A Multiplet Table of Astrophysical Interest

Revised Edition

Part I—Table of Multiplets

Part II—Finding List of All Lines in the Table of Multiplets

Charlotte E. Moore

Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234

Contributions from the Princeton University Observatory
No. 20, 1945
Reprinted by permission of the Director
of the Princeton University Observatory

NSRDS-NBS 40

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40, 253 pages (Feb. 1972)

CODEN: NSRDAP

Reprint of NBS Technical Note 36 (PB151395). See author's note, pp. v-vi.

Issued February 1972

FOREWORD

The National Standard Reference Data System provides effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards.

The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned; nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties and mechanical properties.

The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources, as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

LEWIS M. BRANSCOMB, Director

AUTHOR'S FOREWORD

The present Multiplet Table was first published in 1945 by the Princeton University Observatory; it has not yet been superseded. In 1959 it was reprinted as Technical Note 36 of the National Bureau of Standards. This issue is now out of print and is being reprinted as NSRDS-NBS 40.

The format is not being changed. In the present publication a special note has been added in the heading for those spectra included in "Selected Tables of Atomic Spectra," NSRDS-NBS 3, to indicate the existence of a Revised Multiplet Table.

August 2, 1971

ABSTRACT

Pending the completion of a current edition, the 1945 Multiplet Table is being reprinted here to meet continuing demands. The leading lines in 196 atomic spectra of 85 chemical elements are listed in related groups called multiplets. Estimated intensities, excitation potentials and multiplet designations are given for the individual lines, and each multiplet is assigned a number. An extensive bibliography covers the source material used for the compilation.

The Table is presented in two parts:

Part I includes the multiplets, with the spectra of each element being given in order of increasing ionization, and the elements in order of increasing atomic number.

Part II is a Finding List in which all the lines in Part I are entered in order of increasing wavelength, with their multiplet numbers.

The range of the Table is from 2951 Å to 13164 Å. A supplementary table of "Forbidden Lines" extends from 2972 Å to 12645 Å.

Key words: Atomic spectra, multiplet table; finding list, atomic spectra; multiplet table; spectra, atomic.

Editorial Note—Spectra in Technical Note 36 (PB151395), for which revised data are given in NSRDS-NBS 3*

	Page	Spectrum	Reference
	2 2 3 3	C II C III C IV	SEE REVISION IN NSRDS-NBS 3, Section 3, November 1970.
	New	Cv	SEE Section 3, November 1970.
	6 6	$\left. egin{array}{l} \mathbf{N} \ \mathbf{v} \ \mathbf{N} \ \mathbf{v} \end{array} ight\}$	SEE REVISION IN NSRDS-NBS 3, Section 4, August 1971.
	New New	N vi) N vii}	SEE Section 4, August 1971.
	15 16	Siı´ Siıı)	SEE REVISION IN NSRDS-NBS 3, Section 2, November 1967.
	16 17	Si III Si IV	SEE REVISION IN NSRDS-NBS 3, Section 1, June 1965.
			Correction
Part I Part II	2 76	Не 11 Не 11	λ 6570.0 Ref. A has been corrected to λ 6527.10 Ref. P. λ 6570.0 has been corrected to λ 6527.10.

^{*} See List of Publications in the National Standard Reference Data Series at the back of this book for information about obtaining these publications.

Author's Note on the Reprinting of the 1945 Princeton Multiplet Table: U.S. Department of Commerce, N.B.S. Tech. Note 36, (PB151395), 1959

The Multiplet Table that first appeared as Contributions from the Princeton University Observatory No. 20, 1945, is still a standard reference source used by astrophysicists, physicists, chemists, and many others. To date it has not been superseded and it continues to be in steady demand, although it is seriously in need of revision.

In 1959 this table was reprinted as U.S. Department of Commerce, National Bureau of Standards Technical Note 36 (PB151395). This issue is now out of print.

In view of the continuing requests, the Office of Standard Reference Data has decided to reprint Technical Note 36 as National Standard Reference Data Series-National Bureau of Standards, NSRDS-NBS 40, 1971, Parts I and II.

Similarly, Volumes I, II, and III of "Atomic Energy Levels," Circular of the National Bureau of Standards 467 are being reprinted in the same series, NSRDS-NBS 35, Parts I, II, III.

The present rapid technological advances by the astrophysicist in observing celestial spectra have created an urgent need for a current Multiplet Table of Astrophysical Interest. The correct interpretation of these spectra depends directly on the laboratory analyses of optical spectra. A critical compilation of spectroscopic data that provides the leading lines of individual atomic and ionic spectra of the more abundant elements, over the range from the x-ray to the microwave region is essential. In preparing such a table an effort should be made to envisage future developments in observing celestial spectra over this range and to design laboratory programs that will provide the requisite data.

Many gaps exist in our knowledge of atomic and ionic spectra. Sources that will produce clearly separated spectra in all stages of ionization for the elements H to Ni will be needed. Some of the less complex spectra can be traced along isoelectronic sequences, while more complex spectra have line lists containing thousands of lines. Encouraging progress is being made in the laboratory, where excellent spectrographs and carefully controlled sources can produce spectra that far outweigh the observations quoted in 1945.

Although it is not yet possible to provide a complete revision of this 1945 edition, current Multiplet Tables together with corresponding revised tables of Atomic Energy Levels are available for selected spectra. They are being published by the National Bureau of Standards under the title "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," as Sections of NSRDS-NBS 3. Section 1 contains these data for the spectra Si II, Si III, Si IV; Section 2 for Si I; Section 3 for C I, C III, C IV, C V, C VI; Section 4 for N IV, N V, N VI, N VII. Similar tables for N I, N II, N III are in course of preparation as Section 5. A number of additional spectra are partially completed for inclusion in this series. These new Multiplet Tables cover the entire observed range of individual spectra, and, therefore, supersede not only the 1945 Multiplet Table, but also the Ultraviolet Multiplet Table which appeared as Circular of the National Bureau of Standards 488, Section 1, 1950; Section 2, 1952; Sections 3, 4, 5, 1962.

In the present reprinted issue of the Princeton Table, the individual spectra that have been revised are clearly indicated. Readers are urged to use the revised data for the spectra thus marked and to note further such revisions of selected spectra as they appear in this series.

This work advances slowly, although a number of revised analyses of spectra have been published that supersede the 1945 data. A bibliography in the National Bureau of Standards Special Publication 306, Sections 1, 2, 3, 4, 1968-1969, provides reference material on individual spectra to about July 1968, continuing from the reference listings given in the Volumes on Atomic Energy Levels.

The most serious need for revision is perhaps in the infrared data. Current references to work on the spectra H I to Ni I in the range > 7000 Å may be found in a forthcoming publication of the Proceedings of the Seventeenth International Astrophysical Symposium, on "Astronomical Spectra in the Infrared and Microwave Regions," held at the Institut d'Astrophysique, Université de Liège, Cointe-Ougrée, Belgium, June 28-30, 1971.

Washington, D.C. August 2, 1971 CHARLOTTE E. MOORE

OI COMILLIMI

PART I. TABLE OF MULTIPLETS

ĩ	Introduction	Page
•	1 Need for spectrum analysis 2 Need for Multiplet Table 3 Range of Present Table 4 Importance of Multiplets 5 First edition 6 Arrangement of Table	XII XII XII XII XII
·II	The Multiplet Table—General Considerations 7 Astronomical Spectra. 8 Astrophysical importance of spectra, H-Zn. 9 Elements Ga-Ba. 10 Rare Earths. 11 Elements Hf-U.	XIII XIII XIII XIII
Ш	Basis of Selection 12 The Short Periods (H-A) 13 Nebular spectra 14 First Spark Spectra 15 Infra-Red Solar Spectrum 16 The First Long Period (K-Kr) 17 The Spectrum of Fe I 18 The Second Long Period (Rb-Xe) 19 Forbidden Lines	XIII XIII XIII XIII XIV XIV XIV
IV	General Arrangement of the Multiplet Table 20 Size of Present Revised Multiplet Table 21 Periodic Table 22 Headings 23 Ionization Potential 24 Grading of Analysis of Individual Spectra 25 Grading of List of Individual Spectra 26 Date of completion of Individual Spectra	XIV XIV XVI XVI XVI XVI XVII
v	Arrangement of the Multiplets of Each Spectrum 27 Spectrum Analysis—general arrangement of multiplets. 28 Multiplet Designations—quantum numbers. 29 Incomplete Multiplets. 30 Unclassified Lines. 31 Special Remarks on Individual Spectra.	XVII XVIII XX XXI XXI
VI	Columns of the Table of Multiplets 32 Wave-Length 33 Symbols 34 Intensity 35 Excitation Potentials	XXII XXIII XXIII
VII	Spectroscopic Notation A Series Spectra 36 Series Notation and Limits. 37 Special Cases. B Complex Spectra 38 Regular Notation. 39 Numbered Levels.	XXIV XXV XXVI
VIII	Special Notes on Individual Spectra 40 H, D, He II etc	XXVI

TABLE OF CONTENTS

PART I. TABLE OF MULTIPLETS—Continued

		Page
IX	Spectra Omitted from the R M T	
	42 Spectra of Astrophysical Interest—No Analysis	XXVIII
	43 Analyzed Spectra without Astrophysical Importance	XXIX
	44 Spectra for which nothing is known	XXIX
X	Forbidden Lines	
	45 Basis of Selection	xxix
ХI	Details of Publication	
	46 Revised Solar Identifications	xxxı
XII		AAAI
ΛII	Bibliography—Description 47 References used for Wave-Length, Intensity and Analysis	
		XXXI
XIII	Acknowledgments	
Biblio	graphy	xxxxx
	by Pages	XLIII
Index	by Elements	XLIV
Revis	ed Multiplet Table	
	Body of Table	1-99
	Forbidden Lines	100-110

PREFACE

The preparation of a Multiplet Table that will meet the needs of all astrophysicists both now and in the future is an almost overwhelming undertaking. The most eminent workers would have to exercise careful judgment in handling the spectroscopic literature today. The writer has been bold enough to attempt it, only because of the many requests for a revision of the earlier Table and the enthusiasm with which it was received in spite of its many faults. Admittedly the present work is far from ideal. With all its limitations, however, it could never have been published without a vast amount of collaboration. The generosity and encouragement of spectroscopists and astrophysicists both at home and abroad has been the inspiration for this book. No two people would present the same choice of material, and the writer feels that her judgment has been far from adequate for this task. Whatever usefulness the volume may have is due to the many workers who have stood by, ready to supply material, to discuss puzzling questions and to offer the most valuable suggestions.

Since 1932 work on spectrum analysis has progressed so speedily that the selection of data useful to the astrophysicist has been one of the major problems. Requests for an entirely complete Multiplet Table have been received, but the purpose of this work has been to provide a book whose scope is limited—one that contains astrophysically useful data but is not unwieldy because of the inclusion of other material from the vast storehouse of spectroscopic literature now accessible. The bibliography should be consulted by those who desire more complete Tables of Multiplets.

More work of astrophysical importance remains to be done, chiefly on the spectra of the rare-earths and on the second spark spectra in general. It is hoped that a supplement can be prepared to cover these spectra and that a large part of the present work will prove to be definitive.

This book has been brought to a conclusion during the second world war. Consequently, restrictions of all kinds have been imposed and assistance has been limited. A very careful attempt has been made to prepare the manuscript accurately. The writer believes, however, that errors have inevitably been made in the compiling and editing of more than 25,750 spectral lines, for the work has been done with the minimum amount of clerical aid. She relies upon the users to detect serious errors and report them to her so that a list of errata may be published. Suggestions will be welcome.

Mention has been made of the cordial cooperation experienced from the beginning of this work. It could not now have been brought to a conclusion without the hearty and enthusiastic support of Henry Norris Russell, the author of the first list of multiplets of astrophysical importance. He has generously offered his valuable collection of data on spectra and has been ever ready to help in spite of the many complications that have arisen in carrying out such an extensive program.

CHARLOTTE E. MOORE

Princeton University Observatory Princeton, New Jersey April 3, 1945

A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST

PART I

TABLE OF MULTIPLETS

I. INTRODUCTION

- 1. The detailed interpretation of stellar spectra demands of the laboratory investigators an ever increasing amount of careful work on spectrum analysis. With the impetus provided by Hund's theory, remarkably rapid strides have been made. Additional encouragement, particularly in handling complex spectra, has resulted from the great development of mechanical devices to decrease the enormous labor of measuring and reducing spectrograms. The valuable machine developed by Harrison at the Massachusetts Institute of Technology for this purpose has already proven its worth and promises much more in the future.
- 2. From an astrophysical point of view there is a definite need for a compendium of multiplets. The manuscript lists prepared for the present work have been almost continuously on loan to various investigators.

Spectrum analysis has not been carried far enough to compile a completely satisfactory Table. So many spectra have been analyzed, however, that to wait for perfection is to retard scientific progress. For many spectra "prediction" may be invoked to extend the existing lists of observed laboratory lines, and this has been done throughout the work. Three general classes of lines are tabulated: those observed in the laboratory; predicted "permitted" lines calculated from combinations among spectroscopic term values; and predicted "forbidden" lines.

3. A complete multiplet table would be welcomed by many scientists. It is not the purpose of the present work to furnish this. The range of wave-lengths is roughly from $\lambda 2950$ to $\lambda 13000$. The violet limit is imposed by the ozone in our atmosphere, which cuts off stellar observations beyond this region. In the infra-red the scarcity and inaccuracy of laboratory wave-lengths have made it necessary to predict many lines.

Even within these limits, only the lines thought to be useful in the interpretation of astronomical spectra are listed. These are selected from the elements sufficiently abundant to appear in stellar spectra, and from only those stages of ionization and types of excitation which are to be expected.

- 4. The importance of handling the various laboratory spectra by multiplets was stressed in 1925 by Russell,¹ who published the original multiplet table under the title "A List of Ultimate and Penultimate Lines of Astrophysical Interest." Useful as it was, this soon proved to be incomplete, not only because it was intentionally limited, but also because more data were becoming available. Work on spectrum analysis was proceeding so rapidly that an extension of his list was imperative.
- 5. When the writer was at the Mount Wilson Observatory in 1931 she prepared a solar multiplet table for private use in revising and extending the identification of lines in the solar and sun-spot spectra. This manuscript was constantly used by astronomers. In response to requests for copies, the laboratory data for light elements present in early type stars were added and a limited edition was printed in 1933.² This edition was out of date and out of print almost immediately—the demand for it had not been anticipated. To meet the situation the present book was planned; it is the first book designed from the start as a multiplet table for astrophysicists. For this reason, solar wave-lengths and intensities are excluded. It is essentially a manual of laboratory data needed by astronomers.
- 6. In the Multiplet Table (Part I) the elements are arranged in order of increasing atomic number. For each spectrum of each element the multiplets are listed in order of increasing energy level (see § 27 for details), and are numbered for reference. While such an arrangement is useful in studying stellar spectra, it introduces one serious disadvantage. The search for a particular line is laborious. This has been a widespread and an entirely justified criticism of the earlier Table. A Finding List has, therefore, been prepared and forms Part II of this Contribution. Here every line in the Revised Multiplet Table (hereinafter referred to as the R M T), is entered in order of wavelength, listing the spectrum to which the line belongs, and the number of the multiplet containing it.

II. THE MULTIPLET TABLE—General Considerations

7. The astronomical spectra forming the basis of selection of the elements, spectra and lines included, fall into several general classes. The sun receives first consideration. The observed solar spectrum now extends from $\lambda 2914^*$ to $\lambda 13495$, which accounts for the range covered in this Table. In addition, the spot and chromospheric spectra, stellar spectra of every type from Wolf-Rayet stars down through M-stars, including giants and dwarfs, spectra of novae and nebulae, and of the corona must be taken into account.

¹ Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925.

A Multiplet Table of Astrophysical Interest, Princeton 1933.
 Accurate measures have not been made to the violet of λ2949.

8. The astrophysical importance of a spectrum depends upon the abundance of the element in the most favorable celestial sources, and the number and excitation potentials of the lines in the visible region. Almost all of the elements of atomic number 1-30 (H-Zn) have, on this account, preference over those that follow. The analyses of their arc spectra are almost all adequate for astrophysical purposes.

For the first spark spectra, which on the whole are more important, the analyses are fairly complete (except for Mn II and Co II) The lists for these spectra in the R M T include all but the weakest observed lines except for a few elements of low abundance.

The second spark spectra are less completely analyzed in the two short periods. In the first long period Fe III is complete and only a beginning has been made for any of the rest.

Detailed knowledge of spectra of more highly ionized atoms is confined to a few of the lighter elements.

- 9. The spectra of the elements from Ga to Ba are on the average considerably richer, and much less completely analyzed; but these elements are decidedly less abundant and the existing data are usually, though not always, fairly adequate for astrophysical purposes.
- 10. The rare earths, which are no rarer than neighboring elements in cosmical abundance, usually have rich spectra, which adds to their significance. The arc spectra rarely appear. The first spark spectra are important in many stars, and lines of the second spark spectra of several of them have recently been identified. Analysis of the third spectra is barely begun; for the second spectra it is well advanced for six of these elements and well begun for four more.

The lists given here for the rare earths are approximately definitive for La 11, Eu 11 and Lu 11. It is hoped that greatly improved data for the others will be available in the near future. Extended tables for rare earths are likely to form the larger part of a supplement to the R M T.

11. The elements from Hf onward are of low abundance, and the data for them, though incomplete, meet most astrophysical needs tolerably.

III. BASIS OF SELECTION

12. The Short Periods (H-A).

These spectra are so important in the hotter stars that the lists are entirely or almost complete for all degrees of ionization included, except for a few elements of low cosmic abundance.

The spectra of Wolf-Rayet stars,2,3 novae and nebulae contain many "predicted" lines of these elements, not yet observed in the laboratory. For many light elements more predicted lines could probably have been included to advantage. More accurate values of predicted wave-lengths could also have been given, particularly in the spark spectra of C, N, and O. The precedent set by Edlén in his work on Wolf-Rayet⁸ stars was followed. In many cases the term separations are known with sufficient accuracy to justify predictions to 0.1 A, although he uses no decimals. Use of the photographic method of reproduction for this book has prevented all but the most necessary alterations of the original manuscript. Changes later realized to be improvements have been omitted because of this restriction.

- 13. Bowen's 4 work naturally forms the guide for selecting material related to nebular spectra. The leading nebular lines are due to forbidden lines of the light elements. In anticipation of future needs, the lists of forbidden lines have, however, been greatly extended throughout the first long period.
- 14. No particular type of stellar spectrum has influenced the choice of lines from the first spark spectra of light elements. The lists have not been restricted to include only those lines known to be present in the stars. The abundance of the element has been the chief factor considered in omitting lines. For elements known to be fairly abundant, favorable predicted lines have been added. The lists are as extensive as the present state of analysis permits.
- 15. For some years Mr. H. D. Babcock at Mount Wilson, has been preparing for publication a monograph on the Infra-Red Solar Spectrum. His work now covers the interval λλ6600-13495 and includes approximately 7300 lines. The leading accessible lines of the arc spectra of most of the light elements lie in this interval. For example, important solar lines are unquestionably due to H, C I, N I, O I, Mg I, Si I, P I, and S I. In fact, the presence of phosphorus could not be detected until the solar observations were extended to the infra-red. The present Table has been compiled with Mr. Babcock's work especially in mind.

For unblended lines the solar wave-lengths in this region are far more accurate than many laboratory measures. Si affords an excellent illustration. The lines are sharp in the sun and the term separations among solar wave-

¹ Swings, Ap. J. 100, 132, 1944. ² Payne, Zeit. fur Ap. 7, 1, 1933. ³ Edlén, Zeit. fur Ap. 7, 378, 1933. ⁴ Rev. Mod. Phys. 8, 55 (No. 2), 1936.

numbers are so consistent that accurate solar term values can be calculated. These term values have been very useful in predicting wave-lengths. Similarly, the triplet and singlet "F" series of Mg I were extended with the aid of solar data.1 The constancy of the term separations proves beyond doubt the correctness of the identifications.

16. The First Long Period (K-Kr).

The elements in the first long period from K through Ni constitute by far the major portion of this book (pp. 23-77), on account of the complexity of their spectra. Generally speaking, the arc and first spark spectra are well analyzed except for those mentioned in § 8. Many lines of these spectra (as far as Cu) are present throughout the entire range of the solar and sun-spot spectra, the flash spectrum, stellar spectra like those of Y Cygni and a Persei, and later type stars.

The only second spark spectrum in this group that can be given completely is that of Fe III. Astronomers eagerly await the definitive analysis of the rest.

- 17. The spectrum of Fe I deserves special mention. Although the importance of the analysis has long been realized, a complete monograph of this spectrum has only recently been published.² Practically every known line of Fe 1 is present in the sun. An amazing number of predicted lines agree well with solar wave-lengths. A statistical study of these coincidences indicates that most of them are real. For the statistical work the predicted lines were graded as "good," "fair," or "poor." The grades were based on the behavior of all the lines of each multiplet in the solar spectrum, the agreement in wave-length, and other factors. Only the "good" and "fair" lines have been published to date. Since the grading was severe, and since predicted wave-lengths are much in demand, many of the lines graded "poor," but considered useful to other workers, have been retained in the R M T.
 - 18. The Second Long Period (Rb-Xe).

These elements are observed chiefly in the solar and sun-spot spectra and later dwarf stars. Except for Y II and Zr II the lists are restricted to the lines from low atomic energy levels. They are, however, more extensive than in the earlier Multiplet Table and slightly longer than are necessary to meet present needs.

19. Forbidden lines are assuming more and more significance in astronomical sources. A special section of the R M T (pp. 100-110) and one of the Finding List (pp. 87-96) are devoted to them. It is extremely difficult to predict what the future needs will be.

To list the array of possible predicted lines even among only abundant elements would be prohibitive. The present selection has been based largely on suggestions made by Dr. P. Swings. He was planning to publish a paper on this subject, but this was unknown to the writer when she was confronted with the problem of including them in the R M T. He generously suggested that they be given here instead of in a separate paper, and has examined the manuscript carefully. The author is extremely fortunate to have had the benefit of his extensive knowledge of both the theoretical and astrophysical aspects of forbidden lines while preparing this section of the Table. Details are discussed later in § 44.

IV. GENERAL ARRANGEMENT OF THE MULTIPLET TABLE

- 20. The toregoing remarks serve only as the most general guide to the scope of the material presented here. The book is colored throughout by individual judgment in the editing of spectroscopic literature. A serious attempt has been made to limit it in such a manner that it will be a useful astrophysical handbook. Even so, it is now more than twice the size of the earlier edition.
- 21. The elements in the R M T are discussed in order of increasing atomic number, and the spectra of each element in order of increasing ionization.

Table 1 gives a convenient arrangement of the Periodic Table of the elements. This Table is self-explanatory. The atomic number and chemical symbol of each element are given and elements with similar spectra in the short and long periods are connected by diagonal lines.

¹ Russell, Babcock and Moore, Phys. Rev. (2) 46, 826 (No. 9), 1934. Babcock and Moore, Ap. J. 101, 374, 1945.
² Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34, 111 (Part 2), 1944.

TABLE 1 THE PERIODIC TABLE 1

First Period		1 H		2 He	:													
Second Period		3 Li		4 Be		5 B		-	6 C		7 N		8 O		9 F			0 Ne
Third Period		11 Na		12 M		1 A	3 .l		14 Si		15 P	_	16 S		17 C		1	8 \ \
Fourth	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35 Br	36 Kr
Period	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se		
Fifth Period	37 Rb	38 Sr	39 Y	40 Zr	41 Cb	42 Mo	43 (Ma)	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Sixth Period	55 Cs	56 Ba	57* La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85	86 Rn
Seventh Period	87	88 Ra	89 Ac	90 Th	91 Pa	92 U												

^{*} Atomic numbers 58-71—Rare Earths. See below.

70 71 69 62 63 64 65 66 67 68 60 61 Rare Er Sm Eu Gd $\mathbf{T}\mathbf{b}$ Dy Ho TmΥb Lu Earths Nd (II)

In Table 2 the elements are listed in the alphabetical order of their names. The successive columns contain, respectively, the name, the chemical symbol, and the atomic number of each element.

Table 2 ALPHABETICAL LIST OF ELEMENTS

Name	Symbol	Atomic No.	Name	Symbol	Atomic No.	Name	Symbol	Atomic No.
Actinium	Ac	89	Chlorine	Cl	17	Holmium	Но	67
Aluminium	Al	13	Chromium	Cr	24	Hydrogen	Ή	1
Antimony	Sb	51	Cobalt	Co	27	(Illinium	Il	61)†
Argon	A	18	Columbium	Cb	41	Indium	In	49
Arsenic	As	33	Copper	Cu	29	Iodine	I	53
Barium	Ba	56	Dysprosium	Dy	66	Iridium	Ir	77
Beryllium	Be	4	Erbium	Er	68	Iron	Fe	2 6
Bismuth	Bi	83	Europium	Eu	63	Krypton	Kr	36
Boron	В	5	Fluorine	F	9	Lanthanum	La	57
Bromine	Br	35	Gadolinium	Gd	64	Lead	Pb	82
Cadmium	Cd	48	Gallium	Ga	31	Lithium	Li	3
Caesium	Cs	55	Germanium	Ge	32	Lutecium	Lu	71
Calcium	Ca	20	Gold	Au	79	Magnesium	Mg	12
Carbon	C	6	Hafnium	Hf	72	Manganese	Mn	25
Cerium	Ce	58	Helium	He	2	(Masurium	Ma	43)†

[†] Not isolated.

¹ International Chemical Symbols—1941.

Name	Symbol	Atomic No.	Name	Symbol	Atomic No.	Name	Symbol	Atomic No.
Mercury	Hg	80	Radium	Ra	88	Tellurium	Te	52
Molybdenum	Mo	42	Radon	Rn	86	Terbium	Тb	65
Neodymium	Nd	60	Rhenium	Re	75	Thallium	Tl	81
Neon	Ne	10	Rhodium	Rh	45	Thorium	\mathbf{Th}	90
Nickel	Ni	28	Rubidium	Rb	37	Thulium	Tm	69
Nitrogen	N	7	Ruthenium	Ru	44	Tin	Sn	50
Osmium	Os	76	Samarium	Sm	62	Titanium	Ti	22
Oxygen	O	8	Scandium	Sc	21	Tungsten	W	74
P alladium	Pd	4 6	Selenium	Se	34	Uranium	Ü	92
Phosphorus	P	15	Silicon	Si	14	Vanadium	V	23
Platinum	Pt	78	Silver	Ag	47	Xenon	Xe	5 4
Polonium	Po	84	Sodium	Na	11	Ytterbium	Yb	70
Potassium	K	19	Strontium	Sr	38	Yttrium	Y	39
Praseodymium	Pr	59	Sulphur	S	16	Zinc	Zn	30
Protoactinium	Pa	91	Tantalum	Ta	73	Zirconium	Zr	40

22. Headings.

Each spectrum of each element for which multiplets are given, begins with a heading containing four entries: the ionization potential, an astrophysical grade of the analysis, a grade of the list, expressing the fraction of classified lines listed, and finally, the date of completion of the manuscript of that spectrum. For example, Cr 1 (p. 37) starts with the heading

Cr I I P 6.74 Anal A List B March 1941.

23. The Ionization Potential.

For arc spectra many of these have been taken from the list published by Meggers in 1941.¹ For the first spark spectra he has kindly furnished a similar list ² which has been extensively used. The monograph by Edlén ³ has furnished many more, but the values have been recalculated using the factor 0.00012345 instead of the one he used (see § 35). Edlén's unpublished values are quoted ⁴ for Ne. For many other elements the I P has been obtained from the limits published in the papers on analysis, as for Edlén's results. The list by Boyce ⁵ is frequently quoted, particularly in the section dealing with Forbidden Lines. Those interested in the source are advised to consult the part of the bibliography pertaining to analysis (Tables 9 and 10), or one of the above mentioned general lists.

24. The completeness of analysis from the standpoint of the astrophysicist (§§ 8–11) is indicated by four grades. "Anal A" signifies that practically all the important lines of wave-length > 2950 are classified, "Anal B" that only a small fraction remain unclassified, "Anal C" that a considerable proportion are unclassified and "Anal D" that the analysis is seriously incomplete.

This rating necessarily involves a large amount of opinion and should not be given too much weight. No two appraisements would agree completely. Its purpose is to indicate the present state of analysis with regard to the needs of the astronomer.

From the viewpoint of the physicist, the state of the *term* analysis of the various spectra has been similarly summarized elsewhere by means of grades A, B, C etc. With the aid of Hund's theory the physicist can compare the number of predicted and observed *terms* and assign a grade accordingly, whether or not most of the leading lines occur in a given region of the spectrum. Both Boyce ⁵ and Shenstone ⁶ have published extensive surveys.

On account of the different viewpoints, the two grades are often not identical for the same spectrum.

25. A similar grading "List A, B, C, or D" is introduced to indicate the percentage of classified lines of a given spectrum included in the R M T. Since all lines of each spectrum considered are not equally useful to the astrophysicist, the omissions have been much more drastic in some cases than in others. For example, practically every

¹ Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ² Unpublished material, April 1941.

³ Nova Acta Regiæ Societatis Scientiarum Upsaliensis (IV) 9, No. 6, 1933.

^{*} Communicated by Swings in a letter, March 1945.

<sup>Rev. Mod. Phys. 13, 1 (No. 1), 1941.
Reports on Progress in Physics 5, 210, 1939.</sup>

well as strong lines. Hence, all classified lines of Fe 1 to the red of $\lambda 2950$ are entered and the list entry in the heading is "List A". Most of the spark spectra of the first long period are in this class, unless the element is scarce in stars. For many spark spectra most of the observed lines are in the violet and ultra-violet. In such cases the list may be very short, although graded "List A". This means that only a small fraction of the total number of observed classified lines lie in the region considered in this book.

When all but the weakest classified lines are given, the list is graded "B". The spectra of Na I and Mg I illustrate "List B", the higher series members having been omitted as unimportant. In anticipation of requests for more material, the general policy has been to include slightly more than is necessary. Since all classified lines are not given, however, the list cannot be graded "A".

"List C" denotes that most of the strong lines are entered: "List D", that only the leading strong lines are given.

In grading the *lists*, unclassified lines have not been given consideration (although the stronger ones are listed after the multiplets of a spectrum). The purpose of this grading is to enable the reader to judge how many classified lines have been omitted, regardless of whether or not the *analysis* is complete. Thus for Co II few lines are classified, but all these are listed. Hence this element is in the class "Anal C, List A."

26. The last entry at the head of each spectrum gives the month and year in which that section of manuscript was completed. This work has extended over such a long period that the date of publication does not apply even approximately to the date at which some spectra were last examined. It is hoped that the lists are up to date, but if important references have been missed, or if existing unpublished material should replace that included here, the writer invites such suggestions.

V. ARRANGEMENT OF THE MULTIPLETS OF EACH SPECTRUM

27. Reference must be made to some details of spectrum analysis in order to discuss the plan of presentation adopted here. In brief, the atoms of a gas, when excited by radiation, absorb certain wave-lengths corresponding to transitions of their outer electrons from lower energy levels to higher ones. From differences in the wave numbers of the observed lines, energy levels can be worked out, each line being produced by a transition between two such levels. Related levels are grouped accordingly to well known rules to form spectroscopic terms. Transitions between terms give rise to groups of related lines called multiplets.

In the RMT the terms of each spectrum have been arranged in order of increasing value of the component of lowest energy. This defines the relative level of the term, starting with the lowest term zero. The excitation potentials (columns 4 and 5) express in electron volts the values of the energy levels of those term components involved in the production of each line (see §35).

To illustrate, the lowest term of Fe 1 is a^5D . This term is made up of five energy levels whose E P's are respectively 0.00, 0.05, 0.09, 0.11 and 0.12. The next term is a^5F . Here the components have E P's 0.86, 0.91, 0.95, 0.99 and 1.01. For the purposes of this book the terms are considered in order of the lowest level of each, i.e. a^5D 0.00, a^5F 0.86 etc. This is to avoid confusion in spectra whose term values overlap seriously.

In each spectrum all multiplets with the same low term are in one group. The various groups are listed in the order of increasing value of the low terms. Within a group (which represents the combinations of a given low term with higher terms) the multiplets follow the order of increasing high term values.

For example, all combinations from a⁵D of Fe 1 (Multiplets 1-11) form the first group. These multiplets are listed in order of increasing high E P, 2.39, 2.82, 2.93, 3.20 etc. The next low term is a⁵F. The combinations from this term form the next group (Multiplets 12-31) etc.

In certain multiplets, the lowest components of one or both of the terms involved are not represented. This does not alter the arrangement.

Whenever the low level changes, the break in the continuity is indicated by three long dashes between the groups. For Fe 1 the first of these occurs between multiplets 11 and 12.

When terms are widely separated this arrangement results in listing the multiplets from a given low term in the order of decreasing wave-length of the leading line of each multiplet, since increasing energy of the high terms automatically results in increasing wave number, or decreasing wave-length.

The wave-length criterion alone was used for part of the RMT until the overlapping of terms in some complex spectra of the first long period introduced serious complications of arrangement. Then the more rigorous procedure

¹ Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34 (Part 2), 111, 1944.

described above was adopted. Some spectra had been typed before the strictly orderly listing was put into effect. Owing to the excessive amount of labor involved in making such minor changes, slight irregularities of arrangement have not been corrected. For the greater part of the Table, however, the multiplets are in orderly array.

28. The energy levels that are grouped to form spectroscopic terms are defined by inner quantum numbers, commonly known as J-values. The terms have multiplicities (which are either all odd or all even in a given spectrum), and are further defined by azimuthal quantum numbers L which have the values 1, 2, 3 etc. for terms labeled S, P, D, F, G, H, I, K. The complete multiplet designation of any line includes all of these quantities for both the lower and upper energy level involved in the production of the line.

In the R M T a simplified plan has been adopted. The inner quantum numbers are listed separately from the rest of the designation, in column six, under the heading J. The J-value belonging to the lower term comes first and is followed by that of the higher term. In the next column, headed "Multiplet Desig" the spectroscopic designation of the lower term is always stated first, followed by a dash, then that of the higher term. For example, in multiplet No. 5 of Fe I the first line, 3719.935 has J-values 4-5. The rest of the designation is $a^5D-z^5F^\circ$. In the complete notation the "4" appears as the subscript of a^5D and 5 as that of z^5F° , i.e. $a^5D_4-z^5F^\circ$. The complete designation of the second line $\lambda 3737.133$, is $a^5D_3-z^5F^\circ$ 4 etc. The "a" and "z" merely distinguish these 5D and 5F° terms from others of the same type. This notation is discussed later in § 38. For both terms the superscript 5 denotes the multiplicity.

"Permitted" lines occur among combinations between two sets of terms, one "odd" and the other "even". The superscript "o" attached to ⁵F tells that this is the odd term. When both terms belong to the same set (odd or even), the lines are commonly called "Forbidden".

Within a multiplet the arrangement of the individual lines is governed by the J-values. Each multiplet is entered as if it were written in multiplet array, i. e. the lines on the main diagonal come first, then the strongest satellite lines, then the next strongest etc. This is best illustrated by considering the inner quantum numbers, J, of each type of spectroscopic term. For convenience the J-values of all terms from S through I, of multiplicities 1-11 and 2-10 are given in Table 3, which applies equally to odd or even terms.

Even multiplicites are on the left and odd on the right half of the table. The types of terms (in order of increasing L value) S, P, D, F, G, H, I are in the vertical column on the left.

To arrange any multiplet in standard array, such as Multiplet No. 5 of Fe 1, a⁵D-z⁵F°, find the J-values of the two types of terms (odd or even) from Table 3. The term ⁵D is listed under multiplicity 5, and entry D on the left (J-values are 4, 3, 2, 1, 0). The term ⁵F° has J-values 5, 4, 3, 2, 1. Write these arrays as follows, with the low term horizontally arranged, and the high one vertically arranged:

z ⁵ F°	⁵ D ₄	⁵ D ₃	⁵ D ₂	⁵D₁	⁵ D ₀
5F°5	x ₁				
5F°4	y ₁	$\mathbf{x_2}$			
⁵ F° ₈	z ₁	y ₂	X8		
⁵ F° ₂		$\mathbf{z_2}$	уз	X4	
⁵ F° ₁			Z ₃	У4	$\mathbf{x}_{\mathbf{\delta}}$

Table 3

J-Values of Spectroscopic Terms

Mu	ltiplicity	2	4	6	8	10	1	3	5	7	9	11
L	Term										.,	
1	s	1/2	1½	2½	3½	4½	0	1	2	3	4	5
2	P	1½ ½ ½	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	$ \begin{array}{r} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$ $\frac{2\frac{1}{2}}{2}$	5½ 4½ 3½	1	2 1 0	3 2 1	4 3 2	5 4 3	6 5 4
3	D	2½ 1½	3½ 2½ 1½ ½ ½	4½ 3½ 2½ 1½ ½	5½ 4½ 3½ 2½ 1½	6½ 5½ 4½ 3½ 2½	2	3 2 1	4 3 2 1 0	5 4 3 2 1	6 5 4 3 2	7 6 5 4 3
4	F	3½ 2½ 2½	4½ 3½ 2½ 1½	5½ 4½ 3½ 2½ 1½ ½	6½ 5½ 4½ 3½ 2½ 1½	7½ 6½ 5½ 4½ 3½ 2½ 1½	3	4 3 2	5 4 3 2 1	6 5 4 3 2 1 0	7 6 5 4 3 2	8 7 6 5 4 3 2
5	G	41/2 31/2	5½ 4½ 3½ 2½	6½ 5½ 4½ 3½ 2½ 1½	7½ 6½ 5½ 4½ 3½ 2½ 1½	8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½ ½	4	5 4 3	6 5 4 3 2	7 6 5 4 3 2	8 7 6 5 4 3 2 1	9 8 7 6 5 4 3 2
6	H.	5½ 4½	6½ 5½ 4½ 3½	7½ 6½ 5½ 4½ 3½ 2½	8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½ ½	5	6 5 4	7 6 5 4 3	8 7 6 5 4 3 2	9 8 7 6 5 4 3 2	10 9 8 7 6 5 4 3 2 1
7	I	6½ 5½	7½ 6½ 5½ 4½	8½ 7½ 6½ 5½ 4½ 3½	9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½	10½ 9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	6	7 6 5	8 7 6 5 4	9 8 7 6 5 4 3	10 9 8 7 6 5 4 3 2	11 10 9 8 7 6 5 4 3 2

Only those combinations between the low and high terms, for which J changes by O or ± 1 are "permitted". This rule restricts the number of lines to be expected to those denoted by x, y, and z, where the subscripts 1, 2, 3 represent decreasing J-values. The main diagonal lines are x_1-x_5 . The first satellites are y_1-y_4 and the second satellites, z_1-z_3 .

In the RMT, the lines on the main diagonal are listed first, in order of decreasing J-values. From the example, the first lines entered are those in the positions x_1 , x_2 , x_3 , x_4 , x_5 in the Multiplet. The line at x_1 has the designation $a^5D_4-z^5F_5^0$, at x_2 $a^5D_3-z^5F_4^0$ etc. In the RMT the lines of this multiplet appear in the following order:

	λ	J	Desig	
$\mathbf{x_1}$	3719.935	4-5	$a^{\delta}D-z^{\delta}F^{\circ}$)
$\mathbf{x_2}$	3737.133	3-4	"	/
X ₃	3745.561	2-3	"	Main Diagonal
$\mathbf{x_4}$	3748.264	1-2	"	S _i
X5	3745.901	0-1	")
y ₁	3679.915	4-4	"	}
y 2	3705.567	3-3	"	TP' + 0 + 11'
уз	3722.564	2-2	"	First Satellites
y 4	3733.319	1-1	"	
$\mathbf{z_1}$	3649.304	4-3	")
$\mathbf{z_2}$	3683.054	3-2	"	Second Satellites
$\mathbf{Z_3}$	3707.828	2-1	")	

An example of a symmetrical multiplet should also be given. Multiplet No. 12 of Cr II (p. 43) has the designation a P-z P°. Since the multiplicity (4) and type of term (P) are identical for both terms, the J-values are also identical. From Table 3 the J-values for a P term are $2\frac{1}{2}$, $1\frac{1}{2}$, $\frac{1}{2}$.

z ⁴ P°	⁴ P ₂ 1⁄ ₄	⁴P _{11⁄4}	⁴ P _{1/4}
¹ P° ₂ ½ ⁴ P° ₁ ½ ⁴ P° _½	x ₁	y 1	
4P°114	y 1	X ₂	y ₂
4P°14		\mathbf{y}_2	X 3

Here both sets of satellites involve the same J-values, $1\frac{1}{2}-2\frac{1}{2}$, $\frac{1}{2}-1\frac{1}{2}$ and $2\frac{1}{2}-1\frac{1}{2}$, $1\frac{1}{2}-\frac{1}{2}$. Throughout the R M T for such cases, combinations in which J-values read from larger J to smaller J are entered first. Here, for example the pair $2\frac{1}{2}-1\frac{1}{2}$, $1\frac{1}{2}-\frac{1}{2}$ (y₁ and y₂ in bold face type above), precede the pair with J-values $1\frac{1}{2}-2\frac{1}{2}$, $1\frac{1}{2}-1\frac{1}{2}$ respectively.

According to elementary theory the leading line of the principal diagonal is the strongest in the multiplet, and first satellites are stronger than the second, while the two sets of satellites in a symmetrical multiplet are comparable.¹

In the majority of spectra intersystem combinations occur, i.e. those in which the multiplicities of the terms differ by 2 or even 4, as for example multiplets 1 and 332 of Fe 1, $a^5D-z^7D^\circ$ and $z^7F^\circ-e^3G$ respectively. These multiplets often include strong lines, particularly for the heavier elements. The rule $\Delta J=0$ or ± 1 is strictly observed but there are no known formulae for the prediction of intensities, which are often apparently erratic. When intersystem lines are strong, intensities in regular multiplets often deviate from the formulae. The intersystem multiplets are arranged in the R M T on the "diagonal" basis described above, so far as irregularities permit.

29. For all types of multiplets the reader must bear in mind that the arrays described above, and the J-values in Table 3 give all the possible permitted theoretical transitions.

In many cases the R M T does not give theoretically complete multiplets. Reasons for this are:

- 1. When the strongest lines of a multiplet are likely to be very weak in astrophysical sources, the weaker ones have been deliberately omitted even though they may have been observed in the laboratory. Omissions are indicated by a "†" following the "Multiplet Designation".
- 2. Individual lines in a multiplet are sometimes much fainter than theoretically expected and have never been observed. Sequences along the diagonals are thus broken. For such lines predicted positions are given only when it is believed that they may be observable astrophysically.

⁸ For details see Russell, Mt. Wilson Contr. No. 537; Ap. J. 83, 129, 1936.

3. In some cases one or more components of a spectroscopic term have not yet been indentified.

Such cases may be detected by comparing the column headed J for a given multiplet with the theoretical array of permitted lines, just described.

30. For the more important spectra, limited lists of the leading unclassified lines follow the multiplets. The R M T is not designed as a source for the investigator who is interested primarily in unclassified lines.

Three general factors have controlled the selection: the abundance of the element in astronomical sources, the grade of the analysis and the accuracy of the laboratory material. Under "Anal A" more lines will be unclassified for a complex spectrum like Fe I than for a simpler spectrum, but the percentage of strong lines will be small. Under "Anal B" there will be more and stronger unclassified lines than if the grade were A, etc.

If A. S. King has made a temperature classification of the spectrum the leading unclassified lines can be readily chosen from his lists. In such cases his temperature class follows the intensity in the R M T

Among arc spectra the lists of unclassified lines are longest for N 1, Ti 1, Cr 1, Mn 1, Fe 1, Ni 1, Tm 1. Only a few lines are listed for Si 1, S 1, Ca 1, Sc 1, V 1, Co 1, Y 1, Lu 1, and none for any other elements.

For first spark spectra the lists of unclassified lines may be summarized as follows:

Limited Si II, A II, Fe II, Cb II, La II, Nd II, Sm II, Gd II, Tm II.

Very limited O II, S II, Cl II, Ti II, V II, Cr II, Y II, Zr II, Ce II, Pr II, Eu II, Hf II.

Measures inadequate Mn II, Co II, Ni II.

Lists are given for only five "third" spectra: C III (where a dubious classification has been suggested for the lines) N III, Si III, S III and Fe III. The only one of any length is that of Fe III.

For some spark spectra, notably La II and Fe III it is not certain that the separation of the lines in different states of ionization is definitive. This is mentioned in the R M T under these spectra. For many spectra the separation is so uncertain that no unclassified lines have been included. For no spectrum is a complete list given.

31. A few notes are appended to the list of multiplets for certain spectra. These fall into two classes: those dealing with notation (see § 37), and those dealing with fine structure. This book does not discuss fine structure or isotope effects in any detail. Those spectra in which the fine structure or isotope effects should be called especially to the attention of the astrophysicist have this fact mentioned, as follows:

Li II Very wide fine structure

Mg I, Al II Fine structure

Hg I, Tl I Many lines show fine structure

He II, Bi I Wide fine structure.

VI. COLUMNS OF THE TABLE OF MULTIPLETS

32. Wave-length.

The data for each spectrum are given in seven columns. The first contains the laboratory wave-length in I A units. In the earlier edition solar wave-lengths were listed for all but the lighter elements (see § 5). Since any solar line may be a blend, it was decided to replace this entry by laboratory material. An effort has been made to select the best available wave-length for each line. The individual lists are far from homogeneous—there is often an enormous range in accuracy among the lines of a given spectrum.

The reference from which each line has been taken is indicated in column two, by the letters A, B, C etc. Table 7 (p. xxiv), contains the number of the reference in the bibliography to which the letters refer. The letter "P" in this column denotes throughout that the wave-length is predicted from the laboratory term values, which may be found in the references to analysis, Table 9 (p. xxvii).

The order of the letters represents roughly the estimated precision of the measures, but this must not be interpreted too literally because some investigators have measured only limited regions of a spectrum. Consequently, several accurate sources may be used within a multiplet. Furthermore, the letters A, B, etc. denote very different degrees of accuracy for different spectra. While the earlier letters of the alphabet are the more favored choices, it would be erroneous to conclude that the letters are arranged strictly according to the writer's rating of the accuracy of the measures.

33. Symbols in the R M T.

Since most of the symbols occur in column one, they will all be described here.

Wave-length column:

- // This symbol follows the wave-length of the "Raie Ultime" as determined from observations in the laboratory. High transition probabilities as well as low energy levels are involved, and they do not always come from the lowest levels. When the known Raies Ultimes are to the violet of $\lambda 2950$ they are not included in the R M T. With the exception of Eu II1 they are all quoted from Meggers 2, who generously furnished the data on first spark spectra 3 in advance of publication.
- * An asterisk precedes the wave-length throughout the R M T to denote a blend. If no symbol follows the wave-length, the line is blended with another line in the same spectrum. For example, the line *2970.106 appears in multiplets 10 and 11 of Fe I.

An "*" is also used to denote blended intensities. For symbols in the intensity column see § 34G.

- § This symbol follows the wave-length (an "*" always preceding) to indicate a blend of an arc and spark line; or of two spark lines of the same element in spectra of different degrees of ionization. When this pair of symbols appears with an arc line it denotes that the arc line is blended with a line in the first spark spectrum of the element. Similarly, if it appears with a line in a first spark spectrum, the spark line is blended with an arc line of that element. Examples:
 - Fe I Multiplet No. 28 *3116.633 &—Blend of Fe I and Fe II.
 - Cr 11 Multiplet No. 4 *3349.34§—Blend of Cr II and Cr I.

All uses of pairs of symbols not covered by the general cases of blends of arc lines with those in the first spark spectra or vice-versa, as described above, are summarized in Table 4, where another pair of symbols "* and §§" is also introduced.

TABLE 4 SYMBOLS DENOTING BLENDS—SPECIAL CASES

Spectrum	* and §	* and §§
C 11 C 111 P 11 P 111 P 1v S 11 S 111 K 111	PII and PIII PIII "PII PIV "PIII SII "SIII SIII "SII KIII "KII	CII and CIII CIII "CII PII "PIV PIII "PIV PIV "PII
Fe 11 Fe 111	 Ге пт " Fe п	Fен" Fенн Fенн" Fен

Column one of Table 4 indicates the spectrum in which the symbols are found. Columns two and three of the Table contain the pairs of symbols used and the meaning of each. For example:

- C II Multiplet No. 45 *4368.14§§—Blend of C II and C III.
- S II Multiplet No. 50 *3860.64§—Blend of S II and S III.

The symbols mentioned above apply to blended lines which have come to the attention of the writer, but doubtless many more blends exist than are thus noted. A careful examination of the Finding List should reveal any important blends, but this list was prepared after the R M T was typed, and consequently could not be used to check the thoroughness with which the blended lines are marked.

- m An "m" preceding the wave-length indicates that the line is masked (see § 34F).
- † This symbol follows the Multiplet Designation to call attention to the fact that not all the lines observed in the multiplet are listed in the R M T. The violet limit $\lambda 2950$ explains the omission of some strong lines. Most of the omitted lines are too faint to be of astrophysical importance.

¹ Russell, Unpublished material.

² Meggers, Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ³ April 1941.

34. Intensity

Column three contains the estimated laboratory intensity. It has been included only because of persistent requests. The intensities must be used with great caution not only because of the glaring lack of homogeneity in the estimates, but also on account of the difference in the intensity scales used by various investigators.

For each spectrum the writer has tried to adopt the best existing set of estimates made by a good observer who has covered a long range of wave-length. In the red, the intensities by Meggers and Kiess have been the first choice. In the visible, the arc intensities by A. S. King are given for arc spectra and for first spark spectra of the rare earths. For other spark spectra, spark intensities have been used.

When the intensities of the lines of a spectrum are taken from one or two main references they are not given in parentheses. If only a few intensities are from one source, or if the listed ones are probably on a very different scale from the majority used for a spectrum, parentheses are used. In general, the parentheses denote that the intensity is not the first or second choice. Table 8, Page xxvi, gives the references from which the intensities have been taken. The reader is warned not to assume that the wave-length and intensity come from the same reference. This may be the case, but frequently it is not.

The intensity column contains several types of notes discussed below under entries A to G:

A The letters used to describe the intensities are as follows:

- d Double
- g Ghost; g coin Ghost coincident; gn Ghost near
- l Shaded to longer wave-length 1
- n Diffuse (without structure) or hazy
- N Very diffuse (without structure) or very hazy
- p Part of band
- r Narrow self-reversal
- R Wide self-reversal
- s Shaded to shorter wave-length (noted by "v" or "nv" in some papers)1
- tr Trace
- w Wide (fine structure type), broad or complex
- W Very wide (fine structure type) or very broad

B The intensity column is often blank for predicted lines because most of them have not been observed in the laboratory. If the predicted position is assumed to be more accurate than the measured one, the laboratory intensity is given with a predicted wave-length.

C A dash indicates that the line is so faint that no laboratory intensity has been assigned, except for H, D and He II, where no intensities are listed.

D "Forb" indicates that the line is forbidden but has been observed in the laboratory. Lines due to Stark Effect are thus marked.

E Familiar "names" of selected lines are included:

Series Names:

H Ha, H β etc. D Da, D β "

Fraunhofer Names:

He I D

Na 1 D_1 and D_2

Ca II H and K

F When an important line is masked, "m" precedes the wave-length, the predicted position of the masked line is given, and the spectrum to which the masking line belongs, is noted by the chemical symbol in the intensity column. The Roman numerals have been omitted except for masked lines of Fe III. If for example "Fe" or "Ti" appears in the intensity column, the line in question is masked by Fe I or Ti I the "I" being omitted because of the limited space in this column. Similarly, a "+" is mostly used for first spark spectra in place of "II," although the conventional use of Roman numerals is fully recognized.

¹ Recommended by the International Astronomical Union—Trans. Intern. Astr. Union 6, 100, 1938.

- G Symbols in the intensity column:
 - * Blended Intensity
 - Predicted line of Fe 1 present in the solar spectrum; •? denotes that the solar identification as Fe 1 is subject to some question.
- 35. Columns four and five give the low and high excitation potentials (E P) of the levels involved in the production of the line (see § 27). Some E P's are given in parentheses in the R M T to denote that they are not accurately known.

In analyzing a spectrum it often happens that two or more sets of terms of different multiplicity exist that are unconnected, since no intersystem combinations have been detected. If long series, whose correctness is unquestionable, can be found, the limits furnish a fairly accurate determination of the relative positions of the different types of terms. This is the case for $Be \, I, B \, II, C \, III, O \, III,$ and $O \, IV,$ but no symbol has been introduced to indicate that intersystem combinations have not been observed.

The limits are less accurate for N 11, N 11, O 11, O 11, O 12 and F 11. The E P's affected by this are in parentheses.

For Ce II, two sets of terms are well known but they are unconnected. For this reason the lines are listed in two Groups, I and II. Within each group the relative values of the E P's are correct, but the terms in Group I are believed to be lower than those in Group II by about 0.6 volt.\(^1\) In Group II all values are, therefore, enclosed in parentheses.

For Ce III parentheses are used because the lowest level may not have been found.

For Si 11, P 111 and Mn 11 some terms are established by their internal separations, but are entirely unconnected with the rest of the terms. Here the E P columns contain question marks.

In the earlier Multiplet Table all E P's were obtained by multiplying the term values in cm-1 by the factor 0.00012345. An improved value of this factor, 0.00012336, was published by Birge 2 in 1929. Since then he has announced that 0.00012395 is more nearly correct 3. This last change deserves serious consideration—it involves a change in "e", the charge on the electron, which will doubtless be carefully checked experimentally in the near future. The change is surprisingly large and affects many calculations of an astrophysical nature.

Although it is wrong, in principle, to perpetuate the use of an incorrect value of a fundamental physical constant, the old value 0.00012345 has been used throughout the R M T in calculating the E P's (and I P's for which the limits were known. See § 23). The reason is threefold:

- 1. The errors in stellar temperatures and other quantities based on observational data far exceed those introduced by the change in this factor.
- 2. Until a definitive value of the constant is available it has seemed an unjustifiable expenditure of time and money to revise the extensive calculations, many of which had already been done with the oldest value.
- 3. The change in the value of "e" enters into so many calculations, that to recalculate the E P's and I P's is far from sufficient. As soon as the new value is confirmed without likelihood of further change, it should be used in all calculations of astrophysical importance.

The last two columns contain J-values and Multiplet Designations. These have already been discussed in § 28, but a few comments are in order. When levels of a term are so close that they are unresolved, all the J-values for the term should be listed. This is impossible because of limited space, and consequently the column headed J is frequently blank or has the J-value of only one level entered.

The multiplet numbers which appear in parentheses under the Multiplet Designation are reference numbers to be used in locating any line. (See §6). In each spectrum the numbers start with "1." All lines in a multiplet have the same multiplet number. These numbers are entered in the Finding List.

VII. SPECTROSCOPIC NOTATION

The notation used in the column headed "Multiplet Designation" differs for spectra which contain conspicuous series and for the complex spectra which do not.

A. Series Spectra

36. For many elements the spectra become more complex as the degree of ionization decreases. The terms of each spectrum are the parent terms or "limits" of the terms in the spectrum of the next lower degree of ionization. The addition of s, p, d, f, etc. electrons to each limit produces arrays of terms accurately predictable from theory.

Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439 (No. 6), 1941.
 Phys. Rev. Suppl. 1, 62 (No. 1), 1929.
 Rev. Mod. Phys. 13, 237 (No. 4), 1941; Reports on Progress in Physics 8, 131, 1941.

The simplest case is illustrated by O vi. Here the lowest term of O vii, $1s^2$ ¹S, is so much lower than any other that no other limit need be considered. The addition of a "running" s, p, d, f... electron to this state produces series of doublet S, P°, D, F°... terms in O vi. In this case the electron and the terms are of the same type. For example, the ground term of O vi is $1s^22s$ ²S, and the next term $1s^22p$ ²P°. The term type and total quantum number of the running electron suffice to define the configuration. In the R M T the notation 2^2 S, 2^2 P° etc. is used in spectra of this type. To illustrate, Multiplet No. 1 of Li i has the designation 2^2 S- 2^2 P°. (Other features of the notation are discussed in §28 and in Table 3).

The case of O v is more complicated because 2^2P° of O vi is not much higher than 2^2S and terms from both limits are important. The addition of a running electron to these limits gives the following terms:

O vi	Limit	1s²2s	2	S	1s²2p	²P	0				
O v	Added Electron	Config	Ter	ms	Config	Ter	ms				
	3s 3p 3d	1s ² 2s3s 1s ² 2s3p 1s ² 2s3d	¹ S ¹ P° ¹ D	3D	1s ² 2p3s 1s ² 2p3p 1s ² 2p3d	¹ P° ¹ S	¹P ¹D°	¹D ,	3P°	³D°	³F°

The configuration is 1s²2s² gives only ¹S; and 1s²2p² only ¹S ¹D ³P.

It appears from this array that if the terms having the limit 2°S in O vi are labeled 3°S, 3°S, 3°P°, 3°P°,

When two or more of the effective limits are all even or all odd an addition to this notation is necessary. For terms derived from the lowest of such a group of limits, the running electron is given as before; for those derived from the next higher limit a prime is affixed; and for those from the limit above this a double prime. Where the lowest limit is an S term, the type of the electron and of the term itself are the same, and the former is omitted. For example, the limiting terms in O 11 are 4S°, 2D° and 2P° in order. The addition of a 3p electron to these gives (among others) the terms in O 1 here called 35P from 4S°, 3p′ 3D from 2D° and 3p″ 3D from 2P°.

In several spectra there remain terms which cannot be described by this scheme: but it has been found possible to give a special abbreviated form of the configuration notation, etc. which make their nature intelligible to one versed in the theory of spectral structure.

There is at present no general agreement regarding the use of abbreviated notation of this sort. The notation here adopted has been largely influenced by the limitations of the photographic process—and is not presented as an ideal system—but it illustrates the glaring need for the preparation and general adoption of a better one.

37. Special Cases.

The notation used in the R M T for Ne 1, Na 11, A 1, K 11 and Ca 111 deserves special mention. Paschen's notation formerly used for spectra of this type defined the total quantum number and the type of electron, but introduced subscripts that were not inner quantum numbers. A revised notation which is given in detail by Bacher and Goudsmit 1 is adopted here. The levels with "s" electrons were called by Paschen s2, s3, s4 and s5; those with "p" electrons were p1 to p10 etc. In this book the subscripts used by Paschen have been omitted but the rest of his notation is retained with numbers assigned to the levels, in order of increasing values for the lowest group of levels of each type. All the members of a series have the same number, but with this arrangement homologous levels which have the same J-values for different elements are not always assigned the same index number. Ne 1 illustrates the changes:

Paschen	Revised	Paschen	Revised
385	3s 1°		
384	3s 2°	4d6	4d 1°
		4 d₅	4d 2°
	3p 1	4d' ₄	4d 3°
3p ₁₀ 3p ₉	3p 2	4d ₄	4d 4°
3p ₈	3p 3		

Ne i Notation

¹ Atomic Energy States, McGraw Hill, New York, London, 1932.

Most of the levels for spectra of this type are not grouped into terms and consequently multiplets in the ordinary sense cannot be listed. Arbitrary groups of lines have been formed and numbered to facilitate the search for a given line. In Ne 1 for example, all important lines from the level 3s 1° combining with "3p" levels have multiplet number 1; those from 3s 1° combining with 4p levels have multiplet number 2 etc.

B. COMPLEX SPECTRA

- 38. In the majority of complex spectra the terms are so numerous that it is impracticable to designate them by their configurations. For these spectra the prefixes a, b, c, d are assigned to the low terms of each type and z, y, x etc. to those which combine with them. In Fe 1, for example, the lowest 3F term is a3F, the next higher one b3F etc. There are ten ⁸G° terms. They are labeled z³G°, y³G° q³G°. In Multiplet No. 449 the designation is b3G-t3G°. Here the low term is the second 3G term as indicated by the prefix "b". The high term is the seventh odd ³G term, as indicated by "t".
- 39. In many complex spectra it is impossible to group all known levels into spectroscopic terms. These miscellaneous levels are assigned numbers, and the superscript "o" if they belong to the odd set. Many combinations between terms and miscellaneous levels are given in the R M T and assigned multiplet numbers. For example, the designation of multiplet number 450 of Fe 1 is b³G-12°.

Numbered levels are numerous in spectra of the rare earths. The arrangement is similar to that described in § 27, i.e. the lines from a given low term are listed in order of increasing E P of the numbered levels.

In Sm 11 only the low levels have been grouped into terms. All high levels are numbered odd levels. In the RMT the combinations of the separate components of the low terms with arbitrarily grouped odd levels are assigned multiplet numbers. For example, the combinations of a8F_{1/2} with the levels labeled 1°, 2°, 5°, 23°, 35°, 37° have multiplet number 1. The E P's increase for the various groups similarly to those in spectra with regular terms, as discussed in §27.

VIII. SPECIAL NOTES ON INDIVIDUAL SPECTRA

40. *H* The wave-lengths listed for these spectra have been calculated for the center of gravity of the lines, \boldsymbol{D} taking into account the fine structure, and using the values of RH, RD and RHe respectively, given by Birge in 1941 1. These computations were made by Dr. J. E. Mack for inclusion here. The *He* 11 writer is deeply indebted to Dr. Mack for his cordial cooperation in furnishing this unpublished material.

No intensities have been included for these spectra.

O II Improved term values are needed. The writer has constructed the multiplets from Edlén's term list. Measures by different investigators are discordant, and considerable editing has been done, especially in the interpretation of blends.

For the sextet terms the configuration in abbreviated form is used to indicate that the terms are from the high limit sp3 5S° in O III, namely: sp33p 6P, sp33d 6D°, sp34s 6S°.

Na I The fine structure components of D₁ and D₂ have been measured with the interferometer by Meissner and Luft 2, as follows:

$\mathbf{D_1}$	$\mathbf{D_2}$
5895.9316	5889.9579
5895.9103	5889.9380
Center of 5895.9236	5889.9504

The measures listed in the R M T are taken from a source where the lines appeared as impurities, since it was thought that for astrophysical purposes these measures might be preferable to those of the fine structure components.

The two lines $\lambda 11403$ and $\lambda 11381$ were also measured as impurities.

Improved laboratory intensities are needed for Na 1.

¹ Rev. Mod. Phys. 13, 233 (No. 4), 1941. ² Ann. der Phys. (5) 29, 698, 1937.

- Wall The changes made in the Laschen notation for the in have been discussed in § 5... also known in this spectrum, and two types of notation appear. The lines are listed in order of increasing low level and these levels combine with the terms. Although no complete multiplets are listed, multiplet numbers have been assigned as usual. For example, multiplet No. 17 is 3p 9-4s3P°. In spectra of this type no attempt has been made to indicate omitted lines by the use of a "†". The "List D" indicates that only the leading lines are listed.
- Mg 1 Two sets of series, 31D-1F° and 33D-3F° have been extended by the use of infra-red solar wave-lengths from Babcock's Table (see § 15)1. This has been done on the assumption that the 1F° and 3F° terms are coincident, as Paschen suggested for the first members of the series. The predicted wave-lengths in the R M T are obtained from solar term values. The series appear to be so well confirmed that the solar wave-lengths are preferable to the predicted ones, but for uniformity, no exception has been made for these series lines of Mg 1.

In Multiplets 7, 8 and 9 the J-values and designation apply to all three lines entered. In each case singlet combinations are involved. Normally one one line is observed in a combination of this type, but the fine structure components of each line are listed.

- Al II The G and H terms given by Paschen and Ritschl 2 are in both cases assumed to be coincident singlet and triplet terms. When combinations of these terms with singlet terms are listed in the RMT, ¹G or ¹H° has been used in place of ^{1,3}G or ^{1,3}H°. Similarly, the last three entries are given as singlet combinations, but in reality they are probably singlet and triplet combinations. Double multiplicities for unresolved terms have not been used in the R M T.
- Si II Owing to the use of the photographic method of publication, it has been impossible to add lines without retyping one or more pages. One predicted multiplet of Si II has been omitted which should possibly have been inserted.

I A	Ref	ΕP		J	Multiplet
		Low	High		Desig
4075.81	P	9.80	12.82	2½-1½	32D-52P°
4077.09	P	9.79	12.82	$1\frac{1}{2} - \frac{1}{2}$	
4073.05	P	9.79	12.82	$1\frac{1}{2}-1\frac{1}{2}$	

- P III The multiplets are listed slightly out of order, but it was thought unnecessary to retype the page on this account.
- The measures by different observers are very discordant. This spectrum needs thorough observa-SII tion. Accurate wave-lengths, intensity estimates and term values, and further analysis are desirable.
- A 11 This spectrum is fairly well analyzed but needs careful editing before a definitive analysis can be published. Rosenthal3 has measured many lines and from his measures alone a consistent set of term values could probably be calculated. The lists of classified lines are not homogeneous and a larger residual in the observed minus calculated wave number must be permitted than for most spectra. The multiplets listed in the R M T appear to be fairly satisfactory in spite of the inaccurate term values.

One term, labeled a²P by de Bruin is puzzling because it has no configuration assignment. It has been retained, but needs to be checked carefully when the analysis is carried further. This is the only case where both the running electron notation and the prefix "a" appear in a given spectrum.

Ca I Although the analyses of these spectra are almost completed, the spectra require further laboratory observation. Accurate wave-lengths, especially of the fainter lines are urgently needed. It is surprisingly difficult to obtain accordant term values. The interferometer measures made at Allegheny furnish an excellent starting point, but these spectra still invite the attention of the laboratory investigator, from the violet through the infra-red.

Babcock and Moore, Ap. J. 101, 374, 1945.
 Ann. der Phys. (5) 18, 867, 1933.
 Ann. der Phys. (5) 4, 49, 1930.

- Sc II Multiplet No. 9. Enter intensity 2 for $\lambda 3923.503$.
- 41. Fe I The rigorous arrangement of multiplets described in § 27 applies only approximately to Fe I. In this spectrum the multiplet numbers reach 1352 but this figure is not definitive. Owing to an extension of the analysis which altered some term assignments, a number of multiplets were rearranged after the lines and multiplet numbers had been entered and checked in the Finding List.

All the revisions were entered in the R M T. For unchanged multiplets the original multiplet numbers were retained. The revised multiplets were inserted as nearly as possible in the correct place and assigned the available numbers, or to avoid duplication, a number followed by "a". As a result of these changes the multiplets do not always have consecutive numbers and some numbers are omitted. The renumbering of all the multiplets entailed so many changes in the Finding List that it was not undertaken.

In three multiplets of Fe 1, Nos. 3, 7 and 81, an "R" is entered under the multiplet number. A line has been inadvertently omitted from each of these multiplets. The omitted lines are listed on page 65 at the end of the Fe 1 multiplets, and preceding the list of unclassified lines.

In multiplet No. 78, columns one and two, $\lambda 3497.137$ V should read 3497.15 P.

Multiplet No. 1151 should be rejected; $\lambda 4618.568$ is erroneous.

- Ni I Attention has been called to the fact that the intensities in Multiplet No. 62 are not so abnormal as indicated here. It has been impossible to insert revised estimates.
- Rh II The use of the symbol "†" to denote omitted lines has not been checked owing to the lack of a complete line list. It has been assumed from the term lists that the fainter members of the multiplets thus marked have been observed.
- Ce II The lack of connection between Groups I and II has been mentioned (§ 35). It is assumed that the terms in Group I are the lower set.

The prefixes a, b and c etc. have been assigned to the low set of terms of each Group. There can be no ambiguity because in Group I the low set is even, while in Group II it is odd.

W II All the miscellaneous levels published by Laun 1 have been numbered in order. These numbers are used in the R M T in place of Laun's notation.

IX. SPECTRA OMITTED FROM THE R M T.

These may be grouped in several general classes.

42. Spectra of probable astrophysical importance for which there is no analysis to date.

These spectra are mentioned in the RMT in the appropriate place with the remark "No Analysis" and the date. If A. S. King has assigned a Temperature Class to the lines, this fact is noted. For example: page 86, Ce I No Analysis May 1942 (Temperature Class). The spectra in this class are listed in Table 5.

Table 5
Spectra Omitted from R M T

No Analysis

Spectrum	Ref. to Temp. Class	Spectrum	Ref. to Temp. Class
Се 1	215	Dy 1	217
Pr 1	215	Dy 11	217, 229
Nd 1	219	Ho 1	217
Tb 1	217	Но п	217
Ть п	217	Th 1	123

All but Th I have been observed by A.S. King. The bibliography numbers of the references to the work on temperature classification are entered in column two.

¹ Bur. St. Journ. Res. 21, 207 (RP 1125), 1938.

astrophysically.

These spectra are mentioned in the R M T with the remark "See Introduction". They are listed in Table 6 with numbers from the bibliography referring to the papers on analysis.

Table 6

Spectra Omitted from R M T

Not of Astrophysical Interest

Spectrum	Ref. to Analysis	Spectrum	Ref. to Analysis	Spectrum	Ref. to Analysis
B 1 1	16, 89	Rb 11	238	Cs 11	309, 405
F iv	84	Pd 11	384, 24	Тап	192
F vi	83, 87	Ag II	383, 24	Pt 11	387
Cl iv	31, 32	Cd 11	372, 401	Au 11	324
Ga 11	376	In 11	317	Hg 11	313
Se 11	244	Sb 11	236	Tl 11	106
Br 1	194	Ιı	107, 69, 325	Pb 11	80
Br 11	232	III	232	Ві п	64, 115
Krı	274, 276, 165	Xe ı	156	Rnı	329
Kr 11	53	Xe 11	155	Th III	54

The low abundance of these elements in celestial sources, and the high E P of the lines in the visible region have been the determining factors for omission.

- 44. There are three types of spectra for which little or nothing is known:
- Er, U. Lines have been observed in spectra of these elements, but the spectra of various degrees of ionization have not been separated.
 - Te II, Re II, Os II, Ir II, Po, Ac, Pa. The writer has found no references to work on these spectra.
- Ma, Il, 85, 87. There is nothing known about these elements. It appears doubtful whether they have been successfully isolated.

No reference is made in the body of the R M T to those spectra whose leading lines are in the region to the violet of $\lambda 2950$, since this is a book designed for astrophysical use. Selected spectra of this type are included in the section dealing with Forbidden Lines (see § 45 and pp. 100–110).

X. FORBIDDEN LINES

45. The author of a "Multiplet Table of Astrophysical Interest" published in 1945 is obliged to consider the probable importance of the forbidden lines of *all abundant* elements. This is indicated by the work of Bowen on nebular lines, of Edlén on coronal lines, and of Swings, Merrill and others on various astronomical spectra.

Following the body of the R M T is a Table of Forbidden Lines of Astrophysical Interest (pp. 100-110). This Table is arranged in detail similarly to the R M T. The lines in a multiplet are listed by diagonals and the multiplets are listed in the order described in § 27. In order to avoid duplication, all multiplets of forbidden lines have an "F" following the multiplet number, 1F, 2F etc. Unlike the R M T, the headings for each spectrum contain only the name of spectrum and the I P. No grading of analysis or list has been attempted and no date of completion of the manuscript is given. All of this section has been written between January and May 1945.

In preparing this manuscript the writer has been most cordially assisted by Dr. Swings. He has edited the lists and offered many valuable suggestions concerning the limitations of the Table. No explicit statement can be made as to the principles of selection adopted, but severe restrictions have been necessary in complex spectra because of the great array of possible forbidden transitions. For simple spectra only a limited number of transitions occurs, but as the complexity increases the number increases rapidly. The general principles followed are:

A Only transitions from metastable states are forbidden. Consequently only the lowest terms in a spectrum are considered.

Lines of B I have not been observed in the visible, but should exist.

B The lists are restricted to multiplets involving likely combinations as regards multiplicity and azimuthal quantum numbers, except for those in which the lowest terms are involved. In Fe II, for example, many more combinations and more unlikely combinations from the lowest term, a D are listed than from higher terms.

C Transitions involving $\Delta J = \pm 2$ as well as $\Delta J = 0$ or ± 1 are listed for the multiplets most likely to be important.

D The high E P is limited to about 4.0 for the most abundant elements and to about 3.5 for arc spectra of these elements.

E The lists have been extended to include lines that may be important in the red and infra-red. Forbidden lines of neutral atoms are included only for the most abundant elements.

