.014 | | V I | 37 | | 5552.54 | | N II | 63 | 5589.384 | • | N1 I | 205 | 5626.60 | P | Cr II | 22 | | 5552.70 | P | Fe I | 1281 | 5590.120 | | Ca I | 21 | 5627.08 | P | Fe I | 1084 | | 5552.85
5553.22 | P
P | Fe I
Fe I | 344
1064 | 5590.73 | | Hf II
Co I | 48
90 | 5627.49
5627.628 | P | Fe II
V I | 57
37 | | | r | | | 5590.744 | | | | | | Ni I | 215 | | 5553.586
5553.693 | | Fe I
Ni I | 1161
6 9 | 5591.322
5591.38 | P | Sc I
Fe II | 18
55 | 5628.347
5628.645 | | Cr I | 203 | | 5553.81 | P | Cr II | 34 | 5592.146 | - | N1 I | 250 | 5630.14 | | Y I | 12 | | 5554.895 | | Fe I | 1183 | 5592.283 | | N1 I | 69 | 5631.404 | | Tm I | | | 5554.94
5555.17 | P | O I
Fe I | 24
740 | 5592.37
5592.409 | | V I | 5
37 | 5631.707
5631.72 | | Sn I
Fe I | 4
1159 | | 5556.01 | • | 8 11 | 6 | 5592.962 | | v i | 1 | 5632.25 | | Gd I | 3 | | 5556.19 | | Cr I | 120,121 | 5593.23 | | Al II | 16 | 5632.469 | | V I | 1 | | 5556.48
555 7.08 | | Yb I
Al I | 1
6 | 5593.735
5594.425 | | N1 I
Nd II | 206
79 | 5633.970
5634.53 | P | Fe I
Fe I | 1314
1281 | | 5557.453 | | v i | 1 | 5594.468 | | Ca I | 21 | 5634.84 | | Cl II | 23 | | 5557.90 | P | Fe I | 464,1164 | 5594.661 | | Fe I | 1182 | 5635.85 | | Fe I | 1088 | | 5557.95 | | Al I | 6 | 5595.06 | P | Fe I | 1314 | 5636.00 | P | Fe I | 1058 | | 5557.954
5558.31 | | Fe I | 1163
2 | 5597.21 | | Gd II | 95 | 5636.235 | | Ru I
Fe I | 10 | | 5558.752 | | As II
V I | 77 | 5597.87
5597.92 | | Cr I
Ti I | 239
229 | 5636.708
5637.121 | | N1 I | 868
218 | | 5558.825 | | Co I | 166 | 5598.303 | | Fe I | 1183 | 5637.734 | | Co I | 195 | | 5559.06 | _ | 8 II | 61 | 5598.47 | P | Fe I | 113 | 5638.266 | | Fe I | 1087 | | 5559.64
5560.230 | P | Fe I
Fe I | .282
1164 | 5598.487
5600 | P | Ca I
O V | 21
3 | 5638.82
5639.492 | | N1 I
S1 II | 203
9 | | | | | | | • | | | | | | | | 5560.37
5560.548 | | N I
V I | 25
1 | 5600.038 | | N1 I
Fe I | 219 | 5639.96 | | SII | 14 | | 5560.69 | | Gd II | 99 | 5600.242
5601.285 | | Ca I | 866,1108
21 | 5640.32
5640.46 | | S II
Fe I | 11
1202 | | 5561 | P | N IV | 13 | 5602 | P | o VI | 11 | 5640.50 | | C II | 15 | | 5561.670 | | V I
V II | 77 | 5602.54 | P. | Fe I | 1281 | 5640.971 | | Sc II | 29 | | 5562.02
5562.12 | P | Fe I | 247
1162 | 5602.788
5602.846 | | Fe I
Ca I | 1062
21 | 5641.112
5641.464 | | Ni I
Fe I | 230
1087 | | 5562.712 | | Fe I | 626,1163 | 5602.955 | | Fe I | 686 | 5641.880 | | N1 I | 234 | | 5562.769 | | Ne I | 19 | 5603.651 | | Nd I | 45 | 5642.01 | | V II | 238 | | 5563.604 | | Fe I | 1062 | 5604.205 | | V I | 85 | 5642.362 | | Cr I | 239 | | 5563.69
5564.37 | P | Fe I
N I | 112, 1023
25 | 5604.943 | | V I
Fe II | 37 | 5642.660 | | Ni I
Fe I | 203 | | 5564.861 | | Sic I | 18 | 5605.91
5606 | P
P | 0 V | 51
3 | 5642.75
5643.099 | P | re I
Ni I | 1184
259 | | 5564.94 | | 8 II | 6 | 5606.11 | - | SII | 11 | 5643.24 | | Gd I | 3 | | 5565.30 | | N II | 63 | 5607.05 | _ | N1 I | 205 | 5643.94 | P | Fe I | 1021 | | 55 65.476
55 65.56 | | Fi I
Hf II | 229
100 | 5607.12
5607.66 | P
P | Fe II
Fe I | 24
1058 | 5644.137 | P | Ti I
Fe I | 240
1057 | | 5565.708 | | Fe I | 1183 | 5608 | P | o v | 3 | 5644.35
5644.84 | P | Gd II | 60 | | 5566.06 | P | Cr II | 35 | 5608.98 | P | Fe I | 1108 | 5645.62 | | S II | 6 | | 5566.82 | P | Fe I | 625 | 5609.19 | | Cr I | 223 | 5645.665 | | 81 I | 10 | | 5566.92 | | La II | 90 | 5609.97 | P | Fe I | 866 | 5646.112 | | V I | 37 | | 5567.401
5567.815 | | Fe I
Fe II | 209 | 5610.01
5610.257 | P | Cr Il
Ce II | 34 | 5646.70 | ₽ | Fe I | 1109 | | 5568.07 | P | Fe I | 1059 | 5610.36 | | Y II | 26
19 | 5646.98
5647.234 | | S II
Co I | 14
112 | | 5568.44 | P | Fe I | 1058 | 5610.53 | | La II | 106 | 5648.08 | | C II | 15 | | 5568.71
5568.81 | P | Fe I
Cl II | 1026
80 | 5611.35 | P | Fe I | 869 | 5648.18 | | Cr I | 239 | | 5568.81 | | Fe I | 869 | 5613.19
5613.698 | | Al II
Ce II | 77
32 | 5648.570
5648.90 | P | Ti I
Fe I | 269
625 | | 5569.625 | _ | Fe I | 686 | 5613.70 | P | Fe I | 1282 | 5649.371 | - | Gr I | 239 | | 5570.06 | P | Fe I | 345 | 5614.29 | P | Fe I | 1314 | 5649.66 | | Fe I | 838 | | 5570.46
5571 | P | Mo I | 4 | 5614.303 | _ | Nd II | 87 | 5649.697 | | N1 I | 231 | | 5571
5572.849 | r | N IV
Fe I | 13
686 | 5614.58
5614.790 | P | Fe I
Ni I | 739
250 | 5650.01 | n | Fe I | 1314 | | 5573 | P | 0 V | 3 | 5615.18 | P | Fe I | 250
1143 | 5650.31
5650.7034 | P | Fe I
A I | 1180
12 | | 5573.10 | | Fe I | 1061 | 5615.308 | | Fe I | 209 | 5650.71 | | Fe I | 1314 | | 5573.3
5574.41 | | Fe III
Cr I | 68
120 | 5615.54 | P | Cr I | 239 | 5651.47 | P | Fe I | 1161 | | 5576.097 | | Fe I | 686 | 5615.652
5616.21 | | Fe I
Gd II | 686
61 | 5651.53
5651.734 | | As II
Co I | 2
56 | | 5576.61 | _ | 81 II | 9 | 5616.54 | | ΝI | 24 | 5652.01 | P | Fe I | 1059 | | 5577.03 | P | Fe I | 1314 | 5616.63 | | 8 11 | 11 | 5652.3 | | La II | 103 | | 5577.70
5579.794 | | A II | 134 | 5617.14 | P | e I | 1086 | 5652.32 | | Fe I | 1108 | | 5578.734
5578.85 | | N1 I
8 II | 47
11 | 5617.22
5617.91 | | ∧e I
Gd I | 626 | 5653.889 | | Fe I | 1159 | | 5579.34 | P | Fe I | 1061 | 5618.646 | | Fe I | 3
1107 | 5655.179
5655.506 | | Fe I
Fe I | 1314
1107 ,131 4 | | 5580.51 | | Cr I | 223 | 5619.23 | P | Fe I | 923 | 5656.6585 | | Ne I | 24 | | 5581.87
5581.071 | | Y I | 12 | 5619.60 | | Fe I | 1161 | 5656.895 | | V I | 127 | | 5581.971
5582 | Þ | Ca I
O V | 21
3 | 5620.04
5620.16 | | Fe I
Zr I | 1026,1205
25 | 5657.449
5657.870 | | V I
Sc II | 37
29 | | 5583.33 | | PII | 23 | 5620.527 | | Fe I | 1061 | 5657.92 | P | Fe II | 29
57 | | 5583.68 | | Gd II | 59 | | | | | 5658.334 | | Sc II | 29 | | 5583.97 | ¥ | Fe I | 1059 | 5620.62 | P | Nd II | 86 | 5658.542 | | Fe I | 686 | | 5584
5584 490 | P | 0 V | 3
97 | 5620.63 | | Cr II | 189 | 5658.67 | P | Fe I | 1087 | | 5584.490
5584.738 | | A I | 37
85 | 5621,43
5622.075 | | Od II
V I | 1 32
85 | 5658.826
5659.104 | | Fe I
Ti I | 686
50 | | 5584.768 | | Fe I | 782 | 5622.23 | | 81 I | 11 | 5659.10 <u>4</u>
5659.121 | | Co I | 50
82 | | 5586.007 | | V I | 85 | 5623.20 | _ | N I | 24 | 5659.86 | | Sm I | 2 | | 5586.16
5586.763 | | Od II
Fe I | 78
686 | 5623.64
5624.056 | P | Fe I
Fe I | 625
1160 | 5659.95
5660.79 | | S II
Fe I | 11
869 | | | | - | | 2023.000 | | | | 0000118 | | a | | | 70 | | | | | | ING LIDI | | | | | | |----------------------|--------|----------------|-------------------|------------------------|--------------|----------------|---------------|-----------------------------|------|----------------|-------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | í A | Type | Element | Multiplet No. | | 5661.97 | P | Fe I | 1109 | 5701.138 | | Si I | 10 | 5731.771 | | Fe I | 1087 | | 5662.154 | • | Ti I | 249 | 5701.35 | | Gd I | 3 | 5732.29 | P | Fe I | 1313 | | 5662.51 | | C 11 | 15 | 5701.375 | | Si II | | 5732.72 | P | Fe II | 57 | | 5662.525 | | Fe I | 1087
34 | 5701.46
5701.553 | P | Cr II
Fe I | 22
209 | 57 32. 86
5733.86 | P | Fe I
Od II | 1055 94 | | 5662.58
5662.891 | Р | Cr II
Ti I | 269 | 5701.553 | | Nd II | 78 | 5734 | P | N IV | 9 | | 5662.94 | | Fe I | 924 | 5702.307 | | Cr I | 203 | 5734.004 | | V I | 135 | | 5662.95 | | Y II | 38 | 5702.434 | | Fe I | 866 | .735.70 | | Zr I | 4
54 | | 5664.017 | | Ni I | 272 | 5702.666 | P | Ti I
Fe I | 249
1053 | 5735.74
5736.55 | | Ca I
Lu I | 1 | | 5664.040 | | Cr I | 203 | 5703.09 | P | rei | 1000 | 0700.00 | | 25 2 | • | | 5664.55 | | Zr I | 47 | 5703.32 | | La II | 48 | 5736.632 | | Cr I | 228 | | 5664.73 | | s II | 11 | 5703.562 | | V I | 35 | 5737.040 | D | V I | 35
58 | | 5665.601 | | Si I | 10 | 5705.32 | P | Fe I
Fe I | 1058
1087 | 5737.68
5737.71 | P | Fe II
Fe I | 1053 | | 5666.64
5666.78 | p | N II
Ni I | 3
233 | 5705.48
5705.988 | | Fe I | 1183 | 5738.22 | P | Fe I | 1084 | | 5666.837 | r. | Fe I | 1053,1060 | 5706.11 | P | Fe I | 1088 | 5738.286 | | Mn I | | | 5667.164 | | Sc II | 29 | 5706.11 | | SI | 11 | 5738.554 | р | Cr I
Ti I | 227
249 | | 5667.67 | P | Fe I
V I | 209
37 | 5706.206
5706.375 | | Nd II
Si II | 86 | 5739.08
5739.30 | r | Sc I | 12 | | 5668.369
5668.868 | | Nd II | 84 | 5706.973 | | v i | 35 | 5739.464 | | Ti I | 228 | | 30001000 | | | | | | | | | | | | | 5668.901 | | Ce II | 23 | 5707.03 | | Ca I
Fe I | 54
868 | 5739.762
5739.78 | P | Si III
Fe I | 4
1057 | | 5669.030
5669.590 | | Sc II
Si II | 29 | 5707.068
5707.25 | \mathbf{p} | Fe I | 866 | 5739.975 | | Ti I | 228 | | 5669.8 | P Forb | | 7 | 5707.70 | P | Fe I | 1056 | 5740.65 | | La I | 8 | | 5669.945 | | Ni I | 250 | 5708.109 | | Fe I | 1161 | 5740.862 | | Nd II | 86 | | 5670.827 | | VI | 36 | 5708.199 | | Ti I | 249
79 | 5741.192 | | Ti I
Sc I | 280
12 | |
5671.54 | n | La II
Cr II | 95
22 | 5708.280
5708.437 | | Nd II
Si I | 10 | 5741.36
5741.861 | | Fe I | 1086 | | 5671.62
5671.805 | P | Sc I | 12 | 5708.600 | | Sc I | 12 | 5742.95 | P | Fe I | 1084 | | 5672.28 | P | Fe I | 1234 | 5709.378 | | Fe I | 686 | 5743.28 | | Ca I | | | | | 11.0 TT | 110 | 5700 550 | | Ni I | 46 | 5743.438 | | v i | 35 | | 5673.58
5675.08 | p | Hf II
Fe I | 112
583 | 5709.559
5709.93 | p | Fe I | 1088 | 5746.32 | P | Cr I | 228 | | 5675.3 | P Forb | | 7 | 5709.976 | _ | Tm II | | 5746.432 | | Cr I | 243 | | 5675.413 | | Ti I | 249 | 5710.76 | | NII | 3 | 5746.81 | | Ca I | 54 | | 5675.853 | | Tm I | 0 | 5711.0735 | | Mg I | 8
8 | 5747.29
5747.36 | | N II
N I | 9
35 | | 5676.02 | Р | N II
Fe I | 3
1057 | 5711.0831
5711.0912 | | Mg I
Mg I | 8 | 5747.85 | P | Fe I | 343 | | 5677.68
5678.04 | P | Fe I | 1290 | 5711.754 | | Sc I | 12 | 5747.88 | P | Fe II | 164 | | 5678.38 | P | Fe I | 982 | 5711.852 | | Ti I | 249 | 5747.95 | ъ | Fe I | 1182 | | 5678.42 | | Cr II | 189 | 5711.867 | | Fe I | 1087 | 5748.15 | P | Fe I | 1290 | | 5678.60 | P | Fe I | 113 | 5711.905 | | Ni I | 69 | 5748.299 | | Ne I | 13 | | 5679.023 | 1 | Fe I | 1183 | 5712.150 | | Fe I | 686 | 5748.343 | | Ni I
V I | 45 | | 5679.56 | | NII | 3 | 5712.39 | | La II
Cr I | 20 | 5748.412
5748.860 | | VI | 127
9 2 | | 5679.908
5680.26 | 1 | Ti I
Fe I | 269
1026 | 5712.635
5712.778 | | Cr I | 119 | 5749.28 | | N1 I | 176 | | 5680.93 | | Zr I | 25 | 5713.895 | | Ti I | 249 | 5749.41 | | Gd II | 97 | | 5681.198 | | Cr I | | 5714.88 | P | Fe I | 552
231 | 5749.65
5750.424 | P | Fe I
O I | 1160
40 | | 5682.204
5682.483 | | Ni I
Çr I | 232
239 | 5715.086
5715.107 | | Ni I
Fe I | 1061,1086 | 5751.41 | | Mo I | 5 | | 5682.633 | | Na I | 6 | 5715.123 | | Ti I | 228 | 5752.043 | | Fe I | 1180 | | | | | | ~~ | 75 | tre t | 1054 | E750 64 | | N I | 33 | | 5682.88 | ` | Ca I
Sc II | 29 | 5715.47
5715.80 | P
P | Fe I
Fe I | 1054
1198 | 5752.64
5752.711 | | ví | 92 | | 5684.190
5684.523 | | Si I | 11 | 5716.450 | • | Ti I | 249 | 5752.89 | | Ti I | 214 | | 5685.86 | P | Fe I | 1281 | 5717.30 | | Sc I | 12 | 5753.136 | | Fe I | 1107 | | 5686.21 | | N II | 3 | 5717.845 | | Fe I | 1107 | 5753.38 | P | Fe I
Cr I | 1084 | | 5686.532 | | Fe I
Sc I | 1182
12 | 5717.99
5718.120 | | Ca I
Nd II | 54
86 | 5753.692
5753.97 | P | Fe I | 170 | | 5686.826
5688.193 | | Na I | 5 | 5719.18 | | Hf I | 6 | 5754.17 | | Gd II | | | 5688.205 | | Na I | 6 | 5719.2254 | | Ne I | 28 | 5754.258 | | Si I | 10 | | 5688.47 | | Ca. I | | 5719.821 | | Cr I | 119 | 5754.41 | | Fe I | 866 | | 5688.525 | 5 | Nd II | 79 | 5720.445 | | Ti I | 249 | 5754.675 | | Ni I | 68 | | 5688.593 | | Co I | 90 | 5720.613 | | 0 I | 40 | 5754.89 | P | Fe I | 113 | | 5688.856 | 3 | Si II | r- | 5720.79 | P
P | Fe I
Fe I | 1291
1178 | 5756.45
5757.69 | P | Ti I
Ca I | 228
54 | | 5689.22 | | Mo I
Ti I | 5
2 4 9 | 5720.89
5721.02 | P | Cr II | 34 | 5759.270 | | Fe I | 1184 | | 5689.465
5690.07 | P | Fe I | 1281 | 5721.70 | p | Fe I | 1057 | 5759.56 | P | Fe I | 1087 | | 5690.470 |) | Si I | 10 | 5721.71 | P | Fe I | 1088 | 5759.57 | P | Fe I | 1204 | | 5691.38 | P | Fe II | 47 | 5721.99 | | Gd II
Fe II | 110 | 5760.351
5760.53 | P | Fe I
Fe I | 867
1054 | | 5691.509
5691.52 | • | Fe I
Ni I | 1087
228 | 5722.56
5722.65 | P | Al III | 58
2 | 5760.71 | P | Fe I | 1056 | | | | | | | | | | | | AT | 001 | | 5691.69 | P | Fe I | 1084 | 5723.66 | P | Fe I
Ti II | 1160
79 | 5760.847
5761.08 | P | Ni I
Fe I | 231
1057 | | 5691.71
5691.99 | P | A II
Ti II | 134
79 | 5723.87
5724.073 | Р | Sc I | 12 | 5761.08 | • | Fe I | 867 | | 5694.46 | . * | He II | 8 | 5724.37 | | AII | 12 | 5761.411 | | V I | 35 | | 5694.730 | | Cr I | 239 | 5724.445 | | Fe I | 1109 | 5761.88 | | Ca I | 54
200 | | 5694.998 | 8 | Ni I | 220
2 | 5725.633
5725.95 | Р | V I
Fe II | 135
57 | 5762.295
5762.434 | | T1 I
Fe I | 309
866 | | 5696.0
5696.10 | P | C III
Fe I | 2
1179 | 5725.95
5727.024 | r | V I | 35 | 5762.84 | P | Fe I | 1086 | | 5696.11 | P | Fe II | 18 | 5727.29 | | La II | 48 | 5762.992 | | Fe I | 1107 | | 5696.22 | | Gd I | 3 | 5727.662 | | V I | 35 | 5764.300 | | Tm I | | | 5696.47 | | Al III | 2 | 5727.69 | | P II | 27 | 5764.32 | | Ca I | | | 5696.63 | | s I | 11 | 5727.75 | | Fe I | 1204 | 5764.419 | | Ne I | 13 | | 5698.05 | | Fe I | 867 | 5728.32 | т. | Gd II
Fe II | 60
51 | 5766.330
5767.18 | | Ti I
Hf II | 309
22 | | 5698.330
5698.37 | | Cr I
Fe I | 239
1130 | 5728.74
5728.91 | P | Y II | 34 | 5767.18 | | N II | 9 | | 5698.50 | | V I | 35 | 5729.203 | | Cr I | 257 | 5768.895 | | Ce II | 32 | | 5700.14 | | Sc I | 12 | 5730.67 | | N II | 3 | 5769.06 | p | La II
Fe I | 70
1179 | | 5700.24 | | s I | 11 | 5731.103 | | 0 I | 40 | 5769.31 | r | * · · · · | | | ΙA | T} pe | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------------------|--------|---------------|---------------|-----------------------|--------|----------------|----------------|----------------------|--------|----------------|------------------------| | 5770.17 | Р | Fe I | 1236a | 5801.71 | | Hf II | 59 | 5840.47 | | Gd II | 112 | | 5772.258 | • | Si I | 17 | 5804.020 | | Nd II | 79 | 5841.01 | | NI | 32 | | 5772.402 | | V I | 92 | 5804.06 | | Fe I | 959 | 5841.86 | | Cr II | 198 | | . 5772.676 | P | Cr I
Fe II | 227
165 | 5804.265 | | Ti I
Ne I | 309
19 | 5842.23
5842.391 | | Hf II
Nd II | 50
86 | | 5773.75
5774.037 | r | Ti I | 309 | 5804.4488
5804.478 | | Fe I | 1087 | 5843.21 | | Cr I | 119 | | 5775.090 | | Fe I | 1087 | 5804.91 | P | Fe II | 165 | 5843.77 | | C 11 | 22 | | 5776.670 | | V I | 36 | 5805.233 | | Ni I | 234 | 5843.80 | | AII | 12 | | 5776.76 | | Ta I
Ba I | 5
9 | 5805.76 | | C I
Fe I | 18 | 5844.606
5844.879 | | Cr I
Fe I | 119
1056 | | 5777.622 | | na 1 | ð | 5805.76 | P | re 1 | 1313 | 0044.015 | | re i | 1000 | | 5777.77 | | Cr I | 257 | 5805.77 | | La II | 1 | 5815.27 | P | Fe I | 1313 | | 5778.47 | _ | Fe I | 209 | 5806.31 | P | Cr II | 31 | 5845.71 | - | Gd II | 112 | | 5778.81
5779. 65 | P
P | Fe I
Fe II | 1203
24 | 5806.56
5806.727 | | La II
Fe I | 90
1180 | 5846
5846.12 | P | N IV
Si II | 15
8 | | 5780.189 | • | Mr I | a. a. | 5806.75 | | Si II | 8 | 5846.306 | | V I | 142 | | 5780.452 | | Si I | 9 | 5806.77 | P | Sc II | 21 | 5846.575 | | Co I | 169 | | 5780.621 | | Fe I
Ni I | 552 | 5807.05 | | Gd II
V I | 112
142 | 5647.010 | | Ni I
Fe I | 44
552,117 5 | | 57 80.77
5780.778 | | Ti I | 217
214 | 5807.14
5807.22 | p | V I
Fe I | 581 | 5848.09
5848.95 | | La II | 111 | | 5780.83 | | Fe I | 552,922,1159 | 5807.79 | P | Fe I | 552 | 5849.67 | p | Fe I | 922 | | ##00 0 8 | | Cr I | 188 | #60# 0# | P | Fe I | 1178 | 5850.286 | | v 1 | 92 | | 5780.97
5781.1 95 | | Cr I | 119,188 | 5807.97
5808.31 | r | La II | 4 | 5851.63 | | Gd I | 3 | | 5781.69 | | YII | 34 | 5808.63 | | La II | 118 | 5852.19 | | Fe I | 1178 | | 5781.73 | P | Ti II | 79 | 5809.249 | | Fe I | 982 | 5852.4878 | | Ne I
Fe I | 6 | | 5781.806
5782.132 | | Cr I
Cu I | 188
2 | 5809.50
5809.75 | | Hf II
Ti I | 14
73 | 5853.18
5853.48 | P | Fe I | 35
1340 | | 5782.356 | | Tm II | | 5809.88 | P | Fe I | 1084 | 5853.62 | | Al II | 41 | | 5782.601 | | V I | 35,127 | 5811.10 | | Ta I | 3 | 5853.675 | | Ba II | 2 | | 5783.112
5783.15 | P | Cr I
Cr I | 188
227 | 5811.572
5811.93 | | Nd II
Fe I | 78
1022 | 5854.1
5854.16 | | Fe III
N I | 32 | | 0700.10 | • | 0. , | | 3611.83 | | *** | 1022 | 0002121 | | | - | | 5783.509 | | V I | 141 | 5811.93 | P | Fe II | 24 | 5854.27 | _ | Cr I | | | 5783.934 | | Cr I
Ba II | 188
13 | 5812 | P | C IV | 15
1 | 5854.31
5855.126 | P | Sc II
Fe I | 21
1179 | | 5784.18
5784.360 | | V I | 141 | 5812.14
5812.81 | | A II | 125 | 5855.24 | | Gd II | 112 | | 5784.69 | | Fe I | 686 | 5812.827 | | Ti I | 309 | 5856.084 | | Fe I | 1128 | | 5785.0 | | Fe II | 215 | 5813.33 | P | Fe I | 1054 | 5856.09 | | C II
Gd I | 22
3 | | 5785.002
5785.08 | | Cr I
Mg I | 188
24 | 5813.67
5814.00 | | Fe II
Ti I | 163
73 | 5856.22
5856.45 | P | Fe II | 183 | | 5785.64 | | Si II | | 5814.62 | P | Ti II | 79 | 5856.96 | | Gd PI | 60 | | 5785.67 | | Ti I | 309 | 5814.80 | | Fe I | 1086 | 5857.454 | | Ca I | 4.7 | | 5785.820 | | Cr I | 188 | 5815.16 | | Fe I | 1055 | 5857.755 | | Ni I | 228 | | 5785.86 | | Cr I | 17 | 5815.23 | P | Fe I | 1234 | 5857.9 | P | c xxx | 20 | | 5785.979 | | Ti I | 309 | 5815.42 | P | Fe I | 1053 | 5858.27 | P | Fe I
Mo I | 170
5 | | 5786.153
5786.99 | P | V I
Fe I | 141
1084 | 5815.85
5816.07 | P | Gd II
Fe I | 112
1127 | 5858.28
5858.77 | P | MO I
Fe I | 1084 | | 5787.036 | • | Cr I | 119 | 5816.36 | • | Fe I | 1179 | 5859.20 | _ | Fe I | 1084 | | 5787.27 | P | Fe I | 625 | 5816.48 | | N I | 32 | 5859.23 | P | Si I | 9 | | 5787.99
5788.389 | | Cr I
Cr I | 188
119 | 5816.844
5817.063 | | Mn·I
V I | 92 | 5859.608
5859.96 | P | Fe I
Fe I | 1181
1054 | | 5788.549 | | V I | 92 | 5817.532 | | vi | 142 | 5860.73 | - | Gd II | 58 | | | | Y - Y | 0 | ******* | | 0 77 | 00 | #060 00 | p | Ti II | 79 | | 5789.22
5790.50 | | La I
Cl II | 8
27 | 5817.87
5818.74 | | C II
Eu II | 22
9 | 5860.92
5861.11 | p | Fe I | 1084 | | 5790.59 | P | Cr I | 17 | 5819.22 | | s II | 14 | 5861.53 | | Al II | 11 | | 5790.659 | | Hg I | 4 | 5819.93 | | V II | 99 | 5862.357 | | Fe I | 1180 | | 5791.005
5791.044 | | Cr I
Fe I | 188
552 | 5820.155
5820.99 | | Ne
I
Gd II | 19
112 | 5862.80
5863.70 | | V II
La II | 91
62 | | 5791.32 | | La I | 8 | 5823.13 | | CII | 22 | 5863.96 | | Cr I | 185 | | 5791.38 | | Gd I | 3 | 5823.17 | | Fe II | 164 | 5863.97 | | Ni Y | 253 | | 5791.47
5791.53 | p | V II
Fe I | 1234 | 5823.679
5824.40 | P | Ti I
Fe II | 239
58 | 5864.24
5864.54 | P
P | Fe I
Fe II | 1086
24 | | 0191.00 | • | 10 1 | 1001 | 3024.40 | r | re 11 | 06 | 0002102 | - | | ~ ~ | | 5791.781 | | Cr I | 243 | 5826.12 | P | Fe II | 182 | 5866.453 | P | Ti I
Fe I | 72
1203 | | 5791.86
5793.128 | | Mo I
Si I | 5
9 | 5826.299
5826.61 | P | Co I
Fe I | 169
1084 | 5867.01
5867.497 | Р | Si II | 1203 | | 5793.16 | P | Fe II | 47 | 5827.1 | | C 111 | 22 | 5867.572 | | Ca I | 46 | | 5793.51 | | CI | 18 | 5827.24 | | Cr II | 198 | 5867.81 | | Al II | 41 | | 5793.70 | þ | Fe I
Fe I | 1236a
1086 | 5827.80 | | C II
Si II | 22
8 | 5868.404
5870.65 | P | Si II
Fe I | 8
12 35 | | 5793.932
5794 | р | N IV | 15 | 5827.80
5827.89 | P | Fe I | 552 | 5871.04 | • | Fe I | 150 | | 5795.87 | | Fe II | 211 | 5828 | P | N IV | 15 | 5871.289 | _ | Fe I | 1055 | | 5796.078 | | N1 I | 68 | 5829.12 | P | Fe II | 165 | 5871.6 | P | C III | 50 | | 5796.67 | P | Fe I | 1054 | 5829.53 | | N I | 32 | 5871.81 | | Gd II | 79 | | 5796.757 | | Cr I | 440 | 5830.719 | | v i | 142 | 5872.73 | P | Fe I | 552 | | 5797.352
5797.445 | | V I
Ti I | 142
309 | 5831.624
5832.47 | | Ni I
Ti I | 233,250
309 | 5872.828
5872.98 | | Ne I
Eu II | 31
9 | | 5797.53 | P | Cr I | 185 | 5833.65 | | Fe III | 114 | 5873.211 | | Fe I | 1087 | | 5797.57 | | LA II | 4 | 5833.93 | P | Fe I | 209 | 5874.00 | | La II | 48 | | 5797.76
5797.81 | р | Zr I
Fe II | 4
165 | 5834.06 | P
P | Fe II
Fe II | 165
57 | 5875.6
5875.618 | | Fe III
He I | 11 | | 5797.81
5797.912 | r | si I | 9 | 5834.93
5835.10 | P | Fe I | 57
1084 | 5875.650 | | He I | 11 | | 5798.00 | p | Cr I | 185 | 5835.41 | P | Fe I | 1313 | 5875.989 | | He I | 11 | | 5798.194 | | Fe 1 | 982 | 5835.43 | P | Fe II | 58 | 5876.27 | p | Fe I | 1084 | | 5798.194
5798.46 | | Cr I | 17 | 5835.50 | p | Fe II | 182 | 5876.55 | • | Cr I | 119 | | 5798.905 | | v í | 142 | 5835.58 | P | Fe I | 343 | 5877.26 | | Gd II | 94 | | 5800.02 | Ъ | Fe II
Ba I | 165
9 | 5835.61
5836 91 | | Fe II
C II | 22 | 5877.770
5879.49 | P | Fe I
Fe I | 1083
12 01 | | 5800.229
5800.48 | | Si II | 8 | 5836.31
5837.29 | | Au I | 2 | 5879.79 | • | Zr I | 4 | | 5801.14 | | Cr I | 243 | 5837.709 | | Fe I | 1129 | 5880.00 | | Fe 1 | 1201 | | 5801.17
5801. 3 0 | | Gd II | 18
112 | 5838.418 | | Fe I
Cr I | 959
119 | 5880.306
5880.63 | | Ti I
La II | 71
35 | | 0007.00 | | 44 | J. A. W. | 5838.66 | | J. 1 | A10 | 0000100 | | | | | 7.5 | | | | | | | | | | | | |---|------|-----------------|-----------------------|-----------------------|--------|----------------|-----------------|--------------------------------------|------|----------------|-----------------------| | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 5881.76 | P | Fe I | 63 | 5929.700 | | Fe I | 1176 | 5978.970 | | 81 II | 4 | | 5881.8950 | F | Ne I | 1 | 5930.173 | | Fe I | 1180 | 5980.748 | | V I | 49 | | 5883.06 | P | Fe I | 1124 | 5930.61 | | La I | 2 | 5980.89 | | Ti I
Ba II | 72 | | 5883.421
5883.838 | | Co I
Fe I | 90
982 | 5930.68
5931.79 | | La I
N II | 2
28 | 5981.25
5981.38 | P | Fe I | 13
837 | | 5884.451 | | Cr I | 119 | 5931.79 | P | Fe I | 1017 | 5981.96 | | Cr I | 185 | | 5884.59 | | Gd II | 112 | 5932.05 | P | Fe II | 47 | 5982.52 | | T1 I
Cr I | 264
185 | | 5885.61 | | Zr I | 2 | 5932.95 | P | S II
Fe I | 13
1198 | 5982.8 4
5983.704 | | Fe I | 175 | | 5887.46
5888.32 | P | Fe I
Mo I | 1203
5 | 5933.80
5934.658 | r | Fe I | 982 | 5983.90 | | Lu II | 2 | | 5000 051 | | Na I | 1 | 5934.747 | | Nd II | 78 | 5984.092 | | Co I | 37 | | 58 89.95 :
5889. 97 | | CII | 5 | 5935.23 | | Zr I | 2 | 5984.253 | | Co I | 201 | | 5890.02 | P | Sc II | 21 | 5935.391 | | Co I | 55 | 5984.586 | | T1 I
V I | 2
49 | | 5890.48 | P | Fe I | 1313 | 5936.22 | | La II
Ti I | 19
72 | 5984.602
5984.805 | | Fe I | 1260 | | 5890.487
5891.12 | | Co I
Fe I | 82
581 | 5937.806
5939.75 | | Ta I | . 7 | 5986.54 | P | Fe II | 24 | | 5891.16 | P | Fe I | 1179 | 5940.25 | | N II | 28 | 5987.057 | | Fe I | · 1260 | | 5891.36 | | Fe II | 211 | 5940.68 | | Ti I
S II | 2
21 | 5987.11
5988.560 | | Gd II
Ti I | . 97
154 | | 5891.528
5891.5 | | Nd II
Fe III | 86
114 | 5940.69
5940.972 | | Fe I | 1083 | 5990.59 | P | Fe II | 51 | | | | СП | 5 | 5941.36 | P | Fe II | 58 | 5991.34 | | 0 1 | 44 | | 5891.65
5891.89 | P | Fe I | 1236 | 5941.67 | • | N II | 28 | 5991.383 | | Fe II | 4.6 | | 5891.9 | | Fe II | | 5941.755 | | T1 I | 72 | 5991.58 | I | Fe I | 1232 | | 5892.46 | P | Fe I | 1201 | 5942.71 | P
P | Fe I
Fe I | 1233
1021 | 5991.890
5991.93 | | Co I
O I | 90
44 | | 5892.66
5892.71 | | La II
Fe I | 48
1086 | 5943.11
5943.58 | P | Fe I | 63 | 5992.65 | P | Fe I | 1080 | | 5892.76 | P | N1 I | 250 | 5943.62 | P | Fe I | 1085 | 5993.18 | | 1 O | 44 | | 5892.80 | P | Fe I | 63 | 5944.01 | | Ta I | 8 | 5995.28 | | 0 I | 44 | | 5892.878 | P | Ni I
Fe I | 68 | 5944.65
5944.8342 | P | Ti I
Ne I | 2
1 | 5995.685
5995.93 | P | Ti I
Fe I | 311
1198 | | 5893.24 | P | | 1055 | | | | | | _ | | | | 5893.42 | _ | Ge II | 1 | 5946.484 | _ | Co I
Fe I | 169
1056 | 5996.007
5996.16 | | Ti I
S II | 154
13 | | 5894.1
5894.351 | P | C III
Zn II | 20
1 | 5947.30
5947.50 | P
P | Fe I | 1199 | 5996.22 | P | Fe I | 624 | | 5895.007 | | Fe I | 1235 | 5948.30 | - | La II | 105 | 5996.49 | P | Fe I | 1083 | | 5895.646 | | Tm I | | 5948.584 | | 81 [| 16 | 5996.74 | | Ni I
Ba I | 249
7 | | 5895.89 | | S II
Cr II | 2 0
198 | 5949.35
5950.13 | P | Fe I
Fe I | 14,1176
1200 | 5997.088
5997.24 | | Ta I | 12 | | 5895.90
5895.923 | | Na I | 1 | 5950.91 | • | A II | 12 | 5997.610 | | N1 I | 252 | | 5897.54 | | V II | 98 | 5951.30 | | 8 II | 21 | 5997.808 | | Fe I | 1175 | | 5897.62 | | Gd II | 112 | 5951.45 | | A II | 98 | 5998.86 | | N1 I | 226 | | 5898.212 | | Fe I | 1259 | 5951.60 | | Gd II | 95 | 5999.003 | | Ti I | 198 | | 5899.295 | | Ti I | 72 | 5952.19 | P | Fe I
N II | 1313
28 | 5999.30
5999.47 | | Fe III
N I | 117
16 | | 5901.0
5901.53 | P | Fe III
Fe I | 115
1083 | 5952.39
5952.55 | P | Fe II | 182 | 5999.668 | | Ti I | 227 | | 5901.95 | E | La II | 107 | 5952.749 | - | Fe I | 959 | 5999.70 | | Al II | 93 | | 5902.182 | | Cr I | 119 | 5953.162 | | Ti I | 154 | 5999.83 | | Al II
Ba II | 93 | | 5902.52 | | Fe I | 1234 | 5953.65 | P | Fe III
Fe I | 115
1233 | 5999.85
6000.668 | | Co I | 13
16 9 | | 5903.317
5903.6 | | Ti I
Fe II | 71 | 5955.12
5955.37 | • | Zr I | 3 | 6001.18 | | Al II | 109 | | 5904.07 | | Gd II | 112 | 5955.682 | | Fe I | 1106 | 6001.53 | P | Sc II | 20 | | 5905.673 | | Fe I | 1181 | 5956.48 | | Gd II | 59 | 6001.81 | | Al II | 93 | | 5906.50 | P | Ti I | 105 | 5956.5 | | Fe II | 44 | 6002.273 | | V I | 49
34 | | 5907.36 | | C II
Fe I | 44
150 | 5956.702
5957.612 | | Fe I
Si II | 14
4 | 6002.601
6002.640 | | Ti I | 198 | | 5908.24
5908.25 | | SII | 13 | 5958.22 | P | Fe I | 1199 | 6003.033 | | Fe I | 959 | | 5909.38 | P | Fe II | 57 | 5958.23 | P | Fe I | 14 | 6004.53 | | Lu I | 1 | | 5909.99 | | Fe I | 552 | 5958.34 | P | Fe I
O I | 63
23 | 6004.57
6005.030 | | Gd II
Co I | 112
37 | | 5911.4 5
5913.3 5 | P | Gd II
Fe I | 781 | 5958.46
5958.63 | | 0 I | 23 | 6005.53 | | Fe I | 207,1079 | | 5913.55 | _ | Gd II | | 5959.878 | | Fe I | 1020 | 6006.42 | | Al II | 93 | | 5913.730 | | Ti I | .2 | 5960.93 | | N II | 28 | 6007.313 | | N1 I | 42 | | 5913.87 | | Cr II | | 5961.91 | P | Fe I | 1080 | 6007.75 | P | Fe I | 581 | | 5914.16 | | Fe I | 1180,1181 | 5962.4 | | Fe II
Fe I | 63 | 6007 .961
6008 .295 | | Fe I
Mn II | 1178
16 | | 5914.28
5914.92 | | V II | 126
44 | 5963.25
5965.040 | | Co I | 169 | 6008.35 | P | Fe I | 1079 | | 5915.123 | | Ti I | 228 | 5965.474 | | Ne I | 39 | 6008.48 | | NI | 16 | | 5915.266 | | Si II | 8 | 5965.828 | | Ti I | 154 | 6008.577 | | Fe I
V I | 982
49 | | 5915.551
5915.93 | | Co I
Or I | 82
185 | 5966.07
5967.77 | | Eu II
V II | 9
126 | 6008.648
6009.298 | | Mn II | 16 | | 5916.250 | | ře I | 170 | 5969.38 | | Hf II | 66 | 6009.45 | P | Fe I | 64 | | 5916.364 | | V II | 126 | 5969.554 | | Fe I | 1086 | 6009.83 | P | Fe I | 624 | | 5916.73 | | Cr I | 185 | 5969.64 | | K II | 7 | 6009.962 | | Mn II | 16 | | 5918.548 | _ | Ti I | 71 | 5971.07 | | Ti I | 264 | 6011.12 | 70 | Gd II | 60 | | 5918.93
59 19.60 | P | Fe I
C II | 1083
44 | 5971.09
5971.28 | | La II
Tm I | 69 | 6012.21
6012.251 | P | Fe I
Ni I | 64 | | 5920.0 | | Fe III | 115 | 5971.699 | | Ba I | 7 | 6012.53 | | Ti I | 264 | | 5920.520 | | Fe I | 581 | 5971.9 4 | | Al II | 100 | 6012.75 | P | Fe I | 1198 | | 5922.112 | | Ti I | 72
55 | 5973.37
5973.52 | P | Fe I
La II | 1175
103 | 6013.498
6015.25 | P | Mn I
Fe I | 27
63 | | 5922.365
5923.930 | | Co I
Ni I | 55
259 | 5973.52
5973.66 | | Ni I | 103
226 | 6016.637 | • | Mn I | 27 | | 5925.81 | P | N1 I | 42 | 5974.62 | P | Fe I | 1055 | 6016.66 | | Fe I | 738 | | 5926.83 | P | Fe I | 1231 | 5974.628 | - | Ne I | 28 | 6016.95 | P | Fe I | 1232 | | 5927.15 | | SII | 21 | 5975.355 | | Fe I | 1017,1260 |
6017.52 | P | Ti I | 257 | | 5927.71
5927.798 | | La II
Fe I | 111
1175 | 5975.5340
5975.830 | 1 | Ne I
Ce II | 1
30 | 6017.90
6018.34 | P | V I
Fe I | 49
176 | | 5927.82 | | N II | 28 | 5976.18 | P | Fe I | 1125 | 6018.423 | • | Ti I | 198 | | 5928.50 | P | Fe I | 1055 | 5976.799 | | Fe I | 959 | 6018.62 | _ | T1 I | 70 | | 5928.86
5929.35 | | V II
Hf II | .9E
80 | 5978.17
5078 543 | P | Fe I
Ti I | 1199
154 | 6019.36 | P | Fe I | 780 | | 5929.35 | | 11A 1A | .69 | 5978.543 | | 44 1 | 10.1 | 6019.470 | | Ba I | 7 | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------------------------------|--------|------------------|-----------------|-----------------------------|--------|---------------------------|---------------|-----------------------------|------|----------------|-------------------| | 6021.09 | | Ge II | 1 | 6080.65 | | Gd II | 112 | 6120.98 | | V II | 97 | | 6021.18 | P | Fe II
Mn I | 24
27 | 6080.85
6081.421 | | S II
V I | 20
34 | 6121.008
6122.219 | | Ti I
Ca I | 153
3 | | 6021.802
6021.82 | | Fe I | 63,1079,1085 | 6081.51 | | Cr II | 188 | 6122.438 | | Mn II | 13 | | 6022.81 | | As II | 1 | 6081.72 | P | Fe I | 1142 | 6122.640 | | Co I | 169 | | 6023.41 | | YI | 3 | 6081.85 | P | Fe I
Co I | 1018
169 | 6122.799
6123.164 | | Mn II
Mn II | 13
13 | | 6024.066
6024.15 | | Fe I
P II | 1178
5 | 6082.431
6082.718 | | Fe I | 64 | 6123.38 | | A II | 102 | | 6025.723 | | Pr II | 39 | 6083.67 | P | Fe I | 981 | 6123.41 | | S II | 13 | | 6025.73 | | N1 I | 251 | 6083.82 | | A II. | 125 | 6124.08 | P | Fe I | 1326 | | 0000 01 | | V II | 125 | 6084.11 | | Fe II | 46 | 6124.85 | | 81 I | 30 | | 6026.81
6027.057 | | Fe I | 1018 | 6085.228 | | Ti I | 69 | 6124.86 | | Zr I | 24 | | 6027.23 | | V II | 90 | 6085.267 | | Fe I | 269 | 6125 | P | N IV | 16 | | 6027.57 | _ | Hf II | 91 | 6085.43 | | La II
Ni I | 111
249 | 6125.03 | | Si I
Mn II | 30
13 | | 6027.76 | P | Fe I
V II | 1312
97 | 6086.290
6086.55 | | N I | 249
49 | 6125.855
6126.09 | | La II | 69 | | 6028.26
6028.64 | | Zr II | 136 | 6086.663 | | Co I | 165 | 6126.210 | | Mn II | 13 | | 6028.98 | | V II | 125 | 6086.93 | | V II | 125 | 6126.217 | | Ti I | 69 | | 6029.28 | | Cr I | 242 | 6087.485
6087.76 | | V I
P II | 33
5 | 6126.516
6127.49 | | Mn II
Zr I | 13
2 | | 6029.9971 | | Ne I | 3 | 0087.70 | | | Ū | 0121110 | | | _ | | 6030.66 | | Ko I | 5 | 6089.473 | | V I | 33 | 6127.913 | | Fe I | 1017,1082 | | 6031.07 | | V II | 97 | 6089.566 | | Fe I | 1327 | 6128.21
6128.30 | | 8 II
V I | 28
33 | | 6031.68
6032.124 | | Ti I
A I | 2
13 | 6089.69
6090.184 | | Cr II
V I | 187
34 | 6128.725 | | Mn II | 13 | | 6032.30 | | Fe III | 117 | 6090.54 | P | V I | 33 | 6128.990 | | N1 I | 42 | | 6032.67 | | Fe I | 1082 | 6091.175 | _ | Ti I | 238 | 6129.022 | | Mn II | 13 | | 6034.01 | _ | PII | 5 | 6091.74
6092.13 | P | Fe I
S II | 1200
20 | 6129.23
6129.255 | | Cr II
Mn II | 105
13 | | 6034.04
6034.204 | P | Fe I
Ce II | 1142
30 | 6092.13 | | Ti I | 153 | 6129.57 | | La II | 47 | | 6035.34 | P | Fe I | 1125 | 6093.144 | | Co I | 37 | 6129.71 | P | Fe II | 46 | | | | | | 2000 00 | | D- 7 | 4400 | P400 484 | | N1 I | 248 | | 6035.487 | | Ce II
Sc I | 30 | 5093.66
6094.419 | | Fe I
Fe I | 1177
1177 | 6130.17 4
6130.37 | P | Fe I | 248
624 | | 6036.17
6036.7 | | He II | 8 | 6094.65 | | Cl II | 26 | 6130.794 | - | Mn II | 13 | | 6039.312 | | N1 I | 248 | 6095.37 | | C II | 24 | 6131.005 | | Mn II | 13 | | 6039.690 | | V I | 34 | 6095.93 | | V II | 97 | 6131.30 | P | 81 I | 30 | | 6041.44 | | Hf II
8 I | 65
10 | 6096.689
6097.08 | P | Fe I
Fe I | 959
64 | 6131.54
6131.86 | | Si I
Si I | 30
30 | | 6041.93
6042.092 | | Fe I | 10 | 6097.12 | • | 8 11 | 13 | 6131.917 | | Mn II | 13 | | 6043.10 | | P II | 5 | 6097.42 | | V I | 38 | 6133.948 | | N1 I | 229 | | 6043.386 | | Ce II | 30 | 6098.28 | P | Fe I | 1200 | 6134.58 | | Zr I | 2 | | 6043.738 | | Fe I | 664 | 6098.62 | | C II | 24 | 6135.07 | | v i | 60 | | 6044.53 | P | Fe II | 46 | 6098.655 | | Ti I | 304 | 6135.10 | | Hf II | 90 | | 6045.38 | | Ta I | 10 | 6100.04 | _ | Zr II | 93 | 6135.36 | | V I | 34 | | 6045.497 | | Fe II | 200 | 6100.23
6100.29 | P
P | Fe I
Fe I | 1199
1199 | 6135.759
6135.83 | | Cr I
Ba II | 314
12 | | 6046.04
6046.26 | | 8 I
0 I | 10
22 | 6100.25 | F | La II | 47 | 6136.620 | | Fe I | 169 | | 6046,46 | | 0 I | 22 | 6102.178 | | Fe I | 1259 | 6136.9 | | N II | 36 | | 6047.665 | | Cr I | 24.2 | 6102.26 | | 8 II | 26 | 6136.999 | _ | Fe I | 62 | | 6048.636
6049.110 | | V I
Co I | 49
201 | 6102.59
6102.59 | P | C II
Fe III | 24
3 | 6137.51
6137.696 | P | Fe I
Fe I | 685
207 | | 0010.110 | | ••• | -01 | | - | | | | | | | | 6049.50 | | Gd II | 59 | 6102.722 | | Ca I | 3 | 6138.38 | | T1 I | 197 | | 6049.51
6050.446 | | Etu II
Mrn II | 2
16 | 6103.190
6103.54 | | Fe I
Fe II | 1260
200 | 6138.4 <u>4</u>
6138.67 | | Y I | 3
21,103 | | 6051.00 | P | Fe I | 207 | 6103.56 | | A II | 27 | 6138.77 | | Cr II | 188 | | 6051.860 | | Mn II | 16 | 6103.642 | | II I | 4 | 6138.98 | _ | 8 11 | 63 | | 6052.66 | | 8 I | 10 | 6105.15
6105.381 | P | Fe I
Mn II | 1175
16 | 6139.65
61 4 0.50 | P | Fe I
Zr I | 208
24 | | 6052.892
6053.48 | | Mn II
Cr II | 16
105 | 6106.19 | | 0d II | 95 | 6141.01 | P | Fe II | 46 | | 6053.680 | | N1 I | 247 | 6106.25 | | O I | 43 | 6141.718 | | Ba II | 2 | | 6054.100 | | Fe I | 1142 | 6106.47 | | Zr II | 106,137 | 6141.734 | | Fe I | 816 | | 6055.987 | | Fe I | 1259 | 6106.84 | P | Fe I | 208 | 6142.047 | | N1 I | 244 | | 6058.113 | | V I | 34 | 8 106.96 7 | | V I | 60 | 6142.21 | P | 81 I | 30 | | 6058.76 | P | Ti 1 | 70 | 6107.09 | P | Fe I | 1081 | 6142.53 | | Si I
Ne I | 30 | | 6059.2 5
606 0.81 | P
P | Sc I
Fe I | 20
1081 | 6107.29 3
6107.32 | P | Mn II
Fe I | 16
1015 | 6143.0623
6143.23 | | Zr I | 1
2 | | 6061.04 | - | Fe I | 217 | 6108.121 | _ | N1 I | 45 | 6145.06 | | 81 I | 29 | | 6061.11 | | Al I | 99 | 6108.8 | P | Mn II | 16 | 6145.42 | P | Fe I | 685 | | 6062.75 | | Cr I | 185 | 6109.318
6110.30 | | Fe I
As II | 581
5 | 6146.225
6146.38 | | Ti I
Co I | 153
80 | | 6062.88
6062.89 | | Zr I
Fe I | 3
63 | 6110.784 | | Ba I | 7 | 6146.53 | | La II | 4 | | | | | | | | | | | | | | | 6063.117 | | Ba I
Ti I | 7 | 6111.06
6111.622 | | N1 I
V I | 230
34 | 6147.15
6147.735 | | Cr II
Fe II | 105
7 4 | | 6064.631
6065.487 | | Fe I | 69
207 | 6112.26 | | Cr II | 105 | 6147.755 | | Fe I | 1016 | | 6065.5 | | N II | 27 | 6113.33 | | Fe II | 46 | 6148.65 | P | Fe I | 1141 | | 6065.81 | P | Fe I | 581 | 6114.07 | _ | Od I | 3 | 6149.238 | | Fe II | 74 | | 6066.32 | | Al II | 92 | 6114.41
6114.6 | P | Fe I [.]