The multiplets listed must be interpreted with caution, because of these restrictions. If complete multiplet arrays are written up from Table 3, lines omitted from any multiplet among the forbidden lines can be detected. Those interested in longer lists must construct them from the term lists given in the papers on the analysis of each spectrum (Table 10 p. xxix).

The great majority of forbidden lines are predicted from the term values. If accurate measures have been obtained, they are entered with a letter indicating the source, as follows:

- N Nebular N II, O II, O III, Ne III, Ne v, S II
- L Laboratory O 1
- A Auroral O 1
- C Coronal Entered under the predicted positions of lines of highly ionized Fe and Ni

When term values permit, the wave-lengths of predicted lines have been calculated to two decimal places. For some spectra the term values are not accurately known, but the internal separations are well established. For these the position is given to 0.1 A. For the most inaccurate wave-lengths no decimals are recorded and in very dubious cases a "?" follows the wave-length.

Some I P's and some predicted wave-lengths have been obtained by interpolation or extrapolation along the isoelectronic sequences. These are:

	Те	rm		I P				
Sp	Term	Sp	Term	Sp	Sp			
Cl II S XII A III A XI A XIV K V	¹ S ² P ¹ S ³ P ² P° ² P° ² D° ¹ S	Ca vii Ca xv Fe xv Ni xii Ni xiii Ni xv Ni xvi	¹ S ³ P ³ P° ² P° ³ P, ¹ D ³ P ² P°	Ca v Sc vi V viii Cr viii Cr ix Mn ix Mn x	Fe x Fe xII Fe xIV Fe xV Co xI Ni xIII			

As in the body of the RMT, EP's in parentheses denote that the terms involved do not have observed connections with the rest of the terms of the spectrum.

Dr. Swings has pointed out that forbidden lines are essentially emission lines, and therefore, astrophysically the high E P is the important one. For this reason the multiplets of a spectrum should be listed by high E P rather than by low E P (§ 27). It is fully recognized that emission lines are better handled in this order and it is hoped that all multiplets having the same high term can be readily selected in any spectrum. The arrangement by low terms has been adopted merely for the sake of uniformity.

Another highly significant comment has been made by Dr. Swings 1, namely, that "certain forbidden transitions that are not directly observable may play a role in astronomy, for example, by flourescence excitation, ionization or dissociation."

¹ Letter, May 1945.

The importance of lines in the extreme violet such as $\lambda 303.7$ of He II, $\lambda 303.7$ and $\lambda 374.4$ of O III and the pair at $\lambda 374.4$ of N III, in producing the nebular lines has been fully discussed by Bowen I. The violet limit, $\lambda 2950$, imposed in this book has excluded both permitted and forbidden lines in the violet that are extremely important in the interpretation of forbidden lines observed in astronomical spectra. Readers are, therefore, urged to consult the individual papers on this subject, as it has been regarded as beyond the scope of the present work.

XI DETAILS OF PUBLICATION

The preparation of the manuscript of this book has covered such a long period of time that the typing has been done as various spectra were finished, which is not in the order of increasing atomic number. It has been practically impossible to terminate every section of the manuscript at the end of a typed page. Some important insertions have also broken the continuity of typing. Consequently, the pages are frequently unequal in length and some have large gaps. No serious effort has been made to avoid irregularities of this kind, for two reasons: first, the retyping and rechecking of these large pages in order to adjust spacing has seemed an unjustifiable procedure, particularly since there is always the chance of introducing new errors in handling so much tabular data; second, the blank spaces may prove to be useful for notes.

Doubtless there are more serious irregularities, namely inconsistencies in notation of similar spectra. During the course of the work the manuscript has been widely distributed to interested investigators. To date it has never all been assembled in one place. The writer has been unable to remember all the details connected with each spectrum, but has proceeded on the assumption that minor irregularities would not impair the value of the R M T so seriously as the delays required to correct all of them.

46. One of the purposes of this book has been to provide adequate material for fairly definitive identifications of solar lines. Mention has been made of the forthcoming publication by Babcock and others on the Infra-Red Solar Spectrum $\lambda\lambda6600-13495$ (§§ 7, 15). A similar program covering the violet solar spectrum is being carried on at Mount Wilson by Babcock. The writer has been working on the identifications of the solar lines throughout the entire solar spectrum, with the aid of the manuscript of the R M T. The publication of the results to the violet of $\lambda6600$ has been postponed in order to complete the present book. It is planned to publish them as soon as possible.

XII. BIBLIOGRAPHY

Following the text is a Bibliography in which all references used in the preparation of this book are listed in the alphabetical order of the names of the authors. Each reference is assigned a number for purposes of cross reference.

47. In the R M T (excluding the section on Forbidden Lines) each spectrum has three sets of references: one giving the sources from which the wave-lengths have been taken—Table 7; one giving the first, second, etc. choices of references for intensity estimates—Table 8; and one referring to papers on analysis—Table 9.

The Tables are arranged similarly. In each, the first column gives the chemical symbol of the element and the spectrum (I = arc, II first spark etc.), the second the number with which to enter the Bibliography. In Table 7 the letters A, B, C, etc. are taken from column 2 of the R M T for each spectrum. In Table 8 the first choice for intensity is indicated in column one, the second in column two etc. In general, reference numbers are in italics when the intensities from the reference are in parentheses in the R M T (see § 34). Table 9 does not list choices. It contains references to papers on analysis that were used in compiling the R M T.

Table 10 gives the sources used for analysis of spectra contained in the Table of Forbidden Lines. It is arranged similarly to Table 9.

Following the Bibliography are an index by pages, and one by elements arranged in the alphabetical order of the chemical symbols.

¹ Ap. J. 81, 1, 1935.

Table 7
References—Wave-Length

Sp	A	В	С	D	E	F	Sp	Α	В	С	D	E	F	G	Н	I	J	K	L
Н	243						Cl 11	195											
D	243						Cl 111	31	27										
Не 1	263	299	319	174	275		Аі	277	154										
He II	243						Ап	340	18	48	47								
Li į	206	175	149				Аш	49	51										
Li 11	378	404					A iv	50											
Вел	318	315	149				K ı	149	403	263	259	88	116	108	380				
Be 11	318					1	К 11	46											
Вп	81						К п	47a			4.00	050	0.11	071					
Вш	81						Ca 1	403	66	259	369	373	241	3/4					
_	40.0	•••		4.00	. = -		Ca 11	168	403	66	375	390							
Cı	185			160	370		Ca 111	11											
Сп	122	81	89				Sc 1	245	253	349									
Сш	81	121					Sc 11	245	253										
Civ	81	70	160	270			Sc 111	172											
Nı	93		160	3/0			Tir	178				245		212	348	199	172	177	21
NII	20	125	120				Ti 11	178	65	245	201	347	172						
N III	124	81					Ti ıv	364											
Nıv	126	81	127	116	216	120	Vı	264	368	245	242	266	213	109					
10	98	118		110	316	120	V 11	266											
Оп	20	110	301									(204)	,						
	110	0.0	200				Cr 1	183	184	245	142	(204) (213)	173						
0 111	119		302				Cr 11	184		142		(213)	,						
O iv	81	126	86				Mn 1	260		246									
O v	81							(67)											
O vi	81						Mn 11	(68)	245	108									
Fı	88						Fe 1 *	(35)											
FII	73 72	85					Fe 11	76	222	55									
FIII	162		154	276	311	263	Fe III	103		222									
Ne 1	52	2,11	134	210	311	203	Со і	56			280	71	230	62	147				
Ne 11 Na 1	149	116	263	208	259	338	Со 11	255											
Ivai	147	110	203	270	237	330	Ni 1	282	245	178	143	109	146	280	398				
Na 11	130	393					1	252	245	111									
Mgı	295		141	261	116		Ni 11	252 58	243	111									
Mg II	116	011					Cu I	137											
Alı	403	315	116	319	310		Cu 11 Zn 1	149											
Al 11	319	377			• • •		Zn 11	149	319										
Al III	312	• • •					Ga I	402	313										
Si 1	186						Ge I	188	245										
Si 11	117						Ge 11	188	235										
Si m	117						As I	273	255										
Si 1v	117	101					As ií	328											
								1											
Pі	180						Se 1	189											
Рп	133	181	70				Rbı	149	333										
Рш	133						Sr 1	399	245	116									
P iv	133						Sr 11	399											
Pν	133						Yı	254	245										
Sı	297	129					Ү п	254		245									
SII	157		158	25	7136		Zr 1	197	282										
S 111	157	159					Zr 11	196											
Siv	303						Cb 1	283											
Clı	182						Cb 11	283											

^{*} See references for Fe 1 at end of Table 7.

Table 7—Continued

References—Wave-Length

Sp	A	В	C	D	E		Sı)	A	В	C	D	E		Sp)	A	В	C	D	E
Мо і	326	176	113				C	e 11	144	9	245				Та	I	200				
Моп	245	113						111	362						\mathbf{W}		22				
Ru 1	245							. 11	339	245					W		239				
Ru 11	272							d 11	10		219				Re		257				
Rh 1	304								(221)						Os		245				
Rh 11	150					-	Sr	n I	4						Ir		6				
Pd 1	256	109					Sr	n II	221	(-	,			- 11	Pt		109				
Ag ı	149							ı I	223						Au		324				
Cd 1	149	163						1 II	223					- 11	Hg		396	166			
In 1	402							d 1	225						Tl		307	109			
									ł												
Sn 1	265					- 11		d 11	225						Pb		149	135			
Sn 11	248						Tı	n I	268					- 11	Bi	I	214	17			
Sb 1	279						Т	n II	269	<i>§</i> 268					Ra	I	332				
Те і	189									(224					Ra	II	331				
Cs 1	259	149					Yl	I C	291						Th	II	250				
Вал	400						Yl	11	291												
Вап	400	245	259	330			Lu	ΙI	288												
La 1	258						Lu	I II	288												
La 11	258						H	ī	287												
La III	258						H	11	289												
Sp	A	В	С	D	E	F	G	Н	I J	K	L	M	N	0	Q.	R	S T	U	V V	V 3	ΧΥ

Fe I 164 161 278 185 262 282 59 167 14 371 57 281 220 $\begin{Bmatrix} 139 \\ 138 \end{Bmatrix}$ \dagger 280 15 227 77 391 247 55 171 379 \dagger 74

[†] These references have been used for lines to the violet of the range covered in the RMT, but are included for completeness.

Table 8
References—Intensity

Sp	Reference Numbers	Sp	Reference Numbers	Sp	Reference Numbers
Не і	263 275 174 116 319	Ап	340	Ru 11	272
Liı	113 <i>175</i>	A III	49 51	Rhı	105
Lin	378 404	A iv	50	Rh 11	150
Вел	315 318	Кı	259 116 <i>88 108</i>	Pd L	256
Веп	318	Кп	410 46	Agı	389
Вп	81	Kın	47a 51a	Cd 1	173
Вш	81	Ca 1	207 259 <i>369 241 374</i>	In 1	402
Cı	185 300 169 <i>160 370</i>	Ca 11	259 207 <i>375 390 66</i>	Sn 1	265
Сп	81 <i>122</i>	Сапп	11	Sn 11	248
Сп	81	Sc 1	210 253 349 367	Sb 1	279
Civ	81	Sc 11	253 365	Тел	189
Νi	93 78 160 370	Sc 111	172	Cs 1	259 245
Nıı	20 125 120	Ti 1	185 282 212 203 348 199 172	Ваг	207 259
N III	124 81	Тіп	347	Вап	207 259 330
N iv	81	Ti ıv	364	Laı	228 258
0 1	98 263 127 116 128	Vı	264 213 204	La 11	258
Оп	20 118 301	VII	266	La III	258
0 111	119 86 302	Cr 1	183 184 204 213	Ce 11	215 144 9 245
O iv	81 <i>126</i>	Cr 11	184	Ce 111	362
O v	81	Mn 1	260 209 131 61 113	Pr 11	215 339
O vi	81	Mn 11	67 68 108	Nd 11	219 <i>10</i>
Fı	88	Fe 1	185 282 220 211 202 227 59 57	Sm 1	221
Fп	73		281 280 55 15 77 391 171 74	Sm 11	221
FIII	72 85	Fe 11	76 222 55	Eu 1	223
Ne 1	263 276 <i>311</i>	Fe III	103 102	Eu 11	223
Ne 11	52	Соі	205 208 282 280 71 56 230 62 147	Gd 1	225
Naı	259 <i>172 116</i>	Со 11	255	Gd 11	225
Na 11	130 393	Ni 1	208 205 282 143 109 146 280 398 245	Tm 1	268
Mgı	261 207 <i>295 314 170</i>	Ni 11	252 382	Tm II	269 268 224
Mg 11	116	Cu 1	58	Ybı	291
Alı	315 116 319 <i>310</i>	Cu 11	137	Yb 11	291
Al 11	319 377	Zn 1	149	Lui	288
Al III	312	Zn 11	372	Lu 11	288
Si ı	186	Ga 1	402 174	Hf I	216
Si 11	117	Ge 1	188 132	Hf 11	289
Si III	117	Ge 11	188 235	Таі	200
Si IV	117 101	As 1	273	Wı	218 <i>22</i>
Рі	180	As 11	328	WII	239
PII	133 <i>181</i>	Se 1	189	Reı	257
Рш	133	Rbı	172	Os 1	245
Pıv	133	Sr 1	207 259	Ir 1	6
Pv	133	Sr 11	207 259	Pt 1	109
Si	297 <i>129</i>	Yı	228	Auı	324
SII	25 19 136	YII	254 <i>351</i>	Hgi	112 108
SIII	157 <i>159</i>	Zr I	23 4 331 228 282 <i>197</i>	Tlı	109
Siv	303	Zr 11	196	Pbı	109 109 <i>271</i>
Cli	182	Cbı	283	Biı	308 17
Cl 11	195	Cb 11	283	Rai	332
Cl III	31 27	Moı	326 176 <i>113</i>	Raii	331
Aı	263 276 293 294	Мои	113	Th II	226
		Rui	251 <i>109</i>	11111	<i>₩₩</i>

References—Analysis

Sp	Reference Numbers	Sp	Reference Numbers
Н	243 23 116	Sıı	157 19 158 25 136
D	243 23	S 111	157 159 136 337
He 1	16 45 319 263 275 134	Siv	303 27 29
Не 11	243 23	Cl 1	182 193 92
Li 1	116 16 206	Cl 11	195 96
Li 11	16 81	Cl 111	31 27
Be 1	318 315	Cl iv	31 32
Ве п	318	Aı	154 276 42 16 293 294
Ві	16 89	Ап	92 42 48 47
Вп	81 89	А 111	49 51 42 44 96
В пп	81	A iv	42 50
Cı	81 300	Кı	116 88
CII	81 89	К 11	46 28 105
Сш	81 89 82	К 111	47a 92
Civ	81 82	Ca 1	373 369 259 116
Nι	104 78 160	Сап	375 346 390
NII	89 81 125 120	Ca 111	28 16
N III	89 81	Sc 1	365
N IV	89 81 82	Sc 11	365 285
Nv	81 82	Sc 111	364 392
0 1	98	Ti ı	348 355 282 185 178
O 11	86 81 350 118	Ti 11	347
0 111	95 81 119 86 302	Ti ıv	364
O iv	81 82	VI	286 305
O v	81 82	VII	284
O vi	81 82	Cr 1	179 183 187 346
Fı	88	Cr 11	184
FII	85 73	Mn 1	61 79 260 346
F III F IV	85 30 72 84	Mn 11 Fe 1	67 68 363a
F vi	83 87	Fe 11	75 76 94 139
Ne 1	154 41 276 16 311	Fe 111	103 102
Ne 11	41 52	Сол	363
Na 1	298 338 116	Co 11	114
Na 11	130 393 16	Ni 1	352
Mg I	295 296 314 345	Ni 11	382 233
Mg 11	116 16	Cu I	381
Alı	315 319	Cu 11	386
Al 11	319 377	Zn I	149 116
Al III	312 16	Zn 11	319 372
Si 1	186	Ga 1	116
Si 11	117 29 16	Ga 11	376
Si 111	117 29	Ge 1	188 327
Si ıv	117 101	Ge 11	188 234
Pı	180 335	As 1	273
Pп	26 335 336	As 11	140 328
P 111	29 303 336	Se 1	343
P iv	29 336	Se 11	244
Pν	336 40	Br 1	194
Sı	297 342	Br 11	232

TABLE 9—Continued

REFERENCES—Analysis

Kr I 274 276 Kr II 53 Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr II 196 Cb I 290	399	Gd 1 Gd 11 Tm 1 Tm 11 Yb 1	2 357 358 8 358 270	
Kr II 53 Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196	399	Gd 11 Tm 1 Tm 11	8 358 270	
Rb I 116 Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196		Tm I Tm II		
Rb II 238 Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196		Tm 11	070.0(0	
Sr I 116 369 Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196			270 269	
Sr II 116 259 Y I 285 Y II 285 Zr I 197 28 Zr II 196			291 359	
Y I 285 Y II 285 Zr I 197 28 Zr II 196		Yb 11	291 359	
Y II 285 Zr I 197 28 Zr II 196		Lui	288 267	
Zr I 197 28 Zr II 196		Lu 11	288	
Zr 11 196	,	Hf I	287	
	-	Hf II	289	
Cb 1 290				
		Таг	192	
Сь п 290		Тап	192	
Mo I 63 19:	l	Wı	237	
Мо 11 190		W 11	239	
Ru i 394 14.		Re 1	257	
Ru 11 272 293		Os 1	1 5	
Rh i 395 30	1	Ir 1	6	
Rh 11 150		Pt 1	240 148	
Pd 1 385		Pt 11	387	
Pd 11 384 24	1	Auı	324 306	
Ag I 388		Au 11	324	
Ag 11 383 2	4	Hg 1	16	
Cd 1 116 1	6	Hg 11	313	
Cd 11 372 40	1	Tlı	116	
In 1 116		Tl 11	106	
In 11 317		Pb 1	16	
Sn 1 265		Pb 11	80	
Sn 11 248		Ві г	16	
Sb 1 279		Ві п	64 115	
Sb 11 236		Rnı	329	
Te 1 341		Raı	332 354	
I 1 107 6	9 325	Ra 11	331	
I 11 232		Th 11	249 250	
Xe 1 156		Th 111	54	
Xe 11 155				
Cs 1 116				
Cs 11 309 40	5			
Ba I 400 34				
Ba II 330 40				
La 1 366	-			
La 11 366				
La 111 366		11		
	7 9			
Ce III 362				
Pr 11 339 35	6			
Nd II 10				
	4			
Sm II 3				
Eu 1 361				
Eu 11 360				

Table 10

References—Forbidden Lines

Sp	Reference Numbers	Sp	Reference Numbers	Sp	Reference Numbers
Вел	318-315	Ca vi	33	Fe xiv	97
Сі	81	Ca vii	337	Fe xv	90
Nι	104	Са хи	97	Со 11	114
NII	81 43 409	Ca xiii	97	Co vi	37
0 1	98 13 151	Ca xv	97	Co vii	12
Oп	81 409	Sc 11	365	Co viii	60
0 111	81 409	Sc III	364	Со хі	92
FII	85	Sc vi	91 231	Ni 1	352
Fiii	85	Sc vII	231	Ni 11	382 233
Fiv	84	Ti ı	348	Ni vii	322
Ne III	41 43 409	Ті п	347	Ni viii	12
Ne IV	320	Ti m	364	Ni ix	60
Ne v	100 320 35 397	Ti vII	231 91	Ni xII	97
Na IV	393	Ti viii	231	Ni xiii	97
Na v	393	VII	284	Ni xv	97
Mg vi	393	VIII	407	Ni xvi	97
Al vII	393	V iv	406	Cu 11	386
Si r	186	V viii	91	Kr III	152
Pι	180 335	Cr 1	179 183 187	Sr 11	116 259 399
Pп	26 335 336	Cr 11	184	Yп	285
Sı	96 342 33	Cr III	36	Υv	321
SII	157 19 158 25 136 409	Cr IV	36 38	Zr 11	196
S III	157 159 136 337	Cr v	406	Zr 111	198
S viii	97 337	Cr vIII	92	Zr vi	321
S xII	97	Cr 1x	91	Xe 11	155
Cl 11	96 195	Mn 11	67 68	Xe III	99 153
Cl III	31 27	Mn iv	36	La 11	366
Cl iv	31 32	Mn v	34 38	La 111	366
Аш	96	Mn vi	60	Eu 11	360
A iv	42 50	Mn 1x	92		
A v	323 334	Mn x	91		
Αx	97	Fe 1	363a		
A xı	97	Fe 11	75 76 94 139		
A xiv	97	Fe III	103 102		
K iv	96 33	Fe v	36		
Κv	33	Fe vi	34 38		
K vi	337 408 334	Fe vii	39		
Ca I	373 369 259 116	Fe x	92 97		
Ca 11	375	Fe xi	91 97		
Ca v	96 33 91	Fe xiii	97		

XIII. ACKNOWLEDGMENTS

This book is the result of an enormous amount of cooperation for which the writer cannot express adequate appreciation. She is extremely grateful to all who have generously furnished material, offered valuable suggestions, and assisted in many other ways.

In spite of war conditions both M. A. Catalán of Madrid and B. Edlén of Lund have been active collaborators. At home, physicists, astronomers, librarians and many others have likewise contributed. To each of these the writer extends most hearty thanks.

At the Mount Wilson Observatory, W. S. Adams has willingly assembled interested members of his staff for consultation concerning the form, content and scope of the book. H. D. Babcock's unpublished solar material has been of inestimable value. A. S. King has obligingly settled many puzzling questions about intensities. P. W. Merrill has urged the publication of the book from the start and supported the work enthusiastically. A. H. Joy has furnished detailed material on stellar spectra observed at Mount Wilson.

The writer has also been in constant communication with the Bureau of Standards. W. F. Meggers and C. C. Kiess have furnished more material on analysis in advance of publication than any other contributors. Special mention should be made of the valuable work on Cr 1 and Cr 11 by Kiess. The multiplet lists of these spectra have already been in constant demand. Many intricate details have been referred to Meggers. His continued interest and work on behalf of this book will not be forgotten.

In addition to the help with the forbidden lines, P. Swings together with O. Struve at the Yerkes Observatory have given most helpful assistance in the handling of the spectra of light elements from an astrophysical point of view.

Mention has already been made of the computations generously furnished by J. E. Mack.

The writer has been privileged to use the facilities of various institutions not directly connected with this program. At Wesleyan University the late Professor Slocum welcomed her most cordially to the Van Vleck Observatory. W. G. Cady, Chairman of the Department of Physics, was equally generous. Without the library privileges extended by these friends, the program would have been seriously impaired.

A welcome no less cordial has been extended in Cambridge, Massachusetts. J. C. Boyce, Harlow Shapley and Mrs. C. P. Gaposchkin have taken a most personal interest in the work. It has also been an enormous advantage to have free access to the libraries at the Cruft Laboratory, at the Massachusetts Institute of Technology and at the Harvard Observatory.

At Princeton this research program has been most enthusiastically supported by Henry Norris Russell over the long period of years since the publication of the first edition in 1933. The writer has had the great benefit of his wide experience in analyzing spectra, of his detailed knowledge of spectra and above all of his keen interest—all of which are recorded in the pages of the book itself. She expresses to him her gratitude with the hope that the readers will find the R M T worthy of all he has contributed to it.

Miss Margaret C. Shields of Fine Hall library in Princeton has cooperated so extensively that it is inadequate to express the personal gratitude of the writer in a single sentence. The same is true of Mrs. Jay Murray who has patiently and efficiently brought to a successful conclusion the appalling task of typing the Multiplet Table for photographic reproduction. Her painstaking care and skill are largely responsible for the completion of the work at this time.

Miss Marion Daly at Princeton and Miss Ada Spaterna of Washington, D. C., have spared no effort in typing the Finding List carefully and accurately.

The personal interest and help of President John A. Eckert of the Columbia Planograph Company have been one of the greatest sources of encouragement in completing the manuscript for publication.

In conclusion the writer wishes to record her appreciation of the cordial cooperation of her husband, Bancroft W. Sitterly.

BIBLIOGRAPHY

- 1 Albertson, Phys. Rev. (2) 45, 304, 1934.
- 2 Albertson, Phys. Rev. (2) 47, 370, 1935.
- 3 Albertson, Mt. Wilson Contr. No. 546; Ap. J. 84, 26, 1936.
- 4 Albertson, Phys. Rev. (2) 52, 644, 1937.
- 5 Albertson, Phys. Rev. (2) 53, 940, 1938.
- 6 Albertson, Phys. Rev. (2) 54, 183, 1938.
- 7 Albertson, Unpublished material, Nov. 1941.
- 8 Albertson, Bruynes and Hanau, Phys. Rev. (2) 57, 292, 1940.
- 9 Albertson and Harrison, Phys. Rev. (2) 52, 1209, 1937.
- 10 Albertson, Harrison and McNally, Jr., Phys. Rev. (2) 61, 167, 1942.
- 11 Anderson, J. A., Ap. J. 59, 76, 1924.
- 12 Anderson, E. E. and Mack, Phys. Rev. (2) 59, 717, 1941.
- 13 Babcock, Mt. Wilson Contr. No. 259; Ap. J. 57, 209, 1923.
- 14 Babcock, Mt. Wilson Contr. No. 343; Ap. J. 66, 256, 1927.
- 15 Babcock, Unpublished material.
- 16 See Bacher and Goudsmit, <u>Atomic Energy States</u>, McGraw-Hill, N. Y. and London, 1932.
- 17 Back und Goudsmit, Zeit. f. Phys. 47, 174, 1928.
- 18 Baly, de Bruin, Bloch, L., Bloch, E., meas. quoted by Rosenthal,

Ann. der Phys. (5) 4, 49, 1930.

- 19 Bartelt und Eckstein, Zeit. f. Phys. 86, 77, 1933.
- 20 Beals, Publ. Dom. Ap. Obs. 6, 17, 1931.
- 21 Behner, Zeit. f. Wiss. Ptg. 23, 325, 1925.
- 22 Belke, Zeit. f. Wiss. Ptg. 17, 132 and 145, 1918.
- 23 Birge, Rev. Mod. Phys. 13, 233 (No. 4), 1941.
- 24 Blair, Phys. Rev. (2) 36, 173, 1930.
- 35 Bloch, L. et Bloch, E., Annales de Physique (10) 12, 5, 1929.
- 26 Bowen, Phys. Rev. (2) 29, 510, 1927.
- 27 Bowen, Phys. Rev. (2) 31, 34, 1928.
- 28 Bowen, Phys. Rev. (2) 31, 497, 1928.
- 29 Bowen, Phys. Rev. (2) 39, 8, 1932.
- 30 Bowen, Phys. Rev. (2) 45, 82, 1934.
- 31 Bowen, Phys. Rev. (2) 45, 401, 1934.
 32 Bowen, Phys. Rev. (2) 46, 377, 1934.
- 32 Bowen, <u>Phys. Rev.</u> (2) 40, 377, 1934
- 33 Bowen, Phys. Rev. (2) 46, 791, 1934.
- 34 Bowen, Phys. Rev. (2) 47, 924, 1935.
- 35 Bowen, Rev. Mod. Phys. 8, 55 (No. 2), 1936.
- 36 Bowen, Phys. Rev. (2) 52, 1153, 1937.
- 37 Bowen, Phys. Rev. (2) 53, 889, 1938.
- 38 Bowen, see Pasternack, Ap. J. 92, 140, 1940.
- 39 Bowen and Edlen, Nature 143, 374, 1939.
- 40 Bowen and Millikan, Phys. Rev. (2) 25, 295, 1925.
- 41 Boyce, Phys. Rev. (2) 46, 378, 1934.
- 42 Boyce, Phys. Rev. (2) 48, 396, 1935.
- 43 Boyce, Mon. Not. Royal Astr. Soc. 96, 690 (No. 7), 1936.
- 44 Boyce, Phys. Rev. (2) 49, 351, 1936.
- 45 Boyce and Robinson, Journ. Opt. Soc. Am. 26, 143, 1936.
- 46 de Bruin, Zeit. f. Phys. 38, 94, 1926.
- 47 de Bruin, Zeit. f. Phys. 51, 108, 1928.
- 47a de Bruin, <u>Zeit. f. Phys</u>. <u>53</u>, 658, 1929.
- 48 de Bruin, Zeit. f. Phys. 61, 307, 1930.
- 49 de Bruin, Proc. Amsterdam Acad. 36, 724 (No. 7), 1933.
- 50 de Bruin, Physica 3, 809 (No. 8), 1936.
- 51 de Bruin, Proc. Amsterdam Acad. 40, 340 (No. 4), 1937.
- 5ia de Bruin, see Edlén, Zeit. f. Phys. 104, 407, 1937.
- 52 de Bruin und Bakker, Zeit. f. Phys. 69, 19, 1931.
- 53 de Bruin, Humphreys and Meggers, <u>Bur. St. Journ. Reg. 11</u>, 409 (RP 599) 1933.
- 54 de Bruin, Klinkenberg und Schuurmans, Zeit. f. Phys. 118, 58, 1941.

- 55 Burns, <u>Lick Bull</u>. <u>8</u>, 27 (No. 247), 1913.
- 56 Burns, Unpublished material. For interferometer meas. see Ref. No. 363.
- 57 Burns and Walters, Jr., Publ. Allegheny Obs. 6, 159 (No. 11), 1929.
- 58 Burns and Walters, Jr., Publ. Allegheny Obs 8, 27 (No. 3), 1930.
- 59 Burns and Walters, Jr., Publ. Allegheny Obs. 8, 39 (No. 4), 1931.
- 60 Cady, Willoughby, Phys. Rev. (2) 43, 322, 1933.
- 61 Catalán, Phil. Trans. Royal Soc. A 223, 127, 1922.
- 63 Catalán y Antunes, Ann. de la Soc. Esp. de Fisica y Quimica 34, 207, 1936

 (Some measures by Exner and Haschek included here)
- 63 Catalán y Madariaga, Ann. de la Soc. Esp. de Fisica y Quimica 31, 707, 1933
- 64 Crawford and McLay, Proc. Royal Soc. A 143, 540, 1934.
- 65 Crew, Ap. J. 60, 108, 1924.
- 66 Crew and McCauley, Ap. J. 39, 29, 1914.
- 67 Curtis, Phys. Rev. (2) 53, 474, 1938.
- 68 Curtis, Unpublished material, July 1941.
- 69 Deb, Proc. Royal Soc. A 139, 380, 1933.
- 70 Déjardin, Canadian Journ. Res. 7, 556, 1932.
- 71 Dhein, Zeit. f. Wiss. Ptg. 19, 289, 1920.
- 72 Dingle, Proc. Royal Soc. A 122, 144, 1929.
- 73 Dingle, Proc. Royal Soc. A 128, 600, 1930.
 74 Dingle, Mon. Not. Royal Astr. Soc. 94, 866, 1934.
- 75 Dobbie, Phys. Rev. (2) 45, 76, 1934.
- 76 Dobbie, Ann. Solar Phys. Obs. 5, 1 (Part I), 1938.
- 77 Dobbie, Unpublished material.
- 78 Duffendack and Wolfe, Phys. Rev. (2) 34, 409, 1929.
- 79 Dunham, T. Jr., Unpublished material, 1926.
- 80 Earls and Sawyer, Phys. Rev. (2) 47, 115, 1935.
- 81 Edlen, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV,
 9 (No. 6), 1933.
- 82 Edlén, Zeit. f. Ap. 7, 378, 1933.
- 83 Edlén, Zeit. f. Phys. 89, 179, 1934.
- 84 Edlén, Zeit. f. Phys. 92, 19, 1934.
- 85 Edlén, Zeit. f. Phys. 93, 433, 1935.
- 86 Edlén, Zeit. f. Phys. 93, 726, 1935.
 87 Edlén, Zeit. f. Phys. 94, 47, 1935.
- 88 Edlén, Zeit. f. Phys. 98, 445, 1936.
- 89 Edlén, Zeit. f. Phys. 98, 561, 1936.
- 90 Edlén, Zeit. f. Phys. 103, 536, 1936.
- 91 Edlén, Zeit. f. Phys. 104, 188, 1937.
- 92 Edlén, Zeit. f. Phys. 104, 407, 1937.
- 93 Edlén, Festskrift Tillägnad, Östen Bergstrand p. 135, 1938.
- 94 Edlén, Unpublished material, Feb. 1940.
- 95 Edlén, Naturwiss. 30, 279, 1942.
- 96 Edlén, Phys. Rev. (2) 62, 434, 1942.
- 97 Edlén, Zeit. f. Ap. 22, 30, 1942; see Swings, Ap. J. 98, 116, 1943.
- 98 Edlén, <u>Kungl. Svenska Vetenskapsakademiens Handlingar</u>, Tredje Serien,

 <u>20</u> (No. 10), 1943.
- 99 Edlen, Phys. Rev. (3) 65, 348, 1944.
- 100 Edlén, Unpublished material.
- 101 Edlén und Söderqvist, Zeit. f. Phys. 87, 217, 1933.
- 103 Edlén and Swings, Unpublished material, Dec. 1941.
- 103 Edlén and Swings, Contr. McDonald Obs. No. 49; Ap. J. 95, 532, 1942.
- 104 Ekefors, Zeit. f. Phys. 63, 437, 1930.
- 105 Ekefors, Zeit. f. Phys. 71, 53, 1931.
- 106 Ellis and Sawyer, Phys. Rev. (2) 49, 145, 1936.
- 107 Evans, Proc. Royal Soc. A 133, 417, 1931.
- 108 Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910.
- 109 Exner und Haschek, see Kayser, Handbuch der Sp. 6, 1912.

BIBLIOGRAPHY

- 110 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924.
- 111 Exner and Haschek, see Shenstone, Phys. Rev. (2) 30, 255, 1927.
- 112 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 2, 1930.
- 113 Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934.
- 114 Findlay, Phys. Rev. (2) 36, 5, 1930.
- 115 Fisher and Goudsmit, Phys. Rev. (2) 37, 1057, 1931.
- 116 See Fowler, Report on Series in Line Spectra, Fleetway Press, London, 1922.
- 117 Fowler, Phil. Trans. Royal Soc. A 225, 1, 1925.
- 118 Fowler, Proc. Royal Soc. A 110, 476, 1936.
- 119 Fowler, Proc. Royal Soc. A 117, 317, 1928.
- 120 Fowler and Freeman, Proc. Royal Soc. A 114, 662, 1927.
- 121 Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928.
- 122 See Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928.
- 123 Fred, Ap. J. 87, 176, 1938.
- 124 Freeman, Proc. Royal Soc. A 121, 318, 1928.
- 125 Freeman, Proc. Royal Soc. A 124, 654, 1929.
- 126 See Freeman, Proc. Royal Soc. A. 127, 330, 1930.
- 127 Frerichs, Phys. Rev. (2) 34, 1239, 1929.
- 128 Frerichs, Naturwiss. 21, 849, 1933.
- 129 Frerichs, Zeit. f. Phys. 80, 150, 1933.
- 130 Frisch, Zeit. f. Phys. 70, 498, 1931.
- 131 Fuchs, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934.
- 132 Gartlein, Phys. Rev. (2) 31, 782, 1928.
- 33 Geuter, <u>Zeit. f. Wiss. Ptg.</u> <u>5</u>, 1, 1907. (See Kayser, Handbuch der Sp. <u>6</u>, 1912.)
- 134 Gibbs and Kruger, Phys. Rev. (2) 37, 1559, 1931.
- 135 Gieseler und Grotrian, Zeit. f. Phys. 34, 374, 1925.
- 136 Gilles, Annales de Physique (10) 15, 267, 1931.
- 137 Green, L.C., See Shenstone, Phil. Trans. Royal Soc. A 235, 195 (No. 751), 1936.
- 138 Green, L.C., Unpublished material, 1937.
- 39 Green, L.C., Phys. Rev. (2) 55, 1209, 1939.
- 40 Green, J.B. and Barrows, Jr., Phys. Rev. (2) 47, 131, 1935.
- 141 Gremmer, see Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse 32, 709, 1931.
- 142 Hall, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924.
- 143 Hamm, Zeit. f. Wiss. Ptg. 13, 105, 1913.
- 144 Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439, 1941.
- 145 Harrison and McNally, Jr., Phys. Rev. (2) 58, 703, 1940.
- 146 Hasselberg, see Kayser, Handbuch der Sp. 6, 1912.
- 147 Hasselberg or Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910.
- 148 Haussmann, Ap. J. 66, 333, 1927.
- 149 Hetzler, Boreman and Burns, Phys. Rev. (2) 48, 656, 1935.
- 150 Hitchcock, W. J., Unpublished material, Nov. 1943.
- 151 Hopfield, Phys. Rev. (2) 37, 160, 1931.
- 152 Humphreys, Phys. Rev. (2) 47, 712, 1935.
- 153 Humphreys, <u>Bur. St. Journ. Res. 16</u>, 639 (RP 898) 1936.
- 154 Humphreys, Bur. St. Journ. Res. 20, 17 (RP 1061) 1938.
- 155 Humphreys, <u>Bur. St. Journ. Res</u>. <u>22</u>, 19 (RP 1164) 1939.
- 56 Humphreys and Meggers, Bur. St. Journ. Res. 10, 139 (RP 521), 1933.
- 157 Hunter, Phil. Trans. Royal Soc. A 233, 303, 1934.
- 158 Ingram, Phys. Rev. (2) 32, 172, 1928.
- 159 Ingram, Phys. Rev. (2) 33, 907, 1929.
- 160 Ingram, Phys. Rev. (2) 34, 421, 1929.
- 161 International Standard, see <u>Trans. Intern. Astr. Union</u> 3, 86, 1928.
- 162 International Standard, see Trans. Intern. Astr. Union 5, 85, 1935.
- 163 International Standard, see <u>Trans. Intern. Astr. Union</u> <u>6</u>, 79, 1938.
- 164 International Standard, see Trans. Intern. Astr. Union 6, 80, 1938.
- 165 International Standard, see Trans. Intern. Astr. Union 6, 89, 1938.

- 166 Jackson, Proc. Royal Soc. A 130, 395, 1931.
- 167 Jackson, Proc. Royal Soc. A 133, 553, 1931.
- 168 Jackson, Mon. Not. Royal Astr. Soc. 93, 98 (No. 1), 1932.
- 169 Johnson or Merton and Johnson, see Kayser und Konen, <u>Handbuch der Sp. 8</u>, Part 1, 1932.
- 170 See Kayser, Handbuch der Sp. 5, 1910.
- 171 Kayser, Handbuch der Sp. 6, 893, 1912.
- 172 See Kayser, Handbuch der Sp. 6, 1912.
- 173 See Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924.
- 174 See Kayser und Konen, Handbuch der Sp. 7, Part 2, 1930.
- 175 See Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934.
- 176 Kiess, Sci. Papers Bur. St. 19, 113 (No. 474), 1923.
- 177 Kiess, Unpublished material, 19247.
- 178 Kiess, Bur. St. Journ. Res. 1, 75 (RP 4), 1928.
- 179 Kiess, Bur. St. Journ. Res. 5, 775 (RP 229), 1930.
- 180 Kiess, Bur. St. Journ. Res. 8, 393 (RP 425), 1932.
- 181 Kiess, Unpublished material, May 1932.
- 182 Kiess, Bur. St. Journ. Res. 10, 827 (RP 570), 1933.
- 183 Kiess, <u>Bur. St. Journ. Res.</u> 15, 79 (RP 812) 1935.
- 184 Kiess, Unpublished material, Jan. 1936, June 1940, Mar. 1941, Apr. 1941.
- 185 Kiess, Bur. St. Journ. Res. 20, 33 (RP 1062), 1938.
- 186 Kiess, Bur. St. Journ. Res. 21, 185 (RP 1124), 1938.
- 187 Kiess, Unpublished material, Feb. 1939, June 1940, Feb. 1941.
- 188 Kiess, Bur. St. Journ. Res. 24, 1 (RP 1266), 1940.
- 189 Kiess, Letter, June 1942.
- 190 Kiess, Unpublished material, Aug. 1942.
- 191 Kiess, Unpublished material, Oct. 1942.
- 192 Kiess, Unpublished material, Dec. 1942.
- 193 Kiess and de Bruin, Bur. St. Journ. Res. 2, 1117 (RP 73), 1929.
- 194 Kiess and de Bruin, Bur. St. Journ. Res. 4, 667 (RP 172), 1930.
- 195 Kiess and de Bruin, Bur. St. Journ. Res. 23, 443 (RP 1244), 1939.
- 196 Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 5, 1205 (RP 255) 1930.
- 197 Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 6, 621 (RP 396) 1931.
- 198 Kiess and Lang, Bur. St. Journ. Res. 5, 305 (RP 202), 1930.
- 199 Kless and Meggers, <u>801. Papers Bur. St. 16</u>, 54 (No. 372), 1920.
 200 Kless and Stowell, <u>Bur. St. Journ. Res</u>. 12, 459 (RP 671), 1934.
- 201 Kilby, Ap. J. 30, 243, 1909.
- 202 King, A. S., Mt. Wilson Contr. No. 66; Ap. J. 37, 239, 1913.
- 203 King, A. S., Mt. Wilson Contr. No. 76; Ap. J. 39, 139, 1914.
- 204 King, A. S., Mt. Wilson Contr. No. 94; Ap. J. 41, 86, 1915.
- 205 King, A. S., <u>Mt. Wilson Contr.</u> No. 108; <u>Ap. J.</u> 42, 347, 1915.
 206 King, A. S., <u>Mt. Wilson Contr.</u> No. 122; <u>Ap. J.</u> 44, 169, 1916.
- 307 King, A. S., Mt. Wilson Contr. No. 150; Ap. J. 48, 13, 1918.
- 208 King, A. S., Mt. Wilson Contr. No. 181; Ap. J. 51, 179, 1920.
- 309 King, A. S., Mt. Wilson Contr. No. 198; Ap. J. 53, 133, 1981.
- 210 King, A. S., Mt. Wilson Contr. No. 211; Ap. J. 54, 28, 1921.
- 211 King, A. S., Mt. Wilson Contr. No. 247; Ap. J. 56, 318, 1922.
- 212 King, A. S., Mt. Wilson Contr. No. 274; Ap. J. 59, 155, 1924.
- 213 King, A. S., Mt. Wilson Contr. No. 283; Ap. J. 60, 282, 1924.
- 214 King, A. S., Unpublished material, 19277.
- 215 King, A. S., Mt. Wilson Contr. No. 368; Ap. J. 68, 194, 1928.
- 216 King, A. S., Mt. Wilson Contr. No. 384; Ap. J. 70, 105, 1929.
- 217 King, A. S., Mt. Wilson Contr. No. 414; Ap. J. 73, 221, 1930.
- 218 King, A. S., <u>Mt. Wilson Contr.</u> No. 448; <u>Ap. J. 75</u>, 379, 1932.
 219 King, A. S., <u>Mt. Wilson Contr.</u> No. 470; <u>Ap. J. 78</u>, 9, 1933.
- 220 King, A. S., Mt. Wilson Contr. No. 496; Ap. J. 80, 124, 1934.
- 221 King, A. S., Mt. Wilson Contr. No. 523; Ap. J. 82, 140, 1935.
- 222 King, A. S., Mt. Wilson Contr. No. 584; Ap. J. 87, 109, 1938.

BIBLIOGRAPHY

- 223 King, A. S., Mt. Wilson Contr. No. 608; Ap. J. 89, 377, 1939.
- 224 King, A. S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941.
- 225 King, A. S., Mt. Wilson Contr. No. 678; Ap. J. 97, 323, 1943.
- 226 King, A. S., see Sitterly and King, <u>Proc. Am. Phil. Soc</u>. <u>86</u>, 339 (No. 3), 1943.
- 227 King, A. S., Unpublished material.
- 228 King, A. S. and Carter, Mt. Wilson Contr. No. 326; Ap. J. 65, 86, 1927.
- 229 King, A. S. and Moore, Mt. Wilson Contr. No. 681; Ap. J. 98, 33, 1943.
- 230 Krebs, Zeit. f. Wiss. Ptg. 16, 293, 1917.
- 231 Kruger and Pattin, Phys. Rev. (2) 52, 621, 1937.
- 232 Lacroute, Annales de Physique (11) 3, 1, 1935.
- 233 Lang, Phys. Rev. (2) 31, 773, 1928.
- 234 Lang, Proc. Nat. Acad. Sci. 14, 32, 1928.
- 235 Lang, Phys. Rev. (2) 34, 697, 1929
- 236 Lang and Vestine, Phys. Rev. (2) 42, 233, 1932.
- 237 Laporte and Mack, Phys. Rev. (2) 63, 246, 1943.
- 238 Laporte, Miller and Sawyer, Phys. Rev. (2) 38, 843, 1931.
- 239 Laun, Bur. St. Journ. Res. 21, 207 (RP 1125), 1938.
- 240 Livingood, Phys. Rev. (2) 34, 185, 1929.
- 241 Lorenser, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924.
- 242 Ludwig, Zeit. f. Wiss. Ptg. 16, 157, 1917.
- 243 Mack, Unpublished material, June 1942.
- 244 Martin, Phys. Rev. (2) 48, 938, 1935.
- 245 Mass. Inst. Tech., Wave Length Tables, Wiley, New York, 1939.
- 246 Mass. Inst. Tech., Unpublished material, May 1941.
- 247 Mass. Inst. Tech., Unpublished material, June 1942.
- 248 McCormick and Sawyer, Phys. Rev. (2) 54, 71, 1938.
- 249 McNally, Jr., Unpublished material, May 1944.
- 250 McNally, Jr., Harrison and Park, Journ. Opt. Soc. Am. 32, 334, 1942.
- 251 Meggers, Sci. Papers Bur. St. 20, 19 (No. 499), 1925.
- 252 Meggers (Bureau of Standards), see Shenstone, Phys. Rev. 30, 255, 1927.
- 253 Meggers, Sci. Papers Bur. St. 22, 61 (No. 549), 1927.
- 254 Meggers, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>2</u>, 733 (RP 55), 1929.
- 255 Meggers, see Findlay, Phys. Rev. (2) 36, 5, 1930.
- 256 Meggers, see Shenstone, Phys. Rev. (2) 36, 669, 1930.
- 257 Meggers, Bur. St. Journ. Res. 6, 1027 (RP 322), 1931.
- 258 Meggers, see Russell and Meggers, <u>Bur. St. Journ. Res</u>. <u>9</u>, 625 (RP 497), 1932.
- 259 Meggers, Bur. St. Journ. Res. 10, 669 (RP 558), 1933.
- 260 Meggers, Bur. St. Journ. Res. 10, 75% (RP 564), 1933.
- 261 Meggers, Unpublished material, Feb. 1934.
- 262 Meggers, Bur. St. Journ. Res. 14, 33 (RP 755), 1935.
- 263 Meggers, Bur. St. Journ. Res. 14, 487 (RP 781) 1935.
- 264 Meggers, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906), 1936.
- 265 Meggers, <u>Bur. St. Journ. Res</u>. <u>24</u>, 153 (RP 1275), 1940.
- 366 Meggers, see Meggers and Moore, <u>Bur. St. Journ. Res</u>. <u>35</u>, 83 (RP 1317), 1940.
- 267 Meggers, <u>Journ. Opt. Soc. Am</u>. <u>31</u>, 39, 1941.
- 268 Meggers, see King, A.S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941.
- 269 Meggers, Unpublished material, Nov. 1941.
- 270 Meggers, Rev. Mod. Phys. 14, 96, 1942.
- 271 Meggers, Unpublished material, Jan. 1943.
- 272 Meggers, Unpublished material.
- 273 Meggers and de Bruin, Bur. St. Journ. Res. 3, 765 (RP 116), 1929.
- 274 Meggers, de Bruin and Humphreys, Bur. St. Journ Res. 7, 643 (RP 364), 1931.
- 275 Meggers and Dieke, Bur. St. Journ. Res. 9, 121 (RP 462), 1932.

- 276 Meggers and Humphreys, Bur. St. Journ. Res. 10, 427 (RP 540), 1933.
- 277 Meggers and Humphreys, Bur. St. Journ. Res. 13, 293 (RP 710), 1934.
- 278 Meggers and Humphreys, Bur. St. Journ. Res. 18, 543 (RP 992), 1937.
- 279 Meggers and Humphreys, Bur. St. Journ. Res. 28, 463 (RP 1464), 1943.
- 280 Meggers and Kiess, Sci. Papers Bur. St. 14, 637 (No. 324), 1918.
- 281 Meggers and Kiess, Sci. Papers Bur. St. 19, 273 (No. 479), 1924.
- 282 Meggers and Kiess, <u>Bur. St. Journ. Res. 9</u>, 309 (RP 473), 1932.
- 283 Meggers and King, Bur. St. Journ. Res. 16, 385 (RP 881), 1936.
- 384 Meggers and Moore, Bur. St. Journ. Res. 25, 83 (RP 1317), 1940.
- 285 Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>2</u>, 733 (RP 55), 1929.
- 286 Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906), 1936.
- 287 Meggers and Scribner, Bur. St. Journ. Res. 4, 169 (RP 139), 1930
- 288 Meggers and Scribner, <u>Bur. St. Journ. Res.</u> <u>5</u>, 73 (RP 187), 1930. 289 Meggers and Scribner, <u>Bur. St. Journ. Res</u>. <u>13</u>, 625 (RP 732), 1934.
- 290 Meggers and Scribner, Bur. St. Journ. Res. 14, 629 (RP 793), 1935.
- 291 Meggers and Scribner, Bur. St. Journ. Res. 19, 651 (RP 1053), 1937.
- 292 Meggers and Shenstone, Phys. Rev. (2) 35, 868, 1930.
- 293 Meissner, Zeit. f. Phys. 39, 172, 1926.
- 294 Meissner, Zeit. f. Phys. 40, 839, 1927.
- 295 Meissner, Ann. der Phys. (5) 31, 505, 1938.
- 296 Meissner, Ann. der Phys. (5) 31, 518, 1938.
- 297 Meissner, Bartelt und Eckstein, Zeit. f. Phys. 86, 54, 1933.
- 298 Meissner und Luft, Ann. der Phys. (5) 29, 698, 1937.
- 299 Merrill, Bull. Bur. St. 14, 159, 1918.
- 300 Merton and Johnson, see Fowler and Selwyn, <u>Proc. Royal Soc</u>. A <u>118</u>, 34, 1928.
- 301 Mihul, Annales de Physique (10) 9, 294, 1928.
- 302 Mihul, Annales de Physique (10) 9, 301, 1928.
- 303 Millikan and Bowen, Phys. Rev. (2) 25, 600, 1925.
- 304 Molnar and Hitchcock, Journ. Opt. Soc. Am. 30, 523, 1940.
- 305 Moore, C. E., Phys. Rev. (2) 55, 710, 1939.
- 306 Moore, C. E. and King, A. S., Publ. Astr. Soc. Pacific <u>55</u>, 27 (No. 323), 1943.
- 307 Narayan, Kodaikanal Obs. Bull. 4, 311 (No. 99), 1932.
- 308 Offermann, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924.
- 309 Olthoff and Sawyer, Phys. Rev. (2) 42, 766, 1932.
- 310 Paschen, Ann. der Phys. (4) 39, 642, 1909.
- 311 Paschen, Ann. der Phys. (4) 60, 405, 1919.
- 313 Paschen, <u>Ann. der Phys</u>. (4) <u>71</u>, 142, 1923.

 313 Paschen, <u>Sitz. der Preuss. Akad. der Wiss</u>., <u>Phys.-Math. Klasse</u>, <u>32</u>, 536, 1938.
- 314 Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse, 32, 709, 1931.
- 315 Paschen, Ann. der Phys. (5) 12, 509, 1932.
- 316 Paschen und Back, Ann. der Phys. (4) 39, 897, 1912.
- 317 Paschen und Campbell, Ann. der Phys. (5) 31, 29, 1938.
- 318 Paschen und Kruger, Ann. der Phys. (5) 8, 1005, 1931.
- 319 Paschen und Ritschl, Ann. der Phys. (5) 18, 867, 1933.
- 320 Paul and Polster, Phys. Rev. (2) 59, 424, 1941.
- 321 Paul and Rense, Phys. Rev. (2) 56, 1110, 1939.
- 322 Phillips and Kruger, Phys. Rev. (2) 54, 839, 1938.
- 323 Phillips and Parker, Phys. Rev. (2) 60, 301, 1941.
- 324 Platt and Sawyer, <u>Phys. Rev.</u> (2) <u>60</u>, 866, 1941. 325 Price, <u>Phys. Rev.</u> (2) <u>48</u>, 477, 1935.
- 326 Puhlmann, Zeit. f. Wiss. Ptg. 17, 97, 1917.
- 327 Rao, Proc. Royal Soc. A 124, 465, 1929.
- 338 Rao, Indian Journ. Phys. 7, 561, 1932.
- 329 Rasmussen, Zeit. f. Phys. 80, 726, 1933.

BIBLIOGRAPHY

- 330 Rasmussen, Zeit. f. Phys. 83, 404, 1933.
- 331 Rasmussen, Zeit. f. Phys. 86, 24, 1933.
- 32 Rasmussen, Zeit. f. Phys. 87, 607, 1934.
- 333 Reinheimmer, Ann. der Phys. (4) 71, 162, 1923.
- 334 Robinson, <u>Nature</u> 137, 992, 1936.
- 35 Robinson, Phys. Rev. (2) 49, 297, 1936.
- 336 Robinson, Phys. Rev. (2) 51, 726, 1937.
- 337 Robinson, Phys. Rev. (2) 52, 724, 1937.
- 338 Rood and Sawyer, Ap. J. 87, 68, 1938.
- 339 Rosen, Harrison and McNally, Jr., Phys. Rev. (2) 60, 722, 1941.
- 340 Rosenthal, Ann. der Phys. (5) 4, 49, 1930.
- 341 Ruedy, Phys. Rev. (2) 41, 588, 1932.
- 342 Ruedy, Phys. Rev. (2) 44, 757, 1933.
- 343 Ruedy and Gibbs, Phys. Rev. (2) 46, 880, 1934.
- 344 Russell, Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925.
- 345 Russell, Publ. Astr. Soc. Pacific 38, 236, 1926.
- 346 Russell, Mt. Wilson Contr. No. 342; Ap. J. 66, 233, 1927.
- 347 Russell, Mt. Wilson Contr. No. 344; Ap. J. 66, 283, 1927.
- 348 Russell, Mt. Wilson Contr. No. 345; Ap. J. 66, 347, 1927.
- 349 Russell, see Russell and Meggers, <u>Sci. Papers Bur. St</u>. <u>32</u>, 329 (No. 558). 1927.
- 350 Russell, Phys. Rev. (2) 31, 27, 1928.
- 351 Russell, see Meggers and Russell, <u>Bur. St. Journ. Res.</u> 2, 733 (RP 55), 1929.
- 352 Russell, Phys. Rev. (2) 34, 821, 1929.
- 353 Russell, see Meggers, Bur. St. Journ. Res. 10, 676, 684 (RP 558), 1933.
- 354 Russell, Phys. Rev. (2) 46, 989, 1934.
- 355 Russell, Unpublished material, May 1940.
- 356 Russell, Unpublished material, Nov. 1941.
- 357 Russell, Mt. Wilson Contr. No. 663; Ap. J. 96, 11, 1942.
- 358 Russell, Unpublished material, 1943.
- 359 Russell, Unpublished material.
- 360 Russell, Albertson and Davis, Phys. Rev. (2) 60, 641, 1941.
- 361 Russell and King, A. S., Mt. Wilson Contr. No. 611; Ap. J. 90, 155, 1939.
- 362 Russell, King, R. B. and Lang, Phys. Rev. (2) <u>52</u>, 456, 1937.
- 363 Russell, King, R. B. and Moore, Phys. Rev. (2) 58, 407, 1940.
- 363a Russell, Moore and Weeks, <u>Trans. Am. Phil. Soc</u>. <u>34</u>, 111 (Part 2), 1944.
- 364 Russell and Lang, Mt. Wilson Contr. No. 337; Ap. J. 66, 13, 1927.
- 365 Russell and Meggers, Sci. Papers Bur. St. 22, 329 (No. 558), 1927.
- 366 Russell and Meggers, <u>Bur. St. Journ. Res</u>. 9, 625 (RP 497), 1932.
- 367 Russell and Meggers, Unpublished material.
- 368 Russell or Moore, see Meggers and Russell, <u>Bur. St. Journ. Res</u>. <u>17</u>, 125 (RP 906) 1936.

- 369 Russell and Saunders, Ap. J. 61, 38, 1925.
- 370 Ryde, Proc. Royal Soc. A 117, 164, 1927.
- 371 St. John and Babcock, Mt. Wilson Contr. No. 202; Ap. J. 53, 260, 1921.
- 372 von Salis, Ann. der Phys. (4) 76, 145, 1925.
- 373 Saunders, Ap. J. 52, 265, 1920.
- 374 Saunders, Unpublished material.
- 375 Saunders and Russell, Ap. J. 62, 1, 1925.
- 376 Sawyer and Lang, Phys. Rev. (2) 34, 712, 1929.
- 377 Sawyer und Paschen, Ann. der Phys. (4) 84, 1, 1927.
- 378 Schüler, Zeit. f. Phys. 42, 487, 1927.
- 379 Schumacher, Zeit. f. Wiss. Ptg. 19, 149, 1919.
- 380 Segre und Bakker, Zeit. f. Phys. 72, 734, 1931.
- 381 Shenstone, Phys. Rev. (2) 28, 449, 1926.
- 382 Shenstone, Phys. Rev. (2) 30, 255, 1927.
- 383 Shenstone, Phys. Rev. (2) 31, 317, 1928.
- 384 Shenstone, Phys. Rev. (2) 32, 30, 1928.
- 385 Shenstone, Phys. Rev. (2) 36, 669, 1930.
- 386 Shenstone, Phil. Trans. Royal Soc. A 235, 195 (No. 751), 1936.
- 387 Shenstone, Phil. Trans. Royal Soc. A 237, 453, 1938.
- 388 Shenstone, Phys. Rev. (2) 57, 894, 1940.
- 389 See Shenstone, Phys. Rev. (2) 57, 894, 1940.
- 390 Shenstone, Unpublished material.
- 391 Smith, Sinclair, Unpublished material.
- 392 Smith, Stanley, Proc. Nat. Acad. Sci. 13, 65, 1927.
- 393 Söderqvist, Nova Acta Regiae Societatis Scientiarum Upsaliensis (IV)
 9 (No.7), 1934.
- 394 Sommer, Zeit. f. Phys. 37, 1, 1926.
- 395 Sommer, Zeit. f. Phys. 45, 147, 1927.
- 396 See Stiles, Ap. J. 30, 48, 1909.
- 397 Stoy, Lick Bull. 17, 179 (No. 480), 1935.
- 398 Stüting, see Kayser, Handbuch der Sp. 6, 1912.
- 399 Sullivan, Univ. Pittsburgh Bull. 35, 1 (No. 1), 1938.
- 400 Sullivan and Burns, <u>Science Studies</u> 9, 7 (No. 3), 1941.
 401 Takahashi, <u>Ann. der Phys.</u> (5) 3, 27, 1929.
- 402 Uhler and Tanch, Ap. J. 55, 291, 1922.
- 403 Wagman, Univ. Pittsburgh Bull. 34, 1 (No. 1), 1937.
- 404 Werner, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934.
- 405 Wheatley and Sawyer, Phys. Rev. (2) 61, 591, 1942.
- 406 White, Phys. Rev. (2) 33, 538, 1929.
- 407 White, Phys. Rev. (2) 33, 672, 1929.
- 408 Whitford, Phys. Rev. (2) 46, 793, 1934.
- 409 Wright, Publ. Lick Obs. 13, 193, 1918.
- 410 Zeeman und Dik, see de Bruin, Zeit. f. Phys. 38, 94, 1926.

INDEX-By Pages

							INDEX.—By		_	_	Mult sp	Mult
Page	Sp	Mult No Sp	Mult No	Page	8 p	Mult No	Sp	Mult No	Page			No
1	н	1 - He II	5	40	Cr I	115	- Cr I	173	79	Y II	9 - Zr I	17
3	He II	6 - C II	21	41	Cr I	174	- Cr I	243	80	Zr I	18 - Zr II	23
3	C II	33 - N I	6	43	Cr I	244	- Cr I	Unclass.	81	Zr II	24 - Zr II	108
4	N I	7 - N I	24	43	Cr I	Unclass.	3911.95 - Cr II	36	82	Zr II	109 - No II	2
5	N I	25 - N II	68	44	Cr II	37	- Cr II	116	83	Mo II	3 - Ag II	
6	N II	69 - 0 I	11	45	Cr II	117	- Mn I	4	84	Cd I	1 - La II	4
7	OI	12 - 0 I	44	46	Mn I	5	- Mn I	59	85	La II	5 - La II	86
8	O I	45 - 0 II	62	47	Min I	60	- Mn II	1 21	86	La II	87 - Ce I	
9	O II	63 - 0 III	35	48	Fe I	1	- Fe I	36	87	Ge II	1 - Ce II	99
10	o III	36 - F II	4	49	Fe I	37	- Fe I	91	88	Ce II	100 - Ce II	233
11	F II	5 - Ne I	32	50	Fe I	90	- Fe I	159	89	Ce II	234 - Nd II	7
12	Ne I	33 - Ne II	70	51	Fe I	160	- Fe I	223	90	Nd II	8 - Sm I	3
13	Ne II	71 - Mg II	9	52	Fe I	224	- Fe I	308	91	Sm II	1 - Sm II	58
14	Mg II	10 - Al II	65	53	Fe I	309	- Fe I	368	92	Sm II	59 - Gd II	1
15	Al II	66 - S1 I	28	54	Fe I	369	- Fe I	443	93	Gd II	2 - Gd II	49
16	81 I	29 - S1 III	8	55	Fe I	444	- Fe I	549	94	Gd II	50 - Gd II	98
17	S1 III	9 - P V	1	56	Fe I	550	- Fe I	613a	95	Gđ II	99 - Tb II	
18	S I	1 - S II	48	57	Fe I	613	- Fe I	693	96	Dy I	- Hf II	17
19	s II	49 - Cl II	8	58	Fe I	694	- Fé I	815	97	Hf II	18 - Ta I	2
20	Cl II	9 - Cl III	8	59	Fe I	816	- Fe I	918	98	Ta I	3 - T1 II	
21	Cl III	9 - A II	43	60	Fe I	919	- Fe I	1012	99	Pb I	- U	
22	A Il	44 - A II	123	61	Fe I	1013	- Fe I	1084				
23	A II	124 - Ca I	13	62	Fe I	1085	- Fe I	1156				
24	Ca I	14 - Ca III	4	63	Fe 1	1157	- Fe I					
25	Sc I	1 - Sc III	1	64	Fe 1	1233	- Fe I					
26	Ti I	1 - T1 I	54	65	Fe 1	1297		of Unclass.	Fe I			
27	T1 I	55 - T1 I	140	66	Fe 1	1 1	- Fe I					
28	T1 I	141 - Ti I	192	67	Fe :	II 55	- Fe I				den Lines	
29	T1 I	193 - T1 I	268	68	Fe :	129	⊸ Fe I		100	Be I	1F - Cl IV	3F
30	T1 I	269 - T1 II	33	69	Fe :	II 883	- Fe I		101	A III	1F - T1 I	15F
31	T1 II	23 - T1 II	93	70	Fe :	III 66	- Co 1		102	Ti I	16F - T1 II	37F
32	T1 II	94 - V I	31	71	Co :	10	- Co 1		103	Ti II	38F - V VIII	
33	VI	33 - A I	78	72	Co		- Co 1		104	Cr I	1F - Cr II	26 F
34	V I	79 – V I Ur	nclass.	73	Co	I 150	- Co 1		105	Cr II	27F - Fe I	3F
35	A 11	1 - V II	61	74	N1	1 1	- N1 I		106	Fe I	4F - Fe I	41F
36	A 11	63 - A II	162	75	N1		- N1 1		107	Fe II	1F - Fe II	38F
37	A II	163 - Cr I	18	76	N1		- N1 1		108	Fe II	39F - Fe XV	1F
38	Cr I	19 - Cr I	52	77	N1		- Zn 1		109	Co II	1F - N1 XII	
39	Cr I	53 - Cr I	114	78	Ge.	1	- Y I	1 8	110	N1 XIII	1F - Eu II	2F

					INDEXB	y Elements					
8 p	Page	Sp	Page	Sp	Page	Sp	Page	S p	Page	Sp	Page
AI	21	Dy II	96	N III	6	Si I	15,16	VIX A	101	Mn V	105
A II	21,23	Er	96	N IA	6	Si II	16	Al VII	100	Mn VI	105
A III	23	Eu I	92	N A	6	Si III	16,17	Be I	100	Mn IX	105
A IV	23	Eu II	92	Na I	13	S1 IV	17	CI	100	Mn X	105
Ag I	83	F I	10	Na II	13	Sm I	90	Ca I	101	N I	100
Ag II	83	F II	10,11	Nd I	89	Sm II	91,92	Ca II	101	N II	100
Al I	14	F III	11	Nd II	89,90	Sn. I	84	Ca. V	101	Na IV	100
Al II	14,15	F IV	11	Ne I	11,12	Sn II	84	Ca VI	101	Na V	100
Al III	15	F VI	11	Ne II	12,13	Sr I	78	Ca VII	101	Ne III	100
As I	78	Fe I	48-65	Ni I	74-77	Sr II	78	Ca XII	101	Ne IV	100
As II	78	Fe II	66-69	N1 II	77	Ta I	97,98	Ca XIII	101	Ne V	100
Au I	98	Fe III	69,70	0 I	6- 8	Ta II	98	Ca XV	101	N1 I	109
Au II	98	Ga I	78	O II	8, 9	Tb I	95	C1 II	100	N1 II	109
BI	2	Ga II	78	o III	9,10	Tb II	95	C1 III	100	N1 VII	109
BII	a '	Gđ I	92	O IV	10	Te I	84	C1 IV	100	N1 VIII	109
B III	2	Gđ II	92-95	0 4	10	Th I	99	Co II	109	N1 IX	109
Ba I	84	Ge I	78	o vi	10	Th II	99	Co VI	109	N1 XII	109
Ba II	84	Ge II	78	Os I	98	Th III	99	Co VII	109	N1 XIII	110
Be I	2	H	1	PI	17	Ti I	26-30	Co VIII	109	N1 XV	110
Be II	2	He I	1	P II	17	T1 II	30-32	Co XI	109	N1 XVI	110
Bi I	99	He II	1, 3	P III	17	T1 IV	32	Cr I	104	0 I	100
Bi II	99	Hf I	96	P IV	17	Tl I	98	Cr II	104,105	OII	100
Br I	78	Hf II	96,97	P V	17	Tl II	98	Cr III	105	O III	100
Br II	78	Hg I	98	Pb I	99	Tm I	96	Cr IV	105	ΡI	100
СÍ	3	Hg II	98	Pb II	99	Tm II	96	Cr V	105	PII	100
CII	2, 3	Ho I	96	Pd I	83	ט	99	Cr VIII	105	SI	100
CIII	3	Ho II	96	På II	83	VI	32-34	Cr IX	105	s II	100
CIV	3	II	84	Pr I	89	A II	35–37	Cu II	110	s III	100
Ca I	23,24	I II	84	Pr II	89	WI	98	Eu II	110	s VIII	100
Ca II	24	In I	84	Pt I	98	WII	98	F II	100	SXII	100
Ca III	24	In II	84	Pt II	98	Xe I	84	F III	100	Sc II	101
CP I	82	Ir I	98	Ra I	99	Xe II	84	F IV	100	Sc III	101
CP II	82	KI	23	Ra II	99	YI	78	Fe I	105,106	Sc VI	101
Cd I	84	K II	23	Rb I	78	X II	78,79	Fe II	107,108	Sc VII	101
Cd II	84	KIII	23	Rb II	78	Yb I	96	Fe III	108	S1 I	100
Ce I	86	Kr I	78	Re I	98	Yb II	96	Fe V	108	Sr II	110
Ce II	87-89	Kr II	78	Rh I	83	Zn I	77	Fe VI	108	T1 I	101,102
Ce III	89	La I	84	Rh II	83	Zn II	77	Fe VII	108	T1 II	102,103
Cl I	19	La II	84-86	Rn I	99	Zr I	79,80	Fe X	108	T1 III	103
C1 II	19,20	La III	86	Ru I	83	Zr II	80-82	Fe XI	108	T1 VII	103
C1 III	30,21	LA I	3	Ru II	83			Fe XIII	108	T1 VIII	103
C1 IV	21	L1 II	2	S I	18			Fe XIV	108	V II	103
Co I	70-73	Lu I	96	S II	18,19			Fe XV	108	V III	103
Co II	73	Lu II	96	S III	19			K IV	101	A AIII	103 103
Cr I	37-43 43-45	Mg I	13 14	S IV	19			K VI	101 101	V VIII	110
Cr II Cs I	43-45 84	Mg II Mn I	13,14 45-47	Sb I Sb II	8 4 84	Forbidder	. Tines	K VI Kr III	110	Xe III	110
Cs II	84	Mn II	45-47	Sc I	25	A III	101	La II	110	Y II	110
Cu I	77	Mo I	82	Sc II	25	A IV	101	La III	110	Y V	110
Cu II	77	Mo II	82,83	Se III	25	A V	101	Mg VI	100	Zr II	110
D D	1	MO II	3 - 5	Se I	78	AX	101	Mn II	105	Zr III	110
Dy I	96	N II	5, 6	Se II	78	AXI	101	Mn IV	105	Zr VI	110
DJ 1	30	* **	5, 5	50 11	10	w vr	101	TH. 14	200		***

Labor I A	ator; Ref		E P Low High	J	Multiplet (No)	Labo:	rator Ref	y Int	E I	High	J	Multiplet (Ep)	Labor I A	rator; Ref		E P Low	High	J	Multiplet (No)
н гр 13	. 54	Anal .	_	June :	1942	He I con	tinue	eđ					He I cont	tinue	đ				
- 6562.817	A	H ∝	10.15 13.04		2 ² P°-3 ² D etc	3187.743	В	(8)	19.73 2	33.61		23S-43P°	4168.971	D	(1)	21.13 2	4.09	1-0	2 ¹ P°_6 ¹ s
4861.332 4340.468	A A	H p	10.15 12.69 10.15 13.00	_	(1) 4 ² Deto 5 ² Deto	1	_					(3) 21 _{S-3} 1 _P o	4143.759	В	(2)	21.13 2	4.11	1-2	(52) 21pe_61p (53)
4101.737 3970.074	A A	H &	10.15 13.16 10.15 13.26	_	6°D etc 7 ² D etc		В	(6)	20.53		0-1	(4)	4023.986	D	(1)	21.13 2	4.19	1-0	21p°_?1s (54)
3889.051	A	н ₈	10.15 13.33	_	3 ³ P°-8 ³ D eto	3964.727	В	(4)	20.53 2		0-1	215_41po (5)	4009.270	D	(1)	21.13 2	4.21	1-3	21P°_71D
3835.386 3797.900	A A	H9 H10	10.15 13.37 10.15 13.40	_	(2) 9 ² D etc 10 ² D etc	3613.641	В	(3)	20.53 2		0-1	21g_51p°	4007.81	P	Forb	21.13 2	4.21	1-1	21pe_71pe
3770.632 3750.154	A A	H ₁₁ H ₁₂	10.15 13.43 10.15 13.45	_	112D etc 12D etc		D	(2)	20.53 2		0-1	21g_61po (7)	3935.914	D	(1)	21.13 2	4.26	1-0	(56) 21P°_81g
3734.370	A	H ₁₃	10.15 13.46		3 ² P°−13 ² D et		D	(2)	20.53 2		0-1	218_71pe (8)	3926.530	D	(1)	21.13 2	34.27	1-2	(57) 21 po_ 81D
3721.940 3711.973	A A	H ₁₄ H ₁₅	10.15 13.47 10.15 13.48	_	15 ² D et		D	(1)	20.53	34.27	0-1	218_81P° (9)	3878.180	D	(1)	21.13	34.31	1-0	21p°_91s
3703.855 3697.154	A A	H ₁₆ H ₁₇	10.15 13.49 10.15 13.49	_	16 ² D et 17 ² D et	c 7065.188	В	(5)	20.87			2 ³ P°-3 ³ g	3871.819	D	(1)	21.13 2	34.31	1-2	2 ¹ p°_9 ¹ p
3691.557	A	H ₁₈	10.15 13.50		2 ² P°-18 ² D et	7065.719	D	(1)	20.87		0-1	(10)	3838.094	D	(1)	21.13	34.34	1-0	(60) 21P°-1018
3686.833 3682.810	A A	H ₁₉	10.15 13.50 10.15 13.51	_	(4) 19 ² D et 20 ² D et	c 5875.618 c 5875.650	B)	(10)D3	20.87 2 3 20.87 2		2- 1-	2 ³ P°-3 ³ D (11)	3833.574	D	(1)	21.13 2	34.35	1-3	2 ¹ P°-10 ¹ D
3679.355 3676.365	A A	H21 H23	10.15 13.51 10.15 13.51	_	21 ² D et 22 ² D et	te 5875.989	D	(1)	20.87	32.97	0-		3805.765	D	(1)	21.13 2	34.37	1-2	2 ¹ P°-11 ¹ D
3673.761	A	H23	10.15 13.51		2 ² P°-23 ² D et	4713.143	B D	(3) (1)	20.87		3,1-1 0-1	2 ³ P°_4 ³ S (12)	3784.886	D	(1)	21.13 2	34.39	1-2	3 ¹ P°-13 ¹ D
3671.478 3669.466	A A	H24 H25	10.15 13.52 10.15 13.52	_	(5) 24 ² D et		P	Forb	20.87	23.61	2-	2 ³ P°_4 ³ P°	3768.81	D	(1)	21.13 2	34.40	1-2	2 ¹ P°-13 ¹ D
3667.684 3666.097	A A	H26 H27	10.15 13.52 10.15 13.52		26 ² D e1		В	(6)	20.87	23.63	2,1-	2 ³ P°-4 ³ D	3756.10	D	(1)	21.13 2	34.41	1-2	8 ¹ P°-14 ¹ D
3664.679	A	H ₂₈	10.15 13.52	_	2 ² P°-28 ² D e1	4474 699	D	(6) (1)	20.87	23.63	0-	(14)							(66)
3663.406 3662.258	A A	H ₂₉ H ₃₀	10.15 13.52 10.15 13.53	_	(6) 29 ² D et	tc 4469.92	P	Forb	20.87	83.63	2-	2 ³ pe_4 ³ pe _(15)_	9463.57	С	60	22.62			3 ³ 8_5 ³ p°
3661.221 3660.279	A A	H31	10.15 13.53 10.15 13.53	_	31 ² D e1	te 4120.812 te 4120.993	B	(3) (1)	20.87 2 20.87	23.87	3,1-1 0-1	23 pe_53g (16)	8361.77	С	(4)	22.62 2	34.10	_	338 <u>-6</u> 3pe _(68)
3659.423	Ä	H33	10.15 13.53		33 ² D e1	te 4045.16	P	Forb	20.87		2-	23po_53po	7816.16	С	(4)	22.62	34.20		33g_73pe (69)
3658.641 3657.926	A A	H34 H35	10.15 13.53 10.15 13.53	=	2 ² P°-34 ² D et (7) 35 ² D et	te te 4026.189	В	(5)	20.87	23.94	3,1-	23pe_53D	11012.97	A	30	22.82	33.94	0-1	31g_51p•
3657.269 3656.666	Ā	H36 H37	10.15 13.53 10.15 13.53	_	36 ² D et 37 ² D et	A026 362	D	(5) (1)	20.87	23.94	0-	(18)	9603.50	E	6	22.82	34.11	0-1	
3656.135 3645.981	A A	H38	10.15 13.53 10.15 13.54		38 ² D e	te 4025.49	P	Forb	20.87	23.94	2-	2 ³ p°_5 ³ p° (19) 2 ³ p°_6 ³ S							(71)
00401001	••					3867.477 3867.631	D	(2)	20.87 20.87		3,1-1 0-1	23pe_63g (20)	11969.07	A	20	22.91			3 ³ Pe_5 ³ D _(73)_
12818.05 10938.09	A A	_	12.04 13.00 12.04 13.16		3 ² D-5 ² F° et (8)6 ² F° et	c 3829.47	P	Forb	20.87	24.10	2-	23po_63po	10667.60	A	30	22.91			33pe_63g _(73)_
0049.38 9545.974	Ā	_	12.04 13.26 12.04 13.33		72F° et.	3819.606	В	(4)	20.87	24.11	3,1-	23pe_63D	10311.18 10311.37	Ĉ)	40	(22.91 22.91	34.11 34.11	_	33pe_63p (74)
9229.017	Ā	-	12.04 13.37			3819.761	D	(4) (1)	20.87	24.11	0	(22)	9702.66	E	10	22.91	34.18		3 ³ P°_7 ³ S
9014.911 8862.787	A A	_	13.04 13.40 13.04 13.43		3 ² D-10 ² F° e (9)11 ² F° e	tc	P	Forb	20.87			23Pe_63Fe _(23)_	9516.51	c)	30	,22.91			(75) 3 ³ pe_7 ³ p
8750.475 8665.021	A A	_	12.04 13.45 12.04 13.46	-	12 ² F° e 13 ² F° e	te 3732.861 te 3732.992	C	$\binom{1}{1}$	20.87 20.87			23po_73g (24)	9516.66			122.91		-	(76)
8598.394	Ā		12.04 13.47		14°F° e	te 3705.003	В	(3) (1)	20.87	24.21	2,1-	2 ³ P°-7 ³ D	9063.40	E	6	22.91	34.37		3 ³ P°_8 ³ D (77)
8545.384 8502.487	A A	_	12.04 13.48 12.04 13.49		3 ² D-15 ² F° e (10)16 ² F° e	tc	C		20.87			(25)	10996.55	A	5	22.97	34.10		33p_63pe
8467.256 8437.958	A A		13.04 13.49 13.04 13.50		18 F° €	tc 3704.79 tc	P	Forb	20.87			2 ³ P°_7 ³ F° _(26)_	10913.92	A	100	22.97	34.11		(78) 33D-63F°
8413.321	A	-	12.04 13.50	-		te 3651.971 3652.119	D D	(1)	20.87 20.87			2 ³ pe_8 ³ 8 (27)	10072.10	E	2	22.97	24.20		33p_73pe
8392.400 8374.478	A A	_	12.04 13.51 12.04 13.51		3 ² D-20 ² F° e (11)21 ² F° e	te 3634.235	D	(2)	20.87			2 ³ P°-8 ³ D	10027.73	E	40	22.97	34.21	_	(80) 3 ³ D-7 ³ F°
8359.006 8345.553	A A	_	12.04 13.51 12.04 13.51		23 2F° e 23 2F° e	te 3634.373 te	D	(1)	20.87		0	(28)	9526.17	Ē	10	22.97	24.27		33D_83Fe
8333.785	A		13.04 13.52			tc 3634.10	P	Forb	20.87		2	2 ³ P°_8 ³ F°	9210.28	E	6	22.97	24.31		(82) 33p_93F°
8323.428 8314.262	A A	_	12.04 13.52 12.04 13.52		(12)26 ² F° e	tc 3599.304 tc 3599.442	D D	$\binom{1}{1}$	20.87 20.87	24.30 24.30	3,1-1 0-1	23pe_93g (30)							(83)
8306.115 8298.837	A A	=	12.04 13.52 12.04 13.52	_	27 ² F° e 28 ² F° e	te 3587.252	D	(2)	20.87			23P°-93D	10916.98	A 	50	22.97		2-3	3 ¹ D-6 ¹ F° (84) 3 ¹ D-7 ¹ F°
8292.309	A	_	12.04 13.52			te 3587.396	D	_	20.87			(31)	10031.16	E	15	22.97		2-3	(85)
8286.434 8281.125	A A	_	12.04 13.52 12.04 13.53		3 ² D-30 ² F° e (13)31 ² F° e	tc	P	Forb	20.87		2-	33po_93po (33)	9529.27	E	4	22.97	24.27	2–3 -	31 <u>0</u> _81 F° (86)
8276.310 8271.934	A	=	12.04 13.53 12.04 13.53		33 ² F° e	te 3562.950 te	D	(1)	20.87			23po_103g (33) 23po_103p	11225.83	A	6	22.99	24.09	1-0	3 ¹ P°_6 ¹ S
8267.941	A		12.04 13.53		342F° e 32D-352F° e	tc 3554.394 3554.524	D D	{1 1}	20.87 20.87	34.35 34.35	3,1- 0-	(34)	11044.95	A	40	22.99	24.11	1-2	(87) 3 ¹ P°-6 ¹ D
8264.288 8260.938	A A	_	12.04 13.53 12.04 13.53	_	35D-355F° e (14)362F° e 372F° e	te 3536.820	D	(1)	20.87	24.36		2 ³ P°-11 ³ S	10138.50	E	10	22.99	24.21	1-3	(88) 3 ¹ P°-7 ¹ D (89)
8257.859 8255.153	A A		12.04 13.53 12.04 13.53	_	38 ² F° e	te te 3530.487	D	(1)	20.87	24.37		(35) 2 ³ p°-11 ³ D _(36) _	9625.80	E	3	22.99	24.27	1-3	
8203.572	A 		12.04 13.54		Limit	3517.327	ם	(1)	20.87	24.38		23pe_123g							
						3512.511	D	(1)	20.87	24.39		(37) 3 ³ P°-13 ³ D (38)							
<u>D</u> IP1	.3.54	Anal	A List B	June	1942	3502.381	D	(1)	20.87	24.40		2 ³ p°-13 ³ g (39)	He II	P 5	4.17	Anal A	List A	. Ju	ine 1942
6561.032 4860.029	A A	D∝ De	10.16 12.04 10.16 12.70		2 ² P°-3 ² Det (1) 4 ² Det	c 3498.641	D	(1)	20.87	24.40		2 ³ p°-13 ³ p (40)	4685.682 3203.104	A A	_	48.16 48.16		_	3 ² D-4 ² F° etc (1)5 ² F° etc
4339.287 4100.621	A A	DB DY DS	10.16 13.00 10.16 13.17) —	52Det 62Det	c 3490.62	D	(1)	20.87	24.41	_	2 ³ p°-14 ³ s	10123.61	A		50.80			4 ² F°-5 ² Getc
3968.995 3887.993	A A	D E	10.16 13.27 10.16 13.33	<i>'</i> —	72 D et 82 D et	c 3487.721	D	(1)	20.87	24.41	-	23po_143p (42)	6560.099 5411.524	A A	_	50.80	52.68	_	(2) 6 ² G etc 7 ² G etc
00011000	••					3478.97	D	(1)	20.87	24.42		23pe_153p _(43)	4859.323 4541.59	Ā	_	50.80 50.80	53.34	=	82G etc 92G etc
12814.56 10935.11	A A	_	12.04 13.00 12.04 13.1		3 ² D-5 ² F° et (2)6 ² F° et	c 3471.80	D	(1)	20.87	24.43		2 ³ po-16 ³ D (44)	4338.67	A	_	50.80			4 ² F°-10 ² G etc
10046.64 9543.376	Ā	_	12.04 13.2 12.04 13.3	<i>'</i> —	(2)6 ² F° et 7 ² F° et 8 ² F° et	c 7281.349	В	(3)	21.13	22.82	1-0	21po_31g	4199.83 4100.04	Â	=	50.80	53.74	_	(3) 11 ² G etc 12 ² G etc
						6678.149		(6)	21.13			(45) 21po_31D	4025.60 3968.43	Ā	_	50.80 50.80	53.86	=	13 ² G etc 14 ² G etc
						5047.736		(2)	21.13			(46) 21pe_41s	3923.48	A	_	50.80	53.94	_	42F0_152Getc
	P 24		nal A List		an 1943	4921.929		(4)	21.13			(47) 21po_41D	3887.44 3858.07	Ā	_	50.80 50.80	53.97 54.00	_	(4) 16 ² G etc 17 ² G etc
10830.341 10830.250	A A	2500 1500	19.73 20.8°	7 1-	1 (1)	4920.35	P	Forb	21.13			(48) 21po_41po	3833.80 3813.50	Ā	_	50.80 50.80	54.02	_	18 ² G etc 19 ² G etc
10829.081	A	500	19.73 20.8			4437.549		(1)	21.13			(49) 21p°_51g	3796.33	A	_	50.80	54.05	_	4 ² F°-20 ² G etc
3888.646	В	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	19.73 22.9	1 1-	2) 1) 2 ³ 8-3 ³ P°	4387.928		(3)	21.13			(50)	3781.68 3644.47	·Ā Ā		50.80 50.80	54.06	_	(5) 21 ² Getc Limit
		[(3)]			o) (2)			•=•				(51)						-	

3

٥							R L V	1 2	E D M	ULTI	PLE	T T	ABLL							
Labo I A		ry Int		P High	J	Multiplet (No)	Labo I A	orato Ref	ry Int	E Low	P High	J	Multiplet (No)	Lab I A	orator Ref		E I Low	P High	J	Multiplet (No)
He II co	nt1n	1ed					B II I	P 25	.02 Aı		List D	Feb	1943	C I con	tinued					
11626.40 9 344.93	A A			53.08 53.34	_	5 ² G-7 ² H° etc (6) 8 ² H° etc	3451.41	A	10	9.06	12.64	1-2	21p°-2p ² 1	13164.1	D	(100)	8.73	9.67	1-1	3p ³ S-4s ¹ p°
8236.77 7592.74	Ā		52.02	53.51 53.64	=	92H° etc	4121.95	A	7	18.60	21.59	_	3 ³ D-4 ³ F°	12521.0	D	(30)	8.73	9.72	1-1	(27) 3p ³ S-3d ¹ P° (28)
7177.50	Ā	_		53.74	_	11 ³ H° etc								*11667.1 11656.0	D D	(100) (200)	8.73 8.73	9.79 9.79	1-2 1-1	(28) 3p ³ 5-3d ³ P° (29)
6890.88 6683.2	A	_	52.02	53.81 53.86	_	5 ² G-13 ² H° etc (7) 13 ² H° etc 14 ² H° etc	3									()			-	
6527.10 6406.3 6310.8	P A	_	52.02	53.91 53.94	_	155H° etc	3	I P 3			List	3 Fe	b 1943 ₄ 2 _{P°-5} 2 _D	12614.8 *12565.0	D D	(30)	8.81 8.81	9.79	2-2 1-1	3p ³ P-3d ³ P° (30)
6233.8	A	=	52.02	53.97 54.00	_	16 ² H° etc 17 ² H° etc	4243.60	A		29.98			(1)	12602.6 •12565.0 12582.3	D D	(40) (30) (40)	8.81 8.81 8.81	9.79	2-1 1-0 1-2	
6170.6 6118.2	A A	_		54.02 54.03	_	5 ² G-18 ² H° etc (8) 19 ² H° etc		A	5₫	30.14	32.89	_	4 ² D-5 ² F° (2)	12551.0	Ď	(50)	8.81		0-1	
6074.1 6036.7	A	_	52.02	54.05 54.06	_	20 ² H° etc 21 ² H° etc	3	A	10d	30.15	32.89	_	4 ² F°-5 ² G	8018	E	(1d)	8.81	10.35	_	3p ³ P-4d ³ D° (31)
5694.46	A	_	52.02	54.18	_	Limit							(3)	7850	E	(1d)	8.81	10.38	-	3p ³ P-4d ³ P° (32)
Wide Fine	Stm	ucture					See.	NSR	DS-NE	REV	ISED	tior	ı 3 , 197	'n		~	REVI	SED		
							CIII	P 11.	20 Ans		1st A	Marc	h 1943	see	NSRD:		53,			3, 1970
	P 5.3	37 Ar		List B		1943	10691.36 10683.18	A A	50 25	7.46 7.45	8.61 8.61	2-3 1-3	3s ³ P°-3p ³ D	4744.90	В	1				
6707,74 // 6707.89	A)	1000R	(0.00	1.84 1.84	}-1- 	3 ² 8-3 ² P° (1)	10685.44 10729.59	A	10 8	7.45 7.46	8.60 8.61	0-1 2-2	•-•	4738.11	В	0	13.66	16.26	- } }	3p ² P-3 ² P° (1)
3232.61	В	50R	0.00	3.82	_	2 ² 5-3 ² P°	10707.44 10754.09	A P	8	7.45 7.46	8.60 8.60	1-1 2-1		6578.03	Ā	10	14.39		- - 1	3 ² 8-3 ² P° (2)
8126.52	В	(500)	1.84	3.36		(2) 2 ² P°-3 ² S	9658.49 9620.86	A A	2 1	7.46 7.45	8.73 8.73	2-1 1-1	3s ³ p°-3p ³ s	6582.85	A .	9	14.39		_	
6103.642	c	500R	1.84		_	3 ² P°-3 ² D	9603.09	Â	ō	7.45	8.73	0-1		7236.19 7231.12	A A	8d 7 d	16.26 16.26	17.97	11-21	3 ² P°-3 ² D (3)
4971.92	В	10r	1.84	4.32	_	2 ² P°-4 ² S	9094.89 9078.32	A A	25 6	7.46 7.45	8.81 8.81	2-2 1-1	3s ³ P°-3p ³ P	3920.677	, A	10				
4602.99	В	100R	1.84	4.52	_	2 ² P°-4 ² D	9111.85 9088.57	A A	10 8	7.45	8.81 8.81	2-1 1-0		3918.977	' A .	9	16.26	19.41	_ } _ } -	3 ² P°_4 ² S (4)
						(6)	9061.48 9062.53	A A	15 10		8.81 8.81	1-2 0-1		5889.97	Ā	4	17.97	30.06	2 1 -1=	3 ² D-4 ² P°
							5041.66	В	3		9.90	2-3 1-2	38 ³ P°-4p ³ D	5891.65 4267.27	A	3 20	17.97		1를- 를 21_31	(5) 3 ² D-4 ² F°
L1 II I		5.31	Anal A	List	D Ja	an 1943	*5039.05	В	3	(7.45 7.45	9.90	0-1		4267.02	Ã	19	17.97		1 2 -22	(6)
5483.55 to 5485.65) A	10	58.77	61.03		2 ³ 5-2 ³ P° (1)	4826.73 4817.33	B B	1 1	7.45	10.01 10.01	2-1 1-1	3s ^{3p•} -4p ³ s (5)	3361.09 3361.75	A A	3 2	17.97 :		23-13 13- 3	3 ² D-5 ² P° (7)
3684.1	В	a	69.49	71.83		3 ³ 8-4 ³ P°	4812.84	E	(1)		10.01	0-1	a 3no . 3n	2992.63	A	5đ	17.97	32.09		3 ² D-5 ² F°
000411	,					(3)	4771.72 4766.62 4775.87	B B B	4 2 3	7.45	10.04 10.04 10.04	3-2 1-1 3-1	3s ³ P°-4p ³ P (6)	3165.51		4	10 57		- - 21 +1	(8) Sp ³ ² D°-3p ² P
4156.3	В	0.5	68.98	71.95	0-1	3 ¹ S_4 ¹ P° (3)	4770.00	В	ä	7.45	10.04	1-0		3167.95 3165.99	A A B	3 1	18.58 18.58	32.47	$1\frac{1}{2} - \frac{1}{2}$ $1\frac{1}{2} - 1\frac{1}{2}$	(9)
4881.3	В	2.5	69.07	71.60		3 ³ P°-4 ³ S	*4762.41	. B	4	(7.45 7.45	10.04	0-1		5355.55	٠.				-	
4325.7	В	3	69.0 7	71.92	_	3 ³ P ⁶ -4 ³ D	4065.1 •4064.2	C	2 1	,7.45		1-27	3s ³ P°-5p ³ D (7)	5536.0	В	1d	19.41	31.64	-	4 ² S-5 ² P° (10)
Very wide	fine	struc	ture			(5)	100111			7.45	10.49	0 -1 ? -		5336.7	В	Odd	20.06	32.38	11/2- 1/2	4 ² P°-6 ² S
							10653.6	D	(50)	7.65	8.81	1-1	3s ¹ P°-3p ³ P	5121.69	A	1	20.06		1=1=1	4 ² P°-3p ² P
Be I I	P 9.2	38 An	al A 1	List C	Feb	1943	9405.77	A	30	7.65	8.96		3s ¹ po_3p ¹ D	3832.12 3836.10	B B	2đ 1đ	20.06	23.28 23.28	1 1 - 2 1	4 ² P°-3p ² D (13)
3321.347 3321.086	A A	30 20	2.71	6.43	2-1	2 ³ P°-3 ³ S	8335.19	A	10		9.13		3s ¹ po-3p ¹ s (10) 3s ¹ po-4p ¹ p							
3321.013	Ã	10	2.71	6.43 6.43	1-1 0-1	(1)	5380.242 5052.122	B B	8 6	7.65	9.95	1-1	3s ¹ P°-4p ¹ P (11) 3s ¹ P°-4p ¹ D	6783.75 6779.74	A A	(6) (4) (2)	20.62	22.44	13-23	3s ⁴ P°-3p ⁴ D (14)
8254.10	В	10	5.25	6.75	 1_0	2 ¹ P°-3 ¹ S	4932.00	В	5		10.05	1-3	(13) 3s ¹ p°-4p ¹ S	6780.27 6800.50 6791.30	A A A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20.61 2 20.62 2 20.61	22.44	3-13 23-23 13-13	
4572.671	C	15	5.25	7.95	1-3	21P°-31D	4371.33	c	4	7.65		1-1	3s ¹ P°-5p ¹ P	6787.09 6812.19	Ä A	33 33 23 (0) (1)	20.61	22.43	23-13	
4407.911	В	10	5.25	8.05	1-0	21P°-41S	4352.1	C	1	7.65		1-27	(14) 3s ¹ P°-5p ³ D	6798.04	A		20.61	32.43	1 2 - 2	4 - 4
3813.402	В	15	5.25	8.49	1-2	2 ¹ P°-4 ¹ D	4268.99	C	а	7.65	10.54	1-3	(15) 3a ¹ p°-5p ¹ D	5662.51 5648.08	A A	(4) (3) (2)	20.62	32.80	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3s ⁴ P°-3p ⁴ S (15)
3736.280	В	10	5.25	8.56	1-0	2 ¹ p ⁶ _5 ¹ g	4231.35	C	1	7.65	10.57	1-0	3s ¹ p°-5p ¹ s (17)	5640.50	A		20.61			3s ⁴ P°-3p ⁴ P
3515.538	В	12	5.25	8.77	1-3	2 ¹ P°-5 ¹ D (7)	5793.51	E	(3)	7.91	10.04	- 3 –2	3p ³ ³ D°-4p ³	5145.16 5139.21 P 5137.26	A A A	(5) (1) (0)	20.62 2 20.61 2 20.61	23.02	21-21 11-11	(16)
							5801.17 5805.76	Ē	(3) (2) (1)	7.91 7.91	10.04	3-1 1-0	(18)	5151.08 5143.49	A A	(3d?) (2) (2)	20.62	33.02	21-11 11-1	
Re TT T	P 18	1 17	Amal A	74-4	n n-	0.45							- 11	5133.29 5132.96	A A	(2) (3)	20.61	33.02	1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
Be II I 3130.416//		50	Anal A	List 3.94		b 1943 - 2 ² 5_2 ² po	11330.36	A	1 (60)		9.59	1-3	3p ¹ P-3d ¹ D° (19) 3p ¹ P-4s ¹ P°	E077 0			20 07 1		- 11 01	-3 2ne2-
3131.064	Â	30	0.00	3.94	}	2 ² S-2 ² P° (1)	10 548.0 68 28. 5	E	(60) 0	8.50 8.50		1-1	3p ¹ P-4s ¹ P° (20) 3p ¹ P-4d ¹ D°	5033.2 5037.0	B B	1d 0d	20.83 2	33.28	13-23 2-12	^{2p³ ²p°-3p²D.}
3274.640	A	10	10.89	14.66		3 ² 5_4 ² P°	6587.75	c	4	8.50		1-3	(21)	3871.62 3868.84	B B	2 1	20.83 2	34.02	1 :	2p ^{3 2pe} -3p ² s (18)
5270.843	A					(3)		•				-	(22)						-	
5270.322	A A	12 10	11.91 11.91			3 ² P°-4 ² S (3)	11894.9	D	(200)		9.64	3-2 3-1	3p ³ D-4s ³ P° (23)	6115.21	A -	0	22.00 2	34.02	1출- 출 -	3s ² P°-3p ² S (19)
4361.025 4360.690	A A	10 9	11.91 11.91	14.74 14.74	1}- }-	3 ² P°-4 ² D (4)	11880.4 11849.3 11863.0	D D	(15) (10) (15)	8.61	9.64 9.65	1-07		*7119.45	A	(2)	22.44	34.17	31-41	3p ⁴ D-3d ⁴ F°
3241.835	A	10				3 ² P°-5 ² s†				8.61 .8.61		1-1 3-4	3p ³ D-3d ³ F°	7115.13 *7112.36	A A	(1)	22.43 22.43 22.43	4.17 34.17	1 2 2 1	3p ⁴ D-3d ⁴ F° (20)
4877 460					- 2	(5)	11754.0 11747.5	D D	(600) (300)		9.65	2-3 1-2	(24)	7133.52 7125.49	A A	(0) (0) (2)	22.44 2	34.17 34.17	31-31 31-31 21-21	
4673.462	A	30	12.10	14.75	_	3 ² D-4 ² F° (6)	11801.8	D	(10)	8.61	9.66	3-3	2 2	*7119.45	Ā		22.43 2	34.17	1ۇ-1ۇ	, 4
B I See	ntro	duction	n.				11667.1	D P	(100)	8.61 8.61	9.67	3-3 2-2	3p ³ D-3d ³ D° (25)	6750.22 6738.36	A A	(2) (1) (0)	22.44 2	4.27 4.27	$3\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - 1\frac{1}{2}$	3p ⁴ D-3d ⁴ D° (21)
							11609.917 11676.997	P P		8.60 8.61	9.67	1-1 3-2		6730.79 *6726.84	A A	<u>{}}</u>	22.43 2	24.2h	*- *	
							11638.60? 11619.0 11602.94?	P D P	(30)	8.61 8.61 8.60	9.67	2-1 2-3 1-2		6754.75 6742.05	A A	{ 0}	22.44 2 22.44 2 22.43 2	4.27	3 1 - 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
							7118.5	E	(6d)	8.61			3p ³ D-4d ³ F°	*6733.56 *6726.84	A A	(o) (o)	22.44 2 23.43 2	4.27	23-33 12-23 12-23	
							-	-					(26)			,-,			-2 -2	

I A		Int	Low	P High	J	Multiplet (No)	Labor I A		y Int	E Low	P High	J	Multiplet (No)	Labo: I A	ratory Ref I	nt	E Low	P High	J	Multiplet (No)
C II cont	inue	eđ					C II cont	inue	đ					C III co	ntinued					
5856.09 5836.31 5823.13 5843.77	A A A A	(2) (1) (0) (0)	22.43	24.55 24.55	$2\frac{1}{2} - 2\frac{1}{2}$	3p ⁴ D-3d ⁴ P° (22)	5907.36 5914.92 5919.60	A A A	(1) (0) (0)	24.55 24.55 24.55			3d ⁴ P°-4p ⁴ S (44)	5894.1 5871.6 5857.9	P P P		39.88 39.87 39.87	41.98	2-1 1-0	3p ³ D-3d ³ p• (20)
5827.80 5817.87 3589.67	A A A	(1) (0) (4)	22.43 32.43	24.55	$1\frac{1}{2}-1\frac{1}{2}$ $\frac{1}{2}-\frac{1}{2}$	3p ⁴ D-4s ⁴ P° (23)	4374.28 4372.49 4371.59 *4368.14§§	A A A B	5 4 3 4d	24.55 24.55 24.55 24.55	27.37	21-31 11-21 1-11	3d ⁴ P°-4f ⁴ D (45)	4162.80 4156.50 4152.43	A A A	5 4 3	39.88 39.87 39.87	42.84	3-4 2-3 1-2	3p ³ D-5 ³ F° (21)
*3590.87 3584.98	A A	(2)	(22.44 22.43 22.44	25.87	25-15 15- 5 25-25	(23)	4376.78	С	24	24.55	27.37	1 ½-2½	3d ⁴ P°-4f ² D (46)	5827.1	A	1	40.02	42.14	2-3	4 ¹ D-3d ¹ F°
3587.68 3588.92	A A	(1) (2) (1)	22.43	25.87	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3059.24	В	Ođ	24.55	28.58	2] -3]	3d ⁴ P°-5f ⁴ D (47)	5249.6	A	0	40.02	42.37	2-1	(22) 4 ¹ D-5 ¹ Pe (23)
3581.80 3585.83	B A	(3)	22.43	25.87	1 3-2 3 2-1 2 -		4734.75 4737.21	ВВ	2d 1d	24.69 24.68			3d ² F°-4f ² F (48)	4056.06	A	5	40.02	43.07	2–3	4 ¹ D-5 ¹ Fe (24)
6098.62 6095.37	A A	3	22.47	24.50 24.50	13-23	3p ² P-3d ² D° (24)	4630.52 4625.71	C	1d 1d	24.69 24.68		3 1 - 4 1 2 2 - 3 2	3d ² F°-4f ⁴ G (49)	Lines att:	ributed	_	<u> </u>	lassif	ication	n dubious
6102.59 4964.90	A A	0 2				3p ² P-3d ² P°	4618.85	A	5đ.	24.69	27.36		3d ² F°-4f ² G (50)	4593.47 *4368.14§§ 4361.85	A A A	2d 4d 2				
4954.16 *4959.52	В	1 0d	22.47 (22.47 (22.47	24.96 24.96	12-12 12-12	(25)	5119.55 5114.07	A A	2 2	24.96		- 1] -2] 2-12	3d ² P°-4f ² D	4001.56 3999.92	A A	Od Od	REVI	SED '		
7063.4 7052.9 7045.8	A A A	(in) (in) (on)	22.80 22.80 22.80	24.55 24.55 24.55	- 13-23 13-13 13-13 13- 3	3p ⁴ S-3d ⁴ P° (26)	See NS	RDS	S-NBS	REVI:	Sect		3, 1970 b 1943	<u>C IV</u> I	P 64.22	NBS An	3, al A	Sect:	Feb	3, 1970
4009.90 4017.27 4021.13	A A A	(2) (1) (0)	22.80 22.80 22.80			3p ⁴ S-4s ⁴ P° (27)	4647.40 4650.16 4651.35	A A	20 19 18	29.39 29.39 29.39	32.05	1-2 1-1 1-0	3 ³ S-3 ³ P° (1)	5801.51 5812.14	A	3	37.39 37.39		\$-1\$ 2- \$ -	3 ² S-3 ² P° (1)
4051.13	A				_		4001.00	A				-		3936	, P		54.98	58.12	1 2-	5 ² S-6 ² P° (2)
4317.42 4321.95 *4325.88	B B B	4 0 2	23.02	25.88 25.87 25.87	21-21 11-11 21-11	3p ⁴ P-4s ⁴ P° (28)	5696.0	A	8	31.97	-	_	3 ¹ P°-3 ¹ D (2)	5023 5021	P P		55.41 55.41	57.87 57.87	- 11- 1 1- 1 1- 1	5 ² P°-6 ² S
4313.50 4318.92	B B	2 2	23.02 23.02 23.01	25.88	15- 5 15-25 2-15		6744.2 6730.7 6727.1	P P P		38.05 38.04 38.04	39.87	2-3 1-2 0-1	3s ³ p•_3p ³ D (3)	4441.81	A	0 d	55.41	58.19		5 ² P•-6 ² D (4)
3039.67	В	0d	23.28	27.34		3p ² D-4d ² F° (29)	5272.56 5253.55	B A A	2 1 0	38.05 38.04 38.04	40.39	2-1 1-1 0-1	3s ³ P°-3p ³ S (4)	4789 4647	P P		55.54 55.54			5 ² D-6 ² F°
5257.36	A	(2)	24.17	26.52 26.52	$\begin{array}{c} 4\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 2\frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \end{array}$	3d ⁴ F°-4p ⁴ D (30)	4665.90 4673.91	A A	6 4	38.05 38.05	40.69	2-2 2-1	3s ³ p•_3p ³ p (5)	4665	P		55.54	58.19	_	(6) 5 ² F°-6 ² D
*5259.62 5249.43	A A	(3) (0) (1)	(24.17 (24.17 24.17	26.51 26.52	15- 5 35-35		4663.53	A		38.05		1 - 0	7 7	4658.64	· A	5d	55.54	58.20		(7) 5 ² F ⁶ -6 ² Getc (8)
*5253.55 \$\$ 3949.45 3947.60	A C C	(1) 0 0	24.17 24.17 24.17		2½-2½ 3½-3½ 3½-3½	3d ⁴ F°-4f ² F (31)	3262.23 3259.44 3257.90	A A A	1 0 0	38.19 38.19 38.19	41.98	1-2 1-1 1-0	4 ³ S-3d ³ P° (6)	4660	P		55.55	58.19		5 ² G-6 ² F° (9)
*3946.35	Č	ŏ	24.17				4325.70	A	- 8	38.27	41.12	- 1-2	3s ¹ P°-3p ¹ D	6592	P		57.87		1	6 ² S-7 ² P• (10) 6 ² S-8 ² P•
3952.08 3948.15 *3946.35 3945.10	A B C C	2 1 0 0	24.17 24.17 24.17 24.17	27.30	42-42 32-32 22-32	3d ⁴ F°-4f ⁴ F (32)	3170.16	A	1d	38.48	42.37	- 0-1	(7) 4 ¹ S-5 ¹ P° (8)	4217 4737	P — P		57.87		- }- 	(11) 6 ² D-8 ² P°
3876.188 3876.409 3876.670	A A	8 7 6	24.17 24.17 24.17		3 1 -41	3d ⁴ F ^e -4f ⁴ G (33)	4516.93 4516.02	A A	4 3	39.22 39.22	41.95 41.95		4 ³ P°-5 ³ S (9)	·						(12)
3876.051 3880.59 3879.60	A B B	6 1 1	24.17 24.17 24.17	27.35 27.35 27.35	$ \begin{array}{c} 1\frac{1}{2} - 2\frac{1}{2} \\ 4\frac{1}{2} - 4\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \end{array} $		3609.61 3608.96	A A	5 4	39.22		2-3	4 ³ P°-5 ³ D (10)	<u>N</u> I IP			1 B I		Feb 1	
3878.22	В		24.17	27.35	2] -2] -		4247.56	A	1	39.47	42.37	1-1	3p ¹ P-5 ¹ P° (11)	8680.24 8683.38 8686.13	A A A	10 8 7	10.29 10.29 10.28	11.71	25-35 15-25 5-15	3s ⁴ P-3p ⁴ D° (1)
5478.6	A	(0)	24.27			3d ⁴ D°-4p ⁴ D (34)	3703.52	A	2	39.47	42.80	1-1	3p ¹ p-3d ¹ pe (12)	8718.82 8711.69	A A	6	10.29 10.29	11.71 11.70	2 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
5044.8 5047.2	B B	0	24.27 24.27			3d ⁴ D°-4p ⁴ P (35)	6156.6 6155.4	P P		39.67 39.67		3-3 2-2	4 ³ D-3d ³ D° (13)	8703.24 8747.35 8728.88	A A A	6 0 1	10.28 10.29 10.29	11.70	23-13	
4076.00 4074.53 4074.89	B A A	7 6 5	24.27 24.27 24.27	27.30	$3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$	3d ⁴ D°-4f ⁴ F (36)	6154.4	P A	2	39.66 39.67	41.67	1-1	4 ³ p_5 ³ p°	8216.28 8210.64	A	6	10.29		$1\frac{1}{2} - \frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$	3s ⁴ P-3p ⁴ P° (2)
3980.35 3973.84	A B	3	24.27		3 1 -31	3d ⁴ D°-4f ⁴ D (37)	4383.24 4379.97	A A	1 0	39.67 39.66	42.48	3-1, 1-0,	2 (14)	8200.31 8242.34	A A A	1 4	10.28 10.29	11.79	$2\frac{3}{2}-1\frac{7}{2}$	(2)
3969.38 3978.87 3972.44	CCC	1d 0 00 0	24.27 24.27 24.27 24.27	27.37 27.37 27.37	13-13 13-13 23-33 13-23	(37)	3889.18 3885.99 3883.80	B B A	4 3 2	39.67 39.67 39.66	42.84	3-4 2-3 1-2	4 ³ D-5 ³ F° (15)	8223.07 8184.80 8187.95	A A A	4 4 4	10.29 10.29 10.28	11.79 11.79	12-22 12-22 2-12	
3968.63 3970.20 3977.30	C	00 0	24.26 24.27	27.37	2 -12	3d ⁴ D°-4f ² D (38)	4070.30 4068.97	ВВ	10 9	39.74	42.77	- 4-5 3-4	4 ³ F°-5 ³ G	7468.29 7442.28 7423.63	A A A	10 8 7	10.29 10.29 10.28	11.94	5-15	38 ⁴ P-3p ⁴ S° (3)
4411.52	A	5	24.50	27.29	_	3d ² D°-4f ² F (39)	4067.87	Ā	9	39.74	42.77	2-3 -	(16)	4253.28 *4254.7	B D	4 4	10.29 (10.29 (10.28	13.19 13.19 13.18	21-31 11-21 1-21	3s ⁴ P-4p ⁴ D° (4)
4411.20 4410.06	A C	5 4	24.50			(39) 3d ² D°-4f ⁴ F	4122.05	A	3	39.80	42.79	1-2	4 ¹ P°-5 ¹ D (17)	4223.04	В	5	10.29			3s ⁴ P-4p ⁴ P° (5)
4292.00	C	1	24.50			(40)	4187.05	A	10	39.84	42.78	3-4	4 ¹ F°-5 ¹ G (18)	4230.35 4224.74 4214.73	E B B	4 4 5	10.29 10.29 10.29	13.21 13.21	12-22	(5)
4296.11 4285.96	ВВ	1 1	24.50 24.50	27.37 27.38	21-21 13-1*	3d ² D•-4f ⁴ D (41) 3d ² D•-4f ² D (42)	6871.7 6862.9	P P		39.88 39.87		3-3 2-2	3p ³ D-3d ³ D•	4215.92 4151.46	ВВ	2 12	10.28	13.21	} −1 }	3e4p_4r4c0
3049.44	В	1đ	24.50			3d ² D ^o -5f ² F (43)	6857.3	P		39.87		1-1	(10)	4143.42 4137.63	P B	7	10.29	13.26	12-12	3s ⁴ P-4p ⁴ S° (6)
																			_	

*				~ ~ .	0 2 0 2					
	oratory	E P	J Multiplet	Labor		E P	J Multiplet	Laboratory	E P	J Multiplet
IA	Ref Int	Low High	(No)	IA	Ref Int	Low High	(No)	I A Ref Int	Low High	(No)
N I con	tinued			N I conti	nueđ			N I continued		
9392.80 9386.79 9460.66	A 1 A 0 P (25)	10.64 11.96 10.63 11.95 10.64 11.95	1 1 2 3 3 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3	5328.70 5356.77 5372.66	B 5 B 5 B 3d	10.88 13.19 10.88 13.19 10.88 13.18	$3\frac{1}{2} - 3\frac{1}{2} \text{ sp}^4 \ ^4\text{P} - 4\text{p}^4\text{D}^{\circ}$ $1\frac{1}{2} - 2\frac{1}{2}$ (13) $\frac{1}{2} - 1\frac{1}{2}$	6653.41 B 5 6656.61 B 1 6633.53 B	11.71 13.57 11.71 13.56 11.70 13.56 11.71 13.57	31-21 3p4D°-5s4P† 21-12 (20) 11-23
8629.24 8594.01 8655.88	A 8 A 6 A 3	10.64 12.07 10.63 12.07 10.64 12.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5281.18	B 3	10.88 13.21	2 1 2-2 1 sp4 4P-4p4P° (14)	1 6637.01 B 4 6646.52 B 2	11.70 13.56 11.70 13.56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8567.74	A 4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9060.6 9028.9	C (350) C (50)	11.55 12.91 11.55 12.92	$\frac{1}{2}$ -1 $\frac{1}{2}$ 3p ² s°-3d ² P (15)	6482.74 B 9	11.71 13.62	3-4-3 3p4D°-4d4F 2-3-3 (21)
4935.03 4914.90	B 10 B 5	10.64 13.14 10.63 13.14	∑ _ ₹ (9)	6008.48 5999.47	B 10 B 6	11.55 13.61 11.55 13.61	$\frac{1}{2}$ -1 $\frac{1}{2}$ 3p ² S°-4d ² P $\frac{1}{2}$ - $\frac{1}{2}$ (16)	6483.75 B 3 6481.73 B 2 6506.45 B 0	3 11.70 13.61 11.70 13.60 11.71 13.61	12-22 5-15 32-32
4109.98 4099.94 4114.00	B 12 B 9 B 6	10.64 13.65 10.63 13.64 10.64 13.64	1 2 3 3 8 2 P - 3 p 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2	11294.0	C (125)	11.71 12.81	- 3 1 -2 1 3p ⁴ p°-4s ⁴ P	6499.52 B 3 6491.28 B 3	11.71 13.61 11.70 13.60	21-21 12-12
3830.39 3822.07	B 9 B 6	10.64 13.87 10.63 13.86		11313.8 *11329.0 11227.5	C (30) C (200) C (10)	11.71 12.80 11.70 12.79 11.71 12.81	21-11 (17) 11-12 21-21	*6468.32 B 4	(11.71 13.62 11.71 13.62 11.70 13.61	3 2 3 3 3 3 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4
3834.24 3818.27	B 4 B 2	10.64 13.86 10.63 13.87	-	*10113.4	C (900)	(11.71 12.93 (11.71 12.93 (11.70 12.92	31-41?3p4p-3d4F 21-31? (18) 11-21?	6441.70 B 5 6437.01 B 4 6420.47 B 3	11.71 13.63 11.70 13.62 11.71 13.63	31-31 3p4D-4d4P+ 11-1 (23) 21-21
11564.8 11628.0 11656.0	C (200)	10.88 11.94 10.88 11.94 10.88 11.94	$3\frac{1}{2}-1\frac{1}{2}$ sp ⁴ $^{4}P-3p^{4}S$ $1\frac{1}{2}-1\frac{1}{2}$ (12) $\frac{1}{2}-1\frac{1}{2}$	10164.5 10147.3	C {30}	(11.70 12.92 11.71 12.93 11.71 12.92	\$-1\$? 3\$-3\$? 2\$-2\$?	5616.54 B 5 5623.20 B 4 5625.43 B 2	11.71 13.91 11.71 13.90 11.70 13.90	3 - 2 3p4D°-6s4P† 2 - 1 (34)
				9862.5 9821.8	C (60)	11.71 12.96 11.71 12.96	$3\frac{1}{2}-3\frac{1}{2}$ $3p^4D^0-3d^4D$ $3\frac{1}{2}-3\frac{1}{2}$ (19)	00a0.#3 B A	11.10 13.90	11/2- 1/2

I A	Ref	Int	Low	High		(No)	I A	Ref	Int	Low High		(No)	I A	Ref	Int	Low	High	-	(No)
N I cont	inue	đ					<u>N II</u> con	tinue	đ				N II cont						1
5560.37 5564.37	B B	9 9		13.93 13.92	$3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$?3p ⁴ D°-5d ⁴ F ? (25)	4564.78	C	1	20.32 23.02	1-2	3p ¹ P-3d ³ F° (14) 3p ¹ P-3d ¹ D°	4110.00	C .	0n	23.10 2		2-2	3d ¹ D°-4f ³ D (44)
5545.11	В	3	11.7	13.94	3 } _2 }	3p ⁴ D°-5d ⁴ P (26)	4447.033	A. C	10 0	20.32 23.10	1-3	(15) 3p ¹ P-3d ³ D•	6504.9 6533.0	C	2 1	23.15 2 23.14 2	5.03	3-3 2-2	3d ³ D°-4p ³ D (45)
12186.9	Ç	(100)		12.81	2] -2]	• •	3919.005	A	6	20.32 23.47	1-1	(16) 3p1P-3d1P°	*6545.2 6492.0	C C	0	(23.14 2 23.15 2 23.14 2	35.03	1-1 3-2 2-3	
12232.9 12288.0 12128.6	000	(8) (75) (30) (75)	11.79	12.80 12.80 12.81	13-13 23-13 13-23	3p ⁴ p ⁶ _4s ⁴ p (27)	3006.86	C	7	20.32 24.43	1-1	(17) 3p1p_4s1pe (18)	6522.3	č	ŏ	23.14 2	5.03	1-2	
12203.4	C		11.79	12.80			•5005.140	ç	10	20.58 23.04	3-4 2-3	3p ³ D-3d ³ F° (19)	6340.67 •6357.0	C	4 3	23.15 2 (23.14 2 (23.14 2	35.08	3-2 3-1 1-0	3d ³ D°-4p ³ P (46)
10539.0 10506.5 10548.0	CCC	(125) (70) (60)	11.79	12.96 12.96 12.96	15-25 25-25	3p ⁴ P°-3d ⁴ D (28)	5001.469 5001.128 5025.665	000	8 7 6	20.56 23.03 20.56 23.02 20.58 23.03	1-2 3-3	(15)	632 8.6 63 47.1	C	1 1	23.14 2 23.14 2	35.09	2-2 1-1	
6945.22	В	4	11.79	13.57		3p ⁴ P°-5s ⁴ P† (29)	E046 707	C	5 0	20.56 23.02 20.58 23.02	2-2 3-2		•4241.787	A	8n	23.14	6.05	2-3	3d ³ D°-4f ¹ F (47)
6979.10 6926.90	B	1	11.79	13.56			4/00.100	C	6 5	20.58 23.15 20.56 23.14	3-3 2-2	3p ³ D-3d ³ D° (20)	*4341.787 4237.049	A A	8n 4	23.15 2 23.14 2	36.05	3-4	3d ³ D°-4f ³ F (48)
6752.40 6758.60	B B	4		13.62		3p ⁴ P°-4d ⁴ D (30)	4779.710 4810.286 4793.656	000	4 2 2	20.56 23.14 20.58 23.14 20.56 23.14	1-1 3-2 2-1		4236.9 30 4181.1 7	A. C	5 On	23.14 2		1-2 3-4	3d ³ D°-4f ¹ G
6723.12 6733.48	B B	9 6	11.79	13.63	\$ - \$	3p ⁴ P ⁰ -4d ⁴ P (31)	4781.168 4774.222	Ċ	a a	20.56 23.15 20.56 23.14	3-3 1-3		4179.667 4173.51	A C	1n On	23.15 2 23.14 2		3-3 2-2	(49) 3d ³ D°-4f ³ D (50)
6706.20 6741.29	B B	3		9 13.63 9 13.62	17- 7		4507.559 4477.74	A C	3 2	20.58 23.31 20.56 23.32	3-2 2-1	3p ³ D-3d ³ P° (21)	*4156.8 *4160.8	000	Onn Onn	23.14 2	36.11	1-1 2-1	(50)
5829.53 5841.01	В	8	11.79	13.91	2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3p ⁴ P ^e -6s ⁴ P†	4459.96 4488.15	000	1 0 0	20.56 23.32 20.56 23.31 20.56 23.32	1-0 3-3 1-1		4173.75 *4160.8	C C	On Onn	23.14 2		2-3 2-2	3d ³ D°-4f ¹ D
5854.16 5816.48	B B	3	11.79	9 13.90 9 13.91	. 1] -3		4465.54 3328.79	C	4	20.58 24.28	3-2	3p ³ D-4s ³ pe	*4156.8	č	Onn	23.14		1-2	(51)
5752.64	В	4	11.7	13.9	. 3 } −3 } 	3p ⁴ P°-5d ⁴ P (33)	3331.32 3330.30	000	3 2 2	20.56 24.27 20.56 24.26 20.56 24.28	2-1 1-0 2-2	(33)	7139.8 7217.0	B B	3 2	23.31 2 23.32 2		2-3 1-2	3d ³ P°-4p ³ D (52)
12186.9 12288.0	C	(100) (75)	11.9 11.9	4 12.96 4 12.95	13-23 13-13	73p ⁴ 8°-3d ⁴ P 7 (34)	3318.14 3324.58	č	 2	30.56 24.27	1-1		7259.3 7188.7	B B	2 0	23.32 2	35.03	0-1 2-2	(/
12327.7	C	(150)		4 12.9! 4 14.09		3p ⁴ 8°-7s ⁴ P	5383.82	C	0	20.85 23.14	1-2	3p ³ 8-3d ³ p°	6942.9 7003.0	B B	3 On	23.31 2 23.32 2		2-3 1-1	3d ³ p°_4p ³ p (53)
5747.36	В	s				(35)	5007.316 •4994.358	G	7 6	20.85 23.31 20.85 23.32	1-2 1-1	3p3g_3d3P° (24)	6976.8 *7015.3	B B	2	23.31 2	35.08 35.08	2-1 1-0	•
13467.8 13461.3	000	(350) (200)	11.9	5 12.99 5 12.99	23-33 13-23	3p ² D°-3d ² F	4987.377 4709.45	C	4	20.85 23.32	1-0	3p3s-3d1pe	6967.6 •7015.3	B B	1	23.32 2 23.32 2		1-2 0-1	
12582.3 12074.1	C	(40) (60)	11.9	6 12.9	3 } -3	3p ² D°-3d ² D	3593.60	C	3	20.85 24.28	1-2	(25) 3p38_4s3pe	6812.26 6836.2	C	2 1	23.31 2 23.32 2		3-1 1-1	3d ³ P°-4p ³ 8 (54)
11997.9 12107.4	C	(30) (10)	11.9 11.9	5 12.98 6 12.98	15-15 35-15	3p ² p°-3d ² p (37)	3609.09 3615.88	C	3 1	20.85 24.27 20.85 24.26	1-1 1-0	(36)	4432.739 4441.99	A C	6n 3n	23.31 2 23.32 2		2-3 1-2	3d ³ P°-4f ³ D (55)
Strongest	Unc	lassifi	ed Lin	es Att	ributed	to <u>N I</u>	6065.5	С	0	21.06 23.10	1-3	3p ³ P-3d ¹ De	4433.48 4431.82 4437.97	000	2n 0 2	23.32 2 23.31 2 23.32 2	36.10	0-1 2-2 1-1	
6708.81 4494.67	B B	4 5					5941.67 5931.79	C	8 7	21.07 23.15 21.06 23.14	2-3 1-2	3p ³ p-3d ³ p°	4427.21	c	2	23.32		1-2	3d ³ P°-4f ¹ D
4492.40 4358.27	B B	7 10 5					5927.82 5952.39 5940.25	000	4 3 2	21.06 23.14 21.07 23.14 21.06 23.14	0-1 3-3 1-1		6242.52	С	5	23.37	 85.35	3 – 2	(56) 3d ¹ F°-4p ¹ D
4336.48 4317.70	B	5					5960.93	Ċ	0	21.07 23.14	2-1	- 33-0	4552.536	A	4	23.37		3-4	(57) 3d1F°-4f3G
4313.11 4305.46 3999.98	B B B	4 6 4					5495.70 5462.62 5480.10	000	5 3 3	21.07 23.31 21.06 23.32 21.07 23.32	2-2 1-1 3-1	3p ³ P-3d ³ P° (29)	4530.403	A	5	23.37	36.10	3-4	(58) 3d ¹ F°-4f ¹ G (59)
3869.10 3650.19	B B	4 5					5454.26 5478.13	Ċ	2 2	21.06 23.32 21.06 23.31	1-0 1-3		*6167.83	С	4	23.47	35.47	1-0	3d ¹ pe_4p ¹ s (60)
3532.65	В	4					5452.12 3838.39	c	3 5	21.06 23.32 21.07 24.28	0-1 2-2	3p3p_4s3pe	4694.55	С	3n	23.47		1-3	3d1po_4f3p (61)
w	P 29	. 40	anal B	List	A 001	1943	3847.38 3856.07 3855.08	000	3 3 2	21.06 24.27 21.07 24.27 21.06 24.26	1-1 3-1 1-0	(30)	4677.93	С	3n	23.47	36.11	1-2	3d1pe_4f1D (62)
<u>N II</u> I 4895.20	C	4		0 20.3		2p ³ 1p°-3p ¹	3829.80	000	3 3	21.06 24.28 21.06 24.27	1-2 0-1		*5535.39 5530.27	C	5 - 4	(25.38 (25.37	27.61)	3-4 2-3	3 ₈ 5 p_ 3p 5p° (63)
6379.63	c	 5	18.3	9 20.3	 3 1-1	(1) 3s ³ p°-3p ¹ p	6610.58	G	6	21.51 23.37	- 2-3	3p ¹ D-3d ¹ F°	5526.26 5551.95 5543.49	CCC	2 3 3	(25.37 (25.38 (25.37	37.61)	1-2 3-3 2-2	
6365.7	Ċ	Ō	18.3	8 20.3	3 0-1	(3)	6284.30	c	3	21.51 23.47	3-1	(31) 3p1p-3d1pe	*5535.39 5565.30	000	5	(25.37) (25.38)	37.60) 37.60)	1-1 3-2	
5679.56 5666.64 5676.02	Q Q	10 8 6	18.3	0 20.5 9 20.5 8 20.5	3 1-2	3s ³ P°-3p ³ D (3)	4227.749	A	3n	21.51 24.43	2-1	(32) 3p1p_4s1pe (33)	5552.54 5540.16	B	00 1	(25.37 (25.37	27.59)	2-1 1-0	
5710.76 5686.21	Ċ	6 6	18.4 18.3	0 20.50 9 20.5	3 2-2 3 1-1		5104.45	С	3	22.01 24.43	0-1	3p1s-4s1p0	5012.026 *5005.140 4997.23	000	2 10 0	(25.38) (25.37) (25.37)	37.84)	3-3 2-2 1-1	3s ⁵ P-3p ⁵ P° (64)
5730.67 5045.098	C	8 8	18.4	0 20.5	5 2-1	38 ³ p°-3p ³ S	3023.80	C	3	22.01 26.09	0-1	(34) 3p18-4d1P° (35)	5023.11 5011.24	C B	2 1	(25.38) (25.37)	27.84) 27.84)	3-2 2-1	
5010.620 5002.692	Ç	8	18.3	9 20.8	5 1-1	(4)	*6167.82 6173.40	C	4 3	23.04 25.04 23.03 25.03	- 4-3 3-3	3d ³ F°-4p ³ D (36)	*4994.358 4991.22	C	6 2	(25.37 (25.37	27.84) 27.84)	2-3 1-2	_
4630.537 4613.868	A A	10 6	18.3	0 21.0	5 1-1	3s ³ P°-3p ³ P (5)	6170.16 6136.9	C	0	23.02 25.03 23.03 25.04	2-1 3-3	,50,	4145.764 4133.669	A	3	(25.38	28.36)	3-2	38 ⁵ P-3p ⁵ 8° (65)
4643.086 4621.392 4601.478	A	8 7 8	18.3	0 21.0 9 21.0 9 21.0	3 1-0		6150.9 6114.6	C	0	23.02 25.03 23.02 25.03	2-2 2-3		4124.081	A		(25.37	a 8. 36)	1-2 -	
4607.153	A	7	18.3	8 21.0	5 0-1	7-3na m.1-	4087.35	C	0n	23.03 26.05	3-3	3d ³ F°-4f ¹ F (37) 3d ³ F°-4f ³ F	*5179.50 5175.89	000	5 3	(27.61 (27.61	29.99)	4-5 3-4	3p ⁵ D°-3d ⁵ F (66)
3955.851 3408.136	A C	6 3		9 21.5 9 22.0		3s ^{3pe} -3p ¹ D (6) 3s ^{3pe} -3p ¹ S	4095.92 4082.85 4076.83	P C C	oo On	23.04 26.06 23.03 26.05 23.02 26.05	4-4 3-3 2-3	(38)	5173.37 •5172.32	C	2 1	(27.60 (27.60 (27.59	29.98) 29.98)	2-3 1-2 0-1	
6482.07	C	8		2 20.3		(7)	4082.280 4073.055	Ā	3n 3n	23.03 26.06 23.02 26.05	3-4 3-3		5190.42 5184.97 5180.34	C C B	2 2 1	(27.61 (27.61 (27.60	29.99) 29.99)	4-4 3-3 2-3	
5747.29	C	4	18.4	2 20.5	8 1-2	3s ¹ P°-3p ³ D	4041.321 4043.537	A A	5n 3n	23.04 26.10 23.03 26.08	4-5 3-4	3d ³ F°-4f ³ G (39)	5199.50	В	00	(27.61	89.99)	4-3	- 5
5767.43 5073.60	C C	3	18.4	2 20.5 2 20.8	5 1-1	(9) 3s ¹ P°-3p ³ S	4035.087 4057.00 4044.75	A C C	4n 1 1	23.02 26.08 23.04 26.08 23.03 26.08	2-3 4-4 3-3		4860.35 4718.43	C	3	(27.61		4-3 4-4	3p ⁵ D°-3d ⁵ P (67) 3p ⁵ D°-3d ⁵ D
4654.57	C	8	18.4	2 21.0	7 1-3	(10) 3 s1pe_ 3p3p	4026.080	A	3n	23.03 26.10	3-4	3d ³ F°-4f ¹ G	4709.45 4702.57	C	0	(27.61 (27.60	30.23) 30.22)	3-3 2-2	(68)
466728 4674.98	C	3		2 21.0 2 21.0		(11)	6630.5	С		23.10 24.96	- 3-1	(40) 3d ¹ D ^e -4p ¹ P	4721.59 4712.13 4704.33	000	0	(27.61 (27.61 (27.60	30.22) 30.22)	4-3 3-2 2-1	
3994.996				2 21.5		(12)	4176.164	•	3n	23.10 26.05	2-3	(41) 3d ¹ D°-4f ¹ F	4698.62 4706.41	B C	0	(27.60 (27.61	30.22) 30.23)	1-0 3-4	
3437.162	C		18.4		1-0	3s1pe_3p1s (13)	4171.608	A	2n	23.10 26.05	2-3	(42) 3d ¹ D°-4f ³ F (43)	4700.12 4695.91	C	0 1	(27.60	30.22)	2-3 1-2	
												,,						-	

Labo I A	rato Ref	ry Int	E P Low High	J	Multiplet (No)	Labo I A	rator Ref	ry Int	E Low	P High	J	Multiplet (No)	La I A	iborato: Ref		E P Low High	J	Multiplet (No)
N II cor	tinu	ed				N III co	ntinu	reg					N IV	ontinu	eđ	· ·		,,
5351.21 5327.45 5313.43	B B B	4 0 0	(27.84 30.15 (27.84 30.16 (27.84 30.16) 2- 3	3p ⁵ p°_3d ⁵ p (69)	4544.80	В	(0)			_	4 ² P°-5 ² S (12)	5561 5571	P P		(60.19 62.41 (60.19 62.40) 1-2) 1-1	3p ³ S-3d ³ D° (13)
5340.20 *5320.96 5338.66 *5320.96	B B B	1 3 2 3	(27.84 30.16 (27.84 30.16 (27.84 30.15 (27.84 30.16	3-2 2-1 2-3		4546.36 4535.11 4527.86	A A A	3 2 0	38.79 38.79 38.79	41.51 41.51 41.52	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3p ⁴ S-3d ⁴ P° (13)	4183 4174	P P		(60.19 63.14 (60.19 63.14	1-2	3p ³ S-3d ³ pe (14)
*5179.50 5171.46 5168.24 5183.21 5174.46	00000	5 1 1 2 1	(27.84 30.23 (27.84 30.23 (27.84 30.22 (27.84 30.23 (27.84 30.23) 2-3) 1-2) 3-3	3p ⁵ P°-3d ⁵ D (70)	6466.86 6453.95 6445.05 6478.69 6463.03	A A A A	4 3 2 2	39.18 39.18 39.17 39.18	41.09 41.09 41.09 41.09 41.09	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	3p ⁴ P-3d ⁴ D° (14)	5846 5794 5828 5812	P P P		(61.03 63.14 (61.01 63.14 (61.03 63.14 (61.01 63.14) 1-1 3-1	(15)
5170.08 5186.17	C B	0	(27.84 30.22 (27.84 30.22	1-1		6450.78 6487.55 6468.77	A A A	8 0 00	39.17 39.18	41.08 41.09 41.08	25-15 15- 5	•	6125	P		61.52 63.53	_	3d ¹ D°-4 ¹ D (16)
6888.7 6870.8 6857.6	B B B	2 1 1	(28.36 30.15) (28.36 30.16) (28.36 30.16)	3-2	3p ⁵ 8°-3d ⁵ P (71)	5314.45 5282.52 5260.91	A A A	00 1n	39.18	41.51 41.51 41.52	- 5 5	3p ⁴ P-3d ⁴ P* (15)	5073	P		61.69 64.12 REVISED	2-1	3p ¹ D-3d ¹ P° (17)
						5298.93 5272.60 5297.86 5270.59	A A A	1 1 1	39.18	41.51 41.52 41.51	13-3	· ·	See M	NSRDS	S-NB:	S 3, Sect	ion Dec	4, 1971
	P 47		Anal A List	•	r 1943						-		4603.2 4619.4	P P		56.31 58.99 56.31 58.98	} −1	3 ² S-3 ² P° (1)
4097.31 4103.37	A A	10 9	27.32 30.33 27.32 30.33	_	3 ² S-3 ² P° (1)	4003.64 3998.69	A A	(4d) (3d)	39.23 39.23	42.31 42.31	2] -3] 1] -2] -	4 ² D-5 ² F• (16)	3161	P		83.74 87.64		½ 5 ² P°-6 ² S
4640.64 4634.16 4641.90	A A A	(10) (9) (7)	30.33 32.99 30.33 32.99 30.33 32.99	1 2 - 2 3 5 - 1 3 1 2 - 1 2	(3) 3 ³ P•-3 ² D	4379.09	A	(104)	39.54	42.36	_	4 ² F°-5 ² G (17)	4335	P		87.64 90.49		(2) 6 ² s_7²p° (3)
4514.89	A	7		_		Unclassif			N III				5273	P		87.95 90.30		¹ ⁄ ₂ 6 ² P°−? ² s
*4510.92 4534.57	A A	6	35.52 38.25 (35.50 38.24 (35.50 38.23 35.52 38.24	5 −15	(3)	4294.76 4290.80 4290.55 4288.72	A A A	On 3n 1n 1n					4751	P		87.95 90.55	_	(4) 6 ² P°_7 ² D (5)
4523.60 4518.18	A A	4 3	35.50 38.23 35.50 38.23	1 1 1 1 1 1 1		4288.21 4284.51	A A	On 1n					5067	P		88.05 90.49	_	6 ² D_7 ² P*
4547.34 4530.84	A A	0	35.52 38.23 35.50 38.23	25-15 15- 5	. 4 4	3172.97 3171.14	A A	2 1					4933	P		88.05 90.56	_	(6) 6 ² D-7 ² F° (7)
3771.08 3754.62 3745.83	A A A	7 6 4	35.52 38.79 35.50 38.79 35.50 38.79	23-15 15-15	3s ⁴ P ^e -3p ⁴ S (4)				REVI	SED			4952	P		88.06 90.55	_	6 ² F°-7 ² D (8) 6 ² F°-7 ² G etc
3367.36 3361.90	A	7	35.52 39.18 35.50 39.18	2 1 -2 1	3s ⁴ P°-3p ⁴ P (5)	See NS	SRDS P 77.	5-NBS 09 Ar	3, 3	Sect	ion Feb	4, 1971	4943	P		88.06 90.56	- -	(9)
3358.72 3374.06	A A	2 1 6	35.50 39.17 35.52 39.18	2 } -1	(5)	3478.69 3482.98	A A	7 5	(46.57 (46.57	50.11) 50.11)	1-3 1-1	3 ³ S-3 ³ P° (1)	4945	P		88.06 90.56	_	6 ² G-7 ² H° etc (10)
3365.79 3354.29 3353.78	A A A	3 4 4	35.50 39.17 35.50 39.18 35.50 39.18	15- 5 15-25 5-15		3484.90	A .	3	(46.57	50.11)	1-0 -		67 19	P		90.30 92.13	_ } -	7 ² 5-8 ² P* (11)
4200.02	A	6	36.70 39.64	- . 1] -2]	38 ² P°-3p ² D	6383	P .		48.00	49.94	0-1	3 ¹ 8-3 ¹ P° (2)	7330	P		90.49 92.17		7 ² P°-8 ² D (12)
4195.70 4215.69	A B	5 (3)	36.70 39.64 36.68 39.62 36.70 39.62			4057.80	В		49.98	52.98	1-3 -	3 ¹ P°-3 ¹ D (3)		-				
3355.47 3342.77	B B	(2) (1)	36.70 40.38 36.68 40.38	13- 3	3s ² P°-3p ² S (7)	7123.10 7109.48 7103.28	A A	5 3 1	(50.11 (50.11 (50.11	51.85)	1-2	3 ³ P°-3 ³ D (4)		P 13.5		al A List B	_	1944
3938.52 3934.41 3942.78	A A B	4 3 (1)	38.17 41.30 38.16 41.30 38.17 41.30	- 1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3p ² P-3d ² D° (8)	7127.21 7111.28 7129	A A P	1 1	(50.11 (50.11 (50.11	51.85) 51.85)	0-1 2-3 1-1 3-1		7771.96 7774.18 7775.40	A	27 26 25	9.11 10.69 9.11 10.69 9.11 10.69	3-3 3-1	3 ⁵ s°-3 ⁵ p (1)
4867.18	Α.	5			3p4D-3d4F°	5245 5236	P P		(57.46 ! (57.44 !		2-3	3s ³ P°-3p ³ D	6726.25 6726.50	A	5 2	9.11 10.94 9.11 10.94	2-1	3 ⁵ g•_3 ³ p (2)
4861.33 4858.88 4858.74	A A A	4 3 2	38.25 40.79 38.24 40.78 38.23 40.77 38.23 40.77	23-33 13-23 3-13	(9)	5281 4528	P P		(57.46 !	59.80)	1-2 3-3 3-1	3s ³ pe-3p ³ s	3947.301 3947.489 3947.594) E	10 7 4	9.11 12.23 9.11 12.23 9.11 12.23	2-3 2-2 2-1	3 ⁵ 8°-4 ⁵ P (3)
4884.14 4873.58 4867.18 4896.71	A A A	1 2 5 0	38.25 40.78 38.24 40.77 38.23 40.77	32-32 32-32 32-32 13-12 32-32 22-12		4495 4479	P P		(57.46 6 (57.44 6 (57.43 6	60.19)	1-1 0-1	(6)	*8446.35 8446.76	A A	25 23	9.48 10.94 9.48 10.94	 1-2 1-1	3 ³ Se_3 ³ P (4)
4881.81	A A	ŏ	38.25 40.77 38.24 40.77	33-33 23-13		3463.36 3454 3474.56	B P B	1 0	(57.46 6 (57.44 6 (57.46 6	31.01)	2-2 1-1 2-1	3s ³ p•-3p ³ p (7)	*8446.35	A	25	9.48 10.94	1-0	
4348.36 4335.53 4328.15 4323.93	A A	5 4 3	38.25 41.09 38.24 41.09 38.23 41.09 38.23 41.09	3 2 - 3 2 2 2 - 2 2 1 2 - 1 2	3p ⁴ D-3d ⁴ D° (10)	3461.34 3443 3445	B P P	Ō	(57.44 6 (57.44 6 (57.43 6	31.01) 31.03)	1-0		4368.30 3692.44	D D	(10) (7)	9.48 12.31	1-	3 ³ 5°-4 ³ P (5) 3 ³ 5°-5 ³ P (6)
4353.66 4339.52 4330.44	A A A	2 3 2	38.25 41.09 38.24 41.09 38.23 41.08	3 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 -		3747.66	В -	0	58.44 6	81.69	1–2	3s ¹ p•-3p ¹ D	11302.22 11297.54	B B	15 10	10.69 11.79 10.69 11.79	- 3-2 2-2	3 ⁵ P-4 ⁵ 8° (7)
4330.14 4323.93 4321.37	A A A	2 2 1	38.24 41.09 38.23 41.09 38.23 41.09	23-33 13-23 3-13		5734	P		59.36 6	31.52	1-3	(8) 3p ¹ P-3d ¹ D•	9265.99	B A	5 16	10.69 11.79 10.69 12.03	1–2 3–	3 ⁵ P-3 ⁵ D°
3792.87 3771.45	A P	1		3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3p ⁴ D-3d ⁴ P° (11)	3824	P -		59.36 6	.59 ———		(9) 3p ¹ p ₋₄ 1pe (10)	9262.73 9260.88	A A	15 14	10.69 12.03 10.69 12.03	2- 1-	(8)
3757.66 3779.23 3762.62 3752.65	P P P		38.23 41.51	12-13		4752 4733 4762 4740	P P P	(59.81 6 59.80 6 59.81 6	3.41) 3.41)	2-2 3-2	3p ³ D-3d ³ D° (11)	6456.01 6454.48 6453.64	A A	17 16 15	10.69 12.61 10.69 12.61 10.69 12.61	3-2 3-3 1-3	3 ⁵ P_5 ⁵ S• (9)
3770.37 3757.60	P P		38.23 41.52 38.23 41.51 38.23 41.51	$1\frac{3}{2} - 2\frac{3}{2}$ $\frac{1}{2} - 1\frac{1}{2}$		4723 3714	P P P	(59.80 6 59.80 6	3.41)	2-1 2-3	3p ³ D-3d ³ P°	6158.19 6156.78 6155.99	A A A	18 17 16	10.69 12.70 10.69 12.70 10.69 12.70	3- 2- 1-	3 ⁵ P ₋₄ ⁵ D ^e (10)
			- Value of the latest and the latest	-		3689 3696	P P	(59.81 6 59.80 6 59.80 6	3.14)	2-1	(12)	5436.83 5435.76 5435.16	D D D	(8) (6) (5)	10.69 12.96 10.69 12.96	2-2	3 ⁵ P-6 ⁵ S• (11)
													0400.10	ע	(0)	10.69 12.96	1-3	