N II | 981
36 | 6149.743
6150.10 | P | Ti I
Fe II | 197
46 | | 6066.44
6067.13 | | La II | 92
48 | 6114.7(| | Zr II | 93 | 6150.132 | • | V I | 20 | | 6067.62 | P | 81 I | 15 | 6114.92 | | A II | 102 | 6150.9 | | N II | 36 | | 6068.00 | | Cr II | 197 | 6115.21 | | CII | 19 | 6151.509 | | V I | 33 | | 6068.46 | | Al II | 92 | 6116.04 | P | Fe II | 46 | 6151.624 | | Fe I | 62 | | 6069.69 | | Cr II | 197 | 6116.181 | | N1 I | 218,251 | 6152.82 | P | Fe I | 1312 | | 6070.08 | | Cr II | 105 | 6116.994 | | Co I | 37 | 6154.225 | n | Na I
C III | 5
12 | | 6073.23 | | Al II
He II | 92
8 | 6118.06
6118.2 | | N1 I
He II | 230
8 | 6154.4
6155.22 | P | 81 I | 13
29 | | 6074.1
6074.3377 | | Ne I | 3 | 6119.505 | | V I | 34 | 6155.24 | P | Fe II | 161 | | 6077.43 | | A II | 12 | 6119.780 | | N1 I | 244 | 6155.4 | P | CIII | 13 | | 6078.496 | | Fe I | 1259 | 6120.12 | T. | A II | 22
14 | 6155.73
61 55.99 | | 81 I
0 I | 29
10 | | 6079.02 | | Fe I | 1176 | 6120.25 | P | Fe I | 14 | 6150.99 | | Co T | 10
20 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------------|--------|----------------|--------------------------|-----------------------------|--------|----------------|-----------------|----------------------|------|----------------|---------------------| | 6156.25 | _ | Hf II
C III | 67 | 6212.04
6212.30 | | Fe I
Ti II | 1142
108 | 6257.834
6258.103 | | Nd II
Ti I | 72
104 | | 6156.6
6156.78 | P | 0 I | 13
10 | 6213.06 | | Zr I | 24 | 6258.591 | | Ni I | 226 | | 6157.41 | P | Fe I | 624 | 6213.438 | | Fe I
V I | 62
20 | 6258.595
6258.706 | | V I
Ti I | 19
104 | | 6157.734
6158.19 | | Fe I
O I | 1015
10 | 6213.874
6214.58 | | Zn II | 1 | 6258.962 | | Sc I | 3 | | 6159.409 | | Fe I | 1175 | 6215.152
6215.212 | | Fe I
Ti I | 1018
293 | 6259.615
6260.31 | | Ni I
Gd II | 216
111 | | 6160.747
6160.75 | P | Na I
Fe II | 5
161 | 6216.368 | | VI | 19 | 6261.101 | | Ti I | 104 | | 6161.194 | | Pr II | 39 | 6217.2813 | | Ne I | 1 | 6261.236 | | V I | 20 | | 6161.289 | | Ca I | 20 | 6217.288 | | Fe I | 1335 | 6261.55 | | 0 I | 50 | | 6161.84 | | S II | 27 | 6217.95
6219.290 | P | Fe II
Fe I | 34
62 | 6262.30
6264.55 | | La II
O I | 33
19 | | 6162.172
6163.42 | | Ca I
Ni I | 3
23 0 | 6219.35 | P | Fe II | 161 | 6264.825 | | Ti I | 144 | | 6163.560 | | Fe I | 64 | 6219.54 | P
P | Fe I
Fe II | 685
34 | 6265.140 | | Fe I
Ti I | 62
144 | | 6163.5939
6163.758 | | Ne I
Ca I | 5
20 | 6219.54
6220.460 | Р | Ti I | 293 | 6266.021
6266.32 | | VI | 20 | | 6165.18 | P | Ni I | 229 | 6220.78 | | Fe J | 958 | 6266.4950 | | Ne I
O I | 5 | |
6165.366
6165.56 | | Fe I
P II | 1018
5 | 6221.40 6221.41 | | Fe I
Ti I | 981
293 | 6266.89
6267.64 | P | Fe I | 48
110 | | | | | | | | Fe I | 12 | 6267.845 | | Fe I | 1123 | | 6165.945
6166.443 | | Pr II
Ca I | 39
20 | 6221.661
6221.88 | | Lu II | 13
2 | 6268.50 | | Ti I | 103 | | 6167.82 | | N II | 36,60 | 6222.59 | | Y I | 2 | 6268.841 | | V I
Fe I | 20
3 42 | | 6168.46
6168.86 | | Cr II
Co I | 196
82 | 6222.81
6223.994 | | Hf II
Ni I | 57
228 | 6270.238
6271.289 | | Fe I | 685 | | 6169.055 | | Ca I | 20 | 6224.23 | P | Fe I | 1257 | 6271.52 | P | Fe I
Cr II | 12 31
196 | | 6169.559
6170.16 | | Ca I
N II | 20
36 | 6224.2 6
6224.507 | P | V I
V I | 20
20 | 6271.83
6272.650 | | Ni I | 244 | | 6170.16 | | VI | 20 | 6226.18 | | Al II | 10 | 6273.389 | | Ti I | 1 | | 6170.47 | | As II | 1 | 6226.29 | | V II | 124 | 6273.76 | | La II | 131 | | 6170.492 | | Fe I | 1260 | 6226.66 | | Cr II | 105 | 6274.34 | | S II
V I | 19 | | 6170.568
6170.6 | | N1 I
He II | 228,230
8 | 6226.77
622 9.234 | | Fe I
Fe I | 981
342 | 6274.670
6274.94 | | Cr II | 19
196 | | 6171.01 | P | Fe I | 1256 | 6229.34 | P | Fe II | 34 | 6276.310 | | Sc I | 2 | | 6172.28 | | A II
La II | 102
4 | 6230.115
6230.728 | | Ni I
Fe I | 227
207 | 6277.525
6278.30 | | Ti I
Au I | 144
1 | | 6172.72
6173.05 | | Eu II | 9 | 6230.736 | | V I | 19 | 6279.757 | | Sc II | 28 | | 6173.343 | | Fe I | 62
36 | 6230.84
6230.968 | | Hf II
Co I | 69
37 | 6279.84
6280.625 | | Hf II
Fe I | 13
13 | | 6173.40
6174.15 | | N II
La II | 47 | 6231.76 | | Sc I | 3 | 6282.636 | | Co I | 37 | | | | | | 6231.78 | | Al II | 10 | 6282.92 | | Cr II | 196 | | 6175.158 | | Fe II | 200 | 6232.661 | | Fe I | 816 | 6284.00 | P | Fe I | 624 | | 6175.424 | | N1 I
N1 I | 217
228 | 6232.735
6233.187 | | Fe I
V I | 685
20 | 6284.30
6285.185 | | N II
V I | 32
19 | | 6176.813
6176.95 | | Cr II | 105 | 6233.52 | | Fe II | | 6286.35 | | SII | 19 | | 6177.258 | | Ni I | 58 | 6233.8
6237.34 | | He II
Si I | 7
28 | 6287.06
6290.55 | P | S II
Fe I | 26
208 | | 6177.49
6178.13 | P | Ni I
Fe II | 244
4 6 | 6237.62 | | Si I | 27 | 6290.968 | | Fe I | 1258 | | 6179.17 | | Cr II
Fe II | 187
163 | 6238.375
6239.36 | P | Fe II
Fe II | 74 · | 6292.858
6293.00 | P | V I
Ti I | 19
103 | | 6179.378 | | | | | • | | | | _ | T0- Y | 1260 | | 6180.093
6180.216 | | N1 I
Fe I | 65,217
269 | 6239.410
6239.64 | | Sc I
F I | 2
3 | 6293.92
6295.251 | P | Fe I
Ti I | 1,144 | | 6180.42 | | Gd II | 111 | 6239.73 | | A II | 21 | 6295.949 | | Ti I | 144 | | 6181.57 | | Al II
Al II | 66
66 | 6239.77
6239.778 | | Cr II
Sc I | 105
3 | 6296.08
6296.518 | | La II
V I | 47,68
19 | | 6181.68
6182.28 | | Al II | 66 | 6239.95 | P | Fe II | 74 | 6296.646 | | Ti I | 1 | | 6182.45 | | Al II
Al II | 66
66 | 6240.137
6240.266 | | V I
Fe I | 20
1015 | 6297.800
6298.075 | | Fe I
Ti I | 62
144 | | 6183.42
6183.892 | | Ni I | 226 | 6240.656 | | Fe I | 64 | 6299.07 | _ | Gd II | 123 | | 6184.94 | P | Fe II | 163 | 6242.52 | | N II | 57 | 6299.74 | P | Fe III | 3 | | 6185.1 | | Fe III | | 6242.80 | | V I | 19 | 6300.363 | | Ni I | 246
28 | | 6185.34 | P | Fe II
Ti I | 46
197 | 6243.11
6243.13 | | V I
A II | 19
21 | 6300.697
6301.515 | | Sc II
Fe I | 816 | | 6186.14
6186.740 | | N1 I | 229 | 6243.36 | | Al II | 10 | 6301.86 | P | Fe I | 863 | | 6187.41 | P
P | Fe I
Cr II | 342
187 | 6243.86
6244.13 | P | Si I
Si I | 28
28 | 6302.507
6303.41 | | Fe I
Eu II | 816
8 | | 6188.00
6188.037 | P | Fe I | 959 | 6244.344 | • | Pr II | 39 | 6303.46 | | Fe I | 1140 | | 6188.09 | | La II | 117 | 6244.51 | | Sc I
Si I | 3
27 | 6303.754
6304.35 | | Ti I
Zr I | 104
24 | | 6189.005
6189.350 | | Co I
V I | 37
20 | 6244.56
6245.214 | | V I | 20 | 6305.15 | | Gd II | 94 | | 6191.1 86 | | Ni I | 45 | 6245.629 | | Sc II | 28 | 6305.262 | | Pr II | 39 | | 6191.562 | | Fe I | 169 | 6245.84 | | Fe I | 1289 | 6305.318 | | Fe II | 200 | | 6191.73 | | Y I | 2 | 6246.334 | | Fe I
Fe II | 816
74 | 6305.46
6305.51 | | La II
S II | 5
19 | | 6192.96
6193.672 | | Zr I
Sc I | 24
3 | 6247.562
6248.916 | | Fe II | | 6305.60 | | Cr II | | | 6195.18 | _ | Cr II | 105 | 6248.95 | P | Hf II
Fe I | 22
685 | 6305.671
6306.047 | | Sc I
Sc I | 2
3 | | 6196.71
6199.16 | P | Fe II
Fe II | 46
162 | 6249.65
6249.92 | r | La I | 7 | 6306.17 | | Hf II | 81 | | 6199.202 | | v i | 19 | 6251.26 | P | Fe I
V I | 1176
19 | 6306.19
6307.25 | P | Fe I
La II | 1230
117 | | 6199.475 | | Fe I | 208 | 6251.83 | | | | | _ | | | | 6200.323
6201.52 | | Fe I
Al II | 207
57 | 6252.561
6253.82 | P | Fe I
Fe I | 169
1256 | 6307.85
6309.902 | P | Fe I
Sc II | 863
28 | | 6201.52 | | Al II | 57 | 6254.25 | - | Si I | 28 | 6310.543 | | Fe I | 405 | | 6202.31 | P | Fe I | 208 | 6254.262
6254.96 | | Fe I
Si I | 111
28 | 6310.8
6310.91 | | He II
La II | 7
103 | | 6203.51
6204.640 | | La II
Ni I | 111
226 | 6254.96
6256.365 | | Ni I | 43 | 6311.289 | | Ti I | 103 | | 6207.251 | | v I | 20 | 6256.370 | | Fe I | 169
50 | 6311.506
6312.240 | | Fe I
Ti I | 342
104 | | 6208.18
6209.73 | P | Cr II
Fe I | 105
981 | 6256.84
6256.90 6 | | O I | 50
19 | 6312.240 | | s II | 26 | | 6010 676 | - | So I | 2 | 6257.72 | | Ti I | 1 | 6313.05 | | Zr I | 65 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|---------------|----------------------|-----------------------|------|----------------|---------------|----------------------|------|----------------|---------------------| | 6313.57 | | Zr II | 136 | 6371.359 | | Si II | 2 | 6435.02 | | Y I | 2 | | 6314.22 | | Gd II | 121 | 6374.08 | | La II
O I | 111
59 | 6435.148 | | V I
Fe I | 107 | | 6314.29
6314.666 | | S II
Ni I | 28
67 | 6374.31
6375.96 | | Fe II | 08 | 6436.43
6437.01 | | re I
N I | 1016
23 | | 6314.67 | P | N1 I | 249 | 6376.00 | | A II | 61 | 6437.63 | | A II | 25 | | 6315.316 | | Fe I | 1015 | 6376.22 | P | Fe I | 1140 | 6437.64 | | Eu II | 8 | | 6315.42 | P | Fe I | 1016 | 6378.263
6378.824 | | N1 I
Sc I | 247
1 | 6438.4696 | | Cd I
Fe I | 3 | | 6315.79
6315.814 | | La II
Fe I | 117
1014 | 6378.91 | | Ba II | 12 | 6438.775
6439.073 | | Ca I | 1158
18 | | 6316.61 | | N1 I | 248 | 6379.63 | | N II | 2 | 6440.974 | | Mn I | 39 | | | | F- * | 400 | 6380.11 | | V II | 231 | 0444 70 | | N I | 00 | | 6318.022
6318.027 | | Fe I
Ti I | 168
103 | 6380.748 | | Fe I | 1015 | 6441.70
6441.95 | | A II | 23 | | 6318.11 | | Ca I | 53 | 6380.95 | | Gd II | 111 | 6442.97 | | Fe II | | | 6318.23 | | Mg I | 23 | 6381.416 | | Ti I | 196 | 6443.05 | | La II | 117 | | 6318.75 | | Mg I
La II | 23
19 | 6382.169
6382.9914 | | Mn I
Ne I | 39
3 | 6443.492
6445.05 | | Mn I
N III | 39
14 | | 6320.39
6320.854 | | Se II | 28 | 6383 | P | N IV | 2 | 6445.76 | | Zr I | 57 | | 6322.165 | | N1 I | 249 | 6383.753 | | Fe II | | 6446.281 | | Mn II | 19 | | 6322.693 | _ | Fe I | 207 | 6384.669
6384.697 | | Mn I
Ni I | 39
246 | 6446.43 | | Fe II
La II | 199
104 | | 6322.98 | P | Fe III | 3 | 0004.001 | | | 2.0 | 6446.62 | | Ter 11 | 104 | | 6323.39 | | 0 I | 31 | 6384.89 | | 8 11 | 19 | 6448.10 | | Sc I | 1 | | 6324.45 | | AII | 0.4 | 6385.196
6385.473 | | Nd II
Fe II | 85 | 6449.810 | P | Ca I
Co I | 19
80 | | 6324.84
6325.22 | | 0 I
T1 I | 31
1 | 6385.74 | P | Fe I | 1253 | 6450.09
6450.230 | r | Co I | 37 | | 6325.90 | | La I | 2 | 6386.48 | | 8 11 | 5 | 6450.78 | | N III | 14 | | 6326.43 | | S II | 63 | 6386.75 | P | Fe II
Fe I | 203
685 | 6450.854 | | Ba I | 6 | | 6326.845
6327.603 | | V I
N1 I | 84
44 | 6388.41
6390.48 | r | La II | 33 | 6450.99
6451.58 | | Fe I
Fe I | 13 44
921 | | 6328.6 | | N II | 46 | 6391.214 | | Mn I | 39 | 6451.580 | | N1 I | 257 | | 6329 | P | 0 V | 14 | 6392.534 | | Fe I | 109 | 6452.354 | | V I | 48 | | 6330.101 | | Cr I | 6 | 6393.605 | | Fe I | 168 | 6452.77 | | N1 I | 226 | | 6330.856 | | Fe I | 1254 | 6394.23 | | La I | 7 | 6453.50 | | Sn II | 1 | | 6331.969 | | Fe II | 199 | 6395.158 | | Co I | 174 | 6453.64 | | 0 I | 9 | | 6334.4279 | | Ne I | 1 | 6395.16
6395.27 | | Ca I
S II | | 6453.95
6454.48 | | N III
O I | 14
9 | | 6335.335
6335.74 | | Fe I
Al II | 62
22 | 6396.39 | P | Fe I | 921 | 6454.998 | | Co I | 174 | | 6336.104 | | Ti I | 103 | 6397.30 | | S II | 19 | 6455.600 | | Ca I | 19 | | 6336.835 | | Fe I | 816 | 6398.05 | | S II
La II | 19
104 | 6455.85 | | Hf II | 82 | | 6338.896
6339.090 | | Fe I
V I | 1258
84 | 6399.04
6399.23 | | A II | 21 | 6455.99
6456.01 | | La I
O I | 1
9 | | 0000:000 | | • • | . | | | | | 0100101 | | | | | 6339.148 | _ | N1 I | 248 | 6399.41 | | Cl II
Fe I | 58
816 | 6456.376 | ъ. | Fe II | 74 | | 6339.96
6340.67 | P | Fe I
N II | 685
46 | 6400.010
6400.335 | | Fe I | 13 | 6456.87
6456.907 | P | Fe I
Ca II | 1256
19 | | 6341.682 | | Ba I | 6 | 6402.005 | | Y I | 2 | 6457.93 | | N I | 22 | | 6342.682 | | Sc II | 28 | 6402.2455 | _ | Ne I | 1 | 6458.68 | P | Fe III | 3 | | 6343.29 | | CaI | 53 | 6402.43
6403.58 | P | Fe I
S I | 1344
9 | 6460.1 | | PII | 32 | | 6343.963
6344.154 | | Ce II
Fe I | 169 | 6405.89 | | Ca I | • | 6462.210
6462.454 | | Mn II
Mn II | 20
20 | | 6344.831 | | Sc I | 1 | 6406.3 | | He II | 7 | 6462.566 | | Ca I | 18 | |
6346.54 | | Zr II | 128 | 6406.42 | | Fe I | 1334 | 6462.72 | P | Fe I | 13 | | 6346.65 | | Gd II | 96 | 6407.03 | | Zr I | 2 | 6462.731 | | Fe I | 168 | | 6346.67 | | Mg II | 16 | 6407.30 | | Fe II | 74 | 6462.799 | | Mn II | 20 | | 6347.091
6347.1 | | 81 II
N II | 2
46 | 6408.031
6408.13 | | Fe I
S I | 816
9 | 6463.03
6463.11 | | N III
Lu II | 14
2 | | 6347.843 | | Co I | 200 | 6408.463 | | Sr I | 8 | 6463.195 | | Mn II | 20 | | 6348.50 | | F I | 3 | 6410.98 | _ | LaI | 7 | 6463.637 | _ | Mn II | 20 | | 6349.477 | | V I
Mn I | 8 4
39 | 6411.10
6411.658 | ₽ | Fe I
Fe I | 1256
816 | 6464.67
6464.70 | P | Fe I
Ca I | 13
19 | | 6349.748
6351.17 | | 0 I | 61 | 6412.20 | P | Fe I | 169 | 6466.86 | | N III | 14 | | 6351.29 | P | Fe I | 1140 | 6413.13 | P | Ti I | 1 | 6466.97 | | V I | 32 | | 60E1 440 | | Co I | 200 | 6413.353 | | Sc I | 1 | 6468.32 | | N I | 22 | | 6351.448
6353.84 | P | Fe I | 13 | 6413.66 | | FI | 3 | 6468.77 | | N III | 14 | | 6355.038 | | Fe I | 342 | 6413.71 | | S II | 19 | 6468.86 | P | Fe I | 1254 | | 6356.057 | | Mn I
Fe I | 39
208 | 6413.92
6414.603 | | Mn I
Ni I | 39
244 | 6469.12
6469.214 | P | Fe I
Fe I | 168
1258 | | 6356.293
6357.0 | | N II | 46 | 6415.24 | | 81 I | | 6470.25 | | Zr I | 65 | | 6357.10 | P | Zr I | 2 | 6415.50 | | S I | 9 | 6471.660 | _ | Ca I | 18 | | 6357.297 | | V I | 84 | 6415.59
6416.905 | | Cr II
Fe II | 196
74 | 6472.15
6472.34 | P | Fe I
Sm II | 1140
60 | | 6358,12
6358.692 | | La II
Fe I | 47
13 | 6416.94 | P | Fe I | 1253 | 6473.89 | | Hf II | 91 | | | | | _ | 6417 004 | | Co I | 111 | C464 EEO | | Co I | 105 | | 6359.896
6360.798 | | Ti I
Ni I | 1
229 | 6417.824
6418.87 | | Cr II | 196 | 6474.558
6474.61 | | Fe I | 165
861 | | 6361.41 | | Ti I | 196 | 6419.15 | | Ti I | 196 | 6475.632 | | Fe I | 206 | | 6361.79 | | Ca I | 53 | 6419.65 | P | Fe I | 958 | 6477.861 | | Co I | 174 | | 6362.286 | | Sc I
Zn I | 1
6 | 6419.982
6420.47 | | Fe I
N I | 1258
23 | 6478.69
6480.11 | | N III
Gd II | 14
109 | | 6362.347
6362.414 | | Zn I
Ni I | U | 6421.355 | | Fe I | 111 | 6481.73 | | N I | 21 | | 6362.874 | | Cr I | 6 | 6421.507 | | N1 I | 258 | 6481.878 | | Fe I | 109 | | 6362.889 | | Fe I | 1019 | 6424.905
6428.80 | | Ni I
Fe I | 227
1138 | 6482.07
6482.205 | | N II
Fe II | 8
199 | | 6364.384 | | Fe I | 1253 | | | | | | | | | | 6364.597 | | N1 I | 67 | 6429.913 | | Co I
V I | 81
107 | 6482.74 | | N I | 21
66 | | 6364.717 | | Fe I
Ti I | 1229
1 | 6430.471
6430.78 | | V I
Ta I | 107
11 | 6482.811
6483.10 | | Ni I
A II | 66
27 | | 6364.92
6365.7 | | N II | 2 | 6430.851 | | Fe I | 62 | 6483.75 | | N I | 21 | | 6366.33 | | 0 I | 60 | 6431.620 | | V I | 107 | 6483.95 | P | Fe I | 34 | | 6366.354 | | Ti I | 103 | 6432.06
6432.654 | | Ni I
Fe II | 126
40 | 6484.88
6485.36 | | N I
Ta I | 21
12 | | 6366.483
6369.34 | | N1 I
S II | 230
19 | 6433.17 | | V I | 107 | 6487.43 | | Fe II | 203 | | 6369.45 | | Fe II | 40 | 6433.85 | _ | Fe II | 199 | 6487.48 | P | Fe III | 3 | | 6370.383 | | Ni I | 127 | 6434.44 | P | Fe III | 3 | 6487.55 | | N III | 14 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I : A | Туре | Element | Multiplet No. | |-----------------------|------|---------------|---------------|-------------------------------|------|---------------|--------------------|---------------------------------------|------|---------------|---------------------| | 6400 10 | •• | Yb I | 3 | 6560.099 | | He Il | 2 | 6634.10 | P | Fe I | 1258 | | 6489.10
6489.68 | | Zr I | 65 | 6560.68 | | 81 I | 62 | 6634.36 | _ | Gd II | 94 | | 6490.344 | | Co I | 81 | 6561.032 | | H.