La I A	borator Ref	y Tnt	E Low		J	Multiplet (No)	Labor I A	ratory Ref	Int	Low E		J	Multiplet (No)	Labo:	ratory Ref	Int	E Low		J Multi	
				-			O I cont	inued						O I cont	inued				,	. 7
	ontinued		10.69	17 01	3-	3 ⁵ P-5 ⁵ D°	*5958.63	A	9	10.94	13.01	3-	3 ³ P-5 ³ D°	7947.56	A	12 10	12.49 12.49		3-4 3s ¹ 3p ² 2-3 (35	_3p'
5330.66 5329.59	5 D 9 D	(10) (7) (6)	10.69	13.01	ā_	(12)	5958.46 •5958.63	Ā	7 9	10.94		1- 0-	(23)	7950.83 7952.18	A A	9	12.49	14.04	1-2	,
5328.98		(6)	10.69	13.01	1-				•			•	3 ³ P-7 ³ S°	7943.15 7947.204	A C	6 3	12.49 12.49		3-3 2-2	
5020.13		(5)	10.69		3-2 2-2	3 ⁵ P-7 ⁵ S° (13)	5554.94	D	(6a)	10.94		2-1	(24)	7939.49	Ă	ĭ	12.49		3-2	
5019.34 5018.78	4 D B D	(5) (4) (3)	10.69 10.69		1-2	(13)	5512.71	D	(5d)	10.94	13.18	3-	33p_63p• (25)	3823.469	C	10	12.49			-3p" ³ D
4968.70			10.69	13.18	3-	3 ⁵ P-6 ⁵ D*	5299.00	D	(5)	10.94	13.27	2-1	(25) 3 ³ P_8 ³ S° (26)	3824.425 3825.090	C	3	12.49 12.49		2-2 (36 1-1	5)
4967.8	6 D	(6) (5) (4)	10.69	13.18	3- 1-	(14)	5275.08	D	(4)	10.94	13.28	2-	3 ³ P_7 ³ D°	3822.63	P		12.49	15.71	3-2 2-3	
4967.4	O D		10.69		_	3 ⁵ P-8 ⁵ 5°		D	(5)	10.94	13.34	2-1	(27) 3 ³ P_9 ³ g•	3825.249 3825.530	C	1	12.49 12.49	15.71	1-2	
4803.0		(4) (3)	10.69		3-2 3-3	(15)	*5146.06	_	• •			-	3 ³ P-8 ³ D°							
4802.2 4801.8		(ž)	10.69		1-3		*5130.53	D	(3)		13 .35	2-	(29) 33P-38" 3pe	8820.45	A	15	12.67	14.07	2-3 3s' ¹ p'	-3p' 1F'
4773.7	6 D	(5)	10.69		3-	3 ⁵ P-7 ⁵ D°	3954.687	C	10 1	10.94	14.06 14.06	3-2 1-1	33P-38" 3Pe	7156.80	A	12	12.67	14.40	2-2 3s' ¹ D'	-3p' 1p
4772.8	9 D	(5) (4) (3)		13.28 13.28	2- 1-	(16)	3952.982 *3953.056	Ğ	ä	10.94	14.06	2-1	(/						(38	•
4772.5	-				3-2	3 ⁵ P_9 ⁵ 8°	3951.987 3954.596	o c	3 5		14.06 14.06	1-0 1-3		*5146.06	D	(5) (3)	12.82	15.22	_2 5 ³ P_3	3d' 3pe
4673.7		(3) (3d)	,10.69	13,34 13.34	2-2	(17)	*3953.056	č	3	10.94	14.06	0-1		*5130.53	D	(3)	12.82	15.23	-1 (3	9)
*4672.7	'5 D	(30)	10.69	13.34	1–2			•				,	3 ³ D°-3p' ³ D	5750.424	c	5	13.07	15.22	_2 6 ³ P_3	3d' 3pe
4655.3		(4)		13.35 13.35	3- 2-	3 ⁵ P-8 ⁵ D° (18)	•6324.84	A	3		13.99	(-3 (-2	(31)	5731.103	C	3	13.07	15.23	-1 (40 -0	0)
4654.5 4654.2		(4) (3) (2)		13.35	1-	(10)	6323.39	A	1	12.03	13.99	-1		5720.613	C	1	13.07	15.23		
					-							- ,	4 ³ P-3s" ³ Pe	9156.02	A	4	13.99	15.33	3-4 3p1 3D	_3d1 3pe
7995.1	.a A	9		12.49 12.49	2-3 1-2	3 ³ P-3s ¹ ³ De	7025.52	A	3	12.31	14.06	-2	_(32) _					15.59	3-2 3p' 3r	1) 5 3pe
7987.0 7982.4		7 5		12.49	0-1	(15)	4833.32	D	7	12.31	15.22	-2 -1	4°P-3d' °P° (33)	*7706.77 7663.45	A A	5 3		15.59	3-2 3p 01 3-1 (4	2) 2)
7987.3		4	10.94	12.49	3-3		4222.78	D D	5	12.31	15.23 15.23	-0		7639.99	Â	ĭ	13.99	15.60	1-0	•
7981.9		4	10.94	12.49	1-1		4317.09	ע	*	18.31				*7706.77	Ā	5 1		15.59	2-2 1-1	
*7254. 4		17		12.64	3-1	3 ³ P-5 ³ 5° (20)	*8221.84	A	15	12.49	13.99	3-3	381 3D4_3p1 3D			_			3-4 3p ¹ 3I	340
7254.1		15 17		12.64	1-1 0-1		*8230.01	Â	10	12.49	13.99	3-2		6106.25	A	4	13.99	16.01	3-4 3p. 01)–4a. 9
*7254.4	47 A	17	10.54	12.04	U-1		8232.99	A	13	12.49	13.99	1-1 3-2		*5995.28	A	3	13.99	16.04	3-2 3p 31	0_4d 3pe
*7003.2		17		12.70	3 –	3 ³ P_4 ³ D°	*8221.84 8227.64	A	15 11	12.49	13.99	3-a 2-1		5991.93	Ã	ă	13.99	16.05	2-1 (4	4)
7001.9		15		12.70	1- 0-	(21)	*8230.01	Â	10	12.49	13.99	2-3		5991.34	A	1	13.99	16.05	1-0	
•7002.2	88 Y	17	10.94	13.70	0-		8235.31	Ã	5	12.49	13.99	1-2		*5995.28	A	3 1		16.04	2-2 1-1	
*6046.4	46 A	10		12.98	2-1	3 ³ P-6 ³ 8•								5993.18	A	-	10.50	. 10.00		
6046 . 2	36 A	. 8		12.98	1-1														_	
*6046.4	46 A	10	10.94	12.98	0-1															

8						REV	ISE	D M	ULTIPL	ET 1	ABLE						
Lab	orator Ref	y Int	E P Low High		Multiplet (No)	Labo I A	rator Ref		E P Low High	J	Multiplet (No)	Labo:		y Int	E P Low High	J	Multiplet (No)
OI con	timued	Ĺ	_			<u>O II</u> con	tinue	đ			,,	O II con					(20)
9522.01	A	4	14.04 15.33		3p' 3p-3d' 3		P		25.55 28.70 25.54 28.71	31-21	3p4D0-3d4P	4943.06	В	7	36.45 38.94	1] - 2]	3p2P°-3d2D
9499.39 9505\67	A A	0 5	14.04 15.34 14.04 15.34	4-4 3-4	(45) 3p' 3F-3d' 1 (46)	3896.30 G° 3872.45 3907.45	B B B	1 1 4	25.54 28.71 25.53 28.71 25.54 28.70	15- 5	(11)	4941.12 4955.78	B	5 3	26.44 28.94 26.45 28.94	$\frac{\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-1\frac{1}{2}}$	(33)
9498.04	A	8	14.04 15.34	4-5	3p' 3r-3d' 3	3882.45 G°† 38 64.1 3	B	i	25.53 28.71 25.52 28.71	1-1-1-1		3803.14 3821.68	B B	61 41	26.45 29.69 26.44 29.67	13-13	3p ² p°_4s ² p (34)
9487.49 9498.04	A A	6 8	14.04 15.34 14.04 15.34		(47)	3893.53 38 74. 10	B B	3	25.53 28.70 25.52 28.71	1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	3830.45 3794.48	B B	41 31	26.45 29.67 26.44 29.69	15-5	, , ,
6266.89	A	3	14.04 16.01	4-4	3p' 3F-4d' 3	F° 3882.197 3864.45	A B	7 5	25.55 28.73 25.54 28.73	3] - 3]	3p ⁴ D°-3d ⁴ D (12)	4448.21	В		20 24 34 04		
6264.55	A	3	14.04 16.01	3-4	(48) 3p' 3F_4d' 1 (49) 3p' 3F_4d' 3	G° 3851.04 3847.89	B B	3 3	25.53 28.73 25.52 28.73	15-15	•	4443.05	В	5			3p' 2F°_3d' 2p (35)
6261.55 6256.84 6261.55	A A A	6 4 6	14.04 16.01 14.04 16.01 14.04 16.01	3-4 3-3	(50)	3864.68 3856.16	B B B	3 1 5	25.55 28.73 25.54 28.73 25.53 28.73	2] -1		4189.788 4185.456	A	10 8	28.24 31.18 28.24 31.18	31-41 21-31	3p' 3p°-3d' 30
5410.76	F	(4)	14.04 16.32		3p' 3F-5d' 3	3863.50 F° 3850.81	B B	3	25.54 28.73 25.53 28.73	2 } -3	•	4113.82 4110.20	B B	1	28.24 31.24 28.24 31.24	3-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3p' 2p°-3d' 2p (37)
5410.76	F	(4)	14.04 16.32	3-4	(51) 3p' 3F-5d' 1	3842.82 G°	B	3 0	25.52 28.73 25.55 28.76	-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-		3741.69	C	0		-1 -1	2 2
5408.59 5404.87	D F	$\binom{4}{3}$	14.04 16.32 14.04 16.32	4-5 3-4	(52) 3p' ³ F-5d' 3 (53)	3875.82	B B	4	25.54 28.74 25.55 28.74	21-21 31-21	3p ⁴ D°-3d ² F (13)	3273.52 3270.98	B B	71 71	28.24 32.01 28.24 32.01	31-21 31-11	(38) 3p' 3p-4s' 2p (39)
8 426.3 26	C		14.06 15.53		3s" 3p0_4p1	3833.10 3843.58	B B	3 3	25.54 28.76 25.53 28.74	2 } -3} 1}-2}	•						
8428.342 8429.128	CC	2	14.06 15.53 14.06 15.53	1-2	(54)	3134.82 3138.44	B B	10 1 8 1	25.55 29.49 25.54 29.47		3p ⁴ D°-4s ⁴ P (14)	*4699.21 4703.18 4698.48	B B C	7 3 1	28.39 31.01 28.39 31.01	25-25	3p1 3pe_3d1 3p (40)
8420.968 8424.780	C	1	14.06 15.53 14.06 15.53	2-2 1-1		3139.77 3122.62	B B	41 61	25.53 29.46 25.54 29.49	15- 5 25-25		4327.48	В	3			
7476.45 7479.06	A A	12 8	14.06 15.71 14.06 15.71	3-3 1-3	3s" ^{3pe} -3p" (55)		B B	71 31	25.53 29.47 25.52 29.46	3-3	.	4331.89 4327.89	B B	8	28.39 31.24 28.39 31.24	1\$-1\$ 2\$-1\$	3p' ² p°-3d' ² p (41)
7480.66 7473.23	A A	8	14.06 15.71 14.06 15.71	0-1 2-2		3113.71 3124.02	B B	11 21	25.53 29.49 25.52 29.47		•	4331.47 4192.50	B B	o [,] 2	20.35 31.84	15-95	
7477.21 7471.36	A A	7 2	14.06 15.71 14.06 15.71	1-1 2-1		4590.971	Ā.	9	25.55 28.24	 8출-3출	3s' ² D_3p' ² Fo	4400 70	B	00	28.39 31.33 28.39 31.33	12-13 13-13	3p1 3jpe_3d1 3p (43)
760.65	Α.	5	14.07 15.34	 3-4	3p' 1F_3d' 1	4596.174 4351.269	A	8 6	25.55 28.24 25.55 28.39			3063 13	В	0	28.39 31.50		73p' ³ D°-4d ³ P
9741.49	A	4	14.07 15.34		3p' 1F-3d' 3	4347, 425	Â	5	25.55 28.39		3s' ³ D-3p' ³ D°	3 <i>1</i> 00 01	B B	71 61	28.39 32.01 28.39 32.01	2 1 -	(43) 3p ¹ 3p ² -4s ¹ 3p (44)
677.41	A	1	14.07 15.35	3-3	3p' 1F_3d' 1		A	10 6	25.55 28.71 25.55 28.70	23-13 13- 3	3s' ² D_3p' ² P° (17)						
8374.31	A	4	14.07 16.01	3-4	(58) 3p' 1F-4d' 1 (59)	3912.088	В -		25.55 28.71	 .		6895.29 6906.54 6910.75	CCC	5 4	28.58 30.37 28.57 30.36	41-31 31-21	3d ⁴ F-4p ⁴ D ⁹ (45)
366.33	A	3	14.07 16.01		3p' 1r-4d' 3		В	0	25.74 28.57	2 1 _3	3p ⁴ P°-3d ⁴ F (18)	6908.11 6846.97	000	3 2 1	28.56 30.35 28.55 30.34 28.57 30.37	15-3	
6351.17 5492.8	A F	0 (3)	14.07 16.02 14.07 16.32		3p' 1F-4d' 1 (61) 3p' 1F-5d' 1	4140.74	A B B	4 0 4	25.74 28.70 25.73 28.71 25.72 28.71	24-24 14-14	3p ⁴ P°-3d ⁴ F (18) 3p ⁴ P°-3d ⁴ P (19)	6869.74 6885.07	C	1	28.56 30.36 28.55 30.35		
486.6	F	(3)	14.07 16.32		(62) 3p' 1 r-5 d' 3	4156.54	B B	3 2	25.74 28.71 25.73 28.71			4098.27	В	On	28.55 31.56	12-22	3d ⁴ F-4f ² D° (46)
7886.31	Α.	4	14.31 15.38	_	(63)	4153.302 4132.806	A	7 6	25.73 28.70 25.72 28.71	1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4107.07	В	1n	28.56 31.57		3d4F-4f4D°
653.78	A	5	14.31 15.36		(64) 3s" 1P°-3p"	4119 221	A A	8	25.74 28.73	3}-3}	3p4P°-3d4D (30)	4089.295 •4097.260 4095.63	A	4n 4n	28.58 31.60 28.57 31.58	3-4-4-	3d4F_4f4G° (48)
					(65)	*4097.260 4130.279	Ā	4n 3	25.72 28.73 25.74 28.73	4-14	(80)	4087.16 4108.75	B B B	On 2n On	28.56 31.57 28.55 31.57 28.57 31.57	25-35 15-25 35-35	
						4105.000 4103.017	A	7 5	25.73 28.73 25.72 28.73	23-23 13-13 23-13		4096.18	C	Ođ	28.56 31.57	3 } -3 }	
			nal A List A			4120.554 4110.795	A	3	25.74 28.73 25.73 28.73	12- 2		4071.20 4083.907	A	0 2n	28.57 31.60 28.56 31.58	31-41 22-32	3d ⁴ F-4f ² G ⁰ (49)
649.139 641.811 638.854	A	10 9 6	22.90 25.55 22.88 25.54 22.87 25.53	2 1 2 - 3 2	3s ⁴ P-3p ⁴ D°	4084.66 4096.543	B A	1 3	25.74 28.76 25.73 28.74	31-31 11-31	3p4p0_3d3F (21)	4062.90 4048.22	B B	in in	28.58 31.62 28.57 31.62 28.56 31.61	41-41 31-31	3d ⁴ F-4f ⁴ F°
676.234 661.635	A A A	8	22.90 25.54 22.88 25.53	21-21 11-11		4112.029 3967.441	A	4	45.74 48.74	ಜಕ್ಷ-ಜಕ್		4041.31 4033.18	C	0d 0d	28.55 31.61	15-15	(00)
650.841 696.36	A B	6 2	22.90 25.54 22.88 25.53 22.87 25.52 22.90 25.53 22.88 25.52	3 3 1		3985.46	C	0	25.72 28.83 25.72 28.82		(33)	4054.10 4046.15	C	00d	28.57 31.61 28.57 31.62	3 1 - 2 1 3 1 - 2 1 1	
673.75 349.426	B A	4 8	32.88 25.52 22.90 25.74	1출- 출	3-4D 2-4D0	3287.59 3295.13	B B	91 41	25.74 29.49 25.73 29.47 25.72 29.46 25.74 29.47	21-21 11-11	3p ⁴ P°-4s ⁴ P (23)	4044.96 4035.09	C	0d 0d	28.57 31.62 28.56 31.62 28.55 31.62	31-31 21-21	3d ⁴ F-4f ² F* (51)
336.865 325.77	A B	6 3	22.88 25.73 22.87 25.72	1 - 1 - 1	(3)	3301.56 3305.15 3306.60	B B B	31 61 61	25.72 29.46 25.74 29.47 25.73 29.46	23-13 13-13 13-13		4026.40 3371.85	В	On On			
366.896 345.562 319.631	A A A	7 7 8	22.90 25.74 22.88 25.73 22.87 25.72 23.90 25.73 22.88 25.73 23.88 25.74	25-15 15- 5		3277.69 3290.13	B B	71 51		13-21		3375.77 3360.15	B B B	an O OOn	28.58 32.24 28.57 32.23 28.57 32.24 28.56 32.23	49-39 31-21 31-31	(52)
317.139	A	8	22.87 25.73	2-12		4751.34	в -		26 44 20 77	- 1 al	z-2-a z-4-	3367.00 3370.23	B B	00n 00n	28.56 32.23 28.55 32.22	3 - 3 - 3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 -	
749.49 727.33 712.75	B B B	9 8	22.90 26.19 22.88 26.19 22.87 26.19	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3s ⁴ P-3p ⁴ S° (3)	4710.04 4752.70	B B	5 2	26.14 28.73 26.11 28.73 26.14 28.73	13-23	(34)	4317.65	С -	0	28.71 31.56	 11_21	244D_4+300
112.73	-	7		- 2-1 2 -	•	4705.355	A	8				4307.31	B	in	28.71 31.56 28.71 31.58		
721.35 640.90	B B	5 4	23.34 25.18 23.32 25.18		3s ² P-3p ² g•	*4699.21 4741.71	B B	7 3	26.14 28.76 36.11 28.74 26.14 28.74			4303.82 4294.82 4281.40	B B B	5n 3n	28.70 31.57 28.71 31.58	23-33 13-23	3d ⁴ P-4f ⁴ D° (54)
414.909 416.975	A A	10 8	23.34 26.14 23.32 26.11 23.34 26.11			4395.95 4369.28	B B	7	26.14 28.94 26.11 28.94 26.14 28.94	2-2-2-1 1-1-1-1	3p ² D•-3d ² D (26)	4282.82 4288.83	C B	On 3đ 1n	28.70 31.58 28.71 31.59 28.71 31.59	11-11	
452.377	Ā	6				4406.02 4359.38	B B	1	26.14 28.94 26.11 28.94	3 - 1 - 1 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		4276.71	В	1n	28.71 31.59	1 2 - 2	
973.263 954.372 982.719	A A	10 7	23.34 26.45 23.32 26.44 23.34 26.44 23.32 26.45	13-13	38 ² P-3p ² P°	3470.81 3470.42	B B	8 5	26.14 29.69 26.11 29.67 26.11 29.69	31-11 11-11	3p ² D°-4s ² P	4291.25 4305.53	B B	1n 0	28.70 31.57 28.71 31.57	25-35 15-35	3d ⁴ P-4f ⁴ G ⁰ (55)
945.048	A	5 5	23.32 26.45	13- 3 2-12		3447.98	В _	5	26.11 29.69	1\$-1\$ -	(51)	3013.37	В	3	28.70 32.79	3 1 _31	3d ⁴ P-5f ⁴ D ⁰ (56)
496.27	c	1	25.18 28.71	- - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3p ² S°-3d4p	4924.60 4906.88	B B	6 5	26.19 28.70	11-31	3p4se-3d4p	4871.58	В -	5	28.71 31.24	- 1=-2=	-
488.18 474.94	C B	0	25.18 28.71		3p ³ S°-3d ⁴ P (7)	4890.93	В	4	26.19 28.70 26.19 28.71 26.19 28.71			4861.03 4701.23	B	3			3p1 3pe_3d1 3p (57)
390.25	В	1 8	25.18 28.73 25.18 28.82	\$- \$ 1_11	3p ² S°-3d ⁴ D (8) 3p ² S°-3d ² P (9)	4856.49 4856.76	B	3	26.19 28.73 26.19 28.73 26.19 28.73	11-31 11-11	3p ⁴ 5°-3d ⁴ D (29)	4701.23 4691.47 4701.76	B B B	2 1 0	28.70 31.33 28.70 31.33 28.71 31.33		3⊝'3ps_3d'3p (58)
377.20	B _	7	25.18 28.83	- \$\$	(9)	4864.95 4845.01	В	3 1				4690.97	B	_			
075.868 072.164	A A	10 8	25.55 28.58 25.54 28 52	31-41	3p4D0-3d4F	3739.92	В		26.19 28.74 26.19 29.49		(30)	4469.32 4414.37	B	3 1	28.71 31.47		(59)
069.897 069.636	A A	6 4	25.55 28.58 25.54 28.57 25.53 28.56 25.52 28.55 25.55 28.57 25.54 28.56	13-23	(10)	3762.63 3 777.6 0	B B	51 41	26.19 29.49 26.19 29.47 26.19 29.46	13-13		4328.62	B	2	28.71 31.50 28.71 31.56	13-13	3p' 3pe_443p (60) 3p' 3pe_34' 3g (61)
092.940 085.124 078.862	A A A	5 3 4	25.55 28.57 25.54 28.56 25.53 28.55	43-45		5806.73	В —	5	36.45 38.82	- 1]1]	•	4319.93 3735.94	В	1	28.70 31.56	-] - []	(61)
106.03 094.18	B B	0	25.55 28.56 25.54 28.55	11-11 31-21 21-11		5160.02 5176.00	B B	3	26.45 28.82 26.44 28.83 26.45 28.83 26.44 28.82		(38)	3735.94 37 39. 34	B	3	28.71 32.01 28.70 32.01	19-34	ap'a₽°–4s'≊D (62)
			20100	-22		5190.56	В	3	25.44 28.82	1 _1.			_			-	

	oratory Ref		E :	P High	J	Multiplet (No)		rator; Ref		E P		J	Multiplet (No)		atory Ref I	int	E P		J	Multiplet (No)
A II com	ntinued		20"			()	O II con						, ,	O III cor	tinued	l				
4.29 7.25	B B		(28.73 28.73 28.73	31.58 31.58 31.56	23-13 13-13 13-23 13-23	3d ⁴ D-4f ³ D• (63)	4060.58 4060.98	B B	3n 3n		4.05	31-41 22-32	3di 2 y_41 i 2ge (97) 3ai 2y 4ei 2 y e	3725.30 3714.03 3732.13	A A A	8	37.09 4 37.07 4 37.09 4	0.40	3-3 1-1 3-1	3p ^{3p} -3d ³ pe (14) cont
8.40	В	0 On	28.73 28.73	31.57	31-31 31-31	3d ⁴ D-4f ⁴ D° (64)	*4054.10 4054.55	C	00g	31.01 3 31.01 3	4.06		3d' 3r_4f' 3re (98)	3415.29	A A	3	37.09 4 37.07 4	0.69	1-1	3p ³ P-3d ³ P* (15)
4.29 8.96 .5.35 57.25	B C B	1n 0d 0	28.73 28.73 28.73 28.73	31.59 31.59 31.57	13- 3- 13- 3- 23-3- 3-1-	(01)	4024.04	В	1n 	31.01 3		-	3d' ³ g_4f' ³ g• (100)	3430.60 3408.13	A A A	1 3	37.09 4 37.07 4 37.07 4 37.06 4	0.69 0.67	2-1 1-0 1-2 0-1	
.5.35 32.76	C B	Od 1n	28.73			3d ⁴ D-4f ⁴ G° (65)	4303.06	Č	Od							1	37.85 4		2_2	3p ¹ D-3d ¹ D°
14.43	В	On Of	28.73			(65) 3d ⁴ D-4f ² G°	4253.74 4253.98	C	4d 4d	31.18 3 31.18 3	4.09	31-41 31-41	3d' 3G_4f' 3H° (101)	3961.59	A	8	37.85 4		2-3	(16) 3p ¹ D-3d ¹ F°
75.52 76.71	C B B	0d 4n 1n	28.73			(66) 3d*D-4f*F* (67)	4378.41 4378.01	C	0	31.24 3 31.24 3	34.06 34.06	3}-3} 12-3}	3d ^{1 2} D-4f 2po (102)		A _	1	37.85	1.08		(17) 3p ¹ D-3d ¹ P• (18)
82.96 77.40 77.90 83.13	B B C	in in in Od	28.73 28.73 28.73 28.73	31.61 31,62	14-24 3-13 33-34 23-24		*4343.36 4342.83	C	0đ 1đ				3d ^{i 2} D-42 ^{i 2} D° (103)	5268.06	A _	2	38.74			3p ¹ S-3d ¹ P ⁰ (19) 3d ¹ P ⁰ -4p ¹ P
B3.75	В	0n	28.73	31.61	1분-1분	3d ⁴ D-4f ² F°	4488.09 4487.72	B B	3n On	31.33 3	34.08	11-21	3d1 3p_4f1 3pe (104)	3034.32	۸	<u> </u>	41.08 4		1-1	(30)
74.13 76.21 77.40	C C B	00d 0d 1n	28.73 28.73 28.73	31.62	31-31 31-31 31-31	(68)						-		3698.70	Å	5	41.78 4 41.76 4 41.74 4	15.10	3-4	3e ⁵ P-3p ⁵ De (21)
73.17 75.90	B C	On Od	28.73 28.73		15-25		4843.26	В	1n	31.56			3d' 2g_4g' 2pe (105)	3720.86 3712.48	A A A	4 3 2	41.78 4	15.10 15.08	1-2 3-3 3-3	
16.92 33.97	B B	On OOn	28.73 28.73		31-31 31-21	3d ⁴ D-5p ⁴ D° (69)	4146.09 4143.77	B B	3	(33.06 3 (33.06 3	36.03)	31-41 21-31	sp ³ 3p ⁶ p_ sp ³ 3d ⁶ p•	3704.73 3734.80 3721.95	A A A	3 1	41.74 4 41.78 4 41.76 4	15.08	1-1 3-2 3-1	
95.44 06.02 94.66	B B B	On On OOn	28.73 28.73 28.73	32.25		3d ⁴ D-5p ⁴ P ⁶ (70)	4143.24 4145.90 4143.52 4141.96	B B C	0 0 1 1	(33.06 (33.06 (33.06 (33.06 (33.06 (33.06	30.03/	15-15		3709.52 3350.99	A	3	41.74 4 41.78 4 41.76 4	15.07 15.46	1-0 3-3	3g ⁵ p_3p ⁵ pe (22)
01.67	B B	00n 0n	28.73	32.25 32.31	5-15	3d ⁴ D-5p ² D°	4142.08 3218.10	c c	1	(33.08 3	36.04)	15- 5		•3344.26 •3336.78 3362.38	A A A	2 3 4	41.74 4	45.44	2-3 1-1 3-3	(55)
53.31 39.76	В	1	28.73	32.79		(71) 13d ⁴ D-5f ⁴ D° (72)	3216.76 3216.08	Ċ	0	(33.06 3 (33.06 3	36.89) 36.89)	23-23 13-23	sp ³ 3p6P_ sp ³ 4s6ge (107)	3350.68 3333.00 •3330.40	A A A	3 4 4	41.76 4 41.76 4	45.46	2-1 2-3 1-2	
39.51 38.82	B B	1		32.79 32.81		34 <u>4</u> D-5146°	Strongest	Unol	assifi						^ -					- 3 3
07.08	В	3					4506.50 3420.61	B	3n 3n					4081.10 4073.90	A	0	43.24 4		1-2	3s ³ p_3p ³ D°
07.74 08.28	C B	3dd 1	28.73	32.84	31-31 31-31 -	3d ¹ D-5f ⁴ F° (74)	3419.87 3081.46	B B	2n 2n					3556.92	A _	1	43.24	46.71	3-3	38 ³ P-3p ³ P* (24)
43.36 31.13	C	0đ	28.74 28.74	31.58 31.59	21-21 21-11	13d ² F-4f ⁴ D° (75)	3006.82 3006.04 3005.62	B B B	3 2 2					3455.18 3450.94	A A	5 4	45.11 4 45.10	48.67	4-5 3-4	3p ⁵ D°-3d 5F (25)
71.65	В	2n	28.76	31.58 31.57		3d ² F-41 ⁴ G° (76)						·······		m3448.05 3446.73 3447.22	P A A	0+ 2 1	45.08 4 45.08 4 45.07 4	48.66	2-3 1-2 0-1	
53.60 42.00	B B	in 4n				3d ² F-41 ² G*	<u>0 III</u>	I P 54	1.71	Anal B	List .	A Sej	pt 19 4 3	3466.15 3459.98	A A	3	45.11 4 45.10	48.67 48.66	4-4 3-3 3-3	
40.36 13.43	B B	2n 1n		31.58 31.62	2ģ-3ģ 3l-4l	; (77) . 34 ² F_4f ⁴ F°	4239.5	A	00	33.01	35.92		3s ³ p ^e -3p ¹ p	3454.90 3451.33 3466.90	A A A	3 1 0	45.08 45.08 45.10	48.65	1-1 3-2	
85.70 15.80	B	3n 00d	28.74 28.76	31.62 31.62	24-34 34-34	3d ³ F-4f ⁴ F° (78)	3759.87 3754.67	Ā	9	33.04 33.01	36.29	1-2	3s ³ p̄•̃_3p ³ p	3459.52 3088.04	A	0	45.08		2-1 4-4	3p ⁵ p°-3d ⁵ p
92.23	B B	On On		31.61 31.62	3-3-3-3	3d ² F-4f ² F°	3757.21 3791.26 3774.00	A A	5 6 6	32.99 33.04 33.01	36.29 36.28	0-1 3-2 1-1		3083.65 3075.19	A B B	0	45.10 4 45.08	49.10 49.10	3-3 2-2	(26)
15.35 00.5	° C R	0d 00n		31.62 32.26		(79) 3d ² F-5p ⁴ P°	3810.96 3340.74	A	8 6	33.04 3 33.04		3–1 3–1	3s ³ pe_3p ³ s	3095.81 3084.63 3074.68	B B B	00 0 00	45.11 45.10 45.08	49.10 49.10	4-3 3-2 3-1	
57.99	В	1n	28.76	32.33		(80) 3d ² F-5p ² D° (81)	3312.30 3299.36	A	5 3	33.01 32.99		1-1 0-1	(3)	3068.06 3075.95 3074.15	B B B	00 0	45.08 45.10 45.08	49.11	1-0 3-4 3-3	
59.07 47.9	B	On Odd		32.31			3047.13 3035.43	A	8 4	33.04 33.01	37.07	2-2 1-1	3s ³ P°-3p ³ P (4)	3068.68 3065.01	B B	00	45.08 45.07	49.10	1-3 0-1	
32.08 32.50	B	2 1		32.83 32.81	31-41	3d ³ F-5f ⁴ G ⁶ (82) 3d ³ F-5f ³ G ⁶ (83)	3059.30 3043.02 3023.45	A A A	6 5 5	33.04 33.01 33.01	37.06	2-1 1-0 1-3		3384.95	A -	4	45.46	 49.1ì	3-4	3p ⁵ p°-3d ⁵ D
25.75	В	1		32.84	3-1-4-2	3d F-51 F0	3024.57	Ä	4	32.99		0-1 -		3382.69 3394.26	A A	3 1 2	45.45 45.46 45.45	49.10	3-3 3-3 3-3	(27)
27.62	C	3			-	(04/	5592.37	A	6	33.71	35.92	1-1	3s ¹ P°-3p ¹ P (5)	3383.85 3376.82	A C	(1)	45.44	49.10	1-1	E E-
78.19 66.94	Ġ	0	28.83 28.82	30.68 30.67	$1\frac{1}{2}$	3d ² P-4p ² P*	2983.78	A	9	33.71	37.85	1-3 -	3s ¹ p•_3p ¹ D (6)	3355.92 *3336.78 3326.16	A A A	3 3 0	45.46 45.45 45.44	49.15	3-3 3-2 1-1	3p5pe_3d5p (28)
91.25 89.48	B B	3n 1n				3d ² P_4f ² D° (86)	2983.66	A	1	35.92	40.05	1-3 	3p ¹ P-3d ³ F* (7)	3348.05 3332.49	A A	2 1	45.46 45.45	49.15 49.15	3-2 3-1	
66.32 76.08	B	3n Od	28.82	31.58 31.59		3d ² P-4f ⁴ D° (87)	3265.46 3260.98	A A	10	36.32		3-4 2-3	3p ³ D-3d ³ F*	*3344.26 *3330.40	A A	3 4	45.45 45.44		2-3 1-2	
77.88	В	2n				3d ² P_4f ⁴ G° (88)	3267.31 3284.57 3281.94	A A	5 4 3	36.28 36.32 36.29	40.05 40.08 40.05	1-2 3-3 2-2	,0,	3279.97	c _	(1)	46.05	49.82	0_1	4p ¹ S-5d ¹ P° (29)
07.80 69.53	C B	0	28.94 28.94	31.56 31.58	31-31 12-15	3d ² D-4f ² D° (89)	3305.77 3252.94	A	0 2	36.32 36.29	40.09	3-2	3p ³ D-3d ¹ D°	3728.82 3728.49	C C	{1 0}	46.27 46.25	49.56	3-4 2-3	3p ³ D°-3d ³ F (30)
69.33	C	0		31.58	11_21	348n_4+4no	3238.57 3017.63	A	5 5	36.28	40.09	1-2 3-3	(9) 3p ³ D-3d ³ D•	3729.70 3215.97	A B	1	46.24		1-2 3-3	3p ³ D°-3d ³ D
77.00	G	0	28.94	31.58	21-31	(90) 3d ² D_4f ² G• (91)	3004.35 2996.51	A A	4 3	36.29 36.28	40.40 40.40	2-2 1-1	(10)	3207.12 3200.95	P A	1	46.25 46.24	50.10	2-2 1-1	(31)
13.67 10.14 21.28	C B C	1d 3n Od	28.94 28.94 28.94	31.61 31.61	43-34 13-34 33-34	(91) 3d ² D-4f ⁴ F° (92)	3024.36 3008.79 2997.71	A A A	1 3 2	36.32 36.29 36.29	40.40 40.41	3-2 2-1 2-3		4529.7	, - A	00	46.37	49.10	2 – 3	3p5go-3d5p
09.43 03.11	ВВ	4n 3n	28.94 28.94	31.62 31.62	21-31 11-21	3d ² D-4f ² F° (93)	2992.11		3	36.28		- 1-3	3p ³ 8-3d ³ D°	4461.56 m4447.82	A P	0+ 0	46.37 46.37	49.15	2-3 2-2 2-1	(32) 3p5g°-3d5p (33)
13.11	c				-		3363.83 3369.40	A	00	36.73 36.73	40.40	1-3	(11)	4440.1			46.37			3p ³ P°-3d ³ P
65.40 67.88 69.32	B B B	4 4 3	(30.29 (30.29 (30.29	33.06) 33.06) 33.06)	21-31 21-31 21-31	sp ³ 3s ⁶ 8°- sp ³ 3p ⁶ p (94)	3132.86 3121.71 3115.73	A A A	6 5 4	36.73 36.73 36.73	40.69	1-3 1-1 1-0	3p ³ S-3d ³ P° (12)	4555.30 3638.70	A	3	46.71	50.11	2-3 1-3	(34) 3p ³ pe _{-3d} 3p (35)
85.01	В		30.68	33.94	 1}-2}	74p3pe_4d1 3	D 3440.39	A	4	36.82	40.41	- 2-31	2p4 1p-3d3pe	3646.84 3653.00 3645.20	A A A	3 1 1	46.72 46.72 46.71	50.10 50.10	1-3 0-1 3-3	(00)
74.77	В	00	30.68	34.34	1 ½-3 ½	(95) 4p2P°-5s' 2	D			37.09		-	(13) 3p ³ P-3d ³ D°	3650.70 3649.20	A	00	46.72 46.71	50.10 50.10	1-1 2-1	
					_	(96)	3715.08 3707.24 3702.75	A A	6 6 5	37.09 37.07 37.06	40.40	1-3 0-1	(14)		-				•	

10						REV	ISE	D M	ULTIPLE	T 1	ABLE							
Labo I A	rator; Ref		E P Low High	J	Multiplet (No)	Labo I A	ratory Ref		E P Low High	J	Multiplet (No)	Labo I A	rator; Ref			P High	J	Multiplet (No)
O III co	ntinu	eđ				<u>o v</u> I P	113.3	8 A	nal B List A	Feb	1943	O VI con	tinue	đ				
4569.50	A	1n	52.63 55.33	2-37	3p ¹ D°-3d ¹ F (36)	5114	P		69.29 71.70	0-1	3 ¹ S-3 ¹ P° (1)	350 9	P		123.97	127.49	-	6 ² D-7 ² P°
4474.95	A	1n	52.63 55.39	2-21	3p ¹ D°-3d ¹ D (37)	3144.68	Α -	1	71.70 75.63	1-3	3 ¹ P°-3 ¹ D	3426	Ρ.		123.97	127.57		6 ² D_72F• (6)
						5600	P		(74 00 74 17)	- 2–3	(2) 3 ³ P°-3 ³ D	3438	P		123.98	127.57	_	6 ² F°-7 ² D
O TV T	P 77.	18 Ar	al B List A	Von	1943	5582 5573	P P		(71.92 74.13) (71.91 74.12) (71.91 74.12)	1-3	(3)	3433	P		123.98	127.57	_	6 ² F ⁶ -7 ² G (8)
<u>0 IV</u> I 3063.46	В	بر 6	44.15 48.18			5606 5584	P P		(71.92 74.12) (71.91 74.12)	3-3		3434	P -		123.98	127.57	-	6 ² G-7 ² H° etc
3071.66	B.	5	44.15 48.17	_ } <u>}</u>	3 ² S-3 ² Pe (1)	5608	P		(71.92 74.12)	3-1 -			-				-	(9)
3411.76 3403.58	B B	4 3	48.18 51.79 48.17 51.79	11-21	3 ² P°-3 ² D	4123.90 4120	A P	3	(80.63 83.62) (80.58 83.58)	2-3 1-2	3s ³ P°-3p ³ D	4751	Ρ.		127.25	129.85	- 1	7 ² 5-8 ² P° (10)
3413.71	Ā	1	48.18 51.79	12-12	. (2)	4123 4179	P P		(80.56 83.56) (80.63 83.58)	0-1 3-3	(=/	5602	P		127.49	129.69	-1	7 ² P°_8 ² s
3385.55	В	(6)	54.19 57.84 54.16 57.81	- 2] -3]	3s ⁴ P°-3p ⁴ D	4151 4211	P P		(80.58 83.56) (80.63 83.56)	1-1 3-1		5112	P		127.49	129.90		7 ² po_8 ² D (12)
3381.28 3381.33	B P	(4)	54.14 57.79	} -1⅓	(3)	3275.67	A	0	(80.63 84.39)	3-1	38 ³ P°-3p ³ S	5410	P		127.57	129.85		7 ² D-8 ² Pe
3409.75 3396.83 3390.37	B B P	(2)	54.19 57.81 54.16 57.79 54.14 57.78	33-34 13-14		3239 3222	P P		(80.58 84.39) (80.56 84.39)	1-1 0-1	(5)	5279	P		127.57	129.90	_	72D_82F0
3425.57 3405.97	B P	(0)	54.19 57.79 54.16 57.78	23-13 13-3	•	3058.68	A -	0	82.03 86.07	1-3	3s1P0-3p1D	5298	P		127.57	129.90	- -	(14) 7 ² F°_8 ² D
7740 44					38 ² P°-3p ² D		_			-	(6)	5289	P			129.90		7 ² F°_8 ² G
3349.11 3348.08 3378.09	A A A	3 2 0	55.93 59.62 55.90 59.59 55.93 59.59	ģ-1ģ	(4)	4554 .28	A -	<u> </u>	83.04 85.75	1-3 -	3p ¹ P-3d ¹ D° (7)	5000			400.50	400.00	-	(16)
3052.54	À	1	55.93 59.97	1출-1출	3s ² p•_3p ² S	3747 3717	P P		(83.62 86.91) (83.58 86.90)	3-3 2-2	3p ³ D-3d ³ D° (8)	5292 5291	P P			129.90		7 ² G-8 ² F° (17) 7 ² G-8 ² H° etc
3028.04	Α.	0	55.90 59.97	_ 1 _1 _	(5)	3701 3762	P P		(83.56 86.89) (83.62 86.90)	1-1 3-2	(0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		101101	150.50	_	(18)
*3736.78	В	(4)	57.84 61.14	3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	3p ⁴ D-3d ⁴ F° (6)	3726 3703	P P		(83.58 86.89) (83.58 86.91)	2-1 2-3								
3729.03 •3725.81	B B	(3) (3)	57.81 61.12 (57.79 61.11 (57.78 61.10	12-32	(6)	3692 3298	P P		(83.56 86.90)	1-2	3p ³ p-3d ³ pe	<u>FI</u> IF	17.3	5 A1	nal C	List D	Мау	1944
3758.45 3744.73	B B	{ 0}	57.84 61.12 57.81 61.11	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	•	3249 3222	P P		(83.62 87.36) (83.58 87.38) (83.56 87.39)	3-2 2-1 1-0	(9)	7398.68 7482.72	A A	17 11	12.64	14.31 14.33	2] _2]	3s ⁴ P-3p ⁴ Pe
3736.78 3774.38	B P	(4)	57.79 61.10 57.84 61.11	13-15 33-25		3264 3230	P P		(83.58 87.36) (83.56 87.38)	2-2 1-1		7514.93 7331.95	Ā	9 15	12.70	14.34 14.33	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	. (-)
3755.82	P	(2)	57.81 61.10	3½-1½	3p ⁴ D-3d ⁴ D°	3245	P _		(83.56 87.36)	1-3		7425.64 7552.24	A A	14 14	12.68 12.68	14.34 14.31	15-25	
3209.64 3194.75 3185.72	B B B	{3} {1} {0}	57.84 61.68 57.81 61.67 57.79 61.67	3 1 - 3 1 2 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	(7)	4925 4940	P P		(84.39 86.90) (84.39 86.89)	1-3 1-1	3p ³ S-3d ³ D° (10)	7573.41 6856.02	A ^	14 16		14.33	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3s ⁴ P-3p ⁴ D●
3180.72 3216.31	B P	(0)	57.78 61.66 57.84 61.67	3-2-2-		4158.76	A	0	(84.39 87.36)	1-3	3p ³ 8-3d ³ P°	6902.46 6909.82	A A	15 13	12.68	14.44 14.46 14.48	23-33 13-23	(3)
3199.53 3188.65	B P	(1)	57.81 61.67 57.79 61.66	3 - 1 - 1 - 1 - 1 - 1 - 1		4135.9 4121.7	P P		(84.39 87.38) (84.39 87.39)	1-1 1-0	(11)	677 3.97 683 4.26	Ā	11	12.64	14.46 14.48	21-21	
3188.17 3180.98 3177.80	P P B	(o)	57.81 61.68 57.79 61.67 57.78 61.67	21-31 11-31		2070	P -		(05.44.00.04)	-	3p ³ P-3d ³ D°	6870.22 6708.27	A	12	12.70 12.64	14.49 14.48	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0111100	٠.			- 5-18		6830 6 790 6767	P P		(85.11 86.91) (85.08 86.90) (85.07 86.89)	2-3 1-2 0-1	(12)	6795.52 6239.64	A .	9 16		14.49	12- 2	3s ⁴ P-3p ⁴ S
3375.50 3362.63	B P	(3)	58.54 62.21	13-33 13-13	3p ⁴ S-3d ⁴ P° (8)	6878 6819	P P		(85.11 86.90) (85.08 86.89)	3-3 1-1		6348.50 6413.66	A A A	15 14	12.68	14.62 14.62 14.62	34-14	(3)
3354.31	Α.		58.54 62.22	1] -] -		6909	P		(85.11 86.89)	2–1	7 7						-	
4798.25 4783.43	B B	(5) (4)	59.11 61.68 59.09 61.67	21-31 11-31	3p ⁴ P-3d ⁴ D° (9)	5473 5376 5432	P P P		(85.11 87.36) (85.08 87.38) (85.11 87.38)	2-3 1-1 2-1	3p ³ P-3d ³ Pe (13)	7754.70 7800.22	A A	19 18	12.97	14.53	13-23 3-13 13-13	3s ² P-3p ² D• (4)
4772.57 4813.07	ВВ	(2)	59.08 61.67 59.11 61.67	3-13 23-23		5352 5417	P P		(85.08 87.39) (85.08 87.36)	1-0		7607.17 7311.02	A A	15 13		14.55	12-12	3s ² p_3p ² ge
4794.22 4779.09	B B	(1) (2) (2)	59.09 61.67 59.08 61.66	13-13		5343	P		(85.07 87.38)	0-1		7489.14	Ã	8		14.62	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(5)
4823.93 4800.77	P P		59.11 61.67 59.09 61.66	31-11 11-1		6329	P		86.07 88.02	a_3	3p ¹ D-3d ¹ F°	7037.45 7127.88	A A	15 14	12.97	14.68 14.70		3s ² P-3p ² P° (6)
3995.17 3956.82	B P	(2)	59.11 62.20 59.09 62.21	31-31 11-11	3p ⁴ P-3d ⁴ P° (10)	4522	P		86.07 88.79	2-1	(14) 3p ¹ D-3d ¹ P° (15)	6966.35 7202.37	A A	10 13	12.93 12.97	14.70 14.68	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
3930.63 3977.10	P B	(1)	59.08 62.22 59.11 62.21	$3\frac{7}{2}-1\frac{7}{2}$	\/	3702	P -		88.79 92.13	1-3	3d ¹ P°-4 ¹ D							
3945.29 3974.66	P P	(0)	59.09 62.22 59.09 62.20	15-25			_				(16)	F II I	P 34.8	34 A	nal B	List D	May	1944
3942.14	В -	(0)	59.08 62.21	1년 -		7438	P		(89.15 90.81)	-	4 ³ 8_4 ³ P° (17)	3847.086	A	20	(21.81	25.02)	2-3	3s ⁵ s°-3p ⁵ p
5362.4 5305.3	P P		59.62 61.92 59.59 61.91	$2\frac{1}{2}-2\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	3p ² D-3d ² D° (11)							38 49.987 3851.667	A A	15 10	(21.81 (21.81	25.01) 25.01)	2-3 3-1	(1)
3563.36 3560.42	A	2	59.62 63.08		3p ² D-3d ² F° (12)	<u>o vi</u> i i	137.	52 4	Anal A List A	. Fe	b 1943	4034.727	A -	20	22.57		1-2	3s ³ 5°-3p ³ P
0000.46	A -		59.59 63.05	-		3811.35 3834.24	A A	2 1	79.01 82.25 79.01 82.23	} _1=}	3 ² 8-3 ² P°	4025.495 4025.010	A A	15 10	22.57 22.57	25.64	1-1 1-0	(3)
3520.9 3502.2	P P		59.97 63.48 59.97 63.50	1-11 1-11	3p ² s-3d ² pe (13)	5007.54	^ -		79.01 82.23	\$- \$	(1)	3505 614	_	15	(25.00	29 541	- 7 4	3p ⁵ p-3d ⁵ p• †
7400	-			_		3068	P		123.46 127.49	} -	6 ² 5-7 ² P° (2)	3505.614 3503.095 3502.954	A A A	13 13 8	(25.02 (25.01 (25.01	28.54)	3-4 2-3 2-2	(3)
3489.84 3492.24	C	1 0	64.03 67.57 64.03 67.57	1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3s' 2po_3p' 21 (14)	3622	P -		123.84 127.25		6 ² P°-7 ² S	3501.416	Â	10	(25.01		1-0	
4568	P -		68.20 70.91	_ `	5 ² F°-6 ² D	3314	P		123.84 127.57	_	6 ² p ⁶ -7 ² D	4103.525	Ă.	15	25.64		2-3	3p ³ p-3d ³ p• †
			16.01 04.60	_	(15)		_				(4)	4103.085 4103.724	A A	10 7	25.64 25.64	28.65	1-2 0-1	(4)
												4103.871	A _	7	25.64	48.65 	. 2–2	

I A	abo	rator Ref	y Int	Lov	E F	High	J	Mo	ltiplet (No)		I	Laboi A	Ref	Int	Low	E P	High	J	Mult:	b)	I.		Ref		Low		J	(No)
11	con	tinue	đ								Ne I	1 1	P 21.	. 47	nal A	L	ist C	May	1944		<u>Ye I</u>	con	tinued	l				
109.1 116.5 119.2	47	A A A	8 7 7	26.1	16 2	39.16 39.16 39.16	3-3 2-2 1-1		³ p°-3p¹ (5)		6402	. 4127 . 2455 . 4279	В	(10) (20) (10)	16.5	5 1	8.30 8.48 8.50	2-1 2-3 2-2		-3p 1 -3p 2 -3p 3	5764 5748		B B	(15) (10)	18.48 18.48			3p 2-4d 3° (13)-4d 8°
			9			39.64			3 _{D0_3n} 1		6217	. 2813	A	(15)	16.5	5 1	8.53 8.56	3-1 3-3		-3p 4 -3p 5	5037	. 7505	В	(10)	18.48	20.93	3-4	3p 2-5d 3° (14)
541.7 536.8	38	A A	7			9.65	3-1	06	³ D°-3p' (6)	•	5975	. 5340 . 8342	Â	(12) (10)	16.5	5 1	8.61	3-1 3-3		-3p 7 -3p 8	4788	.9258	В	(12)	18.48	21.05	3–2	3p 2-7s 1° (15)
299.1	77	A	10	26.	 55 2	39.42	- 2-3	3e¹	1p°_3p'	1 _F	5881	. 8950	A	(20)	16.5	55 1	8.65	2-1 2-3	7- 11	-3p 9 -4p 2	4715 4718	.344 .060	B E	(15) (10)	18.48 18.48		3-4 3-3	3p 2-6d 3° (16)-6d 8°
202.7	40	A	10	26.	55 3 	30.40	a-a 	3s ^t	(7) 10°-3p' (8)	1 _D	3369	.5711 .9081 .8086	Ċ	(15) (10)	16.5	55 2	30.21	2-3 2-3		-4p 9 -4p 8	4540	.376	В	(10)	18.48	21.19	3-4	3p 2-7d 3° (17)
246.1	.6	A	15n	(28.	54 3	31.44)	_		1 ⁵ D°_4f ⁵ (9)		6506	.1668 .5279	À	(10) (15)	16.6	30 1	.8.30 18.50	1-2		-3p 1 -3p 3	8418	.3600 .4274 .1802	В	500 400 200	18.50 18.50 18.50	19.96		3p 3-3d 4° (18)-3d 7° -3d 10°
447.1 446.1		A A	13n 10n			31.42 31.42	3- 2- -		1 ³ D°-4f ³ (10)		6074 6029	.9914 .3377 .9971 .5620	A A	(12) (10) (10) (50)	16.6 16.6	30 1 30 1	18.53 18.63 18.65 18.88	1-1 1-0 1-1 1-0		-3p 4 -3p 6 -3p 9 -3p 10	5804	.155 .4488 .769	B B B	(10) (10) (10)	18.50 18.50 18.50	20.62	2-3 2-3 2-3	3p 3-4d 4° (19)-4d 7° -4d 10°
640.8 641.9 642.	85	A A A	9 8 7	29.	32 :	32.71 32.71 32.71	4-4 -3 -2		3 _{F-3d} 1 (11)	or•+	3417	.9036	Ç	(10)	16.6	30 a	30.21	1-3	3s 2 (4)	•-4p 8	•4884	.915	В	(10)	18.50		2-3	3p 3-5d 10° (20)
										_		. 4950 . 5939		(15) (12)	16.6	34 1 34 1	18.61 18.65			°-3p 7 -3p 9	4752	3.7313	В.	(10)	18.50	21.09	2-3	3p 3-6d 4° (21)
l	-		. 70	4-07		List	n 14	ov.	1944		0200		••			_		-	• • •	-•	10798	3.12	F	150	18.53	19.68	1-0	3p 4-4s 3° (22)
121. 121. 115. 113.	515 369 579	P 63	13 10 8	39. 39. 39.	16 12 10	43.12 43.08 43.06	31-3 11-3 3-1	3	s ⁴ P-3p ⁴ I (1)) °	7173 7024 6929	. 4580 . 9389 . 0508 . 4678	B B B	200 (10) (9) (10)	16.7 16.7 16.7	78 : 78 : 78 :	18.30 18.50 18.53 18.56	1-3 1-1 1-3		-3p 1 -3p 3 -3p 4 -3p 5	8634	1.15 1.920 1.6480 3.4060	D B B	200 500 600 300	18.53 18.53 18.53 18.53	19.95 19.96		3p 4-3d 5° (23)-3d 6° -3d 7° -3d 9°
146. 134. 134.	308 762	A A A P	8 8	39.	12 -	43.08 43.06 43.05	15-1	¥			6598	. 2764 . 9529 . 4878	A	(9) (15) (50)	16.7	78 :	18.62 18.65 18.88	1-3 1-1 1-0		-3p 8 -3p 9 -3p 10		3.6585 7.0334		(10) (10)	18.53 18.53	20.71 21.02	_	3p 4-4d 9° (24) 3p 4-5d 11°
3145.	536	Ā	4			43.05 43.06 43.05						.5259 .4717		(10)			20.21 30.28	1-3 1-0	3s 4 (7)	-4p 8 -4p 10			F	300		19.69	•	(25) 3p 5-4s 4°
3174. 3174. 3213.	725	A A A	13 10 6				-		s ³ P_3p ³ I (2)		9665 9486 8988 8865	.680	D B D B	1000 500 200 500	18.3 18.3	30 : 30 :	19.58 19.60 19.68 19.69	1-3 1-1 1-0 1-1	(8)	-4s 1° -4s 2° -4s 3° -4s 4°	8919 8853 8780		D B	300 700 1200 250	18.56 18.56 18.56	19.94 19.95 19.96 20.05	2-1 2-2 2-3 2-3	(26) 3p 5-3d 2°
039. 039. 034.	746	A A	7 6 1.5	46. 46. 46.	94 95 94	51.00 51.01 51.01	2 1 2 - 3 1 2 - 2 2 2 - 2	3	p' 2p°_3d (3)	l, AL	5343 5341 5330	. 284 . 096 . 779	B B	(12) (30) (12)	18.3	30 2	30.61 30.61 30.62	1-0 1-1 1-3	(9)	-4d 1° -4d 2° -4d 5°	5719	1.628 9.2254		(10) (10)	18.56	20.62 20.71	2-3	3p 5-4d 8° (38)-4d 10°
3154.		A	4	47.	46	51.38	 1}-2] 3	p' ² P°-3d	լս a _D	4827	.338	В	(10)	18.3	30 2	30.86	1-1	3p 1	-6s 2°	5005	.160	В	(10)	18.56	21.02	2-3	3p 5-5d 10° (29)
3142. 3156.:		A B	3 0		45 46	51.38 51.38	1 1 1	2	p ¹ ² po _{-3d} (4)		4704	.395	E B B	(10) (12) (15) (10)	18.3 18.3	30 2 30 2	30.92 30.93	1-0 1-1 1-3 1-3	(11)	-5d 1° -5d 2° -5d 5° -5d 9°	9226 9201 9148	.76	D D D	200 600 600 400	18.61 18.61 18.61 18.61	19.96	1-2 1-1 1-2 1-3	3p 7-3d 5° (30)-3d 6° -3d 7° -3d 9°
. IV	56	e TU	troduct	ton							4537	. 751	В	(10)	18.		31.03	- 1-0		-3a 9°		.828	. в	(10)	18.61		1-2	3p 7-4d 9°
· VI	86	e In	troduct	ion							8376	.6068 .41 .3258	D	800 800	18.4	18	19.95 19.95 1 9.9 6	3-4 3-3 3-3	(12)	-3d 3° -3d 4° -3d 8°		.218	B .	(10)	18.61			(31) 3p 7-6d 11° (32)

Laborat I A Re	tory ef Int	E P Low High	J	Multiplet (No)	Labo I A	rator; Ref		E P Low High	J	Multiplet (No)	Labo I A	oratory Ref Int	E P Low High	J	Multiplet (No)
Ne I conti	nued				Ne II o	ntinu	ьe				Ne II c	ontinued			
9313.98	D 300	18.62 19.94 18.62 19.95	2-1 2-3	3p 8-3d 2° (33)-3d 4°	3208.99 3188.74	A A	3	30.75 34.60 30.79 34.66	31-31 31-31	3p ⁴ D°-3d ² F (14)	3336.12	A 2			3p' 3po_3d' 2p (46)
9221.59	D 600 D 300 D 400	18.62 19.95 18.62 19.96 18.63 19.96	2-2 2-2 2-3	-3d 5° -3d 7° -3d 8°	3154.82 3244.15 3214.38	A A A	1 5 5	30.75 34.66 30.79 34.60 30.83 34.66	2] -3]	•	3141.35 3050.57	A 3			3p ¹ 3pe_3d 1 3p (47) 3p ¹ 3pe_3d 1 3g
8654.51 1 8654.3835 1	D 400 B 1500	18.62 20.05 18.62 20.05	2-2 2-3	-3d 9° -3d 10°	3243.34	A	2	30.79 34.60	3 } -3}	3p4D0-3d3D	*3072.68	à 1			(48)
5145.011	E (10)	18.62 20.05 18.62 21.02	2-3 2-3	-3d 11°	3248.15 3269.86 3263.43	A A A	3dr 3 3	30.83 34.62 30.83 34.60 30.84 34.62	1 2-2	•	3480.75 3479.53	A 2 A 1		-1 -1 2	sp4(1s)3s2s_ sp4(1s)3p2pe
5144.9376 I	B (10) B (10)	18.62 21.02 18.62 20.57	2-3 2-1	(34)-5d 10° 3p 8-5s 4°	3118.02 3169.30	A A	4 0	30.75 34.71 30.79 34.69	31-21 21-1	3p ⁴ D°-3d ⁴ P (16)	3542.28	A 2	34.24 37.72		(49)
9425.38	D 500	18.63 19.94	 0-1	(35) 3p 6-3d 2°	3151.16 3194.61 3176.16	A A A	2 4 3	30.79 34.71 30.83 34.69 30.83 34.71	34-34 14-1		3537.99 3539.94	A 3			. 3p ⁱ 3pe_3di 3p : (50)
9326.52	D 600	18.63 19.95	0-1	(36)-3d 6°	3209.38	A	3	30.84 34.69	-1-1-1	3p ⁴ D°-4s ⁴ P	3406.88 3457.16		34.24 37.86 dr* 34.24 37.81	3 1 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	3p' 2pe_34' 2p (51)
	B 500	18.63 20.05		3p 6-3d 12° (37)	3039.65 3035.98 3030.85	A A A	3 3 2	30.75 34.81 30.79 34.86 30.83 34.90	2}-1	(17)	3459.38 3404.77	A 2 A 4	OA.DA OL.OT		•
9534.17	D 300 D 500 D 300	18.65 19.94 18.65 19.94 18.65 19.95	1-0 1-1 1-3	3p 9-3d 1° (38)-3d 2° -3d 5°	3071.08 3059.16 3044.16	A A A	3 3 2	30.79 34.81 30.83 34.86 30.84 34.90			4219.76	A 6		 3] -3]	3d ⁴ D-4f ⁴ D° (52)
	B 1000	18.65 20.05 18.65 20.05	1-2		*3072.68	Â	1d	30.84 34.86			4231.60 4239.95 4242.20	A 4 A 2 A 1		13-13	(58)
59 65 . 474 1	B (10)	18.65 20.71	1-3	3p 9-4d 11° (39)	3554.39	A	1	30.99 34.46			4217.15 4220.92 4224.57	A 3 A 2 A 1	34.47 37.39	3 - 2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	• •
10562.43	F 200	18.88 20.05	0-1	3p 10-3d 12°	3367.20 3388.46 3330.78	A A A	6 6 2	30.99 34.65 31.05 34.69 30.99 34.69	23-31 13-2 23-2	3p ² D°-3d ⁴ F (19)	4250.68 4257.82	A 4 A 3	34.48 37.39	13-25	
For changes	in Pasci	nen's notation	see te	_	3417.71	A	5	30.99 34.60			4206.43 4080.48	A 3	d 34.48 37.51	3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	3d ⁴ D-4f ⁴ F° (53)
					3414.82 3356.35	A	3	31.05 34.66 30.99 34.66	13-25 25-25	3p ² D°-3d ² F (20)	4150.67 4098.77 4062.90	A 3 A 4 A 3	34.46 37.47	3-11 3-31 3-21	
<u>Ne II</u> I P	40.91	Anal A List		ne 1944	3416.87 3453.10 3477.69	A A A	4 3 3	30.99 34.60 31.05 34.62 31.05 34.60	23-23 13-13 13-24	3p ² D°-3d ² D (21)	4133.65 4118.10	A 3		1ۇ-1ۇ	3d ⁴ D-41 ⁴ G°
	A 10 A 7 A 5	27.05 30.39 27.12 30.42 27.15 30.44	3-3-3-1 1-1-1	3s ⁴ P-3p ⁴ P° (1)	3314.60	A	1	30.99 34.71 31.05 34.71			4100.30 4086.69	A 10 A 1	d 34.47 37.48	31-21 31-21	(54)
3664.09 A	A 9	27.05 30.42 27.12 30.44	13-3		3371.87 3255.39	A	3	30.99 34.78			4413.54	A 3	34.59 37.38	 4}-3}	3d ⁴ F-4f ⁴ D [•] (55)
	8 A 8	27.12 30.39 27.15 30.42	1 3-2 3 2-1 2		3353.63 3310.55	A A	3 1	31.05 34.73 31.05 34.78		3p ³ D°-3d ³ P (23)	4514.80 4535.47 4517.79	A 3	34.65 37.39 34.68 37.40 34.65 37.38	31-21 11- 31-31	(55)
3355.05	-	27.05 30.75 27.12 30.79	33-33 13-33	3s ⁴ P-3p ⁴ D° (2)	3094.08 3088.23	A	4 3	30.99 34.98 31.05 35.05	31-11 11-1	3p ³ p ^e -4s ³ p (34)	4553.16 4565.49	A 4 A 1	34.68 37.39 34.68 37.39	13-13 13-33	
3297.74 A 3327.16 A	A 7	27.15 30.83 27.05 30.79 27.12 30.83	21-21 11-11		3143.74	A -		31.05 34.98	-		4397.94 4379.50	A 6 A 6	34.59 37.39 34.65 37.47	41-41 32-31	3d ⁴ F-4f ⁴ F° (56)
3344.43 A 3270.79 A 3311.30 A		27.15 30.84 27.05 30.83 27.12 30.84	<u>}</u>		3551.52 3612.35	A	1 3	31.21 34.68 31.21 34.62	출-1호 1호	3p ² S ^o -3d ⁴ F (25) 3p ² S ^o -3d ² D	4385.00 4430.90 4446.46	A 2 A 4 A 3	34.69 37.51 34.68 37.47 34.69 37.47	23-23 13-13 23-13	
3135.82 A	1	27.05 30.99	31-31	3s ⁴ P-3p ³ D°	3546.22	A	1	31.21 34.69		(36)	4502.53 4443.67	A B	34.65 37.39 34.69 37.47	3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
3187.60 A	a 6	37.13 30.99 37.13 31.23			3456.68 3503.61	A A	4 dr* 5	31.21 34.78 31.21 34.73	1-1-1 3-1-1	3p ² 8°-3d ⁴ P (27) 3p ² 8°-3d ² P (28)	4369.77 4290.40	A 5	34.68 37.51 34.59 37.46	1}-2} 4}-5}	3d4F_4 f4g •
302 8.84 A	4		-	3s ⁴ P-3p ⁴ S°† (4)	3275.20	A	2	31.81 34.98	}-1}	3p ² 8°-4s ² P (29)	4391.94 4409.30 •4413.20	A 7 A 4	34.65 37.46 34.69 37.49 34.68 37.48	3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
3727.08 A		27.66 30.99 27.74 31.05	1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3s ² P-3p ² D° (5)	3806.30	, A	ä	31.23 34.47	_ 1글-3글	3p ⁴ 8°-3d ⁴ D	*4428.54 4365.72	Å 6	34.69 37.48	13-23 23-23 33-23	
3643.89 A		27.66 31.05 27.66 31.21		3s ² P-3p ² S*	3790.96 3561.23	A A	1	31.23 34.48 31.23 34.69			4534.66	A 3	34.66 37.39	- 2] -2]	3d ² F-4f ⁴ D°
3557.84 A		27.74 31.21 27.66 31.38			3571.26 3590.47	Ā	4 2	31.23 34.68 31.23 34.66		3p ⁴ S°-3d ⁴ F (31) 3p ⁴ S°-3d ² F	4341.48	A 3	34.66 37.51		(58) 3d ² F-4f ⁴ F* (59)
3378.28 A 3309.78 A 3392.78 A	. 5	27.74 31.39 27.66 31.39	15- 5	3s ³ P-3p ³ P° (7)	3659.93	A	3	31.23 34.60	1글-2글	3p45°-3d2D	4384.08	A 1	34.66 37.48	s } _s }	3d ² F-4f ⁴ G ⁰ (60)
		27.74 31.38	- 2 -1 2 		3632.75 3542.90	A	2 7	31.23 34.62 31.23 34.71	1출-1출 1출-2출	(33) 3p4g°-3d4p (34)	4468.91 •4428.54	A 5	34.62 37.39 34.60 37.39	11-21	3d ³ D-4f ⁴ D° (61)
3034.48 A 3047.57 A 3054.69 A	6	30.39 34.46 30.42 34.47 30.44 34.48	23-33 13-23 2-13	3p ⁴ P°-3d ⁴ D (8)	3565.84 3594.18	A	4	31.23 34.69 31.23 34.66	75- E		4456.95 4416.77 4439.95	A 3 A 3	34.62 37.39 34.60 37.39 34.62 37.40	15-15 25-15 15-5	
3027.04 A 3037.73 A 3045.58 A	4	30.39 34.47 30.42 34.48 30.44 34.50	3 - 2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		3475.25 3522.72	A	1	31.23 34.78 31.23 34.73	11-11	3p ⁴ s ^e -3d ² P (35)	4344.17	A 0	34.60 37.51		3d ² D_4 f⁴F • (62)
3017.34 A		30.39 34.48	a}_1.} −		3442.12 3397.90	A	1	31.23 34.81 31.23 34.86			4339.78 4322.66	A 1	34.62 37.47 34.62 37.48		3d ² D-4f ⁴ G*
3568.53 A 3574.64 A	. 5	30.42 33.88 30.42 33.87	2-3-3-3-1 1-3-2-1	38, 3D-3D, 3L.	3721.86	A -	2	31.38 34.69	-	3p ² P°-3d ⁴ F	•4615.98	A 4	34.71 37.38	_	(63)
3574.23 A		30.42 33.87				A	5			(37)	4574.49 4612.89 4562.05	A 1	34.69 37.39 34.71 37.39	13-35 25-35	3d ⁴ P-4f ⁴ D° (64)
3319.75 A •3345.88 A		30.42 34.14 30.42 34.11	11-12 12-12	3s' 3D-3p' 3pe (10)	3829.77 3818.44	A A	7 6	31.38 34.60 31.39 34.62	1 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3p ² p•_3d ² p (38) 3p ² p•_3d ² p (39)	4498.94 4600.11	A 1 A 5 A 1	34.69 37.39 34.66 37.40 34.71 37.39	19-19 29-19	
3230.16 A 3232.38 A	3			3s' ² D-3p' ² D°		A	5 4				4544.11 4471.58	A 1	34.69 37.40 34.71 37.47	12- 2	3d ⁴ P-4f ⁴ F*
3231.97 A			_		3744.66 3628.06		4	31.39 34.69	\$-15 11 41	3p ² p•_3d ⁴ p (40) 3p ² p•_3d ² p	4377.95	A 2 A 4	34.69 37.51 34.71 37.51	35-35	3d ⁴ P-4f ⁴ F* (65)
3329.20 A 3357.90 A	. 3	30.75 34.46 30.79 34.47	31-31 31-31	3p ⁴ D°-3d ⁴ D (12)	3697.09 3679.80	A A	3	31.38 34.78 31.39 34.73 31.38 34.73		3p ³ P•-3d ³ P (41)	4475.22	Ā 1	34.69 37.47 34.71 37.47	14-14 22-12	4-
3374.10 A 3379.39 A 3320.29 A		30.83 34.48 30.84 34.50 30.75 34.47	14-14 32-24		3644.86 3428.76	A	4 5	31.39 34.78 31.38 34.98	13-13	3p ² P°-4s ² P	4421.38	A 3	34.69 37.48	_	3d ⁴ P-4f ⁴ G* (66)
*3345.88 A 3362.89 A 3367.05 P	1 3	30.79 34.48 30.83 34.50 30.79 34.46	21-1- 11- 21-3-		3377.23 3443.70	Ä	3	31.39 35.05 31.39 34.98	1	(43)	4732.53 4634.73	A 1	34.78 37.39 34.73 37.39	11-21	3d ² P-4f ⁴ D ⁰ (67)
3386.24 A 3390.56 A	. 2	30.83 34.47 30.84 34.48	14-24 14-24 2-12		3229.50	A	3	33.88 37.70	- 3}-4}	3p1 3y-3d1 3 (43)	4719.37 *4615.98 G 4700.1	A 1½ A 4	34.78 37.39 34.73 37.40 34.78 37.40		
3218.21 A 3198.62 A	. 8 . 5	30.75 34.59 30.79 34.65		3p ⁴ D ⁶ -3d ⁴ F (13)	3224.82 3097.15	Ā		33.87 37.70 33.88 37.86				A 4 A 3	34.78 37.51 34.73 37.47	13-23	3d ³ P _4f⁴P* (68)
3190.86 A 3213.70 A 3164.46 A	. 3	30.84 34.68	4-1+	 /	3092.91	_	a	33.87 37.86	ă∳_â∳ _	3p1 3p0_3d1 3 (44)		A 3	34.78 37.47	12-12	
3165.70 A 3198.88 P	4	30.83 34.68	35-35 25-25 15-15		3411.38 3440.80	A	1 1	34.11 37.72 34.14 37.72	址址	3p' 3p°-3d' 3	4569.01 P 4511.37	A 5	34.78 37.48 34.78 37.51		3d ³ P_4 f⁴G* (69) 3d ³ P_4 f ³ D*
3132.22 A 3173.58 A		30.75 34.69 30.79 34.68	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3413.13 3438. 97	Ä	3	34.11 37.73 34.14 37.73	1	,,	4511.29	à ž	34.73 37.46	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(70)

							R	E V I	S E	D M	ULTI	PLE	T T	ABLE							13
Labo I A		ry Int	E Low		J	Multiplet (No)	IA	Labor		y Int	E Low	P High	J	Multiplet (No)	Labor I A		y Int	Low	P High	J	Multiplet (No)
e II co	ntin	neq		-			Na II					=		•	Mg I cont			-	_		
795.62 869.8	A A	0	34.81 34.86	3 7.39	23-23 13-13	4s ⁴ P-4f ⁴ D° (71)	3711. 3135.		A A	6 5	32.87 32.87		0-1 0-1	3s 3°-3p 1 (3) -3p 4	3986.7533	A	(1)	4.33	7.43	1-2	3 ¹ P°_ 9 ¹ D
922.3 7 9 1.95 849.4	A A A	1	34.90 34.81 34.86	3 7.39	21-11		4087.	e0			33.18	76 20	- 1 -1	3s 4°-3p 1	3938.400 3904.02	A E	(0)		7.46	1-2	3 ¹ po ₋₁₀ 1 _D (18) 3 ¹ po ₋₁₁ 1 _D
580.35	A	3	34.81	37.51	12- 2 33-23	48 ⁴ P-41 ⁴ F°	3462. 3400.	494	A A	3 2	33.18 33.18	36.74	1-3	(4) -3p 3 -3p 4	3878.58	В	(2r) (1)		7.49 7.51	1-2 1-2	(19) 3 ¹ P°-13 ¹ D
730.24 847.34	A		34.86 34.81		15-15 25-15	(72)	3285. 3212.	186	A	8 6 6	33.18 33.18	37.02	1-3 1-1 1-3	-3p 5 -3p 7	3859.24	В	(1)	4.33	7.52	1-2	3 ¹ P°-13 ¹ D
710.0 <u>4</u> 327.85	A A		34.86 34.81	37.48 37.48	11-21 21-21	4s ⁴ P-4f ⁴ G° (73)	3189. 3149.		A	5	33.18 33.18		1-1	-3p 8 -3p 9	7657.60	В	(35)	5.09	6.70	- 1-2	(21) 4 ³ 5–5 ³ p•
		1	37 70		_		3015.	400	A	6	36.74	40.84	2-3	3p 3-3d ³ P° (5)	6318.23 6318.75	B)	(5)	(5.09 5.09	7.04 7.04	1-3	438-63 pe
132.26 131.67 129.60	Ä	1 3	37.70 37.70	40.49 40.49	12-23 12-23	sp ⁴ (18)3p ² P° -sp ⁴ (18)3d ² D (74)	3064.	372	A	4	36.81	40.84	- 1-3	3p 4-3d ³ pe	5785.08	В	(3)	5.09	7.22	1-2	
							3179.	055	A .	5	36.94	40.83	- 2-1	(6) 3n 5-3d ³ P°	8923.8	D	20	5.37	6.75	 0-1	(34) 4 ¹ 8-5 ¹ P*
<u>. I</u> I	P 5.1	12 Anal	A L	ist B		1944	3163.	731	A .	6	36.94	40.84	3-2	(7)		_				-	(25) 3 ¹ D-4 ¹ F*
389.953 <i> </i> / 395.923	Å	(10R)D ₃ (9R)D ₁	0.00	2.10 2.09	1-1	3 ² 8_3 ² Pe (1)	3078.: 3074.:		A	6 6	36.94 36.94		2-2 2-3	3p 5-3d ³ F° (8) 3p 5-3d ¹ F°	12083.79 9256.0	P D	(50) 200N1	5.73 5.73	6.75 7.06	2-3 2-3	(26) 31D_51F*
502.34	В	(8R)	0.00	3.74	-1-1-1	3 ² 5_4 ² pe							-	(9)	8213.02	P	(-)	5.73	7.23	2-3	(27) 31p_61re
502.94	В	(8R)	0.00	3.74	- 5- 5	(6)	3234.		A	4 5	37.02 37.02		1-2	3p 7-3d ³ P° (10) 3p 7-4s ³ P°	7691. 57	P	(-)	5.73	7.33	2–3	(28) 3 ¹ D_7 ¹ F° (29)
103.55 381.21	Ç	10 6	2.10 2.09	3.18 3.18	李章	3 ³ P°_4 ³ S (3)	3007.		A	5	37.02		1-3	(11) 3p 7-3a ¹ D°	7387.70	P	(-)			2-3	3 ¹ D-8 ¹ F° (30)
194.824 183.256	D D	(10R) (8R)	2.10 2.09	3.60	2-12	3 ² P°-3 ² D (4)	3009.	138	A	4	37.02	41.13	1-1	(13) 3p ?-4s ¹ P° (13)	7193.20 7060.43	P P	(-)		7.44 7.48	2-3 2-3	31 <u>b</u> _91 F° (31) 31 <u>b</u> _101 F°
194.791	D	(-)	2.10	3.60	15-15		3274.		Ă.	5	37.05		- 2-1	3p 8-3d ³ P°	6965.42	P			7.50	2-3	(32) 3 ¹ D-11 ¹ F°
160.747 154.225	D D	(8r) (8r)	2.10		李章	(5)	3257. 3053.		A	6 6	37.05 37.05		2-2 2-3	(14) 3p 8-3d ³ D°	6894.92	P		5.73	7.52	2-3	31 _{D-12} 1 _F (34)
388.205 382.633 388.193	D	(10) (8) (-)	3.10 3.09	4.27	13-34 13-14 13-14	3 ² P°-4 ² D (6)							-	(15)	10968.1	P	(30)	5.91		- 2-	4 ³ p°-5 ³ D
988.193 875.3	D P	(3s)Forb	3.10 3.10	4.27 4.27	12-12	3 ² p•_4 ² p•	3327. 3318.		A	4	37.10 37.10		1-0 1-1	(16)	10961.2 9993.7	P D	(10) 3nl	5.91 5.91	7.03 7.14	•	(35) 4 ³ P°_7 ³ S
869.8 153.402	P D	(3s)Forb (6n)		4.27	2-	(7) 3 ² P°-6 ² s	3225. 3104.		A	4	37.10 37.10		1-2 1-0	3p 9-4s ³ P° (17)	9987.0	D	2n		7.14		(36)
148.838	Ď	(5n)	2.09		출- 출	(8)	3066.	536	A	4	37.10	41 - 13	1-1	3p 9-4s ¹ pe (18)	10812.8	D	(30)	5.92	7.06	_	3 ³ D-5 ³ F° _(37)
982.813 978.541	D D	(6r) (5r)	2.10 2.09	4.57 4.57	13-23 2-12	3 ² P°_5 ² D	4123.	069	A	3	38.13	41.13	0-1	3p 10-4s ¹ P° (19)	9415.5 8736.0	D D	10nl		7.23		33D_63F0 (38) 33D_73F0
977.6 973.4	P P	(is)Forb		4.57 4.57	1	3 ² P°_5 ² F° (10)	4114.	95	В	3	38.13	41.13	0-1	3p 10-3d ³ p° (20)	8346.13	P	1n		7.33 7.40		(39) 3 ³ D-8 ³ F°
751.822 747.941	D D	(4n) (3n)	2.10 2.09	4.69 4.69	生主	3 ² pe_7 ² s (11)	For d	hange	s i n	Pascher	n notat	ion sec	text	₿ 37	8098.72	P		5.92	7.44		33D_93F°
568.560	D	(4r)	3.10	4.74	1 } -2}	3 ² P°-6 ² D							 		7930.83	P		5.92	7.48	_	33 _{D-10} 3 _F e (42) 33 _{D-11} 3 _{Fe}
864.811 865.8	D P	(3r) (-)Forb	2.09	4.74	ۇ −1ģ	(12) 3 ² pe_6 ² Fe	We I	I P	7.6	1 Anal	LAI	ist B	July	1944	7811.14 7733.60	P P			7.50 7.52	_	3 ³ D ₋₁ 1 ³ F° (43) 3 ³ D ₋₁ 3 ³ F°
862.0	P	(-)Forb	2.09	4.74	\$	(13)	4571.	0956	A	5	0.00	2.70	0-1	3 ¹ S-3 ³ P° (1)		-				_	(44)
545.218 541.671	B	(4n) (3n)				3 ³ pe_8 ³ S (14)	5183. 5172.			125 80		5.09 5.09	3-1 1-1	3 ³ P°_4 ³ S (2)	3627.63	В	<u>(4)</u>	6.56	9.96	2-3 -	4 ¹ D-3p3d ¹ F° (45)
497.657 494.180	D D	(3n) (3n)	2.10 2.09	4.84 4.84	13-23	3 ³ p•_7 ³ D (15)	5167.	3216	A	40	3.70	5.09	0-1	33pe_33p	4099.77	В	(3)	6.95	9.96	23 -	5 ¹ D-3p3d ¹ F° (46)
433.31 419.94	B B	(4n) (3)	2.10 2.09	4.89 4.89	1 1	3 ² P°_9 ² S (16)	3838.2 3832.2 3829.2	3037	A A	100r* 80r* 40		5.92 5.92 5.93	2-3 1-2 0-1	(3)	3895.662 3891.976	B B	(10) (5)		10.31 10.31	2-3 3 1-2	3p ²
393.45 390.14	B B	-	2.10 2.09				3838.2 3832.2	2943	A	100r* 80r*	2.70 2.70	5.92 5.92	2-2 1-1		3890.241 3898.120	B B B	(5) (3) (4) (3)	7.14 7.14	10.31 10.31	0-1 2-3	• • •
	-				-		3336.6 3332.	17	B B	20 15		6.40 6.40	1-1	3 ³ P°-5 ³ 8 (4)	3893.376				10.31	1-1 -	
745.9 748.7	E	2	3.18 3.18	4.33 4.33	\$_1\$	4 ² 8_5 ² P* (18)	3329.9		B B	10 50	2.70 2.70	6.40 6.69	0-1 2-	33pe_43p	4409.84	В	(1)	7.16	9.96	2-3	6 ¹ D-3p3d ¹ F° (48)
849.6	F	-	3.18	4.60	} -	4 ² 8_6 ² pe (19) 4 ² 5_7 ² pe	3092.9	997	B B	40 80	2.70 2.70 2.70	6.69 6.69	1- 0-	(5)	Fine Struc	ture					
809.4	F.		3.18	4.76	- }-	(30)	1828.	В	В.	(130)	4.33	5.37	- 1 ∩	31pe_41g					-		
879.0 874.4	F	- ,	3.60		-	32D-23Fe	8806.	7678	A	(10)		5.73		3 ¹ P°-3 ¹ D		P 14	.97 A	nal A			ne 1944
961.0	F	-	3.60	4.74	_	32D-43Le (33)	8806.1	7350 7032	A	(a)				(7)	9217.4 9243.4	P P			9.96 9.95	\$-1\$ \$- \$	4 ² S-4 ² P° (1)
466. 0	P	-	3.60	4.91	_	38D-88be	5711.0	0831		(6) (1) (1)	4.33	6.49	1-0	3 ¹ P°-5 ¹ S (8)	3613. 8 0 3615.64	A A	4 3		12.03 12.03	$\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$	4 ² 5-5 ² p° (2)
154.7	F	-		4.95	_	(24) 3 ² D_9 ² F° (25)	5711.0 5528.4		A A	(1) (10)	4.33	6.56	1-2	31pe_41p	10914.2	P		8.83	9.96	-	32D_42pe
943.6 796	F F	-		4.98 5.00	-	3 ² D-10 ² F° (26) 3 ² D-11 ² F°	55 28 55 28	3986	Ā	(a)				(9)	10949.4	P					32D_42Pe (3)
	•	_	J. U			(27)	4730.0			(3)	4.33	6.94	_	3 ¹ P°-6 ¹ S	4481.327 4481.129	A)	100	18.83			3 ² D-4 ² F° (4)
							4702.9 4702.9	9831	A)	40	4.33	6.95	1-2	3 ¹ pe_5 ¹ D (11)	3848.24 3850.40	A	7 6	8.83 8.83	12.03 12.03	$3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	3 ² D-5 ² P° (5)
<u>a II</u> I	P 4			List 1		ne 1944	4380.		A) B	(5)	4.33	7.14	1-3	3 ¹ P°-3p ² 3p	3104.805 3104.713	A A	30	(8.83 (8.83	12.80 12.80	21- 12-22	3 ² D-5 ² F° (6)
533.043 092.729 056.157	A A	10	32.71 32.71 32.71	36.70	2-1 3-3 2-2	3e 1°-3p 1 (1) -3p 2 -3p 3	4354.		В	(1)		7.16	1-0	3 ¹ po ₋₇ ¹ s	8238.4	P				-	
007.443	Ã		32.71		2-1 -	-3p 4	4351.5 4351.5	9056 8941	A)	30	4.33	7.16	1-3	3 ¹ pe_6 ¹ D (14)	8217.8	P					4 ³ P°_5 ³ 8 (7)
631.266 129.368	A A	8	32.80 32.80	36.20 36.74	1-1 1-3	3s 2°-3p 1 (2) -3p 3	4167.2 4167.2	3713 3604	A)	10n	4.33	7.29	1-2		7896.37 7877.13	A	-	9.96 9.95	11.52 11.52	1\$- 2-12	4 ³ P°_4 ³ D (8)
078.315 984.183	A A	6	32.80 32.80	36.81	1-1 1-2	-3p 4 -3p 5	4057.			5n	4.33	7.37	1-3	3 ¹ P°-8 ¹ D	4433.991 4427.995	A A	8 7	9.96 9.95	12.74 12.74	$1\frac{1}{2}$ $\frac{1}{2}$	4 ² P°-6 ² S (9)
					-									(16)							

14							REV	I S	ED M	ULT	IPL	ET 1	ABLE							
Labo I A		ory ! Int	Low	P High	J	Multiplet (No)	Lab I A		tory of Int	Low	P High	J	Multiplet (No)	Lab I A	orato: Ref	ry Int	Low E	P High	J	Multiplet (No)
Mg II co	nti	nneg					Al I co	ntir	med				•	Al II co			20			(20)
4390.585 4384.643	A A	10 8		13.77 13.77		4 ² P°-5 ² D (10)	3931.97 3935.77	E		5.21 5.21		3}-3} 12-12	5 ³ D-3d' ³ D ⁶	6696.39 6699.46	B B	0.5		16.67 16.67	1-3 1-1	5 ³ 8-6 ³ pe (29)
3553.51 3549.61	A	5 4	9.96	13.43 13.43	11-		3087.02	В	5	5.45		_	6 ² p−4₫ ² pe	4000 42	P	·		17.29	1-1	5 ³ 8_7 ³ pe
3538.86	Ā	6	9.96	13.44	11-	4 ² P°-6 ² D						-	(19)	4332.0	В	0.5	14.83	17.67	_	(30) 5 ³ 8-8 ³ P• 2(31)
3535.04 3175.84	A	5 2		13.44 13.84	2 -1		3203.39	В	4	5.60	9.45	3 } _1 }	7 ³ D-4d 1 ³ Pe (30)		В	0.5	14.83		_	53 g_93pe
3172.79	Ā	1	9.95	13.84	- <u>1</u> - 1	(13)	***************************************							3774.3	В		14.83	18.09	_	5 ³ S-10 ³ P• (33)
3168.98 3165.94	A	3 2		13.85 13.85		4 ³ Po_7 ³ D (14)	Al II	P	18.75	nal A	List	A Ju	ly 1944	5388.48 4629.7	B B	1		17.27	0-1	5 ¹ g_7 ¹ pe (34)
9633.0	P		11.52	12.80	_	4 ² D-5 ² F°	3900.680	В	10	7.39	10.55	1-3	3 ¹ P°-3 ¹ D (1)	4840.75	В	3	14.98	17.65	0-1 0-1	51g_81pe (35) 51g_91pe
6346.67	A	5	11.52	13.46	_	4 ² D_6 ² F°	4663.054	В	0	10.55	13.20	3–1	3 ¹ D-4 ¹ Pe	4009.58	В	1		18.06	0-1	(36) 5 ¹ 8-10 ¹ P°
5264.14	A .	5		13.86		42D_72F0 (17)	7042.06	A	10		13.02	_ 1-3	(3) 4 ³ 8_4 ³ pe	3859.33	В	3	14.98	18.18	0-1	5 ¹ S-11 ¹ Pe (38)
4739.59 4436.48	A	5 5		14.12 14.30	_	4 ² n_8 ² F° (18) 4 ² n_9 ² F°	7056.60 7063.64	A			13.02	1-1 1-0	(3)	3753.10	В	1	14.98	18.27	0-1	5 ¹ 8-13 ¹ P* (39)
4343.47	 A	4		14.43		42D-102F°	8640.70	A	. 8	11.77	13.20	 0-1	4 ¹ S-4 ¹ P°	8354.35 8359.57	A A	10 9	15.00 15.00	16.47	3-4 3-3	4 ³ D-5 ³ F° (40)
4109.54	A	3	11.52	14.52	_	(30) 4 ³ D-11 ³ F°	3275.776	В	4		15.54	0-1	4 ¹ 8-5 ¹ pe	8363.52 8359.23	A	8 1	15.00 15.00	16.47 16.47	1-2 3-3	(40)
4013.80	A	3	11.52	14.59	_	4 ^{20_12} 2 F e	10076.29	A		11.80	13.02	_ 3-2	(5) 3 ³ D_4 ³ Pe	8363.30 5853.62	A B	1 5	15.00 15.00		2-2 7 4	43 _{D-6} 3Fe
6545.80	A	5	11.58	13.47	_	4 ² F°-6 ² G	10107.19 10122.50	A	0.5	11.80 11.80	13.02	2-1 1-0	(6)	5861.53 5867.81	B B	4 3	15.00 15.00	17.10	3-4 3-3 1-3	(41)
5401.05	A	5		13.86	_	(23) 4 ² F°-7 ² G	10077.33 10077.53 10108.01	A A A	0.5		13.02	2-3 1-1		5371.84	В	6		17.29		4 ³ D_7 ³ pe
4851.10 4534.26	A	5 4		14.18	-	43ře_63 _G (35) 43ře_93 _G	10108.37	A	0.8				-3- 3	5085.02 5093.65	B B	4 2	15.00 15.00		3-4 3-3	(42) 43 _{D-7} 3 _F o (43)
4331.93	A	3		14.30 14.43	_	(36) 4 ³ F°-10 ³ G	3586.557 3587.068 3587.450	A A A	. 9	11.80	15.24 15.24 15.24	3-4 3-3 1-3	3 ³ D_4 ³ F° (7)	5100.34 4609.7	B B	1	15.00 15.00		1-3	4 ³ D_8 ³ pe
4193.44	A	3	11.58	14.52		4 ² F°-11 ² G	3586.912 3586.936	A A	4 2)	11.80	15.24	3-3		4585.820	В	6	15.00		3-4	(44) 43D_83Fe
4093.90	A	1	11.58	14.59		4 ² F°-12 ² G (29)	3587.309 3587.342 3587.165	A A A	. 3)		15.24	3-2 3-21		4588.194 4589.750 4588.082	B B B	5 4 0.5	15.00 15.00	17.69	3-3 1-3	(45)
			***************************************				*3587.195 3586.708	A	1.5Forb	11.80	15.24	3-4		4589.689	В	1	15.00 15.00	17.69	3–3 3–2	
Ali II	P 5.	96 Ans	al A I	List B	July	1944	3586.811 •3587.195	A		11.80		1-4 1-3		4226.827 *4227.509 4227.999	A A	8 4 3	15.00 15.00	17.92	3-4 2-3	4 ³ D_9 ³ Fe (46)
3961.523// 3944.009	A	10R	0.01	3.13	1 1		3313.344 3314.883	A		11.80	15.52 15.52	3-2 2-1	3 ³ D-5 ³ P° (8)	*4327.509 4327.430	A A A	4 1)	15.00 15.00		1-2 3-3	
3443.651	В	10R 10	0.00	3.13 3.60	2- 2 1-3-3-3		3315.608 3313.470 3314.981	A A	0.5	11.80	15.52 15.52 15.53	1-0 3-3		4227.945 4227.875	A A	0.5	15.00 15.00	17.92	3-2 3-2	
3439.352 3452.670	B B	8 5	0.00	3.59 3.59	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(3)	3314.756 3315.516	Ā	0.5Forb	11.80	15.52	1-1 3-1 3-0		4226.918 4227.545	Å	0.5Forb	15.00 15.00	17.93 17.93	2-4 1-3	
3444.871 3458.230	B	7 8	0.00	3.58 3.58	1		6837.14		8	13.02	14 97	-	43po_53g	3995.860 3996.159	B B	5 4	15.00 15.00	18.09	3-4 2-3	4 ³ D-10 ³ F° (47)
3092.716 3082.159	C	10R 10R	0.00	4.00	4 _1+	3gbe ^{-3gD}	6823.48 6816.69	A A A	5 1		14.83 14.83 14.83	2-1 1-1 0-1	(9)	3996.381 3996.075 3996.323	B B B	3 1 0.5	15.00 15.00 15.00	18.09	1-2 3-3 2-2	
3092.843	C	6R	0.01	4.00	1 1-11 		6243.36 6231.78	Ā	10 9		15.00		4 ³ P°-4 ³ D	3996.182	В	O.5Forb	15.00	18.09	1-3	33
13123.37 13150.68	P P	(400) (200)	3.13 3.13	4.07 4.07	1-12 2-12	4 ² 8_4 ² p° (4)	6226.18	A	8	13.02	15.00 15.00	1-3 0-1	(10)	*3983.7 3842.037	B B	0.5 3	15.00 15.00		3-4	4 ³ D-10 ³ P° (48) 4 ³ D-11 ³ F°
6695.97 6698.63	D D	7 6	3.13 3.13	4.97 4.97	<u>}</u> -1}	4 ² 8-5 ² P° (5)	3738.003 3733.910 3731.950	B B B	3 2	13.02 13.02 13.01	16.32	3-1 1-1 0-1	4 ³ P°-6 ³ S (11)	3842.213 3842.317	B B	3	15.00 15.00	18.21	2-3 1-2	(49)
5557.08	С	1n	3.13	5.35	2-2 2-13	4 ² S-6 ² P° (6)	3654.995	A	1 (8) 5	13.02			4 ³ pe_5 ³ p	3734.567 3734.715	B B	1 0.5	15.00 15.00		3-4 2-3	4 ³ D-12 ³ F° (50)
5557.95	С	1n	3.13	5.35			3651.096 3651.065	A	7 Forb	13.02 13.02	16.40 16.40	1-2 1-37	(12)	3734.805	В	Ō	15.00	18.30	1-2	
3057.155 3059.047	B	10 4	3.60 3.59	7.63 7.62	3-2-2-1 1-1-1-1	3p ² 4p_4s ¹ 4po (7)	13649.232	A	1.5Forb 1 Forb	13.01	16.40	0-31 0-21		3656.319 3597.50	B B	0.5 a	15.00 15.00		3-4 3-4	4 ³ D-13 ³ Fe (51) 4 ³ D-14 ³ Fe
3066.158 3064.302 3050.073	B B B	5 5 9	3.60 3.59 3.59	7.62 7.62 7.63	24-14 14- 4 14-24		3026.781	P)		13.02			4 ³ P°-7 ³ S (13)	3552.00	В	1	15.00		3-	(52) 4 ³ D-153 F •
3054.694	В	6	3.58	7.62			3024.098 3024.114 3022.804	P) P		13.03		1-1 0-1		3516.05	В	0.5	15.00	18.51	3-	(53) 43D_163Fe _(54)_
11255.69 11253.81	P)	(300)	(4.00	5.10 5.10	21- 11-	3 ² D_4 ² F° (8)	2998.158 2998.163	P P)	2	13.02		-	4 ³ p°_6 ³ D	3463.63	В.	0	15.00	18.56	3	4 ³ D-18 ³ F° (55)
8773.91	D	30	4.00	5.41	3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 - 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		2995.530 2995.546	P)		13.02		1	(14)	9331.546 9331.979	A A	3 2)	15.24	16.56	3-	4 ¹ F°-5 ¹ G (56)
8772.88 7836.15	D D	15 10	4.00	5.41 5.58	_	(9) 3 ² D_6 ² F°	2994.259	P	1	13.01	17.14	0 1		6201.52	A	10,	15.24	17.23	3-	4 ¹ F°-6 ¹ G
7835.33	D	9	4.00	5.58	3}- 12-3}	(10)	6919. 9 6	В	0.5	13.20	14.98		4 ¹ p°_5 ¹ s	6201.70 5158.187	A B	9 ⁾ 1đ	15.24	17.63	3	(57) 4 ¹ F°_7 ¹ G
7362.31 7361.59	D D	10 6	4.00 4.00	5.68 5.68	3출- 1출-3출	3 ² D_7 ² F ⁶ (11)	5593.23	В	10	13.20			4 ¹ po_5 ¹ D (16)	4650.544	В	2	15.24		4-	(58) 41F0_81G
10891.21	P		4.07	5.20	- 1麦- 호	4 ² P°-6 ² S (12)	3866.160 3703.217	B B	3 4	13.20		_	4 ¹ p°_6 ¹ g (17) 4 ¹ p°_6 ¹ D	4650.646 4356.711	B B	1.5			3-	(59) 4 ¹ F°-9 ¹ G
10872.47	P P		4.07	5.20 5.21		(13) 4 ³ P°-5 ³ D	3135.875	В	3	13.20			(18) 41pe_71g	4356.807	В	1.5				(60)
10768.39 10786.78	P P		4.07	5.21	13-03 3-13 12-12	(13)	3088.523	В	3	13.20	17.19	1-3	(19) 4 ¹ Pe_7 ¹ D (20)	4168.424 4168.511	B B	0.5)	15.24	18.30	3-4	4 ¹ F°-10 ¹ G (61)
8923.56 8912.88	D D	2 1	4.07 4.07	5.45 5.45		4 ³ P°-6 ³ D (14)	7471.41	A	9	13.59	15.24	- 2-3	4 ¹ D-4 ¹ F°	4039.397 4039.302	B B	0 0.5)	15.34	18.30	3-4	4 ¹ F°-11 ¹ G (62)
8841.26	D	3	4.07	5.47	11-21	4 ³ Po-7 ³ 8	6335.74	A	10	13.59	15.54	3-1	(21) 41 _{D-5} 1 _P o (22)	3946.406	В	0.54	15.24	8.37	3-	4 ¹ F°-13 ¹ G
8828.91 8075.37	D D	1	4.07	5.47 5.60	2 −12	(15) 4 ³ p•_7 ³ D	4237.57	P	_	13.59			4 ¹ D-5 ¹ F° (23)	9290.649	A -	6,	15.24	6.56	4-	(63) 4 ³ F°-5 ³ G
8065.99	Ď	3	4.07	5.60	12-22 2-12	(16)	4026.5 3428.916	B B	5 6	13.59 13.59			41 <u>0</u> _61 po (34) 41 D_61 F°	9290.747 9288.145	A A	5) 3\	15.24		3	(64)
3479.78 3482.58	B B	6	4.81	8.35	3 } -3 }	4 ² D-3d' ² D° (17)	3351.456	В	3	13.59			4-D_6-F0 (25) 4 ¹ D_7 ¹ P0	9288.550 9286.578 9286.794	A A A	a) 2)	15.34 1	6.56	a	•
3479.27	В	51 1	4.81	8.35 8.35	14-14 14-24	(17)	3094 GGE	-	_	50			(26)			-				2 2

	oratory Ref		E	P High	J	Multiplet (No)	Labor I A	atory Ref		E Low	P High	J	Multiplet (No)	I A	aborat Re	o ry f Int	E Low	P High	J	Multiplet (No)
IA II c	ontinue		DOW	птеп		(110)	Al II con			2.04			()	Al III						(==,
83.42	A	10n	15.24		-	4 ³ F°-6 ³ G	5324.61	В	4	15.54	17.86	1-0		5163.90	0 A	. 7	23.45	25.84		5 ² 0-7 ² H°
82.28 82.45	A	7)	15.24		3	(66)	5285.85	В	6	15.54	17.87	1-2	(101) 51pe_91p (102)	3658.3	A	. (1n)	23.45	26.82		5 ² G-9 ² H• (30)
81.57 81.68	A A	5 6)	15.24	17.43	2-		4918.98	В	3	15.54	18.05	1-0	51P°-101s (103)				REVI	SED-		
77.68 76.81	B B		15.24 15.24		4- 3-	4 ³ F°-7 ³ D (67)	4898.76	В	5	15.54		13	5 ¹ P°-10 ¹ D (104)				s 3 , :	Secti		2, 1967
76.42	В	2	15.24		2_	4 ³ F°-7 ³ G	4666.8	В	11	15.54		1-0	51P°-111S (105) 51P°-111D	<u>81 I</u> 2970.3	IP8			4.93	Aug :	1944 3p ^{2 1} D-48 ³ pe
45.654 44.998	В		15.24 15.24		4- 3-	(68)	4655.05 4489.87	B B		15.54 15.54		1-3	(106) 51P°-13¹D	2987.6			0.78		3-1	(1)
44.875 44.413			15.24	17.63	2-		4400.01	-				-	(107)	4102.9	2 6 <i>A</i>	25	1.90	4.91	0-1	
40.362 40.384			15.24		4-	4 ³ F°-8 ³ G (69)	9124.27	A _	0.5	16.33	17.67	1-3 -	6 ³ 5-8 ³ P° (108)	3905.5	27 /	100	1.90	5.06	0-1	3p ² (3) 15-4s ¹ pe
39.725 39.833	B B	1.5	15.84	17.90	3-		6001.18	В	1	16.39	18.45	0-1	6 ¹ S-15 ¹ P° (109)	12031.4	.9 <i>l</i>	25	4.93	5.96	- 2–3	(3) 4s ³ p ^o -4p ³ p
39.384 39.326		0.5	15.24	17.90	2-		8119.72	A -	1.5	16.40	17.92	- -4	7 7	11984.2	10	20	4.91 4.90	5.94	1-2 0-1	(4)
47.785 47.802		4 3.5)	15.24	18.07	4-	4 ³ F°-9 ³ G (70)	8122.08 8121.89	A A	0.5)	16.40	17.92	-3	(110)	12370.5	60 A	A 2 A 5	4.93 4.91	5.93	2-2	
47.223 47.316	В	1.5)	15.84	18.07	3-	, ,	8123.52	A	0	16.40		-3	c33-no	12395.9		P 400	4.93		3-1 3-2	48 ³ P°-4p ³ P
46.918 46.866	В	1.0 0.5)	15.24	18.07	2-		6775.97	В -	0.5	16.40	18.22	- -	5 ³ D-11 ³ P° (111)	10827.0 10749.4 10979.2	ю ,	A 100 A 60 A 35	4.91 4.93		1-1 3-1	(5)
60.263 60.239		3 2.5)	15.34	18.20	4_	4 ³ F°-10 ³ G (71)	8680.31 8674.92	A A	3 2\	16.47 16.47		4- 3-	5 ³ F°-8 ³ G (112)	10786.8	36	A 50 A 60	4.91 4.91	6.05	1-0 1-2	
59.725 59.809	В	1.5		18.20	3–	(1-7	8675.28 8671.06	A A	1,	16.47		2-	•	10660.9	8 4	A 50	4.90		0-1	. 3-0 . 3-
59.450 59.407	В	1 0.5)	15.24	18.20	2-		8671.28	A .	1 /				5 ³ F°-9 ³ G	10585.1 10371.2 10288.8	33 .	A 100 A 50 A 25	4.93 4.91 4.90	6.10	2-1 1-1 0-1	48 ³ P°-4p ³ S (6)
31.633		0.54	15.24	18.30	4- 3-	4 ³ F°-11 ³ G (72)	7709.78 7138.81	A B	0 0.5	16.47 16.47		4- 4-	(113) 53F°-103G	9768.2		n. 25 A. 5w		6.20	3-3	4s3pe_4p1p
31.210 31.135 30.867	В			18.30 18.30	3-	(10)	7134.66 7131.29	B B	0.5	16.47	18.20 18.20	3-	(114)	9585.7		A 4	4.91	6.20	1-2	(7)
39.066	-			18.37	4	4 ³ F°-13 ³ 0		-				-	-11	8435.2		P		6.37	1-0	48 ³ P°-4p ¹ S (8) 48 ³ P°-5p ³ D
38.621	В			18.37	3-	(73)	8858.39 8858.77	A A	0. ₅)	16.50	17.90	3–	5 ¹ F°-8 ¹ G (115)	5797.9 5793.1 5780.4	128	A 40 A 30 A 25	4.93 4.91 4.90	7.04	2-3 1-2 0-1	48°P°-5p°D (9)
70.057	'В _	0.5	15.24	18.43	4	4 ³ F°-13 ³ G (74)	8086.91	Α -	0.5	16.53	18.06	- 2-3	6 ¹ D-9 ¹ F°	5859.2		P 25	4.93		2-2	
17.93	A	1	15.41	17.19	2-3	5 ¹ D-6 ¹ F° (75)	8080.31	^ -				-	(116)	5708 · 4		A 75 A 40	4.91		2-2 1-1	4s ³ P°-5p ³ P (10)
09.64	A	0.5	15.41	17.27	3-1	(75) 51D-71po (76)	9249.41	A	1		17.90		5 ¹ G-8 ¹ H° (117) 5 ¹ G-9 ¹ H°	5754.2 5701.1	L38 .	A 8w	4.91	7.07	2-1 1-0	
13.19	В	3		17.60	2–3	5 ¹ D_7 ¹ F° (77)	8160.15	Α .	3		18.08	_	51G-91H° (118) 51G-101H°	5645.6 5665.6		A 25 A 25	4.91 4.90		1-2 0-1	
02.88	B B	3 3		17.65 17.87	2-1 2-3	51D_81po (78) 51D_81po	7526.2	A	0.2	16.56	18.20	_	(119)	5684.5 5622.2		A 50 A 3		7.10 7.10	2-1 1-1	4s ³ P°-5p ³ S (11)
00.97 62.10	В	3		17.89	2-1	(79) 51 _{D-9} 1 _P •	Fine Struc	cture						00000					-	
53.0	В	-		18.06	2-3	(80) 51D-91F°								11890.4		P	5.06	-		4s ¹ po_4p ³ s
48.62	В	1	15.41	18.06	2-1	5 ¹ D-10 ¹ P°	A3 TTT :	I P 28	0 77	Anal A	List	Δ 1	July 1944	10869.5 9413.5		A 125 A 200	5.06		1-2	4s1po_4p1p (13) 4s1po_4p1s
47.8	В	3	15.41	18.18	2-1	5 ¹ D-11 ¹ P° (83)	Al III :		(20)				3 ² D-4 ² P°	6067.6		A 200	5.06			(14) 481P°-5p3P
32.82	В	0.5	15.41	18.19	2-3	5 ¹ D-10 ¹ F°	3612.352 3601.916	A A	(15)	14.31 14.31	17.73 17.74	14-1	(1)	5948.		A 100	5.06	7.14		(15) 4s ¹ P°-5p ¹ D
07.20	В	3		18.27	2-1	5 ¹ D-12 ¹ P° (85) 5 ¹ D-11 ¹ F°		-						5772.2	258	A 50	5.06	7.20	1-0	(16) 4s ¹ po-5p ¹ S
82.97	В	0.5 a		18.29	2-3 2-1	51D-111F (86) 51D-131po	56 9 6.47 5722.65	A A	8· 6	15.57	17.74 17.73	2-13 2-13	4 ² 5-4 ² P° (2)	8417.8	89	 P	5.59	7.06	- 3-3	(17) 3d ³ D°-5p ³ D
02.4 1 056.8	В			18.45	2-1 2-1	(87) 5 ¹ D-15 ¹ P°	4529.176	Α .	(10)	17.74	20.47	- 1] -2	4 ² P°-4 ² D (3)	8527.3 8397.9	32 96	P P	5.59 5.59	7.04	2-2 2-3	(18)
005.7	В	0		18.49	2-1	(88) 5 ¹ D-16 ¹ P°	4512.535 4528.911	A A	(10) (8) 1	17.73	20.47 20.47	12-1	(3)	8514.6		P	5.59		1-2	
			45.50	47.40	-	(89) 5 ³ P°-7 ³ S	3713.103	A	(15)	17.74	21.07	1 -	4 ² P°-5 ² S (4)	8230.6 8306.8	в0	A 15 A 4w		7.08	3-2 2-1 1-0	3d ³ D°-5p ³ P (19)
823.72 815.83 812.31	A A A	2 1 0.5	15.52	17.10 17.10 17.10	2-1 1-1 0-1	(90)	3702.086	Α.	(10)			_		8317.4 8211.4		A 2w	5.59 5.59		2-2	
835.33	A	2		17.14	2-	5 ³ P°-6 ³ D	4149.897 4150.138	A A	(10) (8)	20.47 20.47	23.44	21-3	4 ² D-5 ² F° (5)	8150.	57	P	5.59	7.10	1-1	(20)
627.85 624.48	A A	1 0.5	15.52	17.14 17.14	1- 0-1	(91)	4149.917	Α .	1	20.47	23.44	_8 } _8}	}	7995.0		P	5.59		2-2	3d ³ D°-5p ¹ D (21) 3d ³ D°-4f ¹ F
73.23	A	10		17.55	2-1	5 ³ P°-8 ³ S	4701.65	A	6	20.69	23.32		4 ² F°-5 ² D	7416.0	1	A 250 A 500	5.59	7.26	2-3 3-4	(22) 3d ³ D°-4f ³ F
068.46 066.32 066.44	A A A	(8) 33)	15.52	17.55 17.55	1-1 0-1	(92)	4490.90	A a	nn Fort	20.69	23.44	-	42re_52re	7409.: 7405.	11	A 500 A 100 A 300	5.59 5.59	7.26	2-3 1-2	(23)
006.42	A	10	15.58	17.57	2-	5 ³ P°-7 ³ D	4479.968 4479.891	A A	4 3	20.69 20.69	23.45 23.45	$3\frac{1}{2}$	(7) 4 ² F°-5 ² G (8)	7424.0 7415.	63	A 20 A 15	5.59	7.26	3-3	
001.81 999.70	A A	(身) 3)		17.57 17.57	1- 0-1	(93)								7289.		A 250	5.59		3-4	
999.83	A	2 ⁾ 7	45 50	47 04	3-1	5 ³ p•_9 ³ s	4364.59 4357.24	A P	2n	22.03 22.03	24.86	1 2 -1	5 ² P°-6 ² D (9)	7275.: 7290.:		A 50 A 10	5.59 5.59		2-3 3-3	(24)
816.07 812.32 810.76	B B B	5 2	15.52	17.84 17.84 17.84	1-1 0-1	(94)	3287.37 3283.11	A A	1 0.5	22.03	25.79 25.79	$\frac{1}{2}$	5 ² P°-7 ² D (10)	7250.0 7193.		A 40 A 8	5.59 5.59		3-3 2-2	3d ³ D°-4f ³ D (25)
883.77	В	8		17.86	3-	5 ³ P°-8 ³ D	0.000111	•						7184.8 7208.2	89 2 0	A 10 A 1	5.59 5.59	7.31	1-1 3-2	,,
380.21 378.62	B B	6 3		17.86 17.86	1- 0-1	(95)	4903.71	A	4		25.83	_	5 ² D-7 ² F° (11) 5 ² D-8 ² F°	7193.8 7235.8	86	A 5 A 10	5.59 5.59	7.30	2-1	
902.77	В	5		18.04	3-1	5 ³ P°-10 ³ S	3980.56	A	2n	23.32	26.42	- -	52D-82F* (12)	7184.		A 1 A 15	5.59		1-2 2-2	3d ³ D°-4f ¹ D
899.64 898.52	B B	3 2		18.04 18.04	1-1 0-1	(96)	5260.91	A	On	23.44	25.79	_	5 ² F°-7 ² D	7226.7		A 20	5.59		1-2	(26)
635.7 633.2	B B		15.52	18.18	2- 1-	5 ³ P°-10 ³ D (97)	5150.86	A	6n		25.84	_	5 ² F•_7 ² G (14)	62 44. 62 37.		A 10n A 5n			2-2 1-2	3d ³ D°-5f ¹ D (27)
631.5	В -			18.18	0 -1		4188.88	A	0.5		26.39	_	5 ² Fe_6 ² D (15) , 5 ² Fe_8 ² G	6254.2	25 86	A 25n			3-4 2-3	3d ³ D°-5f ³ F (28)
449.42	A	5	15.54	17.19	1-2	5 ¹ P°-7 ¹ D (98)	4142.15 4141.25	A A	2n On Fort		26.42	_	(16) 52F°-82H°	6243.6 6237.3 6254.9	34	A 10n A 5n A 2n	1 5.59	7.57	1-2 3-3	(20)
061.11	A	6	15.54	17.57	1-0	51p•_81s (99)	******	^				_	(17)	6244.		P		7.57	2-2	
971.94	A	7	15.54	17.60	1-2	5 ¹ po_8 ¹ D (100)	5172.6	A	1	23.45	25.83		5 ² G-7 ² F° (18)							

16							REV	ΙS	ED M	ULT:	IPLE	T	TABLE	See	NSR	DS-N	BS 3,	Sec	tior	1, 196
Labo I A	rator Ref		E Low	P High	J	Multiplet (No)	Labo I A	rato Rei	ory [Int	E Low	P High	J	Multiplet (No)		rato		E Low			Multiplet (No)
<u>81 I</u> cor	tinue	đ					<u>Si I</u> cor	ntinu	neq				_	<u>81 II</u>	P 1	6.27	Anal B	List		g 1944
6155.22 6145.08 6155.73	A A A	30n 10n 2n	5.59 5.59	7.60	3-4 2-3 3-3	· (29)	9689.41 9789.24 9913.16 9839.58	A A A	8w 2n 1w 2w	6.07 6.06 6.07 6.06	7.32 7.32 7.31	2-2 1-1 2-1 1-0	(65)	3856.021 3862.592 3853.657	A A A	8 6 3	6.83	10.03 10.02 10.03	21-11 11-11 11-11	3p ^{2 2} D-4 ² P
6143.53 6131.54 6124.85 6131.86 6125.03	A A A A	5n 4n 2n 5n 4 n	5.59 5.59 5.59 5.59 5.59	7.60 7.60 7.60 7.60 7.60	3-3 2-3 1-1 2-3 1-2	3d ³ D°-5f ³ D (30)	*9570.08 9758.08 9318.24 9238.60	A A A	4 2n 4 2n	6.06 6.05 6.07 6.07	7.35 7.32 7.40 7.41	1-3 0-1 2-3 2-1	4p ³ P-5d ³ P•	6347.091 6371.359	A A	10 8		10.03	1-11 1-11 1-1	4 ² S-4 ² P° (2)
6143.31 6131.30	P P		5.59	7.60 7.60	3-2 2-1		*9103.37 9208.55 *9103.37	A A A	3w 5w 3w	6.06 6.06 6.05	7.41 7.40	1-0 1-2 0-1		4130.884 4128.053	A A	10 8	9.80 9.79	12.78 12.78	1 } -2 } -	
10844.02	A	25w	5.84		1-2	4p ¹ P-4d ¹ D° (31) 4p ¹ P-4d ³ P°	80 70.64 8086. 1 8	P P		6.07 6.06	7.60 7.58	2 - 3 1-2		5978.970 5957.612	A A	7 5	10.03 10.02		11-1	4 ² P°-5 ² S (4)
10627.81 8179.43	A P	20 w		7.00 7.35	1-2	(32) 4p1p-6s3pe	7912.55	A	3w	6.07	7.63	2–2	(68)	5056.020 5041.063	A A	10 8	10.03 10.02	12.47 12.47		4 ² P°-4 ² D
8338.43 8093.32	A A	5w 25w	5.84	7.32 7.36	1-1	(33) 4p ¹ P-6s ¹ P°	7898.38 7105.34	P P		6.07 6.06	7.63	2-2	(69)	5056.353	A	2	10.03	12.47	1출-1출	
7913.47	A	10w		7.40	1-2	(34) 4p1p-5d3p0	7089.03	P		6.05	7.79	1-1 0-1	(70)	3339.84 3333.16	A A	2	10.03	13.73 13.73	13- 3	(6)
7680.35	A	100w	5.84	7.44	1-2	(35) 4p ¹ p _{-5d} 1 _D • (36)	9891.90	A	5 w	6.10	7.35	1-2		3210.04 3203.89	A A	3	10.03 10.02	13.87 13.87	$\frac{1^{\frac{1}{2}}}{2^{-1}}$	4 ² P°-5 ² D (7)
6848.65	A	4w		7.64	1-1	4p1p_7s1pe (37)	9505.28 9421.82	A A	5 4	6.10 6.10	7.40 7.41	1-2 1-1	(71) 4p ³ S-5d ³ P° (72)	5868.404	A	3	?	?	- 2] -2]	3p4s ⁴ P°-3p4
6722.67	Α .	2w	5.84	7.67	1-3	4p1p_6d1p° (38)	9393.40 8046.78	A P	2w	6.10 6.10	7.41	1-0	2 2	5846.12 582 7.8 0	A A	0	? ? ?	?	15-15	(8)
11018.00	A	70		6.97		3d ¹ D°-5p ¹ P (39)	8046.78	P		6.10	7.64	1-2	(73) 4p3s-7s1pe	5915.266 5867.497 5800.48	A A A	1 1 1	? ? ?	? ? ?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
10153.13	P A	1		7.06	2-3 2-1	3d ¹ D°-5p ³ D (40) 3d ¹ D°-5p ³ P	7392.18 7455.47	P P		6.10	7.77	1-2	(74) 4p ³ g-8s ³ p°	5806.75	A	2	? ?	?	₹-1₹	2n4 c 4ne c
•9570.08	A	4		7.14	2-2	(41) 3d ¹ D°-5p ¹ D	7455.47	,		6.10	7.75	1 -1 -	(75)	5639.492 5576.61 5540.74	A A A	2 1 0	? ? ?	? ? ?	25-15 15-15 5-15	3p4s ⁴ p° _3p4p (9)
8752.17	Å	200	5.85	7.26	2-3	3d ¹ D°-4f ¹ F	11468.54 11202.02	A A	1w 1w	6.18	7.26 7.26	4-4 2-2	3d ³ F°-4f ³ F (76)							
8742.60 87 51.18	A P	100		7.26 7.26	2-3 2-2	3d ¹ D°-4f ³ F (44)	11308.45 11290.01 11187.74	A A A	2w 10w 20w	6.16 6.16 6.15	7.26 7.26 7.26	3-2 3-4 2-3		Strongest	Unc:	lassifi 3	e a Lines	or <u>81</u>	11	
8556.64	A	100w		7.29	2-3	3d ¹ D°-4f ³ G	11130.37	A	7w	6.18	7.29	4-5	3d ³ F°-4f ³ G	6660.49 5785.64	A	2 1				
8502.38 8444.00 8444.48	A A A	30w 15w 3w	5.85	7.30 7.31 7.31	2-3 2-2 2-1	(45) 3d ¹ D ⁰ -4f ³ D (46)	10982.28 10885.16 10984.24 10893.72	A A A P	7w 10w 3w	6.16 6.15 6.16	7.29 7.29 7.29	3-4 2-3 3-3	(77) 3d ³ F°-4f ¹ D	5706.375 5701.375 5688.856	A A	1 2				
8501.50	A	30 w		7.30	2-2	3d ¹ D°-4f ¹ D (47)	10796.52	Ā	On .	6.16 6.15	7.30 7.30	3-2 2-2	(78)	5669.590 5496.24 5468.92	A A A	4 1 2				
7165.62 •7164.75	A	100w	5.85	7.57 7.57	2-2	3d1p°_5f1p (48) 3d1p°_5f3F	*8898.97 *8790.88	A A	3₩ 4₩	6.16	7.57	4-4 3-3	3d ³ F °- 5f ³ F (79)	5456.11	A	2				
7165.09	P)	2₩	(5.85	7.57	2-2	(49)	8729.02 8899.50 8791.28	A A A	5w 3w 5w	6.15 6.18 6.16	7.57 7.57 7.57	2-2 4-3 3-2		5438.41 5294.97 5202.51	A A A	1 1 3				
7034.96 7017.98	A A	50w 4w		7.60 7.60	2-3 2-3	3d ¹ D°-5f ³ G (50) 3d ¹ D°-5f ³ D	•8790.88 8728.38	A A	4w 10w	6.16 6.15	7.57 7.57	3-4 2-3		5192.75 5185.09	A A	1				
7017.68 7016.90 6527.20	A P P	1Ôw	5.85 5.85	7.60 7.60 7.74	2-2 2-1	(51) 3d ¹ D°-6f ³ F	8596.02 8536.38 8597.00	P A A	3 w 2nl	6.16 6.15 6.16	7.60 7.60 7.60	3-4 2-3 3-3	3d ³ F°-5f ³ G (80)	5181.77 4921.69 4906.88 4859.28	A A A	1 1 1n 1				
10727.21	_	75-			-	(52) 4p ³ D-4d ³ F°	7850.5 7800.0	A A	2N 4N	6.16 6.15	7.74 7.74	3-2 2-2	3d ³ F°-6f ³ F (81)	4656.80	A	ī				
10694.14 10689.52	A A A	75w 50w 20w	5.96 5.94 5.93	7.11 7.09 7.08	3-4 2-3 1-2	(53)	11607.42	A	Ow	6.20	7.26	- 2 -1	4p ¹ D-4d ¹ P°	4198.174 4190.738 4076.78	A A A	2 3 1				
10882.66 10784.33	A A	5₩ 5₩		7.09 7.08	3-3 2-2		11485.68	A	2w	6.20	7.27	2-3	(82) 4p ¹ D-4d ¹ F°	4075.45 3998.00	A A	2 1n				
8892.97 8949.33	A A	25w 15w		7.35 7.32	3-2 2-1	4p ³ D-6s ³ P° (54)	10582.66	A	1	6.20	7.36	2-1	(83) 4p1 p -6s1 p • (84)	3991.77 3199.54	A A	2n 1				
8925.55 8766.68	A A	8w 3w	5.93 5.94	7.31 7.35	1-0 2-2		9886.92	A	2w	6.20	7.44	2-2	4p ¹ D-5d ¹ D° (85)	3193.10 3188.95	A A	1				
8 883.84 8 667.40	A P	4₩	5.93 5.94	7.32	1-1 2-1	4p3D-6s1pe	*889 8. 97	A P	3₩	6.20	7.58 7.63	2-3 2-2	4p ¹ D-5d ¹ F° (86) 4p ¹ D-6d ³ P°	C			REVIS			3015
8606.43	Ā	1W	5.93	7.36	1-1	(55)	8550.34	P		6.20	7.64	2-1	(87) 4p1D-7s1po	See NSI			3, S			., 1965 ug 1944
8579.15 7943.94	A A	2w 500w	5.96	7.40 7.51	3 -2 3 -4	4p ³ D-5d ³ P° (56) 4p ³ D-5d ³ F°	7431.17	P		6.20	7.86	2-3	(88) 4p1p_7d1F° (89)	3086.225 3093.423	A A	7 6	17.63 2 17.63 2		3-2 3-1	3 ³ D-4 ³ P° (1)
7932.20 7918.38 8035.39 7970.26	A A A	300w 200w 7w 10w	5.94 5.93 5.96 5.94	7.49 7.49 7.49	2-3 1-2 3-3 2-2	(57)	11611.49 •11591.98 11640.58 11502.94	A A A	5w 4w 2w	6.23 6.24 6.25	7.30 7.31 7.31	2-3 1-2 0-1	3d ³ P°-4f ³ D (90)	3096.786 3086.429 3093.613 3086.620	A A A A	3 3 1	17.63 17.63 17.64 17.64	31.62 31.63 31.62	1-0 2-2 1-1 1-2	\1/
7373.02 7285.94	A P	10w	5.96 5.94	7.63 7.63	3-2 2-2	4p ³ D-7s ³ P° (58)	*11591.98	A A	3w 4w	6.23 6.24	7.31 7.31	2-2 1-1		4552.654	A	9	18.92	31.63	1-2	4 ³ 5-4 ³ P°
7255.28	P		5.94	7.64	2-1	4n3n-7s1pe	*9009.04 9064.06 *9009.04	A A	5nl Owl 5nl	6.23 6.24	7.60 7.60	2-3 1-2	3d ³ P°-5f ³ D (91)	4567.872 4574.777	A A	7 4	18.92 2 18.92 2	31.62	1-1 1-0	(3)
7005.84 7003.58 6976.53 7084.33	A A A	50w 50w 25w 2w	5.96 5.94 5.93 5.96	7.70	3-4 2-3 1-2 3-3	(59) 4p ³ D-6d ³ F° (60)	10015.33	A A	1	6.23	7.60	2 - 2 - 0 - 1	4p ¹ S-7s ³ P° (92)	4338.52	A .	1	18.94	31.79	0-1	3p ² 1 _{S-4} 1 _P
6813.85 6730.38	P P			7.77 7.76	3-3 1-1	4p ³ D-7d ³ D°	04	,,	1		- A	_	,/	5739.762	A	8	19.64	31.79	0-1	4 ¹ S-4 ¹ P° (4)
6842.35 6729.80	P P		5.96	7.76 7.76 7.76	1-1 3-2 1-2	(61)	Strongest 9770.10	Unc:	lassified 4w	Lines	or <u>81</u>	Ŧ		3806.56 3796.11	A A	5 4	21.63 2		2- 1-	4 ³ P°-4 ³ D (5)
6527.49 6555.20	A A	3n 2n	5.96	7.85 7.82	3-4	4p ³ D-7d ³ F°	9738.60 9254.59	A A	6 w 4n					3791.41	A	3	21.62 2	4.88	0-1	_
6560.68	Ä - P	2n	5.93		1-2	(62) 4p ³ P-4d ¹ Pe	8648.89 8503.17 7743.2 7742.7	A A A	100nl 5 4n					3241.67 3234.00 3230.55	A A A	6 5 3	21.63 2 21.62 2 21.62 2	35.44	2-1 1-1 0-1	4 ³ p°_5 ³ S (6)
10067.84	A	4w	6.07	7.30	2-3	(63) 4p ³ P-5d ³ D°	6721.97 6415.24	A A A	5n 4w 4w					3590.46	A	8	21.79	35.22	1-2	4 ¹ P°-4 ¹ D
10025.80 9967.46 10155.88 10001.35	P A A P	1	6.07	7.29 7.29 7.29 7.29	1-2 0-1 2-3 1-1	(64)								3185.16	A .	3	21.79 2		1-0	(7) 4 ¹ p°-5 ¹ s (8)

I A	orato Ref	ry Int		P High	J	Multiplet (No)	Lab I A	orator Ref			P High	J	Multiplet (No)	Lat I A	orato Ref	ry Int		P High	J	Multiplet (No)
S1 III	conti	nueđ					P II co	ntinue	đ					P II co	ntinu	leđ				
4828.923 4819.740 4813.290) A	4n 3n 2n	25.86	28.42 28.42 28.42		4 ³ F°-5 ³ G (9)	3308.86	A	6₩		13.32		3s3p ³ ¹ p°-4p ¹ 1		A	71	13.08	16.31	a_a	3d ¹ D°-11 (36)
3040.93 3037.26 3034.74	A A A	1 1 1	25.86	29.92 29.92 29.92	4- 3- 2-	4 ³ F°-6 ³ G (10)	6043.10 6024.15 6034.01 6165.56	B B B	(5) (3) (1) (1)	10.71 10.69	12.76 12.74 12.76	1-2	• • •	5727.69	A	21	13.09	15.29 15.24	1-2 1-1	(27)
3126.25	Ā	0	26.68	30.62		3p3q ³ P°-3p4p ³	6087.76 P 5425.93	B A	(1) 7w	10.71	12.74 13.03	1-1	4s ³ P°-4p ³ P	4554.81 4628.71 4678.95	A A	4 11	13.09 13.09 13.09	15.75	1-2 1-1 1-0	4p ³ S-4d ³ p° (28)
3147.38 3258.67	A A	0 		30.60	2-1 	(11) 3p3d ³ p°-3p4p ³	5386.87 5499.72 5409.66	A A A	?₩ ? ?₩	10.76 10.71	13.00 13.00 12.99	1-1 2-1 1-0	(6)	4558.04	A	61	13.09	15.79	1-1	4p ³ S-4d ³ D° (29)
3276.25 3279.25 3253.44	A A A	0 00	26.83 26.82	30.60 30.59 30.62	2-1 1-0	(12)	5344.73 5296.09	A A A	7₩ 7₩ 8₩	10.69	13.03 13.00 13.09		48 ³ P°-4p ³ S	4244.55 4109.19 4044.49 4019.45	A A A	3 5 7w 4	13.25 13.25	16.16 16.25 16.31 16.32	3- 3-2	-11
4683.018 4665.87	A A		27.99 27.95	30.62	 2-2	3p4s ³ p•-3p4p ³	5191.41 5152.20 • 74720.26	A A	6 4	10.71 10.69	13.09 13.09	1-1 0-1	(7)	4450.45	A	61	13.38	16.15	3-3 1-	-15 3d ¹ P°-3
4683.774 4638.12		3	27.95 27.94	30.59	1-0 0-1	(10,)	4612.84 4581.77	A A A	3 3 3n	10.71 10.71 10.69	13.38 13.38	1-3 1-1 0-1	48 ³ P°-4p ¹ D† (8) 48 ³ P°-4p ¹ P (9)	4423.9 4160.56	A	3 d 3	13.38	16.17 16.34	1-1 1-2	(31) -6 -18
Unclassi	fied 1	Lines of	S1 III	_			5253.49						• •	6460.1	C	3	13.38	15.29	1-2	
4716.658 3924.44 3486.93	A A	5 4 6					4499.18	A A	8\\ 71	10.97		1-8	4s ¹ p°-4p ¹ D (10) 4s ¹ p°-4p ¹ S (11)	4288.53 3372.70	A A	4		16.26 17.04	1-1	(32) 4p1p_4d1pe (33) 4p1p_6s1pe (34)
3482.70 3210.52 3196.50 3186.01	A A A	On 3 3 2					*3551.16 3470.83 *3404.34 3377.52	A A A	3n 4 5 4n	12.69 12.69 12.69 12.69	16.25	1- 1-2	3s3p ³ 1pe_5 (12) -8 -13 -16	•4530.78 3	\$ A A	8W 71	13.62	16.31 16.34		1°-11 35)-16
ee NS	SRDS	-NBS	EVISE 3. S	D ecti	ion	1, 1965	4943.42	Ā.	71	12.80	15.29	- 3 -2	4p ³ D-5s ³ P°	4792.06	A A A	51 4n 8 W	13.64	16.21 16.31 16.32	-2 (2°- 7 36) -11 -15
<u>81 IV</u> 4088.863	I P 44	1.95 A 10	nal A	List	A Au	g 1944 4 ² S-4 ² P° (1)	4969.65 4954.33 4864.38 4927.17	A A A		13.76 13.74 13.76 13.74	15.23 15.29	2-1 1-0 2-2 1-1	(13)	4565.22 3710.46	A	61	13.64	16.34	_	-16
4116.104 3165.72							4823.84 4739.49	Ã A	0 31	12.74 12.76	15.29 15.36	1-2	4p ³ D-5s ¹ P°		A 	3n	13.72	17.04	0-1	4p ¹ S-6s ¹ P° (37)
3149.56	A	(7) ———	26.95	30.86	13-43 2-12	4 ² P°-4 ² D (2)	4700.80 4601.97	A A	41 8 W11	12.74		1-1 3-4	(14)	P III	I P 30	0.03	D	••-•		
3762.41 3773.13	A A	(5) (4)	30.86 30.86	34.14 34.13	$3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	4 ² D-5 ² P° (3)	4658.12 4626.61	A A A	8\ 61	(13.76 12.74 12.80 13.76	15.45 15.43 15.45	2-3 1-2 3-3	(15)	4059.27 4080.04	A A	6		17.47 17.45		3 ² D-4 ² P° (1)
4328.22 4314.18	B B	(4) (3)	34.14 34.13	37.00 37.00	- 13- 3 2- 2	5 ² P°-6 ² S (4)	4224.43 4072.13 4036.23	A A	2 3	12.80 13.76	15.72 15.79	3-3 3-3 3-3	4p ³ D-4d ³ D° (16)	4057.39	A A				-	
4818.44	. A	(4)	35.99	38.92		5 ² D-6 ² F° (5)	4036.23 4127.49 4064.64 4166.73	A A A	2n 5 13 3 13 2n	12.74 12.80 12.76 12.76	15.79 15.79	1-1 3-2 2-1 2-3		4246.68 3233.62	A A					4 ² S_4 ² Pe (3)
4631.38	A	(5)	36.26	38.92	_	5 ² F°-6 ² G (6)	4117.09 4120.78 4130.77	A A A	4 2 n	12.80 12.76	15.80 15.75	3-2 2-1	4p ³ D-4d ³ P° (17)	3219.32	A				-	4 ² P°-4 ² D (4)
4654.14	A	(6)	36.27	38.93	_	5 ² 0-6 ² H° (7)	4062.08 4091.53	A A A	2 n 3 ld1	13.74 13.76 13.74 13.74	15.80 15.75	1-0 2-3 1-1 1-2		3277.82 3283.22 5203.86	A A	3 2 5			-	3 ² D-3p ³ 2pe (2)
<u> </u>	P 1,0.9	Ana)	lC L		-		3664.20 3570.34	A A	6w 3d	12.79 12.79	16.25	2-2	3d ³ P°-4 (18) -9	3280.22	A	3n	21.29		-1 2	4 ² D-5 ² P• (5) 4 ² D-5 ² F• (6)
0581.52 0529.45 0511.45	A A	8 5 3	6.98	8.12 8.10	$2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$	4s ⁴ P-4p ⁴ D° (1)	3507.37 *3478.74	A	3	12.79 12.79	16.34	2 <u>-</u> 2-1	_	*4587.91 \$	A	8W	22.05	24.74		4 ² F°-5 ² D
0813.03 0681.43 0596.92	A A A	0 1 1	6.96 6.92 6.91	8.10 8.08 8.07	23-23 13-13 13-13	4s ⁴ P-4p ⁴ D° (1)	3775.03 3676.27 3490.45	A A A	3 6w 5	12.81 12.81 12.81	16.17		3d ³ P°-2 (19) -5 -18	3978.28 3957.64	A .	8W	22.05		_	(7) 4 ² F°-5 ² G (8)
796.79 734.74 608.97	A A A	50 20 3	6.96 6.92	8.21 8.19	23-23 13-13	4s ⁴ P-4p ⁴ P° (2)	3706.06 3536.30	A A	7₩ 3	12.83			3d ³ D°-4 (20) -14	3933.38 3922.72 3997.17	A A A	6 4 4 5	? ? ?		23-23 13-13 23-13	3p4s ⁴ P°-3p4p ⁴ P (9)
976.65 750.73 563.45	A A A	5 25 12	6.96 6.92 6.92	8.19 8.19 8.21	23-13 13-3 13-23	4s ⁴ P-4p ⁴ P° (2)	3559.93 3556.49 3551.16	A A A	3 6 3n	12.85 12.85 12.85	16.32	2-2 2-2	3d ³ D°-12 (21) -13 -14	3951.51 3895.03 3904.79	A A A	5 6 6	? ? ?	? ? ?	13-23 13-23 2-12	
593.54 525.78 304.88	A A	35 30 3	6.91 6.96 6.92	8.19 8.25 8.25	\$-1\frac{1}{2} 2\frac{1}{2}-1\frac{1}{2} 1\frac{1}{2}-1\frac{1}{2}	4s ⁴ P-4p ⁴ S°	3533.67 3530.25 3527.11 *3404.34	A A A	2 5 3 5	12.85 12.85 12.85 12.85	16.34 16.34 16.34	2-1 2-2 2-1	-16 -17	3802.08 3744.22 3717.63§§	A A A	6 5 5	? ? ?	? ? ?	2 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3p4s ⁴ P°-3p4p ⁴ S (10)
084.22 903.74	A A A	0 25 8	7.18 7.14	8.25 8.41 8.39	2-1 2 1 2 -1 <u>3</u>	45 ² P-4p ² P°	*3728.6755 3723.63 3631.41	A A	4đ 3	12.85 : 12.85 :	16.16 16.17	3-2 3-2	3d ³ D°-4 (22) -5							
204.72 790.08	A	3	7.18 7.14	8.39 8.41	13- 12 2-12	4s ² P-4p ² P° (4)	3566.43 3562.48	A A A		12.85 1 12.85 1	16.31	3-21 3- 3-2	-12 -13	P IV I 3347.72 3364.44	P 51.: A A	15 Ans 6 6	28.01 28.01	31.70	Aug 1-2 1-1	1944 4 ³ 5_4 ³ po (1)
<u>II</u> I	P 19.	57 Ana	al B I	List B	Aug	1944	5450.66 5507.15 5583.33	A A A	51	13.03 1 13.00 1 13.03 1	5.24	2-3 1-1 3-1	4p ³ P-5s ³ P° (23)	3371.10	A -	5	28.01	31.67	1-0	
715.86 768.71 795.10	A A A	4 4 3	9.48 1 9.48 1	12.80 12.76	2-3 3 1-2	s3p ³ 3pe_4p ³ D		A A A	4 31	13.00 1 13.00 1 13.99 1	5.23 5.29	1-0 1-3 0-1		4249.57	A -	6 4d	36.20			4 ¹ S_4 ¹ P° (2) 4 ³ D-5 ³ P°
761.82 793.61 786.70	A A A	3 3 2	9.48 1 9.48 1 9.48 1 9.48 1	2.76 2.74	0-1 2-2 1-1 2-1	•	4589.79 4425.95 4401.97	A A A	8₩ 2	13.03 1 13.00 1	5.72 5.79	2-3 1-2	7 7	3717.635 3717.00	Â	5 5	36.20 36.20	39.52		(3)
472.88 503.00 518.61	A A A	5 5 4nd?	9.48 1 9.48 1 9.48 1	13.03		3p3 3pe_4p3p (2)	4475 00	A A A	71 3	12.99 1 13.03 1 13.00 1 13.03 1	.5.79 .5.79	0-1 3-2 1-1 3-1		<u>P V</u> I P	64.74	4 Anal	LA L:	Lst A	Aug 19	 944
478.74 419.25	A A	3 6	9.48 1	13.03	1-2 2-1 3	s3p ³		A A A	3 2	13.03 1 13.00 1 13.03 1	.5.75 .5.75	1-1 2-1	4p3P-4d3P°	3175.16 3204.06	A A	5	33.70 ; 33.70 ;	37.58	_	4 ² S-4 ² P° (1)
424.88 426.20	A A	6 4 	9.48 1 9.48 1		1-1 0-1		4530.78 4414.29 4467.98	A A A	71 6	13.00 1 13.00 1 12.99 1	5.72 5.80	1-0								
												•								

	orator; Ref		E :		J	Multiplet (No)	Labor	ratory Ref		E P Low High	J	Multiplet (No)	Labor	atory Ref I	int	Low E	P High	J	Multiplet (No)
IA SI I				ist B	Sept	1944		P 23.3			Sept	1944	<u>S II</u> cont						
9212.91 9228.11	B B	(10) (10)		7.84 7.83	2-3 2-2	4 ⁵ 5°-4 ⁵ P	5027.19 5142.33	D D	3 1	13.04 15.49 13.09 15.49	1	3s3p ⁴	7509.03	В	0		15.88		3d ² F-4p ⁴ D° (24)
9237.49	В	(10)	6.50	7.83	2_1 2_3	4 ⁵ 8°-5 ⁵ P	4131.0	A	00	13.04 16.03		1 2-2-4 20 m4m	0738.88	D D D	0 1 1	14.17	16.07 16.03 16.07	31-21 21-11 21-21	3d ³ F _{-4p} ⁴ P ⁶ (25)
4694.13 4695.45 4696.25	A A A	10 8 6	6.50	9.12 9.12 9.12	2-3 2-1	(3)	3906.95	A	1	13.04 16.20	1] -2	(3) 363p4 3p.4p3p6	6287.06	D	.10	14.23	16.30	3 2-22	3d ² F-4p ² D•
10455.47	В -	(8)	6.83	8.01	- 1 <u></u> 2	4 ³ 5°-4 ³ P	3595.991 3672.14 3613.03	A A A	4 2 0	13.04 16.45 13.09 16.45 13.04 16.45	1	363p ⁴ ^{3F} 4p ³ p (4) (4) (4)	6312.68 6102.26	D D	10 4	14.17	16.13 16.20		3d ² F-4p ² D • (26)
10459.46 10456.79	B B	(8) (8) (4)	6.83	8.01 8.01	1-1 1-0	(3)	3654.51	Ā _	1	13.09 16.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ł	6161.84 6314. 39	D D	1		16.18 16.19		3d ² F-4p ⁴ g• (27) 3d ² F-Y•
5278.99 5278.70	A A	3 1	6.83 6.83	9.17 9.17	1-3 1-1	4 ³ 8°-5 ³ P (4)	6386.48	D	3		12-	4s ⁴ P-4p ² S°	6128.21	Ď	0	14.17	16.19	31- 21-	(28)
5278.10	A	3	6.83	9.17	1-0 1-	4 ³ s°-6 ³ p	5453.81 5432.77 5438.64	000	15 12 9	13.61 15.80 13.56 15.80 13.53 15.80	24-3-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1	4s ⁴ P _{-4p} ⁴ D° (6)	3993.526 3931.938 4007.78	A A A	4 3 0	14.23 14.17 14.23	17.32 17.31 17.31	34-34 34-34 34-34	3d ² F-4p' 2 Fe (29)
4411.34	Α.				-	(5)	5564.94 5509.67	C	8 15	13.61 15.83 13.56 15.80	3 3 3 - 2 1 2 - 1	1	3918.19	A .	00	14.17	17.38	2 1 -3 1	n.3n (-1 3ne
8694.70 8680.47 8671.37	A A A	10 8 1	7.84 7.83 7.83	9.25	3-4 3-3 1-2	4 ⁵ P-4 ⁵ D° (6)	5473.59 5645.62 5556.01	C D C	15 4 5	13.53 15.76 13.61 15.86 13.56 15.76) 2 } _1⋅		3932.30 3853.09 3859.26	A A A	2 2 0	14.17 14.17	17.38 17.37	35-15 25-25	3d ² F-4p' 2pe (30)
8693.98 8679.70	A A	3	7.84 7.83	9.25 9.26	3-3 2-2		5032.41	C	2	13.61 16.0°	, 3] -3	4s ⁴ P-4p ⁴ P°	7821.47	В —				-	
8670.65 8693.24 8679.00	A A A	2 1 1	7.83 7.84 7.83	9.26 9.26	1-1 3-2 3-1		4991.94 4942.47 5103.30	O C	(1) 1	13.53 16.03 13.61 16.03	3 2 1 - 1]	8086.67 8273.46	B B	0	14.01	10.00	22	3d ⁴ P-4p ⁴ D° (31)
8670.19 7696.73	A .	1 10	7.83 7.84		1-0 3-2	4 ⁵ P-6 ⁵ 5°	5009.54 4924.08 4925.32	0 0	1 9 10	13.56 16.00 13.56 16.00 13.53 16.00	' 1 } -2		8051.91 8258.27 8377.79	B B B	0 2 1	14.30	15.83 15.80 15.78	34-34 14-14	
7686.13 7679.60	A A A	8 5	7.83	9.44	3-3 1-3	7 (7)	4779.11	A	2	13.61 16.2	-	_	8221.63 8361.95	B B	0	14.30	15.80 15.78	23-13 12- 2	
6757.16 6748.79	A A	10 8	7.84 7.83		3 3	4 ⁵ P-5 ⁵ D⁰ (8)	4804.12 4681.32 4742.4	A A A	00 00 00	13.61 16.1 13.56 16.2 13.53 16.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 48 ⁴ P-4p ³ P° 2 (8)	4431.03	A -	1	14.59	17.37	- 1] -2]	3d ² P-4p 1 2pe
6743.58	Α .	6	7.83	9.66	1		4815.515	A	10	13.61 16.1	3 2] -1	1 4s4P-4p4S°	3924.05	A E	00 (0)	14.59	17.73	13-13	(32) 3d2P-4p: 3pe
6415.50 6408.13 6403.58	A A A	3 2 1	7.83	9.76 9.76 9.76	3-2 2-2 1-2	4 ⁵ P_7 ⁵ 8° (9)	4716.226 4656.74	A A	8 4	13.56 16.1 13.53 16.1	3] -1	1	3945.06	<u>.</u>					
6052.66	A	10 5	7.84	9.87 9.87	3- 3-	4 ⁵ P-6 ⁵ D° (10)	4193.51	A _	1	13.56 16.4	_	12 48 ⁴ P-4p ³ P° (10)	8520.23 4755.12	B A	1				3d ³ D-4p ⁴ 8° (34) 3d3D-4p1 3pc
6046.04 6041.93	A	3	7.83	9.87	1-		5606.11 5640.32	C	15 10	13.67 15.8 13.64 15.8	3 43-3 3 33-3	3d ⁴ F-4p ⁴ D°	4763.38	A .	1				3d2D_4p1 2pe
5706.11 5700.24 5696.63	A A A	6 4 2		10.00 10.00 10.00	3- 2- 1-	4 ⁵ P_7 ⁵ D° (11)	565 9.9 5 566 4.73 55 26.22	0 0	12 10 6	13.62 15.8 13.60 15.7 13.64 15.8	2-		4668.58 4648.17	A	3	14.73	17.37	12-12	3d ² D-4p ¹ 2pe (36)
5507.01	Ā	4	7.84	10.08	3-	4 ⁵ P-8 ⁵ D°	5578.85 5616.63	C C E	7 5 (0)	13.62 15.8 13.60 15.8 13.62 15.8	3 2 1 -2 0 1 1 -1	1	8422.39 8515.48	B B	0	15.00	16.47	2}-1}	481 2D-4p3po (37)
5501.54 5498.18	A	3		10.08	2- 1-	(15)	5466.55 5536.77	Ď -	1	13.60 15.8	3 1½-2	5 3,	5320.70	С	3				481 20_4p1 2pp0 (38)
9035.92 9036.32	ВВ	\6\ 4\		9.38 9.38	2-3 1-2	4 ³ P_4 ³ D° (13)	8314.73 7967.43	ВВ	10 10	14.01 15.4 13.94 15.4	1	1 4s ³ P-4p ³ S° (12)	5345.67 5212.61	C C	4 3				. (38) .4 <u>a</u> 1 20_4⊚1 201
9038.72 903 9. 27	B B	(3) (3) (3) (2)	8.01 8.01	9.38 9.38	0-1 2-3	(10)	5996.16	D	4	14.01 16.0	7 1 1 -2	1 4s ² P-4p ⁴ P°	5201.00 5201.32	C E	(S)	15.00	17.38	13-13 33-13	(39)
9036.73 8452.14	B A	(2) 5		9.38 9.47	1-1 3-1	4 ³ P-6 ³ S°	5908.25 6097.12 5932.95	D D	2 1 1	13.94 16.0 14.01 16.0 13.94 16.0	3 1] -1	13)	4524.946 •4552.378	A A	6 7	15.00 15.00	17.73 17.71	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	481 3 _{D-40} 1 3p4 (40)
8449.54 8451.55	A	3 1	8.01	9.47 9.47	1-1 0-1	(14)	6123.41 5639.96	D C	1 10	14.01 16.0 14.01 16.3		1 1 4a ³ D_4n ³ De	4524.68	A _		15.00	17.73	-	
*7244.77	A	4	(8.01 8.01	9.71 9.71	2-3 2-2	4 ³ P-5 ³ D°† (15)	5646.98 5819.22	o o	8 10	13.94 16.1 14.01 16.1	3 1-1 3 1-1	4s ² P-4p ² D° (14)	3783.16 3860.15	A A	3	15.49 15.49	18.75 18.69	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4p ² ge_5s ² p (41)
	_		.8.37	9.62	- 3 - 2	3 ³ D°-4p¹ ³ P†	5014.03 4917.15	C	1 7	14.01 16.4 13.94 16.4	7 1 1-1	4s ² P-4p ² P° (15)	3317.70	D	0	15.49	19.21	<u>}-</u> ½	4p ² go_4d ² p (42)
*9949.84 9932.26	B B	(8) (8)	8.37	9.61 9.62	1-0 2-2	(16)	5047.28 4885.63	C A	(o)	14.01 16.4 13.94 16.4	(5 −1	7	4463.582 4483.424	A A	7 6		18.64 18.58	3 3 3 3 1 3	4p ⁴ D°-5s ⁴ P
*9 633.78	В	(5)	8.37	9.66 9.65	3-4 2-3	3 ³ D° - 4p' 3p' (17)	3669.049 3594.462	A A	5 3	14.01 17.3 13.94 17.3	7 1] 2 3 1 1	1 48 ² P-4p' 2D°	4486.66 4391.84	A A	3 3	15.80 15.83	18.55 18.64	11-13 23-23	•
9672.34 9649.94 9680.80	B B B	(10) (12) (10)	8.37	9.65 9.65 9.65	1-2 3-3 3-3		3663.47 3314.50	A A	0	14.01 17.3 14.01 17.7	2 15-1	2 1 48 ² P-4p' 2P° 2 (17)	4400.41	A A A	3 2 00	15.78	18.58 18.55 18.64	15-15 5-35 15-85	•
9697.33	В	(8)	8.37	9.65	3-2	3 ³ D°-4p¹ ³ D†	3272.25 33 29. 3	D A	00	13.94 17.7 14.01 17.7	1 15-	17)		A .	0 10	15.78	18.58	2 −12	;
9413.46 9421.93 *9437.11	B B	(8) (8)	8.37	9.69 9.68 9.68 9.68	3-3 2-2 1-1	(18)	3257.83	D -	<u> </u>	13.94 17.7			*4162.698 4153.098 4145.100	A A A	10 9	15.83 15.80	18.84 18.80 18.78	31-41 21-31 11-21	(44)
+9437.11	Б		8.37	9.68	3-2 		6981.40 7139.79 7256.96	D B B	4 1 1	14.11 15.8 14.10 15.8 14.10 15.8	8 3 3 -3 3 2 3 -2	3d ⁴ D-4p ⁴ D° (18)	4142.291 4217.23 •4189.71	A A A	8 3 6n	15.88	18.76 18.80 18.78	3-13 3-3-3 3-2-25	• ;
11453 11472	В В)	(1) (1n)	8.38	9.46 9.46	4- 3-	3 ⁵ D°-4 ⁵ F (19)	7317.03 7164.63	B D	0 2	14.09 15.7 14.11 15.8	3 3 } _a		4168.409 4255.01	A B	5 0	15.80 15.88	18.76 18.78	15-15 35-25 35-15	,
11464 9693.68	в' в	(10)	8.38	9.46	0- 3-3	3 ⁵ p°-4p' ³ p'	7273.20 7337.61 6957.95	B B D	1 0 1	14.10 15.8 14.10 15.7 14.10 15.8	0 24-1 8 14- 8 24-3	1	4213.5 4028.791	A A	00 7		18.76 18.94		
9739.74 9741.93	B B	(8) (5)	8.38	9.69 9.69	2-2 3-2	(30)	7124.28 7236.91	D B	0	14.10 15.8 14.09 15.8	3 1 } ⊸2	1	3990.94 3963.13	A A	3 2	15.83 15.80	18.92 18.91	3 1 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(45)
8874.53 8884.23		(9) (7) (5) (3)		9.77	4 3	3 ⁵ D°-5 ⁵ F† (21)	6305.51 6397.30	D D	10 8	14.11 16.0 14.10 16.0	7 3] 2 3 2 3 1	3d ⁴ D-4p ⁴ P°	3946.98 4050.11 4003.89	A A A	1 1 1	15.88	18.91 18.92 18.91	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	† † †
8882.47 8880.70		(5) (3)	8.38 8.38		2- 1-		6413.71 6286.35 6384.89	D D D	9 8 8	14.10 16.0 14.10 16.0 14.10 16.0	7 2] _2	1	*3970.69 3950.42 3939.49	A A A	00 00	15.80	18.91 18.92 18.91	13-3 13-3 2-15	
7923.95 7931.70	A	15 10	8.38 8.38	9.94	4 3	3 ⁵ D°-6 ⁵ F† (22)	6398.05 6274.34	D D	8	14.09 16.0 14.10 16.0	3] 7 1 3 -2	1		_				_	
7930.33 7928.84		8 6	8.38 8.38		2- 1-		6369.34 6092.13	D D	4 2	14.09 16.0 14.10 16.1	3 ģ –1 3 2—1—1	2 1 3d ⁴ D−4D ² D°	4792.02 4835.85 4883.73	A A B	00 1	16.03	18.64 18.58 18.55	25-25 15-15	4p ⁴ P°-5s ⁴ P (46)
Stronge	st Unc	lassifie	ed Line	s of <u>S</u>	Ī		5895.89 6080.85	D D	Õ 1	14.10 16.2 14.10 16.1	0 2 3 - 2 3 1 2 - 1	3d ⁴ D-4p ³ D° (20)	4901.30 4900.47	C	1 3	16.07 16.03	18.58 18.55	23-13 13-3	
9958.90 8585.60	A	(8) 10					5951.30 5940.69	D D	3 1	14.10 16.1 14.10 16.1	8 2] -1 8 1] -1	3d ⁴ D-4p ⁴ S° (31)	4729.45 *4819.60	A	0 2n	16.02	18.64 18.58	1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
7629.82 7578.96 4993.51	A	10 10 8					5927.15 3845.21	D A	00	14.09 16.1		2 3d ⁴ D-4p' 2F°	4590.8 4533.3	A A	00 00 00	16.03	18.75 18.75	23-13 13-13	4p ⁴ P°-5s ² P (47)
3867.56		<u>8</u>					3782.6	A	00	14.10 17.3 14.11 17.3		(22) 3 3d*D-4p' ² D°	*4552.378	A	7	16.07	18.75		4p ⁴ P°-4d ⁴ F (48)
								•				(23)	4495.9 4509.0	A	00 00		18.78 18.76	1 3-2 3 2-1 2	(48)