D | 1
1 | 6635.15
6635.68 | P | Ni I
Fe I | 264
1155 | | 6491.28
6491.28 | | Fe II
N I | 21 | 6562.817
6563.403 | | Co I | 80 | 6636.53 | - | La II | 61 | | 6491.61 | P | Ti II | 91 | 6563.86 | | Hf II
Ti I | 81 | 6637.01 | | N I
A II | 20
20 | | 6491.712
6492.0 | | Mn I
N II | 39
45 | 6565.62
6565.88 | | VI | 48 | 6638.24
6639.35 | P | Fe I | 1279 | | 6493.05 | | Fe II | | 6567.22 | P | Fe I | 168 | 6639.71 | P | Fe I | 1195 | | 6493.780 | | Ca I | 18 | 6567.39 | | Hf II | 90 | 6639.72 | | A II | 20 | | 6494.11 | | Gd I | 123 | 6568.00 | | Gd II | 121 | 6639.90 | P | Fe I | 1007 | | 6494.52 | P | Fe I | 1255 | 6569.261 | | Fe I
Sm II | 1253
62 | 6640.90
6641.06 | | 0 II
8 II | 4
25 | | 6494.985
6495.45 | | Fe I | 168
65 | 6569.31
6570.0 | | He II | 7 | 6642.79 | | La II | 103 | | 6495.779 | | Fe I | 1253 | 6570.834 | | Mn I | 51 | 6643.023 | | Cr I
Sr I | 256
8 | | 6496.456
6496.896 | | Fe I
Ba II | 1258
2 | 6570.96
6571.22 | | La II
Fe I | 47
1121 | 6643.536
6643.641 | | N1 I | 43 | | 6497.689 | | Ti I | 102 | 6572.781 | | Ca I | 1 | 6643.79 | | A II | 20 | | 6498.19 | | La II | 104
6 | 6572.900 | | Cr I
Fe I | 16
13 | 6644.60
6644.96 | | Hf II
N I | 3 4
20 | | 6498.759 | | Ba I | 0 | 6574.238 | | 10 1 | 10 | 0022.50 | | | | | 6498.950 | | Fe I | 13 | 6575.022 | | Fe I | 206 | 6645.11 | | Bu II
N I | 8
20 | | 6499.52
6499.649 | | N I
Ca I | 21
18 | 6575.180
6576.95 | P | Ti I
Ni I | 286
283 | 6646.52
6646.90 | P | Fe I | 1156 | | 6500.25 | | A II | 26 | 6578.03 | - | CII | 2 | 6646.98 | | Fe I | 206 | | 6501.212 | | Cr I
Fe I | 16 | 6578.51 | | La I
V I | 1
32 | 6647.06
6647.90 | P | Hf II
Fe I | 65
551 | | 6501.681
6503.989 | | Sr I | 8 | 6578.96
6580.22 | | N1 I | 265 | 6648.08 | P | Fe I | 13 | | 6504.164 | | v I | 48 | 6580.96 | | Cr I | 16 | 6653.41 | | N I | 20 | | 6504.9
6506.33 | | N II
Fe II | 45 | 6581.22
6582.85 | | Fe I
C II | 34
2 | 6653.75
6653.78 | | C1 II
O I | 38
65 | | 0000.33 | | | | 0002.00 | | | | | | | | | 6506.45 | | N I
Ne I | 21
3 | 6584.53 | | HF II
Y I | 99
1 | 6653.88
6656.61 | | Fe I
N I | 1052
20 | | 6506.5279
6508.135 | | Ti I | 3
102 | 6584.89
6586.328 | | N1 I | 4 | 6657.54 | | Cr I | 262 | | 6508.742 | | Ca I | 18 | 6586.343 | | Mn I | 51 | 6660.49 | | Si II | | | 6509.16
6509.56 | | A II
Fe I | 21
1012 | 6586.69
6587.75 | | Fe II
C I | 22 | 6661.07 6
6661.39 | | Cr I
Ni I | 282
246 | | 6511.62 | | Hf II | 69 | 6588.91 | | Sm I | 1 | 6661.68 | | Cl II | 38 | | 6512.61 | | Hf II | 49 | 6591.32 | | Fe I
Co I | 1229
202 | 6663.26 | | Fe I
Fe I | 1195
111 | | 6516.026
6516.053 | | Cr I
Fe II | 265
40 | 6591.83 <u>4</u>
6592 | P | C IV | 202
10 | 6663 .44 6
6665 .4 2 | P | Fe I | 1156 | | | | | | | | | | | _ | | | | 6517.01
6517.27 | | Fe II
V II | 230 | 6592.472
6592.91 | P | N1 I
T1 I | 248
102 | 6665.43
6666.36 | P | Fe I
A II | 34
25 | | 6518.376 | | Fe I | 342 | 6592.919 | • | Fe I | 268 | 6666.548 | | Ti I | 101 | | 6519.371 | | Mn I | 39 | 6593.878 | | Fe I | 168 | 6666.94 | P | O II
Fe I | 85
110 | | 6521.39
6522.3 | | S II
N II | 25
45 | 6595.326
6595.869 | | Ba I
Co I | 6
174 | 6667.17
6667.42 | P | Fe I | 168 | | 6522.38 | | C1 11 | 59 | 6597.556 | | Cr I | 282 | 6667.73 | | Fe I | 1228 | | 6524.76 | P | Fe I | 1280 | 6597.607 | | Fe I
N1 I | 1253
249 | 6669.257
6671.36 | | Cr I
Fe I | 282
1343 | | 6526.99
6527.20 | P | La II
Si I | 33
52 | 6598.59 <u>4</u>
6598.9529 |) | Ne I | 6 | 6671.41 | | La II | 33 | | | | | | | | | 40 | | P | Fe 1 | 1255 | | 6527.312
6527.49 | | Ba I
Si I | 6
62 | 6599.112
6601.13 | P | Ti I
Fe I | 19
1290 | 6671.43
6671.51 | P | Sm I | 1200 | | 6528.53 | | Fe I | 5. | 6603.20 | P | Fe I | 862 | 6671.88 | | 81 II | | | 6529.197 | | Cr I
V I | 265
48 | 6603.67 | P | Fe I
Sc II | 860
19 | 6672.84
6672.88 | P | V II
Fe I | 229
205 | | 6531.44
6531.66 | | Hf II | 48 | 6604.60
6604.67 | | Fe I | 1254 | 6673.84 | P | Fe I | 1254 | | 6532.891 | | N1 I | 64 | 6605.546 | | Mn I | 51 | 6675.271 | _ | Ba I | 6 | | 6533.0
6533.97 | | N II
Fe I | 45
1197 | 6605.98
6607.02 | P | V I
Ti II | 48
91 | 6676.86
6677.24 | P | Fe I
Cr I | 11 94
256 | | 6537.921 | | Cr I | 16 | 6607.82 | - | v i | 96 | 6677.25 | | Ti I | 274 | | 6539.72 | | Fe I | 405 | 6608.03 | | Fe I | 109 | 6677.33 | | Fe II | 210 | | 6541.49 | P | Fe I | 1195 | 6609.116 | | Fe I | 206 | 6677.49 | P | Fe I | 1280 | | 6542.80 | | Hf II | 100 | 6609.20 | | Hf II | 105 | 6677.54 | P | Fe I | 551 | | 6543.17
6543.51 | | La I
V I | 7
48 | 6609.56
6609.64 | | Fe I
Al II | 76 | 6677.96
6677.993 | P | Fe I
Fe I | 205
268 | | 6543.98 | | Fe I | 1139 | 6609.68 | P | Fe I | 19 | 6678.03 | | Zr II | 128 | | 6545.2 | | N II | 4 5 | 6610.04 | | Gd II | 108 | 6678.149 | | He I
O II | 46
85 | | 6545.80
6546.245 | | Mg II
Fe I | 23
268 | 6610.58
6612.17 | | N II
Cr I | 31
282 | 6678.19
6678.276 | 4 | Ne I | 6 | | 6546.276 | | Ti I | 102 | 6613.74 | | Y II | 26 | 6678.60 | P | Ti I | 213 | | 6546.791 | | Šr I | 8 | 6613.83 | P | Fe I | 13 | 6678.818 | | Co I | 54 | | 6547.58 | P | Fe I | 13 | 6615.03 | P | Fe I | 1155 | 6680.19 | | Cr I | 282 | | 6548.72 | | Hf II | 444 | 6617.126 | _ | Co I | 202 | 6680.26 | | TI II | 112 | | 6550.01
6550.244 | | Hf II
Sr I | 111
12 | 6617.14
6617.266 | P | N1 I
Sr I | 248
8 | 6681.03
6681.23 | | GG II | 38
94 | | 6551.466 | _ | Co I | 54 | 6621.24 | | N1 I | 97 | 6681.34 | P | Fe I | 1155 | | 6551.68
6552.77 | P | Fe I
Fe I | 13
1325 | 6622.28
6622.41 | P | Gd II
Fe I | 110
1157 | 6682.23
6683.2 | P | Fe I
He II | 1008
7 | | 6554.18 | | La II | 109 | 6622.41
6622.53 | - | N I | 20 | 6684.36 | | A II | 20 | |
6554.226 | | Ti I | 102 | 6623.78 | P | Fe I | 1010 | 6686.04 | | C1 II | 36 | | 6555.20 | | 81 I | 62 | 6624.86 | | v I | 48 | 6687.57 | | Y I | 1 | | 6555.87 | P | Fe I | 1007 | 6625.04 | | Fe I | 13 | 6690.80 | | N1 I | 140 | | 6556.066
6556.79 | | Ti I
Fe I | 102
1255 | 6627.28 | | Fe II
Fe I | 210 | 6692.47 | P | Fe I
Ba I | 1192
6 | | 6557.40 | | Y I | 1200 | 6627.558
6627.62 | | 0 II | 117 4
85 | 6693.842
6695.97 | | Al I | 5 | | 6557.87 | | Sc I | 24 | 6630.015 | | Cr I | 16 | 6696.30 | P | Fe I | 1255 | | 6557.91
6558.02 | | Hf II
V I | 66
59 | 6630.5 | | N II
Co I | 41
111 | 6696.39 | | Al II | 29 | | 6558.05 | | 8c I | 24 | 6632.438
6633.44 | | Fe I | 111
1258 | 6698.63
6699.14 | | Al I
Fe I | 5
1 226 | | REKO KOO | | T4 TT | 01 | 0000 704 | | D. 7 | 4405 | 2220121 | | | | | 6700.89 P Fe I 1156 6752.832 A I 11 6623.48 6700.90 P Fe I 1333 6753.00 V I 31 6624.82 P 6700.90 P N1 I 248 6753.45 P Fe I 1196 6628.25 6701.64 Cr I 256 6754.61 Hf II 35 6628.5 6702.12 Gd II 130 6754.75 C II 21 6828.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.56 P Fe I 1120 6829.92 6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.17 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 N1 I 245 6832.44 6707.89 Li I 1 1 6759.42 Cl II 54 6832.49 | Al II Fe I Gd I C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II | 9 1280 2 21 1195 81 31 12 108 550 44 31 26 | |---|---|---| | 6700.90 P Ni I 248 6753.45 P Fe I 1196 6828.25 6701.64 Cr I 256 6754.61 Hf II 35 6828.5 6702.12 Gd II 130 6754.75 C II 21 6828.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.56 P Fe I 1120 6829.94 6704.48 P Fe I 1052 6756.61 A II 20 6829.94 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.49 | Gd I C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II | 2
21
1195
81
31
12
108
550
44
31
26 | | 6701.64 | C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II | 21
1195
81
31
12
108
550
44
31
26 | | 6702.12 Gd II 130 6754.75 C II 21 6628.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.58 P Fe I 1120 6829.94 6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 N1 I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49 | Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II | 1195
81
31
12
108
550
44
31
26 | | 6704.18 | V I
O V
La II
Fe I
C1 II
V I
Y II
Zr I
Fe I
La II | 31
12
108
550
44
31
26 | | 6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49 | O V La II Fe I C1 II V I Y II Zr I Fe I La II | 12
108
550
44
31
26 | | 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49 | La II Fe I C1 II V I Y II Zr I Fe I La II | 108
550
44
31
26 | | 6706.20 N I 31 6758.60 N I 30 6831.62
6707.74 Li I 1 6759.41 Ni I 245 6832.44
6707.89 Li I 1 6759.42 Cl II 54 6832.49 | C1 II
V I
Y II
Zr I
Fe I
La II | 44
31
26 | | 6707.74 Li I 1 6759.41 Ni I 245 6832.44
6707.89 Li I 1 6759.42 Cl II 54 6832.49 | V I
Y II
Zr I
Fe I
La II | 31
26 | | 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49 | V I
Y II
Zr I
Fe I
La II | 31
26 | | | Zr I
Fe I
La II | | | | Fe I
La II | | | 6708.27 F I 2 6761.07 P Fe I 1227 6832.93
6708.81 N I 6762.38 Zr I 1 6833.24 | La II | 1
11 94 | | 6709.49 La I 6 6762.41 Cr I 315 6834.07 | | 3 | | 6709.88 Ca I 45 6764.13 P Fe I 1225 6834.26 | F I | 2 | | 6710.31 Fe I 34 6766.49 V I 31 6835.03 6711.24 P Fe I 1220 6767 P 0 V 12 6835.29 | Sc I
Hf II | 13 | | 6712.44 P Fe I 1279 6767.778 N1 I 57 6836.2 | N II | 54 | | 6712.68 P Fe I 206 6769.62 Ba IJ 8 6837.00 | | | | 6712.68 P Fe I 206 6769.62 Ba IJ 8 6837.00 6713.14 Fe I 1013,1195 6769.66 P Fe I 1226 6837.14 | Fe I
Al II | 1225
9 | | 6713.43 C1 I1 38 6771.040 Co I 54 6837.91 | La II | 33 | | 6713.76 Fe I 1255 6772.36 Ni I 127 6838.08 6714.08 La II 103 6773.97 F I 2 6838.86 | Fe I | 1192 | | 6714.08 La II 103 6773.97 F I 2 6838.86
6715.38 Cr I 282 6774.28 La II 2 6839.828 | Fe I
Fe I | 205 | | 6715.410 Fe I 1174 6775.97 Al II 111 6841.349 | Fe I | 1195 | | 6716.24 Fe I 1225 6777.44 Fe I 1010,1013 6841.65 P
6716.679 Ti I 273 6779.74 C II 14 6841.86 | Fe I | 1333 | | 6716.679 T1 I 273 6779.74 C II 14 6841.86
6717.556 Fe I 1194 6780.27 C II 14 6841.89 | C1 II
V I | 54
31 | | | | V 1 | | 6717.685 Ca I 32 6783.27 P Fe I 206 6842.07
6717.911 Ti II 112 6783.71 Fe I 205 6842.35 P | N1 I | 126 | | 6717.911 Ti II 112 6783.71 Fe I 205 6842.35 P
6718.14 Gd II 130 6783.75 C II 14 6842.668 | Si I
Fe I | 61
1197 | | 6718.68 La II 129 6784.98 V I 31 6843.671 | Fe I | 1173 | | 6719 P N V 11 6785.25 P T1 II 112 6844.05
6719.40 Hf II 110 6785.76 P Fe I 1226 6844.67 P | Sn II | 1 | | 6719.40 Hf II 110 6785.76 P Fe I 1226 6844.67 P 6721.35 0 II 4 6785.88 P Fe I 1007 6845.24 | Fe I
Y I | 34
16 | | 6721.97 Si I 6786.41 P Fe I 551 6845.93 P | Fe I | 1190 | | 6722.67 Si I 38 6786.88 Fe I 1052 6846.60 6723.12 N I 31 6787.09 C II 14 6846.97 | Gd II | 94 | | 6723.12 N I 31 6787.09 C II 14 6846.97 | 0 11 | 45 | | 6725.39 Fe I 1052 6787.15 Zr II 135 6847.60 P | Fe I | 1078 | | 6726.25 0 I 2 6787.61 P Fe I 1156 6848.65
6726.50 0 I 2 6789.17 Cr I 6848.86 P | Si I
Fe I | 37 | | 6728.50 0 1 2 6789.17 Cr I 6848.86 P
6726.668 Fe I 1197 6790 P 0 V 12 6850.07 | Rf II | 1192 | | 6726.78 Fe I 6790.00 Sm II 56 6850.21 | C1 II | 54 | | 6726.84 C II 21 6791.022 Sr I 3 6850.48
6727.1 P C III 3 6791.30 C II 14 6851.64 P | Ni I
Fe I | 157 | | 6727.1 P C III 3 6791.30 C II 14 6851.64 P 6727.83 Gd II 96 6793.26 Fe I 1005 6854.82 | Fe I | 34
1224a | | 6729.72 Cr I 301 6793.62 Fe I 6855.176 | Fe I | 1195 | | 6729.80 P Si I 61 6793.71 Y I 1 6855.74 | Fe I | 11 94 | | 6730.38 P Si I 61 6794.60 P Fe I 1279 6856.02 | FI | 2 | | 6730.7 P C III 3 6795.41 Y II 26 6856.03 | Sm II | 58 | | 6730.73 Gd I 2 6795.52 F I 2 6857.13
6730.79 C II 21 6796.11 Fe I 1007 6857.25 | Gd II
Fe I | 122
1006 | | 6731.84 Sm II 59 6798.04 C II 14 6857.3 P | C 111 | 19 | | 6732.06 Fe I 1225 6798.51 Ca I 31 6857.6
6732.80 La II 109 6799.32 A II 74 6858.164 | N II | 71 | | 6732.80 La II 109 6799.32 A II 74 6858.164
6732.88 S II 25 6799.61 Yb I 3 6858.25 | Fe I
Y II | 1173
26 | | 6733.164 Fe I 1195 6800.50 C II 14 6859.03 | La II | 34 | | 6733.48 N I 31 6801.16 V II 219 6859.49 P | Fe I | 340 | | 6733,56 C II 21 6801.31 P Fe I 551 6860.13 P | Fe I | 1255 | | 6734.16 Cr I 282 6801.38 La II 130 6860.29 | Fe I | 205 | | 6735.00 P Fe I 1157 6801.87 P Fe I 34 6860.96 P 6736.56 P Fe I 1122 6803.30 P Fe I 1192 6861.24 | Fe I
N1 I | 341
293 | | 6737.29 P Fe I 551 6803.84 P Fe I 1191 6861.30 | A II | 25 | | 6737.87 Sc I 6804.020 Fe I 1174 6861.47
6738.36 C II 21 6804.27 Fe I 1225 6861.93 | Ti I | 237 | | 6738.36 C II 21 6804.27 Fe I 1225 6861.93
6738.81 Cr I 315 6805.72 P Fe I 1220 6862.481 | Fe I
Fe I | 109
1191 | | 6739.54 Fe I 34 6806.851 Fe I 268 6862.82 | Sm II | .55 | | 6741.29 N I 31 6808.55 A II 24 6862.9 P | C III | 19 | | 6742.05 C II 21 6808.80 P Fe I 340 6863.52 | A II | 20 | | 6743.124 Ti I 48 6808.88 La II 1 6864.31 P | Fe I | 1186 | | 6743.58 8 I 8 6810.28 Fe I 1197 6869.74
6744.2 P C III 3 6812.19 C II 14 6870.22 | O II
F I | 45
2 | | 6744.66 Cr I 315 6812.26 N II 54 6870.8 | N II | 71 | | 6745.11 Fe I 1327 6812.40 V I 31 6871.7 P | C III | 19 | | 6745.56 P Ti I 226 6813.55 P Fe I 1288 6872.32
6745.96 P Fe I 1005 6813.598 Ni I 288 6874.09 | Co I
Ba II | 5 <u>4</u>
8 | | 6746.433 Ti I 152 6813.68 La II 110 6875.45 | Fe I | 167 | | 6746.96 P Fe I 205 6813.85 P 81 I 61 6875.98 | Fe I | 1013 | | 6748.43 T1 I 152 5814.950 Co I 54 6876.71 | Ni I | 97 | | 6748.79 S I S 5816.60 A1 II 9 6878 P | 0 V | 12 | | 6749.52 P Fe I 860 6817.08 Sc I 6878.313 | 8r I | 3 | | 6750.152 Fe I 111 6818.39 A II 50 6879.51 P
6750.22 C II 21 6819 P O V 12 6879.59 P | Fe I
Fe I | 1157
551 | | 6751.28 Cr I 315 6819.42 P Fe I 463 6880.65 | Fe I | 1051 | | 6751.94 Ti I 152 6819.60 P Fe I 1051 6881.07 P 6752.40 N I 30 6820.43 Fe I 1197 6881.46 | Fe I
Fe I | 1174 | | 6762.40 R 1 30 6820.43 Fe 1 1197 6881.40 6762.67 G 11 130 6822.00 P Fe I 1220 6881.64 | Cr I | 222 | | 76 | | | | | | TNG LIG | _ | | | | | |---------------------|------|---------------|-------------------|-------------------------------------|--------|----------------|---------------|---------------------|--------|---------------
-----------------| | IA | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | | 6882.48 | | Cr I | 222 | 6971.95 | | Fe I | 404 | 7039.22 | | Sm II | 57,61 | | 6883.04 | | Cr I | 222 | 6975.46 | | Fe I
Fe I | 1194 | 7039.36 | | Ti I
Al II | 307
3 | | 6885.07 | | O II
Fe I | 45
1173 | 6976.306
6976.53 | | Si I | 60 | 7042.06
7042.24 | | Sm II | 58 | | 6885.772
6886.57 | | A II | 20 | 6976.8 | | N II | 53 | 7044.60 | | Fe I | 1276 | | 6887.63 | | Gd II | | 6976.934 | | Fe I | 1221 | 7045.8 | | C 11 | 26 | | 6888.7 | | NII | 71 | 6977.445 | | Fe I | 1225 | 7045.96 | | La I | 6 | | 6890.88 | | He II | 7 | 6978.46
6978.855 | | Cr I
Fe I | 222
111 | 7050.65 | | Ti I
Gd II | 256
122 | | 6892.585
6894.92 | P | Sr I
Mg I | 1
34 | 6979.10 | | N I | 29 | 7051.00
7052.872 | | Co I | 54 | | 6895.29 | | 0 11 | 45 | 6979.17 | P | Fe I | 340 | 7052.9 | | C II | 26 | | 6896.00 | | Y II | 26 | 6979.82 | | Cr I | 222 | 7053.48 | P | Fe I | 1186 | | 6898.31 | | Fe I | 1078 | 6980.86 | | Gd II
Cr I | 222 | 7054.042 | | Co I
Gd II | 140
130 | | 6900.73 | | Gd II
Co I | 122
164 | 6980.91
6980.91 | | Hf II | 22 | 7054.62
7055.01 | | A II | 7 4 | | 6901.52
6902.46 | | FI | 2 | 6981.40 | | SII | 18 | 7056.60 | | Al II | 3 | | 6902.80 | | Fe I | _ | 6983.53 | P | Fe I | 1220 | 7057.96 | P | Fe I | 815 | | 6906.54 | | 0 11 | 45 | 6983.54 | P | Fe II | 63 | 7058.02 | | Gd II | 130 | | 6908.08
6908.11 | | Co I
O II | 164
45 | 698 5.74
698 5. 89 | | A II
Gd II | 137 | 7059.941
7060.43 | P | Ba I
Mg I | 5
32 | | 6909 | P | o v | 12 | 6988.530 | | Fe I | 167 | 7061.90 | | Hf II | | | 6909.82 | - | FI | 2 | 6988.75 | | Gd II | 130 | 7062.80 | P | Fe I | 1273 | | 6910.75 | | 0 11 | 45 | 6989.64 | P | Fe I | 1191 | 7062.97 | | N1 I | 64 | | 6910.84 | | Co I | 80 | 6990.16 | | A II
Gd I | 20
2 | 7063.4
7063.57 | | C II
Ni I | 26
270 | | 6911.52 | P | Fe I
Fe I | 109
341 | 6991.92
6995.35 | | Ta I | 5 | 7063.64 | | Al II | 3 | | 6912.43
6914.562 | r | N1 I | 62 | 6996.63 | | Ti I | 256 | 7065.15 | | Ti I | 100 | | 6916.57 | | Gd I | 2 | 6996.76 | | Gd II | 121 | 7065.188 | | Не I | 10 | | 6916.702 | | Fe I | 1052 | 6997.13 | P | Fe I | 1273 | 7065.719 | _ | He I | 10 | | 6917.52 | P | Fe I | 1190 | 6997.83 | | Hf II | 89 | 7066.15 | P | Fe I | 1277 | | 6917.93 | | Al II | 75 | 6999.902 | | Fe I | 1051 | 7066.24 | | La Il | 1 | | 6919.96 | _ | Al II | 15 | 7000.633 | | Fe I
Gd II | 1005
122 | 7067.2170 | | A I | 1 | | 6920.16 | P | Fe I
Gd II | 1192 | 7000.75
7001.57 | | Ni I | 64 | 7067.44
7067.50 | | Fe II
Ni I | 277 | | 6920.62
6924.13 | | Cr I | 122
222 | 7001.07 | | 0 I | 21 | 7068.02 | P | Fe I | 1276 | | 6925.24 | | Cr I | 222 | 7002.22 | | 0 I | 21 | 7068.37 | | La I | 1 | | 6926.04 | | Cr I | 222 | 7003.0 | | N II | 53 | 7068.415 | | Fe I | 1004 | | 6926.40 | P | Fe I | 1222 | 7003.58 | | Si I
Ti I | 60
256 | 7068.60 | P | Fe I
Ti I | 1276
307 | | 6926.90
6928.25 | | N I
Ni I | 29
110 | 7004.60
7004.81 | | Co I | 89 | 7069.11
7069.54 | P | Fe I | 205 | | | | a T | 10 | 7005 04 | | Si I | 60 | 7070 071 | | Sr I | 3 | | 6928.319
6928.52 | P | Zn I
Ni I | 10
61 | 7005.84
7006.16 | | Gd II | 130 | 7070.071
7071.88 | | Fe I | 1194 | | 6929.4678 | | Ne I | 6 | 7007.81 | | Ti I | 100 | 7072.82 | P | Fe I | 1003 | | 6929.96 | P | Fe I | 34 | 7008.014 | | Fe I | 1078 | 7074.45 | P | Fe I | 1173 | | 6930.35 | P | Fe I | 1186 | 7008.35 | | Ti I | 256 | 7077.03 | | A II | 20 | | 6930.64 | | Fe I | 1221 | 7010.362 | | Fe I
Ti I | 1221
256 | 7077.10 | P | Eu II
Fe I | 8
1278 | | 6932.49
6933.04 | P | Fe I
Fe I | 1220
1051 | 7010.94
7011.364 | | Fe I | 1221 | 7079.32
7082.22 | r | N1 I | 267 | | 6933.55 | | Y I | 1 | 7014.99 | | Fe I | 167 | 7082.37 | | Sm II | 55 | | 6933.628 | | Fe I | 167,1005 | 7015.3 | | N II | 53 | 7083.396 | | Fe I | 1277 | | 6935.16 | | Hf II | 35 | 7016.075 | | Fe I | 109 | 7084.25 | P | Ti I | 99 | | 6936.27 | | K I | 7 | 7016.436 | | Fe I | 1051 | 7084.33 | | Si I | 60 | | 6936.48 | P | Fe I | 1196 | 7016.602 | D | Co I | 54 | 7084.974 | | Co I | 54 | | 6937.81 | | Co I | 139 | 7016.90
7016.99 | P | Si I
Hf II | 51
99 | 7085.52
7086.76 | | Gd II
Fe I | 130
815,1311 | | 6938.472
6942.82 | P | Zn I
Fe I | 10
1008 | 7010.55 | | Si I | 51 | 7087.35 | | Zr I | 42 | | 6942.9 | | N II | 53 | 7017.73 | | Gd II | 137 | 7089.03 | P | Si I | 70 | | 6943.202 | | Zn I | 10 | 7017.98 | | Si I | 51 | 7089.73 | P | Fe I | 1220 | | 6943.67 | P | Fe I | 1349 | 7020.44 | | Sm II
Hf II | 59
67 | 7090.404 | | Fe I | 1051 | | 6945.208 | | Fe I | 111 | 7021.23 | | | | 7090.55 | | A II | 60 | | 6945.22
6945.98 | | N I
Gd II | 29
122 | 7022.39
7022.976 | P | Fe I
Fe I | 1078
1051 | 7091.83
7091.91 | P | Fe I
Fe I | 1278
1277 | | 6946.31 | | Co I | 110 | 7024.0508 | | Ne I | 6 | 7093.10 | P | Fe I | 1189 | | 6947.501 | | Fe I | 1221,1224 | 7024.084 | | Fe I | 1003 | 7094.30 | P | Fe I | 778 | | 6949.37 | P | Fe I | 1220 | 7024.649 | | Fe I | 1187 | 7095.40 | | N1 I | 276 | | 6950.32 | _ | Y I | 16 | 7024.86 | | Ni I | 271 | 7095.425 | | Fe I | 1105 | | 6950.82 | P | Fe I | 205 | 7025.52
7027.60 | | O I
Fe I | 32
1221 | 7097.78
7100.20 | P | Zr I
Fe I | 42
267 | | 6951.261
6951.62 | P | Fe I
Fe I | 1186,1193
1078 | 7027.797 | | Co I | 179 | 7100.20 | P | Fe. I | 61 | | 6951.68 | • | YII | 33 | 7028.58 | P | Fe I | 463 | 7102.95 | | Zr I | 42 | | 6952.13 | | C1 II | 54 | 7028.60 | P | Ni I | 156 | 7103.15 | P | Fe I | 167 | | 6952.52 | | La II | 18 | 7028.95 | P | N1 I | 61 | 7103.28 | | N IV | 4 | | 6953.01 | P | Fe I | 815 | 7030.06 | | Ni I | 126 | 7103.77 | _ | Zr I | 42 | | 6954.54 | | La II | 1 | 7030.33 | P | Hf II
Fe I | 66 | 7105.34 | P | Si I | 70 | | 6955.06
6957.95 | | Ni I
S II | 157
18 | 7031.02
7031.42 | P | Fe I | 1173
1278 | 7105.90
7107.30 | P
P | Fe I
Fe I | 1008
1324 | | 6958.11 | | La II | 67 | 7032.16 | _ | Ni I | 279 | 7107.461 | - | Fe I | 1005 | | 6959.24 | | Gd II | 130 | 7032.4127 | | Ne I | 1 | 7109.48 | | N IV | 4 | | 6960.334
6963.02 | P | Fe I
Fe I | 1222
1007 | 7034.06
7034.08 | P
P | Fe I
Fe I | 1190
1190 | 7109.67
7110.91 | P | Fe I
Ni I | 1190
64 | | | - | | | | - | | | | | | | | 6964.18
6964.69 | | Ķ I
K I | 7
7 | 7034.42
7034.96 | | Ni I
Si I | 97
50 | 7111.28
7111.71 | | N IV
Zr I | 4
23 | | 6965.42 | P | Mg I | 33 | 7035.86 | | Ti I | 307 | 7112.176 | | Fe I | 404 | | 6965.4302 | | A I | 1 | 7037.04 | P | Fe I | 61 | 7112.36 | | CII | 20 | | 6966.35 | | F I | 6 | 7037.26 | | Gd II | 000 | 7114.55 | P | Fe I | 267 | | 6966.9 | | Fe II | 198
53 | 7037.37 | | Ni I
F I | 288 | 7115.13 | n | C II | 20 | | 6967.6
6968.78 | | N II
La II | 53
109 | 7037.45
7038.251 | | r 1
Fe I | 6
1051 | 7115.25
7116.77 | P | Fe I
Gd II | 1186
130 | | 2000 10 | | D- Y | 400 | ~~~ | | m. r | 050 | 110111 | _ | 54 11 | 100 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------------|--------|----------------|-------------------|----------------------|--------|---------------|---------------------|---------------------|--------|---------------|------------------| | 7118.86 | | Gd II | 130 | 7193.74 | | Y II | 33 | 7284.27 | | A II | 24 | | 7119.45 | _ | C 11 | 20 | 7193.89 | P | Si I
Fe I | 25
1307 | 7284.843
7285.28 | | Fe I
Co I | 1004
140 | | 7120.01 | P
P | Fe I
Fe I | 1187 | 7194.02
7194.81 | r | Eu II | 8 | 7285.286 | | Fe I | 1188 | | 7120.56
7122.24 | r | Ni I | 1006
126 | 7194.92 | | Fe I | 1273 | 7285.94 | P | Si I | 58 | | 7123.10 | | N IV | 4 | 7195.235 | | Ba I | 10 | 7286.56 | | N1 I | 109 | | 7124.28 | | S II | 18 | 7196.37 | P | Fe I | 1252 | 7287.36 | | Fe II | 197 | | 7124.47 | _ | Co I | 53 | 7196.83 | | Cr I
N1 I | 264
62 | 7288.760
7289.05 | P | Fe I
Fe II | 1077
72 | | 7125.00
7125.28 | P
P | Fe I
Fe I | 815
1220 | 7197.07
7197.08 | | Gd II | 121 | 7289.05 | r | 81 I | 24 | | .120.20 | _ | | | | | | | | | a | | | 7125.49 | | CII | 20 | 7202.194
7202.37 | | Ca I
F I | 29
6 | 7290.21
7290.87 | | S1 I
N1 I | 24
287 | | 7126.71
7127.21 | | N1 I
N IV | 97
4 | 7205.51 | P | Fe I | 1251 | 7291.03 | P | Ti I | 143 | | 7127.58 | P | Fe I | 1273 | 7207.123 | | Fe I | 1001 | 7291.48 | | N1 I | 6 3 | | 7127.88 | | FI | 6 | 7207.406 | | Fe I | 1051 | 7292.856 | | Fe I | 1189 | | 7129 | P | N IV | 4 | 7207.85 | | Cr I
Si I | 264
25 | 7293.068 | | Fe I
Fe I | 1077
1187 | | 7129.30 | P
P | Fe I
T1 I | 1219
100 | 7208.20
7209.44 | | Ti I | 99 | 7295.00
7295.27 | P | Fe I | 1189 | | 7130.34
7130.942 | r | Fe I | 1051 | 7212.47 | | Fe I | 1273 | 7297.75 | | N1 I | 293 | | 7131.29 | | Al II | 114 | 7213.35 | | Ti I | 143 | 7299.67 | | Ti I | 97 | | ~**** | | Fo t | 1000 | 7213.84 | P | Fe I | 1105 | 7300.47 | | Fe I | 1275 | | 7132.989
7133.16 | | Fe I
Gd II | 1002
137 | 7214.78 | P | Ti II | 101 | 7300.59 | P | Fe I | 1003 | | 7133.10 | | C 11 | 20 | 7214.97 | | Ti I | 314 | 7301.17 | | Eu II | 8 | | 7134.290 | | Co I | 179 | 7216.20 | _ | Ti I | 98 | 7301.57 | P | Fe II | 72
70 | | 7134.66 | | Al II | 114 | 7216.68 | P | Fe I
N II | 1273
52 | 7302.89
7305.87 | | Mn I
Ti I | 50
143 | | 7134.99
7135.73 | | Fe II
Gd II | 197 | 7217.0
7217.34 | | Co I | 126 | 7306.61 | | Fe I | 1077 | | 7138.05 | P | Ti I | 98 | 7217.55 | | Eu II | 8 | 7307.938 | | Fe I | 1002 | | 7138.81 | | A) II | 114 | 7218.57 | | Cr I | 264 | 7307.97 | | Fe II | 73 | | 7138.91 | | T1 I | 99 | 7219.686 | | Fe I | 1001 | 7310.24 | |
Fe II | 73 | | 7139.79 | | S II | 18 | 7220.79 | | N1 I | 294 | 7311.02 | | F I | 5 | | 7139.8 | | N II | 52 | 7221.22 | | Fe I | 1189 | 7311.101 | | Fe I | 1077 | | 7141.17 | | Gd II | 131 | 7222.39 | | Fe II | 73 | 7311.26 | P | Fe I | 1105 | | 7141.62 | | N1 I | 283 | 7222.88
7223.668 | | Fe I
Fe I | 1187,1311
463 | 7312.05
7315.73 | P | Fe I
Co I | 1310
89 | | 7142.522 | | Fe I
Fe I | 1274
1186,1193 | 7224.51 | | Fe II | 73 | 7316.77 | P | Fe I | 267 | | 7145.317
7146.13 | | Gd II | 130 | 7225.82 | P | Fe I | 1278 | 7317.03 | | s II | 18 | | 7147.0406 | | A I | 1 | 7226.20 | | 81 I | 26 | 7317.40 | P | Fe I | 1278 | | 7147.31 | | Gd II | •• | 7228.70 | | Fe I
Pb I | 267
2 | 7318.39
7320.694 | | Ti I
Fe I | 212
1188,1276 | | 7148.147 | | Ca I | 30 | 7228.974 | | FU I | ~ | 70201001 | | | 1100,12.0 | | 7148.61 | | Ta I | 11 | 7231.12 | | CII | 3 | 7320.70 | _ | Fe II | 73 | | 7148.69 | _ | Fe I | 1078,1339 | 7233.58 | | A II
Si I | 26 | 7323.20
7323.38 | P
P | Ti II
Fe I | 101
859 | | 7151.18 | P | Sc II
Fe I | 27
109 | 7235.32
7235.86 | | 81 I | 25 | 7324.89 | • | Gd II | 000 | | 7151.495
7154.688 | | Co I | 89 | 7236.19 | | CII | 3 | 7325.33 | P | Fe I | 980 | | 7155.64 | | Fe I | 1276 | 7236.91 | | S II | 18 | 7326.146 | | CaI | 44 | | 7156.80 | | 0 I | 38 | 7229.885 | | Fe I | 1105
137 | 7326.51 | | Mn I
Ni I | 50
140 | | 7158.502 | | Fe I | 815
98 | 7242.24
7244.77 | | Od II
S I | 15 | 7327.67
7328.64 | | Hf II | 65 | | 7160.33
7160.85 | P | Ti I
Fe I | 1310 | 7244.86 | | Fe I | 1276 | 7330 | P | N V | 12 | | | | | | 7044 08 | | Ti I | 99 | 7330.16 | P | Fe I | 1187 | | 7161.04 | P
P | Fe I
Fe I | 1190
1278 | 7244,86
7245.1668 | | Ne I | 3 | 7330.10 | P | Mn II | 4 | | 7162.37
7164.469 | r | Fe I | 1051 | 7247.82 | | Mn I | | 7330.97 | | Ti I | 143 | | 7164.63 | | SII | 18 | 7250.12 | | Co I | 53 | 7331.95 | | FI | 1 | | 7164.75 | | Si I | 49 | 7250.69 | | Si I | 25 | 7332.26
7332.97 | | Ti I
Y II | 143
25 | | 7164.90 | ъ. | Gd II | 130 | 7251.74
7252.70 | | Ti I
Gd II | 99
109 | 7332.97 | | Ni I | 263 | | 7165.09
7165.62 | P | Si I
Si I | 49
48 | 7253.76 | | T1 I | 143 | 7333.62 | | Fe I | 1078 | | 7167.01 | | N1 I | 109 | 7254.19 | | 0 I | 20 | 7334.66 | | Fe II | 20.9 | | 7168.37 | | Gd I | 1 | 7254.47 | | 0 I | 20 | 7336.03 | | Zr I | 23 | | 7169.14 | | Zr I | 42 | 7254.649 | | Fe I | | 7337.61 | | 8 II | 18 | | 7170.14 | | N1 I | 282 | 7255.28 | P | Si I | 59 | 7337.78 | P | Ti I | 212 | | 7172.26 | | Gd II | 109 | 7256.13 | P | Fe I
Cl I | 1278
5 | 7338.92
7340.78 | P | V I
Fe I | 117
684 | | 7173.73 | | N1 I
Ne I | 269
6 | 7256.63
7256.72 | | Ni I | 97 | 7341.78 | P | Fe I | 1307 | | 7173.9389
7175.937 | • | Fe I | 1188 | 7256.96 | | s II | 18 | 7344.18 | P | Fe I | 266 | | 7176.886 | | Fe I | 1276 | 7259.3 | _ | N II | 52 | 7344.72 | | Ti I | 97 | | 7177.50 | _ | He II | 6 | 7261.00 | P
P | Fe I
Fe I | 267
1273 | 7346.37
7347.16 | P | Ta I
Fe I | 12
266 | | 7178.33
7179.16 | P
P | Sc II
Fe II | 27
72 | 7261.29
7261.54 | - | Fe I | 1188 | 7347.72 | P | Mn II | 4 | | 11.0.10 | - | | | | | | 0.0 | 7040 44 | | A II | 60 | | 7180.020 | _ | Fe I | 33 | 7261.94
7262.46 | P | Ni I
Fe I | 62
859 | 7348.11
7348.51 | P | Fe I | 1004 | | 7181.21 | P | Fe II
Fe I | 72
1078 | 7264.19 | | YII | 33 | 7350.55 | P | Fe I | 509 | | 7181.222
7181.93 | | Fe I | 1274 | 7264.99 | | Fe II | 197 | 7351.160 | | Fe I | 1273 | | 7182.00 | | N1 I | 126 | 7266.22 | | N1 I | 288 | 7351.56 | | Fe I | 1275
272 | | 7184.54 | | Si I | 25 | 7266.29 | P | Ti I
Fe I | 143
61 | 7352.16
7353.52 | P | Ti I
Mn II | 272
4 | | 7184.89
7185.50 | | Si I
Cr I | 25
264 | 7267.00
7268.58 | P | Fe I | 957 | 7353.528 | - | Fe I | 1251 | | 7187.341 | | Fe I | 1051 | 7271.41 | | T1 I | 97 | 7354.579 | _ | Co I | 53 | | 7188.06 | | Cr I | 264 | 7273.20 | | S II | 18 | 7355.46 | P | Ti II | 101 | | 7188.55 | | Ti I | 99 | 7273.77 | | T1 I | 212 | 7355.94 | | Cr I | 93 | | 7188.7 | | N II | 52 | 7275.28 | | Si I | 24 | 7356.51 | _ | V I | 117 | | 7189.17 | | Fe I | 463 | 7277.67 | | Hf II | 66 | 7356.81
7357.74 | P | Fe I
Ti I | 1187
97 | | 7189.57 | | Gd II | 138 | 7278.48
7278.72 | P | Fe I
Hf II | 127 4
111 | 7357.74 | P | Fe I | 1310 | | 7189.89
7190.12 | P | Ti I
Fe I | 285
463 | 7280.298 | | Ba I | 5 | 7361.39 | | V I | 117 | | 7190.12 | • | Fe I | 1274 | 7281.349 | | He I | 45 | 7361.56 | P | Ti I | 212 | | 7193.20 | P | Mg I | 31 | 7282.36 | | La II | 1 | 7361.59
7362.31 | | Al I
Al I | 11
11 | | 7193.23 | | Fe II | 197
25 | 7282.39
7283.80 | | Fe I
Mn I | 1274
50 | 7362.31 | | V I | 117 | | 7193.56 | | 81 I | £0 | | | | | | | | | •• - | 1. Type Classical Section Color Co | 80 | | | | | LIND | ING LIS | T | | | | | |--|----------|------|-------------|---------------|------------|------|---------|---------------|------------------|------|---------|---------------| | 1986.11 | I A | Type | Element | Multiplet No. | I A 7 | Гуре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | | 1780.11 | 7363.96 | | Fe I | 1274 | 7449.34 | | Fe II | 73 | 7559.62 | | N1 I | 292 | | 1 | | | | | 7449.42 | | | | 7559.68 | | | | | 1996.10 P | 7366.37 | | | | | _ | | | | | | | | 1970 | | _ | | | | P | | | | | | 1207 | | 1977-197 11 | | P | | | | D | | | | | | 291 | | 1777-08 | | | | | | - | | | | | | | | 1971-0.07 P | | | | | | P | | | | | | | | 7279-464 | | P | | | | | Fe I | 204 | | | Fe I | | | 7981.08 | | _ | | 200 | 7462.37 | | Cr I | 93 | 7573.76 | P | Fe I | 957 | | 7981.08 | 2020 40 | | Po TT | | 7462.38 | | Fe II | 73 | 7574.08 | | N1 I | 156 | | 7931.46 | | | | | | P | | | | | | | | 7981.08 P P1 300 7406.28 N I S 7000.58 P P1 1 300 7406.28 N I S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 N I S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S | | | | 292 | | | Ti I | 142 | | | 8 I | | | 7926.98 | | P | | | 7468.29 | | | 3 | 7580.55 | | | | | 7980.44 MI 1 68 7271.41 AL 11 21 7880.044 Pe I 1137 7380.45 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1300 7723.00 Pe I 1308 7723. | 7382.99 | | Fe I | 1188 | | | | | | P | | | | 7280.44 P Ps 1 1201 | | P | | | | | | | | | | | | 7286.37 | | _ | | | | ъ | | | | | | | | Type 1 | | P | | | | r | | | | P | | | | 7384.546 P P | | | | | | | | | | - | | | | 1987.10 | 7000121 | | | 200 | | | | | | | | | | 7981.70 | 7386.394 | | Fe I | 1275 | | | | | | | | | | 7286.40 | 7387.10 | | | | | P | | | | | | | | 7389-348 P Fe I 1274 | | P | | | | D | | | | | | | | 7989-436 P P I 1274 7470-32 P P I 1006 7814-00 T 1 I 139 7989-436 P P I 1077 7477-31 P 0 I 050 7814-00 T 1 I 139 7989-436 P P I 1077 7477-31 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 170 7477-31 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 100 7478-77 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 100 7478-77 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 1278 7478-70 P 0 I 050 7817-00 P 1 I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7817-00 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7800-038 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7800-038 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I