IA		Int	E P Low High	J	Multiplet (No)	Labo I A	ratory Ref	Int	E P Low High	J	Multiplet (No)	IA		Int	E P Low High	J	Multiplet (No)
II 00 394.432 367.802 369.76 318.68 382.63 378.54 333.84	3 A A A A A	6 5 3 4 3 3	16.07 18.94 16.03 18.93 16.03 18.91 16.07 18.93 16.03 18.91 16.03 18.91	3-13 13-13 13-13 23-13		8 III I 3632.022 3709.371 3747.90 3710.42 3750.74	A A A A	6 5 3 0 1	17.67 21.07 17.67 20.99 17.67 20.99 17.67 20.99 17.67 20.96	3-3 1-2 0-1 2-3 1-1	3d ³ pe-4p ³ p (1)	8375.95 8585.96 8575.25 8212.00 8333.29 8428.25 7980.58	A A A A A	150 100 75 100 100 100	8.88 10.36 8.95 10.39 8.99 10.43 8.88 10.39 8.95 10.43 8.99 10.45 8.88 10.43	2 - 3 - 3 - 3 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	4s ⁴ P-4p ⁴ D° (2)
391.45 392.321 792.46 360.64 302.65 350.93	В	1 5 5 3 1 2	16.03 18.91 16.07 19.24 16.02 19.28 16.07 19.26 16.03 19.28 16.03 19.24 16.03 19.26	12- 2 32-32-32-32-32-32-32-32-32-32-32-32-32-3	4p ⁴ P ⁶ -4d ⁴ P (50)	3369.49 3370.38 3387.13 3324.01 3367.18 3234.17 3233.24	A A A B B	1 2 2 3 3 4 3 3 (4) 3 3	17.67 21.33 17.67 21.33 17.67 21.31 17.67 21.38 17.67 21.48 17.67 21.48	1-1	(2) 3d ³ P°-4p ³ s (3)		A A A A	50 75 50 25 75 60	8.95 10.45 8.88 10.45 8.95 10.49 8.88 10.49 8.95 10.45 8.99 10.49	19-29 2-12	
776.80	A		16.07 19.33	_	(51)	3231.10 4253.593	B	9	18.17 21.07		48 ³ P°-4p ³ D	7414.10 7717.57 7924.62	A A	90 100 100			4s ⁴ P-4p ² P° † (4)
824.07 819.60 700.21	A A		16.20 18.75 16.13 18.69 16.13 18.75	12-12 12-12	(52)	4284.991 4332.71 4361.53 4340.30	A A A	5 4 2 2	18.11 20.99 18.11 20.96 18.17 20.99 18.11 20.96	1-3 0-1 3-3 1-1	(4)	7256.63 7547.06 7744.94	A A		8.88 10.58 8.95 10.58 8.99 10.58		
497.88 415.37 058.7	A D A	00 00	16.20 18.94 16.13 18.92 16.20 19.24	24-34 12-22 24-24	4p ² D ² -4d ² D (53) 4p ² D ² -4d ⁴ P	4418.84 3838.316 3837.80	A A A	00 6 3	18.17 20.96 18.17 21.38 18.11 21.33	2-1 2-2 1-1	48 ³ P°-4p ³ P	4438.48 4403.03 4389.76	A A	20 15 25			48 ⁴ P-5p ⁴ P°† (6)
970.69 933.294	A 4 A	1 9	16.20 19.24 16.13 19.24 16.20 19.33 16.13 19.27 16.20 19.27	1½-3½ 3½-3½	(54) 4p ² D ⁰ -4d ² F	3899.09 *3860.64 \$ 3778.90	P A A	3 1 2	18.17 21.33 18.11 21.31 18.11 21.38 18.11 21.33	3-1 1-0 1-3	(5)	4475.31 4379.90	A	15 20			4s ⁴ P-5p ⁴ D°† (7)
923.483 009.39 616.916	A A	Ó 5	16.20 19.27 16.20 19.61 16.13 19.59	32-32 32-32	4p ³ D°-4d ³ D	3831.85 3717.775 3662.005	A A	6	18.17 21.48 18.11 21.48	0-1 8-1 1-1	4s ³ P°-4p ³ S (6)	4363.30 4369.52 4326.44	A A	20 15 15			4s ⁴ P-5p ² D° † (8) 4s ⁴ P-5p ⁴ S° † (9)
567.171 006.71	L A	(2)		_		3656.61 4364.73	A -	1	18.11 21.48	0-1 3-3	3d ³ D°-4p ³ D	4323.35 10091.64	A	20 		_	
126.13 198.89 492.3	B B	3 1 00	16.18 18.64 16.18 18.58 16.18 18.55 16.18 18.93		. 4 4-	4467.83 4499.29 4478.48 4527.96	B B A B	(1) (0) (0)	18.23 20.99 18.22 20.96 18.24 20.99 18.23 20.96	3-3 1-1 3-3 3-1	(7)	10392.45 9744.33 9592.20	A	5 30 75			4s ² P-4p ⁴ D° † (10)
032.812 998.79	B A	7 3	16.18 19.24 16.18 19.26 16.18 19.28	13-23	(58) 4p48°-4d4P (59)	4354.56 4439.87	A	3	18.23 21.07 18.22 20.99	2-3 1-2	3 3-	9875.95 9288.82	A A	50 60	9.16 10.45 9.24 10.49 9.16 10.49		
979.86 922.63	A		16.19 19.33		? ² Y°-4d ² F	3928.615 3983.77 3985.97 3920.37	A A A B	6 3 2 (0)	18.24 21.38 18.23 21.33 18.22 21.31 18.23 21.38	3-3 3-1 1-0 3-3	3d ³ D ^e -4p ³ P (8)	9073.15 9632.37 8912.88	A A	50 30 40	9.16 10.52 9.24 10.52 9.16 10.55		
400.67 518.74	E D	 0 3	16.47 18.75 16.45 18.69 16.47 18.69 16.45 18.75	_	(60)	3961.55 3794.69 3774.52	A A A	2 2 00	18.22 21.33 10.38 21.48 10.37 21.48	1-1 2-1 1-1	3d ³ D°-4p ³ 8	9045.40 8550.46 9452.06	A A A	40 20 75			4 ₈ 2 _{P-4p} 2 _P 6 (13)
559.06 362.69	D B	1		-		4613.47 4677.67	A A	00	18.32 20.99 18.32 20.96	 1-3 1-1	4 2	8686.28 9197.49 4526.20	A A	30 25 30	9.16 10.58 9.24 10.58		
125.37 522.64 138.98	B B D	0			4p' 2F9_4d4F (62)	4099.25	A A	00	18.32 21.33 18.32 21.31	1-1 1-0	4 . 2	4601.00 4469.37 4661.22	A A A	20 18 18	9.16 11.89 9.24 11.92 9.16 11.92 9.24 11.89	12-12 12-12 2-12	(15)
886.43 189.71	D A	00 6n	17.32 19.33 17.32 19.27	31-31	4p1 2p0_4d12	r	A _	00	18.32 21.48	1-1 -	4s ¹ pe, 4p ³ s (12)						
165.11 180.7 174.042	A A A	00 4	17.31 20.27 17.32 20.27 17.31 20.27	33-23 33-33 32-32	(64)	3136.00 3185.16	B B B	(3) (3)	21.38 25.32 21.38 25.26 21.38 25.51	2-3 2-3 2-2	(13)	C1 II 4794.54 4810.06	IP3	3.70 250 225	Anal A List: 13.32 15.89 13.32 15.88		v 1944 4s ⁵ s°-4p ⁵ p (1)
162.698 146.94 162.39	A A A	10 3 2	17.32 20.29 17.31 20.29 17.32 20.29	31-41 21-31 31-31	4p' 2pe_4d' 2 (65)	G					(14)	4819.46	A	300	13.32 15.88	2-1 -	
359.18 357.42 349.92 330.98	A A A	2 3 0 4		2] -3] -	4p1 2p0_4d1 2	F 4803.81 4283.70 4164.96 4148.91 3 4127.54 4111.56	A A A A A	0 0 0 0 1 0 3	ed Lines Attri	Duted	to <u>8 111</u>	5483.85 5443.48 5456.87 5423.58 5444.85 5457.08 5424.36 5444.99 5457.47	A A A A A A A	150 100 50 100 60 75 25 10	13.62 15.89 13.62 15.88 13.62 15.89 13.62 15.89 13.62 15.88 13.62 15.88 13.62 15.88 13.62 15.88	4-3 3-2 3-1 3-3 3-3 1-1 3-3 1-2 0-1	3d ⁵ D ⁶ -4P ⁵ P (2)
33.16 33.30 323.16 323.15 018.70 093.25 133.02	B B B B B	1 0 1 1 0 0	18.84 20.34 18.80 20.30 18.78 20.38 18.76 20.36 18.80 20.34 18.78 20.30 18.76 20.28	33-33 23-23	4d ⁴ F-5p ⁴ D ⁹ (68)	4099.44 4095.17 4064.45 3997.97 3748.73 3699.37	A A A A	1 0 8 0 0				*5217.93 5221.34 *5217.93	A A A	150 75 150	13.90 16.27 13.90 16.27 13.90 16.27	1-2 1-1 1-0	4s ³ S°-4p ³ P
85.26 005.24	B B	1	18.78 20.34 18.76 20.30	13-13 23-33 13-32		3697.88 3638.15 3626.53	A A A	0				3353.39	A	125	14.38 17.96	-	3s3p5 1pe_4p: 1p (4)
325.15 .79.31 .14.93 .85.29 .89.86 .97.85	B B B B	a 0 0 0	18.80 20.30 18.78 20.28 18.76 20.29 18.78 20.30 18.76 20.28 18.76 20.30	35-35 35-15 15-35 15-15 15-25	4d ⁴ F-5p ⁴ P° (69)	3549.72 3497.340	A A	5				8360.63 3750.00 3767.57 3774.25 3769.13	A A A A	30 30 35 25	14.79 16.27 14.79 18.08 14.79 18.06 14.79 18.06 14.79 18.06	3-2 3-3 2-2 1-1 3-2	3d ³ D ^e -4p ³ P † (5) 3d ³ D ^e -4p ¹ 3D (6)
45.05 65.02	B B	00	18.78 20.37 18.76 20.37		4d ⁴ F-5p ⁴ S ⁶ (70)	<u>S IV</u> I 3097.46 3117.75	P 47.1 A A	Ans 5 3	22.40 26.38 22.40 26.36	Aug	48g_48pe	3768.13 3748.46 3773.68	A A A	18 15 20	14.79 18.06 14.79 18.08 14.79 18.06	2-1 2-3 1-2	
95.27 324.11 91.05	D A A	6 1 3n	3911.3 3831.4 3811.8	2 A 1 A 0 A	3		P 12.9	Ans		Oct	1944	3650.13 3658.38 3673.83 3659.84 3668.03	A A A A	30 20 18 18 30	14.79 18.17 14.79 18.16 14.79 18.15 14.79 18.16 14.79 18.15	3-4 2-3 1-2 3-3 2-3	3d ³ D ^e -4p ⁱ ³ F† (7)
61.88 49.547 164.425 360.49 .85.95 .74.300	A A A	2 5 6 1 1 6	3730.6 3678.1 3385.8 3371.9 3368.0 3356.4	4 A A A A A A A A A A A A A A A A A A A	1 1 3 1	9131.10 9393.81 9486.89 8948.01 9191.67 9584.77 9702.35	A A A A	75 50 25 50 60 50 40	8.88 10.24 8.95 10.26 8.99 10.29 8.88 10.26 8.95 10.29 8.95 10.24 8.99 10.26	3 - 3 - 3 - 1 - 1 - 3 - 1 - 2	48 ⁴ P-4p ⁴ P° (1)	3333.64 *3315.44 3312.78 3332.42 3320.14	A A A A	40 100 15 15 30	14.79 18.49 14.79 18.51 14.79 18.53 14.79 18.49 14.79 18.51	3-3 3-1 1-0 3-3 1-1	3d ³ D°-4p ¹ ³ P†

20 Labo	rator	17	E P	J Multiplet		rator;	ע א y	EP	J Multip			ratory	E P	J	Multiplet
I A	Ref		Low High	(No)	IA	Ref	Int	Low High	(No))	I A	Ref Int	Low High		(No)
	ntinu		15.00 18.22	2-3 3d' ¹ D°-4p' ¹ F	Cl II .co:	ntinu A	ea 75	16.32 18.17	5-4 3d 3go-	_4p'3p	3833.40	A 200		4-5	
3829.27 3147.86	A A	15 20	15.00 18.92	2-2 3d' 1D°-4p' 1D (10)	6686.04 6713.43 6653.75	A A A	45 40 25	16.32 18.16 16.32 18.15 16.32 18.17	4-3 (38) 3-2 4-4)	3827.62 3820.25 3838.37	A 150 A 100 A 30	18.15 21.38 18.17 21.39	3-4 2-3 4-4	(69)
3161.44	A	30	15.02 18.92	3-2 3d' ¹ F°-4p' ¹ D (11)	6681.03	Α .	15	16.32 18.16	3-3 - 2-1 4s" ³ po-	_4n# 3g+	3830.80 3615.09	A 15		3–3 4–3	4ը՝ 3 <u>բ. 44</u> ։ 3ը•† (70)
4995.52 4970.12	A	60 50	15.61 18.08 15.58 18.06	4-3 3d ¹ ³ F°-4p ¹ ³ D1 3-2 (12)	4924.83 4907.17	A A	15	17.01 19.53	1-1 (39))	4235.49	A 25	18.22 21.14	3-2	4pi 1F-58i 1De
4970.12 4925.17 4936. 9 9	A A A	15 25	15.56 18.06 15.58 18.08	2-1 3-3	4781.32 4768.68	A A	75 150	17.02 19.60 17.01 19.60	2-3 4s" 3pe- 1-2 (40) 0-1		3781.23	A 30	18.22 21.49	3–3	(71) 4p' 1 <u>F_4d</u> ' 1F° (72)
4924.28	A	18 25	15.56 18.06 15.61 18.17	2-2 4-4 3d' ³ F°-4p' ³ F	4771.09 4785.44 4778.93	A A A	40 50 45	17.01 19.59 17.02 19.60 17.01 19.59	2-2 1-1		3231.75	A 12	18.22 23.04	3-2	4p' 1r_4d' 1p° (73)
4819.79 4781.82 4755.64 4836.79	A A A	50 50 20	15.58 18.16 15.56 18.15 15.61 18.16	3-3 (13) 2-2 4-3	4490.00 4504.27	A A	50 20	17.02 19.77 17.01 19.75	2-2 48" ³ po_		4811.57 4857.04	A 12		2-3 1-2	4p ¹ 3P ₋₅₈ ¹ 3po+ (74)
4798.40 4765.30 4739.42	A A A	15 10 10	15.58 18.15 15.58 18.17 15.56 18.16	3-2 3-4 2-3	4519.19 4536.78 *4475.28	A A A	18 20 20	17.02 19.75 17.01 19.73 17.01 19.77	2-1 1-0 1-2 0-1		4721.43 4748.67 4738.41	A 25 A 20 A 10	18.51 21.11	2-3 1-2 1-1	4p! 3P_5d ³ D° † (75)
3092.22 3071.35	A A	50 40 40	15.61 19.60 15.58 19.60 15.56 19.59	4-3 3d 3Fe-4p" 3p. 3-2 (14) 3-1	*4497.30 *4259.52	A A	18 35	17.01 19.75 17.03 19.93	3-1 4s" 3pe.)	3990.19 4020.06	A 30	18.49 21.59		4p ¹ 3p_4d ¹ 3pe † (76)
3058.00 3053.74	A A	10	15.56 19.60	3-3 -	4208.03 4191.59	A A	30 15	17.03 19.95 17.01 19.96	3_2 4s" 3pe 1_1 (43)	-4p* 3p	4036.53	A 10		0-1	գր ^{ւ 3} թ_4վ։ 3 ց ։
5333.70	A	15	15.64 17.96	1-1 4s ^{1 3} p°-4p ^{1 1} p- (15)	4204.54 4188.82 4195.11	A A A	18 15 18	17.02 19.96 17.01 19.96 17.01 19.95	2-1 1-0 1-2		3618.88 3639.19 3648.07	A 15 A 18 A 10	18.51 21.90	2-1 1-1 0-1	(77)
5078.25 5103.04	A A	150 125	15.65 18.08 15.65 18.06	3-3 4e' ³ De_4p' ³ D 2-3 (16)	4185.61	Ä	20	17.01 19.96	ō_ī -		3568.04	A 20			4p ⁴ 3p_4d 1 3pe+
5099.30 5113.36 5104.08	A A A	100 40 25	15.64 18.06 15.65 18.06 15.65 18.06 15.65 18.08	1-1 3-2 3-1 2-3	6831.62 4771.66	A A	30 20	17.11 18.92 17.11 19.70	1-3 4s" 1pe (44) 1-3 4s" 1pe)	3576.00 3603.72 3587.78 3604.51	A 15 A 10 A 12 A 15	18.51 21.94 18.51 21.95	2-1 1-0 1-2 0-1	(16)
5068.10 5098.34	A A	10 20	15.64 18.06	1-2	4399.14	A	15	17.11 19.92	1-1 4s 1p) _4p" 1p				-	ant 3mat A
4896.77 4904.76 4917.72	A A A	200 135 125	15.65 18.17 15.65 18.16 15.64 18.15	3-4 4e ^t 3pc_4pt 3pc 2-3 (17) 1-2	4943.24	A	15	17.20 19.70	_ (46) 1-3 3d" ¹ P°-		7578.07	A 10	18.64 20.27		3d ¹ ³ D°-x ¹ † (79)
4914.32 4922.14	A A	13 20	15.65 18.16 15.65 18.15	3–3 2–2	4544.48	A	10	17.20 19.92	1-1 3d" 1P0-) -4p" 1p	5568.81	A 15			4p' 1 _{D-5s'} 1 _D o (80) 4p' 1 _{D-4d'} 3 _F o
4792.04	A	12	15.65 18.22	2-3 4s' 3p°-4p' 1 _F ' (18)	3843.26	A	100	17.20 20.41	1-0 3d" 1P0 (49)	-40" ¹ 5	*5175.85 3954.21	W 30		2-2 2-2	(81) _{4p} , 1 _{D-4d} , 1 _D ,
4343.62 4307.42	A A	100 75	15.65 18.49 15.65 18.51	3_2 4s' 3p°_4p' 3p 2_1 (19)	*5175.8 5	A	20	17.31 19.70	2-2 3d" ¹ D°- (50)	-4p" ¹ D	4224.92	A 15	19.60 22.52	- 3-2	(82) 4p [#] 3D–5e [#] 3p• ↑
4291.76 4336.26 4304.07	A A A	50 45 40	15.64 18.52 15.65 18.49 15.64 18.51	1-0 3-3 1-1	4740.40	A	150	17.31 19.92	2-1 3d" 10°. (51)	40" 1p	*4235.49	A 25	19.60 22.51	2-1	(83)
3123.72 3121.62	A A	15 10	15.65 19.60 15.65 19.60	3_3 4g' ³ D°_4p" ³ D 2_2 (20)	† 4372.91 4309.06	A A	80 50	47.45 30.27 17.41 30.27	3-2 3d" ³ p° 2-2 (52)		3868.62 3861.95 3854.75	A 40 A 20 A 15	19.60 22.80 19.59 22.80	2-3 1-2	4р" З _{D—4d} " З ую (84)
•3119.82	A	12	(15.65 19.60 15.64 19.60	2-3 1-2	*4259.52	A A	35 35	17.37 20.27 17.45 21.51	1-2 3-2 3 4" ³D o.	-x"	3864.60	A 15	19.60 22.80	3 -3 	
3045.00	A	10	15.65 19.70	3_3 4s 3p 4p 1p (31)	3006.98 2982.78	A A	20 18	17.41 21.51 17.37 21.51	2-2 (53) 1-3		4482.03 •4497.30	A 10	19.77 22.51	2-3 3-1	3p _{-5s} , 3pe † (85)
2996.63 3006.05 3018.82	A A A	40 20 12	15.65 19.77 15.65 19.75 15.64 19.73	3-2 4s' 3p°- 3p† 2-1 (22) 1-0	6759.42	A	35	17.78 19.60	- 4-3 3d" ³ F°-	4p* 3p1	*4475.28	A 20		1-0	
3004.39	Ā	10	15.64 19.75	1-1	6850.21 6952.13	A A	40 25 10	17.80 19.60 17.82 19.59 17.80 19.60	3-2 (54) 2-1 3-3) -	Strongest	Unclassi A 18	fied Lines of <u>Cl</u> 3610.0		. 12
5634.84	A	18	15.77 17.96	1-1 3d' ¹ P°_4p' 1P _ (33)	6841.86	A			-		5356.14 4584.28	A 10	3479.8 3203.0	2 A 5 A	. 30 . 20
4253.51 4241.38	A A	75 60	15.89 18.79 15.88 18.79	3-2 4p ⁵ p-5s ⁵ g° 3-2 (24)	3883. 8 0 3688.44	A	12 15	17.96 21.14 17.96 21.30	1-3 4p' ¹ p_! (55) 1-3 4p' ¹ p) .	4157.82 3981.94 3793.75	A 25 A 15 A 25	3170.2	3 A	. 15
4234.09	A	50	15.88 18.79	1–3	3022.93	A.	30	17.96 22.04	(56) 1-2 4p' 1p_4) 4d' 1D°					
3860.80 3850.97 3845.42	A A A	150 100 50	15.89 19.09 15.88 19.09 15.88 19.09	3-4 4p ⁵ p-4d ⁵ p° 2-3 (25) 1-2	6399.41	A	10	18.03 19.95	_ (57) 2_2 3d" 3p°.	_4p" 3p	† <u>Cl III</u>	I P 39.7	Anal B List	C No	v 1944
3860.98 3851.38 3845.69	A A	100 75 75	15.89 19.09 15.88 19.09 15.88 19.09	3-3 2-2 1-1	6522.38	A	10	18.08 19.97	_ (58) 3-3 4p' ³ D-	•	3602.10 3612.85	B 9	21.56 24.98 21.49 24.91	2 1 - 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4s ⁴ P-4p ⁴ D° †
3861.40 3851.69	A A A	50 30	15.89 19.09 15.88 19.09	3-2 2-1	4147.09	A	30	18.08 21.06	3-3 4p' 3D-) 5s'3D°†	3622.69	B 7	21.45 24.85 21.56 24.91	3-13 33-23	(1)
3845.84	A	30	15.88 19.09	1-0	4130.86 4133.66 4134.00	A A A	25 20 12	18.06 21.05 18.06 21.05 18.06 21.06	2-2 (60) 1-1 2-3)	3670.28 3656.95 3705.45	B 7 B 7 B 6		15-15 5- 5 15- 5	
6094.65	A	100	15.93 17.96	3-1 4e' 10°-4p' 1p (26)	4079.88	A	15	18.08 21.11	3-3 4p 3p	5d ³ Do+	*3340.42	в 9	21.56 25.25		48 ⁴ P-4p ⁴ P° †
5790.50 5392.12	A A	25 100	15.93 18.06 15.93 18.22	2-1 48' 10°-4p' 30 (27) 3-3 48' 10°-4p' 1F	† 4052.22 3805.24	A A	12 75	18.06 21.11	3-4 4p' ³ D-4	4d' 3F0	3329.06 3387.60 *3340.42	B 8 B 6 B 9	21.56 25.20	23-23 13-13 23-13 13-3	
4132.48	A	200	15.93 18.92	(28) 2-2 4s' 1p°-4p' 1p (29)	3798.80 3809.51	A A	50 40	18.06 21.31 18.06 21.30	2-3 (62) 1-3)	3283.41 3289.80	B 6		1\$-2\$ \$-1\$	
3276.81	A	40	15.93 19.70	2-2 4e' 10°-40" 10 (30)	3818.40 3810.10	A	30 30	18.08 21.31 18.06 21.30	3-3 2-2	_	3191.45 3139.34	B 9		2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4s ⁴ P-4p ⁴ S° (3)
3096.72	A	25 	15.93 19.92	2-1 4s' lpo-4p" lp _ (31)	3733.73 3717.94	A A	10 15	18.08 21.39 18.06 21.38	3-4 4p' 3p 2-3 (63))	3104.46	В 6	21.45 25.42	$\frac{1\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-1\frac{1}{2}}$	
5285.48	A	30	16.27 18.60	3_3 4p3p_3d 3pe (32)	3509.39	A A	40 40	18.08 21.59 18.06 21.58	3-3 4p' 3p_4 2-3 (64)	4d' ³ D°)	3925.87	A 5			46 ² P-4p ⁴ P° †
5173.15 5189.70 5162.34	A A A	25 25 10	16.27 18.65 16.27 18.64 16.27 18.66	2-3 4p ³ p-3d' 3p° 4 1-2 (33) 0-1	3513.22 3526.13 3513.69	A A A	35 30	18.06 21.58 18.08 21.58	1-1 3-2		3720.45 3748.81	A 8	22.11 25.42 22.02 25.31	1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	4s ² P-4p ² D• †
5193.03	A	10	16.27 18.64	2-2	3505.44 3508.94	A A	12 12 13	18.06 21.58 18.06 21.59 18.06 21.58	2-1 2-3 1-2		3320.57 3259.32	A 7	22.11 27.42 22.02 27.39	$1\frac{1}{2}-1\frac{1}{2}$	4s ² P-4p ² P° (6)
4585.03 •4572.13	A A	15 100	16.27 18.96 16.27 18.97	2-1 4p ³ P-3d ¹ ³ S ^o † (34) 2-1 4p ³ P-5s ³ S ^o	3189.04	A	20	18.08 21.95	3-2 4p' 3p(65)	4d! 3po+	3336.16 3244.44	A 5	22.11 27.39 22.02 27.42	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
4569.42 *4572.13	A A	50 100	16.27 18.97 16.27 18.97	1-1 (35) 0-1	4276.51 4270.61	A	30 25	18.17 21.06	4-3 4p' 3F-5	581 300 1	3991.50	A 7	22.16 25.25	- 21-21 21-11	3d ⁴ P-4p ⁴ P° †
3949.96	A	10	16.27 19.39	2-2 4p ³ p _{-3p} 5 ₄₈ 3po-	4261.22	A	30	18.16 21.05 18.15 21.05	3-2 (66) 2-1		4059.07 4104.23 4018.50	A 6 A 5 A 6	22.18 25.19	13-25	(7)
3329.12 *3315.44 3307.90	A A A	150 100 50	16.27 19.97 16.27 19.99 16.27 20.00	2-3 4p ³ p-4d ³ p• 1-2 (37) 0-1	4205.07 3913.92	A	10	18.17 21.11	4_3 4p* 3r_5 (67))	4106.83	A 5	22.19 25.20	ģ-1호	744D 4-2004
3316.86 3306.45	A A	50 40	16.27 19.99 16.27 20.00	2-2 1-1	3916.70 3917.57	A A A	30 20 18	18.17 21.32 18.16 21.31 18.15 21.30	4_4 4p' 3p_4 3_3 (68) 3_2) eq. A <u>r</u> ot	3779.35	A 5	23.16 25.42	ద ర్ల చ ెర్డి –	3d ⁴ P-4p ² D°†
				_											

I A	abora Re	tory ef		Low	P High	J	Multiplet (No)	:		Ref	Int	E P Low Hig	h		Multiplet (No)		Ref	Int	E P Low High	J	Multiplet (No)
1 111	con	tinu							ш.г	27.	5 Ana:	l B List		ct 1		A II cont	inue				4 4
824.4 707.3	4	A A - A	6	22.48	27.39	12- 2 -	3d ² D-4p ² F (9) 4s ¹ ² D-4p ¹ (10)	43	01.02 71.36 32.06 31.02 00.09	A A A	7 8 5 8 6	16.34 19.1 16.35 19.1 16.37 19.2 16.35 19.1 16.37 19.1	14 24 18 1	- \$	3d ⁴ D-4p ⁴ P ⁶ (1)	6643.79 6684.36 6638.24 6639.72 6886.57	A A A B	10 8 8 7 6	17.55 19.41 17.62 19.46 17.67 19.53 17.70 19.56 17.62 19.41	15- 5 35-35	3d*F-4p*D* (20)
560.6		Ā	8	23.26			(10)	43 44	52.23 60.56	A	6 6	16.39 19.2 16.37 19.1	14 1	-a‡		6863.52 6756.61	B A	6 5	17.67 19.46 17.70 19.53	25-25 15-15	
393.4 392.8 386.2	19 .	A A A	8	23.26 23.26 23.26	26.89 26.90 26.90	21-21 13-11 21-11	4s' ² D_4p' (11)	40 39	13.87 68.36	A A A	7 10 10	16.39 19.4 16.34 19.4 16.35 19.4	18 <u>1</u> 11 3 16 2	-12 -31 -21	3d ⁴ D-4p ⁴ D°	7077.03 6990.16	A A	1 2 6 3	17.67 19.41 17.70 19.46 17.62 19.60 17.67 19.68	$2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 2\frac{1}{2}$	3d ⁴ F-4p ² D°
683.3	9	A	5	24.07	27.42	3] - 1]	3d' ² D-4p'	38 19 45 39	44.27	A A A	7 6 8	16.37 19.5 16.39 19.5 16.34 19.5	56	-11 - 1 -21 -12		*6138.67 6399.23 6239.73	A A A	4 2	17.70 19.68	$1\frac{2}{2}-1\frac{3}{2}$	•
608.2	31 .	A -	5	24.23	26.89	- 3 }- 2 }	3d' 2F-4p'	SD+38	91.97 75.26 38.82	A A A	7 7 7	16.35 19.1 16.37 19.1 16.35 19.1	56 1	-1 - 3 -3		6509.16 6120.12	A A	00 00	17.70 19.60 17.70 19.72	1출-2출 1출- 출	3d4F-4p2P°
								39	92.06 31.24	A	7 6	16.37 19. 16.39 19.	53	-2 1 -1 2		3594.41	A	00n			(22) 3d ⁴ F-4p ¹ 2F° (23)
1 IV	Bee	in	roducti	on					86.40 14.74	A A	6 3	16.34 19. 16.35 19.	68 2÷	3-15	3d ⁴ D-4p ² D° (3)	6808.55	A	3	17.86 19.68 17.98 19.68	_ - 1 - 1 - 1 - 1 - 1	•
I	I P 1	.5.69	Anal	. A I	ist D	June	1944	38 37 •38	08.61 35.49 30.43 50.50	A A A	5 4 5 4	16.35 19. 16.37 19. 16.37 19. 16.39 19.	68 1 60 1	-23 -13 -23 -12		7284.27 6861.30 6666.36	A A A	0 4 5	17.98 19.78 17.86 19.72		
122.9 115.3 014.7	3115		1000	11.50 11.50 11.50	13.02	2-1 2-3 2-2	4s 1°-4p (1) -4p -4p	2 36	01.51 92.33	A A	4 0n	16.35 19. 16.37 19.	78 2:	-1	3d ⁴ D-4p ² Pe	6437.63 6500.25	A A	3	17.86 19.78 17.98 19.88	\$-1\$ 1\$-1\$	3d ² P-4p ⁴ S°
723.7 7635.1	7597 L053	A A A	200 500	11.50 11.50	13.10 13.11	3-1 3-3	-4p -4p	4 36 5 37	31.06 06.94	A	0 4 00n	16.37 19. 16.39 19. 16.39 19.	73	-1	\- /	6483.10 6103.56	A A	6.			(26) 3d ² P-4p ² S° (27)
147.0 1067.2 1965.4	3170	A A A	(ào)	11.50 11.50 11.50	13.24	2-1 2-2 2-1	-4p -4p -4p	8 9 34	99.49	A A	5	16.35 19.	88 a	22 }-1=	3d ⁴ D-4p ⁴ 8°	4042.20	A	1			3d ² P-4p' 2F•
1251 . 1 1200 . 6		B B		11.50 11.50		2-1 2-3	4s 1°-5p (2) -5p	1 35	31.22	A	3 2	16.37 19. 16.39 19.	88 1· 88 ·	-1 -1 -1	(5)	3766.13 3556.91	A A	5 5	17.98 21.26 17.86 21.33	1 1 - 1 1	(28) 3d ² P-4p' 2p• (29)
190.1 164.1	7127 1800	B B	(50) (80)	11.50 11.50	14.44 14.46	2-3 2-1 2-3	-5p -5p	3 4 48	306.07 33.24	A A	20 6	16.57 19. 16.68 19.	14 3·	1-2] 5-1 5	4s ⁴ P-4p ⁴ P° (6)	3682.56 3634.83	A A	4	17.98 21.33 17.86 21.26	1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1158.5 5947.5 5948.9	5043	В	(40)	11.50 11.50 11.50	14.62	3-2 3-1 -	–5p –5p –5p	8 49 9 47 48 50	978.16 735.93 847.90 909.35	A A A	5 15 8 8	16.74 19. 16.57 19. 16.68 19. 16.68 19.	22 18 2 23 1 14 1	-1 -1 -3	(0)	3605.89 3490.89 3611.84	A A	6 4 4	17.98 21.41 17.86 21.40 17.98 21.40	5-1:	3d ² P-4p' ² D° (30)
9657.1 3424.6 3103.6 3006.1	547 5922	A	3500 3000	11.57 11.57 11.57 11.57	13.04 13.10	1-1 1-3 1-1 1-3	48 2°-4p (3) -4p -4p -4p	3 4 43 5 44	062.07 348.11 126.01	A A	8 20n 15	16.74 19. 16.57 19. 16.68 19.		\$-1\$ }-3} }-3	4s ⁴ P-4p ⁴ D° (7)	4609.60 4589.93 4637.25	A A A	15 9 6	18.37 21.04	35-35	•
1300 . 1 1272 . 1 1266 . 2 1198 . 1	1690 3867	B B	(100) (100)	11.57 11.57 11.57 11.57	14.46 14.47	1-3 1-1 1-3 1-0	4s 2°-5p (4) -5p -5p -5p	3 42 4 43 5 43	130.18 366.53 331.25 379.74 178.39	A A A	9 10 10 8 5	16.74 19. 16.57 19. 16.68 19. 16.74 19. 16.57 19.	53 1 56			4277.55 4131.73 4237.23	A A A	8 8 7	10.33 61.60	15-13	•
1044.	4182	В	(100)	11.57	14.62	1-3	-5p	8 42	382.90	A	7	16.68 19.	56 1		. 4 3	4072.01 4042.91	A A	9 8	18.37 21.41 18.35 21.40	2-2-2-1	4 _B ' 2 _{D-4p} ' 2 _D • (33)
3606 · !		В.		11.57		1-0	4s 2°-6p (5)	41 39	082.40 112.83 974.76	A A	6 5 6	16.57 19. 16.68 19. 16.57 19.	68 1 68 3	<u>-1</u>	4s ⁴ P-4p ² D° (8)	4079.60 4035.47	A	5 6 	18.37 21.40 18.35 21.41		
0470.0 3667.9 7948.:	9430	A A A	400 400	11.67 11.67 11.67	13.10	0-1 0-1 0-1	48 3°-4p (6) -4p -4p	4 *42	328.18 301.99	A	7 5	16.68 19. 16.74 19.	68 ·	1-24 1-1-2 1-1-2	4 2 -	4936.13 4904.75	A A	00n 6	18.54 21.04 18.54 21.05	21-2 21-3	3d ² F-4p' 2F•
7724.2 4522.:		A B		11.67	13.27 14.40	0 -1 0-1	-4p	38	345.42 974.48 147.43	A A A	5 5 1n	16.57 19. 16.68 19. 16.74 19.	78 2 78 1	-13	4s ⁴ P-4p ³ Pe (9)	4530.57	A	4	40 54 04 00	01.4	1 - 2 - 4 - 1 2 - 2
1191.0	0296 8838	В	(100)	11.67		0-1 0-1 -		7 40 9 37	729.29 350.57	A A	0n 10 15	16.74 19.	, 0	22	4s ⁴ P-4p ⁴ S° (10)	4309.11	A A	0 2 6	18.46 21.41 18.54 21.40 18.54 21.41	3 1 - 2 2 1 - 2 2 1 - 2	(35) 3d ² F-4p ¹ ² p ⁶ (36)
9354.2 9284.4	5010 318 498 4407	A A	1000 200	11.78 11.78	13.04 13.10 13.11 13.23	1-3 1-1 1-3 1-1	46 4°-4p (8) -4p -4p -4p	3 39 4 5 *39	928.62	Ā	9 1n	16.74 19. 16.74 19.			4s ⁴ P-4p ² S°	5141.84 5017.16 5176.28	A A A	6 6 3		21-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3	3d ² D-4p' 2 F°
3408.2	808 5209	A :	3000 1500	11.78	13.24 13.27	1-3 1-1 1-0	-4p -4p -4p	8 9 59 10 58	950.91 843.80 977.43	A A A	0 00n 00	17.07 19. 17.07 19. 17.19 19.	14 1 18 1	-2 1	4s ² P-4p ⁴ P° (12)	4732.08 4474.77 4598.77	B A A	5 6 5		-	1 3d ² p-4p' ² p•
1628.	3164 4410	В	(90)	11.78		1-2	4s 4°-5p (9) -5p	1 57 3	724.37	A	On	17.07 19.	00 I	5_ 5		4481.83	A	8		31-2	1 3d ² D-4p ¹ ² D°
1510. 1345. 1333.	1682	B B B	(80) (90) (90)	11.78 11.78 11.78 11.78	14.51 14.62	1-1 1-0 1-1 1-3	-5p -5p -5p -5p	6 52 7 50	145.36 386.92 017.63	A A A	8 5 2				4s ² P-4p ⁴ D° (13)	4370.76 4490.99 4362.07	A A A	6 5 5	18.58 21.40 18.65 21.40 18.58 21.41	13-1 23-1 13-2	1 3d ² D-4p' ² D° 1 (39)
1335.3 12 59 .3	3380	В	(70)	11.78	14.63 14.67	1-1	-5p -5p	9 48	379.90 965.12 726. 9 1	A A A	12 7 10	17.07 19. 17.19 19. 17.07 19.	60 1 68 1	-2 1 -1 1 -1 1	4s ³ P-4p ³ D° (14)	5245.49	A	0	19.18 21.53	1 1 2 - 1	½ 4p ⁴ P°-3d; 2p
0673.		c .		12.85		1-8	(10)	1° 45	45.08 89.06	A B	10 5			_	4s ² P_4p ² P*	*4072.40 4124.09 4127.09	A A B	7 0 00n	19.14 22.17 19.18 22.17 19.22 22.21	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1 4p4pe_a2p (41)
8752.8 8650.1		A A		12.85 12.85	14.68 15.04	1-8	(11)	3° 46 47 1°	557.94 764.89	A A	9 10	17.07 19. 17.19 19.	78	<u>}-1</u> 2		3765.27 3720.43	A A	6 5	19.14 22.42 19.18 22.50		
3032.1				13.02		_	(12)	43 45	83.79 87.90	A B	4 2	17.07 19. 17.19 19.	88 1 88 -		4s ² P-4p ⁴ S° (16)	3669.62 3678.27	A	5 5	19.22 22.59 19.14 22.50 19.18 22.59	2-1-1	\/
5495.8		A		13.02		3-4 3-4	(13) 4p 3-6d	43	75.96 79.39	A A	5 8	17.07 19. 17.19 19.			4s ² P-4p ² S° (17)	3622.15 3809.49 3770.54	A A A	6 7 6	19.18 22.59 19.18 22.42 19.22 22.50	11-2 11-2 1-1	
							(14)		.08.82	A	000n	17.07 21.	04 1	Lal	4-2p-4-1 2	10 m7564 74 B		4 3	19.14 22.60 19.18 22.60	2-1-1-1	4p ⁴ P°_5s ² P
for cl	anges	1n	Paschen	notat	ion se	e text	\$ 37		79.05 33.52	A	6 6	17.19 21. 17.19 21.	33 26	-1	(18) 48 ² P-4p' 21 (19)	3650.90	Ā	4	19.18 22.60	2-1	(+0/

Labo:	rator Ref		E P Low H:	1gh	J	Multiplet (No)	I I A	aborator Ref	y Int	E P Low Hi	.gh	J	Multiplet (No)	Labo I A	rator; Ref		E Low	P High	J	Multiplet (No)
A II con	tinue	đ					A II	continue	đ					A II cor	tinue	đ				
3491.54 3514.39 3535.33	A A A	8 9 6 6	19.14 22 19.18 22 19.22 22 19.14 23	.71	23-33 13-23 3-13 23-23	4p ⁴ P°-4d ⁴ D (44)	4372.5 4379.2 4255.6 *4243.7	5 A 3 A	0 1 3 3n	19.60 22. 19.68 22. 19.60 22. 19.68 22.	50 1	1-21 1-11 1-11 1-11	4p ² D°-5s ⁴ P (63)	3868.53 3932.55 3979.36	A A A	8 7 7	19.88 19.88 19.88	23.02 22.98	1\$-1\$ 1\$- \$	4p4s°-4d4P (90)
3476.74 3491.24 3509.78 3454.10 *3466.34	A A A	6 6 5 5	19.18 22 19.22 22 19.14 22 19.18 22	.71 .74 .71	13-13 23-13 13-13		4502.9 *4103.9 4076.9	5 A 1 A 6 A	5 10 4	19.68 22. 19.60 22. 19.68 23.	43 1 60 3	2-321 2-12 2-12 2-12	4p ² D°-5s ² P (64)	3893.14 3383.94	A A	00n 2	19.88			4p ⁴ S°-4d ² D (91) 4p ⁴ S°-4d ² P (92)
3478.24	A	4	19.18 22		1출- 출	4p ⁴ p°-3d¹ 2g (45)	4218.6		5	19.68 22.			4p ² D°-4d ⁴ D	5305.77	A	3	19.89	22.21	1/2 - 1/2	4p ² 5°-a ² P (93)
3521.98	A	4 2	19.22 22			(45) 4p ⁴ P°-4d ⁴ F	4007.6 4096.4 3988.1	7 A	000	19.60 22. 19.68 22. 19.60 22.	69 1	\$-3\$ \$-2\$ \$-2\$	(65)	4730.69 4572.92	A A	2 1	19.89 19.89		$\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$	4p ² S°-5s ⁴ P (94)
3269.05 3254.03 3263.60	A A A	1 5	19.18 22	.97	13-23 13-23 5-13	1 (46)	4065.1 3958.3	.4 B	3 5	19.68 22. 19.60 22.	71 1	1-11 1-11		4543.91	A	1	19.89			4p2go_5s2p
3221.64 3226.00	A A	3	19.14 22 19.18 23	.97	2] -2] 1] -1]		4031.4		3	19.68 22.		구 : 1 1	4p ² p°-3d' ² 8	3388.54	A	7	19.89		} _1}	(95) 4p ² S°-4d ² P
3194.25 3139.02	A A	5	19.14 23		2] _1] 2] _2]	4p4P0-4d4P	4047.5 3717.1		3 5	19.68 22. 19.60 22.			(66)	3161.38	A A	3	19.89		}- } }-1}	(96) 4p ² S°-3d" ² D
3212.54 3281.72	A A	5 6	19.18 23	.02	14-14	(47)	3746.9 3656.0	A S	4 5	19.68 22. 19.60 22.	97 1 97 2	3-3+ 3-2+ 3-2+	(67)	010100					-	(97)
3181.05 3243.70	A A	7 7	19.14 23 19.18 22	.98	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		3709.9 3620.8		4 0	19.68 23. 19.60 23.	00 1	\$-1\frac{1}{2}		4385.08 4367.87	B A	<u>4</u> 5	20.65 20.65		\$-1\$ \$- \$	4s" ² g_5p ² po (98)
3169.68 3249.82	A A	8 7	19.18 23 19.22 23	.02	1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3550.0 3692.1		4 00n	19.60 23. 19.68 23.	07 2	1-21 1-11	4p ² D°-4d ⁴ P (68)	4309.25	A	3	20.65	23.52		4e* ² S-5p ² D° (99)
3186.19	A	3	19.18 23			4p ⁴ P°-4d ² D (48)	*3603.9 3733.3	1 B 6 A	3 On	19.60 23. 19.68 22.	.98 1	\$-1\$ \$-1\$ \$-1\$ \$-2	1 100/	4097.15	A	3	20.65		_	4s* ² S-5p ² S* (100)
3146.47	A		19.14 23	.06	2] -3]	4p ¹ P°-4d ² F (49)	3635.6 3570.7		3 2	19.68 23. 19.60 23.	0E 2	} -2 }	4-200 442D	4052.94 *3994.81	A	5 5	20.65 20.65		\$-1\$ \$-\$	4gii 2g <u>. 4p</u> ii 2go (101)
•6818.39	A	4	(19.46 21 19.53 21	.27	21-21 11-11	4p ⁴ D°-3d' 2D (50)	3559.5		00n 6	19.60 23.	.06 a	1 -3 1	(69) 4p ² D°-4d ² F	6172.28	Α.	7	21.05	23.05	- 3 } -2 }	4p ¹ 3r° -4d ² D (103)
4561.03	Ą	4	19.46 22	.17	2 }-1 }	4p4p0-a2p	3545.5 3464.1	A 8	10 6	19.68 23. 19.60 23.	16 a	2-2 2	(10)	6114.92 6123.38	A A	10 3	21.04 21.04	23.05 23.05	23-13 23-23	(103)
4593.44 4666.28 4649.06	A B B	2 2n On	19.53 22 19.53 22 19.56 22	.31 .17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(51)	3137.6 3273.3		4	19.60 23. 19.68 23.	53 a	1-1	4p ² D°-4d ² P (71)	•6138.67	A	3	21.05	23.06		4pt 2F0_4d2F (103)
*4103.91	A	10	19.41 22		2- 2 3-2-2 3-1-2	4p ⁴ D°-5s ⁴ P	3204.3		5	19.68 23.	53 1	2-12		4538.73 4480.85	A A	1n On	21.05 21.04		3 1 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 - 31 - 30 - 31 - 30 (104)
*4072.40 4033.83	A A	7 6	19.46 22 19.53 22	. 59	15- 5	(52)	3000.4 3014.4		5 5	19.68 23. 19.68 23.	.79 1 .77 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4p ² D°-3d" ² D† (72)	3946.10	A	7	21.05			4p ^{i 2} F°-5s ⁱ 2p (105)
4179.31 4156.11 4076.64	A A A	5 5 5	19.46 22 19.53 22 19.56 22	.50	23-23 13-13		7617.8	36 C	1	19.72 21.			4p ² P°-3d' ² D	3925.71 3561.04	A A	3 6	21.04			
4267.47 4201.58	B A	9	19.53 22 19.56 22	. 42	1 3 - 2 3		7055.0)1 A	2	19.78 21.	53 1	22 - 3 -1 3	(73) 4p2pe_3d1 2p (74)	3545.84 3562.19	Ā	9	21.04	24.52 24.52	23-33 33-35	4p ¹ 2 po_4d 1 2 g (106)
3933.19 4011.23	A A	0 3	19.46 22 19.53 22	.60	3}-1} 1}-1}	4p ⁴ D°-5s ² P (53)	6799.3 5165.8		2 5	19.72 21. 19.78 22.	.53	1 41	(74) 4p ² P°-a ² P	3429.64	A	3	21.05	24.65	31_21	4n1 2F0_4d1 2D
*3922.54 4053.56	A A	1n 0	19.56 22 19.56 22	.70	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(33)	4942.9		4	19.72 22.	. 21	호- 호	(75)	3432.64 3414.46	A A	2 3	21.04 21.04	24.65		(107)
3780.84	A	8	19.41 22	.67	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	4p4D0-4d4D	4681.5 *4440.0)9 A	3	19.78 22. 19.72 22.	42 1	1-21 1-11 1-11	4p ² P°-5s ⁴ P (76)	3373,87	A .	2n	21.04			4p ¹ 2p ⁰ -6s ² p (108)
3826.83 3872.15 3880.34	A A A	6 5 4	19.46 22 19.53 23 19.56 22	. 71	12-13	(54)	4547.7 *4300.6 4401.7	66 A	5 6 1n	19.78 22. 19.72 22. 19.78 22.	.59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3376.46 3350.94 3365.54	A A	7 6	21.05 21.04 21.05	24.72	3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	40° 2F°-4d° 2F (109)
3763.52 3 799.39	A A	5	19.41 22 19.46 22	.69	3 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		4374.8		3	19.78 22.			4p ² P°-5s ² P	3361.73	A	3	21.04		32-32	
3841.54 3844.75	A A	3 4	19.53 22 19.46 22	.67	13- 3 23-3		4129.7 4222.6	87 A	4 5	19.72 22. 19.78 22.	70		(77)	5296.48	A	00n	31.13	23.45	- 2 1 -31	3d' 2F-5p4D°
3900.63 3911.58	A A	5 5	19.53 22 19.56 22	. 71	13-25 2-12		4275.1 4243.7		4 2n	19.78 22.			4n2po_444n	4205.19	A	00n				(110) 3d' 2F_4f2F° (111)
3856.16 3895.26	A A	1 2	19.53 22 19.56 22	.73 .73	1출 출	4p ⁴ p°-3d' ² s (55)	4210.0 4173.7	0 A 17 D	00n 1	19.78 22. 19.78 22.	71 1		4p ² p•_4d ⁴ D (78)	4914.32	Α.	2	21.26	23.77	- 1] -2]	4p' 2pe_3d* 2p (112)
3588.44 3576.62	A A	10 10	19.41 22 19.46 22			4p ⁴ D°-4d ⁴ F (56)	4099.4		3	19.72 22.			_	4877.08	A .	On 4				
3582.35 3581.62	A A	8	19.53 22	.97	13-23 3-13	(50)	3869.6 *3753.5		0 4	19.78 22. 19.72 23.	97 1 00	1-21 1-21	4p ² p•_3d ² s (79) (4p ² p•_4d ⁴ F (80)	4227.02 4337.10 4226.65	A A A	4 6 2	21.33	24.18 24.18	\$-1\$ \$-1\$	4p' 2p°-5e' 2p (113)
3521.27 3520.00 3548.51	A A	5 6 7	19.41 22. 19.46 22. 19.53 23.	.92	32-32-32-32-32-32-32-32-32-32-32-32-32-3		3751.0		0	19.78 23.	07 1	1-21	4p ² P°-4d ⁴ P	3713.03	A	2	21.26			4p' 2p°-6s4p
*3466.34 3487.33	A A A	5 3	19.41 22. 19.46 23.	.97 .00	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		3811.2 3777.5 3855.1	5 A	1 2 0	19.78 23. 19.72 22. 19.78 22.	98 98 1	2-12 2-2 2-2	4p ² P ^e -4d ⁴ P (81)	3600.22 3754.06	A A	3 3	21.26 21.33			(114) 4p: 2pe_4d: 2p (115)
3370.97	A	5	19.41 23.			4p4D0-4d4P	3655.2		6	19.78 23.			4p ² p•_4d ² F	3671.01 3680.06	Ā	3 5	21.26 21.33	24.62 24.69	1 1 2 3	(115)
3471.59 3569.94 3421.64	A A A	2 1 5	19.46 23. 19.53 22. 19.46 23.	.98	25-15 15- 5	4p ⁴ D°-4d ⁴ P (57)	3293.6		7	19.78 23.	53 1	- -1-1	(82) 4p ² p°-4d ² p	3639.85	A	7				4p' 2p°_4d' 2p (116)
3532.19 3603.46	A A	00n 3	19.53 23. 19.56 22.	.02 :	15-15	7	3307.2 3366.5 3236.8	9 A	6 4 4	19.72 23. 19.78 23. 19.72 23.	45 45 1	1 3 1 3 1 1 3 1 1 3	4p ² p•_4d ² F (82) 4p ² p•_4d ² p (83)	3660.44 3593.76	A A	6 00n	21.26			2
3480.52 3565.02	A A	5 5	19.53 23. 19.56 23.	.07 :	1 2 - 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		3093.4	1 A	8	19.78 23.			4p ² P°-3d ^{u 2} D (84)	3673.26	Ā	4	21.33			4p, 2pe_6s2p (117)
3438.14	A	000n	19.46 23.	.05	3] _1]	4p ⁴ D°-4d ² D	3028.9	3 A	6	19.72 23.				3104.38 3153.80	A A	5 4	21.26	35.24 35.25	13-13	4p ^{, 2} p°_5d ² P (118)
3379.48 3341.77	A A	2n 2	19.41 23. 19.46 23.	.06 3	3] - 3] 2] - 2]	(58) 4p ⁴ p ⁰ -4d ² F (59)	4865.9 4721.6		5 4	19.88 22. 19.88 22.	43 1 50 1	1-21 1-11	4p48°-5s4P (85)	3094.98 3163.61	A	3 1	21.26	35.24	13-13 2-13	
3430.44 *3397.89 §	A A	4 4	19.46 23. 19.53 23.	.16	2 2 -3 2 1 2 -2 2		4564.4		5	19.88 22.				3088.24	A	5	21.26			4p ¹ 3p°-5d ³ D (119)
7348.11	A	2	19.60 31.	. 27 2	2] _2]	4p2D0-3d1 2D	4535.5 4372.0		4 On	19.88 22. 19.88 22.	70 1	-1 -1	4p ⁴ g°-5s ² P (86)	3026.75 3082.99	A A	4	21.26 21.33	35.34 35.34	12- 2	4pi 2pé_4di 8g (130)
7440.54 7090.55	A A	000	19.68 21. 19.60 21.	.34 :	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4p ² D°-3d' ² D (60)	4394.6 4358.5	3 A	2n	19.88 22. 19.88 22.	69 1 71 1	1-21 1-11	4p ⁴ 5°-4d ⁴ D (87)	5625.74	A -	On	21.27	33.47	- 2] -1]	3d' 2p_5p2p°
6376.00	A	0	19.60 21.			2	4319.6 4338.2		00n	40 00 00		1 1	. 400 2	5090 . 55	A	2				(121) 3d' 2D_4p# 3p° (123)
4792.12 4867.59	A A	5 3	19.60 22. 19.68 22.	.17 2	3 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4p ² D ⁶ -3d ¹ ² P (61) 4p ² D ⁶ -a ² P (62)	4338.2 3994.8		1 5	19.88 22.9	73 1: 97 1:	2- 2 1-21	4p ⁴ s°-3d¹ 3s (88) 4p ⁴ s°-4d ⁴ F	5125.84 4433.83	A A	0 5				
4949.45	A	2	19.68 22.	.17 1	1 2 -1 2		3952.7		6	19.88 23.	00 1	1-1 2	4p ⁴ 5 ⁰ -3d ¹ 5g (88) 4p ⁴ 5 ⁰ -4d ⁴ F (89)	4537.67 4438.13	B A	4	21.34	34.06 34.06	13-23 23-23 23-23	3d' ² D-4f ² F° (123)
																			_	

Lab I A	orator Ref	y Int	E P Low Hig		Multiplet (No)	Labo I A	rator Ref		E Low	P High	J	Multiplet (No)		ratory Ref		E P		J	Multiplet (No)
A II co	ntinue	đ				A III	P 40	.8 An	al C	List D	Nov	1944	K II con						,
4114.52 4201.99 4116.39 4199.93	A A B A	2 5 4 3	31.27 24.2 31.34 24.2 31.27 24.2 31.34 24.2	7 21-21 7 13-1 7 23-1 7 13-2	3d' ³ D-4f ³ D° (134)	3285.85 3301.88 3311.25	A A A	25 20 15	21.53 21.53 21.53	25.26	2-3 2-2 3-1	4s ⁵ 8°-4p ⁵ P (1)	4659.38 4423.73 4305.00 3966.72	A A A	15 10 30 15	20.36 2 20.36 2 20.36 2 20.36 2	3.15 3.23	2-3 2-1 2-2 2-1	3d 3°-4p 2 (5) -4p 4 -4p 5 -4p 9
5812.81 5216.84 5162.80	A A A	0 3 1	21.41 23.5 21.41 23.7 21.40 23.7	 3 2½-1½ 7 2½-2½ 9 1½-1½	4p ¹ 2p°_4d ² p (125) 4p ¹ 2p°_3d ⁿ 2p (126)	3480.55 3503.58 3499.67 3336.13	A A A	20 15 12 25	24.28 24.27 24.27	27.79 27.80	2–2 1–1	4s' 3po_4p' 3p	5536.01 4466.65	A A A	(3) 20 30	20.39 2 20.39 2 20.39 2	3.15 3.36	0-1 0-1	-4p 7
5204.46 1448.88 1439.45	B A A	0 6 3	21.40 23.7 21.41 24.1 21.40 24.1	7 1 1 -21 3 21-21 3 11-1	4p' 200°–58' 21 (127)	3344.72 3358.49	Ā	20 15	24.27 24.27	27.96 27.94	2-3 1-3 -	(3)	5969.64 4943.24	A A A	(2) 5	20.39 2 20.55 2 20.55 2	2.62	0-1 1-1 1-3	-4p 9 4s 4°-4p 1 (7) -4p 3
1448.47 1440.09 3830.43 3753.53	A A A	1 3 5 4	DI. TO DI. I	12-02	4p ¹ ² p°-4d ¹ ² p (128)	7070 45	B B B	12 12 10 10	25.58 25.62 25.64 25.62	29.66 29.65	2-3 1-2 0-1 1-1	4 ₆ " Зр <mark>е_{—4р}" Зр (4)</mark>	1 4608.45 4388.16 4309.10 4222.97 3530.75	A A A A	30 30 30 30 30	20.55 2 20.55 2 20.55 2 20.55 2	3.36 3.41 3.47	1-2 1-1 1-3 1-1 1-0	-4p 5 -4p 7 -4p 8 -4p 9 -4p 10
3803.19 3819.04 3825.70 3796.60	A A A	6 4 5 4	21.41 24.6 21.40 24.6 21.41 24.6 21.40 24.6	3 1 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4p ¹ 3p°_4d ¹ 3 ₁ (129)	3795.37 3858.32	B B	20 10	26.41 26.46 26.41	29.66	1–3	3d* 3po_4p* 3p (5) 3d* 3po_4p* 3p	f For chang						-
8746.46	A	4	21.40 24.6	11-11	14p 2p-6s2p	0002100	-		DO- 11	00.00	5-5	(6)	•						
3737.89	A	6	31.41 34.7	2 } _3	(130) 40' 30°-4d' 3	,							K III I	P 46	Anal	. D. Lis		Nov 1	
3718.21 3724.51 3222.42 3207.61	A A A	6 4 3 4	31.40 34.73 31.41 34.73 31.41 25.33 31.40 35.33	12-2 32-2 1 23-1	(130) 4pi 3pe_4di 3g (131) 4pi 3pe_5d ² p (132)	<u>A IV</u> I 3077.40 3016.15	A	Anal: 8 5	B L1s			44 4s ² P_4p ⁴ P° (1)	3322.40 3420.82 3278.79 3468.32 3513.88	A A A A	6 6 6 5	25.61 29 25.76 29 25.61 29 25.76 29	9.00	T2-02	4s ⁴ P-4p ⁴ P°† (1)
8217.70	Ä	3	21.40 25.2	12-12		3134.90	Ä	3					2002 24	A	6	25.86 29 25.61 29		출-1출 음-3분	4s ⁴ P-4p ⁴ D° †
5691.71 5577.70	A B A	 1 2			4p ^{1 2} D ² -5d ² D (133) 3d 2p 4p ² 2pe (134)		A	6	31.77	35.83	1] -1]	48 ³ P-4p ³ D°† (3)	3052.07 3056.84	A A	6 5				4s ⁴ P-4p ⁴ D° † (2)
1888.29	A	Ö	21 53 24 0	11.01	241 20 A+2mo	KI II	. 4 29	Annl	A Li	- C	Nov 1	044	*3481.11 §	В	6				48 ² P-4p ⁴ D°
498.55	A	5	21.53 24.2	1 1 2 - 2 2	(135) 3d' ^{Sp_4f S} D°	7664.907	// A	10R		1.61		4 ² S_4 ² P° (1)	3421.83	Ā	6 4				4s ² P-4p ² D° † (4)
985.74	A	000n			(136) 5p ² P°-5d ² P (137)	7698.979 4642.27 4641.77	A H H	10R (2)For (1)For	0.00 b 0.00 b 0.00	1.60 2.66 3.66		(1) 4 ² 8-3 ² D (2)	3201.95 3209.34 3364.22	A A A	6 6 6	26.26 30 26.45 30 26.45 30	0.13 0.29 0.12	12-12 2-12 2-12	4s ² P-4p ² P° † (5)
Stronges	t Uncl	assifie	d Lines Att	1buted	to A II	4044.145 4047.214	B B	8R 6R	0.00	3.05 3.05	1-11	4 ² 8-5 ² P° (3)							
689.36	A	3				3446.38	G	8R		3.58		4 ² 5-6 ² P° (4)	Ca I I			l A Lis		Mar 1	
380.45 233.58 441.95	A A A	4 4 3				3447.41	G-	6R		3.58	_		6572.781 4226.728//	Α ' Δ	50 500R	0.00 1			4 ¹ S ₋ 4 ³ P° (1) 4 ¹ S ₋ 4 ¹ P°
324.45	В	3				12523.0 12434.3	F	(90) (100)	1.61	2.60 2.60	1	4 ² P°_5 ² S (5)		-					(2)
454.41 407.44 402.69	A À A	3 4 3				11772.66	Ç	15r					6162.172 6122.219	A	150 100	1.88 3	3.89 3.89	1-1	4 ³ P°-5 ³ S (3)
397.60 882.25	Ā A	3 4				11689.76 11769.41	C D	10 3				4 ³ P ⁹ -3 ² D (6)	6102.722 4454.781	A A	80 80		3.89 4.66	0-1 2-3	4 ³ P°-4 ³ D
703.36 682.29	A B	4 4				6964.69 6936.27	E	{1 1	1.61	3.38 3.38	13-23 3-13	4 ³ P°-4 ³ D (7)	4434.960 4425.441	A A	60 r 50	1.88 4	4.66 4.66	1-2 0-1	(4)
611.25 563.78	A A	3 5				6964.18	E .	(-)		3.38	_		4455.887 4435.688 4456.612	A A B	40 40 10	1.88 4	1.66 1.66 1.66	2-2 1-1 2-1	
336.51 297.99	A A	3 5				9950.5 9955.2	D D	20N 10N	2.60 2.60	3.84 3.84	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ² 8-7 ² P° (8)	4302.527	A	60 r	1.89 4	1.76	3-2	4 ³ P°-4p ² ³ P
229.89 217.45 203.43	A B A	4 4 5			:	11022.3	D -	10NW	2.66	3.78		3 ² D-5 ² F°	4298.986 4318.652 4307.741	A A A	30 45 45	1.89 4 1.88 4	1.75 1.75 1.74	1-1 2-1 1-0	(5)
189.67	A	4				9595.60 9597.76	E E	50N1W 20N1W	2.66 2.66	3.94 3.94	2}- 1}-	(9) 3 ² D-6 ² F° (10)	4283.010 4289.364	A A	40 40		1.76 1.75	1-2 0-1	
168.98 128.65 080.67	B A A	3 5 4										•	3973.707 3957.053 3948.901	A A A	12 10 6	1.88 5	5.00 5.00 5.00	2-1 1-1 0-1	4 ³ p•_6 ³ s (6)
774.5 <u>4</u> 637.89	A A	3 3				<u>K II</u> I	P 31.	7 Anal	LA L	ist D	June	1944	3923.50	D	(0)				4 ³ pe_4p ² 1s
637.05 543.16	A A	5 5				4829.23 4186.24	A A	30 30	20.06 20.06		2-1 2-3	4s 1°-4p 1 (1) -4p 3	3761.72	E	(0)	1.88 5			4 ³ P°-6 ¹ S (8)
470.27 379.58 306.50	A A A	3 5				4134.73 3995.10	A A	30 10	20.06 20.06	23.05 23.15	2-2 2-1	-4p 3 -4p 4	3644.410 3630.748	A A	40 30	1.89 5 1.88 5	. 28	1-2	43p6_53p (9)
293.95	A	3 4				3897.92 3739.13 3681.54	A A A	15 9 15	20.06 20.06 20.06	23.36	3-3 3-1 3-3	-4p 5 -4p 7 -4p 8	3624.111 3644.765 3630.974	A A	20 15 15	1.87 5 1.89 5	.28 .28	0-1 2-2	
291.47 259.71 247.55	A A A	4 3				3618.49	Â.	15	20.06		3-3 2-1 -	-4p 8	3644.990	B	3	1.89 5	.28 .28	1-1 2-1	7 7
216.75	A	4				5005.60 4363.40	A A	15 30	20.15	22.62 23.05	1-1 1-3	4s 2°-4p 1 (2) -4p 3	3487.598 3474.763 3468.476	A A A	12 8 4	1.89 5 1.88 5 1.87 5		2-1 1-1 0-1	4 ³ P°-7 ³ S (10)
165.31 161.45 148.24	A A A	5 3 3				4114.99 4012.10	A A	30 10	20.15	23.15 23.23	1-1 1-3	-4p 4 -4p 5	3361.918	A	35n*	1.89 5	.56	2-3	4 ³ P°-6 ³ D
136.55 109.75	A A	4 3				3783.19 3767.36 3716.60	A A A	15	20.15 20,15 20.15	23.43	1-3 1-0 1-1	-4p 8 -4p 6 -4p 9	3350.209 3344.513 3362.131	A A B	25n* 8n 35n*		.56 .56	1-2 0-1 2-2	(11)
102.63 099.97	A A	3 4				5056 27					-		3350.361 3362.28	B B	25n* (0)	1.88 5		1-1 2-1	
085.05 066.92 060.94	A A B	4 4 5				5056.27 3873.74 3744.42	A A A	10	20.18 20.18 20.18	23.36	0-1 0-1 0-1	3d 1°-4p 1 (3) -4p 7 -4p 9	3286.067 3274.661 3269.090	A B B	4 2 1n	1.88 5	. 65	2-1 1-1 0-1	4 ³ P°-8 ³ S (13)
053.20 046.10 003.00 000.14	A A A	3 4 3 4				4505.33 4340.03 4225.67 3972.58	A A A	30 30	20.31 20.31 20.31 20.31	83.15 83.23	1-3 1-1 1-3 1-3	3d 2°-4p 3 (4) -4p 4 -4p 5 -4p 8	3235.896 3215.145 3209.930 3236.129 3215. 334	A B B B	8n* 5n* 2n 8n* 5n*		. 72 . 72 . 73	2-3 1-2 0-1 2-2 1-1	4 ³ pe_7 ³ D (13)
							-				-		2220.004	_	J.,				

24							A E V	105	, <u> </u>	0 11 1		• •								
Labor I A	atory Ref		E :		J	Multiplet (No)	Labo: I A	rator Ref		Low	P H1gh	J	Multiplet (No)	Labor I A		ry Int	Low E	P High	. д	Multiplet (No)
Ca I cont	inued						Ca I con	tinue	đ.					<u>Ca II</u> I	P 11	.82	Anal A	List :	_	1944
3180.521 3169.854 3164.618	B B B	1 N 1 N 1 N	1.89 1.88 1.87	5.77 5.77 5.77	2-1 1-1 0-1	4 ³ P°-9 ³ S (14)	6798.51 6717.685	C A	6n 500n	2.70 2.70	4.51 4.53	2-1 2-1	3 ¹ D-5 ³ P° † (31) 3 ¹ D-3d4p ¹ P°	3933.664// 3968.470	A A	400R(1 350R(1	K) 0.00 H) 0.00	3.14 3.11	$\frac{\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-\frac{1}{2}}$	4 ² 5_4 ² pe (1)
3150.738	A	4N*	1.89	5.81	2-3	4 ³ P°-8 ³ D	5349.472	A	25	2.70	5.00	2-3	(32) 3 ¹ D-3d4p ¹ F°	8542.089	В	1500	1.69	3.14	- 2] -1]	3 ² D_4 ² Pe
3140.782 3136.003	B B	3N* 1N	1.88	5.81 5.81	1-2 0-1	(15)	5041.620	A	40	2.70	5.15	2-1	(33) 31D-51po	8662.140 8498.018	B B	1000 300	1.69 1.69	3.11	13-13	3 ² D_4 ² P°
3151.280 3141.164	B B	4N* 3N*	1.89	5.81 5.81	2-2 1-1		4878.132	A	50	2.70	5.23	2-3	31 _{D-4} 1 _F						- '	
3117.656	В	1N	1.89	5.85	2-1	4 ³ P°-10 ³ S	4526.935	A	30	2.70	5.42	2-1	(35) 31 _{D-6} 1po	3736.901 3706.026	B B	12 10	3.14 3.11	6.44 6.44	1	4 ² P°-5 ² S (3)
3107.388 3102.36	B B	1N (0)	1.88	5.85 5.85	1-1 0-1	(16)	4355.096	A	25	2.70	5.53	2-3	(36) 31 _{D-5} 1 _F 0	3179.332	В	15	3.14	7.02		4 ² P°-4 ² D
3006.858	A	6	1.89	6.00	2–2	43pe_3d2 3p	4240.456	A	6	2.70	5.61	2-1	3 ¹ D-7 ¹ P°	3158.869 3181.275	B B	10 4	3.11 3.14	7.02 7.02	13-13	(4)
2999.641 3009.205	A A	4 5	1.88	5.99 5.99	1-1 2-1	(17)	4108.554	В	10N	2.70	5.70	2-3	3 ¹ D_6 ¹ F°							9
3000.863 2997.309	A B	5 5	1.88 1.88	5.99 6.00	1-0 1-3		4058.912	В	1n	2.70	5.74	2-1	31D-81P°	11836.4 11947.0	P P		6.44 6.44	7.48 7.47	\$-1\$ \$-\$	5 ² 8-5 ² P° (5)
2994.958	A	5	1.87	5.99	0-1		3972.570	A	(1)	2.70	5.80	2-3	31 _{D-7} 1 F 0	4472.09	D	(0)	6.44	9.30	- 1]	5 ² 8_6 ² P°
6439.073		150	2.51	4.43	3-4	3 ³ p-3d4p ³ F°	3889.141	В	(1)	2.70	5.87	2-3	31D-81Fe	4479.29	D	(1)	6.44	9.20	- \$- \$	(6)
6462.566 6493.780	A A	125 80	2.51 2.51	4.43 4.41	2-3 1-2	(18)							(42)	4722.58	D	{=}		9.63	3}_ 1}_	4 ² D-5 ² F°
6471.660 6499.649	A A	40 30	2.51 2.51	4.42 4.41	3-3 2-2		10343.85	C	500	2.92	4.11	1-0	4 ¹ P ⁰ -5 ¹ S	4718.16	D -		7.02	9.63	_	(7) .33
6508.742	В	(1)	2.51	4.41	3-2	-3 1	7326.146	A	400	2.92	4.60	1-3	4 ¹ po_4 ¹ p	3758.36 3755.61	E	(8) (7)		10.30 10.30	2}- 1}-	4 ² D-6 ² F° (8)
6464.70 6455.600	D A	(1) 10	2.51 2.51	4.43	3-2 2-2	3 ³ D-3d4p ¹ D° (19)	6709.88	D	(1)	2.92	4.76	1-2	41pe_4p2 3p	3346.99	E	(10)	7.02	10.71	2] _	4 ² D_7 ² F°
6449.810	A	50	2.51	4.42	1-2	-33	5867.572	Α.	1	2.92	5.02	1-0	41 pe_4p2 1g (46) 41 pe_4p2 1p	3125.15	E	(5)		10.97	2}- 1}-	4 ² D-8 ² F°
6169.559 6169.055	A A	40 25		4.51	3-2 3-1	3 ³ D-5 ³ P°	5857.454	A .	100	2.92	5.03	1-2	(47).	3123.29	E	(3)		10.97		(10) 4 ² D_9 ² Fe
6166.443 6161.289	A A	15 10	2.51		1-0 3-2		5512.979	Α .	,20n	2.92	5.16	1-0	41po_61s	2989.42 2987.72	E	(1)		11.15 11.15	2}_ 1}_	(11)
6163.758 6156.10	A F	10 (1)	2.51 2.51	4.51 4.52	1-1 1-2		5188.848	Α.	50	2.92	5.30	1-2	4 ¹ pe_5 ¹ D (49) 4 ¹ pe_7 ¹ s	0077 7	P		7.40		 41 1	-2na -2a
5588.757	Ą	80 60		4.72 4.72	3-3	3 ³ D-3d4p ³ D ⁹	4847.296	Α .	2	2.92	5.47 5.55	1-0	(50) 4 ¹ P°-6 ¹ D	9933.3 9856.7	P		7.48 7.47	8.73	13- 3	5 ² P°-6 ² S (12)
5594.468 5598.487 5601.285	A A	50 30		4.71 4.72	2-2 1-1 3-2	(21)	4685.265	A	13			1-3 -	(51)	8250.2 8203.2	P P		7.48 7.47	8.98 8.98	11-21	5 ² P°-5 ² D (13)
5602.846 5581.971	A A A	25 25	2.51	4.71	2-1 2-3		12816.06 12823.89	P _P)	(50a)	(3.89 (3.89	4.86 4.86	1-3 1-1	5 ³ 8-3d4p ³ P° (52)	8256.1	P		7.48	8.98	12-12	(13)
5590.120	A	20	2.51	4.72	1-2		12827.09	P		3.89	4.86	1-0	(35)	5307.30 5285.34	D D	{-}	7.48 7.47	9.81 9.81	1 1 2 1	5 ² P°-7 ² S (14)
5270.270 5265.557	A A	60 40	2.51 2.51	4.86 4.86	3-2 2-1	3 ³ D-3d4p ³ P° (22)	6361.79	F	(5n)	4.43	6.37	- 4-5	3d4p ³ F°-3d4d ³ G		В		7.48			
5262.244 5264.239	A A	25 20	2.51	4.86 4.86	1-0 2-2	(,	6343.29 6318.11	F	(4n) (3n)	4.43	6.37	3-4 2-3	(53)	5001.489 5021.141	Ö	(2) (1) (0)	7.47	9.94	14-14	5 ³ P°-6 ³ D (15)
5261.706 5260.375	A A	20	2.51	4.86 4.86	1-1		5757.69	F	(4n)	4.43	6.57		3d4p ³ F°-3d4d ³ F		D			10.41	11-1	5 ² P°-8 ² 8 (16)
4585.871	A	50	2.51	5.21	3-4	3 ³ D-4 ³ F°	5735.74 5717.99	F	(3n) (4n)	4.43	6.57 6.57	3-3 2-2	(54)	4206.21	Ď	{=}	7.47	10.41		
4581.402 4578.558	A A	40 30	2.51 2.51	5.21 5.21	2-3 1-2	(23)	5761.88 5746.81	F	(1n) (2N)	4.43 4.42	6.57 6.57	4-3 3-2		4109.83 4097.12	D D	(1) (1) (0)	7.48 7.47	10.49 10.49	13-23	5 ² P°-7 ² D (17)
4585.923	В	(2)	2.51	5.21	3–3		5731.70 5707.03	F	(in) (in)	4.43	6.57 6.57	3-4 2-3		4110.33	D	(0)	7.48	10.49	12-12	
4512.282 4509.446	A B	.5 .3	2.51 2.51	5.25 5.25	3-2 2-1	3 ³ D-6 ³ P° (24)						-		3694.11 3683.71	D D	{1 1	7.48 7.47	10.82	13-23	5 ³ P°-8 ³ D (18)
4507.417 4507.854	B B	(1)		5.25	1-0 2-2		9701.81 9688.60	P P	20 15	4.72	6.00 5.99	2-1	3d4p ³ D°-3d ² 3p (55)	3694.31	D	(0)	7.48	10.82	1] -1] -	
4506.624 4505.00	B E	{o}	2.51 2.51	5.25 5.25	1-1 1-2		9676.25 9664.29	P P P)	5 5p1	4.71 (4.72 (4.71	5.99 6.00	1-0 3-3		6456.907	O,	(-)	8.40	10.31	_	4 ² F°-6 ² G
4098.533	A	15	2.51	5.53	3-4	3 ³ D_5 ³ F°	9663.58 9639.40	P' P	Op.	4.71	5.99 6.00	1-1 1-2		5339.29	D	(-)	8.40	10.71		4 ² F°-7 ² G
4094.930 4092.633	A A	12 8	2.51 2.51	5.53 5.53	2-3 1-3	(25)		_					3d4p ³ p _{6-3d} 2 3p							(30)
3875.807	В	(4)	2.51	5.70	3-	3 ³ D-6 ³ F°	10838.77 10863.72	CC	10	4.86	6.00 5.99	1-1	(56)							
3872.552 3870.506	B B	(4) (3) (2)	2.51 2.51	5.70 5.70	2- 1-	(26)	10869.37 10879.78	000	3 4	4.86 4.86	5.99 5.99	2-1 1-0		Ca III	I P !	51.00	Anal D	List	A A	pr 1944
3753.367 3750.349	B B	{1} {1} (1)	2.51	5.80 5.80	3 - 2-	3 ³ D-7 ³ Fe	10833.12 10861.51	C	4 3	4.86 4.86	6.00 5.99	1-3 0-1		3372.68	A	8	29.94	33.60	2-1	4s 1°-4p 1
3748.374	В	\i	2.51	5.80	1-	(27)	Strongoot	*** - 1 <i>-</i>		74mon	oe (10 ·	-		3537.75 2988.61	A	7 7	30.11		1-1	*(1) 4s 2°-4p 1 (2) -4p 3
3678.240 3675.307	B B	3 2	2.51	5.87	3-	3 ³ D-8 ³ F°	Strongest			Lines	or <u>ca</u>	L			A		30.11		1-3	• •
3673.448	В	1	2.51 2.51		2- 1-	(28)	7468.41 6405.89	F	(3) (3n)					3761.62 3028.66	A	6 6	30.32		0-1 0-1	4s 3°-4p 1 (3) -4p 4
7202.194	Α -	200	2.70	4.41	- 2 - 2	3 ¹ D-3d4p ³ F°	6395.16 5764.32 5743 28	F F	(3n) (3n)					4081.74	A	5 51	30.58	33.60	1-1	4s 4°-4p 1 (4) -4p 3
7148.147	A	500	2.70	4.42	2-2	(29) 3 ¹ p-3d4p ¹ p°	5743.28 5688.47	E,	(3n)					3367.81 3233.02 3119.66	A A	4 8	30.58 30.58	34.40	1-3 1-1 1-3	-4p 4
			23.0		2-5	(30)	5682.88	F	(4N) (3n)					2989.30	A A	6	30.58 30.58	34.71	1-1	-4p 5 -4p 7

Labo I A	rator Ref	y Int	E Low	P High	J	Multiplet (No)	Labor I A		ry Int	E Low	P High	J	Multiplet (No)	Labo I A		ry Int	E Low	P High	J	Multiplet (No)
	P 6.7			st C	Nov 1		Sc I cont						•	Sc II con						(110)
6362.286 6344.831 6413.353 6378.824 6448.10	A A A B	(2) .5 50 40 1	0.00	1.96 1.95 1.95 1.93 1.93	21-31 11-21 21-21 11-11 21-12 21-12	a ² D-z ⁴ F° (1)	4709.336 4706.967 4711.732	A A	(3) (1)			 5-15	z ⁴ P°-f ⁴ D† (33)	5552.25 5239.823	B A	3 15		3.67 3.80	0-1 0-1	a ¹ S-z ³ pe (25) a ¹ S-z ¹ pe (26)
6305.671 6210.676	A	400 200	0.02			(3) a ² D-z ² D°	5258.333 5285.752	A	15 10			_	a ² G-z ² H°† (23)	7178.33 7151.18	P P		1.50 1.49	3.22	2-2 1-3	a ³ P-z ¹ D* (27)
6276.310 6239.410 6231.76 6193.672 6258.962 6239.778	A C A A	15 20 (2) (2) 100 100	0.00	3.00 1.99 1.99	-5-05	a ² D-z ⁴ D*	6557.87 6558.05 Strongest 6835.03	B) Uncl					z ³ F°-f ³ D (34)	6245.629 6279.757 6309.902 6300.697 6320.854 6342.082	A A A A	20 15 15 6 7	1.50 1.49 1.49 1.50 1.49	3.48 3.46 3.45 3.46 3.45 3.45	2-3 1-3 0-1 2-2 1-1 2-1	a ³ P _{-z} ³ D• (38)
6306.047 6244.51 5349.702 5342.961 5301.936	A A A	20 (1) 15 10 2	0.00	1.98 1.98 2.33 2.31 2.33	31-12 12-2 31-12 12-2 12-12	a ² D-z ² P° (4)	6817.08 6737.87 6036.17 4573.993 4557.237	A B A	(25) (10) (10) (10nl) 6 5	III				5657.870 5667.164 5684.190 5669.030 5640.971 5658.334	A A A A	25 10 15 12 15 8	1.50 1.49 1.50 1.49 1.49	3.68 3.67 3.67 3.67 3.68 3.67	2-2 1-1 2-1 1-0 1-2 0-1	a ³ P-z ³ P° (29)
4779.347 4753.152 4791.500	A A A	20 15 4	0.03	3.60 3.60 3.60	31-31 11-31 31-31	a ² D-z ² F° (5)	<u>Sc II</u> I 3859.36	P 12	8.8 An		List A 3.22		1940 a ³ D-z ¹ D°	5357.195 5342.05 5334.228	A P A	3	1.50 1.49 1.49	3.80 3.80 3.80	2-1 1-1 0-1	a ³ P-z ¹ P° (30)
4082.396 4054.555	A	40 35	0.00	3.04 3.04	(登设	a ² D_y ² Pe (6)	3843.000 3833.059	A	4 3	0.01	3.22 3.22	2-2 1-3	(1)	5526.809	A	75	1.76	3.99	4-3	a ¹ G-z ¹ F° (31)
4023.688 4020.399 4047.792 3996.607	A A A	100 75 25 30	0.03	3.09 3.07 3.07 3.09	31-32 12-12 32-12 13-33	a ³ D-y ³ D° (7)	3613.836// 3630.740 3642.785 3645.311 3651.798	A A A	60 50 40 30 25	0.01	3.41 3.39 3.41 3.39	3-4 2-3 1-2 3-3 2-2	a ³ D-z ³ F° (3)	3157.44 3170.40 3176.70	P B P	1	3.22 3.22 3.22	7.13 7.11 7.10	2-3 2-2 2-1	z ¹ D°-e ³ D (32)
3911.810 3907.476 3933.381	A A	100 75 20	0.02			a ² D-y ² F°	3666.537 3572.523	A	3 50 35	0.02			a ³ D-z ³ D°	3107.529 •2988.952§	A	6 10		7.19 7.35		z ¹ D°-e ¹ D (33) z ¹ D°-e ¹ F
3273.619 3269.904 3255.678	A	20 15 6		3.79 3.77 3.79	22-02 23-13 13-13 13-14	a ³ D-x ³ Pe	3576.340 3580.927 3590.475 3589.635 3558.538	A A A	30 30 30 30	0.00 0.03 0.01 0.01	3.45 3.46 3.45	2-2 1-1 3-3 2-1 2-3	(3)	3343.27 3331.07 3320.422	A A A	4 3 3		7.13 7.11 7.10	4-3 3-2 2-1	(34) z ³ F°-e ³ D (35)
3019.350 3015.364 3030.769	A A	10 8 3	0.00	4.11 4.09 4.09	21-31 11-21 21-21	a ² D-x ² F° (10)	3567.701 3372.151 3368.946	A A A	20 20 15	0.00	3.46 3.68 3.67	1-3 3-3 3-1	a ³ D_z ³ pe	3316.79 3313.539 3299.41	B A P	17	3.41 3.39 3.39	7.13 7.11 7.13	3-3 2-2 2-3	
2980.752 2974.006 2988.952		(6) (5) (10)	0.00	4.16 4.15 4.15	23-23 13-13 23-13	a ² D-x ² D•	3361.935 3359.679 3361.270 3352.048	A A A	13 10 10 3	0.00 0.01 0.00		1-0 2-3 1-1 1-3		3108.511 3092.519 3082.56	A A	3 2 3		7.41 7.40 7.39	3-2 2-1	z ³ F°-f ³ D (36)
5671.805, 5686.826 5700.14 5711.754	A B	200 150 100 100				a ⁴ F-z ⁴ G° (13)	3251.32 3244.17 3107.387 3096.77	A P A P	3 (1)	0.01 0.00 0.02 0.01	3.80 3.99		a ³ D-z ¹ P° (5) a ³ D-z ¹ F° (6)	3065.106 3052.929 3045.714 3075.38 3060.531 3083.07	A A B A P	30 20 15 3 3	3.41 3.39 3.44 3.41	7.46 7.45 7.44 7.45 7.44 7.44	4-5 3-4 2-3 4-4 3-3 4-3	z ³ F°-e ³ G (37)
5708.600 5717.30 5724.073 5739.30 5741.36	A B A B	15 15 15 2	1.44 1.43	3.60 3.59 3.58 3.59 3.58	41-43 31-35 31-35 41-37 31-32		4246.829 3989.06 4014.489	A B A	100 2 5	0.31 0.31 0.31		2-3 2-3 2-3	a ¹ D-z ¹ D ^o (7) a ¹ D-z ³ F ^o (8)	3379.397 3378.209 3373.57 3394.29 3363.40	A B B A	3 2 17 1	3.45 3.48 3.46	7.13 7.11 7.10 7.11 7.13	2-3 1-1 3-2 2-3	z ³ D°-e ³ D (38)
5081.554 5083.713 5085.547 5086.951	A A A	125 80 40 40	1.44 1.43 1.43 1.42	3.86	41-41 31-31 31-31 31-31	a ⁴ F-y ⁴ F° (13)	3902.09 3923.503 3939.51	P A P		0.31 0.31 0.31		3-3 3-3 3-1	a ¹ D-z ³ D° (9)	3366.46 3139.729 3133.096	B A A	1 10 8		7.40	2-2	z ³ D°-f ³ D (39)
5101.121 5099.228 5096.716 5064.321 5070.249	A A A	30 40 30 10 40	1.44 1.43 1.43 1.43	3.86 3.85 3.85 3.87 3.86	21-21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		3664.254 3675.265 3535.729	A A	1 1 10	0.31 0.31 0.31	3.68 3.67 3.80	3-3 3-1 3-1	(11)	3128.286 3146.91 3138.46 3126.02 3122.954	A B B A	5 1 1 3	3.48 3.46 3.46	7.39 7.40 7.39 7.41 7.40	1-1 3-2 2-1 2-3 1-2	
5075.814 4743.814 4741.018 4737.642	A A A	10 40 30 20	1.44 1.43 1.43	4.04		a ⁴ F-y ⁴ D° (14)	3353.734 4716.13	A P	25	0.60	3.99	3–3 - 3–3	a ¹ D-z ¹ F° (12) a ³ F-z ¹ D°	3580.71 3586.83 3594.13	P P P		3.67 3.67	7.13 7.11 7.10	1-2 0-1	z ^{3po} -e ³ p (40)
4734.094 4728.769 4729.326	Ā	15 5 30	1.43 1.43	4.03 4.04 4.04	12 12 34 34 34 34 34 34 14 14 34 34 12 32		4698.276 4374.455 4400.355	A A	(2) 40 30	0.59 0.62 0.60	3.22 3.44 3.41	3-3 4-4 3-3	(13) a ³ F-z ³ F° (14)	3597.39 3594.89 3605.50	P P	_	3.67 3.68	7.11 7.10 7.10	2-3 1-1 2-1	33-
4717.031 4720.830 5520.496	A	100	1.43		_	a ³ ŗ-z ³ G°	4415.559 4420.665 4431.369 4354.609 4384.813	A A A	30 3 5 6	0.59 0.62 0.60 0.60 0.59	3.39 3.41 3.39 3.44 3.41	2-2 4-3 3-2 3-4 2-3	7 7	3312.736 3311.708 3317.038 3320.709 3317.693 3326.74	A A A A P	5 3 1 1	3.67 3.67 3.68 3.67	7.41 7.40 7.39 7.40 7.39 7.39	2-3 1-2 0-1 2-2 1-1 2-1	z ³ po_f ³ D (41)
5514.215 5549.68 5481.989 5484.618	A A A	80 (3) 100 80	1.84 1.86 1.86 1.84	4.11 4.09	$3\frac{1}{2}-3\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$	a ² F-z ² G° (15) a ² F-x ² F° † (16)	4314.084 4320.745 4325.010 4294.767 4305.715 4279.927	AAAAA	60 50 40 8 10	0.60 0.59 0.60 0.59	3.48 3.45 3.48 3.46	4-3 3-2 2-1 3-3 2-2	a ³ F-z ³ D° (15)	3199.37 3191.005 3190.403	A A	10 5 2		7.54 7.54 7.54	2-1 1-1 0-1	z ³ P°-e ³ S (42)
5356.100 5349.294	Å	60 50	1.86		_	a ³ F-x ³ D° † (17)	4008.41 4008.60	P P	•	0.59 0.60 0.59	3.48 3.68 3.67	3-1	a ³ F-z ³ P° (16)	3379.18 2979.683	A A	2 5	3.80 3.80	7.46 7.95		z ¹ P°-e ¹ P z ¹ P°-f ¹ D
5591.323 5564.861 5541.030 5526.06	A A B	15 4 3 (4)	1.95	4.19 4.18 4.17	41-41 31-31 21-21	2 ⁴ F°-e ⁴ F† (18)	3995.49 3843.16	P P		0.59	3.68	3-2 3-1	a ³ F-z ¹ P° a ³ F-z ¹ F°	3678.342	A	a	3.99	7.35		(44) z ¹ F°-e ¹ F (45)
5392.075 5375.346	A	30 30	1.93 1.98 1.96				3653.62 3639.76 3629.10	P P		0.62 0.60 0.59	3.99 3.99 3.99	4-3 3-3 2-3	(18)	3122.542 3039.92	A	10	3.99	7.95 8.05		z ¹ F°-f¹D (46) z¹F°-e¹G (47)
5355.753 5341.040 4165.184	A	8 8 12	1.95 1.93				6604.60 6001.53	B P	10	1.35	3.22 3.41		b ¹ D-z ¹ D° (19) b ¹ D-z ³ F°	4748.12 4696.71 4671.94	P P P		4.83	7.46 7.46 7.46	3-1 1-1 0-1	y ³ P°_e ¹ P (48)
4152.355 4140.304 4133.006	A	12 10 8	1.96	4.93 4.93 4.92		z ⁴ F°-e ⁴ G† (30)	6059.25 5806.77	P P		1.35 1.35	3.39 3.48	2-2 2-3	(30) b ¹ D-z ³ D°	3995.48 3959.01	P P		4.86	7.95 7.95		y ³ pe_f ¹ D (49)
3435.555 3431.358 3439.206	A A	5 3 3	1.95	5.57 5.56 5.54	31-31 31-31	z ⁴ F°-h ⁴ F (31)	5854.31 5890.02 5295.30	P P		1.35	3.46 3.45 3.68		(21)							
3429.483 3448.503 3443.989 3439.40	A A A	3 1 1	1.93 1.98 1.96				531 8.337 5031.019	Ã A	3 40	1.35	3.67 3.80	2-1	(22) b ¹ D-z ¹ P°	4068.7	A		Anal C	List .		n 1941 4 ² D-4 ² F° (1)
3418.528 3416.674 3419.358	A A A	(3) 3 (1)	1.95 1.96 1.95 1.93	5.53 5.57 5.56 5.54	44 34 34 34 34 34 34 34 34 34 34 34 34 3		4670.404	A .	15	1.35	3.99	2 – 3	b ¹ D-z ¹ F° (34)	4061.3	A	(2n)	13.86 1	16.90	1 2 -2 2	(1)

26							R E V	SE	D M U	JLTIP	LET	T	ABLE							
La I A	borator; Ref		Low		J	Multiplet (No)	Labor I A	ator Ref	y Int	E P Low Hi	gh	J	Multiplet (No)	Labora I A I	atory Ref		E P Low High		J	Multiplet (No)
	I P 6.8:		A L	1st B	Nov	1940 a ³ F-z ⁵ G•	<u>T1 I</u> cont	inue E	d 8	0.05 3.	57	4-5	a ³ F-y ⁵ F°	<u>Ti I</u> cont:	inued B	l 6	0.84 3.2		-4	.5p5no
*6295.25 6273.38 6257.72 6359.89 6325.22 6296.64 6413.13 6364.92	9 E H 6 E H	(3) (6) (2) (8) (10) (12)	0.03 0.00 0.05 0.03 0.00 0.05 0.05	1.99 1.97 1.99 1.97 1.96 1.97	3-4 2-3 4-4 3-3 2-2 4-3 3-2	(1)	3493.280 3483.010 3519.939 3503.760 3490.765 3530.580 3511.626 3495.960		(1) 1 1 1 1 3 3	0.02 3. 0.00 3. 0.05 3. 0.02 3. 0.00 3. 0.05 3. 0.02 3.	55 54 55 54 54 54	3-4 2-3 4-4 3-3 2-2 4-3 3-3 3-2	(23)	5246.574 5250.95 5251.49 *5248.402 5211.32 5224.14 5233.817 5239.942	EEEPPEE	3 2 0 1 1 1 0 1 0 1 0 1	0.83 3.1 0.83 3.1 0.81 3.1 0.83 3.2 0.83 3.3 0.83 3.1 0.81 3.1	3 4- 3 3- 3 1- 3 4- 3 3-	-3 -2 -1 -0 -4 -3 -3	a ⁵ F-y ⁵ D° (37)
5940.68 5913.73 6031.68 5984.58 5944.65	E E P		0.03 0.05 0.03 0.00	2.11 2.09 2.08 2.08	4-5 3-4 4-3 3-2 3-1 4-4	a ³ F-z ⁵ pe (2) a ³ F-z ⁵ De (3)	3385.944 3377.577 3370.436 3361.263 3358.271 3342.151	A A A E A E	40r 30r 40r 40r 10 6	0.02 3. 0.00 3. 0.02 3. 0.00 3.		4-3 3-2 2-1 3-3 2-2 2-3	a ³ F-w ³ D ^e (23)	4981.732// 4991.067 4999.504 5007.209 5014.377 5016.162	A A A A	60 50 45 40 (25)	0.84 3.3 0.83 3.3 0.82 3.2 0.81 3.2 0.81 3.2 0.84 3.3	4- 3- 3- 3- 7-1-	-6 -5 -4 -3 -3	a ⁵ F-y ⁵ G° (38)
5426.25 *5396.60 5490.84 *5446.59 5408.94 *5396.60 5376.59	6 B 0 E 0 B 3 B	3 1 (0) 2 (1) 1	0.02	2.30 2.39 2.30 2.39 2.38	4-4 3-3 2-2 4-3 3-2 2-1 3-4 2-3	(3)	3371.447 3354.634 *3341.875§ 3379.216 3360.990 3385.664	A A E E E	80R 60r 50r 15 10	0.05 3. 0.02 3.	. 70 . 69 . 70	4-5 3-4 2-3 4-4 3-3 4-3	a ³ F-x ³ G° (24)	5030.038 5033.871 5034.843 5045.400 5043.578 5040.843	A A B B	25 25 20 5 7 6	0.83 3.2 0.82 3.2 0.81 3.3 0.84 3.2 0.83 3.2 0.83 3.2	4- 3- 7-2- 5- 3-4-	-4 -3 -2 -4 -3	
5210.38 5192.97 5173.74 5252.10 5219.69 5152.18 5147.48	1 A 2 A 5 B 7 B 5 B	40 35 30 8 8 10	0.05 0.02 0.00 0.05 0.02 0.03	2.42 2.40 2.39 2.40	4-4 3-3 2-8 4-3 3-2 3-4 2-3	a ³ F-z ³ F° (4)	3369.054 3352.937 3342.707 3377.485 3361.835 3348.535 3344.62	E E E E E P	1 6 2 30 10 5	0.05 3. 0.02 3. 0.00 3. 0.02 3.	.70 .69 .70 .69 .69	4-4 3-3 2-3 4-3 3-3 2-1 3-4	a ³ F-x ⁵ D ^o (25)	4953.37 4928.895 4941.322 4947.994 4909.105 4926.148 4937.719	P E E B B B	(0) (1) 1 3 4 4	0.84 3.3 0.83 3.3 0.82 3.3 0.81 3.3 0.81 3.3 0.81 3.3	4- 3 3- 1 3- 1 3- 3 3-	-4 -3 -2 -4 -3	a ⁵ F-x ³ F• (39)
5064.65 5039.95 5014.18 5009.65 4997.09 4967.30	9 A 5 A 2 A 9 A	25 22 (25) 7 8 (1)		2.47 2.46 2.48	4-3 3-2 2-1 3-3 2-2 2-3	a ³ F_z ³ D° (5)	3333.912 3243.803 3222.741 3205.848 3221.151 3205.168	E	2 4 3 5 2 2	0.05 3. 0.02 3. 0.00 3. 0.02 3.	.70 .85 .85 .85 .85	2-3 4-3 3-3 2-1 3-3 2-3	a ³ F-▼ ³ D ^e (36)	4801.93 4801.90 4806.75 4787.64 4792.34 4816.47	PPPPP		0.82 3.3 0.81 3.3 0.81 3.3 0.81 3.3 0.81 3.3	3- 3- 1- 3- 3- 1-	-3 -3 -3	a ⁵ F-x ³ p° (40)
4681.90 4667.58 4656.46 4715.29 4693.67	8 A 5 A 8 A 5 A	30 25 25 4 5	0.05 0.02 0.00 0.05 0.03	2.68 2.67 2.65 3.67 2.65	4-5 3-4 2-3 4-4 3-3	a ³ F-z ³ G°	3203.58 3199.915 3191.994 3186.451 3214.240 3203.828	G A A A E	100R 80R 60r 13	0.00 3. 0.05 3. 0.02 3. 0.00 3. 0.05 3. 0.02 3.	.85 .90 .89 .87 .89	2 –3	a ³ F-w ³ G° (27)	4781.718 4789.803 4812.906 4758.913 4771.103 4783.306	B E B B E	6 (1) (0) 4 3 (2)	0.84 3.4 0.83 3.4 0.84 3.4 0.83 3.4 0.82 3.4 0.81 3.3	4- 5- 3- 3-	-4 -5 -4 -3	a ⁵ F-y ³ G ^a (41)
4562.63 4527.45	5 E	(4)	0.00	2.73 2.73	3-2 3-3	a ³ F-z ¹ D° (7)	3236.240 3160.09	E G	1 tr	0.05 3.	.87 .93	4-3 3-2	a ³ F-y ³ P°	4533.238 4534.782 4535.574	A B B	80 60 50	0.84 3.5 0.83 3.5 0.83 3.5	<u>.</u> 3-	-3	a ⁵ F-y ⁵ F° (42)
4540.48 4496.34 4462.09	5 E	1 2 (3)	0.05 0.02 0.00		4-3 3-3 2-3	a ³ F-z ¹ F° (8)	3151.11 3143.16 3000.868	G P	tr 20		.93 .93	2-1 2-3	(38) a ³ F-w ³ F°	4535.930 4536.051 4555.486	B B A	40 40 30 35	0.81 3.5 0.81 3.5 0.84 3.5	2- 3 1- 5 5-	-2 -1 -4	
4112.70 4076.37		30 4	0.03	3.05 3.05	4-4 3-4	a ³ F-z ¹ G° (9)	3983.306 3970.384 *3002.728	E E E	20 20 10 3	0.05 4. 0.00 4. 0.05 4.	.16 .15	4-4 3-3 2-2 4-3	(39)	4552.453 4548.764 4544.688 4512.734	A A A	35 35 30 40	0.83 3.5 0.82 3.5 0.81 3.5 0.83 3.5	3-	-3 -2 -1 -5	
4011.53 4009.65	3 B	(3) 15		3.10	3-1 3-2	(10) a ³ F-z ⁵ g•	2985.477 2981.448 2968.231	E E E	(3) 4	0.03 4. 0.03 4.	.15 .16	3-2 3-4 2-3		4518.022 4522.798 4527.305	A A A	50 40 35	0.82 3.5 0.81 3.5 0.81 3.5	3- 1 2-	-4 -3 -2	
3982.47 3998.63 3989.75 3981.76 4024.57	5 A 8 A 1 A 3 A	30 100R 80r 70r 35	0.00 0.05 0.03 0.00 0.05	3.11 3.10 3.11	2-2 4-4 3-3 2-2 4-3	(11) a ³ F-y ³ F° (13)	2956.133 2967.225 2956.797	A E E	70R 35 35	0.05 4. 0.05 4. 0.03 4.	. 21 . 19	4-3 3-2	a ³ F-v ³ Fo † (30)	4314.801 4326.359 4334.840 4299.636 4314.74	A B B B	25* 9 2 15 25*	0.83 3.6 0.82 3.6 0.81 3.6 0.82 3.6 0.81 3.6	3- 3- 3- 3- 2-	-2 -1 -3 -2	a ⁵ F-w ³ D° (43)
4008.92 3964.26 3962.85	A B	35 35 35	0.00	3.10 3.13 3.11	3-2 3-4 2-3		10396.85 10496.14 10584.66	0000	35 30 35	0.84 2. 0.83 2. 0.83 1.	.01 .99	5-6 4-5 3-4	a ⁵ F-z ⁵ G° (31)	4326.986 *4288.161 4306.945	B B E	3	0.81 3.6 0.81 3.6 0.81 3.6	i 1-		
3958.20 3956.33 3948.67 3924.52 3929.87 3898.48	6 A 0 A 7 A 5 A	80 60 60 50 40 8	0.05 0.02 0.00 0.03 0.00 0.00	3.14 3.13	4-3 3-2 2-1 3-3 3-3 2-3	a ³ F-y ³ D° (13)	10661.61 10736.33 10607.78 10677.04 10732.89 *10774.92 10792.59	00000000	30 18 10 10 8 13	0.81 1. 0.81 1. 0.84 2. 0.83 1. 0.82 1. 0.81 1.	.96 .01 .99 .97 .96	2-3 1-2 5-5 4-4 3-3 2-2 5-4 4-3		4305.910 4301.089 4300.566 4298.664 4295.751 4287.405	A B B A A A	60 50 50 40 33 32 35	0.84 3.7 0.83 3.7 0.82 3.6 0.81 3.6 0.81 3.6 0.83 3.7	4- 3- 3- 3- 1- 4-	-3 -2 -1	a ⁵ F-x ⁵ D* (44)
3947.77 3914.75 3921.42	1 B	40 5 30	0.02 0.00 0.00	3.15 3.15	3-3 3-1 3-2	a ³ F-z ³ pe (14)	10828.04 10847.72 9638.28 9675.55	D D	1 1 100 90	0.83 1. 0.83 1. 0.84 2. 0.83 2.	.96 .13	3-2 5-5 4-4	a ⁵ F-z ⁵ F° (32)	4286.006 4289.068 4290.933 4272.440 *4274.584	A B B	25 25 22 8 15	0.82 3.70 0.81 3.69 0.81 3.70 0.82 3.70	2- 1- . 3-	-2 -1 -4	
3914.33 3900.95 3889.94 3934.22 3915.87 *3899.66 3881.39	8 B 8 B 8 B 9 B	35 13 6 9 3 (2)		3.18 3.17 3.18 3.17 3.16 3.20	4-4 3-3 2-3 4-3 3-2 3-1 3-4 2-3	a ³ F-y ⁵ D° (15)	9675.55 9705.64 9728.36 9743.60 9770.28 9783.30 9787.67 9783.59	000000	80 60 50 40 40 50 20	0.83 2. 0.81 2. 0.81 2. 0.84 2. 0.83 2. 0.83 2. 0.81 2.	.09 .08 .08 .11 .09 .08	3-3 2-2 1-1 5-4 4-3 3-2 3-1		4281.371 •4291.214 4288.78 4287.71 4314.356 4299.17	B P P B P	10 5n 5	0.81 3.70 0.81 3.65 0.83 3.77 0.82 3.70 0.81 3.65 0.83 3.65 0.83 3.65	1- 4- 3- 2-	-3 -5 -4 -3	a ⁵ F-x ³ G* (45)
*3875.26 3788.80 37 74.33	4 E	30n 3 1n	0.00	3.18 3.31 3.29	2-3 4-5 3-4	a ³ F-y ⁵ G° (16)	9546.07 9599.53 9647.40 9688.86	D D D	50 50 50 30	0.83 2. 0.83 2. 0.81 2. 0.81 3.	.11 .09	4-5 3-4 2-3 1-2		3457.494 3458.020 3457.298	e e e	4 3 2	0.84 4.45 0.83 4.46 0.82 4.35	4-	-3	a ⁵ F_w ⁵ D° (46)
3752.86 3741.05 3729.80 3771.65 3753.62 3722.56	0 A 9 A 6 A 2 A 3 B	80r 60r 50r 25 25	0.05 0.03 0.00 0.05 0.03 0.03	3.34 3.33 3.31 3.32 3.31	4-4 3-3 2-2 4-3 3-2 3-4	a ³ F-x ³ Fe (17)	8434.98 8435.68 8436.50 8413.36 8396.93 8364.24 8377.90	D D D D	300 300 300 150	0.84 2. 0.83 2. 0.82 2. 0.81 2. 0.81 2. 0.83 2.	31 30 29 28 28	5-4 4-3 3-3 3-1 1-0 4-4	a ⁵ F-z ⁵ D° (33)	3455.755 3453.654 3445.566		1 tr 1 1 2 1 tr	0.81 4.30 0.81 4.31 0.83 4.42 0.83 4.44 0.81 4.30 0.81 4.30 0.81 4.30	3- 1- 4- 3- 2- 1-	-1 -0 -4 -3 -3	
3717.39 3689.91 3668.96	6 A 5 A	20 15 15	0.00 0.05 0.02	3.32 3.39 3.38	2-3 4-3 3-2	a ³ F-x ³ D° (18)	8382.54 8382.82 8307.41	D D D E	(3) 100 100 90 (1)	0.83 2. 0.81 2. 0.82 2.	30 29 38 31	3-3 2-2 1-1 3-4		3240.84 3235.95 3244.53	P P P		0.84 4.68 0.83 4.64 0.83 4.64	5- 3-	-5 -3	a ⁵ F-y ³ G° (47)
3654.59 3660.63 3646.19 3637.96	1 A 8 A	15 12 12 10	0.00 0.00 0.00	3.38 3.39 3.38 3.39	3-1 3-3 3-2 3-3		8334.37 8353.15 7852.74	E E P	(1) (2) (2)	0.81 2. 0.81 2. 0.84 2.	. 29 . 42	3-3 1-3 5-4	a ⁵ F-z ³ Fe	6743.124	A	10	0.90 2.7			a ¹ D-z ¹ D ⁰ (48) a ¹ D-z ¹ F ⁰
3653.49 3642.67 3635.46 3671.67 3658.09 3687.35	5 A 2 A 2 A 7 A	100r 80r 80r 20 20	0.00 0.05	3.43 3.41 3.39 3.41 3.39 3.39	4-5 3-4 2-3 4-4 3-3 4-3	a ³ F-y ³ G° (19)	7885.00 7895.50 5361.724 5384.634 5401.32 5338.336	P P E H E	(1) (1) (1)	0.83 2. 0.83 3. 0.83 3. 0.83 3. 0.81 3. 0.82 3.	13 11 10	4-3 3-2 4-4 3-3 2-2 3-4	(34) a ⁵ F_y ³ F° (35)		E E B P	12 (3) 1	0.90 3.00 0.90 3.10 0.90 3.10	2- 2-	-1 -3	a-D-Z-F- (49) a ¹ D-Z ³ S- (50) a ¹ D-Y ³ D- (51)
3635.20 3626.08 3606.78	2 E 5 E 6 E	8 4 4	0.05	3.44 3.43 3.44	4-3 3-2 3-3	a ³ F-z ⁵ P° (30)	5386.651 5389.180 5289.28	B B	3	0.83 3. 0.81 3. 0.83 3.	11	2-3 1-3	25 _{E-2} 3 ₂₀	4943.074 4958.26 4840.874	E P	(0) 3 35	0.90 3.38 0.90 3.38	2-	-2	a ¹ D-x ³ D ^e (52) a ¹ D-y ¹ D ^e
3603.84 3604.28	5 E	ā 8	0.00	3.43	2-2	a ³ F-y ¹ D°	5323.958 5340.68 5366.4 9	E H P	(1) (1) (1)	0.83 3. 0.83 3. 0.81 3. 0.82 3.	14	4-3 3-2 2-1 3-3	a ⁵ F-y ³ D° (36)		A B	1	0.90 3.49	3-	-3	a-D-y-D- (53) a ¹ D-w ³ D ⁶ (54)

Labo I A T1 I con		Int		E P Higi	J h	Multiplet (No)	Labo I A T1 I cor	Ref	Int	Low	E P High	J	Multiplet (No)	IA		Int	E Low	P High	J	27 Multiplet (No)
4174.088§ 3904.785 3786.043 3610.154		(1) 40n 30 13	0.90 0.90 0.90	0 4.10	6 2- 6 2-	(56)	3382.312 3390.682 3398.634 3403.369 3405.094 m3417.88	E E E E	15 10 8 4 5 Fe	1.00 1.00 1.00 1.00 1.00	5 4.69 4 4.67 6 4.69 5 4.67	1-2 7 0-1 9 2-2 7 1-1	3 (86) 3	T1 I cor 5474.228 5453.646 5438.310 5494.726 5470.50	B B B B B J B	6 3 1 (1) (2)	1.45 1.44 1.43 1.45 1.44	3.71 3.70 3.69 3.70 3.69 3.69	4-5 3-4 2-3 4-4 3-3 4-3	b ³ F-x ³ G° (108)
3598.714 3324.61 3341.554 3299.413	A G E	15 1 1	0.90 0.90 0.90	4.6	3 2- 1 2- 9 2-	(58) 3 a ¹ D-x ¹ D° (59) 3 a ¹ D-w ³ P° 1 (60)	3314.422 3309.501 3308.391 3321.588 3314.523 3326.639	A E E E E	10 15 10 8 8	1.00 1.00 1.00 1.00 1.00	5 4.78 4 4.77 6 4.78 5 4.77	1-2 0-1 3-2 1-1	(87)	5145.465 5113.448 5087.055 5109.427 5085.333 5081.39	A A B B	12 10 8 4 4		3.85 3.85 3.85 3.85 3.85 3.85	4-3 3-2 2-1 3-3 2-2 2-3	b ³ F-v ³ D° (109)
3292.078 3278.922\$ 3288.59	A E P	30 (12) T1 ⁺	0.90	4.65	3 2-:	(62) 3 a ¹ D-u ³ F° 3 (63)	3280.391 3268.61 3262.63 *3260.2598 *3248.6028	E G E	2 1 1 3 15	1.06 1.06 1.06	4.82 4.83 4.85	1-1 0-1 2-1	(88) a ³ P-w ¹ P°	5035.908 5036.468 5038.400 5071.475 5065.985	A A B B	25 25 25 7	1.45 1.44 1.43 1.45 1.45	3.90 3.89 3.87 3.89 3.87	4-5 3-4 2-3 4-4 3-3	b ³ F-w ³ G° (110)
3267.41 3172.731 3179.291 3141.537	E E E	tr 4 3 15	0.90 0.90 0.90	4.79) 2-: 3 2-:	(64) 3 a ¹ D-t ³ D° 3 (65) 4 a ¹ D-x ¹ P°	*3213.145§ 3204.870 3201.594 3216.203 3207.337	EEE	8 6 5 3	1.06	4.90 4.90 4.90 4.90	2-3 1-3 0-1 2-2	a ³ P-s ³ D° (90)	4742.32 4711.68 4687.82 4559.920 4535.87	P P P	6	1.44 1.48	4.06 4.06 4.06 4.16	3-3 2-3 4-4	b ³ F-y ¹ F° (111) b ³ F-w ³ F°
3123.074 3675.38 3682.99 3692.34	E D	150 125	1.06		 2-3 1-2	(67) 3 a ³ p_z ³ p° 3 (68)	3218.683 3137.352 3134.654 3145.515 *3136.028	E E E	tr (1) 1 2	1.06 1.05 1.06 1.05	4.90 5.00 4.99 4.99	3-1 3-3 1-1 3-1	a ³ P_v ³ P° (91)	4518.700 4564.216 4540.873 m4531.60 4513.715	B E P E	8 1 1 Fe 1	1.42 1.45 1.44 1.44	4.15 4.16	3-3 2-2 4-3 3-2 3-4 2-3	(112)
766.64 734.70 819.39 3126.217 3085.228	D D D	100 75 75 8 8	1.04 1.06 1.05 1.06 1.06	3.47 2.46 3.46 3.08	3-2 1-1 3-1 3-1	. a ³ P-z ³ s°	*3100.666 3106.806 3112.482 3117.455 3117.899 *3138.640§	E E E E	12 8 8 6 5	1.06 1.05 1.04 1.06 1.05	5.03 5.01 5.03 5.01	3-3 1-3 0-1 2-3 1-1 2-1	a ³ P_r ³ D° (92)	4457.428 4455.321 4453.312 4482.688 *4474.852 4430.366	A A A A	40 30 30 10 8 7	1.44 1.43 1.45 1.44 1.44	4.22	4-4 3-3 2-2 4-3 3-2 3-4	b ³ F-v ³ F° (113)
0064.631 0058.76 0018.62 1918.548	A P E A	(0) 10	1.04 1.06 1.05	3.08 3.10 3.10	0-1 3-2 1-2	a ³ p_z ⁵ s ^c (70)	*3100.666 3090.137 3084.819 2965.707	E E E	12 8 4	1.06 1.05 1.04	5.04 5.04 5.04	3-1 1-1 0-1	a ³ p-x ³ s° (93)	*4434.003 4127.09 3789.293 3795.903	A P B B	15 8 7	1.45 1.45 1.44	4.21 4.44 4.71 4.69	2-3 4-4 4-3 3-2	b ³ F-y ¹ G° (114) b ³ F-u ³ D° (115)
903.317 880.306 866.453 899.295 922.112	A A A	5. 5 35 25 18	1.06 1.05 1.06 1.05	3.15	3-1 1-3 3-3 1-3	(71) a ³ p_y ³ p° (72)	2965.231 2965.68 2974.934 2970.556 2980.296	EEEE	15 (6?) 8 4 4 tr	1.06 1.05 1.04 1.06 1.05	5.21 5.20 5.21 5.20	2-3 1-3 0-1 3-3 1-1 2-1	a ³ P-q ³ D° (94)	3798.276 3717.259 3715.795 3713.734 3728.676	A E E E	6 1 1 1	1.45 1.44	4.76 4.75	2-1 4-4 3-3 2-2 3-3	b ³ F-t ³ F* † (116)
937.806 941.755 980.89 814.00 809.75	A H H	6 12 (1) (1) (0)	1.06 1.05 1.06 1.06	3.14 3.13 3.13 3.18	3-3 1-1 3-1		10034.45 10048.78 10059.87 10189.26 10170.60	DDDCC	15 12 12 3 3	1.45 1.44 1.43 1.45	2.67 2.65 3.67	 4-5 3-4 2-3 4-4 3-3	b ³ F-z ³ G° (95)	3704.295 3694.445 3685.964 3651.90 3638.49	B A B P P	15 10 2	1.45	4.78 4.77 4.83	3-2 3-1 4-5	b ³ F ₋ t ³ D° (117)
295.781 282.378 284.380 313.239 300.012	A B B B	3 3 (1)	1.06 1.05 1.04 1.06 1.05	3.38 3.38		a ³ P-x ³ D° (74)	7366.60 7344.72 7357.74 7364.11	E E E	(1) 4 3 2	1.43 1.45 1.44	3.10		b ³ F-z ⁵ S° (96) b ³ F-y ³ F° (97)	3656.73 3487.80 3439.305 3443.644	P P E E	8 5	1.45		3-4 4-4 3-3 4-3 3-2	(118) b ³ F_w ¹ F° (119) b ³ F_r ³ p° (120)
691.336 698.766 710.186 723.171 722.603 747.256	A A B B E	30 20 18 10 10	1.06 1.05 1.04 1.06 1.05 1.06	3.67 3.66	2-3 1-2 0-1 2-3 1-1 2-1		7423.17 7271.41 7299.67 7216.20 7160.33 7138.05	E E E K P	(a) (o) (a) 5 (a)	1.44 1.43 1.44 1.43	3.15 3.15	3-3 3-4 2-3 3-2 3-2	b ³ F-z ³ P° (98)	3444.403 3423.172 3430.874 3434.69	E E P	3 2 2	1.42 ! 1.44 ! 1.43 !	5.01 5.04 5.03	2-1 3-3 2-2 4-4	b ³ F-w ¹ G° (121) b ³ F-v ⁵ D°
890.827 875.118 868.357 867.53 892.45 879.73	B A E P P	3 10 3 T1	1.06 1.05 1.04 1.06 1.05	3.69 3.70 3.69 3.69	2-3 1-3 0-1 2-3 1-1	a ³ P-x ³ G° (76) a ³ P-x ⁵ D° (77)	7209.44 7244.86 7251.74 7138.91 7188.55 7084.25	EEIEEP	20 10 8 (1) T1?	1.43 1.44 1.43	3.14 3.13	2-1 4-3 3-2 2-1 3-3 2-3 2-3	b ³ F-y ³ D° (99)	3297.68 3309.32 3274.047 3270.562 3265.480 3259.42 3259.04	PP EEEEd	(5) 3 2 2 1	1.45 5 1.45 5 1.44 5	5.22	4- 3	b3F-q3De (123) b3F-q3De (123)
422.823 404.397 394.855 425.840 405.694 427.12	A B B B B	10 5 (2) 3 2		3.85 3.85 3.85 3.85 3.85	2-3 1-3 0-1 2-3 1-1	a ³ P-v ³ D° (78)	7065.157 7130.34 •7007.81 6666.548	J P H	(1) (1) (2n)		3.18 3.18 3.31		b ³ F _{-y} 5 _D e (100) b ³ F _{-y} 5 _G e (101) b ³ F _{-x} 3Fe	9718.96 7949.17 4820.410	D E A	25 (3) 20	1.50 a 1.50 a 1.50 4	3.05	4-4	a ¹ G-z ¹ F° (124) a ¹ G-z ¹ G° (125) a ¹ G-y ¹ F°
508.514 502.979 523.440 510.373	B E B B	3 1n 1 1	1.06 1.05 1.06 1.05 1.05	3.85 3.93 3.92 3.93 3.91 3.93	3-1 3-3 1-1 3-1 1-0 1-3	a ³ p_y ³ p° (79)	6556.066 6554.226 6594.276 m6592.91 6497.689 6508.135	A A P E	25 20 20 Fe 3 3	1.44 1.43 1.44 1.44	3.34 3.31 3.31 3.34 3.38	4-4 3-3 2-2 3-2 3-4 2-3	(102)	*4526.374 4427.098 4186.119	E A A	1 40 25	1.50 4		4-5	(126) alg_v3re (127) alg_z1He (128) alg_y1ge (129)
82.456 65.094 60.263	E A B A A	30 15 20 15 20	1.06 1.05	4.09 4.09 4.09 4.08 4.09	0-1 2-3 1-1 3-1 1-0 1-3	a ³ P-x ³ P° (80)	6366.354 6336.104 6318.027 6311.289 6293.00 6268.50	A E E P H	8 5 (1) (2)	1.44	3.39 3.38 3.38 3.39 3.38 3.39	3-2 2-1 3-3 2-2 2-3	b ³ F-x ³ D° (103)	3919.822 3724.570 3702.942 3547.029	B A B	5 20 2 15	1.50 4 1.50 4	.83	4-4 4-4	a1 _{G-x} 1 _F ° (130) a1 _{G-x} 1 _G ° (131) a1 _{G-x} 3 _H ° (133)
189.581 178.130 163.354	A B E E	(0) (0)	1.04 1.06 1.05 1.04	4.16 4.16 4.16	0-1 3-1 1-1 0-1	a ³ P_z ¹ P° (81)	6258.706 6258.103 6261.101 6312.240 6303.754	A A A A	50 40 35 10		3.41 3.39	3-4 3-3 4-4 3-3	b ³ F-y ³ G ^e (104)		E P	6	1.50 5 1.50 5	.07	4-5 a	1 G_w1F° (133) 1 G_y1H° (134) 2 G_u3G° (135) 1 G_v1F°
86.445 25.155 09.963	F B A B	30	1.06 1.05 1.06 1.05 1.04	4.33 4.37 4.37 4.37	3-3 1-3 3-1 1-1 0-1	a ³ P-x ¹ D° (83) a ³ P-y ³ g° (83)	5514.536 5514.350	P P A B	25 25 20	1.45	3.57 3.54 3.69 3.67 3.66	4-5 4-3 4-3 3-2 3-1	b ³ F _{-y} ⁵ F° (105) b ³ F _{-w} ³ D° (106)	3119.725 9090.70	E	15 	1.74 3	.10	4-5 a	(130) 11 _{G-x} 1 _H 0 (137) 15 _{P-z} 5 _S 0 (138)
95.754 67.260	A E E E E	8 6 6	1.05 1.06 1.05 1.05	4.61 4.59 4.59 4.58 4.61	2-3 1-1 2-1 1-0 1-3	a ³ P-w ³ P° (84)	5471.198 5481.862 5449.155 5440.53 5490.151	B B P A	5 5 1	1.44 1.43 1.44 1.43 1.45	3.69 3.67 3.70 3.69 3.70	3-3 3-3 3-3 2-3 4-3	b ³ F-x ⁵ D° (107)	8989.44 8821.14 8761.44 8725.76	D D D	12 15 6	1.73 3 1.74 3 1.73 3	.10 .14 .14 .14	1-3 3-2 & 3-3 1-3	a ⁵ P-y ³ D• (139)
76.452	e E	3	1.04 1.06 1.05		0-1 2-3 1-3	a ³ P-y ⁵ 8° (85)	5472.696	В	3	1.44	3.69	3–2				30 30	1.74 3 1.73 3			⁵ P _{-z} 3pe (140)

28 Labor I A	atory Ref		E P	High	J	Multiplet (No)	Labor I A	ator; Ref		E P Low High	J	Multiplet (No)	Laborator I A Ref	ry Int	E P Low High	J	Multiplet (No)
Ti I cont	inued						T1 I cont	inue	đ				Ti I continue				5-a 5
8457.10 8494.42 8531.36 8550.54 8565.45	D D D D	40 30 15 25 25	1.73 1.73 1.74 1.73	3.18 3.17	2-3 1-2 3-3 2-2	a ⁵ P_y ⁵ D° (141)	4263.134 *4274.584 4282.702 4251.618 4265.723	A A B B	15 15 13 3	1.88 4.77 1.87 4.76 1.87 4.77 1.87 4.77	4-3 3-2 4-4	(162)	3143.350 E 3139.87 E 3135.069 E 3130.175 E 3127.684 E	12N 10N 8N 8N 8N	2.03 5.96 2.01 5.94 1.99 5.92 1.97 5.91 1.96 5.91	6-7 5-6 4-5 3-4 2-3	z ⁵ G°-g ⁵ H (180)
8578.40 8612.91 8600.98 7474.94 7466.44	D D E P P	15 7 25 (1p?)	1.73 1.73 1.74 1.73	3.16 3.16 3.16 3.39 3.38 3.39	1-1 3-1 1-0 3-3 3-3 3-3	a ⁵ P-x ³ D° (143)	4169.330 4166.311 4164.134 4177.357 4172.609	B B E E	7 6 4 (2) (2)	1.88 4.84 1.87 4.83 1.87 4.83 1.88 4.83 1.87 4.83	4-5 3-4 5-5 4-4	(163)	3123.769 E 3118.130 E 3114.092 E 3111.283 E 3107.468 E 3105.220 E	30n 15 30n 10n 13n 3n	2.03 5.98 2.01 5.97 1.99 5.95 1.97 5.94 1.96 5.93 2.01 5.98	6-5 5-4 4-3 3-2 2-1 5-5	z ⁵ g°j ⁵ F (181)
7431.98 7253.76 7291.03	I P	(1p1)	1.74 1.73	3.44 3.42	3-3 2-2	a ⁵ P-z ⁵ P° (143)	3895.59 3885.95 3878.61	P P P		1.88 5.05 1.87 5.05 1.87 5.05	4-4	,	3103.517 E 3101.536 E 3101.77 G	3n 4n 1n	1.99 5.97 1.97 5.95 1.96 5.94	4-4 3-3 2-2	
7305.87 7332.26 7330.97 7213.35	H I E	(1) (1p?) (1p?) (1) (0)	1.74 1.73 1.73	3.42 3.42 3.42 3.44	1-1 3-2 3-1 3-3		3786.253 3801.093 3811.385	B B	3 3 4.	1.88 5.14 1.87 5.12 1.87 5.10	3 4-3	(165)	8518.05 D 8467.15 D 8434.41 D	60 75 50	2.13 3.57 2.11 3.57 2.09 3.56	5-4 4-3 3-2	z ⁵ F°-a ⁵ D (182)
7266.29 6266.021 6264.825	E E	{1 (0)	1.74 1.73	3.42 3.71 3.70 3.69	1-2 3-4 2-3 1-2	a ⁵ P-x ⁵ D° (144)	3733.767 3738.901 3748.101	B E B	4n 5n 6n	1.88 5.18 1.87 5.19 1.87 5.16	7 4-5	(166)	8389.48 D 8417.54 D 8386.34 P 8363.58 P	25 25	2.08 3.55 2.11 3.57 2.09 3.57 2.08 3.56	2-1 4-4 3-3 2-2	
6277.525 6295.251 6295.949 6298.075	E E E	(00) (2) (00)	1.74	3.70 3.69 3.69	3-3 3-3 1-1		3504.773 3516.838 3525.161	E E	3 3	1.88 5.40 1.87 5.30 1.87 5.30	3 4-:	(167)	5224.301 A 5224.928 A 5224.558 B	15 8 6	2.13 4.49 2.11 4.47 2.09 4.46	5-5 4-4 3-3	z ⁵ F°-e ⁵ F (183)
4617.269 4623.098 4629.336	A A A	30 25 15	1.73	4.40 4.39	3-4 3-3 1-3	a ⁵ p_w ⁵ D° (145)	3428.955 3446.603 *3454.165	E E	4 2 1	1.88 5.4 1.87 5.4 1.88 5.4	5 4-4	(168)	5223.623 B 5222.685 B 5263.483 B 5255.811 B	6 6 3 5	2.08 4.45 2.08 4.44 2.13 4.47 2.11 4.46	3-3 1-1 5-4 4-3	
4639.669 4639.369 4639.944 4656.048 4650.016 4645.193	B B B B	15 18 15 6 10 13	1.73 1.73 1.74 1.73	4.40 4.39 4.39 4.39 4.39 4.38	3-3 2-3 1-1 3-3 3-1 1-0		3352.43 3358.56 3364.10 3010.42	P P P		1.88 5.5 1.87 5.5 1.87 5.5	5 4-3 3 3-3	3 (169)	5347.293 B *5238.560 B 5186.329 B 5194.043 E 5201.096 E 5207.852 B	5 6 3 4 4 3	3.09 4.45 3.08 4.44 3.11 4.49 3.09 4.47 2.08 4.46 3.08 4.45	3-2 2-1 4-5 3-4 2-3 1-2	
4481.261 4480.600 4479.724 4496.146 4489.089	A B B A	30 5 9 20 20	1.73 1.74 1.73	4.50 4.49 4.48 4.49 4.48	3-3 2-2 1-1 3-3 3-1	a ⁵ P_y ⁵ P° (146)	*5054.070 3601.16	В	3 1	1.87 4.3		a 18-y1P° (171)	4503.763 A 4497.709 B 4493.540 B m4488.27 P 4485.013 B	4n 3 3 Ti+ 1	2.13 4.87 2.11 4.85 2.09 4.84 2.08 4.83 2.08 4.83	5-5 4-4 3-3 2-2 1-1	z ⁵ F°-f ⁵ F (184)
4465.807 4471.238 4305.474	A A B	20 20 2	1.73 1.73	4.50 4.49 4.61	2-3 1-2 3-2	a ⁵ P-w ³ P°	5025.570 5013.284 5000.991	A B B	18 18 10	2.03 4.4 2.01 4.4 1.99 4.4	7 5- 6 4-	4 (173) 3	*4526.374 E 4515.610 B 4505.715 E	1 1 1	2.13 4.85 2.11 4.84 2.09 4.83 2.08 4.83	5-4 4-3 3-2 2-1	
*4291.214 4299.229 4284.988	B E B	5n 15 8	1.73	4.61 4.61 4.61	3-2 3-2	(147) a ⁵ P-y ⁵ S° (148)	4989.140 4978.191 4977.731 4973.051	B B B	10 10 5 6	1.97 4.4 1.96 4.4 2.01 4.4 1.99 4.4	4 2- 9 5- 7 4-	1 5 4	4496.75 P 4475.518 E *4474.852 A 4475.19 P 4476.61 P	1 8	2.11 4.87 2.09 4.85 2.08 4.84 2.08 4.83	4-5 3-4 2-3 1-2	
9832.15 9937.35 9997.94	B D D	25 20 15	1.87 1.87	3.13 3.11 3.10	1-3 - 5-4 4-3 3-3	a ³ G-y ³ F° (149)	4968.566 4964.713 4938.04 4941.015 4944.388	B B H E E	6 5 (On) (1) (0)	1.97 4.4 1.96 4.4 1.99 4.4 1.97 4.4 1.96 4.4	5 2- 9 4- 7 3- 6 2-	2 5 4 3	4030.512 A 4026.539 A 4021.812 B 4017.771 A 4015.377 A	25n 25n 25n 15n 12n	3.13 5.19 3.11 5.17 3.09 5.16 2.08 5.15 3.08 5.15	5-6 4-5 3-4 2-3 1-2	z ⁵ F°-e ⁵ G (185)
9879.41 8468.46 8518.37	D D D	3 100 100	1.87 1.88 1.87	3.11 3.34 3.32	3-3 5-4 4-3	a ³ G-x ³ F° (150)	4355.308 4340.018 3911.185	E E B	1 1 .8ņ	2.01 4.8	15 5- .9 6-	4 (174) 6 z ⁵ g•_e ⁵ g	4049.399 E 4040.310 B 4031.753 B	2n 4n 3n	2.13 5.17 2.11 5.16 2.09 5.15	5-5 4-4 3-3	
8548.07 8423.10 8483.16	D D	100 20 25	1.87 1.87	3.31 3.34 3.32	3–2 4–4 3–3	2 2 -	*3899.668 3888.020 3877.591 3869.275	B B B	(3) 4n 3n 5n	2.01 5.1 1.99 5.1 1.97 5.1 1.96 5.1	.6 4- .5 3- .5 3-	4 3 2	4016.264 B 4012.786 B 4013.24 P 3993.796 B		2.13 5.20 2.11 5.18 2.09 5.17 2.11 5.20	5-4 4-3 3-3 4-4	(186)
*7978.88 8024.84 8068.24 8066.05 7938.53	EEEPP	(4) (2) (2)	1.88 1.87 1.87 1.88 1.87	3.43 3.41 3.39 3.41 3.43	5-5 4-4 3-3 5-4 4-5	a ³ G-y ³ G° (151)	3928.97 3912.589 3897.290 3884.090 3882.147 *3875.262	P B B B	2 1 (0) 15n 30n	2.03 5.1 2.01 5.1 1.99 5.1 1.97 5.1 2.01 5.1 1.99 5.1	.6 5- .5 4- .5 3- .9 5-	4 3 2 6	3994.56 P 3975.69 P 3980.821 B	(0)	2.09 5.18 2.09 5.20 2.08 5.18 2.13 5.20	3-3 3-4 2-3 5-6	z ⁵ F°_e ⁵ H
6746.433 6748.43 6751.94	E H H	(1) (1) (0)	1.88 1.87 1.87	3.71 3.70 3.69	5-5 4-4 3-3	a ³ G-x ³ G° (153)	3868.397 3862.823	B B	10n 10n 20n	1.97 5.1 1.96 5.1 2.03 5.2	16 3- 15 2-	3	4008.046 B 4005.952 B 4007.195 B	9n 6n	2.11 5.19 2.09 5.17 2.08 5.16	4-5 3-4 3-3	
6092.814 6121.008 6146.225	E E E	4 3 3	1.88 1.87 1.87	3.90 3.89 3.87	5-5 4-4 3-3	a ³ G-w ³ G° (153)	3882.892 3866.446 3858.133 3853.719 3853.038	B A B B	15n 15n 10n 10n	2.03 5.2 2.01 5.2 1.99 5.1 1.97 5.1	30 5- 19 4- 17 3-	6 (176) * .5 .4	4003.789 B 4002.466 B 3999.336 B 3994.683 B	9n 7n 4 n	2.13 5.21 2.11 5.19 2.09 5.18 2.08 5.17	5-4 4-3 3-2 3-1	(188)
5953.162 5965.828 5978.543 5988.560 5996.007	A A E	30 30 25 2	1.88 1.87 1.87 1.88 1.87	3.95 3.94 3.93 3.94 3.93	5-6 4-5 3-4 5-5 4-4	a ³ G-z ³ H° (154)	3858.445 3853.719 3853.038 3895.243 3892.313 3873.203 3867.739 3911.362 3897.381	A B B E	30n 10n 10n 3 (3)	2.03 5.2 2.01 5.2 1.99 5.2 1.97 5.1 2.03 5.2	30 6- 19 5- 17 4- 16 3- 19 6-	.6 .5 .4 .3 .5	3990.184 E 3981.466 B 3984.313 B 3985.580 B	(1n) (0) 3 (1)	2.08 5.17 2.11 5.21 2.09 5.19 2.08 5.18	1-0 4-4 3-3 3-3 5-5	"5 _m o_"" 5 .»+
5409.609 5397.093 5389.996 5391.06	A A A P	6 4 3	1.88 1.87 1.87	4.16 4.16 4.15 4.16	5-4 4-3 3-3 4-4	(155)	3720.384 3707.549	B E B E	(1n) 3 10n	2.01 5.1 1.99 5.1 2.03 5.1 2.01 5.1 1.99 5.1	17 5- 16 4- 35 6- 34 5-	.4 .3 .5 z ⁵ G°-g ⁵ F .4 (177)	3828.180 B 3822.026 B 3817.639 B 3814.855 B 3813.261 B	(2) 5	2.13 5.35 2.11 5.34 2.09 5.33 2.08 5.32 2.08 5.31	4-4 3-3 2-3 1-1	(189)
5382.96 5265.967 5283.441 5297.236 *5248.402 5269.93	A	10 8 6 (1) (1)	1.87 1.88 1.87 1.87 1.87	4.31 4.19 4.33	3-3 5-4 4-3 3-2 4-4 3-3	a ³ Q-v ³ F° (156)	3696.885 3688.27 3681.272 3694.10 3685.47 3679.14 3674.92	1 P E P P P P	1	1.97 5. 1.96 5. 2.01 5. 1.99 5. 1.97 5.	32 3- 31 2- 35 5- 34 4- 33 3-	-2	3306.879 E 3309.730 E 3312.690 E 3315.237 E 3318.362 E 3325.155 E	6 5 2 4 3	2.13 5.86 2.11 5.84 2.09 5.82 2.08 5.81 2.08 5.80 2.13 5.84	5-6 4-5 3-4 2-3 1-2 5-5	(190)
4885.082 4899.910 4913.616 4915.236	A A A B	20 20 20 5	1.88 1.87 1.87	4.41 4.39 4.38 4.39	5-6 4-5 3-4 5-5	a ³ G-y ³ H° (157)	*3366.176 3361.50 3356.196 *3350.548	E G E	2	3.03 5. 3.01 5. 1.99 5. 1.97 5.	70 6- 68 5- 67 4- 66 3-	-5 z ⁵ G°-h ⁵ F -4 (178) -3 -2	3325.229 E +3324.754 E 3340.77 H 3337.40 G	(1) in	3.11 5.83 3.08 5.80 3.13 5.83 3.11 5.81 3.09 5.80	4-4 (3-3 2-2 5-4 4-3 3-2	
4925.396 4811.074	3 B	5, 4	1.87	4.38 4.44	4-4 5-4	a ³ G_y ¹ G° (158)	3344.931 3344.630 3343.379 *3341.554	E E E	tr tr 1	1.96 5. 2.01 5. 1.99 5. 1.97 5.	70 5 68 4 67 3	-1 -5 -4 -3	3334.35 H 3199.43 G 3198.726 H	in in	2.13 5.98 2.11 5.97	5-5 4-4 3-3	z ⁵ F°_j ⁵ F (191)
4449.985 4440.345	5 A	1 10	1.87	4.64	4-3 3-3	(159)	3339.54 3236.128 3223.519	E	1n	1.96 5. 2.03 5.	66 2 86 6	-2 -6 -5aa5a	3199.34 H *3213.145\$ E 3211.07 E	8	2.09 5.95 2.13 5.97 2.11 5.95	3-3 5-4 4-3	ŀ
4449.143 4450.896 4453.708 4463.539 4463.391 4436.586 4441.272	8 A 8 A 9 B 1 B	30 35 30 8 8 4	1.88 1.87 1.87 1.87 1.87 1.87	4.64 4.64 4.64 4.65	5-5 4-4 3-3 5-4 4-3 4-5 3-4	(160)	3233.519 3221.381 3219.212 3217.942 3243.513 3238.224 3232.791 3228.183	E E E	10 8 8 3 4 3	1.99 5.	82 4 81 3 80 2 84 6 82 5 81 4	-5 (179) -4 -3 -3 -5 -4 -3	3141.670 H 3129.075 H 3128.640§ H 3125.656 H 3125.553 H	8 (2)	2.13 6.05 2.11 6.05 2.09 6.04 2.08 6.03 3.08 6.03	5-4 4-3 3-2 2-1 1-0	(192) :
4417.27 4426.05	4 A	15 10	1.88				3228.183 3206.344 3206.825	: Е	ő	1.97 5. 2.01 5. 1.99 5.	86 5	-2 -6 -5					