0 I 0 | | | | | | • | | | | | | | | 798-380 | | D | | | | P | | | | | | | | 7389.18 | | • | | | | | 0 I | 55 | | | | | | 7393.63 18 I 100 7478.77 7593.60 18 I 1 109 7478.77 7593.60 7594.00 7594.00 7595.79 7595.70 | | P | | | 7477.52 | P | Fe I | 957 | 7617.19 | P | Fe I | 1304 | | 7984.90 P 04 II 109 7478.67 P 76 I 683 7631.23 M I 1860 77386.50 P 76 I 1278 7740.00 | | _ | | | | | | | 7617.86 | | | | | 7988.00 p Fe I 1278 7470.00 0 I 55 7200.538 Fe I 1280 7288.00 p Fe I 1200 7288.73 Co I 164 7480.06 0 I 1 55 7204.73 II 1 21 21 22 22 22 22 22 22 22 22 22 22 2 | | | N1 I | 109 | 7478.79 | | Zn II | 1 | 7617.97 | P | Fe I | 1001 | | 7988.00 p Fe I 1278 7470.00 0 I 55 7200.538 Fe I 1280 7288.00 p Fe I 1200 7288.73 Co I 164 7480.06 0 I 1 55 7204.73 II 1 21 21 22 22 22 22 22 22 22 22 22 22 2 | | | | | 7470 07 | ъ | Vo I | 809 | 7610 01 | | N4 T | 156 | | 7988.68 | | _ | | | | P | | | | | | | | 1988.72 | | P | | | | P | | | | | | | | Table Tabl | | | | | | | 0 I | | | | N1 I | 292 | | 7389.8e | | P | | | | | | 286 | 7627.85 | | | 91 | | 7400.28 | | | | | 7481.74 | | | | | | | | | Table Tabl | 7398.98 | P | | | | | | | | | | | | 7400.13 | | _ | | | | P | | | | | | | | | | P | | | | | | | | | | | | 7401.686 | 7401.13 | | NI I | 291 | 7200720 | | | _ | 1000100 | | · - | | | 7401.866 | 7401.17 | P | N1 I | 283 | 7484.28 | P | Fe I | | 7647.83 | P | Fe I | 1137 | | Table Tabl | | | | | | P | | | 7650.95 | P | | | | 7409.13 | 7405.85 | | | | | | | | | | | | | 7409.17 P N I 283 7489.61 T1 I 225 7687.30 NI Z78 7409.17 P N I 283 7491.678 Fe I 1077 7687.00 Ng I 22 7409.89 NI I 139 7494.72 P Fe I 33 7661.223 Fe I 1077 7481.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1077 7441.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1077 7441.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1309 7441.10 C1 I 4 7489.67 P Fe I 1275 7681.66 P Fe I 1309 7441.10 C1 I 4 7489.68 Fe I 1077 7681.66 P Fe I 1309 7441.10 P Fe I 1300 7485.65 P Fe I 1001 7684.15 P Fe I 1280 74415.19 P Fe I 1300 7495.65 P Fe I 1001 7684.15 P Fe I 1280 74415.18 P Fe I 1280 7601.25 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 7495.65 P Fe I 1002 Fe I 1280 74415.18 P 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 7495.86 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1002 7505.80 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1002 7505.80 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1001 7507.800 F Fe I 1374 7677.46 Nn I 54 74815.87 Nn I 287 7509.53 F Fe I 1374 7677.46 Nn I 54 74815.87 Nn I 287 7509.53 F Fe I 1374 7677.46 Nn I 54 7482.30 Nn I 1 287 7509.53 F Fe I 1001 7685.83 Nn I 28 750.74 Nn I 1 180 7709.50 F Fe I 1374 7677.46 Nn I 54 7482.30 Nn I I 1380 7511.445 Nn I 1077 7680.32 F Fe I 1001 7685.32 Nn I 1 1077 7680.32 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.30 Nn I 1 1 1077 7680.30 Nn I 1 1 1077 7680.34 Nn I 1 1077 7680.34 Nn I 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1 1077 7780.50 Nn I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | Table Tabl | | | | | | | | | | | | | | 7406.38 | | Ð | | | | | | | | | | | | 7414.178 Fe I 1077 | | - | | | | P | | | | | | | | 7416.51 | | | | | 7495.088 | | | 1077 | 7661. 4 6 | P | | | | TABLE P | 7414.10 | | Cl I | 4 | 7495.67 | P | Fe I | 1275 | 7663.09 | | Hf II | 68 | | TABLE P | | | W4 7 | 20 | 7406 19 | | T1 T | 225 | 7669 45 | | О Т | 49 | | 7411.37 | | ъ | | | | | | | | P | | | | 7415.78 p | | r | | | | P | | | | - | | | | 7417.38 | | P | | | | | N1 I | 282 | | | KI | | | 7417.38 | | | | | 7503.8676 | | | | 7665.02 | | | | | 7418.674 Fe I 1001 7507.300 Fe I 1137 7672.44 Cl I 3 7419.35 Ni I 287 7508.52 P Fe I 1274 7679.60 S I 7419.35 Ni I 287 7509.03 S II 24 7679.60 S I 7 7619.00 Fe I 1307 7509.03 S II 24 7679.60 S I 7 7 7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 S I 36 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 S I 36 7423.17 Ti I 97 7512.12 P Fe I 108 7686.13 S I 7 7 7423.54 SI I 23 7512.17 P Fe I 101 7687.779 Ag I 2 7423.54 SI I 23 7512.17 P Fe I 101 7687.779 Ag I 2 7423.54 SI I 23 7515.88 Fe II 73 7689.30 P Fe I 1304 7424.63 SI I 23 7515.88 Fe II 73 7689.30 A II 7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7426.57 Eu II 8 7525.14 Ni I 139 7696.99 K I 1 1 7430.58 Fe I 204 7526.2 Al II 119 7699.49 Yb I 3 7430.73 Fe I 1189 7526.2 P Fe I 1307 7706.77 O I 42 7431.17 P SI 1 89 7531.171 Fe I 1307 7706.77 O I 42 7431.17 P SI 1 89 7531.171 Fe I 1307 7709.78 Al II 133 7431.94 P Fe I 189 7525.15 P Fe I 1307 7709.78 Al II 133 7431.94 P Fe I 189 7532.42 P Fe II 72 7709.98 Mn I 54 7431.99 P TI I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.99 P TI I 142 7534.83 P Fe II 1307 7709.78 Al II 133 7431.94 P Fe I 189 7532.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 266 7712.42 Mn I 55 7437.16 C I 53 7640.44 P Fe I 266 7712.42 Mn I 55 7437.16 C I 53 7640.69 Ni I 287 7712.60 P Fe I 1004 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7443.09 Fe I 1007 7652.99 P Fe I 1300 7722.60 P Fe I 1304 7444.28 P Fe I 107 7652.99 P Fe I 1300 7722.60 P Fe I 1304 7444.29 P Fe I 1007 7652.99 P Fe I 1300 7722.60 P Mg I 4464.774 Fe I 107 7652.99 P Fe I 1300 7722.60 P Mg I 4464.774 Fe I 107 7652.79 P Fe I 1300 7722.60 P Fe I 108 7744.44 Fe I 1077 7653.90 C I I 183 7723.60 C I | | | Co I | 89 | | _ | | | | | | | | 7419.35 N.1 I 287 7508.52 P Fe I 1274 7677.46 Mm I 54 7420.20 P Fe I 1307 7509.03 S II 24 7679.60 S I 7 7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 N.1 I 139 7511.045 Fe I 1077 7680.35 S I 36 7423.17 T1 I 97 7512.12 P Fe I 106 7686.13 S I 7 7423.63 N I 3 7512.17 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 S I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 200 7521.00 N II 1 282 7681.57 P Mg I 29 7425.64 F I 1 1 7522.78 N II 1 282 7681.57 P Mg I 29 7425.65 F I 204 7526.2 Al III 119 7698.97 K I 1 7430.58 Fe I 204 7526.2 P Fe I 1307 7706.52 Mm I 54 7430.73 Fe I 189 7526.15 P Fe I 1307 7706.52 Mm I 54 7431.17 P S I I 69 7531.171 Fe I 1307 7706.77 O I 42 7431.98 P T I 1 142 7534.83 P Fe II 72 7709.88 MI I 133 7431.98 P T I I 142 7534.83 P Fe II 137 7709.78 Al III 113 7431.98 P T I I 142 7534.83 P Fe II 1307 7706.77 O I 42 7431.98 P T I 1 120 7534.83 P Fe II 1307 7706.77 O I 42 7431.98 P T I I 120 7534.83 P Fe II 1307 7709.78 Al III 113 7430.89 P T I I 120 7534.83 P Fe II 1307 7709.78 Al III 113 7430.89 P T I I 120 7534.89 P Fe I 1355 7712.42 Mm I 54 7431.98 P T I I 122 7534.89 P Fe I 1356 7712.42 Mm I 55 7437.16 C I 53 7540.44 P Fe I 1368 7712.42 Mm I 55 7439.89 Z T I 23 7546.69 NI I 287 7715.63 NI I 109 7440.54 A II 60 7544.706 C I I 55 7437.16 C I 53 7540.69 NI I 287 7715.63 NI I 109 7440.98 F F I
1273 7546.99 P Fe I 1300 7726.68 P Fe I 1304 7442.88 N I 3 7565.19 P Fe I 1300 7726.68 P Fe I 1304 7442.88 N I 3 7565.19 P Fe I 1300 7726.68 P Fe I 1304 7442.88 P F I 1002 7652.99 P Fe I 1300 7726.68 P Fe I 1304 7444.89 F F I 1007 7652.79 P Fe I 1303 7724.606 NI I 166 7444.80 F F I 1077 7653.970 C I 183 7724.606 NI I 166 | | P | | | | Р | | | | | | | | 7420.20 P Fe I 1307 7509.03 S II 24 7679.60 S I 7 7421.80 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 Si I 36 7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 T1 I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.54 Si I 23 7512.17 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 Mi I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Mi I 126 7696.73 S I 7 7426.57 Eu II 8 7522.78 Mi I 126 7696.73 S I 7 7420.73 Fe I 1351 7526.2 Al III 119 7699.49 Yb I 3 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.79 Fe I 189 7528.15 P Fe I 1307 7706.77 O I 42 7430.80 Fe I 1189 7528.15 P Fe I 1307 7708.77 O I 42 7431.17 P Si I 88 7531.171 Fe I 1307 7708.77 O I 42 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.88 Mi I 54 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.88 Mi I 54 7431.96 P T1 I 42 7534.63 P Fe I 1000 7711.71 Fe II 73 7432.27 P Mi II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.89 P T1 I 142 7534.63 P Fe I 1000 7711.71 Fe II 73 7439.89 Zr I 23 7545.69 Ni I 287 7710.83 Ni I 109 7440.54 A II 60 7547.06 C I 5 7712.60 P Mg I 44 7440.54 A II 60 7547.06 C I 5 7712.00 P Mg I 44 7440.54 P Fe I 1273 7547.89 P Fe I 1000 7712.60 P Mg I 44 7440.54 P Fe I 1279 7547.60 C I 1 5 7719.00 P Fe I 1004 7440.54 A II 60 7546.177 Fe I 1006 7712.60 P Mg I 44 7440.54 P Fe I 1002 7555.59 P Ni I 286 7722.50 P Mg I 44 7440.54 P Fe I 1002 7555.59 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.29 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1006 7555.79 P Fe I 1007 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P | | | | | | ъ | | | | | | | | 7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 Ti I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.63 Ni I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 Si I 23 7514.93 F I 1 7689.10 P Fe I 1304 7425.12 P Fe II 209 7521.09 Ni I 282 7691.67 P Mg I 29 7425.12 P Fe II 209 7521.09 Ni I 282 7691.67 P Mg I 29 7425.12 P Fe II 1 1 7522.78 Ni I 1 282 7691.67 P Mg I 29 7426.57 Ru II 8 7526.72 P Ni I 1 19 7430.58 Fe I 204 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.90 Fe I 1189 7538.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 137 7709.78 AI II 113 7431.98 P Ti I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 200 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe II 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe II 187 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe I 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe I 100 7711.71 Fe II 173 7430.89 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 266 7712.661 Co I 126 7439.89 P Ti I 1223 7547.06 Ci I 5 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7722.00 P Mg I 44 7440.09 Fe I 100 77552.79 P Fe I 100 7722.00 P Mg I 44 7440.09 Fe I 100 77555.79 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1273 7554.73 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1077 7555.99 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1077 7555.99 P Fe I 100 7722.00 P Mg I 44 | | ъ | | | | • | | | | | | | | 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 T1 I 97 7512.12 P Fe I 1001 7687.779 Ag I 2 7423.63 Ni I 3 7514.93 F I 1 7689.10 P Fe I 1304 7423.63 Si I 23 7514.93 F I 1 7689.10 P Fe I 1304 7423.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 128 7696.73 S I 7 7426.57 Bu III 8 7522.78 Ni I 129 7698.97 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1307 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 77 7431.94 P Fe I 1189 7533.42 Fe II 77 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe II 1352 7712.66 Ni I 162 7439.89 Zr I 23 7545.69 Ni I 287 7440.54 A II 60 7545.69 Ni I 287 7440.60 T1 I 225 7547.06 C1 I 5 7711.90 P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7440.54 P Fe I 1309 7555.10 P Fe I 1300 7771.57 C1 I 4 7440.98 Fe I 1273 7545.69 Ni I 287 7440.54 A II 60 7545.69 Ni I 287 7440.54 P Fe I 1309 7552.24 F I 1 100 772.60 P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7711.99 O P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7711.90 P Fe I 1304 7440.54 A II 60 7552.52 P Ni I 287 7711.90 P Fe I 1304 7440.54 P Fe I 1309 7552.52 P Ni I 287 7711.90 P Fe I 1304 7440.54 P Fe I 1002 7552.54 F I 1 107 77440.50 P Fe I 1007 7552.79 P Fe I 1300 7722.60 P Mg I 44 7443.031 Fe I 1007 7552.52 P Ni I 288 77444.09 P Fe I 1007 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1007 7552.79 P Fe I 1303 7722.60 Ni I 1 7440.74 Fe I 1077 7553.70 C I I 3 7722.60 Ni I 1 67 7444.74 Fe I 1077 7553.70 C I I 1 3 7722.60 Ni I 1 16 | 7420.20 | r | re 1 | 1307 | 1000100 | | | | 1010100 | | - | • | | 7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 S1 I 36 7423.17 T1 I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.54 S1 I 23 7512.12 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 S1 I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 NI I 202 7691.57 P Mg I 29 7425.64 F I 1 7522.78 NI I 20 7696.73 S I 7 7426.57 Bu II 8 7525.14 NI I 120 7696.73 S I 7 7426.57 Bu II 8 7525.14 NI I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al II 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1307 7706.77 O I 42 7431.17 P S1 I 89 7531.171 Fe I 1307 7706.77 O I 42 7431.17 P S1 I 89 7531.171 Fe I 1307 7708.77 O I 42 7431.98 P T1 I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.98 P T1 I 142 7534.83 P Fe II 1000 7711.71 Fe II 107 7432.27 P Mn II 48 7537.44 P Fe I 1000 7711.71 Fe II 17 7433.48 N1 I 280 7537.47 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 1000 7711.71 Fe II 73 7433.48 N1 I 280 7537.49 P Fe I 1352 7712.42 Mn I 55 7439.89 Zr I 23 7545.69 N1 I 287 7715.63 N1 I 109 7440.54 A II 60 7546.177 Fe I 1000 7711.71 Fe II 100 7440.54 A II 60 7546.177 Fe I 1000 7711.50 P Fe I 1304 7440.60 T1 I 225 7547.06 C I 5 7747.06 P Fe I 1304 7443.031 Fe I 1273 7547.66 P Fe I 1300 7723.20 Fe I 1304 7443.22 P Fe I 1273 7545.69 P Fe I 1300 7723.20 Fe I 1304 7443.22 P Fe I 1002 7552.24 F I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7421.60 | | Fe I | 1188 | 7510.74 | | | | 7680.22 | | | | | 7423.63 | | | N1 I | 139 | | _ | | | | | | | | 7423.63 N I 3 7514.93 F I 7689.10 P Fe I 1304 7424.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.64 F I 1 7522.78 Ni I 282 7691.57 P Ng I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Nm I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1307 7706.77 O I 42 7431.19 P Fe I 1189 7533.42 Fe II 72 7709.98 Nm I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 44 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Nm I 55 7437.16 Co I 53 7540.44 P Fe I 1000 7711.71 Fe II 73 7439.89 P O V 17 7541.61 Fe I 266 7712.661 Co I 126 7439.89 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Fe I 1273 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.06 P Fe I 1304 7440.98 Fe I 1273 7545.69 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1002 7552.96 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1007 7552.97 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1007 7553.970 Co I 183 7722.60 P Ng I 44 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 1 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 | | | | | | | | | | | | | | 7426.03 | | | | | | P | | | | ъ | | | | 7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7425.57 Eu II 8 7525.14 Ni I 139 7696.73 S I 7 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7430.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.661 Co I 126 7439.89 P TI 23 7545.69 Ni I 287 7712.661 Co I 126 7439.89 P TI 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7719.05 P Fe I 1304 7440.98
Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7443.031 Fe I 1002 7552.24 F I 1 100 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7445.70 P Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7445.70 P Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | | | | | | | | F | | 1001 | | 7425.64 F I 1 7522.78 Ni I 126 7698.73 S I 7 7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 0 I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Mn I 54 7431.99 P Ti I 142 7534.83 P Fe II 87 7710.990 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433. | | P | | | | | | | | P | | 29 | | 7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1357 7706.52 Mn I 54 7431.94 P Fe I 1189 7531.171 Fe II 127 7709.78 Al III 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Mn I 54 7431.98 P Ti I 142 7534.43 P Fe II 72 7709.78 Mn I 54 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 | | • | | | | | N1 I | 126 | | | | 7 | | 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1020 7552.24 F I 1 1 772.20 Fe I 108 7443.031 Fe I 1002 7552.24 F I 1 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7724.604 A I 6 7445.70 P Fe I 107 7553.970 Co I 183 7724.604 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7724.604 A I 6 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | Bu II | 8 | | | | | 7698.979 | | | | | 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 266 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1002 7552.24 F I 1002 772.60 P Mg I 44 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.59 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1077 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1273 7564.73 Zr I 23 7732.50 Zr II 2 | 7430.58 | | Fe I | 204 | 7526.2 | | Al II | 119 | 7699.49 | | Yb I | 3 | | 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 266 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1002 7552.24 F I 1002 772.60 P Mg I 44 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.59 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1077 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1273 7564.73 Zr I 23 7732.50 Zr II 2 | W400 | | TP- 7 | 1051 | 7598 79 | Þ | Po T | 1989 | 7700 E0 | | Mm T | R4 | | 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Al II 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe II 1000 7711.71 Fe II 1077 7432.42 Mn I 25 7437.44 P Fe I 1000 7711.71 Fe II 1077 7432.42 Mn I 55 7437.16 Co I 55 7437.16 Co I 55 7439.89 P Fe I 266 7712.66 Co I 126 7439.89 P Fe I 287 7715.63 Ni I | | | | | | | | | | | | | | 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.998 Mn I 54 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.49 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 352 7712.42 Mn I 62 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7719.05 P Fe I< | | D | | | | - | | | | | | | | 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1007 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.62 Mn I 52 7439.89 P O V 17 7541.61 Fe I 957 7712.62 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 62 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 | | | | | | | | | | | | | | 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.69 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 | | | | | 7534.83 | | | 87 | | | Fe I | | | 7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.26 P Fe I 1309 7552.24 F I 1 7723.7597 A I 1 7445.70 P Fe I 107 7552.52 P | | | Mn II | | | | | | 7711.71 | | | | | 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7445.70 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.776 Fe I 1077 7553.970 | | | | | | | | | | | | | | 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td>r</td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | _ | | | | r | | | | | | | | 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | P | | | | | | | | | | | | 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1903 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn III 2 | (439.89 | | . &F I | 43 | . 520 + 58 | | | 20. | 1113.03 | | | 108 | | 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1903 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn III 2 | 7440.54 | | A II | 60 | 7546.177 | | | | 7717.57 | | C1 I | 4 | | 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 2r I 23 7732.50 2n III 2 | | | Ti I | | 7547.06 | | | | | | | | | 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077
7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | 7440.98 | | | | | | | | | | | | | 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | | | | P | | | | P | | | | 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.68 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | | | | Ð | | | | | | | | 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 N1 I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | | | | | | | | | | | | 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2 | | | | | | - | | | | | | | | | | | | | | | | 23 | | | | | | | | D | | | 7555.60 | | N1 T | 187 | | | | | KINDING TISE Element Multiplet No. Multiplet No. IA Type I A **Rlement** Multiplet No. IA Type Element Туре 8035.39 81 I 57 Fe I 1287 7909.60 P 7733.50 Gd I Cr I 316 8043.306 Co I 193 7910.50 7733.68 P Fe I 1306 8046.073 Fe I 1136 7911.338 Ba I 7734.43 Mn I 55 1 Si I 73 Si I 68 8046.78 P N1 I 281 7912.55 7735.99 12 8047.60 Fe I 12 Fe I 7912.866 7737.67 P Fe I 1137 Sm II 67 Si I 35 8048.70 7913.47 7742.7 Si I S II 109 8051.91 31 N1 I Fe I 1306 7917.48 7742.71 Co 193 Cr I 316 8055.996 I 7743.2 S1 I 7917.85 Si I 57 8058.14 Zr I 41 7918.38 7743.27 Co I 183 I 22 Cr I 300 7923.95 s 8061.27 7744.94 C1 I 5 7924.14 Fe I 1250 8063.10 Zr I 40 S II 70 7745.05 C1 I 8065.99 Al I 16 7924.62 Fe 1305 7745.48 1 308 8066.05 P T1 I 151 7926.37 T1 I P Fe I 1309 7746.56 Y II 31 7928.14 Sm II 65 8066.20 Fe 7748.281 Ι 402 22 8068.24 T1 I 151 7928.84 SI Gd II 7748.37 142 Gd II 8068.46 Sm II 68 N1 I 156 7930.25 7748.93 7930.33 S 1 22 8070.12 Zr I 40 Fe I 1304 7751.18 8070.64 P Si I 67 F 1 7930.83 Mg I 42 7754.70 4 Mn I 55 7931.70 S I 22 8072.16 P Fe I 108 7755.15 7932.20 Si I 57 8075.13 Fe I 12 Hf II 66 7757.89 7933.130 Cu I 6 8075.37 Al I 16 Mn I 54 7764.72 p Ti I 195 Fe I 7937.166 Fe I 1136 8080.55 P 957 7766.72 623 7938.53 P Ti I 151 8080.668 Fe I Cr I 7771.74 Ne 1 6 7939.49 0 I 35 8082,4580 0 1 1 7771.96 Cr 299 I 7941.09 Fe I 623 8084.98 0 1 7774.18 Fe I 1136 8085,200 7941.84 P Fe I 508 0 7775.40 s II 69 Ba I 7942.02 Cr I 300 8085.29 7780.478 S1 I 67 8086.18 Fe I 1154 7942.91 Mn I 7780.586 11 S 31 7943.15 O 1 35 8086.67 N1 I 62 7788.95 Al II 201 7943.1802 Ne I 18 8086.91 116 N1 I 7797.62 Ti I s ΙI 69 8089.86 7798.90 P Fe I 403 7943.93 308 Gd II 145 8089.96 81 I 7943.94 81 I 57 7800.0 81 Cu I 6 8092.634 F I 4 7944.65 Zr I 40 7800.22 S 11 68 8093.25 7945.878 Fe I 1154 7800.227 Rb I 81 I 8093.32 34 7802.49 Fe I 1303 7945.98 Fe I 107 30 8093.48 I 7807.97 P Fe I 1303 7947.204 O I 35 Co I 189 8093.932 Fe I 7947.56 0 1 35 7808.04 N1 I 290 79 7947.60 Rb I 1 8095.93 Co I 7809.24 999 6 8096.874 7948.1754 A 7809.4 Na I 20 Ti I Ti I 125 8098.50 195 7810.81 P Fe I 1303 7949.17 0 I 35 8098.72 Mg I 41 7950.83 7811.14 P Mg I 43 1 3 7952.18 0 1 35 8103.6922 Al II 90 7812.31 8108.33 Fe I 265 N1 I 266 7953.11 7813.62 P Fe I 1305 Co I 183 P Fe I 402 8112.13 7954.94 7815.83 Al II 90 8112.17 Fe I 265 Fe I 1305 7955.81 He I 69 7816.16 8114.93 8 II 69 Zr I 41 7820.80 p Fe I 1118 7956.69 Fe I 1304 8115.3115 A I 1 7959.21 7821.47 8 II 31 8116.80 v Ι 30 7961.58 T1 I 308 Al II 90 7823.72 7963.25 Gd II 8119.13 Cr I 299 109 7826.81 N1 I P Fe I 1303 8119.72 Al II 110 1154 7964.93 Fe I 7832.224 Fe I 1305 8121.89 Al II 110 7965.52 P Sm II 69 7835.08 Fe I 1000 8122.08 Al II 110 7967.03 P 10 7835.33 Al I S II 12 8123.52 Al II 110 7967.43 7836.15 Al I 10 81 I 57 8126.52 L1 I 3 7970.26 64 7837.27 Sm II 7978.88 Ti I 151,308 8128.28 Cr I 300 Fe II 87 7838.09 Fe I 265 Fe I 1304 8129.32 P 7980.04 Fe II 72 7841,40 Zr I 40 P Fe I 1250 7980.58 C1 I 2 8133.00 7844.55 S II 68 Gd II 7981.97 0 I 19 8133.02 7844.87 P Ti I 195 7982.41 O 1 19 8133.36 Gd II 7846.35 23 7983.66 Hf II 99 8136.4060 Ne I Fe I 1323 7846.47 v 8144.58 I 30 7987.00 Û 1 19 Zr I 40 7849.38 8145.47 Fe I 32 7987.34 O 1 19 C I 7850 8146.67 P Fe I 623 7850.5 81 I 81 7987.36 Co I 89 Fe I 1217,1218 300 8149.59 Cr I T1 I 34 7989.36 7852.74 P P 81 I 20 8150.57 Fe 7855.12 N1 I 267 7994.473 1 Co I 193 81 I 21 8151.95 P 7855.41 P Fe Į 1305 7995,00 Al II 118 8160.15 19 N1 I 156 7995.12 0 I 7861.10 v i 30 Ti I 308 8161.06 Hf II 66 7996.53 7861.22 Cr I 298 79 8163.22 7996.80 Co I Ni I 268 7863.79 8166.66 Cr I 298,299 7997.80 C1 I 7869.65 Fe I 1137 Cr I 7997.85 8 II 69 8167.94 291 7869.868 Co I 189 Fe 1136 8169.80 Cr I 300 7998.972 I 7870.00 Zr I 41 1322 Fe I 8171.30 P Fe I 8002.55 1217 7871.370 Co I 189 Fe I 1136 8 11 8179.03 8005.24 68 Mg II Cl I 7877.13 8 8 II 8179.31 69 8006.1556 A 1 3 7878.22 3 33 S1 I 81 I 74 8179.43 P 8009.39 P 7879.75 P Fe I 1306 I 8183.256 Na I 4 8014.7856 A 1 Y II 32 7881.90 N 1 2 P Fe I 1249 8184.80 Ti I 8016.51 34 7885.00 P Cr 1 299 8 II 0 I 8185.69 68 8018 C I 31 7885.26 I v 30 8186.73 8018.04 Cr I 299 64 7886.31 1272 Fe I 8018.70 8 II 68 8186.80 N1 I 200,267 7890.22 I 8187.95 8024.50 Fe I P Ti I 34 7895.50 C1 I 2 8194.35 8024.84 T1 I 151 Mg II 7896.37 8194.791 Na I 8025.12 Sm II 63 81 I 69 7898.38 Sm II 8194.824 Na I Fe I 8026.32 67 403 7904.12 V 8196.52 P Fe I 1217 30 I 8027.36 7905.751 Ba I 10 v I 30 8198.87 P 623 Fe 7908.06 Gd II 120 8027.96 Fe I 1154 Fe 1154 8198.951 Cr 316 8028.341 7908.30 | 87 | | | | | FIND | MING LIS | T | | | | | |------------------------------------|--------|---------------|----------------------|-----------------------------|------|------------------|------------------|---------------------|--------|---------------|------------------------| | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 8203.2 | P | Ca II | 13 | 8316.38 | | Gd II | | 8428.342 | | 0 I | 54 | | 8203. 572 | P | H
Fe I | 14
12 | 8317.45 | | 81 I | 19 | 8428.94 | | As I | 4 | | 8204.10
8204.93 | P | Fe I | 12 | 8322.06
8323.428 | | Cr I
H | 298
12 | 8429.128
8429.36 | | O I
Y II | 54 | | 8207.767 | _ | Fe I | 1136 | 8323.44 | | Cr I | 298 | 8431.20 | | Mn I | 53 | | 8208.57 | | Co I | 193 | 8327.063 | | Fe I | 60 | 8434.51 | P | Fe I | 1270 | | 8210.64
8211.48 | | N I
Si I | 2
19 | 8331.941
8333.29 | | Fe I
Cl I | 1153
2 | 8434.98 | P | Ti I
Si I | 33
8 | | 8212.00 | | Cl I | 2 | 8333.785 | | H | 11 | 8435.28
8435.68 | Р | Ti I | 8
33 | | 8212.43 | | Mn I | | 8334.37 | | Ti I | 33 | 8437.958 | | н | 10 | | 8212.59
8213.02 | P | Zr I
Mg I | 40
28 | 8335.19
8338.43 | | C I
Si I | 10
33 | 8438.93
8439.603 | | T1 I
Fe I | 224
1172 | | 8216.28 | - | Cr I | 299 | 8338.83 | | Cr I | 298 | 8442.58 | | Gd II | 1172 | | 8216.28 | _ | N I | 2 | 8339.431 | | Fe I | 1153 | 8442.98 | | Ti I | 210 | | 8217.8
8220.40 | P | Mg II
Cl I | 7
3 | 8342.21
8342.95 | P | Fe I
Fe I | 401
1270 | 8444.00 | | Si I | 46 | | 8220.406 | | Fe I | 1136 | 8345.20 | P | Fe I | 265 | 8444.48
8446.35 | | 81 I
0 I | 4 6
4 | | 8221.63 | | S II | 31 | 8345.553 | _ | H | 11 | 8446.42 | P | Fe I | 1272 | | 8221.73
8221.84 | | O I | 3
34 | 8346.13
8348.28 | P | Mg I
Cr I | 40
56 | 8446.56
8446.76 | P | Fe I
O I | 1267
4 | | 8222.15 | | s II | 68 | 8348.68 | | Sm II | 64 | 8447.41 | P | Fe I | 1266 | | 8223.07
8223.16 | | N I
S II | 2
68 | 8349.05
8353.15 | P | Fe I | 12 | 8447.63 | P | Fe I | 12 | | 8224.09 | | Cr I | 98 | 8354.35 | | Ti I
Al II | 33
4 0 | 8449.54
8450.26 | | S I
Cr I | 14
56 | | 8225.15 | | S II | 69 | 8355.16 | P | Fe I | 1050 | 8450.89 | | Ti I | 224 | | 8225.67 | | Cr I | 299 | 8356.07 | P | Fe I | 1117 | 8451.55 | | S I | 14 | | 8227.64
8230.01 | | 0 I
0 I | 34
34 | 8358.53
8359.006 | P | Fe I
H | 401
11 | 8452.14
8455.24 | | S I
Cr I | 1 4
56 | | 8230.67 | | Si I | 19 | 8359.23 | | Al II | 40 | 8457.10 | | Ti I | 141 | | 8232.347 | | Fe I | 1136 | 8359.57 | | Al II | 40 | 8459.01 | P | Fe I | 1270 | | 8232.99 | | 0 I | 34 | 8360.63 | | Cl II | 5 | 8461.41 | P | Fe I | 814 | | 8233.30 | | 8 II
0 I | 68 | 8360.822 | | Fe I | 1153 | 8464.02 | P | Fe I | 1330 | | 8235.31
8235.89 | | Cr I | 34
298 | 8361.77
8 3 61.95 | | He I
S II | 68
31 | 8464.65
8465.23 | P | Zr I
Fe I | 40
1270 | | 8236.13 | | HF II | 65 | 8363.30 | | Al II | 40 | 8466.10 | P | Fe I | 1269 | | 8236.77 | | He II | 6 | 8363.52 | _ | Al II | 40 | 8466.54 | P | Fe I | 999 | | 8238.29
8238.4 | P | Cr I
Mg II | 298
7 | 8363.58
8364.24 | P | Ti I
Ti I | 182
33 | 8467.15
8467.256 | | Ti I
H | 182
10 | | 8239.130 | • | Fe I | 108 | 8365.642 | | Fe I | 623 | 8468.413 | | Fe I | 60 | | 8241.61 | | V I | 30 | 8369.87 | P | Fe I | 1271 | 8468.46 | | Ti I | 150 | | 8242.34 | | N I | 2 | 8370.21 | | Zr I | 40 | 8471.75 | _ | Fe I | 1270 | | 8248.151
8250.2 | P | Fe I
Ca II | 1136
13 | 8372.79
8374.478 | | Co I
H | 193
11 | 8480.63
8481.96 | P
P | Fe I
Fe I | 1272
9 99 | | 8253.51 | | v i | 30 | 8375.95 | | C1 I | 2 | 8483.16 | - | Ti I | 150 | | 8253.78 | P | Fe I | 1216 | 8376.41 | | Ne I | 12 | 8485.99 | | Sm II | 66 | | 8254.10
8254.34 | P | Be I
Fe I | 2
508 | 8377.6068
8377.79 | | Ne I
S II | 12
31 | 8493.79
8494.42 | P | Fe I
Ti I | 1269 | | 8255.153 | • | н | 14 | 8377.90 | | Ti I | 33 | 8495.3600 | | Ne I | 141
18 | | 8255.90 | _ | V I | 30 | 8379.44 | | Co I | 193 | 8495.51 | | Ti I | 210 | | 8256.1 | P | Ca II | 13 | 8380.77 | | Mn I | | 8496.03 | | Ti I | 209,313 | | 8257.859
8258.27 | | H
8 II | 1 4
31 | 8382.23 | P | Fe I | 12 | 8496.51 | P | Fe I | 1136 | | 8260.938 | | H 11 | 31
14 | 8382.54
8382.82 | | Ti I
Ti I | 33
33 | 8497.00
8498.018 | | Fe I
Ca II | 1172
2 | | 8261.95 | | Cr I | 98 | 8386.24 | P | T1 I | 182 | 8498.44 | | Zr I | 40 | | 8263.86 | P | Fe I |
1272 | 8387.781 | | Fe I | 60 | 8501.50 | | Si I | 47 | | 8264.27
8264.288 | | Fe I
H | 1332
14 | 8389.42
8389.48 | | Zr I
Ti I | 40
182 | 8501.81
8502.38 | | Ni I
81 I | 186
4 6 | | 8264.5209 | | A I | 8 | 8392.400 | | H | 11 | 8502.487 | | Н | 10 | | 8266.076
8267.941 | | Ne I
H | 27
13 | 8395.87
8396.93 | | Mn I
Ti I | 53
33 | 8503.17 | P | Si I
Fe I | 1100 | | | | | | | | | | 8509.63 | r | | 1136 | | 8269.66
8271.934 | P | Fe I
H | 1218
13 | 8397.0 <u>4</u>
8397.96 | P | Cr I
Si I | 57
18 | 8510.90
8512.95 | P | Sm II
Fe I | 64
462 | | 8273.46 | | 8 II | 31 | 8401.42 | | Fe I | 108 | 8514.075 | - | Fe I | 60 | | 8273.519 | | Ag I | 2 | 8401.68 | P | Fe I | 1136 | 8514.64 | P | Si I | 18 | | 8274.28
82 75.91 | | Fe I
Fe I | 1332
1270 | 8402.54
8408.208 | | Ti I
A I | 224
8 | 8515.08
8515.48 | | Fe I
S II | 401
37 | | 8276.310 | | H | 13 | 8409.88 | | Mn I | 53 | 8518.05 | | Ti I | 182 | | 8281.125 | | H | 13 | 8412.36 | | Ti I | 33 | 8518.37 | | Ti I | 150 | | 8286.434
8287. 38 | | H
Cr I | 13
298 | 8413.321
8414.00 | | H
2r I | 10
40 | 8519.05
8520.23 | P | Fe I
S II | 1267
3 4 | | 8290.62 | | Cr I | 298 | 8414.08 | P | Fe I | 1154 | 8521.10 | | Cs I | 1 | | 8292.309 | | H
Po T | 12 | 8416.97 | | Ti I | 224 | 8521.4407 | | AI | 8 | | 8293.527
8296. 90 | | Fe I
Cr I | 623
57 | 8417.24
8417.54 | | Ni I
Ti I | 156 | 8522.64
8525.04 | D | S II | 62
121 5 | | 8297.58 | | Cr I | 297 | 8417.89 | P | Si I | 182
18 | 8525.04
8526.685 | P | Fe I
Fe I | 1215
1270 | | 8298.837 | | H | 12 | 8418.4274 | - | Ne I | 18 | 8527.32 | P | Si I | 18 | | 8300.01 | P | Fe I | 1331 | 8418.70 | | Ti I | | 8527.88 | P | Fe I | 1270 | | 8300.3258
8303.11 | P | Ne I
Fe I | 12
265 | 8420.968
8422.39 | | 0 I
8 II | 5 <u>4</u>
37 | 8531.36
8523.38 | | Ti I
Si I | 141
80 | | 8303.19 | • | Cr I | 57 | 8422.95 | | Fe I | 999 | 8538.02 | P | Fe I | 80
1266 | | 8305.62 | | As I | 5 | 8423.10 | | Ti I | 150 | 8539.36 | | Ti I | 209 | | 8305.79
8305.94 | | Sm II
Zr I | 69
4 0 | 8424.14 | | Fe I | 1272 | 8541.65 | | As I | 3 | | 8306.115 | | B I | 40
12 | 8424.41
8424.647 | | Ti I
A I | 182
3 | 8542.089
8543.72 | | Ca II
Cr I | 2
56 | | 8306. 80 | | Si I | 19 | 8424.780 | | 0 I | 54 | 8545.384 | | H | 10 | | 8307.41 | р | Ti I | 33 | 8425.37 | _ | 8 11 | 62 | 8548.07 | | Ti I | 150 | | 83 07.61
83 10.98 | P
P | Fe I
Fe I | 12
12 | 8425.89
8426.326 | P | Fe I
O I | 12
54 | 8548.83 | ъ | Cr I | 56 | | | - | | | 0 4 KU 1 U LU | | U 1 | unt | 8550.34 | Р | Si T | RR | | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet N | |----------------------------------|--------|---------------|----------------|--------------------------------------|--------|--------------|-------------------|-------------------------------------|--------|----------------|-------------| | 8555.54 | | Cr I | 56 | 8680.77 | P | Fe I | 999 | 8819.42 | P | Fe I | 1266 | | 556.64 | | Si I | 45 | 8681.920
8682.99 | | Ne I
Ti I | 23
68 | 8819.48
8820.45 | P | Fe I
O I | 1269
37 | | 559.98 | P | Fe I
Fe I | 1321
1153 | 8683.38 | | N I | 1 | 8821.14 | | T1 I | 139 | | 562.13
564.71 | P | As I | 3 | 8686.13 | | N I | î | 8821.76 | | As I | 3 | | 65.45 | | Ti I | 141 | 8686.28 | | C1 I | 14 | 8824.227 | | Fe I | 60 | | 67.74 | | N I | 8 | 8686.77 | P | Fe I | 1269 | 8828.08 | P | Fe I | 1269 | | 67.78 | P | Fe I | 1269 | 8686.79 | P | Fe I | 956 | 8828.91 | | Al I | 1 5 | | 69.72 | | Ti I | 209 | 8688.633 | | Fe I | 60 | 8834.04 | P | Fe I | 1050 | | 71.84 | P | Fe I | 1272 | 8689.71 | P | Fe I | 507 | 8835.67 | | Cr I | 142 | | 75.25 | _ | C1 I | 2 | 8689.83 | P | Fe I
Ti I | 1330 | 8835.85 | | Y II
Fe I | 30 | | 76.46 | P
P | Si I
Fe I | 87 | 8692.34
8693.24 | | SI | 68
6 | 8838.433
8841.26 | | Al I | 339
15 | | 76.50
78.40 | P | Ti I | 1215
141 | 8693.98 | | S I | 6 | 8846.82 | | Fe I | 1267 | | 79.15 | | Si I | 56 | 8694.70 | | SI | 6 | 8848.25 | P | Fe I | 1153 | | 81.88 | | Hf II | 66 | 8698.71 | P | Fe I | 400 | 8848.46 | P | Fe I | 1214 | | 82.267 | | Fe I | 401 | 8699.13 | | Mn I | 49 | 8852.30 | P | Fe I | 1318 | | 84.82 | P | Fe I | 1270 | 8699.43 | | Fe I | 1267 | 8853.867 | | Ne I | 27 | | 85.60
85.96 | | S I
Cl I | 2 | 8700.34
8701.05 | P | Fe I
Mn I | 1266
49 | 8858.39
8858.77 | | Al II
Al II | 115
115 | | | n | | | 8702.49 | | Ni I | 83 | 8862.59 | | Ni I | 214 | | 86.20
89.78 | P | N1 I
Co I | 296
193 | 8702.49
8703.24 | | N I | 1 | 8862.59
8862.787 | | H | 9 | | 91.2584 | | Ne I | 30 | 8703.76 | | Mn I | 49 | 8863.64 | | Fe I | 1283 | | 92.10 | P | Fe I | 1269 | 8704.15 | | Ne I | 23 | 8865.759 | | Ne I | 8 | | 92.97 | | Fe I | 1267 | 8707.42 | | Cr I | 56 | 8866.961 | | Fe I | 1172 | | 94.01 | | N I | 8 | 8707.95 | | Cr I | 296 | 8868.42 | | Fe I | 400 | | 96.02 | P | Si I | 80 | 8710.29 | | Fe I | 1267 | 8869.69 | | As I | 4 | | 97.00 | | Si I | 80 | 8710.82 | | Ba II | 5 | 8874.53 | | S I | 21 | | 598.18
598.394 | | T1 I
H | 236
9 | 8711.69
8713.19 | | N I
Fe I | 1
400,1267 | 8876.13
8877.07 | | Fe I
Ni I | 1267
285 | | | | | | | | Cr I | 296 | | P | Fe I | 401 | | 98.79 | | Fe I | 1153 | 8718.70
8718.82 | | N I | 296
1 | 8878.26
8878.76 | P
P | re 1
Fe I | 401
1050 | | .06.43 | | Ti I
Si I | 141,209
55 | 8718.82
8719.56 | | Ti I | 1
1 4 0 | 8880.70 | | S I | 21 | | 306.43
606.45 | | N1 I | 275 | 8725.76 | | Ti I | 139 | 8882.47 | | SI | 21 | | 607.08 | P | Fe I | 1272 | 8727.10 | P | Fe I | 999 | 8883.84 | | Si I | 54 | | 310.62 | P | Fe I | 1153 | 8728.38 | | Si I | 79 | 8884.23 | | s I | 21 | | 611.807 | | Fe I | 339 | 8728.88 | | N I | 1 | 8887.10 | P | Fe I | 1265 | | 812.91 | | Ti I | 141 | 8729.02 | _ | Si I | 79 | 8892.13 | P | Fe I | 1302 | | 313.93
316.27 | P
P | Fe I
Fe I | 1272
1266 | 8729.12
8732.17 | P | Fe I
Cr I | 713
296 | 8892.97
8896.00 | P | Si I
Fe I | 54
1153 | | | _ | | | | | Mn I | | | | Si I | | | 618.44
621.612 | | Ti I
Fe I | 209
401 | 87 34. 60
87 34. 70 | | Ti I | 49
68 | 8898.97
8899.50 | | Si I | 79,86
79 | | 329.24 | | N I | 8 | 8736.0 | P. | Mg I | 39 | 8901.0 | | Mn I | 56 | | 632.42 | P | Fe I | 1050 | 8737.32 | | Mn I | 49 | 8902.94 | P | Fe I | 1266 | | 334.6480 | | Ne I | 23 | 8737.74 | | Ba II | 5 | 8905.99 | P | Fe I | 1302 | | 836.26 | | Cr I | 56
196 | 8740.93
8742.60 | | Mn I
Si I | .49
44 | 8912.88
8912.88 | | Al I
Cl I | 14
13 | | 637.04
640.70 | | Ni I
Al II | 186
4 | 8742.60
8747.32 | | Fe I | 401 | 8916.26 | | Fe I | 32 | | 641.47 | | Ti I | | 8747.35 | | N I | 1 | 8918.88 | | Se I | 1 | | 343.03 | | Cr I | 56 | 8750.13 | | Co I | 203 | 8919.50 | | Ne I | 27 | | 643.29 | P | Fe I | 1261 | 8750.475 | _ | H | 9 | 8919.95 | ~ | Fe I | 1301 | | 847.05 | | Ne I | 33 | 8751.18 | P | Si I | 44 | 8920.02 | P | Fe I | 1261 | | 648.89 | | Si I | 40 | 8752.17 | | Si I
Fe I | 43
339 | 8922.66
8923.56 | P | Fe I
Al I | 1298
14 | | 649.6 | n | Na I | 19 | 8757.192
8761.44 | | Ti I | 139
139 | 8923.8 | | Mg I | 25 | | 852.50
854.16 | P | Fe I
As I | 1050
3 | 8764.000 | | Fe I | 1172 | 8925.55 | | Si I | 54 | | 354.3835 | | Ne I | 3
33 | 8766.64 | | Ti I | 68 | 8925.75 | | Cr I | 142 | | 354.40 | P | Fe I | 623 | 8766.68 | | Si I | 54 | 8926.06 | | Mn I | 56 | | 354.51 | | Ne I | 33 | 8767.65 | P | Fe I | 814 | 8929.04 | | Fe I | 1301 | | 854.63 | | Mn I | 59 | 8770.68 | | Ni I | 82 | 8929.72 | | Mn I | 56 | | 55.88 | _ | N I | 8 | 8771.70 | | Ne I | 38 | 8931.78 | P | Fe I | 507 | | 56.67 | P | Fe I | 1269 | 8772.88 | | Al I | 9 | 8943.00 | | Fe I
Cs I | 338
1 | | 59.38 | | Mn I
Fe I | 59
60 | 8773.56
8773.91 | | Cr I
Al I | 296
9 | 89 43.5 0
89 43. 6 | | Na I | 26 | | 61.908
62.140 | | re 1
Ca II | 60
2 | 8778.66 | | Ti I | 1 4 0 | 8945.204 | | Fe I | 1301 | | 363.73 | P | Fe I | 1270 | 8779.12 | P | Fe I | 1050 | 8946.25 | | Fe I | 338 | | 65.021 | - | Н | 9 | 8780.6223 | - | Ne I | 27 | 8947.20 | | Cr I | 142 | | 367.37 | P | Fe I | 166 | 8783.755 | | Ne I | 38 | 8948.01 | | C1 I | 1 | | 667.40
667.9430 | Þ | Si I
A I | 55
6 | 8784.44
8786.28 | P | Fe I
Cr I | 1270
142 | 8949.33
8950.20 | P | Si I
Fe I | 54
1050 | | | | | | | • | | | | - | | | | 870.19
870.65 | | S I
S I | 6
6 | 8786.96
8790.62 | | Cr I
Fe I | 296
1267 | 8954.65
8956.26 | P | Ni I
Fe I | 200
1266 | | 370.92 | | Mn I | 49 | 8790.88 | | 81 I | 79 | 8959.88 | P | Fe I | 1320 | | 371.06 | | Al II | 112 | 8791.28 | | Si I | 79 | 8965.94 | | Ni I | 225 | | 371.28 | | Al II | 112 | 8793.376 | | Fe I | 1172 | 8967.53 | P | Fe I | 1286 | | 371.37 | _ | 8 I | 6 | 8796 | | Na I | 27 | 8968.20 | | Ni I | 284 | | 371.86 | P | Fe I | 1272 | 8796.42 | ~ | Fe I | 1266 | 8975.408 | | Fe I
Cr I | 400 | | 372.06
373.97 | | Mn I
Mn I | 49
49 | 8798.05
8801.78 | P
P | Fe I
Fe I | 1286
956 | 8976.88
8978.04 | P | Fe I | 142
1266 | | 374.751 | | Fe I | 339 | 8804.624 | - | Fe I | 106 | 8978.17 | P | Fe I | 713 | | 674.92 | | Al II | 112 | 8805.21 | P | Fe I | 1265 | 8979.34 | P | Ti II | 100 | | 675.28 | | Al II | 112 | 8806.7032 | | Mg I | 7 | 8982.35 | | N1 I | 213 | | 675.38 | | Ti I | 68 | 8806.7358 | | Mg I | 7 | 8984.87 | | Fe I | 1301 | | 679.00 | | 8 I | 6 | 8806.7678 | _ | Mg I | 7 | 8988.58 | | Ne I | 8 | | 679.491 | _ | Ne I | 37 | 8808.17 | P | Fe I | 1267 | 8989.44 | P | Ti I
Fe I | 138
622 | | 679. 61
679. 70 | P | Fe I
S I |
1286
6 | 8809.47
8814.50 | P | Ni I
Fe I | 200
1330 | 8994.57
8999.561 | F | Fe I | 339 | | | | N I | 1 | 8816.86 | P | Fe I | 1271 | 9002.00 | | Sc I | 1 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |------------------------------------|--------|--------------|---------------|----------------------|------|----------------|---------------|---------------------|------|--------------|-------------------------| | 9009.04 | | Si I | 91 | 9214.85 | P | Fe II | 71 | 9413.46 | | s i | 18 | | 9009.95 | | Cr I | 187 | 9217.4 | P | Mg II | 1 | 9413.59 | | Si I | 14 | | 9010.55 | | Fe I | 202 | 9217.54 | | Fe I | 1298 | 9414.14 | | Fe I | 1298 | | 9012.098 | | Fe I | 1301 | 9220.05 | | Ne I | 33 | 9415.04 | P | Fe I | 1297 | | 9013.90 | | Fe I | 106 | 9221.59 | | Ne I
A I | 33
8 | 9415.5 | | Mg I
Si I | 38
72 | | 9014.911 | | H
Zr I | 9
39 | 9224.498
9225.55 | | Fe I | 1213 | 9421.82
9421.93 | | SI | 18 | | 9015.16
9017.10 | | Cr I | 187 | 9226.67 | | Ne I | 30 | 9423.07 | P | Fe I | 1300 | | 9019.84 | | Fe I | 1301 | 9228.11 | | S I | 1 | 9425.38 | | Ne I | 36 | | 9021.69 | | Cr I | 187 | 9229.017 | | Н | 8 | 9429.58 | | Mn I | 57 | | 9024.47 | P | Fe I
Fe I | 1265
1297 | 9233.15
9237.49 | P | Fe I
S I | 1342
1 | 9430.08
9433.29 | P | Fe I
Fe I | 1292 | | 9024.78
9027.32 | r | Ti I | 138 | 9238.60 | | Si I | 66 | 9437.11 | • | SI | 18 | | 9027.90 | P | Ti II | 100 | 9242.32 | | Fe I | 1262 | 9437.91 | | Fe I | 1171 | | 9028.9 | | N I | 15 | 9243.29 | | Mn I | 46 | 9443.98 | | Fe I | 1298 | | 9030.67 | | Fe I | 338 | 9213.4 | P | Mg II | 1 | 9444.36 | | Cr I | 29 | | 9035. 86
9035. 92 | | Cr I
S I | . 142
13 | 9246.54
9248.13 | P | Fe I
Fe I | 203
1338 | 9447.00
9452.06 | | Cr I
Cl I | 29
13 | | 9036.32 | | s i | 13 | 9248.80 | P | Fe I | 1285 | 9452,45 | | Fe I | 1263,1292 | | 9036.73 | | s I | 13 | 9249.41 | | Al II | 117 | 9454.24 | | Fe I | 1298 | | 9036.74 | P | Fe I | 1269 | 9252.67 | P | Ti II | 100 | 9459.21 | | Ne I | 38 | | 9038.65 | | Sc I
S I | 1
13 | 9253.72
9254.59 | P | Fe I
Si I | 1261 | 9460.66
9462.97 | P | N I
Fe I | 7
1263 | | 9038.72
9038.84 | P | Fe I | 400 | 9254.59 | | Mg I | 27 | 9463.57 | | He I | 67 | | 9039.27 | • | S I | 13 | 9258.30 | | Fe I | 1172 | 9466.0 | | Na I | 24 | | 9045.40 | | Cl I | 13 | 9259.05 | | Fe I | 1263 | 9476.57 | | Mn I | 57 | | 9052.56 | P | Fe I | 1342 | 9260.88 | | 0 I | 8 | 9482.82 | P | Fe I | 1319 | | 9059.74 | | Cr I | 165 | 9262.73 | | 0 I | 8 | 9485.93 | P | Fe I | 622 | | 9060.6 | _ | N I | 15 | 9263.97 | | Cr I
O I | 165
8 | 9486.680 | | Ne I
Cl I | 8
1 | | 9061.33 | P | Fe II | 71 | 9265.99 | | | | 9486.89 | | | | | 9061.48 | | CI | 3 | 9267.29 | | As I
Zr I | 3
39 | 9487.49 | | 0 I
0 I | 47
4 7 | | 9062.24
9062.53 | | Fe I
C I | 1301
3 | 9276.89
9286.578 | | Al II | 64 | 9498.04
9499.39 | | 0 I | 46 | | 9063.40 | | He I | 77 | 9286.794 | | Al II | 64 | 9502.12 | | Mn I | 58 | | 9064.06 | | Si I | 91 | 9288.145 | | Al II | 64 | 9505.28 | | Si I | 72 | | 9070.42 | | Fe I | 1076,1300 | 9288.550 | | Al II | 64 | 9505.67 | | 0 I | 46 | | 9073.15 | | C1 I | 12 | 9288.82 | P | Cl I
Fe I | 11
1298 | 9506.04 | | Ti I
Ti I | 312
312 | | 9078.32
9079.599 | | C I
Fe I | 3
1172 | 9289.39
9290.44 | P | Cr I | 29 | 9508.49
9510.81 | | Ti I | 312 | | 9080.48 | | Fe I | 1265,1298 | 9290.649 | | Al II | 64 | 9511.55 | | Ti I | 312 | | 9084.20 | P | Fe I | 1076 | 9290.747 | | Al II | 64 | 9511.80 | | Ti I | 312 | | 9084.29 | | Mn I | 46 | 9294.17 | | Cr I | 29 | 9513.24 | | Fe I | 1298 | | 9088.326 | | Fe I | 339 | 9294.66 | P | Fe I
Fe I | 1301
1247 | 9516.51
9516.66 | | He I
He I | 76
76 | | 9088.57
9089.413 | | C I
Fe I | 3
400 | 9297.14
9298.05 | P | Fe I | 1262 | 9520.06 | | Ni I | 22 4 | | 9090.70 | | Ti I | 138 | 9300.62 | • | As I | 5 | 9522.01 | | 0 I | 45 | | 9094.89 | | CI | 3 | 9300.85 | | Ne I | 33 | 9525.78 | | PΙ | 3 | | 9100.50 | | Fe I | 1264 | 9304.88 | | PΙ | 3 | 9526.17 | | He I | 82 | | 9103.37
9103.64 | | Si I
Fe I | 66
1076 | 9307.94
9313.55 | | Fe I
Cr I | 1297
80 | 9527.73
9529.27 | P | Fe I
He I | 1297
86 | | 9106.40 | | N1 I | 289 | 9313.98 | | Ne I | 33 | 9529.31 | | Fe I | | | 9111.85 | | CI | 3 | 9313.98 | | Fe I | 1263 | 9531.22 | P | Fe I | 1292 | | 9112.25 | P | Fe I | 1297 | 9318.24 | | Si I | 66 | 9534.17 | - | Ne I | 38 | | 9112.95 | P | Fe II | 71 | 9324.07 | | Fe I | 1300 | 9535.72 | | Mn I | 57 | | 9114.02 | _ | Mn I | 46 | 9326.52 | _ | Ne I | 36 | 9543.376 | | D
 | 2 | | 9116.89 | P | Fe I | 1265 | 9328.64 | P | Fe I
Al II | 1261
56 | 9545.974 | | Н
Т1 I | 8
32 | | 9117.10
9118.888 | | Fe I
Fe I | 338
338 | 9331.546
9331.979 | | Al II | 56 | 9546.07
9547.26 | | Zr I | 39 | | 9121.10 | | C1 I | 1 | 9333.94 | | Fe I | 1297 | 9547.40 | | Ne I | 38 | | 9122.9660 | | A I | 1 | 9335.27 | P | Fe I | 1338 | 9550.90 | | Fe I | 1263 | | 9124.27 | | Al II | 108 | 336.47 | | Mn I | 58 | 9556.56 | | Fe I | 622 | | 9140.15 | P | Fe I | 622 | 9343.40 | | Fe I | 1300 | 9563.45 | | P I | 2 | | 9146.11
9147.800 | | Fe I
Fe I | 202
1301 | 9344.93
9346.69 | | He II
La II | 6
152 | 9568.58
9569.960 | | Cr I
Fe I | 29
1296 | | 9148.45 | | Cr I | 165 | 9350.46 | | Fe I | 1171 | 9570.08 | | Si I | 42,65 | | 9148.68 | | Ne I | 30 | 9354.218 | | A I | 8 | 9571.76 | | Cr I | 29 | | 9154.7 | | Na I | 25 | 9359.420 | | Fe I | 203 | 9573.65 | P | Fe I | 1297 | | 9155.67 | P | Fe I | 1301 | 9362.06 | | Cr I | 80 | 9574.25 | | Cr I | 29 | | 9156.02
9156.23 | P | O I
Fe I | 41
400 | 9362.370
9370.57 | P | Fe I
Fe I | 106
338 | 9582.28
9584.77 | | C1 I | 106
1 | | 9157.07 | P | Fe I | 1268 | 9372.900 | | Fe I | 202 | 9585.72 | | Si I | 7 | | 9157.08 | P | Fe I | 1261 | 9372.900 | | Ne I | 33 | 9592.20 | | C1 I | 11 | | 9164.51 | | Fe I | 1263 | 9375.14 | P | Fe I | 400 | 9593.54 | | PΙ | 2 | | 9172.09 | n | Mn I | 46 | 9382.93 | P | Fe I | 1284 | 9595.60 | | KI | 10 | | 9173.20
9173.63 | P
P | Fe I
Fe I | 203
1300 | 9383.40 | P | Fe I
Ni I | 1285
225 | 9597.76
9597.94 | | K I
As I | 10
3 | | 9173.83 | | Fe I | 622 | 9385.62
9386.79 | | NI I | 225
7 | 9597.94
9599.53 | | Ti I | 32 | | 9175.85 | | PΙ | 3 | 9388.28 | | Fe I | 1263 | 9602.07 | | Fe I | 1283 | | 9178.57 | | Fe I | 1262 | 9392.77 | P | Fe I | 1262 | 9603.09 | | C I | 2 | | 9191.67 | | C1 I | 1 | 9392.80 | | N I | 7 | 9603.50 | | He I | 71 | | 9197.49 | | Cl I
Fe I | 14 | 9393.40 | | Si I | 72 | 9608.56 | • | Mn I | 60 | | 9199.52
9201.76 | | Ne I | 1298
30 | 9393.81
9394.71 | | Cl I
Fe I | 1
1264 | 9608.89
9608.97 | P | Fe I
P I | 1285
2 | | 9203.10 | P | Fe I | 1298 | 9396.57 | | N1 I | | 9611.60 | | VI | 106 | | 9208.29 | | Cr I | 165 | 9401.09 | | Fe I | 1297 | 9614.68 | | v i | 106 | | 9208.55 | | Si I | 66 | 9403.36 | P | Fe II | 71 | 9620.86 | _ | C I | 2 | | 9210.030 | | Fe I | 338 | 9404.80 | P | Fe I | 1264 | 9620.93 | P | Fe I | 7 37 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | ŢΑ | Туре | Element | Multiplet No. | |--------------------|------|--------------|---------------|----------------------|------|--------------|---------------|-----------------------|--------|---------------|----------------------| | 9626.562 | | Fe I | 1296 | 9790.08 | | PΙ | 4 | 10061.29 | | Ni I | 284 | | 9632.37 | | C1 I | 12 | 9796.79 | | P I | 2 | 10065.080 | | Fe I
Ti I | 1247
193 | | 9633.0 | P | Mg II | 15 | 9800.335 | P | Fe I
Fe I | 1296
1292 | 10066.47
10067.84 | | Si I | 64 | | 9633.02 | | Mn I
S I | 58
17 | 9800.79
9811.36 | r | Fe I | 1285 | 10070.58 | P | Fe I | 1345 | | 9633.78
9634.22 | | Fe I | 1296 | 9820.24 | P | Fe I | 106 | 10072.10 | | He I | 80 | | 9636.69 | | Fe I | 1212 | 9821.8 | | N I | 19 | 10076.29 | | Al II | 6 | | 9637.55 | | Fe I | | 9822.30 | | Zr I | 39 | 10077.32 | | Al II | 6 | | 9638.28 | | Ti I | 32 | 9826.69 | | As I | 3 | 10077.53 | | Al II
Cr I | 6 | | 9639.40 | P | Ca I | 55 | 9832.15 | | Ti I | 149 | 10080.32 | | CF I | 226 | | 0048 40 | | Ti I | 32 | 9833.76 | | As I | 2 | 10080.44 | P | Fe I | 1293 | | 9647.40
9649.94 | | SI | 17 | 9834.04 | | Fe I | 1294 | 10081.40 | P | Fe I | 106 | | 9653.143 | | Fe I | 1247 | 9839.38 | | Fe I | 1211 | 10084.22 | | PΙ | 4 | | 9657.00 | | La II | 60 | 9839.58 | | Si I | 65 | 10084.42 | P | Fe I | 1209 | | 9657.30 | | Fe I | 1296 | 9856.7 | P | Ca II | 12 | 10084.70 | _ | Zr I | 39 | | 9657.7841 | | AI | 3 | 9861.793 | | Fe I
N I | 1296 | 10086.27 | P | Fe I
Te I | 399
1 | | 9658.49 | | C I
Fe I | 2
1292 | 9862.5
9865.44 | | V I | 19
76 | 10091.12
10091.64 | | Cl I | 10 | | 9658.94
9661.42 | | Ti I | 194 | 9868.09 | | Fe I | 1292,1299 | 10107.19 | | Al II | 6 | | 9663.58 | P | Ca I | 55 | 9875.95 | | C1 I | 11 | 10108.01 | | Al II | 6 | | | | | | | | | | | | | | | 9664.29 | P | Ca I | 55 | 9878.18 | P | Fe I | 1293 | 10108.37 | | Al II | 6 | | 9665.426 | | Ne I | 8 | 9879.41 | P | Ti I
Fe I | 149
1209 | 10113.4
10113.86 | | N I
Fe I | 18
264 | | 9666.59 | | Fe I
Cr I | 29 | 9881.51
9886.92 | P | Si I | 85 | 10117.81 | P | Fe I | 1295 | | 9667.20
9668.9 | | VI | 106 | 9889.082 | | Fe I | 1296 | 10119.20 | | Ti I | 315 | | 9670.48 | | Cr I | 29 | 9891.90 | | Si I | 71 | 10120.90 | | T1 I | 193 | | 9672.34 | | S I | 17 | 9898.90 | | N1 I | 243 | 10122.50 | | Al II | 6 | | 9673.16 | | Fe I | 580 | 9900.87 | | Cr I | 80 | 10123.61 | P | He II
Fe I | 2
1294 | | 9675.55 | _ | Ti I | 32 | 9903.74 | | P I
Si I | 4
65 | 10137.06
10138.50 | P | He I | 89 | | 9676.25 | P | Ca I | 55 | 9913.16 | | 31 1 | 00 | 10100.00 | | 1 | 00
 | 9676.42 | | Fe I | 1345 | 9913.19 | P | Fe I | 1292 | 10142.82 | | Fe I | 1294 | | 9676.50 | | Mn I | 60 | 9917.93 | | Fe I | 1317 | 10143.59 | P | Fe I | 979 | | 9677.41 | | 0 I | 58 | 9920.46 | P | Fe I | 1292 | 10145.00 | P | Fe I | 621 | | 9680.80 | | S I | 17 | 9923.03 | _ | As I | 2 | 10145.37 | | N1 I | 243 | | 9683.57 | | Fe I | 1337 | 9924.35 | P | Fe I
Ti I | 737 | 10145.48 | | Ti I
Fe I | 1247 | | 9684.9 | | Mn I | 60 | 9927.35
9932.26 | | SI | 149
16 | 10145.601
10147.09 | | Ti I | 315 | | 9686.3
9688.60 | P | Mn I
Ca I | 55 | 9933.3 | P | Ca II | 12 | 10147.3 | | N I | 18 | | 9688.86 | • | Ti I | 32 | 9937.10 | P | Fe I | 1210 | 10149.09 | P | Fe I | 1294 | | 9689.35 | | N1 I | 295 | 9941.33 | | Ti I | 193 | 10153.13 | P | Si I | 40 | | | | | | | | | | | _ | TO - Y | 1010 | | 9689.41 | | 81 I | 65 | 9944.13 | | Fe I | 1285 | 10153.30 | P
P | Fe I
Fe I | 1348
59 | | 9690.62 | | Ti I
V I | 194 | 9948.98
9949.06 | | Ti I
Cr I | 193
226 | 10155.18
10155.88 | • | Si I | 64 | | 9691.58
9693.68 | | V I
S I | 106
20 | 9949.84 | | S I | 16 | 10156.50 | P | Fe I | 1209 | | 9693.69 | | Fe I | 1292 | 9950.5 | | K I | 8 | 10164.5 | | N I | 18 | | 9697.33 | | S I | 17 | 9950.70 | P | Fe I | 1209 | 10167.4 | | Fe I | 59 | | 9699.70 | | Fe I | 1292,1299 | 9951.15 | P | Fe I | 1346 | 10170.60 | | Ti I | 95 | | 9701.81 | P | Ca I | 55 | 9953.45 | P | Fe I | 1346
8 | 10179.92 | | Ti I
Ti I | 315
95 | | 9702.35 | | C1 I | 1
75 | 9955.2
9955.85 | P | K I
Fe I | 1211 | 10189.26
10191.51 | P | Fe I | 149 | | 9702.66 | | He I | 73 | 2200.00 | • | | | 10101.01 | | | | | 9702.86 | | Ti I | 248 | 9958.90 | | S I | | 10193.25 | | N1 I | 213 | | 9705.64 | | Ti I | 32 | 9959.18 | P | Fe I | 998 | 10193.66 | | V I | 76 | | 9710.21 | P | N1 I | 285 | 9961.0 | P | Na I
Fe I | 23
1293 | 10195.11
10197.05 | | Fe I
Cr I | 264
80 | | 9717.00 | | Ti I
Ti I | 248
124 | 9967.32
9967.46 | r | Si I | 64 | 10203.45 | | v i | 76 | | 9718.96
9722.88 | | Te I | 1 | 9970.26 | P | Fe I | 461 | 10204.72 | | PΙ | 4 | | 9728.36 | | T1 I | 32 | 9976.65 | | PΙ | 2 | 10216.351 | | Fe I | 1247 | | 9730.32 | | Cr I | 226 | 9977.52 | | Fe I | 1293 | 10218.36 | _ | Fe I | 461 | | 9734.52 | | Ĉr I | 29 | 9980.55 | | Fe I | 1295 | 10262.49 | P
P | Si I
Fe I | 63
59 | | 9734.74 | | PΙ | 2 | 9981.16 | | Ti I | | 10265.23 | r | re i | 0.0 | | 0729 50 | | V I | 106 | 9987.0 | | Mg I | 36 | 10283.87 | P | Fe I | 1346 | | 9738.50
9738.60 | | Si I | 200 | 9987.88 | P | Fe I | 59 | 10288.83 | | Si I | 6 | | 9738.624 | | Fe I | 1296 | 9993.7 | | Mg I | 36 | 10295.05 | | Ni I | *** | | 9739.74 | | S I | 20 | 9997.94 | • | Ti I | 149 | 10302.61 | P | Ni I
Fe I | 242
1208 | | 9741.49 | | 0 I | 57 | 10001.35 | P | Si I
Ti I | 64
193 | 10307.48
10307.60 | r | Se I | 2 | | 9741.93
9742.28 | | S I
Hf II | 20
66 | 10003.02
10011.72 | | Ti I | 193 | 10307.00 | | He I | 74 | | 9743.60 | | Ti I | 32 | 10012.15 | P | Fe I | 1336 | 10311.37 | | He I | 74 | | 9744.33 | | C1 I | 10 | 10015.33 | | Si I | | 10311.88 | P | Fe I | 106 | | 9746.86 | | Ti I | 248 | 10016.67 | P | Fe I | 1293 | 10321.10 | | N1 I | 289 | | | | p | 1000 | 10019.77 | P | Fe I | 1348 | 10327.30 | | Se I | 2 | | 9747.24 | | Fe I
P I | 1209
2 | 10019.77 | P | Si I | 41 | 10327.30 | | Sr II | 2 | | 9750.73
9752.84 | | Cr I | 80 | 10022.34 | P | Fe I | 1345 | 10330.23 | | N1 I | 224 | | 9753.129 | | Fe I | 1247 | 10023.98 | | As I | 2 | 10332.33 | P | Fe I | 858 | | 9758.08 | | Si I | 65 | 10025.80 | P | Si I | 64 | 10333.24 | P | Fe I | 1208 | | 9760.65 | | 0 I | 56 | 10026.10 | P | Fe I | 1211 | 10340.77 | | Fe I
Ca I | 59
1 3 | | 9763.450 | | Fe I | 1296 | 10027.73 | | He I
He I | 81
85 | 10343.85
10348.16 | | Fe I | 1347 | | 9763.913 | P | Fe I
Fe I | 1292
1348 | 10031.16
10032.84 | Р | Fe I | 1348 | 10353.85 | P | Fe I | 1346 | | 9764.40
9768.27 | • | Si I | 7 | 10034.45 | - | Ti I | 95 | 10362.73 | P | Fe I | 1345 | | \$100t&1 | | • | • | | | | | | | - | | | 9770.10 | | Si I | | 10036.658 | | Sr II | 2 | 10364.13 | P | Fe I | 1347 | | 9770.28 | _ | Ti I | 32 | 10046.64 | | D
N1 I | 2
242 | 10371.23
10378.62 | | Si I
Ni I | 6
224 | | 9771.06 | P | Fe I
Ti I | 1211
32 | 10048.60
10048.78 | | Ti I | 95 | 10379.01 | P | Fe I | 59 | | 9783.30
9783.59 | | Ti I | 32
32 | 10049.38 | | H | 8 | 10386.45 | - | Se I | 2 | | 9783.96 | | Fe I | 1295 | 10051.55 | | Te I | 1 | 10388.73 | P | Fe I | 1346 | | 9784.5010 | D | A I | 8 | 10057.64 | | Fe I | 1294 | 10392.45 | | Cl I | 10
50 | | 9786.62 | | Fe I | 1171 | 10057.69 | n | Ti I | 193
59 | 10395.75
10396.85 | | Fe I
Ti I | 59
31 | | 9787.67 | | Ti I | 32
65 | 10058.28
10059.87 | P | Fe I
Ti I | 95 | 10401.72 | P | Fe I | 461 | | 9789.24 | | 81 I | OU | 10008+01 | | | | | - | | | | Table Part | 86 | | | | | FIND | ING LIS | T | | | | | |--|-----------|---------------|------------|---------------|----------|------|---------|---------------|----------|------|---------|---------------| | 1985 1 | T A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | | 1942-10 | | 7 , po | 2201101110 | | | | | • | _ | •• | | | | 1985 100 | 10405.05 | | Ge I | 7 | 10838.77 | | | | 11564.8 | | | | | 1945 1946
1946 | | | | | | | | | | P | | | | 1965-107 Part 1960 1966-106 Part 1960 11900-106 Part 1960 11900-106 Part 1960 196 | | | | | | | | | | | | | | 1985-7-7 8 1 92 1986-13 | | P | | | | | | | | P | | | | 1946-0.7 1 1 2 2006-0.6 P. 1 156 1307-57 P. 1 59 | | | | | | | | | | _ | | | | 1049-1-6 | | | | | | | Fe I | 1246 | | | | 58 | | 100000.000 P. T. 1079 100000.000 P. P. 1 110 11010.000 P. P. 1 11000.000 1 11000.000 P. 1 | | | | 3 | | | | | | _ | | o.= | | 10070.050 | | | | | | | | | | P | | | | 1948-1.4 | 10469.59 | | Fe I | 979 | 10869.54 | | 51 1 | 13 | 11611.49 | | 51 1 | 90 | | 1948-1.4 | 10470 051 | | A T | 6 | 10872.47 | P | Al I | 12 | 11619.0 | | ст | 25 | | 1985 1 | | | | | | | | | | | | | | 1989 | | | | | | | Ca I | 56 | | | | | | 1001.4.5 | 10506.5 | | N I | 28 | 10881.65 | | | | | P | | | | 10050-0.0 | | | | | | | | | | n | | | | 1935.0.5 1 294 | | | | | | | | | | P | | | | 1995 2.2 P 1 979 1995 2.6 P Al 1 12 1109-0 N 1 12 1305 2.0 N 1 28 28 | | | | | | P | | | | | | | | 1008-1.0 N T 28 | | | | | | | | | | | | | | 10581-0 | | | | | | | N1 I | 224 | | | CI | 25,29 | | 10581-0 | | | | | | _ | | | | | | | | 10655.00 | | | | | | Р | | | | Р | | | | 1005.2.5 P Fi | | | | | | | | | | | | | | 10060.43 | | р | | | | | | | | | | | | 1005.7-14 1 223 | | - | | | | P | | | | | | | | 1057.1.1 P P 1 579 | | | | | | | | 2 | | | K I | 6 | | 10084_c6 | | P | Fe I | 579 | 10916.98 | | | | | | | | | 10084.66 | | | | | | | | | | | | | | 1088-12 | | | | | | | | | | | | | | 10000.36 | 10584.66 | | 11 1 | 31 | 10939.11 | | ь | 2 | 11020.0 | | wing T | O | | 10000.36 | 10585.12 | | Si I | 6 | 10938.09 | | Н | 8 | 11836.4 | P | Ca II | 5 | | 10000.38 | | | | | | | | 6 | | | CI | | | 10061.75 P Fe 1 779 10061.2 P Mg 1 35 11882.80 Fe 58 10067.66 Si 1 32 10066.1 P Mg 35 11884.12 Fe 1 88 10067.66 Co I 118 10070.27 Si I 77 1180.44 P Si I I I I I I I I I | | | Si I | 5 | 10949.4 | P | | | 11863.0 | | | | | 19627.81 30 1966.1 P Mg 30 11884.12 Fe 58 | 10607.78 | | | | | _ | | | | | | | | 10047.66 | | P | | | | | | | | | | | | 10060.8 Si I S | | | | | | Р | | | | ъ | | | | 10660.08 | | | | | | | | | | | | | | 10667.53 | | | | | | | Si I | | | | | | | 10697-00 | 10661.61 | | Ti I | 31 | 10984.24 | | Si I | 77 | 11927.89 | P | N1 I | 242 | | 10697-00 | | | | | | _ | n- * | 007 | | _ | | _ | | 10672.17 | | | | | | Р | | | | Р | | | | 10073.55 | | | | | | | | | | | | | | 10077.04 | | | | | | | | | | | | | | 10681.43 | | | | | | | | | | | | | | 10685.54 | | | ΡĪ | 1 | 11018.00 | | | | 11997.9 | | | 37 | | 10693.52 | | | | | | | | | | | | | | 10691.36 | | | | | | | | | | _ | | | | 10694.14 | | | | | | | | | | Р | | | | 10707.44 | 10091.30 | | 0 1 | 1 | 11119.00 | | re 1 | 337 | 12103.46 | | 81 1 | 4 | | 10707.44 | 10694.14 | | Si I | 53 | 11125.28 | | Ge I | 6 | 12107.4 | | N I | 37 | | 10726.33 | 10707.44 | | | 1 | 11130.37 | | | 77 | | | | 27 | | 10727.21 | | P | | | | | | | | | | | | 10729.59 C 1 | | | | | | | | | | | | | | 10732.89 | | | | | | D | | | | | | | | 10734.14 Ge I 6 | | | | | | • | | | | | | | | 10745.9 | | | | | | | | | | | | | | 10749.40 | 10745.9 | | Na I | 18 | 11227.5 | | N I | 17 | | P | Si I | 4 | | 10752.99 | 10748.7 | | Na I | 18 | 11230.91 | | Ti I | | 12434.3 | | K I | 5 | | 10752.99 | 40740 40 | | 0.4 7 | _ | 44054 00 | | 10- T | | | | | •• | | 10754.09 | | | | | | ъ | | | | | | | | 10762.24 | | P | | | | | | | | | | | | 10768.99 | | | N1 I | | | | Si I | | | | | | | 10780.71 | | P | | | | | | | 12551.0 | | C I | | | 10782.12 P Al I 13 11298.83 Fe I 337 12582.3 N I 36 10783.09 Fe I 461 11302.22 O I 7 12602.6 C I 30 10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 2 10792.59 P T1 I 31 1130.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 1 4 10813.03 P I 1 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11464 S I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341
He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830 | | | | | | | | | | | | | | 10783.09 Fe I 461 11302.22 0 I 7 12602.6 C I 30 10784.33 SI I 53 11308.45 SI I 76 12614.8 C I 30 10784.33 SI I 53 11308.45 SI I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 SI I 5 11329.0 N I 17 12814.56 D 2 1 10792.59 P TI I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 SI I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10796.52 SI I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10796.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P Al I 4 10813.03 P I 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 | | | | | | | | | | | | | | 10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 10792.59 P Ti I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 Ti I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P Al I 4 10813.03 P I 1 11403.89 Ti I 1 13150.68 P Al I 4 10813.03 P I 1 11403.89 Ti I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10827.09 Si I 5 11 310 11453 S I 19 10827.09 Si I 5 11464 S I 19 10827.09 Si I 5 11464 S I 19 10828.04 Ti I 31 11472 S I 19 10820.31 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11493.68 Si I 90 10830.341 He I 1 11485.68 Si I 90 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | | • | | | | | | | | | | | | 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 2 10792.59 P T1 I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.69 P Ca I 52 10796.52 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 12823.69 P Ca I 27 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11468.54 Si I 19 10821.62 Cr I 118 11468.54 Si I 19 10826.04 T1 I 31 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 Si I 83 10830.341 He I 1 1 11485.68 Si I 83 10830.341 He I 1 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 T1 I | | | | | | | | | | | CI | | | 10786.86 | | | | | | | | | | | | •• | | 10792.59 P T1 I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 S1 I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P A1 I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P A1 I 4 10813.03 P I 1 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 1188.36 Fe I 979 11439.06 Fe I 337 10820.31 T1 I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11464 S I 19 10821.09 S1 I 5 11468.54 SI I 9 10820.09 S1 I 5 11468.54 SI I 76 10828.04 T1 I 31 11472 S I 19 10829.061 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11479.87 P Fe I 1315 10830.341 He I 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11502.94 S1 I 90 10831.12 Ca I 56 11539.50 T1 I | | P | | | | | | | 12679.0 | | | 21 | | 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 8 10796.52 S1 I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P A1 I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P A1 I 4 10813.03 P I 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10881.36 Fe I 979 11439.06 Fe I 337 10820.31 T1 I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 S1 I 5 11468.54 S1 I 76 10828.04 T1 I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 S1 I 83 10830.341 He I 1 1 11495.68 S1 I 90 10833.12 Ca I 56 11539.50 T1 I | | _ | | | | | | | | | | | | 10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P AI I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 1 1403.89 Ti I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 Si I 90 10830.250 He I 1 1 11485.68 Si I 90 10833.12 Ca I 56 11559.50 Ti I | | P | | | | | | | | P | | | | 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P AI I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 11403.89 Ti I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 90 10830.250 He I 1 11850.94 Si I 90 10833.12 Ca I 56 11559.50 Ti I | | | | | | | | | | τ. | | | | 10801.37 | | | | | | | | | | | | | | 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 11403.89 Ti I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 337 3364.1 C I 27 10818.36 Fe I 979 11439.06 Fe I 337 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | U | | | | | | 10813.03 | | | Mg I | | | | | 3 | | | | | | 10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | 10813.03 | | PΙ | 1 | | | | = | | - | | | | 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | 10816.91 | | Cr I | 118 | | | | 58 | | | | | | 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | 10010 00 | | Fo T | 070 | 44400 | | r. • | 00~ | | | | | | 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | | | | | | | | | | | | | | 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | | | | | | | | | | | | | | 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I | | | | | | | | | | | | | | 10829.081 He I 1 11479.87 P Fe I 1315
10830.250 He I 1 11485.68 Si I 83
10830.341 He I 1 11502.94 Si I 90
10833.12 Ca I 56 11539.50 Ti I | 10828.04 | | Ti I | 31 | | | | | | | | | | 10830.341 He I 1 11502.94 Si I 90
10833.12 Ca I 56 11539.50 Ti I | | | | | 11479.87 | P | Fe I | 1315 | | | | | | 10833.12 Ca I 56 11539.50 Ti I | | | | | | | | 83 | | | | | | | | | | | | | | 90 | | | | | | | | | Va I | 00 | 11098.00 | | 11 1 | | | | | | | | | | Forb | idden Line | es | | | | |-----------------------------------|------------------|---------------|---------------------------|------------------|---------------|--------------------|------------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | 2972? | Ne V | 2 F | 3298.61 | Cr II | 5 F | 3492.5 | Co VII | 3 F | | 2972.3 | 0 I | 2 F | 3299.6 | N1 VII | 1 F | 3493.55 | Fe I
Fe VI | 10 F
4 F | | 2990.4 | N1 VII | 1 F | 3299.8 | Co VI
Fe III | 1 F
6 F | 3494.7
3500.4 | Mg VI | 1 F | | 3000.6 | N1 VII
A III | 3 F
2 F | 3300.5
3301.6 | Fe III | 6 F | 3501.62 | Fe II | 26 F | | 3005.1
3008.4 | Ti III | 5 F | 3307.0 | Co VI | 2 F | 3503.0 | Mg VI | 1 F | | 3026.4 | N1 VIII | 4 F | 3316.1 | Fe III | 7 F | 3503.5 | Fe V
N1 VII | 4 F
1 F | | 3035. 3 | N1 VIII | 3 F | 3318.38 | Fe II
Fe III | 27 F
6 F | 3503.8
3504.02 | Fe II | 26 F | | 3038.3
3038.4 | N1 VII
N1 VII | 1 F
3 F | 3319.2
3319.3 | Na IV | 1 F | 3504.51 | Fe II | 26 F | | 3000.4 | | | | | - 12 | 0505.04 | Fe II | 25 F | | 3042.44 | Mn II | 4 F
4 F | 3322.54
3326.9 | Fe III
Co VI | 5 F
2 F | 3505.81
3509.78 | Fe I | 10 F | | 3042.61
3044.52 | Mn II
Mn II | 4 F | 3329.3 | Ca XII | 1 F |
3511.6 | Fe VI | 4 F | | 3048.8 | N1 VII | 3 F | 3333.8 | Fe III | 6 F | 3511.64 | Fe I | 10 F | | 3049.05 | Mn II | 4 F | 3334.9 | Fe III | 6 F
2 F | 3512.9 | Co VI
Fe I | 1 F
10 F | | 3063.0 | N II
Cr II | 2 F
8 F | 3336.9
3337.7 | Co VI
Ti III | 2 F | 3516.17
3522.76 | Fe I | 10 F | | 3066.29
3068.8 | Al VII | 1 F | 3337.77 | Cr II | 5 F | 3524.38 | Fe II | 26 F | | 3070.8 | N II | 2 F | 3337.82 | Mn II | 3 F | 3527.33 | Fe I
Fe II | 10 F
25 F | | 3071.0 | Co VII | 4 F | 3338.5 | Co VII | 3 F | 3528.28 | Fe 11 | 25 F | | 3074.0 | Al VII | 1 F | 3339.14 | Fe II | 27 F | 3532.2 | F IV | 2 F | | 3074.11 | Ni II | 6 F | 3340.7 | Fe III | 6 F | 3536.25 | Fe II
Fe II | 26 F
26 F | | 3075.6 | N1 VIII | 3 F
3 F | 3341.38 | Mn II
Co VI | 3 F
1 F | 3538.69
3538.8 | Co VI | 1 F | | 3081. 6
3089. 76 | N1 VII
Cr II | 3 F | 3341.5
3342.7 | C1 III | 2 F | 3539.19 | Fe II | 26 F | | 3093.4 | Al VII | 1 F | 3342.9 | Ne III | 2 F | 3543.5 | Fe VI
Fe VI | 5 F
4 F | | 3098.6 | Co VII | 4 F | 3344.72
3345.9 N | Mn II
Ne V | 3 F
1 F | 3558.1
3559.86 | Ni II | 5 F | | 3098.7 | Al VII
Ni VII | 1 F
1 F | 3345.9 N
3353.4 | C1 III | 2 F | 3569.0 | Fe VI | 5 F | | 3106.0
3106.1 | Ni VII | 3 F | 3355.5 | Fe III | 6 F | 3575.6 | Fe VI | 4 F | | | | | | Fe III | 6 F | 3575.72 | Fe II | 25 F | | 3109.0 | A III
Ni VII | 2 F
3 F | 3356.6
3361.7 | Co VII | 3 F | 3579.81 | Fe II | 25 F | | 3117.1
3118.3 | C1 IV | 2 F | 3362.5 | Fe V | 4 F | 3583.2 | C1 II | 2 F | | 3124.18 | Fe II | 12 F | 3363.2 | Ti III | 4 F | 3586.8 | Co VI
Fe VII | . 1 F
3 F | | 3159.5 | Co VII | 4 F | 3366.2 | Fe III
Fe III | 6 F
6 F | 3587.2
3590.8 | Sc VI | 2 F | | 3162.21 | Fe II
Ni VII | 12 F
3 F | 3367.3
3367.5 | Co VI | 2 F | 3593.3 | Ti III | 6 F | | 3165.4
3168.2 | Co VII | 3 F | 3368.9 | Fe V | 4 F | 3601.3 | N1 XVI | 1 F | | 3170.55 | Cr II | 7 F | 3371.4 | Fe III | 5 F
4 F | 3608.5
3615.5 | Ti III
Ti III | 6 F
9 F | | 3175.38 | Fe II | 11 F | 3374.6 | Fe V | 4.5 | 3013.0 | | | | 3181.05 | Fe II | 12 F | 3376.20 | Fe II | 26 F | 3616.00 | Fe II | 25 F
6 F | | 3185.01 | Fe II | 11 F | 3378.4 | Ti III | 4 F
5 F | 3622.9
3627.35 | T1 III
N1 II | 5 F | | 3188.79 | Cr II | 7 F
3 F | 3378.55
3379.7 | N1 II
N1 VII | 1 F | 3628.65 | Fe II | 25 F | | 3189.1
3190.76 | Co VII
Fe II | 3 F
12 F | 3380.95 | Fe II | . 27 F | 3630.3 | Fe VI * | 5 F | | 3191.2 | Ni VII | 1 F | 3387.10 | Fe II | 26 F | 3631.4 | Mn VI
Ti III | 3 F
6 F | | 3191.3 | N1 VII | 3 F | 3387.7 | Fe XIII
Co VI | 2 F
2 F | 3631.8
3638.4 | Ti III | 6 F | | 3202.25 | Cr II
Cl IV | 6 F
2 F | 3388.2
3396.7 | N1 VII | 2 F | 3640.6 | Ti III | 6 F | | 3203.3
3207.4 6 | Cr II | 6 F | 3398.5 | Co VI | 2 F | 3643.3 | N1 XIII | 2 F | | | m | 7 F | 3400.3 | Fe V | 4 F | 3645.7 | Fe VI | 4 F | | 32 07.6
32 09.3 | Ti III
Co VII | 4 F | 3402.50 | Fe II | 27 F | 3646.3 | Ca VI | 1 F
6 F | | 3209.94 | Fe II | 12 F | 3403.3 | Co VI | 1 F | 3656.3
3658.1 | Ti III
Co VI | 1 F | | 3212.75 | Cr II | 6 F | 3403.65 | Fe I
Fe I | 10 F
10 F | 3659.96 | Fe II | 10 F | | 3214.5 | N1 VII
Ti III | 1 F
7 F | 3405.39
3406.2 | Fe III | 5 F | 3661.3 | T1 III | 11 F | | 3214.5
3214.67 | Fe II | 11 F | 3406.6 | Fe V | 4 F | 3664.1 | Fe VI
Fe II | 4 F
10 F | | 3216.32 | Cr II | 6 F | 3413.3
3425.8 N | Ni VII
Ne V | 2 F
1 F | 3670.62
3672.37 | Cr I | 4 F | | 3224.54
3226.7 | Fe II
Ti III | 11 F
7 F | 3425.8 N
3428.24 | Fe II | 27 F | 3675.0 | C1 II | 2 F | | 3220.7 | •• ••• | | | W- *** | 5 F | 3675.2 | Fe VI | 5 F | | 3226.99 | Fe II | 11 F
3 F | 3428.8
3430.3 | Fe III
Fe V | 4 F | 3678.71 | Cr I | 4 F | | 3228.2
3230.17 | Ni VIII
Fe II | 12 F | 3439.29 | N1 II | 5 F | 3680.3 | N1 IX | 2 F
1 F | | 3236.7 | Fe III | 7 F | 3440.3 | N1 VII | 1 F
26 F | 3686
3688? | V VIII
Ca VII | 1 F
2 F | | 3239.07 | Cr II | 5 F | 3440.99
3444.1 | Fe II
Co VI | 26 F
2 F | 3695.0 | N1 VIII | 2 F | | 3239.7 | Fe III
Co VII | 6 F
3 F | 3445.4 | Fe V | 4 F | 3702.7 | Ca VI | 1 F | | 3239.8
3243.2 | N1 VII | 1 F | 3445.9 | Na IV | 1 F | 3705.8 | N1 VIII
Co VI | 2 F
1 F | | 3244.18 | Fe II | 11 F | 3450.39 | Fe II
Fe II | 27 F
26 F | 3708.3
3709.14 | Fe II | 10 F | | 3254.24 | Fe II | 11 F | 3452.30 | 10 1- | | | F- 11 | 10 F | | 3254.7 | Fe III | 6 F | 3452.54 | Fe I | 10 F
10 F | 3712.26
3721.1 | Fe II
S III | 2 F | | 3256.31 | Fe II | 11 F | 3454.34 | Fe I
Fe II | 26 F | 3726.16 N | 0 11 | 1 F | | 3256.73 | Fe II
Co VII | 11 F
3 F | 3455.11
3457.3 | Fe VII | 3 F | 3728.91 N | O II | 1 F
3 F | | 3261.7
3263.1 | Ti VII | 2 F | 3458.73 | Fe I | 10 F | 3733.6
3735.2 | Mn VI
Fe V | 3 F | | 3264.84 | Fe II | 11 F | 3460.20
3461.42 | Fe II
Fe II | 25 F
27 F | 3736.17 | Fe II | 10 F | | 3272.9 | Co VI
Cr IX | 2 F
1 F | 3461.42
3463.4 | Fe V | 4 F | 3740.2 | Fe VI | 5 F
3 F | | 3273. 5
3274. 7 | Co VII | 4 F | 3465.7 | Co VI | 2 F | 3744 · 1 | Fe V
Fe II | 3 F
10 F | | 3275.02 | Fe II | 11 F | 3466.4 | N I | 2 F | 3751.66 | | | | 3277.12 | Fe II | 11 F | 3470.0 | N1 IX | 2 F | 3754.98 | Fe I
Fe V | 9 F
3 F | | 3277.12 | Co VI | 1 F | 3476.5 | Co VI
Co VI | 2 F
1 F | 3755.5
3759.9 | Fe VII | 3 F | | 3277.55 | Fe II | 11 F | 3481.5
3484.01 | Fe II | 27 F | 3761.0 | Co VI | 1 F | | 3283.1 | Fe III
Co VI | 7 F
2 F | 3484.01 | Mg VI | 1 F | 3764.8 | Fe V | 3 F
3 F | | 3285.6
3286.2 | Fe III | 6 F | 3486.6 | Ni VII | 2 F | 3774.9
3776.1 | Fe VI
Fe VI | 3 F
4 F | | 3287.35 | Fe II | 11 F | 3487.23 | Fe I
Mg VI | 10 F
1 F | 3776.1 | Fe V | 1 F | | 3289.46 | Fe II | 11 F
11 F | 3488.1
3489.07 | Fe I | 10 F | 3782.9 | Fe V | 3 F | | 3289.89
3295.4 | Fe II
Co VI | 2 F | 3489.98 | Fe II | 26 F | 3794.6 | Fe V | 3 F | | | | | | | | | | | | 88 | | | Forb | idden Line | s | | | | |--------------------------------|------------------|---------------|--------------------------------|-------------------|---------------|---------------------|------------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | 3796.7 | s III | 2 F | 4055.5 | Mn V | 4 F | 4231.56 | Fe II | 21 F | | 3798.2 | Fe V
Cu II | 1. F
2 F | 4059.3 | F IV
Mn V | 1 F
4 F | 4234.81 | Fe II
Fe II | 37 F
21 F | | 3806.34
3810.6 | N1 IX | 2 F | 4062.2
4065.7 | N1 IX | 2 F | 4243.98
4244.81 | Fe II | 21 F | | 3812.07 | Fe I | 9 F | 4068.62 N | s II | 1 F | 4249.07 | Fe II | 36 F | | 3814.58
3815.1 | Fe I
Fe VI | 9 F
3 F | 4070.7
4071.5 | Fe III
Fe V | 4 F
1 F | 4249.48
4251.99 | N1 II
Cr I | 4 F
2 F | | 3820.2 | Fe V | 3 F | 4076.22 N | s II | 1 F | 4262.7 | Co VII | 2 F | | 3834.73 | Fe II | 9 F | 4077.5 | Fe V | 2 F | 4263? | T1 VIII | 1 F | | 3836.89 | Fe II | 8 F | 4079.7 | Fe III | 4 F | 4263.07 | Fe I | 7 F | | 3838.1
3838.9 | Fe V
Fe V | 1 F
3 F | 4080.00
4083.78 | Fe II | 24 F
23 F | 4263.62
4266.34 | Fe I
Fe II | 8 F
36 F | | 3846.46 | Fe I | 9 F | 4084.32 | Fe II | 24 F | 4268.67 | Fe II | 37 F | | 3847.78 | Fe II | 8 F | 4086.5 | Ca XIII
Fe V | 1 F | 4269.60 | Fe I
Fe II | 7 F | | 3849.1
3850.3 | Fe VI
Ni VIII | 3 F
2 F | 4093.0
4096.6 | Fe III | 2 F
4 F | 4270.62
4274.87 | Mn II | 36 F
6 F | | 3850.8 | Fe V | 3 F | 4097? | K VI | 2 F | 4275.21 | Mn II | 6 F | | 3851.63
3856.98 | Fe II
Fe I | 9 F
9 F | 4099.29
4103.1 | Fe I
Co VII | 8 F
2 F | 4276.83
4278.21 | Fe II
Fe I | 21 F
7 F | | 3862.3 | N1 VIII | 2 F | 4104.59 | Fe I | 8 F | 4278.97 | Mn II | 6 F | | 3866.9 | Mn VI | 3 F | 4106.1 | N1 VIII | 2 F | 4280.04 | Fe I | 8 F | | 3868.74 N | Ne III | 1 F | 4107.51 | Fe I | 7 F | 4285.90 | N1 II | 4 F | | 3873.51
3874.07 | Fe·I
Fe II | 9 F
8 F | 4108.02
4112.7 | Fe I
Ni IX | 8 F
2 F | 4287.40
4294.70 | Fe II
Ni II | 7 F
4 F | | 3882.73 | Pe· II | 24 F | 4113.42 | Cr I | 3 F | 4297.8 | N1 VIII | ,1 F | | 3884.57 | Fe I
Fe I | 9 F
9 F | 4113.7 | Mn V
Cr I | 4 F | 4298.8 | N1 VIII
Cr V | 2 F
3 F | | 3889.58
3890.9 | Fe VI | 3 F | 4114.10
4114.48 | Fe II | 3 F
23 F | 4302.3
4305.90 | Fe II | 21 F | | 3891.8 | Fe V | 3 F | 4116.36 | Cr I | 3 F | 4308.4 | Mn V | 4 F | | 3894.40 | Fe II | 8 F | 4116.60 | Ti II | 20 F | 4310.46 | Ni II | 10 F | | 3895.7 | Fe V | 1 F | 4117.09 | Cr I | 3 F | 4314.92 | N1 II | 10 F | | 3898.19
3905.62 | Fe I
Fe II | 9 F
8 F | 4120.7
4122.6 | Mn V
Mn X | 4 °F
2 F | 4319.62
4321.92 | Fe II
Fe II | 21 F
37 F | | 3911.1 | Fe V | 3 F | 4123.9 | Fe V | 2 F | 4326.85 | Ni II | 3 F | | 3914.83 | Sc III | 1 F | 4125? | K V | 1 F | 4329.43 | Fe II | 36 F | | 3917.23
3917.64 | Fe I
Fe I | 9 F
9 F | 4129.4
4129.49 | Fe III
Ti II | 4 F
20 F | 4331.7
4331.9 | Ni IX
Mn V | 1 F
3 F | | 3923.5 | Fe V | 3 F | 4130.47 | Fe I | 8 F | 4346.85 | Fe II | 21 F | | 3929.35
3931. 44 | Fe II
Fe II | 24 F
8 F | 4130.7
4131.51 | Fe III
Fe JI | 4 F
24 F | 4347.35
4351.05 | Fe II
Fe II | 36 F
36 F | | 3931.50 | Fe I | 9 F | 4134.01 | Fe II | 21 F | 4351.80 | Fe II | 36 F | | 3932.72 | Fe II | 8 F | 4136.4 | Fe V | 1 F | 4352.78 | Fe II | 21 F | | 3937.80 | Fe II | 8 F | 4139.5 | Co VII | 2 F | 4356.14 | Fe II | 22 F | | 3945.34
3945.70 | Sc III
Fe I | 1 F
9 F | 4140.4?
4142.5 | Ti III
Fe V | 8 F
2 F | 4358.10
4358.37 | Fe II
Fe II | 6 F
21 F | | 3946.0 | Co VIII | 2 F | 4143.17 | N1 II | 10 F | 4359? | A XIV | 1 F | | 3949.27 | Fe II | 8 F | 4144.3 | Fe III | 4 F | 4359.34 | Fe II | 7 P | | 3967.51 N
3968.23 | Ne III
Ti II | 1 F
11 F | 41
44 .8
4144.97 | Ti VII
Fe I | 1 F
7 F | 4363.21 N
4365.2 | 0 III
Mn V | 2 F
3 F | | 3968.27 | Fe II | 8 F | 4146.65 | Fe II | 21 F | 4372.43 | Fe II | 21 F | | 3968.66 | Fe II | 24 F | 4147.21 | Ti II | 20 F | 4375.71 | Cu II | 1 F | | 3970.1 | Fe V
Fe III | 1 F
4 F | 4147.30 | N1 II | 10 F | 4377.37 | Fe I | 6 F | | 3976.2
3976.97 | Fe II | 8 F | 4149.52
4153.72 | Cr I
Fe I | 2 F
8 F | 4382.75
4384.21 | Fe II
Fe II | 6 F
36 F | | 3979.78 | Fe II | 9 F | 4156.25 | T1 II | 20 F | 4387.4 | Mn IV | 2 F | | 3979.93
3983.08 | Fe II
Ti II | 8 F
11 F | 4157.5 | F II
Fe II | 2 F
37 F | 4391.1
4396.9 | Mn IV
Cr V | 2 F
3 F | | 3986.1 | Fe XI | 2 F | 4157.89
4160.9 | Ti III | 10 F | 4398.4 | Mn V | 3 F | | 3986.38 | Fe II | 8 F | 4163.6? | Ti III | 8 F | 4402.60 | Fe II | 36 F | | 3991.47 | Cr II | 4 F | 4165.79 | Cu II | 1 F | 4404.4 | Ni VIII | 1 F | | 3991.84
3992.08 | Fe II
Cr II | 8 F
4 F | 4166?
4169.40 | K V
Ti II | 1 F
20 F | 4405.2
4406.39 | Mn IV
Fe II | 2 F
36 F | | 3993.29 | Cr II | 4 F | 4169.41 | Ti II | 20 F | 4407.16 | Fe II | 36 F | | 3993.57
3993.65 | Cr II
Ni II | 4 F
4 F | 4175.2 | Fe V
Fe II | 2 F | 4407.9 | Cr IX | 1 F | | 3995.8 | Fe VI | 3 F | 4177.21
4178.93 | Fe I | 21 F
7 F | 4408.5
4409.86 | Mn IV
Fe II | 2 F
22 F | | 3996.3 | Ca V | 2 F | 4178.95 | Fe II | 23 F | 4413.78 | Fe II | 7 F | | 3996.3
4003.2 | F IV
Fe V | 1 F
1 F | 4179.45
4181.3 | Fe I
Fe V | 8 F
1 F | 4414.45 | Fe II
Fe II | 6 F
6 F | | 4004.07 | Ti II | 11 F | 4185.74 | Fe I | 8 F | 4416.27
4422.4 | Co VIII | 2 F | | 4005.07 | Ti II | 11 F | 4187.46 | Ti II | 20 F | 4427.7 | Mn IV | 2 F | | 4008.3
4010.91 | Fe III
Fe II | 4 F
9 F | 4190.53 | Fe II | 37 F | 4430.79 | Ti I | 25 F | | 4011.2 | Na V | 9 F
1 F | 4190.6
4196.3 | Ni IX
Mn V | 2 F
4 F | 4432.45
4432.8 | Fe II
Mn V | 6 F
3 F | | 4015.3 | Na V | 1 F | 4197.81 | Fe II | 22 F | 4435.08 | Fe II | 36 F | | 4017.38
4017.5 | Fe II
Na V | 24 F
1 F | 4198.0 | Co VIII
Ti III | 2 F | 4435.1 | Co VII | 2 F | | 4020.20 | Ti II | 1 F
11 F | 4200.6
4201.56 | Fe I | 10 F
8 F | 4437.10
4438.92 | Fe I
Fe II | 6 F
36 F | | 4021.6
4025.80 | Na V
Ni II | 1 F
4 F | 4201.74 | N1 II | 3 F | 4439.73 | Fe II | 36 F | | | | | 4203.39 | Fe I | 7 F | 4442.0 | Mn IV | 2 F | | 4026.6
4029.41 | Fe V
Fe II | 1 F
9 F | 4203.5
4204.9 | Mn V
Co VIII | 4 F
2 F | 4446.2
4452.11 | Ni VIII
Fe II | 1 F
7 F | | 4031.15 | Ti II | 11 F | 4216.4 | Ni VIII | 1 F | 4454.37 | Fe I | 21 F | | 4032.3
4033.56 | Ni VIII
Ni II | 2 F
4 F | 4217.71
4225.9 | Fe I
Ni VIII | 7 F
1 F | 4457.95 | Fe II
Fe I | 6 F | | 4033.98 | Fe II | 24 F | 4226.8 | Fe V | 2 F | 4458.57
4461.0 | Co VIII | 6 F
1 F | | 4041.57
4043.4 | Ti II
Ni IX | 11 F | 4229.8 | Fe V | 1 F | 4461.0 | Mn IV | 2 F | | 4046.4 | Fe III | 1 F
4 F | 4229.86
4230.40 | Fe I
Fe I | 7 F
8 F | 4461.54 | Ni II
Ni II | 10 F | | 4052.5 | N1 VII) | 1 7 | 4231.4 | N4 VII | 6 F | 4466.33 | Ni II | 10 F | | | | | Forb | idden Line | 28 | | | | |------------------------------------|------------------|---------------|--------------------|------------------|---------------|----------------------|------------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | | | • | | P- 111 | 3 F | 4874.21 | v II | 8 F | | 4470.29 | Fe II
Ti I | 6 F
19 F | 4658.1
4662.7 | Fe III
Mn IV | 1 F | 4874.49 | Fe II | 20 F | | 44 72.37
44 73.46 | Fe I | 6 F | 4664.45 | Fe II | 4 F | 4876.0 | Cr III
Ti II | 3 F
10 F | | 4474.91 | Fe II | 7 F | 4664.97 | Fe II | 5 F
2 F | 4877.01
4880.00 | V II | 8 F | | 4475.0 | Co VII | 2 F
16 F | 4665.5
4665.65 | Co VII
Fe II | 2 F
4 F | 4881.0 | Fe III | 2 F | | 4477.91
4478.8 | Ti I
Mn IV | 15 F | 4667.0 | Fe III | 3 F | 4881.87 | Mn II | 5 F
1 F | | 4480.6 | Mn IV | 2 F | 4669.5 | P II | 2 F | 4883.9 | Fe III
Fe I | 1 F
4 F | | 4484.84 | Ti I | 19 F | 4672.2 | Sc VI | 1 F | 4886.56
4887.27 | Cr II | 15 F | | 4485.87 | N1 II | 3 F | 4674.64 | Fe I | 21 F | 2007727 | | | | 4486.35 | Ti I | 19 F | 4677.94 | Fe I | 21 F | 4889.49 | Mn II | 5 F
4 F | | 4488.75 | Fe II | 6 F | 4680.05 | Fe I | 5. F | 4889.63
4889.70 | Fe II
Fe II | 4 r
3 F | | 4488.76 | Ti I | 19 F | 4685.99 | Fe I | 21 F
5 F | 4893.9 | Fe VII | 2 F | | 4492.3 | Co VIII
Fe II | 2 F
6 F | 4687.56
4692.6 | Fe II
Co VII | 1 F | 4894.1 | Cr III | 3 F | | 4492.64
4493.23 | Fe I | 5 F | 4693.56 | Fe I | 5 F | 4894.8 | Cr IV | 4 F
5 F | | 4493.3 | Ni VIII | 1 F | 4694.59 | Fe I | 5 F | 4896.65
4896.87 | Mn II
V II | 8 F | | 4494.57 | Fe I | 6 F
2 F | 4699.0 | Fe VII
Mn IV | 2 F
1 F | 4897.21 | V II | 8 F | | 4495.3
4496.21 | Mn IV
Ti I | 2 F
19 F | 4699.3
4701.5 | Fe III | 3 F | 4898.49 | Ti I | 13 F | | 4400.21 | | | 5.52.5 | | _ | 4898.64 | v II | 8 F | | 4497.23 | Tí I | 19 F | 4711.4 | A IV
Fe I | 1 F
21 F | 4899.4 | Cr IV | 4 F | | 4497.4 | Mn IV
Ti I | 1 F
19 F | 4711.86
4714? | Ne IV | 1 F | 4901.1 | Co VII | - 1 <u>F</u> | | 4498.90
4500.00 | Ti I | 19 F | 4715.21 | Fe I | 21 F | 4905.35 | Fe II | 20 F
5 F | | 4501.36 | Ti I | 19 F | 4716? | Ne IV | 1 F | 4907.6
4908.8 | Cr IV
Mn IV | 1 F | | 4504.71 | T1 I | 19 F | 4716.36 | Fe II | 5 F
1 F | 4911.9 | Cr III | 3 F | | 4505.9 | Co VII
8 I | 1 F
2 F | 4717?
4719.7 | Ne IV
Mn IV | 1 F | 4912.82 | Ca I | 1 F | | 4506.9
4508.52 | Ti I | 19 F | 4720? | Ne IV | 1 F | 4916.18 | Ca I
Fe I | 1 F
4 F | | 4509.61 | Fe II | 6 F | 4723.39 | Fe I | 21 F | 4916.26 | re 1 | | | | Ti I | 19 F | 4728.07 | Fe II | 4 F | 4916.81 | Ti II | 23 F | | 4509.85
4510.63 | Fe I | 6 F | 4733.9 | Fe III | 3 F | 4917.22 | Fe II | 3 F
7 F | | 4511.0 | K IV | 2 F | 4734 | V VIII | 1 F | 4923.05
4924.5 | V II
Fe III | 2 F | | 4514.90 | Fe II | 6 F | 4736.6 | P II
Co VII | 2 F
1 F | 4924.81 | Cr II | 15 F | | 4515.52 | Ti I
Fe I | 19 F
6 F | 4738.9
4740.3 | A IV | 1 F | 4925.84 | Ti II | 23 F | | 4516.60
4517.36 | Ti İ | 19 F | 4745.49 | Fe II | 20 F | 4928.68 | V II
Cr III | 8 F
3 F | | 4521.76 | T1 I | 19 F | 4750.57 | Fe II | 5 F | 4928.9
4930.5 | Fe III | 1 F | | 4523.16 | N1 J
Cr V | 3 F
3 F | 4751.75
4754.7 | Fe II
Fe III | 4 F
3 F | 4931.8 | 0 111 | 1 F | | 4523.6 | 01 1 | 0.2 | 410411 | | | 4000 4 | Fe III | 1 F | | 4526.55 | T1 I | 19 F | 4761.9 | Mn IV | 1 F
3 F | 4936.4
4938.6 | Ca VII | 1 F | | 4528.3 | Mn IV
Fe II | 2 F
6 F | 4769.4
4771.54 | Fe III
Ti II | 10 F | 1940.22 | V II | 7 F | | 4528.39
4528.7 | Mn V | 3 F | 4772.07 | Fe II | 4 F | 1942.3 | Fe VII | 2 F
4 F | | 4532.09 | Fe I | 6 F | 4772.4 | N1 VIII | 1 F | 1942.95
4946.76 | Fe I
Ti I | 12 F | | 4533.00 | Fe II | 6 F | 4774.74 | Fe II
Fe III | 20 F
3 F | 4947.17 | Cr II | 15 F | | 4535.7 | Mn IV
Ti I | 1 F
19 F | 4777.7
4779? | Ti VIII | 1 F | 4947.38 | Fe II | 20 F | | 4536.05
4544.36 | Fe I | 5 F | 4785.21 | T1 II | 10 F | 4950.74 | Fe II | 20 F
4 F | | 4545? | T1 VIII | 1 F | 4785.9 | Co VIII | 1 F | 4956.35 | Fe I | 4.5 | | 4545.20 | Fe I | 21 F | 4789.19 | Fe I | 4 F | 4958.23 | Fe II | 4 F | | 4548.3 | Be I | 1 F | 4789.5 | F II | 1 F | 4958.91 N | O III
Fe I | 1 F
4 F | | 4548.32 | Fe I | 21 F | 4793.03 | Ti II | 10 F | 4961.18
4965.31 | V II | 7 F | | 4548.5 | Mn IV
Fe II | 2 F
6 F | 4798.28
4799.31 | Fe II
Fe II | 4 F
4 F | 4965.6 | Cr III | 3 F | | 4550.48
4550.64 | Fe I | 6 F | 4799.4 | Cr IV | 5 F | 4965.78 | Fe II | 3 F
7 F | | 4551.98 | Fe II | 6 F | 4799.5 | Fe III | 3 F | 4968.65
4968.8 | V II
Fe VI | 2 F | | 4554.49 | Fe I | 6 F | 4806.83 | T1 II
Fe VI | 10 F
2 F | 4969.3 | Cr IV | 5 F | | 4555.01
4563.7 | Fe II
Mn IV | 6 F
2 F | 4807.5
4813.27 | N1 I | 3 F | 4971.8 | Cr IV | 4 F | | 100011 | | | | | | 4973.39 | Fe II | 20 F | | 4564.7 | Co VIII | 2 F
6 F | 4813.9 | Fe III
Cr IV | 3 F
5 F | 4974.0 | Fe VI | 2 F | | 4573.23
4573.45 | Fe I
Ni II | 10 F | 4814.0
4814.55 | Fe II | 20 F | 4976.33 | V II | 7 F
4 F | | 4573.9 | Fe. III | 3 F | 4823.3 | Mn IV | 1 F | 4976.5
4982.73 | Cr IV
Ti II | 23 F | | 4573.93 | Cr I | 1 F | 4823.44 | Ţ1 II
Sc VII | 10 F
1 F | 4982.73 | Ti I | 11 F | | 4575.46
4575.84 | Ca I
Cr I | 2 F
1 F | 4824?
4824.1 | Fe III | 3 F | 4983.42 | Fe I | 4 F | | 4577.32 | Cr I | 1 F | 4835.4 | Cr III | 3 F | 4985.27 | V II
Cr II | 7 F
15 F | | 4578.83 | Fe I | 5 F | 4837.42 | Ti II | 10 F
4 F | 4985.64
4985.9 | Fe III | 2 F | | 4580.80 | Cr II | 3 F | 4838.7 | Cr IV | • • | | | 4 19 | | 4580.88 | Cr II | 3 F | 4842.4 | Cr III. | 3 F | 4987?
4987.2 | Sc VII
Fe III | 1 F
2 F | | 4581.18 | Cr II | 3 F | 4843.1 | Cr IV
Fe I | 4 F
4 F | 4987.68 | T1 II | 19 F | | 4589.0
4501.4 | 8 I
Mn IV | 2 F
1 F | 4843.34
4843.51 | Fe II | 3 F | 4988.75 | Ti I | 12 F | | 4591.4
4598.07 | Fe II | 4 F | 4847.01 | Ti I | 13 F | 4989.4
4992.68 | Fe VII
Cr II | 2 F
2 F | | 4603.66 | Fe I | 5 F | 4847.58 | Fe I | 4 F | 5002.01 | Fe I | 4 F | | 4604.48 | Fe II | 5 F
3 F | 4850.9
4851.6 | Fe VI'
Co VII | 2 F
1 F | 5002.63 | Ti II | 19 F | | 4607.0
4610? | Fe III
A V | 3 F
2 F | 4851.6
4852.73 | Fe II | 20 F | 5002.88 | V II
Fe II | 7 F
20 F | | 4618.97 | Fe I | 21 F | 4857.50 | V II | 8 F | 5005.52 | re II | | | 4601 F | СІ | 2 F | 4858.4 | Co VII | 1 F | 5006.63 | Ti II | 19 F | | 4621.5
4622.19 | Fe I | 21 F | 4859.87 | Cr II | 15 F | 5006.65
5006.84 N | Fe II
O III | 4 F
1 F | | 4627.3 | CI | 2 F | 4861.41 | Ti II | 23 F
10 F | 5011.3 | Fe III | 1 F | | 4630.06 |
Fe I
Fe I | 21 F
5 F | 4862.80
4863.9 | T1 II
Mn IV | 10 F
1 F | 5014.37 | Fe I | 4 F | | 4631.93
4632.27 | Fe II | 5 F | 4869.3 | F II | 1 F | 5020.24 | Fe II
Ti II | 20 F
19 F | | 4639.68 | Fe II | 4 F | 4870.8 | Cr III | 3 F | 5021.69
5025.53 | Ti I | 11 F | | 4640.05 | Fa I | 5 F | 4871.43 | V II | 8 F | 5027.34 | N1 I | 3 F | | | | | | | | | | | # FINDING LIST | | | | F | INDING LIST | ı | | | | |----------------------|--------------------------|---------------|--------------------|-----------------|---------------|--------------------|-----------------|-------------------| | 90 | | | For | bidden Lin | es | | | | | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | 5032.7 | Fe III | 2 F | 5227.25 | V 11 | 6 F | 5428.6 | Fe VI | 1 F | | 5034.05 | Cr II | 15 F | 5228.44 | Cr II | 13 F | 5431.39 | N1 II | 9 F | | 5035.50
5036.55 | Fe II
Fe II | 4 F
3 F | 5229.06
5235.07 | Zr II
V II | 7 F
6 F | 5432.1 | Cr III
Fe II | 2 F | | 5039.10 | Fe II | 19 F | 5236.6 | Fe VI | 1 F | 5433.15
5433.69 | Zr III | 18 F
1 F | | 5043.30 | Ti I | 12 F | 5237.7 | V IV | 3 F | 5434.30 | Zr II | 6 F | | 5043.53 | Fe II | 20 F | 5238.35 | Cr II | 13 F | 5435.6 | Cr III | 2 F | | 5045?
5047.91 | Sc VII
Ti II | 1 F
19 F | 5239.47
5242.00 | Cr I
Cr II | 15 F
13 F | 5439.72
5439.9 | Fe I
Fe III | 3 F
1 F | | 5049.29 | Fe II | 20 F | 5245.25 | V II | 6 F | 5440.45 | Fe II | 16 F | | 5049.73 | Cr II | 2 F
1 F | 5247.84 | Cr II | 13 F | 5442.82 | Cr II | 12 F | | 5056.5
5060.3 | Ni IX
Fe III | 1 F | 5248.64
5254.49 | Cr II
V II | 14 F
6 F | 5446.0
5449.43 | V IV
Cr II | 3 F
12 F | | 5063.7 | Fe III | 2 F | 5255.97 | Cr II | 13 F | 5453.4 | Cr III | 2 F | | 5065.43 | Ti II | 19 F | 5261.61 | Fe II | 19 F | 5460.0 | Ca VI | 2 F | | 5071.6
5072.40 | Cr IV
Fe II | 4 F
19 F | 5268.4
5268.82 | Co VIII
Fe I | 1 F
19 F | 5466.67 | T1 I
Cr II | 9 F
12 F | | 5074.90 | Fe I | 19 F | 5268.88 | Fe II | 18 F | 5470.51
5471.3 | Cr III | 2 F | | 5076.3 | Co VII | 1 F | 5269.16 | N1 II | 14 F | 5472.09 | V II | 5 F | | 5076.57 | Fe II | 20 F | 5270.19 | Cr II | 13 F | 5473.37 | Mn II | 9 F | | 5080.84
5082.54 | Ti II
Cr I | 19 F
16 F | 5270.4
5273.38 | Fe III
Fe II | 1 F
18 F | 5473.94
5475.59 | Mn II
V II | 9 F
5 F | | 5083.72 | Fe ĮI | 35 F | 5274.27 | N1 II | 9 F | 5477.25 | Fe II | 34 F | | 5084.8 | Fe III | 1 F | 5275.83 | N1 II | 14 F | 5477.40 | Fe I | 20 F | | 5086.52
5092.60 | Fe II
Cr II | 3 F
2 F | 5276.1
5278.39 | Fe VII
Fe II | 2 F
35 F | 5478.76 | V II
Fe I | 5 F | | 5092.97 | Cr I | 8 F | 5279.2 | Fe VI | 35 F
1 F | 5481.17
5482.91 | V II | 20 F
5 F | | 5098.44 | Cr I | 16 F | 5279.80 | Cr II | 13 F | 5483.3 | Cr III | 2 F | | 5100.4
5104.5 | Fe VI
Ti VII | 1 F
1 F | 5280.25
5281.46 | Fe II
N1 II | 16 F
9 F | 5485.7
5493.10 | Fe VI
V II | 1 F
20 F | | | Cr I | 8 F | | | | | | | | 5105.16
5107.95 | Fe II | 8 F
18 F | 5282.88
5283.11 | V II
Fe II | 6 F
35 F | 5494.80
5495.42 | Mn II
Zr II | 9 F
7 F | | 5108.53 | Cr I | 8 F | 5285.21 | Cr II | 13 F | 5495.82 | Fe II | 17 F | | 5108.57 | Cr II | 14 F | 5285.34 | Cr I | 15 F | 5496.84 | V II . | 5 F | | 5111.63
5116.03 C | Fe II | 19 F | 5286.31 | Ti I | 10 F | 5504.22 | V II | 5 F | | 5116.3 | N1 XIII
N1 XIII | 1 F
1 F | 5288.83
5289.66 | Cr II
Fe I | 12 F
19 F | 5505.1
5505.25 | Cr III
Cr II | 2 F
12 F | | 5118.07 | Zr III | 1 F | 5290.75 | Fe I | 20 F | 5509.51 | Ti I | 7 F | | 5119.47 | Cr II | 2 F | 5295.70 | Fe II | 17 F | 5509.63 | A II | 5 F | | 5122.88 | Zr II | 7 F | 5296.3 | Cr IV | 3 F | 5517.2 | C1 III | 1 F | | 5124.41
5126.25 | Cr I
Cr I | 16 F
16 F | 5296.84
5299.42 | Fe II
Cr II | 19 F
13 F | 5517.24 | Zr III | 1 F | | 5127.09 | Cr 11 | 14 F | 5302.86 C | Fe XIV | 15 F | 5518.00
5520.18 | T1 I
Zr II | 9 F
7 F | | 5134.16 | Cr I | 15 F | 5303.37 | Zr III | 1 F | 5523.28 | Fe II | 33 F | | 5136.3 | Co VII | 1 F | 5303.6 | Fe XIV | 1 F | 5523.3 | Cr III | 2 F | | 5144.39
5145.5 | Zr II
Cr IV | 7 F
3 F | 5303.99 | Fe I | 3 F | 5527.33 | Fe II | 17 F | | 5148.55 | Cr I | 15 F | 5304.06
5308.68 | Fe I
Cr II | 20 F
12 F | 5527.61
5527.92 | Fe II
V II | 34 F
5 F | | 5146.8 | Fe VI | 2 F | 5308.9 | Ca V | 1 F | 5528.87 | Zr II | 6 F | | 5147.16 | Fe I | 19 F | 5310.36 | Ti I | 10 F | 5530.11 | Mn II | 9 F | | 5150.07
5151.9 | Cr I | 15 F | 5312.52 | Ti I | 10 F | 5530.69 | Mn II | 9 F | | 5154.28 | Fe III
Cr I | 1 F
16 F | 5313.88
5316.97 | Cr II
Zr III | 13 F
1 F | 5532.41 | Fe I
A X | 20 F | | 5157.59 | Cr II | 14 F | 5322.2 | C1 IV | 3 F | 5534.6
5535.09 | Ti I | 1 F
7 F | | 5158.00 | Fe II | 18 F | 5323.64 | Cr II | 13 F | 5536.98 | Mn II | 9 F | | 5158.3
5158.81 | Fe VII
Fe II | 2 F | 5326.5 | V IV | 3 F | 5537.7 | C1 III | 1 F | | 5162.53 | Cr I | 19 F
15 F | 5331.46
5332.4 | Zr II
P I | 7 F
2 F | 5539.6 | Sc VI | 1 F | | 5163.94 | Fe II | 35 F | 5333.65 | Fe II | 19 F | 5539.74
5541.7 | Zr III
Mn VI | 1 F
2 F | | 5165.98 | Cr I | 15 F | 5334.30 | Ti I | 10 F | 5542.54 | Ti I | 8 F | | 5170.84
5174.95 | Fe I
Cr II | 3 F | 5336.4 | Fe VI | 1 F | 5543.9 | Mn V | 2 F | | 5177.0 | Fe VI | 14 F
2 F | 5339.65
5339.7 | Cr II
P I | 13 F
2 F | 5545.88 | Fe II | 33 F | | 5180.78 | Fe I | 20 F | 5341.39 | Cr II | 12 F | 5546.59
5549.49 | Fe II
V II | 2 F
5 F | | 5181.21 | Cr I | 15 F | 5347.67 | Fe II | 18 F | 5550.25 | v II | 14 F | | 5181.97 | Fe II | 18 F | 5352.29 | Fe I | 20 F | 5550.3 | Cr III | 2 F | | 5182.71
5184.80 | Cr I
Fe II | 16 F
19 F | 5354.15
5354.76 | Cr II | 13 F | 5551.31 | Fe II | 39 F | | 5185 | Co XI | 1 F | 5355.9 | Zr II
Fe III | 7 F
1 F | 5552.93
5554.68 | Cr II
V II | 12 F
20 F | | 5191.4 N | A III | 3 F | 5356.32 | Fe I | 3 F | 5555.33 | Ti I | 7 F | | 5193.13 | Fe I | 19 F | 5358.79 | Ti I | 10 F | 5556.31 | Fe II | 18 F | | 5193.82
5194.19 | Cr I
Fe I | 15 F
20 F | 5362.06 | Fe II | 17 F | 5557.14 | Cr II | 12 F | | 5197.31 | Cr I | 20 F
15 F | 5363.91
5368.91 | Fe I
Cr II | 20 F | 5561.21 | Mn II | 9 F | | 5198.5 | N I | 1 F | 5370.5 | Fe VI | 13 F
2 F | 5561.66
5562.94 | Ti I
Ti I | 7 F
8 F | | 5199.18 | Fe II | 35 F | 5374.6 | Mn VI | 2 F | 5565.68 | Fe I | 3 F | | 5200.7
5206.02 | N I
C r II | 1 F | 5376.47 | Fe II | 19 F | 5567.08 | Mn II | 9 F | | 5206.84 | Zr II | 14 F
7 F | 5382.26
5386.27 | Fe I | 3 F | 5572.6 | Cr III | 2 F | | 5209.1 | Cr IV | 3 F | 5394.78 | Cr II
Mn II | 12 F
9 F | 5573.84
5574.04 | V II
Mn II | 14 F
9 F | | 5212.95 | Fe I | 19 F | 5396.71 | Ti I | 10 F | 5575.69 | V II | 14 F | | 5216.07
5219.02 | V II | 6 F | 5404.80 | Fe I | 20 F | 5577.350 A | 0 I | 3 F | | 5219.02
5220.06 | Cr II
Fe II | 13 F
19 F | 5412.0
5412.64 | Fe III | 1 F | 5579.06 | Cr II | 12 F | | 5220.56 | Fe I | 3 F | 5412.64
5412.97 | Fe II
Fe I | 17 F
20 F | 5579.65
5579.73 | V II | 14 F | | 5224? | Sc VII | 1 F | 5413.34 | Fe II | 16 F | 5579.73
5580.82 | Mn II
Fe II | 9 F
39 F | | 5224.15
5224.30 | Fe I | 3 F | 5415.04 | Mn II | 9 F | 5582.01 | Fe II | 39 F
2 F | | A884.90 | Cr II | 13 F | 5418.0 | Cr III | 2 F | 5594 . 81 | T4 T | 0 P | | | | | For | olaaen Line | S | | | | |---------------------------------|-----------------|---------------|--------------------|----------------|---------------|----------------------|----------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | | D- ** | 00 F | E020 40 | Eu II | 2 F | 6100.26 | Fe I | 30 F | | 55 88.15 | Fe II | 39 F | 5832.40 | Fe I | 2 F | 6101.1 | K IV | 1 F | | 5591.3 | Cr III | 2 F
2 F | 5834.64 | Cr I | 14 F | 6104.67 | Cr I | 12 F | | 5591.9 | Mn V | 2 F | 5836.21
5843.6 | Cr III | 1 F | 6104.8 | V III | 3 F | | 5595.31 | Ti I
Cr III | 1 F | 5843.90 | Fe II | 34 F | 6106.17 | Cr I | 12 F | | 5600.1 | Fe II | 33 F | 5846.3 | Xe III | 2 F | 6111.14 | Cr I | 12 F | | 5600.66
5601.6 | Mn VI | 2 F | 5852.48 | Cr I | 14 F | 6112.75 | Cr I | 12 F | | 5603.2 | K VI | 1 F | 5852.8 | Co II | 2 F | 6113.40 | Fe I | 17 F | | 5605.36 | V II | 14 F | 5855.37 | Zr II | 6 F | 6113.97 | Fe I | 30 F | | 5609.27 | Fe I | 31 F | 5863.1 | Mn V | 2 F | 6114.52 | Fe I | 18 F | | 5611.94 | v II | 14 F | 5867.17 | Fe I | 2 F | 6114.66 | Cr I | 12 F | | 5613.81 | V II | 14 F | 5867.87 | Ti I | 6 F | 6114.85 | V II | 19 F | | 5614.62 | Ti I | 8 F | 5868.3 | Mn V | 1 F | 6117.60 | Cr I
Ti II | 11 F
22 F | | 5615.19 | Cr II | 12 F | 5872.77 | Fe I
Cr I | 2 F
14 F | 6124.57
6140.20 | Cr I | 11 F | | 5615.8 | Ca VII | 1 F
1 F | 5876.23
5876.92 | Cr I | 14 F | 6147.13 | T1 II | 22 F | | 5618.9 | Cr III
Mn VI | 2 F | 5879.32 | Bu II | 2 F | 6151.82 | T1 II | 26 F | | 5625.0
5625.4 | Co II | 2 F | 5884.9 | Cr III | 1 F | 6152.9 | C1 II | 3 F | | 5629.54 | Ti I | 7 F | 5889.0 | Mn V | 2 F | 6159.3 | Mn V | 1 F | | 5630.85 | Ti I | 8 F | 5893.89 | Fe I | 17 F | 6159.3 | V III | 3 F | | 5631.0 | Ca VI | 2 F | 5898.30 | Fe I | 2 F | 6160.1 | V III | 3 F | | 5631.6 | Fe VI | 1 F | 5900.64 | Zr II | 12 F | 6164.64 | T1 II | 26 F | | 5634.78 | VII | 20 F | 5901.26 | Fe II | 34 F | 6165.35 | Zr II | 12 F | | 5639.55 | Fe I | 2 F | 5902.64 | Fe I | 18 F | 6167.7 | Mn V | 1 F | | 5643.02 | Zr III | 1 F | 5907.1 | Mn VI | 2 F | 6167.84
6160.37 | Cr I
Cr I | 12 F
12 F | | 5643.44 | Fe II | 39 F | 5913.34 | Cr I
Cr I | 13 F
14 F | 6169.37
6172.91 | T1 II | 12 F
28 F | | 5644.00 | Fe II
Ca XV | 18 F
1 F | 5926.18
5929.20 | Zr II | 14 F
12 F | 6174.44 | Cr I | 12 F | | 5648?
564 9.67 | Ca XV
Fe
II | 1 F
39 F | 5929.31 | Eu II | 2 F | 6176.08 | Cr I | 12 F | | 5650.39 | Fe II | 2 F | 5931.19 | Fe I | 17 F | 6177.21 | Fe I | 17 F | | | Fe II | 39 F | 5932.88 | Zr II | 6 F | 6178.35 | Fe I | 18 F | | 5650.94
5654.85 | Fe II
Fe II | 39 F
17 F | 5932.88
5933.4 | Mn VI | 1 F | 6180.9 | Co II | 2 F | | 5656.39 | Fe I | 3 F | 5934.41 | Fe I | 2 F | 6184.51 | Cr I | 11 F | | 5659.83 | Fe II | 33 F | 5934.73 | Cr I | 14 F | 6188.55 | Fe II | 44 F | | 5662.62 | V II | 14 F | 5936.99 | Fe I | 2 F | 6193.7 | Zr III | 3 F | | 5664.02 | Ti I | 8 F | 5943.2 | Co II | 2 F | 6196.53 | Zr II
Fe I | 12 F
17 F | | 5669.58 | Zr II | 6 F | 5945.1 | Cr III
Fe I | 1 F
30 F | 6196.75
6215.6 | A III | 3 F | | 5675.73 | Zr II | 6 F
1 F | 5946.87
5949.99 | Cr I | 13 F | 6220.7 | Mn V | 1 F | | 5678.0
5679.3 | Fe VI
Mn VI | 1 F | 5951.24 | Cr I | 14 F | 6223.4 | K V | 2 F | | | | | 7 | Fe I | 30 F | 6226.64 | Fe I | 17 F | | 5683.56 | Fe II
Cr III | 33 F
1 F | 5952.21
5955.61 | Fe I | 30 F
18 F | 6227.19 | Ti II | 22 F | | 5689.3
5694.8 | Mn V | 2 F | 5968.87 | Fe I | 2 F | 6229.2 | K VI | 1 F | | 5696.36 | Fe I | 2 F | 5971.33 | Fe I | 17 F | 6230.4 | Cr V | 2 F | | 5699.57 | T1 I | 6 F | 5971.6 | Co II | 2 F | 6231.27 | Fe I | 29 F | | 5703.3 | Mn V | 2 F | 5972.59 | Cr I | 13 F | 6233.9 | V III
Cr I | 3 F
11 F | | 5703.64 | N1 II | 14 F | 5975.39 | Cr I | 13 F
7 F | 6249.35
6249.75 | Cr I | 11 F
12 F | | 5708.96 | Fe I | 2 F
14 F | 5982.55
5983.99 | Cr I
Cr I | 7 F | 6250.51 | Ti II | 22 F | | 5711.46
5712.7 | N1 II
Cr III | 1 F | 5988.76 | Cr I | 7 F | 6251.33 | Cr I | 12 F | | | | | F000 04 | Cr I | 7 F | 6258.22 | Cr I | 12 F | | 5713.35 | Fe II | 2 F
3 F | 5990.31
5991.0 | Mn V | 1 F | 6277.3 | Mn VI | 1 F | | 5715.94 | Fe I
Fe VII | 3 F
1 F | 5992.15 | Cr I | 7 F | 6280.22 | Cr I | 6 F | | 5720.9
5721.2 | F III | 1 F | 5999.99 | Fe I | 2 F | 6300.23 L | 0 I | 1 F | | 5721.35 | Fe II | 33 F | 6007.34 | N1 II | 8 F | 6310.2 | 8 111 | 3 F | | 5724.62 | Fe II | 39 F | 6010.53 | Cr I | 14 F | 6314.58 | Zr II | 17 F | | 5725.92 | Fe II | 39 F | 6013.28 | Ti II | 9 F | 6316.6 | K V
Zr II | 2 F
11 F | | 5733.0 | F 11 | 1 F | 6015.26 | Zr II
Fe I | 12 F
18 F | 6317.64
6328.46 | Ti II | 31 F | | 5737.59
5741.11 | Ti I
Fe II | 6 F
33 F | 6016.15
6018.54 | Fe I | 17 F | 6333.46 | Cr I | 11 F | | | | | | | 10 F | 6339.70 | Fe II | 15 F | | 5742.07
5745.49 | Fe I
Fe I | 17 F
3 F | 6019.63
6026.18 | Fe I
Cr I | 18 F
13 F | 6342.98 | Cr I | 11 F | | 5745.49
5745.70 | Fe II | 17 F | 6029.7 | Mn V | 1 F | 6344.56 | Žr II | 12 F | | 5746.96 | Fe II | 34 F | 6040.31 | V II | 19 F | 6346.2 | Mn V | 1 F | | 5746.99 | Fe I | 30 F | 6040 - 94 | Cr I | 12 F | 6349.5 | K V | 2 F | | 5750.95 | Fe II | 2 F | 6044.94 | Zr II | 12 F | 6360.66
6363.88 I | Ti II
O I | 18 F
1 F | | 5753.83 | Fe II | 33 F | 6045.80 | Cr I
Ti II | 12 F
9 F | 6363.88 L
6365.52 | N1 II | 8 F | | 5754.8 N | N II
Ti I | 3 F
6 F | 6047.46
6049.37 | Cr I | 13 F | 6367.28 | Cr I | 11 F | | 5755.39
5755.60 | Ti I | 6 F | 6053.14 | T1 II | 9 F | 6372.11 | V II | 13 F | | | | 0 F | EURU 04 | Cr I | 6 F | 6372.9 | Fe X | 1 F | | 5766.4
5773 51 | Ca VI
Zr III | 2 F
1 F | 6059.21
6061.50 | Cr I | 12 F | 6374.51 C | Fe X | 1 F | | 5773.51
5775.05 | Zr III
Fe I | 2 F | 6062.98 | Cr I | 12 F | 6376.6 | Cr V | 2 F | | 5778.35 | Fe II | 33 F | 6065.2 | V III | 4 F | 6377.59 | Zr II | 12 F | | 5778.97 | Zr II | 6 F | 6065.34 | Ti II | 26 F | 6377.83 | T1 II
V II | 31 F
13 F | | 5780.29 | Cr I | 14 F | 6067.88 | Cr I
Mn V | 12 F
2 F | 6381.13
6382.03 | V 11 | 13 F
13 F | | 5783.4 | Mn VI | 2 F
1 F | 6069.2
6071.35 | Mn V
Cr I | 2 F
12 F | 6391.51 | T1 II | 18 F | | 5785.4
5794.16 | Cr III
Ti I | 1 F
6 F | 6077.80 | Ti II | 26 F | 6393.72 | Fe I | 29 F | | 5794.10
5795.58 | Cr I | 14 F | 6083.2 | Co II | 2 F | 6396.2 | Mn V | 1 F | | | P., 11 | 2 F | 6085.5 | Fe VII | 1 F | 6396.30 | Fe II | 44 F | | 5796.28
5799.53 | Eu II
Fe I | 2 F
31 F | 6085.9 | Ca V | 1 F | 6404.46 | N1 I | 2 F | | 5804.45 | Fe I | 2 F | 6087.77 | T1 II | 9 F | 6405.27 | Ti II | 18 F | | 5809.43 | Fe II | 33 F | 6088.5 | Mn V | 1 F | 6405.67 | V II | 13 F
1 F | | 5812.53 | T1 I | 6 F | 6093.32 | Fe I | 17 F
30 F | 6408.5
6409.46 | Zr VI
Ti II | 31 F | | 5815.53 | Fe I | 17 F | 6094.65 | Fe I
Ti II | 30 F | 6414.93 | Cr I | 11 F | | 5 815.79 | Cr I | 14 F
14 F | 6095.96
6096.3 | Fe III | 10 F | 6415,69 | V II | 13 F | | 5819.54
5809.9 | Cr I
Cr III | 14 F | 6098.1 | V 111 | 4 F | 6418.86 | Zr II | 17 F | | | | | | | | | | | | ### ### ### ### ### ### ### ### ### ## | 92 | | | For | bidden Lir | nes | | | | |--|--------------------|---------|---------------|---------|------------|---------------|------------------|---------|--------------| | March Marc | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No | | Section C. V. 2 F | 6422.66 | T1 II | 31 F | 6729.85 | | | 7093.98 | | | | ### STATE OF THE PART P | | | | | | | | | | | 984.64 | | | | | | | | | | | Seding Till 10 P | | Ti II | 18 F | | 8 11 | 2 F | 7110.54 | Zr II | 4 F | | 9447-70 | | | | | | | | | | | Section 6. Fill 15 P | | | | | | | | | | | March Marc | 6440.40 | Fe II | 15 F | 6746.2 | Cr IV | 2 F | 7119.56 | | 17 F | | Section Sect | | | | | | | | | | | 687-38 H. II 8 F 6795-44 Z. II 8 F 7131-13 Fe II 687-60 687-38 Fe II 15 F 7151-60 Fe II 16 | | | | | | | | | | | ## 6479.56 | | | | | | | | | | | Main | | | | | | | | | | | 644.72 | | | | | | | | | | | ## 448-0.1 | 6484.72 | | | 6791.61 | | | 7134.08 | | | | 0800.40 Part 11 13 Part 15 P | | | | | | | | | | | 0007-00 PP II 30 F | | | | | | | | | | | 001.00 Cr 1 1 F | | | | | | | | | | | See | | | | | | | | | | | Section Sect | | | | | | | | | | | Section Sect | | | | | | | | | | | 808.00 While September S | | | | | | | | | | | 6646.47 Y N II 1 6836.64 P I 15 7171.6 C IV 14 F 1171.6 C IV 14 F 1717.6 15 | | | | | | | | | | | \$648.87 | 6548.1 N | | | 6836.94 | | | 7171.6 | | | | 0000.00 | | | | | | | | | | | Section | | | | | | | | | | | Company | | | | | | | | | | | Sees. S | | | | | | | | | | | Sees.86 | | | | | | | | | | | 6886.7 Cr V 2 F 6906.1 Cr IV 1 F 7197.8e 2r II 3 F 688.43 Ti II 8 F 6911.05 Hi II 7 F 7204.82 Zr II 4 F 689.10 Mn II 8 F 6911.05 Hi II 7 F 7204.82 Zr II 4 F 680.10 Mn II 8 F 6913.4 A II 1 F 7214.60 F III 30 F 680.10 Or IV 2 F 693.83 2 II 5 F 7200.0 F III 10 F 680.80 7 II 6 F 693.93 7 III 6 F 693.63 8 III 7 F 7204.00 7 III 1 F 680.80 7 II 6 F 693.63 8 II 7 F 7204.00 7 III 4 F 6003.80 7 II 1 F 6044.61 P F II 43 F 7204.00 1 II 4 F 6003.80 7 II 1 F 6044.61 P F III 1 F F 7204.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | 6880.74 SI | 6586.7 | | 2 F | 6906.1 | | | | | | | 6890.88 T1 II 37 F 6932.4 Cr V 1 F 7230.15 Zr II 3 F 6932.6 Cr V 2 F 693.63 Cr V 2 F 693.63 Cr IV 2 F 693.63 Cr IV 3 F 693.63 Cr II 5 F 7230.4 Cr IV 1 F 694.91 T1 5 F 6941.03 M1 I 2 F 7230.4 Cr IV 1 F 694.91 T1 5 F 6941.03 M1 I 2 F 7230.4 Cr IV 1 F 694.91 F II 31 F 7230.4 Cr IV 1 F 694.91 F II 31 F 7230.60 A IV 2 F 6960.97 Pe VII 1 F 6944.91 Pe II 43 F 7236.00 A IV 2 F 6960.30 M1 II 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 40 F 7236.00 M1 I 3 F 6944.91 Pe II 40 F 7236.00 M1 II 3 F 6944.91 Pe II 40 F 7236.00 M1 II 3 F 6944.91 Pe II 40 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 6942.07 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 6942.07 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe
II 3 F 6942.07 Pe II 3 F 7236.3 Pe II 3 F 6942.07 Pe II 3 F 7236.30 Pe II 3 F 7236.10 | | | | | | | | | | | 8091.0 Cr IV | 6590.10 | Mn II | 8 F | 6919 | A XI | 1 F | 7214.69 | Fe II | 30 F | | 8992.93 | | | | | | | | | | | Sept. Sept | | | | | | | | | | | 6699.7 Fe VII 1 F 6944.91 Fe II 40 F 7239.39 Ti I 4 F 6904.60 Mn II 8 F 6904.60 Fe I 27 F 7243.99 Mi I 2 F 6004.60 Mi I 5 F 6906.25 Mi II 8 F 7280.78 Y II 4 F 6004.00 Fe III 10 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.00 Fe III 10 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.01 Ti II 34 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.01 Ti II 7 F 7260.8 Cr V 1 F 6014.01 Ti II 7 7277.06 Cr II 7 F 6014.01 Ti II 7 F 7277.06 Ti II 7 F 6014.01 Ti II 7 F 7277.06 Ti II 7 F 6014.01 Ti II 7 F 7277.06 Cr II 7 F 7277.06 Ti | | | | | | | | | | | 6804.30 Ni I 5 F 6905.25 Ni II 8 F 7250.78 Y II 4 F 6814.0 Fe III 10 F 6963.02 Ti II 10 F 7252.8 Cr V 1 F 6816.12 Ti II 34 F 6963.02 Fe II 20 F 7256.16 Ni II 7 F 6816.18 Fe I 16 F 6963.32 Fe II 31 F 7263.33 A IV 2 F 6817.10 Mi II 8 F 6972.07 Fe II 15 F 7264.43 2 F II 2 F 6817.12 Ti II 17 F 6973.07 Mi II 2 F 7264.43 2 F II 10 F 6817.12 Ti II 17 F 6984.07 2 F II 11 F F 7269.00 11 II 1 F 6818.20 Pe II 31 F 6991.8 7 III 1 F 7269.3 2 F II 1 F 6821.20 Pe II 31 F 6991.72 2 F III 1 F F 7271.40 2 F II 1 F F | 6599.7 | Fe VII | | 6944.91 | | | 7238.29 | | | | 8616.12 | | | _ | | | | | | | | 6616.12 Ti II 34 F 6963.86 Zr II 20 F 7266.16 Ni II 7 F 6617.06 Mn II 8 F 6963.32 Fe II 31 F 7263.3 A IV 2 F 6617.12 Ti I 5 F 6978.67 Mn II 2 F 7264.43 2 r II 23 F 6617.17 Zr II 1 F 698.67 Mn II 2 F 7264.51 Cr I 10 F 6622.05 Zr II 1 F 6984.07 Zr II 5 F 7273.06 Cr I 10 F 6622.05 Ti II 37 F 6991.75 Zr II 5 F 7273.06 Cr I 10 F 6831.20 Fe II 31 F 6991.8 Ti III 3 F 7274.6 Co II 3 F 6843.27 7 II 5 F 7002.02 Mi I 2 F 7281.67 Fe II 30 F 6842.66 Mn II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F | | | | | | | | | | | 6617.06 Mm II 8 F 6672.07 Fe I 15 F 7264.43 Zr II 23 F 6617.12 Ti I 5 F 678.57 Mn II 2 F 7264.51 Cr I 10 F 6617.17 Zr II 17 F 6698.04 Ni I 5 F 7269.33 Cr I 10 F 6622.05 Zr II 11 F 6898.04 Ni I 5 F 7273.05 Cr I 10 F 6622.05 Zr II 11 F 6898.04 Ni I 5 F 7273.03 Cr I 10 F 6625.75 Ti II 37 F 6891.75 Zr II 5 F 7273.03 Zr II 4 F 6631.20 Fe II 31 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6631.20 Fe II 31 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6632.48 Fe I 15 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6640.0 Cr IV 2 F 7002.02 Ni I 2 F 7287.25 Ti I 4 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.60 Mn II 8 F 7005.23 Fe I 16 F 7290.42 Fe I 14 F 6642.60 Mn II 8 F 7005.84 Cr I 5 F 7290.42 Fe I 14 F 6644.05 Ti II 8 F 7008.84 Cr I 5 F 7290.42 Fe I 12 F 7290.42 Fe I 14 F 6646.01 Ti II 8 F 7008.84 Cr I 5 F 7290.88 Mi I 7 F 6650.61 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.8 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 28 F 6650.7 Mn II 8 F 7011.33 Cr I 5 F 7316.44 Fe I 28 F 6660.8 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7316.44 Fe I 28 F 6660.8 Zr II 15 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6668.15 Mn II 8 F 7007.94 Fe II 31 F 7321.25 Fe I 28 F 6668.63 Mn II 8 F 7007.99 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6692.45 Ti I 5 F 7006.07 Zr II 17 F 7322.0 A IV 2 F 6692.45 Ti I 5 F 7006.07 Zr II 18 F 7332.0 Cr IV 1 II 1 F 7006.07 Zr II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6616.12 | Ti II | 34. F | 6963.85 | Zr II | 20 F | 7256.16 | N1 II | 7 F | | 6617.12 | | | | | | | | | | | 6617.17 Zr II 17 F 6984.07 Zr II 11 F 7266.33 Cr I 10 F 6622.05 Zr II 11 F 6899.04 N1 I 5 F 7273.06 Cr I 10 F 6625.75 T1 II 37 F 6991.75 Zr II 5 F 7273.33 Zr II 4 F 6831.20 Fe II 31 F 6991.8 T1 III 3 F 7274.6 Co II 3 F 6831.43 Fe I 15 F 6991.9 T1 III 3 F 7274.6 Co II 3 F 6831.43 Fe I 15 F 6991.9 T1 III 17 F 7281.67 Fe II 30 F 6833.48 Fe I 15 F 6992.99 T1 III 17 F 7281.67 Fe II 30 F 6840.0 Cr IV 2 F 7002.02 N1 I 2 F 7287.25 T1 I 4 F 6842.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6842.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6842.57 T1 II 5 F 7003.95 T1 III 17 F 7290.42 Fe I 14 F 6842.57 T1 II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6842.57 T1 II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 22 F 6842.50 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 22 F 6851.20 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 22 F 6851.20 T1 II 8 F 7008.89 Fe I 15 F 7307.82 N1 II 7 F 6851.20 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6851.20 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6850.66 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7316.40 Fe I 28 F 6860.66 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6866.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6871.31 T1 II 3 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 7324.89 Ca II 1 F 6871.90 Fe II 31 F 7033.0 T1 II 37 F 7033.0 T1 II 37 F 7323.89 Ca II 1 F 6871.90 Fe II 31 F 7033.0 Cr I F 7323.89 Ca II 1 F 6871.90 Fe II 31 F 7051.04 T1 II 7 F 7322.50 T1 I 4 F 6892.18 Fe I 16 F 7051.7 Cr IV 1 F 7322.90 O II 2 F 6893.00 Fe II 31 F 7053.00 Cr IV 1 F 7323.90 | | | | | | | | | | | 6635.76 | | | | | Zr II | | | | | | 6631.20 Fe II 31 F 6991.8 T1 III 3 F 7274.6 Co II 3 F 6631.48 Fe I 16 F 6999.99 T1 II 17 F 7291.67 Fe II 30 F 6640.0 Cr IV 2 F 7002.02 M1 I 2 F 7287.25 T1 I 4 F 6642.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6642.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6642.66 Mm II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6646.31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6646.31 Zr II 18 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.06 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 23 F 6650.61 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 23 F 6650.126 T1 II 8 F 7008.89 Fe I 15 F 7307.82 M1 II 7 F 6651.26 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6668.16 M1 II 2 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.31 T1 II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6071.90 Fe II 31 F 7323.88 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6062.40 T1 II 5 F 7064.37 M1 II 8 F 7332.0 A IV 2 F 6669.00 Zr II 16 F 7061.7 Cr IV 1 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7332.0 T1 4 F 6062.40 T1 II 5 F 7064.37 M1 II 8 F 7330.7 O III 2 F 6669.00 Zr II 16 F 7064.37 M1 II 8 F 7332.0 A IV 2 F 6669.00 Zr II 16 F 7064.70 M1 II 8 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 F F II 3 F 7066.07 Zr II 15 F 7086.07 Zr II 15 F 7333.0 Cr IV 1 733 | | | | | | | | | | | 6633.48 Fe I 15 F 6999.99 Ti II 17 F 7281.67 Fe II 30 F 6640.0 Cr IV 2 F 7002.02 Ni I 2 F 7287.25 Ti I 4 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 18 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6447.05 Ti II 8 F 7006.3 A V 1 F 7294.30 V II 4 F 6447.05 Ti II 8 F 7006.84 Cr I 5 F 7307.76 Zr II 23 F 6651.26 Ti II 8 F 7008.88 Fe I 15 F 7307.76 Zr II 23 F 6651.26 Ti II 8 F 7008.89 Fe I 15 F 7307.82 NN II 7 F 6651.26 Ti II 8 F 7001.38 Cr I 5 F 7307.82 NN II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.80 V II 26 F 6650.68 Zr II 16 F 7013.83 Cr I 5 F 7315.44 Fe I 28 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7316.6 O II 2 F 6661.6 Ni II 2 F 7017.94 Fe II 31 F 7319.4 O II 2 F 6668.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7321.87 V II 12 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7322.89 Ca II 1 F 6682.46 Ti I 5 F 7056.04 Ti II 7 F 7322.99 O II 2 F 6682.46 Ti I 5 F 7056.07 Nn II 8 F 7056.07 Ti II 17 F 7322.90 O II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 12 F 6683.00 Fe II 3 F 7056.02 Ti II 18 F 7300.77 V II 12 F 6683.00 Fe II 18 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.0 NI XV 1 F 7066.07 Ti II 15 F 7300.00 V II 12 F 6700.0 NI XV 1 F 7066.07 Ti II 16 F 7300.0 | | | | | | | | | | | 6642.67 Fi I '5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.66 Mn II 8 F 7006.23 Fe I 15 F 7291.46 Ca II 1 F 646.31 2 F II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 666.31 1 F 7007.62 N II 4 F 6661.36 7 II II 8 F 7008.99 Fe I 15 F 7307.62 N II II 7 F 6651.26 7 II II 8 F 7008.99 Fe I 15 F 7307.62 N II II 7 F 6651.26 7 II II 8 F 7008.99 Fe I 15 F 7307.02 N II II 7 F 6651.26 7 II II 3 F 7013.33 Cr I 5 F 7316.44 Fe I 2 F 6660.43 Zr III 16 F 7016.90 Cr I 5 F 7317.43 Fe I 2 F 6661.7 2 III II 3 F 7016.90 Cr I 5 F 7318.6 0 II 2 F 6668.7 | | | | | | | | | | | 6642.66 Mn II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6646.31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.05 Ti II 8 F 7006.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.64 Cr I 5 F 7307.76 Zr II 23 F 6651.26 Ti II 3 F 7008.89 Fe I 15 F 7307.82 Ni II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6656.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6661.6 Ni II 2 F 7017.94
Fe II 31 F 7319.4 O II 2 F 6668.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.91 Ti II 5 F 7021.0 Cr IV 1 F 7321.87 V II 12 F 6671.91 Ti II 5 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7329.9 O II 2 F 6682.18 Fe I 16 F 7051.04 Ti II 17 F 7322.99 O II 2 F 6682.18 Fe I 16 F 7051.04 Ti II 17 F 7329.9 O II 2 F 6682.18 Fe I 16 F 7054.37 Ni II 8 F 7330.7 O II 2 F 6682.12 Ti I 5 F 7055.06 Ti I 7 F 7332.0 A IV 2 F 6682.12 Ti I 5 F 7055.06 Ti II 7 F 7332.0 A IV 2 F 6682.12 Ti I 5 F 7064.37 Ni II 8 F 7330.7 O II 2 F 6682.12 Ti I 5 F 7065.66 Ti II 17 F 7332.0 A IV 2 F 6686.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6689.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6680.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6700.16 Ni II 8 F 7065.06 Ti II 17 F 7332.0 C V II 4 F 6700.16 Ni IV 2 F 7065.06 Ti II 17 F 7332.0 C V II 4 F 6700.6 Ni IV 1 F 7068.67 C II 10 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7370.00 V II 12 F 6700.6 Ni IV 1 F 7068.7 C IV 2 F 7370.32 V II 4 F 7370.08 Fe II 35 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 5 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.7 C IV 2 F 7370.32 V II 4 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.09 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.08 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C I | | | 2 F
5 F | | | | | | | | 6646-31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.05 T1 II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6850.61 T1 II 8 F 7008.89 Fe I 15 F 7307.82 N1 II 7 F 6851.26 T1 II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6856.77 Mn II 8 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6856.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6860.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.63 Nn II 2 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6868.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6892.46 T1 I 5 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6892.46 T1 I 5 F 7054.37 N1 II 8 F 7330.7 0 II 2 F 6893.12 T1 II 37 F 7055.06 T1 II 7 F 7332.00 A IV 2 F 6893.12 T1 II 37 F 7058.6 C F II 1 1 F 7332.0 A IV 2 F 6893.12 T1 II 37 F 7058.6 C F II 1 1 F 7338.0 Cr II 1 F 7068.7 C T II 1 1 F 7338.0 C II 1 1 F 7068.7 C T II 1 1 F 7068.7 C T II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | 6647.06 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.89 Fe I 15 F 7307.82 Ni II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6656.67 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6668.63 Mn II 2 F 7017.94 Fe II 31 F 7319.4 0 II 2 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 7317.49 Fe I 28 F 7317.49 Fe I 28 F 7319.4 0 II 2 7319.5 I | | Zr II | 11 F | | A V | 1 F | | V II | 4 F | | 6851.26 | | | 8 F | 7008.84 | | | 7307.76 | | 23 F | | 6856.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6860.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7319.4 O II 2 F 6868.63 Mn II 8 F 7021.0 Cr IV 1 F 7319.4 O II 2 F 6867.66 3 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.91 Ti II 34 F 7047.99 Fe II 31 F 7322.88 Ca II 1 F 6871.90 Fe II 31 F 7051.04 Ti II 17 F 7328.50 Ti I 4 F 689.12 Fe I 16 F 7051.7 Cr IV 1 F 7328.50 Ti I 2 F | | | | | | | | | | | 6866.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.61 Ni III 2 F 7017.94 Fe II 31 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.31 Ti II 3 4 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7051.04 Ti II 1 F 7328.50 Ti I 4 F 6862.18 Fe II 16 F 7051.7 Cr IV 1 F 7328.50 Ti I 4 F 6892.12 Ti II 3 F 7051.7 Cr IV 1 F 7328.50 Ti I 4 F 6892.12 Ti II 3 F 7054.37 Ni II 1 F 7329.9 0 III 2 F 6897.09 Zr II 1 16 F 7054.37 Ni II 1 T 7332.0 | | Mn II | 8 F | | Cr I | 5 F | | Fe I | | | 6868.16 Ni II 2 F 7017.94 Fe II 31 F 7319.4 0 II 2 F 6868.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.31 Ti II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 Ti II 17 F 7328.86 Ca II 1 F 6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 O II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 O II 2 F 6697.09 2r II 16 F 7058.76 2r II 3 F 7332.06 V II 4 F 6898.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6900.1 Cr V 1 F 7066.07 TI II 15 F 7344.03 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6670.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 Ti II 17 F 7328.50 Ti I 4 F 6682.18 Fe II 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.7c Zr II 3 F 7332.0 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | 6671.31 T1 II 34 F 7047.99 Fe II 31 F 7328.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 T1 II 17 F 7328.50 T1 I 4 F 6882.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 O II 2 F 6692.46 T1 I 5 F 7054.37 N1 II 8 F 7330.7 O II 2 F 6693.12 T1 II 37 F 7055.06 T1 II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6898.02 Fe II 32 F 7059.82 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.6 N1 XV 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 N1 XV 1 F 7078.2 Fe II 31 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6705.5 Cr V 2 F 7080.2 Fe XV 1 F 7370.00 V II 12 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 12 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | | | | | 6671.90 Fe II 31 F 7051.04 Ti II 17 F 7320.50 Ti I 4 F 6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.4E Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 12 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe XV 1 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.00 V II 12 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7370.32 V III 4 F 6709.08 Mn II 2 F 7086.7 Cr IV 2 F 7370.32 V III 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6721.89 Fe I 15 F 7081.17 Y II 1 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7081.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | | | | | 6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | | | | | 6692.4£ Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6693.12 Ti II 37 F 7055.06 Ti II 37 F 7332.06 V II 4 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.04 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.68 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | | | | | 6693.12 T1 II 37 F 7055.06 T1 II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F
7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 N1 II 8 F 7370.00 V II 12 F 6701.83 C N1 XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.68 Fe I 16 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | 6692.4E | Ti I | 5 F | 7054.37 | Ni II | 8 F | | 0 11 | | | 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.61 N1 II 8 F 7075.26 Fe II 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 N1 II 8 F 7370.00 V II 12 F 6701.83 C N1 XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.88 Fe I 16 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | 7055.06 | | 17 F | 7832.0 | A IV | 2 F | | 6700.1 | | | | | | | | | | | 6700.61 Ni II 8 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | 6700.1 | Cr V | 1 F | 7066.07 | Zr II | 15 F | 73 44 .03 | V II | 12 F | | 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | 7353.77 | | | | 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F
6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F
6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F
6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F
6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F
6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | 6700.68 | Fe II | | | | | | | | | 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | 6701.83 C | N1 XV | 1 F | 7080.2 | Fe XV | 1 F | 7370.94 | Fe II | 30 F | | 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | | | | | | | | | | 6717.0 8 II 2 F 7088.3 Fe III 15 F 7386.11 2r II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | 6710.88 | Fe I | | | | | | | | | 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F | | 8 11 | 2 F | 7088.3 | Fe III | 15 F | | 'Zr II | | | WINNEY III W. H. HOOL OO | 6721.89
6722.02 | Fe I | 15 F | 7091.17 | Y II | 1 F | | Cr I | | Forbladen Lines | I A | Element | Multiplet No. | IA | Element | Multiplet No. | I A | Element | Multiplet No. | |-------------------------------------|----------------|---------------|--------------------------------|-----------------|---------------|--------------------------------|----------------|---------------| | 7 388. 16 | Fe II | 14 F | 7689.65 | Cr II | 11 F | 8039.68 | Ti II | 39 F | | 7390.6 | Cr IV | 1 F | 7692.91 | Mn II | 7 F | 8043.80 | Cr I | 9 F | | 7393.71 | N1 I | 1 F | 7693.38 | Mn II | 7 F | 8045.57 | Cr I | 9 F | | 7395.79 | Ni I | 2 F | 7694.82 | N1 II | 7 F | 8046.1 | C1 IV | 1 F | | 7398.95 | V II | 4 F | 7696.30 | Mn II | 7 F | 8047.93 | Cr I | 9 F | | 7404.36 | Zr II | 20 F | 7706.06 | Y II | 3 F | 8054.83 | Fe I | 13 F | | 7406.61 | Fe I | 14 F | 7706.58 | Cr II | 20 F | 8060.16 | Ti II | 6 F
7 F | | 7411.90 | V II | 4 F
2 F | 7708.83 | Fe I
Zr II | 1 F
23 F | 8074.29
8078.58 | Ti II
V II | 31 F | | 7413.33
7418.75 | N1 II
V II | 2 F
4 F | 7710.58
7710.79 | Fe II | 30 F | 8085.17 | Ti II | 6 F | | 1420110 | | | | | _ | | | _ | | 7419.42 | Fe II | 1 F | 7717.29 | Ti I
S I | 24 F
3 F | 8086.73 | Fe I
Ti I | 24 F
18 F | | 7421.5 | Co II
V II | 3 F
3 F | 7724.7
7733.12 | Fe II | 1 F | 8091.87
8098.70 | Zr II | 25 F | | 743 0.26
743 1.08 | V 11 | 12 F | 7740.11 | Fe II | 29 F | 8101.03 | v II | 18 F | | 7431.2 | V IV | 2 F | 7741.96 | Fe I | 14 F | 8106.38 | Ti II | 39 F | | 7432.23 | Fe II | 47 F | 7750.56 | Cr II | 11 F | 8106.88 | Cr II | 20 F | | 7439.58 | Fe I | 28 F | 7751.0 | A III | 1 F | 8111.97 | N1 I
Fe II | 8 F
38 F | | 7440.62 | V II | 3 F
3 F | 7752.86
7756.59 | Cr II
Fe I | 11 F
14 F | 8119.16
8119.46 | Ti I | 18 F | | 7 444.8 0
7 445.63 | Zr II
Zr II | 3 F
4 F | 7757.43 | Cr II | 11 F | 8125.50 | Cr II | 1 F | | 7440.00 | | • • | | | | | | _ | | 7449.45 | Fe II | 30 F | 7758.47 | Cr II | 11 F | 8137.88 | Zr II | 19 F
7 F | | 7452.50 | Fe II | 14 F | 7759.25 | Fe I
Fe II | 14 F
30 F | 8138.59
8138.62 | Ti II
V II | 31 F | | 7454.82 | Zr II
V II | 5 F
4 F | 7764.69
7769.35 | Zr II | 4 F | 8148.37 | Ti I | 18 F | | 745 7.80
7459. 30 | v II | 4 F | 7773.91 | Fe I | 13 F | 8151.33 | Fe I | 1 F | | 7460.57 | V II | 3 F | 7786.03 | Zr II | 3 F | 8153.46 | T1 I | 18 F | | 7460.93 | Zr II | 3 F | 7787.00 | Y II | 3 F | 8160.66 | Ti I | 18 F | | 7464.39 | N1 I | 2 F | 7793.9
7797.2 | Co II
Co II | 3 F
3 F | 8164.85
8166.83 | Fe I
T1 II | 13 F
24 F | | 7467.0
7468.52 | Co II
V II | 3 F
4 F | 7797.2
7803.90 | Fe II | 3 F
1 F | 8176.33 | Ti I | 18 F | | 1400.0% | * 11 | * | . 500.00 | | | | | | | 7469.44 | V II | 3 F | 7805.47 | Mn II | 7 F | 8183.69 | Cr I | 9 F | | 7470.10 | Y II | 4 F | 7805.66 | Ti I | 23 F | 8185.52
8189 44 | Cr I
Ti II | 9 F
· 24 F | | 7475.84 | V 11 | 12 F | 7805.96 | Mn II
Fe II | 7 F
1 F | 8189. 44
8192.33 | T1 II | 39 F | | 7477.26 | V II
Zr II | 12 F
15 F | 7806.22
7806.88 | Cr II | 20 F | 8194.57 | Ni I | 8 F | | 7479. 79
7489. 15 | V 11 | 10 F
29 F | 7835.98 | Ti II | 6 F | 8201.77 | N1 I | 1 F | | 7497.68 | v II | 3 F | 7845.41 | Cr II | 11 F | 8220.64 | Zr II | 10 F | | 7507.44 | N1 I | 4 F | 7847.76 | Cr II | 11 F | 8225.25 | Sc II | 3 F | | 7510.54 | Fe I | 14 F | 7849.08 | Zr II
Zr III | 4 F
2 F | 8228.16
8229.81 | Fe II
Cr II | 30 F
1 F | | 7515.13 | V II | 4 F | 7853.3 | 21 111 | 2. | 0220101 | | • • | | 7518.35 | v II | 29 F | 7853.51 | Cr II | 11 F | 8229.81 | T1 II | 24 F | | 7518.81 | Zr II | 4 F | 7859.60 | Fe I | 14 F | 8231.57 | Fe I
Fe I | 1 F
24 F | | 7523.27 | Fe II | 1 F | 7867.83 | Cr I
P II | 9 F
3 F | 8233.22
8235.69 | A II | 18 F | | 7526.46 | V II
V II | 26 F
3 F | 7869.5
7874.23 | Fe II | 1 F | 8245.12 | Fe II | 29 F | | 7526.94
7530.9 | C1 IV | 1 F | 7876.34 | Fe I | 13 F | 8249.61 | Ti I | 3 F | | 7533.84 | V II | 3 F | 7879,32 | Mn II | 7 F | 8251.14 | Cr I | 9 F | | 7536 | S XII | 1 F | 7888.6 | Fe XI | 1 F | 8252.38 | Fe II
Sc II | 38 F
3 F | | 7536.93 | Fe I | 14 F | 7889.15
7891.94 C | Zr II
Fe XI | 19 F
1 F | 8261.21
8261.59 | Zr II | 25 F | | 7537.93 | Mn II | 7 F | 1081.84 C | re AI | | 0201100 | | • | | 7539. 67 | Fe II | 38 F | 7893.57 | Zr II | 3 F | 8268.36 | Cr II | 25 F | | 7540.14 | V II | 12 F | 7894.10 | Ti II | 6 F | 8271.32
8272.21 | Sc II
Cr II | 3 F
25 F | | 7540.54 | y II | 3 F | 7899.63
7904.04 | Fe I
Y II | 14 F
3 F | 8275.57 | Fe I | 1 F | | 7540.74 | Mn II
Fe I | 7 F
28 F | 7906.95 | Zr II | 22 F | 8279.99 | Sc II | 3 F | | 7541.42
7541.95 | V II | 4 F | 7908.30 | N1 I | 4 F | 8284.1 | Y V | 1 F | | 7 544. 00 | Fe II | 14 F | 7916.25 | T1 II | 6 F | 8289.45 | Fe I | 13 F | | 7547.77 | Mn II | 7 F | 7916.98 | Fe IJ | 29 F | 8303.23
8307.67 | N1 II
Sc II | 2 F
3 F | | 7551.9 | V IV
Fe II | 2 F
1 F | 7917.03
7926.90 | Ti Il
Fe II | 25 F
1 F | 8308.68 | Cr II | 1 F | | 7552.38 | le II | 1 " | . 520 . 50 | | | | | | | 7556.03 | V II | 29 F | 7929.70 | N1 I | 8 F | 8315.71 | Zr II | 25 F | | 7567. 6 | Co II | 3 F | 7935.32 | Fe I
Cr I | 26 F
9 F | 8321.51
8326.66 | Fe I
Sc II | 26 F
3 F | | 7571.69 | V II
Y II | 3 F
3 F | 7938.41
7940.71 | Cr I | 9 F | 8328.78 | Cr II | 19 F | | 7586.23
7604.53 | Fe I | 14 F | 7945.02 | Ti II | 7 F | 8337.65 | Fe I | 1 F | | 7611.2 | V IV | 2 F | 7947.28 | Cr II | 20 F | 8339.72 | La III | 1 F | | 7611.7 | Co II | 3 F | 7954.24 | Y II | 3 F | 8342.34 | Fe II
V II | 30 F
17 F | | 7612.96 | N1 II | 7 F | 7954.76 | Zr II
Ti II | 25 F
39 F | 8343.02
8347.16 | V 11 | 17 F | | 7613.15 | Fe II
Zr II | 30 F
3 F | 7956.90
7958.50 | Fe II | 29 F | 8347.24 | Sc II | 3 F | | 7623.44 | 2. II | . | | | | | | | | 7626.54 | Zr II | 15 F | 7959.00 | Fe I | 1 F | 8347.55 | Fe I
Ti II | 1 F
30 F | | 7637.52 | Fe II | 1 F
11 F | 7960.85
7964.27 | Cr II
Fe I | 20 F
1 F | 8348.93
8357.78 | Cr 11 | 1 F | | 7640.39 | Cr II
Co II | 3 F | 7965.96 | Cr II | 11 F | 8363.05 | T1 II | 27 F | | 7642.3
7642.61 | Cr II | 11 F | 7966.36 | T1 II | 7 F | 8367.07 | Ti I | 3 F | | 7647.06 | Cr II | 11 F | 7974.31 | Cr II | 11 F | 8371.34 | Ti II | 30 F | | 7658.84 |
Fe I | 14 F | 7975.58 | Ti II | 6 F | 8380.68
8384.28 | Zr II
Sc II | 22 F
3 F | | 7658.92 | Y II | 3 F | 7976.95
7978.7 | Ti II
Mn IX | 6 F
1 F | 8384.28
8400.89 | Cr II | 19 F | | 7662.36
7684.67 | Zr II
Y II | 23 F
3 F | 7978.7
7999.47 | Fe II | 1 F | 8403.62 | Sc II | 3 F | | 7664.67 | | | | | | | M4 TT | 97 8 | | 7665.29 | Fe II | 1 F | 8000.12 | Cr II | 1 F
46 F | 8405.16
8408.39 | Ti II
Zr II | 27 F
19 F | | 7673.74 | Fe II | 38 F | 8009.53
8012.08 | Fe II
Fe II | 46 F | 8412.97 | Fe I | 12 F | | 7674.06 | Fe II
Cr II | 46 F
11 F | 8022.25 | Fe I | 13 F | 8413.26 | Fe II | 38 F | | 7681.89
7684.16 | Cr II | 11 F | 8022.63 | Fe II | 29 F | 8413.83 | V II | 17 F | | 7685.58 | Fe II | 46 F | 8024 | N1 XV | 1 F | 8416.96 | Zr II
V II | 25 F
2 F | | 7686.19 | Fe II | 14 F | 8024.21 C | N1 XV
T1 II | 1 F
7 F | 8420.72
8428.62 | Zr II | 2 F
22 F | | 7686.90 | Fe II | 1 F | 8028.9 4
8033.86 | TI II
NI II | 7 F | 8430.1 | Ni VIII | 5 F | | 7687.94 | Fe II
Cr II | 46 F
11 F | 8037.29 | Fe II | 30 F | 8431.56 | Fe I | 1 F | | 7688.64 | V: 11 | | ,···- | | | | | | | 5.5 | | | For | bidden Lin | ies | | | | |-----------------------------------|------------------------|---------------|---------------------|-----------------|---------------|--------------------|-----------------|--------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet | | 8433.7 | C1 III | 3 F | 8702.70 | Zr II | 9 F | 9105.8 | N1 VIII | 5 F | | 8436.37 | T1 II | 15 F | 8703.03 | Ti II | 33 F | 9106.17 | Fe I
V II | 36 F
25 F | | 8437.9 | V IIJ
Cr II | 2 F
25 F | 8703.79
8704.24 | Cr II
Ni II | 18 F
12 F | 9106.60
9108.42 | Ti II | 32 F | | 8441.27
8444.83 | Zr II | 25 F
10 F | 8705.08 | Ti I | 16 F | 9108.53 | Zr II | 10 F | | 8445.28 | Cr II | 25 F | 8706.79 | Fe II | 52 F | 9116.41 | Fe II | 51 F | | 8446.11 | Fe II | 29 F | 8708.23 | Ti I | 17 F | 9125.8 | Cl II
Fe II | 1 F
42 F | | 8446.39 | Cr II | 25 F
33 F | 8709.38 | V II
Fe II | 2 F
42 F | 9133.63
9134.50 | Sc II | 1 F | | 8456.74
8457.2 | Fe I
V III | 33 F
2 F | 8715.84
8716.24 | Ti I | 2 F | 9136.73 | Fe I | 36 F | | 8466.38 | Ni I | 4 F | 8719.70 | Ti II | 36 F | 9137.01 | Ti I | 15 F | | 8466.95 | Fe I | 24 F | 8721.54 | T1 I | 16 F | 9144.25 | V II | 10 F | | 8467.54 | Fe I | 33 F | 8722.5 4 | T1 II | 16 F | 9149.11 | Ti II | 35 F | | 8469.75 | Fe I | 25 F | 8723.13 | Ti I
C I | 29 F
3 F | 9165.30
9166.00 | V 11
V 11 | 10 F
10 F | | 8471. 07
8481. 6 | V II
C1 III | 2 F
3 F | 8727.4
8728.09 | Fe III | 8 F | 9179.54 | Zr II | 9 F | | 8485.90 | V II | 17 F | 8730.02 | Cr II | 18 F | 9180.13 | Ti I | 21 F | | 8488.19 | Fe I | 24 F | 8731.38 | Ti I | 17 F | 9183.58 | V II | 9 F | | 8488.93
8490.18 | Ti I
V II | 2 F
17 F | 8735.0
8738.1 | V III
Fe VII | 1 F
4 F | 9189.22
9191.34 | Ti I
Sc II | 15 F
1 F | | | | | | | | | Fe II | 51 F | | 8490.34 | Fe I
V II | 25 F
11 F | 8739.71
8740.05 | T1 I
T1 I | 16 F
17 F | 9196.26
9199.44 | Ti I | 15 F | | 8490.44
8490.71 | Ti II | 11 F
15 F | 8743.65 | Zr II | 10 F | 9199.54 | Ti II | 35 F | | 8491.16 | Ti II | 27 F | 8743.66 | Ti II | 29 F | 9202.81 | Zr II | 8 F | | 8493.1 | V III | 1 F | 8745.0 | V III | 1 F | 9208.72 | Zr II
V II | 8 F
9 F | | 85 01.8 | C1 III
V II | 3 F
11 F | 8746.99
8761.8 | Fe I
Ni VIII | 33 F
5 F | 9209.25
9216.20 | Fe II | 51 F | | 8510.24
8518.20 | Sc II | 2 F | 8763.28 | V II | 2 F | 9217.51 | VII | 27 F | | 8520.22 | Cr II | 19 F | 8763.95 | Ti II | 36 F | 9222.25 | Cr II | 16 F | | 8521.66 | T1 I | 3 F | 8766.76 | Zr II | 10 F | 9223.81 | Cr II | 24 F | | 8525.41 | Zr II | 10 F | 8770.71 | Ti I | 17 F | 9226.60 | Fe II | 13 F | | 8529.50 | T1 II | 15 F | 8771.24 | Fe I
V II | 12 F
11 F | 9228.60
9235.10 | Cr II
Ti I | 24 F
15 F | | 8530.15 | Cr II
Ti I | 19 F
30 F | 8774.69
8775.19 | V 11
Fe I | 11 F
33 F | 9235.10
9235.60 | VII | 10 F | | 8532.12
8544.49 | V II | 30 F
28 F | 8775.19
8777.26 | Ti I | 2 F | 9245.82 | Ti I | 15 F | | 8545.12 | V II | 2 F | 8782.6 | V III | 2 F | 9251.37 | Ti I | 21 F | | 8549.64 | T1 II | 16 F | 8787.6 | PI | 1 F | 9253.44 | V 11 | 9 F | | 8550.5 | C1 III
T1 II | 3 F
16 F | 8787.81
8789.70 | Ti I
Ti II | 17 F
29 F | 9255.10
9256.51 | Y II
V II | 5 F
9 F | | 8553.73
'8553.87 | v 11 | 10 F
11 F | 8792.09 | Cr II | 18 F | 9258.83 | Ti I | 15 F | | 8561.42 | Zr II | 26 F | 8792.49 | Fe I | 24 F | 9267.54 | Fe II | 13 F | | 8564.56 | Fe I | 1 F | 8794.80 | Fe I | 25 F | 9268.77 | V II | 10 F | | 8565.94 | T1 II | 15 F | 8798.79 | T1 II | 33 F | 9273.10 | Cr II | 29 F | | 8567.60 | Sc II | 2 F
1 F | 8798.82 | Zr II
Ti I | 26 F
2 F | 9274.58
9274.68 | Cr II
Cr II | 16 F
29 F | | 85,75 • 4
8576 • 73 | V IV
Ti I | 22 F | 8799.09
8799.1 | PI | 1 F | 9279.59 | V II | 10 F | | 8579.15 | V II | 11 F | 8808 • 47 | Ti I | 17 F | 9281.86 | T1 I | 15 F | | 8579.5 | C1 11 | 1 F | 8815.9 | A IA | 1 F | 9282.92 | V II | 27 F | | 8582.52
8585.04 | V II
Ti II | 28 F
15 F | 8826.02
8830.3 | Cr II
Co II | 19 F
1 F | 9285.20
9288.45 | Sc II
Ti I | 1 F
15 F | | | | | | | | | | | | 8585.14
8588.84 | Fe I
Ti I | 33 F
2 F | 8830.7
8831.94 | Fe III
Cr II | 8 F
18 F | 9291.03
9292.19 | Zr II
V II | 9 F
25 F | | 8596.27 | Fe I | 33 F | 8832.31 | N1 I | 7 F | 9307.5 | Zr III | 5 F | | 8598.3 | V III | 2 F | 8838.2 | Fe III | 8 F | 9308.03 | Ti I | 21 F | | 8598.79 | Ti I | 29 F | 8843.42 | Ni I | 1 F | 9313.72 | 4 11 | 9 F | | 8599.1 | V III
Ti i | 1 F
30 F | 8848.50
8850.73 | Ti I
Zr II | 17 F
9 F | 9324.01
9324.8 | Y II
Ti III | 5 F
2 F | | 8612.91
8613.35 | Ti I | 2 F | 8851.13 | Fe II | 52 F | 9336.2 | Co II | 1 F | | 8615.4 | VIII | 2 F | 8851.45 | Ti I | 17 F | 9337.40 | Cr II | 23 F | | 8616.96 | Fe II | 13 F | 8858.94 | Cr II | 18 F | 9312.24 | Cr II | 23 F | | 8621.67 | Zr II | 2 6 F | 8862.47 | Zr II | 26 F | 9343.61 | Cr II | 23 F | | 8623.51 | Fe I | 33 F | 8868.91 | Fe I | 1 F | 9349.2 | Zr III | 5 F | | 8625.25 | Z r II
V III | 8 F
1 F | 8872.37
8878.98 | Zr II
V II | 8 F
2 F | 9356.40
9358.90 | V II
V II | 27 F
9 F | | 8625.8
8625.93 | Ti II | 16 F | 8884.12 | Ti I | 2 F | 9364.08 | Cr 11 | 16 F | | 8626.85 | Ti I | 16 F | 8885.66 | Fe II | 42 F | 9376.93 | Zr II | 2 F | | 8627.35 | A II | 11 F | 8891.88 | Fe II | 13 F | 9377.33 | Ni II | 1 F | | 8640.22 | Ti I | 22 F | 8899.71 | Cr II | 16 F | 9377.83 | Zr II | 24 F | | 8640.27
8643.14 | Ti I
Pe I | 29 F
12 F | 8909.40
8921.0 | Zr II
Zr III | 2 F
5 F | 9381.78
9386.74 | Cr II
Cr II | 23 F
23 F | | 8645.95 | Ti I | 22 F | 8929.91 | Cr II | 18 F | 9386.96 | Fe I | 12 F | | 8647.89 | Fe I | 1 F | 8930.70 | Ti I | 17 F | 9388.12 | Cr II | 12 F
23 F | | 8648.72 | Ti II | 16 F | 8931.47 | Fe II | 49 F | 9392.85 | Eu II | 1 F | | 8649.11 | Sc II | 2 F | 8954.34 | Zr II | 9 F | 9395.23 | V II | 9 F | | 8649.72 | Fe I
Ti II | 24 F
29 F | 8969.06 | Zr II | 22 F | 9398.59 | Ti II | 21 F | | 8651.14
8652.17 | Cr II | 29 F
18 F | 8970.23
8970.56 | Ti I
Cr II | 2 F
18 F | 9399.02
9405.71 | Fe II
Ti II | 13 F
21 F | | 8653.20 | Cr II | 19 F | 8983.71 | Eu II | 1 F | 9427.18 | Cr 11 | 21 F
23 F | | 8658.20
8681.20 | Ti I
Ti II | 16 F
15 F | 9012.04
9033.45 | Cr II | 18 F | 9428.3 | Ti III | 2 F | | 8661.20 | | | 9033.45 | Fe II | 13 F | 9432.18 | Cr II | 23 F | | 8661.96
8 665. 66 | Ti II
Y II | 15 F
6 F | 9033.73
9043.52 | Cr II
V II | 16 F
10 F | 9442.77
9444.2 | Y II
Fe III | 5 F | | 8.669. 28 | Ti I | 2 F | 9051.92 | Fe II | 10 F
13 F | 9454.2
9454.15 | V II | 12 F
9 F | | 8674. 27 | V II | 17 F | 9058.16 | Zr II | 2 F | 9457.95 | Cr II | 23 F | | 8682.13 | V 11 | 2 F | 9069.4 | 8 111 | 1 F | 9470.93 | Fe II | 13 F | | 8683.4
8689.73 | V III
Ti I | 1 F
16 F | 9071.07 | Ti II | 35 F | 9487.4 | Ti III | 2 F | | 8691.53 | Zr II | 16 F
19 F | 9072.86
9089.24 | Cr II
Zr II | 24 F
10 F | 9487.5 | Xe II | 1 F | | 8698.18 | V II | 11 F | 9093.67 | Fe I | 10 F
36 F | 9488.3
9490.96 | Ti III
Zr II | 2 F
8 F | | 8698.69 | A II | 11 F | 9096,76 | V II | 10 F | 9491.15 | Cr II | 29 F | | | | | | | | | | | No. | Forbidden Lines | | | | | | | | | |--------------------------------|------------------|---------------|----------------------|------------------|---------------|----------------------|------------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | 9496.60 | Zr II | 27 F | 10021.39 | T1 II | 4 F | 10461.95 | Zr II | 24 F | | 9512.58 | Cr II | 16 F | 10028.62 | Fe II | 28 F | 10464.94 | Zr II | 1 F | | 9513.87 | Fe II | 41 F | 10028.71 | Zr II | 1 F | 10475.96 | Ti I | 27 F
6 F | | 9517.76 | Fe II
V II | 52 F
32 F | 10034.9
10036.79 | Zr III
Fe II | 5 F
40 F | 10486.97
10491.99 | Sc II
Cr II | 28 F | | 9522.24
9532.1 | 8 III | 32 F
1 F | 10038.79 | Fe II | 48 F | 10494.00 | Cr II | 28 F | | 9534.75 | Zr II | 14 F | 10055.97 | Fe I | 11 F | 10500.65 | Cr II | 10 F | | 9543.3 | Zr III | 5 F | 10066.92 | T1 II | 5 F | 10502.67 | Cr II | 10 F | | 9544.00 | Ti I | 28 F | 10066.98 | Ti II
Eu II | 5 F
1 F | 10503.47
10504.3 | Ti II
Fe III | 3 F
8 F | | 9558.5 | Co VII | 5 F | 10074.84 | Eu II | 1 - | 10001.0 | | 0. | | 9 565.8 | N1 VIII | 5 F | 10075.00 | Fe I | 38 F | 10508.07 | Fe II | 28 F | | 9570.24 | V II | 9 F
9 F | 10083.37 | Zr II
Cr VIII | 13 F
1 F | 10510.25
10519.77 | V II
Ti I | 15 F
27 F
| | 9582.55
9590.94 | Zr II
Cr II | 16 F | 10098.2
10116.66 | T1 II | 4 F | 10553.58 | Mn II | 1 F | | 9594.5 | Ti III | 2 F | 10119,57 | Cr II | 22 F | 10561.05 | V II | 24 F | | 9595.12 | Ti I | 28 F | 10120.75 | Zr II | 24 F | 10568.84 | Ti I
Sc II | 27 F
7 F | | 9595.85 | V II
Zr II | 32 F
8 F | 10125.99
10128.19 | Ti II
Zr II | 5 F
27 F | 10569.44
10576.98 | V II | 15 F | | 9607.90
9608.6 | Fe III | 12 F | 10136.59 | Cr II | 10 F | 10592.32 | Fe I | 23 F | | 9619.74 | Fe I | 12 F | 10137.00 | Cr II | 10 F | 10594.89 | Fe II | 40 F | | 0000 00 | Ti I | 28 F | 10138.47 | Cr II | 10 F | 10601.80 | Ѓе I | 37 F | | 9622.68
9635.9 | Cr V | 4 F | 10148.57 | Ti II | 4 F | 10603.65 | Zr II | 1 F | | 9639.4 | Co II | 1 F | 10163.13 | T1 II | 5 F | 10608.1 | Fe III | 14 F | | 9642.42 | T1 II | 21 F | 10178.29 | Fe I | 11 F
1 F | 10608.18
10627.5 | T1 II
N1 VIII | 3 F
6 F | | 9644.96
9649.94 | V II
Ti II | 25 F
21 F | 10188.1
10196.82 | Co II
Fe I | 36 F | 10640.19 | Ti II | 3 F | | 9651.02 | Cr II | 17 F | 10202.05 | Ti II | 5 F | 10640.4 | Fe III | 13 F | | 9652.70 | Fe II | 13 F | 10206.5 | Xe III | 1 F | 10642.86 | Ti I
Sc. II | 27 F
7 F | | 9670.04 | Zr II | 24 F | 10208.43 | Zr II
Ni II | 14 F
12 F | 10660.35
10671.7 | Sc II
Co VII | 7 F | | 9670.87 | Zr II | 27 F | 10209.10 | NT 11 | TW * | 200.200 | | | | 9671.2 | Zr III | 5 F | 10209.78 | Cr II | 10 F | 10676.61 | T1 II | 3 F | | 9674.66 | T1 I | 28 F | 10210.20 | Cr II | 10 F | 10696.87 | Cr II
Ni II | 27 F
1 F | | 9681.84 | Ti I | 28 F
41 F | 10211.69
10215.85 | Cr II
Cr II | 10 F
22 F | 10718.16
10719.84 | Cr II | 10 F | | 9682.13
9686.70 | Fe II
Cr II | 41 F
16 F | 10223.27 | Cr II | 22 F | 10746.80 C | Fe XIII | 1 F | | 9694.01 | Eu II | 1 F | 10223.27 | Ti II | 5 F | 10747.64 | Ťi II | 3 F | | 9697.42 | Ti I | 28 F | 10225.3 | N1 VIII | 6 F | 10749.7 | Fe XIII
Cr II | 1 F
27 F | | 9701.3 | Fe III | 11 F
9 F | 10229.79
10235.17 | Fe I
Fe I | 11 F
36 F | 10755.91
10758.04 | Cr II | 27 F | | 9704.10
9706.8 | Zr II
Ti III | 9 F
2 F | 10245.4 | Co II | 1 F | 10758.32 | T1 II | 3 F | | 810010 | | | | | | 40,000 00 | Fe I | 36 F | | 9720.20 | Ti I | 20 F
23 F | 10261.18
10262.84 | Zr II
Fe I | 1 F
11 F | 10770.38
10771.88 | Fe I | 23 F | | 9731.40
9733.52 | Fe I
V II | 23 F
16 F | 10264,65 | Fe I | 23 F | 10780.17 | Sc II | 7 F | | 9752.5 | Co VII | 5 F | 10280.7 | Co II | 1 F | 10784.80 | Ti II | 3 F
27 F | | 9755.81 | Fe II | 50 F | 10284.3 | S II
V II | 3 F
15 F | 10796.00
10796.2 | Cr II
Fe XIII | 1 F | | 9774.53 | Zr II
Fe I | 14 F
35 F | 10291.94
10297.11 | Cr II | 28 F | 10796.48 | Fe II | 45 F | | 9775.9 4
9778.67 | Ti I | 28 F | 10297.14 | T1 I | 27 F | 10797.66 | Cr II | 27 F | | 9778.70 | Fe I | 12 F | 10298.63 | Cr II | 28 F | 10797.95 C | Fe XIII | 1 F | | 9786.00 | Ti I | 28 F | 10299.05 | Cr II | 28 F | 10798.14 | Cr 11 | 27 F | | 9795.21 | Fe II | 28 F | 10299.79 | Cr II | 22 F | 10800.75 | V II | 15 F | | 9806.20 | Cr II | 17 F | 10300.86 | Ti II | 5 F | 10807.8 | Cr V
S I | 5 F
1 F | | 9808.9 | C I | 1 F | 10305.67 | Cr II
Cr II | 22 F
22 F | 10819.8
10835.22 | V II | 23 F | | 9822.50 | Fe I
C I | 39 F
1 F | 10307.34
10314.96 | Fe I | 38 F | 10860.44 | Zr II | 1 F | | 9823.4
.9826.83 | Fe I | 11 F | 10317.7 | S II | 3 F | 10867.84 | Fe I | 37 F | | 9831.29 | Ti I | 20 F | 10318.68 | Fe I | 23 F | 10872.05 | Sc II
Fe III | 5 F
14 F | | 9849.5 | C I | 1 F | 10321.34 | Fe II
Fe II | 40 F
28 F | 10882.6
10890.02 | Zr II | 13 F | | 9862.21
9866.49 | Fe II
Cr II | 40 F
17 F | 10327.56
10331.43 | Cr II | 10 F | 10901.79 | Ti II | 3 F | | 8600.40 | | | | | 40 F | 10908.34 | Fe I | 34 F | | 9870.08 | Zr II | 8 F
20 F | 10331.86
10333.39 | Cr II
Cr II | 10 F
10 F | 10908.34 | Čo VII | 5 F | | 9884.29
9885.74 | T1 I
N1 II | 20 F
1 F | 10333.39 | S II | 3 F | 10916.5 | Fe III | 13 F | | 9886.87 | Zr II | 27 F | 10351.92 | Zr II | 13 F | 10916.64 | Fe I
Ni II | 41 F
1 F | | 9887.18 | N1 I | 6 F | 10355.58 | Zr II
V II | 1 F
15 F | 10921.07
10956.10 | Ti II | 3 F | | 9902.2 | Kr III
La II | 1 F
1 F | 10355.93
10356.68 | Ti I | 27 F | 10965.77 | Ti II | 14 F | | 9903.31
9916.30 | Eu II | 1 F | 10366.26 | Cr II | 22 F | 10972.9 | Co II | 1 F | | 9917.9 | s viii | 1 F | 10369.7 | S II | 3 F
22 F | 10983.23
10986.0 | V II
Co VII | 23 F
6 F | | 9918.01 | Fe II | 51 F | 10372.30 | Cr II | ee f | 10000+0 | | | | 9926.0 | Zr III | 5 F | 10373.30 | Cr II | 21 F | 10991.52 | 81 I | 2 F | | 9937.20 | Zr II | 27 F | 10373.98 | Cr II | 22 F
5 F | 11011.70
11018.07 | La II
Fe I | 1 F
32 F | | 9937.27 | Fe II | 51 F | 10379.73
10380.40 | Ti II
Cr II | 21 F | 11019.11 | V II | 24 F | | 9941.20 | Fe II
Fe III | 51 F
11 F | 10382.14 | v 11 | 15 F | 11024.82 | Ti II | 13 F | | 9942.2
9947.19 | Zr II | 14 F | 10386.86 | Ti I | 27 F | 11044.11 | Fe I
Ti I | 35 F
26 F | | 9949.32 | Fe II | 48 F | 10388.07 | Cr II
Cr V | 21 F
5 F | 11049.28
11056.70 | Cr II | 26 F | | 9953.5 | Co VII | 5 F
12 F | 10394.3
10395.4 | N I | 3 F | 11057.76 | T1 II | 14 F | | 9957.23
9957. 44 | Ni II
Fe II | 12 F
28 F | 10399.33 | Sc II | 6 F | 11058.94 | Cr II | 26 F | | 0001032 | | | | Fe II | 40 F | 11069.08 | Fe I | 37 F | | 9960.0 | Fe III
Fe III | 8 F
8 F | 10400.53
10404.1 | re II
N I | 3 F | 11078.26 | Ti II | 2 F | | 9969.6
9972.59 | Ti II | 5 F | 10431.10 | Fe II | 40 F | 11080.02 | Ti II | 14 F
32 F | | 9972.59 | Fe I | 23 F | 10432.60 | Fe II | 48 F
11 F | 11084.87
11088.0 | Ti I
Fe III | 32 F
13 F | | 9977.1 | N1 VIII | | 10443.95 | Fe I
Ti I | 11 F
27 F | 11096.98 | Zr II | 18 F | | 9982.17 | V II
Fe I | 16 F
39 F | 10447.44
10452.56 | Fe I | 11 F | 11098.96 | V II | 23 F | | 9986.60
9997.3 | Mn X | 1 F | 10456.86 | Sc II | 6 F | 11107.3 | Fe III
Ti II | 13 F
2 F | | 9997.3 | Fe I | 11 F | 10458.9 | Zr III | 5 F | 11110.92 | Ti II | 13 F | | | | | | | | | | | | | rorbidden bines | | | | | | | | |------------|-----------------|---------------|----------|---------|---------------|----------|-----------------|---------------| | IA | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Eleme nt | Multiplet No. | | 11123.53 | Ti I | 26 F | 11595.50 | Zr II | 18 F | 11951.78 | Cr II | 9 F | | 11132.24 | Zr II | 21 F | 11602.41 | T1 II | 1 F | 11971.26 | Ti II | 1 F | | 11151.54 | Ti II | 14 F | 11606.00 | V II | 23 F | 11997.42 | Fe I | 40 F | | 11173.94 | Ti II | 14 F | 11611.10 | Ti II | 12 F | 12012.60 | Ti I | 1 F | | | Ti II | 13 F | 11616.88 | Ni II | 1 F | 12019.17 | Fe I | 470 F | | 11178.94 | Ti I | 26 F | 11618.68 | T1 II | 2 F | 12024.89 | Ti I | 14 F | | 11185.14 | Ti II | 14 F | 11619.10 | V II | 1 F | 12025.23 | Fe I | 22 F | | 11185.70 | Ti I | 26 F | 11621.54 | Ti I | 1 F | 12061.0 | Ti III | 1 F | | 11191.43 | | 26 F | 11658.88 | V II | 22 F | 12072.48 | Fe I | 40 F | | 11193.04 | Ti I | | 11659.62 | Zr II | 18 F | 12094.78 | Zr II | 21 F | | 11202.11 | Fe I | 41 F | | | | | | 14 F | | 11203.92 | Zr 11 | 13 F | 11665.66 | Ti I | 31 F | 12095.67 | T1 I | 14 F
9 F | | 11228.14 | Ti II | 2 F | 11679.85 | Ti I | 14 F | 12168.18 | Cr II | | | 11233.80 | Fe I | 22 F | 11681.81 | Ti I | 14 F | 12168.8 | Co II | 1 F | | 11237.04 | Fe I | 32 F | 11690.94 | T1 I | 14 F | 12168.80 | Ti I | 1 F | | 11242.12 | Ti II | 2 F | 11698.62 | Zr II | 21 F | 12170.50 | Cr· II | 9 F | | 11246.87 | V II | 1 F | 11714.28 | Ti II | 12 F | 12178.83 | Cr II | 9 F | | 11261.79 | T1 I | 26 F | 11715.20 | V II | 1 F | 12209.6 | Co VII | 6 F | | 11272.6 | Fe III | 13 F | 11735.52 | Ti II | 1 F | 12211.22 | Zr II | 18 F | | 11280.5 | Co II | 1 F | 11748.60 | Ti I | 14 F | 12219.66 | V II | 22 F | | 11284.9 | Fe III | 13 F | 11757.66 | V II | 1 F | 12300.16 | Cr II | 26 F | | 110110 | | 49.1 | | | | | | | | 11305.8 | 8 I | 1 F | 11764.23 | Fe I | 32 F | 12300.77 | Cr II | 26 F
11 F | | 11315.52 | V II | 30 F | 11765.16 | Fe I | 40 F | 12323.27 | N1 II | 22 F | | 11324.18 | V II | 22 F | 11767.30 | Ti I | 14 F | 12372.55 | Fe I | 22 F | | 11332.50 | T1 I | 26 F | 11771.95 | Ti I | 1 F | 12387.48 | Fe I | | | 11347.6 | Co VII | 6 F | 11778.39 | T1 II | 12 F | 12417.8 | Ti III | 1 F | | 11359.87 | Ni II | 11 F | 11782.27 | T1 II | 1 F | 12460.65 | Cr II | 9 F | | 11368.21 | V II | 22 F | 11782.63 | Cr II | 26 F | 12463.08 | Cr II | 9 F | | 11396.50 | Ti II | 2 F | 11784.62 | Cr II | 26 F | 12471.70 | Cr II | 9 F | | 11402.97 | Ti I | 26 F | 11785.17 | Cr II | 26 F | 12645.23 | Fe I | 22 F | | 11414.22 | V II | 1 F | 11786.08 | Fe I | 40 F | | | | | 11432.93 | T1 II | 1 F | 11789.27 | Cr II | 9 F | | | | | 11444.61 | V II | 1 F | 11790.50 | Fe I | 32 F | | | | | 11444.66 | V II | 30 F | 11791.90 | Fe I | 22 F | | | | | 11450.66 | Fe I | 40 F | 11792.55 | Ti I | 14 F | | | | | 11458.27 | Ti II | 2 F | 11799.5 | Ti III | 1 F | | | | | 11471.69 | V II | 23 F | 11823.03 | Ti II | 12 F | | | | | 11477.29 | T1 II | 1 F | 11835.06 | Ti I | 14 F | | | | | 11478.92 | Ti II | 38 F | 11849.83 | Ti I | 1 F | | | | | 11479.51 | V II | 23 F | 11852.49 | V II | 22 F | | | | | 11483.2 | PII | 1 F | 11856.02 | T1 I | 1 F | | | | | | T | 00 P | 11857.28 | v II | 1 F | | | | | 11495.96 | Fe I | 32 F | 11857.26 | Ti II | 12 F | | | | | 11509.6 | N1 VIII | 6 F
32 F | 11881.68 | Ti I | 14 F | | | | | 11518.28 | Fe I | | 11884.57 | Ti II | 12 F | | | | | 11520.46 | Ti I | 31 F | | Sc II | 4 F | | | | | 11521.31 | Ti I | 33 F | 11896.48 | P II | 1 F | | | | | 11524.46 | Fe I | 32 F | 11898.2 | V II | 21 F | | | | | 11537.68 | Fe I | 22 F | 11918.75 | | 21 F
14 F | | | | | 11557.08 | T1 II | 1 F | 11933.60 | Ti I | 14 F
9 F | | | | | 11568 - 38 | V II |
22 F | 11943.75 | Cr II | | | | | | 11580.17 | V II | 1 F | 11950.77 | Ti I | 14 F | | | | # Publications in the National Standard Reference Data Series National Bureau of Standards You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal. Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be made either - NSRDS-NBS 1, National Standard Reference Data System-**Plan of Operation,** by E. L. Brady and M. B. Wallenstein, 1964 (15 cents), SD Catalog No. C13.48:1. □ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2. NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si II, Si III, Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1. □ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2. ☐ NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C.I., C.II., C.III., C.IV., C.V., C.V., by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3. □ NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, N IV, N V, N VI, N VII, by C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec. 4. NSRDS-NBS 4, Atomic Transition Probabilities, Vol. 1, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. C13.48:4/Vol.I. NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5. ☐ NSRDS-NBS 6. Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1. NSRDS-NBS 7. High Temperature Properties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1. □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials. by R. W. Powell, C. Y. Ho, and P. E. Liley, 1966 (\$3). PB189698* NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9. □ NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No. C13.48:10. ☐ NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No. C13.48:11/Pt.2. NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients from Symmetric to Asymmetric Bases - * Available from National Technical Information Service, Springfield, Virginia 22151. and Expectation Values of P2, P2, and P2, by R. H. by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No. Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No. ☐ NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts, □ NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy Schwendeman, 1968 (60 cents), SD Catalog No. C13.48:12. C13.48:13. C13.48:14. by international money order or draft on an American bank. Postage stamps are not acceptable. No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage. Send your order together with remittance to Superin- - tendent of Documents, Government Printing Office, Washington, D.C. 20402. ☐ NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1. □ NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2. □ NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3. □ NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold From O to 300°K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18. ☐ NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19. ☐ NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S. Johnston, 1968 (45 cents), SD Catalog No. C13.48:20. □ NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal, 1970 (\$7), SD Catalog No. C13.48:21. NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II. ☐ NSRDS-NBS 23, Partial Grotrian Diagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23. NSRDS-NBS 24. Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 100° C, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24. ☐ NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25. NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive lons, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD Catalog No. C13.48:26. □ NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27. - ☐ NSRDS-NBS 28, Molten Salts: Vol. 2, Section 1, Electrochemistry of Molten Salts: Gibbs Free Energies and Excess Free Energies From Equilibrium-Type Cells, by G. J. Janz and C. G. M. Dijkhuis. Section 2, Surface Tension Data, by G. J. Janz, G. R. Lakshminarayanan, R. P. T. Tomkins, and J. Wong, 1969 (\$2.75), SD Catalog No. C13.48:28/Vol.2. - ☐ NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV, by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29. | of Inorganic Salts, Part 2, Carbonates, by K. H. Stern and E. L. | II, and III. | |---|--| | Weise, 1969 (45 cents). SD Catalog No. C13.48:30/Pt. 2. | NSRDS-NBS 36, Micelle Concentrations of Aqueous Surfactant | | ☐ NSRDS-NBS 31. Bond Discrimination Energies in Simple Mole- | Systems, by P. Mukerjee and K. J. Mysels, 1971 (In press). SD | | cules, by B. deB. Darwent, 1970 (55 cents). SD Catalog No. | Catalog No. C13.48:36. | | C13.48.31. | NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, by | | ☐ NSRDS-NBS 32, Phase Behavior in Binary Multicomponent Sys- | D. R. Stull, H. Prophet, et al., 1971 (in press), SD Catalog No. | | tems at Elevated Pressures: η -Pentane and Methane- η -Pentane, | C13.48:37. | | by V. M. Berry and B. H. Sage, 1970 (70 cents). SD Catalog No. | NSRDS-NBS 38, Critical Review of Ultraviolet Photoabsorption | | C13.48.32. | | | NSRDS-NBS 33, Electrolytic and Conductance and the Conductance | Cross Sections for Molecules of Astrophysical and Aeronomic | | of the Acids in Water, by W. J. Hamer and H. J. DeWane, 1970 | Interest, by R. D. Hudson, 1971 (in press), SD Catalog No. | | (50 cents). SD Catalog No. C13.48:34. | C13.48:38. | | ☐ NSRDS-NBS 34, Ionization Potentials and Ionization Limits De- | ☐ NSRDS-NBS 39, Tables of Molecular Vibrational Frequencies, | | rived from the Analyses of Optical Spectra, by C. E. Moore, 1970 | Consolidated Volume I, by T. Shimanouchi, 1971 (in press). SD | | (75 cents). SD Catalog No. C13.48:33. | Catalog No. C13.48:39. | | NSRDS-NBS 35, Atomic Energy Levels, Vol. I 1 H to 23 V; Vol. II | NSRDS-NBS 40, A Multiplet Table of Astrophysical Interest, by | | 24Cr to 41Nb; Vol III 22Mo to 57La-72Hf to 89Ac, by C. E. | C. E. Moore, 1971 (\$). SD Catalog No. C13.48:40. | | •• •• ··-, ··-, ··- ··- ··- ··- ··- ··- ··- · | | | FORM NBS-114A (1-71) | | | | | | | | | |---|--|--|---------------------------------------|-------------------------------|--|--|--|--| | U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET | 1. PUBLICATION OR REPORT NO. NSRDS-NBS 40 | 2. Gov't Accession
No. | 3. Recipient' | s Accession No. | | | | | | 4. TITLE AND SUBTITLE | 5. Publication | on Date | | | | | | | | A M. 144-1-4 T-1-1 | Februar | у 1972 | | | | | | | | A Multiplet labi | e of Astrophysical Interest | | 1 | Organization Code | | | | | | 7. AUTHOR(S) | | | 9 Porformina | g Organization | | | | | | Charlotte E. Moo | | | | | | | | | | 9. PERFORMING ORGANIZAT | ION NAME AND ADDRESS | | Project/ | Task/Work Unit No. | | | | | | 1 | UREAU OF
STANDARDS
T OF COMMERCE
I, D.C. 20234 | | 11. Contract/Grant No. | | | | | | | 12. Sponsoring Organization Na | me and Address | | 13. Type of I
Covered | Report & Period | | | | | | Same as No | o. 9 | | Fin | a1 | | | | | | | | | 14. Sponsoring Agency Code | | | | | | | 15. SUPPLEMENTARY NOTES | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | 16. ABSTRACT (A 200-word or bibliography or literature su | less factual summary of most significant irvey, mention it here.) | information. If docume | nt includes a s | significant | | | | | | printed here to me
of 85 chemical ele
intensities, excit
individual lines, | tion of a current edition, tet continuing demands. The ments are listed in related ation potentials and multipland each multiplet is assign material used for the compil | leading lines in
groups called mu
et designations
ed a number. An | n 196 atom
ultiplets.
are given | ric spectra Estimated for the | | | | | | The Table is prese | nted in two parts: | | | | | | | | | Part I includes the of increasing ioni: | e multiplets, with the spect
zation, and the elements in | ra of each eleme
order of increas | ent being
sing atomi | given in order
c number. | | | | | | Part II is a Finding increasing waveleng | ng List in which all the lin
gth, with their multiplet nu | es in Part I are
mbers. | e entered | in order of | | | | | | The range of the Ta
"Forbidden Lines" e | The range of the Table is from 2951 $\hbox{\mbox{$\mathring{\rm A}$}}$ to 13164 $\hbox{\mbox{$\mathring{\rm A}$}}$. A supplementary table of "Forbidden Lines" extends from 2972 $\hbox{\mbox{$\mathring{\rm A}$}}$ to 12645 $\hbox{\mbox{$\mathring{\rm A}$}}$. | order, separated by semicolons) ltiplet table; Finding list, | atomic spectra; | Multiple | t table; | | | | | | 18. AVAILABILITY STATEMEN | NT | 19. SECURITY
(THIS REI | | 21. NO. OF PAGES | | | | | | X UNLIMITED. | | UNCL ASS | IFIED | 253 | | | | | | FOR OFFICIAL D | ISTRIBUTION. DO NOT RELEASE | 20. SECURIT
(THIS PA | Y CLASS
GE) | 22. Price \$2.00 | | | | | | | | UNCL ASS | IFIED | | | | | | ## **NBS TECHNICAL PUBLICATIONS** ### **PERIODICALS** JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering Comprehensive scientific papers give complete details of the work including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts Published in three sections, available separately. ## Physics and Chemistry Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription. Domestic, \$9.50, \$2.25 additional for foreign mailing. ### • Mathematical Sciences Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription. Domestic, \$5.00, \$1.25 additional for foreign mailing. ## • Engineering and Instrumentation Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription. Domestic, \$5.00, \$1.25 additional for foreign mailing. ## TECHNICAL NEWS BULLETIN The best single source of information concerning the Bureau's research developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription. Domestic, \$3.00, \$1.00 additional for foreign mailing. #### **NONPERIODICALS** Applied Mathematics Series. Mathematical tables, manuals, and studies Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies. Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, painphlets, etc. Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest. Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace. NBS Special Publication 305, Supplement 1, Publications of the NBS, 1968-1969. When ordering, include Catalog No C13 10·305. Price \$4.50, \$1.25 additional for foreign mailing Order NB5 publications from Superintendent of Documents Government Printing Office Washington, D.C. 20402