Lab I A	orator Ref	ry Int	Low	P High	J	Multiplet (No)	Labo: I A		y Int	E Low	P High	J	Multiplet (No)	Labor I A	ratory Ref		E :	P High	J	Multiplet (No)
<u>T1 I</u> co				-			Ti I con				J		•~-•	T1 I cont				******		(110)
0057.69 10003.02 10011.72 10120.90 10066.47 9941.33 9948.98	D D D C D D D	25 25 15 10 8 8 8	3.17 3.15 3.14 3.17 3.15 3.15 3.14	3.39 3.38 3.38 3.38 3.39 3.38	3-3 2-2 1-1 3-3 2-1 2-3 1-3	a ³ D-z ⁵ P°	4995.062 4848.41 4843.989 4839.251 4863.75 4854.727 •4404.276	P B E P B	(0) (1) (00) 10	2.34 2.33 2.34 2.34 2.33	4.71 4.79 4.78 4.77 4.78 4.77	2-3 1-3 0-1 2-3 1-1 2-3		5662.154 5675.413 5689.465 5703.666 5713.895 5708.199 5711.852 5716.450 5720.445	A A B B B B B B	12 9 10 6 3 3 4 4 3	2.31 2.30 2.39 2.38 2.31 2.30 2.39 2.38	4.49 4.47 4.46 4.45 4.44 4.47 4.46 4.45	4-5 3-4 2-3 1-2 0-1 4-4 3-3 2-2 1-1	z ⁵ D°-e ⁵ F (249)
9690.62 8080.55 8098.50 8133.36	P P P	8	3.15 3.17 2.15 3.14	3.42 3.69 3.67 3.66	3-3 3-3 3-3 1-1	(194) a ³ D-w ³ D ^o (195)	4431.754 4431.284 4438.232 4444.267	A B B B	6 4 2 (1)	2.23 2.22 2.24 2.23	5.02 5.01 5.02 5.01	1-2 0-1 2-2 1-1	(218)	5739.08 4825.445 4827.597 4832.065	P B B	3 2 (0)	2.30 2.31 2.30 2.29	4.45 4.87 4.85 4.84	3-4 2-3	z ⁵ p°-f ⁵ f (250)
6419.15 6381.416 6361.41	H E H	(2) (1) (1)	2.17 2.15 2.14	4.09 4.09 4.08	3-2 3-1 1-0	a ³ D-x ³ P° † (196)	*4404.276 4388.077 4375.425	B E	10 3 1	2.24 2.23 2.23	5.04 5.04 5.04	1-1 0-1	(219)	4837.42 4270.139 4273.312	P B B	7n 2	2.28 2.31 2.30	4.83 5.20 5.18	1-2 4-4 3-3	z ⁵ D°-g ³ F (251)
6186.14 6149.743 6138.38	J E I	3 2 1	2.17 2.15 3.14	4.16 4.16 4.15	3-4 2-3 1-2	a ³ D-w ³ F° † (197)	4203.465 4186.01 4200.752 4183.294	B P B	8 6 4	2.24 2.23 2.24 2.23	5.18 5.18 5.18 5.18	3-2 1-1 3-1 1-0	b ³ P-u ³ P° (220)	4291.88 4251.769 4260.738	J B B	(1) 2n 2	2.31 2.30 2.29	5.18 5.20 5.18	4-3 3-4 2-3	(201)
5999.003 6002.640 6018.423	F E L	(0) (1)	3.17 3.15 3.14	4.22 4.21 4.19	3-4 3-3 1-3	a ³ D-v ³ F° (198)	4188.694 4174.473 4136.894	B B	5 3 (1)	2.23 2.22 2.24	5.18 5.18 5.22	1-3 0-1 2-3	ъ ³ Р-q ³ D•	4256.025 4261.609 4266.227 4268.928	A B B E	8n 5n 3n (1n)	2.31 2.30 2.29 2.28	5.21 5.19 5.18 5.17	4-4 3-3 2-2 1-1	z ⁵ D°-e ⁵ D (252)
5052.879 5062.112 5069.351 5023.39 5048.208	A A B H E	8 7 5 (2) (1)	3.17 3.15 3.14 3.15 3.14	4.61 4.59 4.58 4.61 4.59	3-3 3-1 1-0 3-3 1-1	a ³ D-w ³ P° (199)	4140.43 4139.48 4154.865 4150.809 3698.183	P H E B	(1) 2 (0) 3	2.23 2.22 2.24 2.23	5.21 5.20 5.21 5.30	1-2 0-1 3-3 1-1	(231) b ³ P-t ³ P°	4280.069 4278.829 4276.657 4274.408 4237.786 4249.114	B B B	3n 3n 30 (0) (0) 5n	2.31 2.30 2.29 2.28 2.30 2.29	5.19 5.18 5.17 5.17 5.21 5.21	4-3 3-2 2-1 1-0 3-4 2-3	
4921.768 4919.867 4928.342 4948.183	A A A B	12 10 12 3	3.17 3.15 3.14 3.17	4.67 4.66 4.65 4.66	3-4 2-3 1-2 3-3	a ³ D-u ³ F° (300)	3710.186 3705.53 3686.71 3689.671	E J H E	(0) (1) (0) (0)	2.23 2.23 2.23	5.57 5.56 5.58 5.57	3-1 1-0 1-3 0-1	(333)	4258.523 4265.273 4137.284 4143.048	A B A B	4n 3n 10n 7n	2.29 2.28 2.28 2.31 2.30	5.19 5.18 5.17 5.29 5.27	1-2 0-1 4-3	z ⁵ D°-e ⁵ P†
4941.563 4848.487 4864.187 4880.922	B B B	3 8 4 3	3.15 3.17 3.15 3.14	4.65 4.71 4.69 4.67	3-3 3-3 3-2 1-1	a ³ D-u ³ D° (201)	10460.07 10553.02 10565.97	CCC	10 8 5	2.25 2.24 2.23	3.43 3.41 3.39	6-5 5-4 4-3	a ³ H_y ³ G° (223)	4150.557 4120.037 4131.244 4143.280	B B B	3 2 4 3	2.39 2.30 2.39 2.29	5.26 5.29 5.27 5.26	3-2 2-1 3-3 2-2 1-1	(253)
4891.828 4893.90 4821.29 4731.172	B H H	(1) (1p?)	2.17 2.15 2.15 2.17	4.69 4.67 4.71	3-2 2-1 2-3 3-4	a ³ D-t ³ F°	8438.93 8450.89 8416.97 8402.54	D D D	75 75 60 5	2.25 2.24 2.23 2.24	3.71 3.70 3.69 3.71	6-5 5-4 4-3 5-5	a ³ H-x ³ G° (224)	4058.139 4057.612 4060.09 m4064.22 4068.661	A B P P	7 5 T1 (1)	2.30 2.29 2.28	5.35 5.34 5.33 5.32 5.31	4-5 3-4 2-3 1-2 0-1	z ⁵ D°-g ⁵ F (254)
4733.426 4742.129 4759.74 4754.38	B B H H	6 3 (1p?) (1p?)	3.15 2.14 2.17 3.15	4.76 4.75 4.76 4.75	3-3 1-2 3-3 2-2	(202)	7440.60 7489.61 7496.12	E E E	(2) (3)	2.25 2.24 2.23	3.90 3.89 3.87	6-5 5-4 4-3	a ³ H-w ³ G° (225)	4074.356 4071.469 4071.211	B E E	3 2 2	2.31	5.34 5.33 5.32	4-4 3-3 2-2	
4710.186 4698.86 4696.923 4724.679 4708.976	A P B E	18 (67) 4 (2)	3.17 3.15 3.14 3.17 3.15	4.79 4.78 4.77 4.78 4.77	3-3 2-2 1-1 3-2 2-1	a ³ D-t ³ D° (203)	6745.56 5999.668 5715.123 5739.464	P A A	8 9 9	2.23 2.23 2.25 2.24	4.06 4.28 4.41 4.39	4-3 4-5 6-6 5-5	a ³ H-y ¹ F° (226) a ³ H-z ¹ H° (227) a ³ H-y ³ H° (228)	3323.896 3323.660 3325.365 3328.326	E E E	2 2n 1n 1	2.31 2.30 2.29 3.28	6.03 6.01 6.00 5.99	4-5 3-4 2-3 1-2	z ⁵ D°-k ⁵ F† (255)
4684.484 4686.921 4360.487	E E	2 4 4	2.15 2.14 2.17	4.79 4.78 5.00	3-3 1-3 3-2	a ³ D-v ³ P°	5739.975 5756.45 5597.92	B P	4 (2n)	2.23 2.25	4.38 4.39 4.44	4-4 6-5 5-4	a ³ H-y ¹ G°	7038.80 7008.35 7050.65 7010.94	E E E I	6 1 1 1		4.09 4.09 4.09 4.08	2-2 1-1 2-1 1-0	c ³ P-x ³ P° (256)
4354.064 4346.610 4338.476 4343.798	B B B	3 1 1 1	3.15 3.14 3.15 3.14	4.99 4.98 5.00 4.99	3-1 1-0 3-3 1-1	(204)	5565.476 5127.367 5132.931	A E B	9 {1 0	2.24	4.44 4.65 4.64	4-4 6-5 5-4	(229) a ³ H_v ³ G° (230)	6996.63 7004.60 6017.52	E J P	{1 1 1 1 1		4.09 4.09 4.37	1-2 0-1 1-1	c ³ P-y ³ S° (257)
4289.919 4300.52 4311.654	B P B	3 T1 3	3.17 3.15 3.14	5.04 5.03 5.01	3-3 3-3 1-1	a ³ D-r ³ D° (205)	5133.083 4856.013 4870.139	B A A	30 30	2.25 2.24	4.64 4.79 4.77	5-6	a ³ H-z ³ I° (231)	5419.189 5429.139	B A	1 .6	2.33 2.33	4.61	2-2 3-2	c ³ p_y ⁵ s° (258) c ³ p_w ³ p°
4150.963 4159.634 4171.018 4179.860 4180.498	A A B B	10 9 8 (00) (00)	3.17 3.15 3.14 3.17 3.15	5.14 5.13 5.10 5.13 5.10	3-4 2-3 1-2 3-3 3-3	a ³ D-a ³ F° (206)	4868.264 4882.326 4893.065 4778.259	A B B	18 2 3 10	2.25	4.76	4-5 6-6 5-5	a ³ H-x ¹ G°	5448.882 5474.449 5473.517 5404.023 *5446.593	B B B E B	(0) (1) (1) 2 3		4.59	1-1 2-1 1-0 1-3 0-1	(259)
4099.166 4077.148 4065.595 4079.708 4068.144	A B B B	8 4 (0) 6 3	2.17 2.15 2.14 2.15	5.18 5.18 5.18 5.18 5.18	3-2 3-1 1-0 3-3 1-1	a ³ D-u ³ P° (207)	4759.272 4758.120 4742.791 4769.775 4766.330 4747.680	A A B B	25 25 20 4 4	2.23 2.25 2.25 2.24	4.83 4.83 4.83	6-6 5-5 4-4 6-5 5-4	(232) a ³ H-x ³ H° (233)	4805.416 4792.482 4796.210 4812.340 4797.983	A B B B	12 10 6 5 5	2.32	4.90 4.90 4.90 4.90 4.90	2-3 1-3 0-1 2-2 1-1	c ³ P-s ³ D° (260)
4035.828 4033.883 4034.884 4052.930 4043.775	A B B B	10 6 5 2 2	3.17 3.15 2.14 3.17 2.15	5.22 5.21 5.20 5.21 5.20	3-3 3-3 1-1 3-2 3-1	a ³ D-q ³ D° (208)	4734.682 4346.104 4318.631 4325.134	B A A A	3 3 5 10n 9n	2.23 2.23 2.25	4.84 4.83 5.07 5.10 5.09	6-5 5-4	a ³ H-y ¹ H° (234) a ³ H-u ³ G° (235)	4637.887 4637.209 4655.712 4640.431 4619.525 4635.539	B B E E E	8 2 3 2 3 3	2.33 2.33 2.32 2.32	4.99 4.99 4.98	2-2 1-1 2-1 1-0 1-3 0-1	c ³ P _{-V} ³ P° (261)
4016.943 4025.07 8496.03	B P D	3 T1+ 	2.14	5.22 5.21 3.69	3-3 1-3	_р 3р_ _ж 3р•	4321.655 4309.071 8598.18	A B	8n 1 ———	2.24	5.08 6.10 3.69	4-3 5-5 - 4-3	b ¹ G-x ³ G°	*4558.092 4576.551 4598.99 4594.51	B E P	(0)	2.32 2.32	5.04 5.03 5.01 5.02	2-3 1-2 0-1 2-3	c ³ P-r ³ D° (262)
8539.36 8569.72 8600.98 8618.44	D D D	60 50 25 20	2.24	3.67 3.66 3.67 3.66	1-3 0-1 3-3 1-1	(309)	6861.47 6091.175	E	6	2.26	4.06	4-3	(236) bid_yiF° (237) bid_ziH°	*4558.092	В	2	2.33		2-1	c ³ P-x ³ S° (263)
8442.98 8495.51	D D	20 15		3.70 3.68		b ³ P-x ⁵ D° (310)	5823.679	A B	3	2.26	4.38	4-4	(238) b ¹ G_y ³ H° (239)	6012.53 5982.52 5971.07	H H H	{1} {0} 0}	2.42 2.40 2.39	4.47 4.46 4.45	4-5 3-4 2-3	z ³ F°-b ³ G (264)
7654.44 7614.50 7580.55	E E H	(2) (1p1) (1)		3.85 3.85 3.85	3-3 1-3 0-1	b ³ P-v ³ D° † (311)	5644.137 4836.125	A B	18 6	2.26 2.26		4_4	big_yig• (240) big_xig• (241)	5477.695 5481.426 5488.210	A A A	8 6 5	2.40	4.67 4.65 4.63	4-4 3-3 2-2	z ³ F°-e ³ F (265)
7318.39 7361.56 7337.78	E P P	(3)	3.24 2.24 2.23	3.93 3.92 3.91	2-3 2-1 1-0	b ³ P-y ³ P° (213)	4799.797 4424.401	A B	13 2	2.26 2.26		4-4	(341) b ¹ G-x ³ H° (343) b ¹ G-w ¹ G° (343)	5527.606 5518.11 5432.318 5451.965	B P B B	(1) (0) (1)	2.42 2.40 2.40	4.65	4-3 3-2 3-4 2-3	
7273.77 5678.60	E P	(0)	2.23	3.93 4.09	1-2	b ³ P ₋ x ³ Pe	4393.925 4368.941	A B	8 2	2.26 2.26			biG-yiH° (244) biG-u3G° (245)	4563.427 4555.069 4570.906	B B B	5 3 3n	2.42 2.40	5.13		z ³ F°-e ³ G (266)
5780.778 5752.89 5212.371	B I B	3 1 3	2.23	4.37 4.37 4.61	2-1 1-1	b ³ p_y ³ s° (214) b ³ p_w ³ p°	3938.005 3574.245	B E	2n 8	2.26 2.26	5.39 5.71		b ¹ G_v ¹ G° (246) b ¹ G_u ¹ G° (247)	4586.95 4436.64	P H	(1)	2.42 2.43	5.11 5.20	4-4	z ³ Fe_g ³ F (267)
5230.967 5189.61 5212.997	B P B	(ŏ) (o)	2.23	4.59	1-1 1-2 0-1	(215)	9746.86 9717.00 9703.86	D D	15 10	2.30	3.57 3.57	4-4 3-3 2-3		4430.033 4433.578 3708.625	B B	3 3 4n		5.18 5.17 5.74	2-2	z ³ F°-h ³ F (268)
							9702.86	D	3	2.29	3.56	3-3			_					(000)

30						<u>-</u>	REV	IS	E D M	ULTI	PLI	T T	ABLE	<u>-</u>						<u></u>
Labo: I A		y Int	Low E	P High	J	Multiplet (No)	Labo I A	rato Ref	ry Int	Low E	P High	J	Multiplet (No)	Labo I A		ry Int	Low E	P High	J	Multiplet (No)
<u>Ti I</u> con				-		. -	Ti I cor			-				<u>T1 II</u> 00						1/
5648.570 5662.891	A B	5 4	3.48 3.47	4.67 4.65	3-4 2-3	z ³ D°-e ³ F (269)	5832.47 5812.827	H B	<u>{1</u> }	3.32 3.31	5.44 5.43	6-6 5-5	y ⁵ G°-1 ⁵ H	3088.027 3078.645	A	75 50		4.05	41-31 31-31	a4F-z4De
5679.908	В	ž	2.46	4.63	1-2		5797.445 5785.67	B	{1} {1} {1} 1	3.29 3.28	5.43 5.41	4-4 3-3	cont	3075.225 3072.971	A A C	40 40	0.03 0.01 0.00	4.04 4.03 4.03	39-29 39-19	(5)
4548.094 4547.850 4557.857	B E B	3 2 3	2.48 2.47 2.46	5.20 5.18 5.17	3-4 3-3 1-3	z ³ D°-g ³ F (270)	10896.10	g	8	3.34	4.47	 4-5	x ³ F°-b ³ G†	3072.107 3066.220 3066.354	000	30 30 30	0.03 0.01 0.00	4.05 4.04 4.02	35-35 25-25 15-15	
3481.675 3481.126 3472.793	E E E	3 3 2	2.48 3.47 2.46	6.03 6.03 6.03	3-3 2-3 1-1	z ³ D°-e ³ D (271)	10820.31 10793.65	G	5 3	3.32	4.46 4.45	3-4 2-3 	(310)	*3059.741 3057.395	C	10,	0.00	4.05 4.04	35-35 15-35 -	
B250 40					-	.1= .1=0	5995.685	E		3.45	5.50	2-2	y ¹ D°-e ¹ D (311)	3 444.3 06 3 461.4 96	A A	30 20	0.15 0.13	3.73 3.70	43-53 33-43	b ⁴ F-z ⁴ G ^e (6)
7352.16 6716.679	E E	(1) (1)	2.48 2.48	4.16 4.31	1-1	(272)	9506.04 9508.49	D	25 20	3.57	4.87	5-5	y5p0_f5p+	3477.181 3491.053	A	15 10	0.13	3.67 3.65	25-25 15-25	
6677.25	J	(0)	2.48	4.33	1-2	a ¹ P_y ¹ P° (273) a ¹ P_x ¹ D°	9510.81 9511.80	D D	13 8	3.55 3.54 3.54	4.85 4.84 4.83	4-4 3-3 3-3	(312)	3476.982 3489.739 3500.340	000	tr 3 3	0.15 0.13 0.13	3.70 3.67	44-44 34-34 24-24	
5511.795	В	а		4.73	1-0	(274) alp_z1s	9511.55	D	10	3.53	4.83	1-1		3505.45 3513.09	ř F	tr	0.15	3.67 3.65	44-34 34-34	
5206.059	В	5	2.48	4.85	1-1	(275) a ¹ p_w ¹ p° (276)	*8496.03	D	60	3.68	5.13	3–3	alr_vire	3322.936	A	75	0.15	3.86	43-43 32-32	b4F-z4F0
4372.383	A	3	2.48	5.30	1-1	aip_vipe (277)	7214.97	H	(0)	3.68	5.39	3-4	(313) alf_vlg* (314)	3329.455 3335.192 3340.344	A	70 40 35	0.13 0.12 0.11	3.84 3.82 3.81	35-35	(7)
4227.654	В	5	2.48	5.40	1-3	a ¹ P-w ¹ D° (278)	10147.09	c	4	3.90	5.13	 5-5	w ³ G°-e ³ G	3343.770 3346.724	A C D	10 15	0.15	3.84 3.82	19-19 49-39 39-29	
4211.729	В	4	2.48	5.41	1 -2 -	a ¹ P-v ¹ D•	10119.20 10179.92	C	3 3	3.89 3.87	5.11 5.09	4-4 3-3	(315)	3348.844 3308.806	Ç	107	0.13	3.81 3.86	23-13 32-42	
5741.192	В	1	2.49	4.64	2-3	b ¹ D-x ¹ F°	5341.492	В	1	4.31	6.62	_ 1_1	y1p0_e1p	3318.024 3326.762	A	10 20	0.13	3.84 3.82	25-35 15-25	
5298.429	A	4	2.49	4.82	3-1	b ¹ D-x ¹ P° (381)	30111100	-	•	4.02	0.00		(316)	3302.096 3319.063	Ċ	0 (1)	0.15 0.13	3.89 3.85	43-33 33-34	b ⁴ F-z ² F*
5846.143	В	2	2.49	4.85	2-1	b1D_w1P° (382)	Strongest	Uno	lassific	ed Lines	of <u>T1</u>	I		3288.142 3307.717	C	On tr	0.13	3.89 3.85	33-33 33-33	,
4975.344 4237.889	A A	10 7	2.49 2.49	4.98 5.41	2-3 2-2	b ¹ D-w ¹ F° (383) b ¹ D-v ¹ D°	11609.41 11539.50	C	3 5					3276.998 m3299.44	C P	tr Ti	0.13	3.89 3.85	25-25 15-25	
					-	(284)	11403.89 11381.53	00	8 7					3231.315 3248.70	C P	4	0.13 0.12	3.95 3.92	31-21 21-14	b ⁴ F-z ² D° (9)
7189.89	E	2	2.57	4.28	5-5	a ¹ H-z ¹ H° (285)	11230.91	C	5					3220.467 3240.71	C	1 1	0.12	3.92	19-19	
6575.180 5503.897	E A	3 8	2.57 2.57	4.44 4.81	5-4 5-4	alH_ylG° (288) alH_xlG°	101 45.4 8 9981.16 8641.47	C D	8 5 40					3212.70 3168.519	P	40	0.11	3.95 4.05	1 2 2 2	.4m -4m
5120.420	A	13	2.57	4.98	5-6	(287) a ¹ H-z ¹ I°	8418.70 6565.62	D E	10	٧				3162.570 3161.755	C A	35 30	0.13	4.04	31-21 31-11	b ⁴ F-z ⁴ D° (10)
4938.283	A	8	2.57	5.07	5–5	(388) a ¹ H_y ¹ H° (389)	5369.635	A	4	III				3161.205 3155.670	C	25 12	0.11 0.13	4.02	$3\frac{1}{2} - 3\frac{1}{2}$	
4369.682	A	5n	2.57	5.39	5-4	a1H_V1Ge (290)	4599.226 4539.096	A B	5 3	IA IA				3152.251 3154.195	000	15 12	0.11	4.04	25-25 15-15	
4278.231	В	7	2.57	5 .4 5	5–5	a ¹ H-x ¹ H° (291)	4511.176 4495.006	B	3 4	III				*3145.402 m3144.74	P	T1+	0.13	4.05 4.04	25-35 15-25	7
3926.319	В	10	2.57	5.71	5-4	ai _{H-u} ige (292)	4129.166 4121.637	B B	4	III				3987.63	P		0.60	3.70	- 3]-4]	a ² F-z ⁴ G*
6215.212	В	30	2.68	4.67	5-4	z ³ g°-e ³ F	4027.426 3985.246	B B	4 3	III				3981.998 4025.136	B	tr 3	0.57 0.60	3.67 3.67	21-31 31-31	a ³ F-z ⁴ G [•] (11)
6220.460 6221.41	B E	12 8	2.67 2.65	4.65 4.63	4-3 3-2	(293)	3861.079 3846.438	В	3n 6n	IA				4012.372 4056.212	B C	(1)	0.57 0.60	3.65 3.65	35-35 35-35	
5064.068 *5054.070	B B	4 3		5.13 5.11	5-5 4-4	z ³ g°_e ³ g (294)	3836.763 3833.674	B	5 4	IV III				3786.33 3774.650	P	(3n)	0.60 0.57	3.86 3.84	31-41 21-31	a ³ F-2 ⁴ F*
5068.332	В	3	2.65	5.09	3-3		3833.186 3735.660	B B	4 4n	IA				3813.390 3796.899	B	3 3n	0.60 0.57	3.84	31-31 21-21 31-21 22-12	,,
4908.46 4900.625 4900.03	P E P	(7)	2.68 2.67 2.65	5.20 5.18 5.17	5-4 4-3 3-8	z ³ G°-g ³ F (295)	3715.371 3700.055	B B	3n 4n	IA IA				3836.085 3814.580	B	4	0.60 0.57	3.82 3.81	34-24 25-15	
4127.531	A	15	2.68	5.67	5-6	z ³ G°-f ³ H	3644.699 3633.458	E	4 5	IV IV				3759.291 3761.320	A A	300 300	0.60 0.57	3.89 3.85	31-31	a ² F-z ² F*
4123.559 4122.143	B A	10 10	2.65	5.66 5.64	4-5 3-4	(296)	3631.999	E	3	IV				3799.81 3721.632	F B	tr 15		3.85 3.89	31-21 21-31	(,
4149.445 4142.480	B	(o)	2.68 2.67	5.66 5.64	5-5 4-4		3585.852 3556.184	E	3	III?				+3685.192	A	250	(0.60	3.95		a ² F-z ² D*
4032.628	В	3n	2.68	5.74	5-4	z ³ G°-h ³ F (397)	3507.426 3459.431 3435.432	E E	3 3 3	III III I V				3649.01	P		0.57	3.92 3.95		
5259.976	В	3	2.73	5.07	- 2-3	z ¹ D°-e ¹ F	*3130.804\$	Ā	157	IV				3587.130 3561.575	Q C	12	0.60 0.57		31-31 31-31 31-31	a ³ F-z ⁴ D° (15)
4068.981	В	4n	2.73	5.76		210°_f1F (299)	3007.487		.4N	IA				3596.048 3573.737 3552.85	A C P	60 20	0.57	4.04 4.03 4.05	33-23 23-13 23-33	
5351.072	В	4	2.77	5.07	- 3-3	z1Fo_e1F								3349.035	C	75	0.57	4.29		a ² F-z ² G°
4224.795	В	5	2.77	5.69	3-4	(300) z ¹ F°_e ¹ G (301)		P 1:			List A		1940	*3341.875§ 3372.208	A C	100	0.57	4.26 4.26	31-41 22-31 32-32	(16)
4123.287	В	5n	2.77	5.76	3-3	z ¹ F°_f ¹ F (302)	3349.399/ 3361.213 3372.800	A G	125 125 100	0.05 0.03 0.01	3.73 3.70 3.67	49-59 39-49 39-39	a ⁴ F-z ⁴ G° (1)	4762.77	r	(1)	1.08	3.67	_	
3606.062	E	1	2.77	6.19	3 – 2	z ¹ F°_f ¹ D (303)	3383.761 3380.278	A	125 30	0.00 0.05	3.65 3.70	15-25		4798.535 4806.33	CP	(a)	1.08	3.65 3.65	1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ³ D-z ⁴ G° (17)
6098.655	В	7	3.05	5.07	- 4-3	z ¹ G°-e ¹ F	3387.834 3394.574	A	50 40	0.03 0.01	3.67 3.65	31-31 31-31 41-31 31-21		4469.160	σ	tr	1.08	3.84	31-31 11-31	a ² D-z ⁴ F
4808.531	В	5	3.05	5.62	4-5	(304) z1G°-e ¹ H (305)	3407.205 3409.809	C	3 4	0.05 0.03	3.67 3.65	44-3 1 32-22		4493.53 4500.32	C P	(1)	1.08		25-25	
4688.392	В	3	3.08	5.71	- 1 -3	z ³ g•_e ³ p	3234.517 3236.573	A A	75 70	0.05 0.03	3.86 3.84	43-43 33-33 33-33 33-33	a ⁴ F-z ⁴ F° (3)	4518.30 4525.21	P P		1.08 1.08	3.81	35-15 35-15	
	-				-	(306)	3239.037 3 241.984	A	60 60	0.01	3.82 3.81	23-25 13-15	\~/	4395.031 4443.808	A A	60 50	1.08	3.89 3.85	31-31 11-31	a ² D-z ² F° (19)
7069.11 7039.36 7035.86	I E E	(2) (2)	3.17 3.14 3.13	4.91 4.89 4.88	3-4 2-3 1-2	у ³ D°-f ³ F (307)	3254.250 3252.914 3251.911	000	30 40 30	0.05 0.03	3.84 3.82	44-34		4450.487	В	10	1.08			
					_		3217.056 3222.843	A	30 30 35	0.01 0.03 0.01	3.81 3.86 3.84	31-21 31-14 31-44 21-31 11-21		4294.101 4337.916 4344.291	A A B	40 50 2	1.08 1.08 1.08	3.95 3.92 3.92	13-13	a ² D-z ² D•
7996.53 •7978.88	E	(3) (4) (2)	3.32	4.85	6-5 5-4	у ⁵ С° <u>-1</u> 5 _F (308)	3229.193	C	40	0.00	3.82		4 2	4287.89 3	В	និ	1.08	3.95	15-02	
7961.58 79 43.93 7926.37	E E	(2) (in [†])	3.29 3.28 3.27	4.84 4.83 4.83	4-3 3-2 2-1		3214.750 3226.771 3197.518	C	4 2		3.89	41-31 31-31 31-31 21-31 21-31	a⁴F-z²F° (3)	4161.524 4167.67	B P	1		4.05	31-31 11-21	a ³ D-z ⁴ D•
7909.34	P		3.30	4.87	5-5		3197.518 *3213.145§ 3184.09		2 1 2	0.01	3.89 3.85 3.89	23-34 23-23		4173.537 4184.329 4190.29	B C P	1 0 (1)	1.08		31-31 11-11	
5804.265 5785.979	A A	5n 5n	3.32 3.31		6-7 5-6	у⁵С°-1⁵Н (309)	3203.435	Ċ	3	0.00	3.85			4196.64	P	(1)	1.08	4.02	31-11 12- 1	
5774.037 5766.330 5762.295	A A B	5n 4n 4n	3.29 3.28 3.27	5.43 5.43 5.41	4-5 3-4 2-3		3143.756 3157.397	C	10 3	0.01	3.95 3.92	31-21 21-11 21-21	a ⁴ F-z ³ D° (4)	3480.897	C	0	1.38	4.62	1출- 호	(32) (32)
0100.000	<i>D</i>	υæ	3.27	J. 41	2-3		*3130.804	À	15	0.01	3.95	3 } -3 }								

I A	rator; Ref		E P Low High	J Multiplet (No)	Laborato I A Rei	ory Int	E P Low Hig	J 1	Multiplet (No)	Labors I A F	tory lef Int	E P Low High	J Multiplet (No)
<u>1 II</u> 601	ntinu				Ti II continu		_			Ti II cont		3-	,
352.94 375.293 378.922§ 349.370	P C C C	T1 ⁺ 3 35 2	1.08 4.87 1.08 4.84 1.08 4.84 1.08 4.87	21-21 a ³ D-y ³ D° 11-12 (23) 21-12 (23) 11-32	m3218.26 P 3221.76 P 3228.36 P m3234.50 P 3231.71 P	Ti ⁺	1.18 5.0 1.16 4.9 1.16 4.9 1.18 4.9 1.16 4.9	3-12 32-12	a ⁴ P_y ⁴ D° cont	5454.05 5492.82 5490.65	P P P P	1.57 3.84 1.56 3.82 1.57 3.82 1.56 3.81 1.57 3.81	13-13
339.664 328.605 336.122	000	30 30 20		$3\frac{1}{2}-1\frac{1}{2} a^{3}D-z^{3}P^{0}$ $1\frac{1}{2}-\frac{1}{2}$ (34) $1\frac{1}{2}-1\frac{1}{2}$	3058.090 C *3059.741 C 3063.502 C	50 6 4	1.18 5.2 1.16 5.1 1.16 5.1	1 33-33 11-12	a ⁴ P-z ⁴ P° (47)	5336.809 5381.020	B 4 B 1 B 0	1.57 3.89 1.56 3.85 1.57 3.85	$3\frac{1}{2}-3\frac{1}{2}$ b ² D-z ² F° 1 $\frac{1}{2}-3\frac{1}{2}$ (69)
195.717 192.26 190.874	C	3 2 30	1.00 4.54	31-12 a ³ D-z ⁴ 5° 12-12 (35)	3071.242 C 3066.514 C 3046.685 C	15 3 30	1.18 5.1 1.16 5.1 1.16 5.2	9 25-15 3 15- 5 1 15-25		5188.700 5226.534	C 6 B 5	1.57 3.95 1.56 3.92	$3\frac{1}{2}-3\frac{1}{2}$ $b^2D-z^2D^0$ $1\frac{1}{2}-1\frac{1}{2}$ (70)
302.535 305.990	A C	40 1	1.08 4.93 1.08 4.93	31-31 a ² D-y ² F° 11-31 (36) 31-31	3056.740 C	(1)	1.23 3.8	_ ` `	a ² P-z ⁴ F°	5154.061 4995.89	C 0 B 0 P	1.57 3.92 1.56 3.95 1.57 4.05	12-32 3-3-3 b ³ D-z ⁴ D°
118.834 136.77 140.04 152.14 155.50	C P P P	a tr	1.08 5.04 1.08 5.01 1.08 5.01 1.08 4.99 1.08 4.99 1.08 4.98	31-31 a3D-y4D° 11-32 (37) 31-32 11-12 32-14	4763.84 P 4792.39 P 4708.663 C 4533.966 B	tr 30		- 41 -1	a ³ p_z ⁴ F° (48) a ³ p_z ³ F° (49)	5013.718 5005.18 5037.81	P C tr P P T1	1.56 4.04 1.57 4.04 1.56 4.02 1.57 4.03 1.56 4.03	1½-2½ (71) 2½-2½ 1½-1½ 3½-1½
987.40 996.88 999.92	F P P	1		32-32 a ³ D-z ⁴ P° 13-12 (38) 32-12 13-2	4563.761 A 4589.961 B	30 3			(49) a ² P_z ² D ⁶ (50)	3757.684 3776.062	B 50 B 30 B 6	1.56 4.84 1.57 4.84	$3\frac{1}{2}-3\frac{1}{2}$ b ² D-y ² D° $1\frac{1}{2}-1\frac{1}{2}$ (72) $3\frac{1}{2}-1\frac{1}{2}$
03.37 984.35	P P			-2 ~2 -	4399.767 A 4394.057 B 4418.340 B 4407.678 C 4432.089 C	35 2 1 1	1.23 4.00 1.23 4.00 1.23 4.00 1.23 4.00	\$ 2-2	a ³ P_z ⁴ D° (51)	3724.106 3696.39	C tr C (1)	1.56 4.87 1.57 4.89 1.56 4.90	$3\frac{1}{2}-1\frac{1}{2}$ $b^{2}D-z^{2}P^{2}$ $1\frac{1}{2}-\frac{1}{2}$ (73)
732.96 767.30 794.84	P P		1.13 3.73 1.11 3.70 1.13 3.70	41-51 a ³ G-z ⁴ G° 31-41 (39) 41-42 32-31 44-30 32-32	3641.330 A 3624.826 A	tr 100 70	1.23 4.63 1.23 4.63 1.23 4.63		a ³ P-z ³ S° (53)	3666.11	B 20 P P	1.56 4.89 1.57 4.94 1.56 4.94	3-1-1 b2p-z4s•
349.18 365.620	PC	tr	1.11 3.67 1.13 3.67 1.11 3.65	32-32 42-33 32-32	3388.755 C 3402.423 C 3416.957 C	8 8 3	1.23 4.8 1.23 4.8 1.23 4.8			3662.237	C 60 C 40 C (3)	1.57 4.95 1.56 4.93 1.57 4.93	$3\frac{1}{2}-3\frac{1}{2}$ b ² D-y ² F° 1 $\frac{1}{2}-3\frac{1}{2}$ (75)
506.74 520.37 545.144 552.25 182.40	P C P P	tr		41-41 a ³ G-E ⁴ F° 32-32 (30) 42-32 (30) 32-42	3374.352 C 3352.071 C *3366.1769 C 3360.16 P	8 5 8	1.23 4.89 1.23 4.99 1.23 4.99 1.23 4.89	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ³ P-z ³ P° (54)	3565.326 3576.38 3593.093 3596.55	C 3 F (On) C 2 C tr	1.57 5.04 1.56 5.01 1.57 5.01 1.56 4.99 1.57 4.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
468.493 501.270 444.559	A A B	50 40 1	1.13 3.89 1.11 3.85 1.11 3.89	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $a^{2}G-z^{2}F^{\circ}$ (31) $3\frac{1}{2}-3\frac{1}{2}$	3337.85 F 3326.68 P 3312.90 P	3	1.23 4.9 1.23 4.9	1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ³ P_y ² F° (55) a ³ P_z ⁴ S° (56)	3608.89 3110.095	P C 8 C 2	1.56 4.98 1.57 5.54	1½-½ 3½-3½ b ² D-x ² D°
341.369 327.34 318.18	B P P	1	1.11 3.95 1.13 4.05 1.11 4.04	3½-3½ a ³ G-z ³ D° 4½-3½ a ³ G-z ⁵ D° 3½-3½ (33) 3½-3½ (33)	3266.43 F 3269.77 F 3283.14 P	{1 1}	1.23 5.0 1.22 4.9 1.23 4.9	1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(57)	3108.927 3097.626	C 6	1.56 5.54	
905.92 900.546 913.464	P A A	70 60	1.11 4.05 1.13 4.29	31-31 (30) 41-41 a ³ 0-2 ³ 0° 21-21 (34)	m3279.97 P 3293.48 P m3101.52 P	T1 ⁺	1.23 4.99 1.23 4.99	12- 2		3043.851	C 5 C 1		$\begin{array}{ccc} 3\frac{1}{2} - 1\frac{1}{2} & b^{2}D - y^{2}P^{\bullet} \\ 1\frac{1}{2} - \frac{1}{2} & (78) \\ 1\frac{1}{2} - 1\frac{1}{2} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$
32.007 382.28 379.995	B P C	4		43-43 a ³ G-2 ³ G° 32-32 (34) 43-33 32-42 32-42 a ³ G-y ³ D°	3103.975 C 3115.088 C 3109.92 P 3122.065 C	T1 3 1	1.23 5.2 1.23 5.1 1.23 5.1 1.23 5.1 1.23 5.1		a ³ P_z ⁴ P° (58)	5781.73 5814.62 5860.92	P P P	1.58 3.73 1.56 3.70 1.58 3.70 1.56 3.67	52-52 a ³ H-z ⁴ G° 42-45 (79) 53-45 44-35
329.397 332.280 316.88	A C P	35 30	1.13 4.95 1.11 4.93 1.11 4.95	41-31 a ³ G-y ³ F ⁶ 31-22 (36) 32-32	4657.210 C 4698.67 P	tr		: :	b ⁴ P-z ² F ⁴ (59)	5691.99 5396.3 5422.47	P F (1) F (1)	1.56 3.73	
155.63 165.24 143.68	P P P		1.13 5.04 1.11 5.01 1.11 5.04	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $\mathbf{a}^{3}\mathbf{G}-\mathbf{y}^{4}\mathbf{D}^{\circ}$ $3\frac{1}{2}-3\frac{1}{2}$ (37)	4719.515 C 4544.009 C 4580.458 C	(1) tr (1)	1.24 3.8 1.24 3.9 1.23 3.9	34-35 312-15	b ⁴ P-z ³ D° (60)		P P	. =	.1 -1 2- 2
329.29 36.345	P C	Ţ1 (1)			4600.28 P 4524.732 C 4568.312 C	(17) (1)	1.24 3.93 1.23 3.93 1.22 3.93	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b ⁴ P_z ³ D° (60)		A 50n	1.58 4.29 1.56 4.26 1.56 4.29	42-32 an -zor (81) 51-42 an -zog 45-32 (82) 42-42
55.75 682.74 682.71 689.46	P P P	Ti	1.16 3.81 1.18 3.82 1.16 3.81 1.18 3.81	21-32 a ⁴ P-z ⁴ F° 12-32 (38) 2-12-32 12-12 22-12	4395.848 B 4390.977 B 4398.314 C 4409.22 C	a tr (1) tr	1.34 4.01 1.33 4.01 1.34 4.01 1.33 4.01 1.33 4.01 1.34 4.01	34-34 11-34 3-14 1 35-34	b*P-z*D* (61)	3224.241 3218.270	C (O) C 35 C 25	1.56 4.95 1.58 5.40 1.56 5.40	4½-3½ a ³ H-y ³ F° (83) 5½-4½ a ³ H-y ³ G° 4½-3½ (84) 4½-3½
549.82 583.443 509.26	P C P	(1)	1.18 3.89 1.16 3.85 1.18 3.85	2-3 a4p_z2po 1-2 (39) 2-2 (39)	4409.519 C 4411.936 C 4427.90 P 4423.22 P	tr (1)	1.23 4.03 1.22 4.03 1.24 4.03 1.23 4.03	11-11 1-11 1-11 11-11		3314.14 3017.187 3029.730	F 1 C 50 C 35	1.56 5.40 1.58 5.67 1.56 5.64	42-42 51-51 a ³ H-z ³ H° 41-41 (85) 51-41
41.73 170.864 195.46	P B P	tr	1.18 3.95 1.16 3.93 1.18 3.93	21-21 a ⁴ P-z ³ D ⁶ 11-11 (40) 21-12 12-25 1-11	3635.36 P 3627.71 C	(1)	1.23 4.63 1.22 4.63	1		3038.706	C 6 2	1.50 5.67	
117.718 164.458 190.052	B B B	_		22	3394.37 P m3411.68 P 3422.661 C 3383.57 P 3404.97 C	Ti (1) (1)	1.24 4.8° 1.23 4.8° 1.24 4.8° 1.23 4.8°	21-21 11-11 12-11 12-11 11-21	63)	5183.72	B 1 E 2 C tr P	1.88 4.29 1.88 4.26 1.88 4.29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
301.928 312.861 307.900 314.979	B A A B	15 35 40 40	1.16 4.03 1.18 4.04 1.16 4.03 1.16 4.03	21-31 a4p-z4p° 11-22 (41) 21-12 22-32 11-12 2-12 12-12 14-14	3379.930 C m3361.07 P 3369.212 C	in Ti 2	1.24 4.8 1.23 4.9 1.23 4.8	2-12 3-14 12-1	b ⁴ P_z ³ P° (64)	4028.332 4053.814 4039.64	B 7 B 3 P	1.88 4.95 1.88 4.93 1.88 4.95	43-3½ b ² G-y ² F° 33-3½ (87) 32-3½
30.708 320.965 366.00	B B	0 1 6		-2- 2	3354.54 P 3362.653 C	1	1.22 4.89	$\frac{2}{2} - 1\frac{2}{2}$		3504.890 3510.840 3509.844	A 60 C 3	1.88 5.40 1.88 5.40 1.88 5.40	41-41 b ³ G-y ³ G° 32-32 (88) 41-32 34-44
61.910 36.998	c c	1 tr		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3332.111 A 3321.700 C 3315.324 C	25 10	1.24 4.94 1.23 4.94 1.23 4.94	23-14 13-14 12-12 1 2-12	(65)	*3261.596 3287.657	C tr A 60 A 40	1.88 5.67 1.88 5.64	$\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ b ² G-z ² H° 3 2 -4 2 (89)
550.548 564.30 523.39 546.91	C P P	1	1.10 4.84 1.18 4.84 1.16 4.87 1.16 4.84	21-21 a ⁴ P-y ² D° 12-12 (43) 22-14 13-25 2-12	*3248.602\$ C *3261.596 A 3272.080 C 3271.652 C	50 60 25 25	1.34 5.04 1.33 5.03 1.33 4.99 1.34 5.03	34-34 14-24 1-14 32-34	(66)	3286.756 3103.804 3089.401	C 50 C 15	1.00 0.01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
322.98 301.71 309.53 398.21	PFP	, , - ,	1.18 4.89 1.16 4.90 1.16 4.89 1.16 4.90	2-1 a ⁴ p-z ³ p° 1-1 (44) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3278.290 C 3282.329 C 3288.428 C 3288.575 C	5	1.23 4.9	3-1-1		6559.580	P (2)	2.05 3.95 2.04 3.92	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $
906.053 176.774 163.686	o o	tr 5 4	1.16 4.89 1.18 4.94 1.16 4.94	½-1½ 3½-1½ a ⁴ P-z ⁴ S* 1½-1½ (45) ½-1½	3106.234 C 3110.620 C 3112.050 C 3119.800 C	35 20 10 15	1.24 5.2 1.23 5.1 1.23 5.1 1.24 5.1	31-21 15-15 3-15 31-15	b*P_z*P° (67)	6607.02 4805.105	P B 2 B 1	8.05 0.55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
360.259\$ 195.994 305.64 318.44	C P P	3 tr		2-12 22-32 a ⁴ P-y ⁴ D* 12-32 (46) 2-12	3117.669 C 3097.186 C 3105.084 C	20 25 20	1.23 5.10 1.23 5.20 1.22 5.10	12-2		4374.825 m4400.63		3.05 4.87 3.04 4.84 3.05 4.84	$\begin{array}{ccc} 1 & -3 & b^{3} & p - y^{3} & p^{3} \\ 1 & -1 & (93) \\ 1 & 2 - 1 & 2 \end{array}$
.10. 94	•		1.10 4.88	5 ─1호									

Labor I A	rator Ref	y Int	E Low		J	Multiplet (No)	Labor I A	ator: Ref		E Low	P High	J	Multiplet (No)	Labor I A			E Low	P High	J	Multiplet (No)
T1 II con 4350.834 4316.807 4337.33	C B C	1 1 (1)	2.05 2.04 2.05	4.89 4.90 4.90	1 1 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ² P-z ² P° (94)	T1 II con 3208.607 3175.66 3178.630	000	1n 2n 3n	3.84 3.84 3.82	7.69 7.73 7.70	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	z ⁴ F°-e ⁴ F cont	<u>V I</u> cont: 3867.602 *3847.323§ 3844.438	C	15 20 20	0.04 0.03 0.00	3.23 3.22 3.21	3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ⁴ F-y ⁴ F° cont
4330.264 4271.94 4252.05	B P P	0	2.05 2.04	4.94 4.94	$\frac{1\frac{1}{2}-1\frac{1}{2}}{\frac{1}{2}-1\frac{1}{2}}$	b ² P-z ⁴ S° (95)	3180.225 *3128.640\$ 3127.883 3155.91	C C P	2n 10n 10n				z ³ F°_e ³ F (131)	3876.086 3890.184 *3925.240 3841.890 3862.223	00000	30 35 10 5	0.07 0.04 0.07	3.25 3.21 3.21 3.25 3.21		a ⁴ F-z ² G* (8)
4173.05 4181.17 4200.40 4197.95	P P P		2.04 2.05 2.04	4.99 4.99 4.98	12-12 12-12 12-12	b ² P-y ⁴ D° (96)	3181.84	c -	8n				z ² D°-e ² F (132)	3855.841 3840.752	000	60r 60r 60r	0.07 0.04	3.27 3.25	41-31 31-21	a ⁴ F-y ⁴ D° (9)
4217.34 3907.65 3912.32 3929.15 3923.39	P P P P		2.05 2.04	5.21 5.19 5.19	13-23 5-15 13-15	b ² P-z ⁴ P° (97)	3182.57 2990.16 2979.199	C C	6n 10 10	3.95 3.92	8.08	31-31 11-31 -	z ² D°-f ² F (133)	3828.559 3818.244 3822.009 3813.492 3808.521 *3794.964	000000	60 30 60 40 50	0.00 0.04 0.02 0.00	3.24 3.23 3.27 3.25 3.24 3.27	1 - 2 32-32 23-32 12-12	
3940.32 3535.408 3520.253	P A C	40 20	2.05	5.18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b ² P-x ² D° (98)	3351.67 3364.9 3369.67	C F. E	in in On	4.05 4.04 4.03	7.73 7.70 7.69	31-41 21-31 11-31	z ⁴ D°-e ⁴ F (134)	3793.614 3817.844 3803.902	o o	8 8 6	0.00	3.25 3.30 3.28	1출-3출	a ⁴ F-y ⁶ D* †
3533.868 3456.390	Č C	2 20	2.05	5.54	15-15	<u>.</u> '	3483.80 3492.39 3459.03	C F	4n 3n	4.29	7.83 7.80	— 4월-3월 3월-2월	z ³ G°-e ³ F (135)	3791.326 •3781.393	C C	3	0.00	3.27 3.26		a ⁴ F_y ⁶ D [•] † (10)
3452.470 3465.562 3443.387	000	4 3 1	2.04 2.05 2.04	5.61	13- 3 13- 3 2-12	b ² P-y ² P° (99)	3022.820 3023.86	C C	(On) 15 12	4.29 4.26	8.37 8.35	32-32 32-32	z ² G•_e ² G (136)	3713.957 3721.358 3298.139	Ċ C	3 15	0.07	3.36		a ⁴ F-z ³ F• † (11) a ⁴ F-y ⁴ G•
8979.34 9252.67 9027.90 7214.78	P P P		2.58 2.59 2.59 2.59	3.95 3.92 3.95	31-21 31-11 31-12 31-21	b ² F-z ² D° (100)	3414.03	F	(0)			-	y ⁴ D°-f ⁴ F (127)	3283.311 3271.637 3263.238 3308.246 3291.676 3277.939	000000	15 12 15 3 4 5	0.00	3.79 3.78 3.80	31-41 21-31 11-21 41-41 31-31 21-31	a ⁴ F-y ⁴ G° (13)
7355.46 7323.20	P P		2.59 2.58	4.26	32-32 32-32	b ² F-z ² G° (101)	Strongest 3194.76	C	6n?	d Lines	of <u>T</u> 1	Ш		3249.566 3230.646	C	10 6				a ⁴ F-x ⁴ F°† (13)
5379.19 5468.44 5396.59	P P P		2.58 2.59 2.59	4.87 4.84 4.87	31-21 31-11 31-21	b ² F-y ² D° (102)	3174.80 3164.91 3045.085	C F C	5 8 V 5n	+ 1				3215.375 3204.196 •3254.773§	C E	4 3 10	0.07	3.86	$\frac{13-13}{42-32}$	
5211.544 5268.62 5252.04 5227.87	C P P	0	2.58 2.59 2.58 2.59	4.95 4.93 4.95	31-31 31-21 31-21 31-31 32-32	b ² F-y ² F° (103)	T1 IV I	P 43	.06	lnal A		A De		3185.396 3183.96 3183.406 3183.982 3207.410	C F C C C	200R (125R) 150R (150R) 20	0.02	3.09	42-52 32-43 32-33 12-33 44-43	a ⁴ F-x ⁴ G ^e (14)
4367.657 4386.858 4375.35	B B P	15 10	2.58 2.59 2.58	5.40	31-41 21-31 31-32	b ² F-y ² G° (104)	5398.82 5492.43	A A	8 6	26.22	28.51 28.47	1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	5 ² 8-5 ² P°	3202.381 3198.012 3226.106	000	25 20 4	0.04 0.03 0.07	3.89 3.88 3.89	35-35 35-25 45-35 21 31	
4163.644 4171.897 4174.088	A A B	40 30 (2)	2.58 2.59 2.59	5.54 5.54 5.54	31-21 31-11 31-21 31-31	b ² F-x ² D° (105)	3576.44 3541.44 4397.37	A A	3	28.47 29.15	31.95 31.95	12-02 2-12 32-22	5 ² P°-5 ² D 4 ² F°-5 ² D	*3217.1219 3091.437 3091.552	E C D	10 20 15	0.04		3½-3½ 4½-3½ 3½-3½	a ⁴ F-x ⁴ D ⁶ (15)
4064.350 3761.866	B B	(1) 15	2.59 2.58	5.62	3}-1}	b ² F-y ² P°	4403.54 *4647.40		3)5 ² G-6 ² H°	3093.24 3090.40 3069.645 •3073.823	F C C	67 (1) 30r 60r	0.00	4.01 3.99 4.06 4.03	25-15 15- 5 35-35 25-25	
3748.010 3739.6 3770.412	B F C	10 tr (1)	2.59 2.58 2.59	5.88 5.88 5.86	31-31 31-31 32-31	(106) b ² F-x ² F° (107)								3080.146 3052.194 3060.93	000	6 20 2	0.00	4.01 4.06 4.03	15-15 25-35 15-25	
6212.30 5473.517	F B	(1)		4.62	 	a ² S-z ² S° (108) a ² S-z ² P° (109)	<u>VI</u> IP 5632.469 *5592.962		Anal 1 1	0.07	2.26	Nov 19	940 a ⁴ F_z ⁶ D°	3063.734 3054.89 3050.890	C C	12 1 35r	0.00	4.05 4.04 4.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ⁴ F_Z ² P° (16)
5452.03 4822.39	F P	{1 1}	2.63 2.63	4.90 5.19		(109) a ³ S_z ⁴ P° (110)	5557.453 5527.72 5560.548	A C	1 (1) (3) (1) (4)	0.02 0.00 0.04	3.24 2.23 2.26	25-15 15-3 35-35	a ⁴ F_z ⁶ D ^e (1)	3066.375 3060.460 3056.334	000	125R 125R 100R	0.07 0.04 0.02	4.09 4.07 4.06	41-41 31-31 31-31 31-31	a ⁴ F-w ⁴ F° (17)
4839.251 3144.730 3145.402	CCC	(1) 1 0		5.18 6.56 6.56		a ² S-x ² P° (111)	5535.382 5515.371 5515.083	A B A	1	0.07	2.31	12-12 12-12 42-52	a ⁴ F-z ⁶ F° †	3053.65 3082.109 *3073.823 3066.51	F C F	80R 50r 60r 20	0.00 0.07 0.04 0.03	4.06 4.04	12-12-12-12-12-12-12-12-12-12-12-12-12-1	
6717.911 6680.26	C F	(1n) (1)	3.11 3.08	4.95 4.93	-	o ² D-y ² F° (112)	5496.030 5483.471 4881.554	B B	(3) (1) 50w	0.02	2.29 2.27 2.60	31-41 32-32 41-31	a ⁴ F-z ⁶ F° † (3) a ⁴ F-z ⁴ D°	3044.936 3043.134 •3043.5559	000	50r 50r 50r	0.04 0.03 0.00	4.07	15-05	
6785.25 5072.30 5010.202 5069.12	P C F	3 tr tr	3.11 3.08 3.11	4.93 5.54 5.54 5.54	3 2 - 3 2 3 2 - 3 2 1 2 - 1 2 2 3 - 1 4	c ² D-x ² D° (113)	4875.462 4864.741 4851.483 4827.458	A A A	40w 40w 40w 30 35	0.04 0.03 0.00 0.04	2.57 2.55 2.54 2.60 2.57	31-21 21-11 11-1 31-31 21-21	a ⁴ F-z ⁴ D ⁰ (3)	2977.539 2962.772 2954.332 2957.33	0000	35r 30r 30 101	0.07 0.04 0.03 0.04	4.21 4.19	42-32 32-32 32-12 32-32	a ⁴ F_w ⁴ D ⁶ † (18)
5013.38 4911.205 4874.025	P B B	0 tr			-2 -2	c ² D_y ² P° (114)	4831.642 4832.427 4784.480 4799.786	A A A	30 5 5	0.00	2.55 2.60 2.57	13-13 33-33 13-32		6243.11 6251.83 6256.906	A A A	30 30 8	0.30	2.28 2.26 2.25	 41-41 31-31	a ⁶ D-z ⁶ D° (19)
4855.95 4488.319	P B	15	3.11				4586.364 4580.394	A A A	60w 50w 40w	0.04	2.75 2.73 2.71	41-51 31-41 31-31	a ⁴ F-z ⁴ G° (4)	6258.595 6296.518 6292.858	A A A	8 15 20	0.36 0.30 0.39	2.26 2.25	43-33 33-23	
4411.080 4456.650 3644.87	B C P	15 tr	3.08 3.11 3.11	5.88	$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	c ² D-x ² F° (115)	4635.176 4619.771 4606.146	A A A	40w 15 25 15	0.07	2.70 2.73 2.71 2.70	19-23 49-45 39-39 29-29		6285.185 6274.670 6199.202 6216.368	A A A	20 15 30 30	0.27 0.29		3 - 4 - 4 - 5	
3633.99 3664.86 3635.64 3666.592	P P C	(On)	3.08 3.11 3.08 3.11	6.48 6.48 6.48	15-25 25-25 15-15 25-15	c ² D-x ⁴ D° (116)		B A C	15 (2) 1 50w	0.07	3.71 3.70	43-33 32-22	.4r4ro	6230.736 6242.80	A A A	30 15 15	0.27	2.25 2.24		_6n6ro
3652.81 3578.687 3550.19	P C P	(0)	3.08	6.46	1½- ½ 3-1-1	c ² D-x ² P° (117)	4341.013 4332.823 4330.024	000	40w 30w 30w	0.04	2.88 2.87 2.85	35-35 25-25 15-15	(5)	6170.340 6189.350 6207.251	A A A	8 3 (5)	0.29 0.27 0.27	2.29 2.27 2.25	31-41 31-31 11-21	a ⁶ D_z ⁶ F° (30)
3549. 27 3524.87 3491.19	P C P	tr					4355.943 4309.795	000	125r 10 10 20	0.04 0.03 0.04	2.87 2.85 2.90	33-23 33-13 33-43	a ⁴ F-z ⁴ F° (5)	6224.507 6233.187	P A A	15 15 12	0.30 0.29 0.27	2.27 2.25	31-31 31-31 31-31	
3519.67 3496.29	P P		3.11	6.62	21-13 12-22	c ² D-w ² D° (118)	4307.184 *4234.000	c c				32-32 12-32 32-33	a ⁴ F-z ³ D°	6245.214 *6268.841	A A	6 2 8	0.26 (0.30 0.29	2.27 2.25	\$- 2	
3090.051 3081.575 3072.54 3063.280	CCEC	8n 5n (On) 3	3.73 3.70 3.67 3.65	7.73 7.70 7.69 7.68	51-41 41-31 31-31 31-31	z ⁴ G°-e ⁴ F (119)	4259.312 4200.89 *4234.524\$ 4176.793	C C B	8 1 8 (3)	0.03	3.91 2.95 2.91 3.95	15-35	a ⁴ F-z ² D° (6)	6366.32 6361.236 4460.292 4459.760	A A C	7 5 50 30	0.27 0.27	2.24 2.24		a6p_z6pe
3194.56 3194.26 3192.68 3189.52 3213.59	00000	8n? 5n? 4n 5n tr			_	z ⁴ F°-e ⁴ F (120)	3902.250 3875.075 3864.862 3855.370 *3909.894 3892.859	000000	50r 35 35 30 20 25	0.04 0.03 0.00 0.07	3.23 3.21 3.20 3.22 3.21	41-41 31-31 21-11 11-11 41-31 31-21	24F_y4F° (7)	4457.479 4437.837 4441.683 4444.207 4419.935 4438.515	0000000	15 20 25 20 12	0.27 0.29 0.27 0.27 0.27	3.04 3.07 3.05 3.04 3.07 3.05	32-32 32-32 12-12 32-32 12-12 32-32	a ⁶ D_z ⁶ P° (21)

	atory Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref	Int	E P	J ;h	Multiplet (No)		ratory Ref Int	E Low	P High	J Multiplet (No)
VI conti				VI continued				•	V I cont				(NO)
4379.238// *4384.722 4389.974 4395.228 4400.575 4406.641 4407.637	C 150rw C 135r C 100 C 80 C 60 C 80 C 70	0.26 3.07 0.30 3.10	41-53 a ⁶ D-y ⁶ F° 32-42 (22) 23-32 13-22 2-12 43-43 33-33	5743.438 A 5737.040 A 5727.662 A •5782.601 A 5761.411 A	18 35 30 2 3	1.08 3.1 1.06 3.1 1.05 3.1 1.08 3.1 1.06 3.1	$3\frac{1}{2} - 3\frac{1}{2}$	•	4113.518 4092.407 4091.945 4124.072 4107.487 4093.497	C 12 C 8 C 3 C 5 C 4 C 5	1.18 1.21 1.19	4.21 4.21 4.19 4.21 4.19 4.19	21-32 a ⁴ P-w ⁴ D°† 11-22 (52) 2-12 2-22 11-12 2-2
4408.204 *4408.511 4429.796 4426.005 4421.573 4416.474	C 70 C 90 C 15 C 20 C 20 C 20	0.27 3.07 0.26 3.06 0.30 3.09 0.29 3.07 0.27 3.06	31-31 32-32 11-11 12-12 41-32 32-32 31-12 12-2	5731.257 A 5776.670 A 5627.638 A 5624.605 A 5624.895 A 5626.014 A	30 4 30 20 10 8	1.06 3.2 1.08 3.2 1.06 3.2 1.05 3.2 1.04 3.2	7 31-31 5 21-2	a ⁴ D-z ² G° (36) (36) a ⁴ D-y ⁴ D° (37)	3533.676 3529.735 3533.757 3553.271 3545.339 3543.500 3569.083	C 10 C 10 C 6 C 6 C 8 C 8	1.19 1.18 1.21 1.19 1.18	4.71 4.69 4.67 4.69 4.67 4.66 4.67	2-3-2 a ⁴ P-t ⁴ D° 1-2-2 (53) 2-1-3 2-2-1 1-1-2 2-1-3 2-1-3
*4381.04 *4405.011 4363.525 4392.074 4209.857	G 1 C 4 C 5 C 5	0.29 3.10 0.27 3.08 0.27 3.10 0.27 3.08	31-31 a ⁶ D-z ⁴ P° † 31-11 (23) 31-31 (23) 31-31 (23) 41-41 a ⁶ D-v ⁴ F° †	5668.369 A 5657.449 A 5646.112 A 5584.490 A 5592.409 A 5604.943 A	12 12 10 10 13 8	1.08 3.2 1.06 3.2 1.05 3.2 1.06 3.2 1.05 3.2	4 24-1 3 15- 7 25-3 5 15-2 4 2-1		3555.142 3377.625 3376.057 3366.880 3397.580 3377.394	C 15 C 8 C 4 C 6 C 10	1.19 1.21 1.19 1.18 1.21	4.66 4.87 4.85 4.84 4.85	1½-½ 2½-3½ a ⁴ P-w ⁴ P° 1½-1½ (54) ½-½ 3½-1½
4198.611 4218.710 4219.51 4189.841 4182.591 4191.558	C 4 C 4 C 2 C 12 C 10 C 10	0.29 3.22 0.30 3.22 0.29 3.21 0.29 3.23 0.27 3.22 0.27 3.21	4]-4½ a ⁶ D-y ⁴ F°† 3½-3½ (34) 4½-3½ 3½-2½ 3½-2½ 3½-3½	5547.080 A 5545.933 A 5544.865 C 4670.483 A 4646.396 A	8 2 (1) 25w 15w	1.08 3.3 1.06 3.3 1.05 3.3 1.08 3.3	0 31-41 8 21-3 7 11-2 2 31-2	a ⁴ D-y ⁶ D° † (38) a ⁴ D-y ⁴ P°	3356.352 3365.553 3329.855 3309.176 3299.086	C 10 C 10 C 12 C 8 C 3	1.19 1.18 1.21 1.19	4.84 4.87 4.85 4.92 4.92	12-2 12-25 2-12 2-12 a ⁴ P-x ⁴ S° 12-12 (55) 2-12
4179.419 4159.686 4136.386	C 15 C 8	0.30 3.25 0.29 3.25	43-43 a ⁶ D-z ² G ^o † 33-43 (25) 33-33 a ⁶ D-y ⁴ D ^o †	4640.062 A 4640.735 A 4624.404 A 4626.480 A 4618.800 A	8 7w 8 7 (2)	1.05 3.1 1.06 3.1 1.05 3.1 1.04 3.1	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ⁴ D-y ⁴ P° (39)	3106.11 3103.60 3103.994 3121.749	C 5 F 1 C 6 C 4	1.21 1.19 1.18		3½-3½ a⁴P-v⁴P° 1½-1½ (56) ½- ½
4142.66 4148.859 4153.328 4111.785	G 2 C 2 C 3	******	3-3-2 a ⁶ D-y ⁴ D°† 3-3-3 (36) 1-1-1-2 2-2 4-4-4 a ⁶ D-y ⁶ D°	4610.985 A 4483.818 C *4406.147 C 4393.835 C	8 6 4	1.04 3.5 1.08 3.6 1.06 3.6 1.05 3.6	- 2-2	a ⁴ D-x ⁴ F°† (40)	3112.925	C 80 C 20	1.19 1.19 1.18	5.15 5.19 5.17	11-15 11-25 12-15 2-15
4115.185 4116.470 4116.703 4116.60 4134.488 4132.017 4128.071	C 60 C 50 C 4 P C 60 C 60 C 60	0.26 3.26 0.30 3.28 0.39 3.27	41-41 a ⁶ D-y ⁶ D° 31-31 (27) 21-21 (27) 11-12 (27) 42-32 (27) 21-12 (27)	4387.213 C 4090.579 C 4095.486 C 4102.159 C m4109.81 P 4118.643 C	3 25 25 20 V 8	1.04 3.8 1.08 4.0 1.06 4.0 1.05 4.0 1.04 4.0	9 31-4 7 31-3 6 11-3 4 1-1 7 31-3	a ⁴ D-w ⁴ F°†	3075.933	C 8 C 12 C 25 C 25 C 15 B 5 C 5	1.18 1.21 1.19 1.18 1.21	5.20 5.18 5.20 5.18 5.18 5.18	
4123.566 4092.594 4099.796 4105.167 4109.786	C 60 C 50 C 60 C 60 C 50	0.27 3.27	35-15 15-5 35-45 35-45 35-35 15-35 2-15	4119.457 C 4120.538 C 3934.013 C 3922.431 C 3920.487 C	8 8 20 12 5	1.06 4.0 1.05 4.0 1.08 4.2 1.06 4.2 1.05 4.3	4 19-12	a ⁴ D-w ⁴ D° (42)	3016.16 2999.238 2990.948	C 20 C 12 C 8	1.21 1.19 1.18	5.30 5.30 5.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
*3794.964 3803.474 3809.597 m3813.45 3815.514	C 50 C 25 C 15 P Y	0.30 3.55 0.29 3.53 0.27 3.51 0.27 3.50 0.26 3.50	41-41 a ⁶ D-x ⁶ D° 31-31 (28) 31-31 (28) 11-11	*3912.207 C 3943.864 C 3936.282 C 3921.905 C 3912.886 C	10 12 5 6	1.04 4.1 1.08 4.1 1.06 4.1 1.05 4.1	1 3 - 2 9 3 - 1 9 1 - 1		6558.02 6607.82 6106.967 6135.07	A 5 A 3 A 2 A 2			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3819.963 3822.888 3823.213 3821.487 3778.684	C 15 C 15 C 15 C 15 C 25	0.30 3.53 0.29 3.51 0.27 3.50 0.27 3.50 0.29 3.55	3-1 4-3-3 3-3-3 3-1-1 1-4 3-4-3 3-3-3	*3906.748 C 3910.790 C *3872.748 C 3875.426 C	6 5 4n 3	1.05 4.2 1.04 4.2	9 1-1	a ⁴ D-v ⁴ F° (43)	4609.646 4585.94 4501.972	A 4 G 2	1.37 1.34	4.05 4.04	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-z ⁴ H ^o (61)
3790.334 3799.912 3807.505 3703.584	C 20 C 25 C 20	0.26 3.50	19-29 3-13	3891.227 B 3902.558 C •3896.155\$ E •3906.748 C •3912.207 C	3 6 6	1.05 4.2 1.04 4.2 1.08 4.2 1.06 4.2	4 35-35	(10)	4449.573 4491.164 m4460.16 3930.023	C 5 C 2 P V	1.04	4.11	
3704.699 3705.035 3688.069 3692.225 3695.865	C 60 C 30 C 50 C 50	0.29 3.62 0.27 3.61 0.29 3.63 0.27 3.63 0.27 3.61	4-3; a ⁶ p_y ⁶ p° 33-3; (29) 34-1; 35-3; 35-3; 35-3; 12-1; 13-3; 13-3; 13-3;	m3840.44 P 3839.002 C 3836.054 C 3835.560 C	Fe 10 5 4	1.08 4.2 1.06 4.2 1.05 4.2 1.04 4.2		a ⁴ D-v ⁴ D° (44)	*3909.894 3942.006 3898.143 3886.587	C 20 C 6 B (4	1.34	4.51	4½-4½ a ² G-x ² G° 3½-3½ (63) 4½-3½ 4½-3½ a ² G-w ⁴ G°† 3½-2½ (64)
3675.700 3683.126 3690.281 8116.80	C 30 C 30 C 40			3859.341 C 3851.171 C 3844.892 C 3830.399 B 3823.990 C 3826.774 C	6 5 4 (4) 5 6	1.08 4.2 1.06 4.2 1.05 4.2 1.05 4.2	6 25-15 6 15- 5 9 25-35 7 15-25		3864.300 3885.770 3884.465	B (3 C 2 C 4	1.37 1.34	4.55 4.52	4½-4½ a ² G-w ² G•† 3½-3½ (65)
8161.06 8186.73 8198.87 8253.51 8255.90	A 150w A 100 A 80 A 100w A 100	1.06 2.57 1.05 2.55 1.04 2.54 1.08 2.57 1.06 2.55	32-32 a4D-z4D° 32-32 (30) 12-12 3-2 32-32 32-32 33-32 33-32 33-32 33-32	3826.774 C 3583.704 C 3540.530 C 3542.657 C •3566.1779 E	8 1 1	1.04 4.8 1.08 4.8 1.06 4.5 1.05 4.5 1.06 4.5	3 3 2 3 2 3 4 2 5 1 5 3 1 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	a ⁴ D-x ⁴ P°† (45)	3871.078 *3863.866§ 3840.140 3828.836 3802.883	C 8 6 C 4 C 2	1.34 1.34 1.37	4.56 4.54 4.56 4.59 4.59	41-31 a ² G-x ² F° 31-31 (66) 31-32 (66) 41-51 a ² G-y ² H° 31-41 (67)
8241.61 8027.36 8093.48 8144.58	A 60 A 100w A 100w A 50	1.04 2.55		3400.395 C 3402.571 C 3405.160 C 3406.837 C	12 9 6 6	1.08 4.7 1.06 4.6 1.05 4.6 1.04 4.6		a ⁴ D-t ⁴ D°†	3833.226 3806.796 3803.784	C 8 C 6	1.37	4.59 4.61 4.59	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-v ² G• †
6753.00 6766.49 6784.98	A 60 A 40	1.08 2.90 1.06 2.88 1.05 2.87	$3\frac{1}{2}-4\frac{1}{2}$ a ⁴ D-z ⁴ F° $3\frac{1}{2}-3\frac{1}{2}$ (31)	3002.65 C 3004.824 C	8 10	1.08 5.1 1.06 5.1	9 3] -2] 7 2] -1]	a ⁴ D-v ⁴ P°†	3790.469 3779.648	C 8 C 4	1.34	4.61	$4\frac{1}{2}-3\frac{1}{2}$ $a^{2}G-w^{2}F^{\circ}$ † $3\frac{1}{2}-3\frac{1}{2}$ (69)
6812.40 6829.94 6832.44	A 10 A 10		\$-1\frac{1}{2} 3\frac{1}{2}-3\frac{1}{2} 3\frac{1}{2}-1\frac{1}{2}	6531.44 A	15	1.21 3.1			3686.262 3671.205 3699.476	C 8 C 10 C 3	1.37 1.34 1.37	4.72 4.71 4.71	$4\frac{1}{2}-5\frac{1}{2} a^{2}G-x^{2}H^{\circ}$ $3\frac{1}{2}-4\frac{1}{2}$ (70) $4\frac{1}{2}-4\frac{1}{2}$
6841.89 6466.97 6578.96	A 7 A 3 A 2	1.05 2.95 :	1}-2} a ⁴ D-z ² D° † 1-1+ (32)	6543.51 A 6565.88 A 6624.86 A 6605.98 A	5 3 7 10	1.19 3.0 1.18 3.0 1.21 3.0 1.19 3.0	5 13-13 6 3-13 8 33-13 8 13-13	a ⁴ P _{-z} ⁴ P° (48)	3284.360 3273.027	C 6	1.37	5.13 5.12	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ² G-t ² G°† (71)
6097.42 6090.54	A (1)	1.08 3.10	31-41 a ⁴ D-y ⁶ Fe †	6452.354 A 6504.164 A	10	1.19 3.1 1.18 3.0			3233.190 3218.869	C 6 C 5			$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ $\frac{a^2G-u^2F^{\circ}}{(72)}$
6087.485 6089.473 •6151.509	A (3) B (1)	1.05 3.07 1.04 3.07 1.06 3.07	31-41 a ⁴ p_y ⁶ F* † 31-32 (33) 11-32 (33) 11-12 (34)	6003.273 A 5980.748 A 5984.602 A 6048.636 A	3 3 1	1.21 3.2 1.19 3.2 1.18 3.2	7 23-33 5 13-23 4 3-13	a ⁴ P-y ⁴ D° (49)	3212.434 3205.582	C 15	1.34		$\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ $\frac{a^{2}G-u^{2}H^{2}}{(73)}$
6128.30 6090.184 6119.505	A 30 A 40	1.05 3.06 :	1 g- g 3g-2g a ⁴ D-2 ⁴ P° 2g-1g (3A)	6048.636 A 6017.90 A 6008.648 A 6086.55 A	tr tr (3)	1.21 3.2 1.19 3.2 1.18 3.2 1.21 3.2	4 14-14 3 4-1		3050.400 3031.007 3021.78	C 25 C 10		5.42 5.42 5.45	$4\frac{1}{2}-3\frac{1}{2}$ a ² G-t ² F° $3\frac{1}{2}-3\frac{1}{2}$ (74) $4\frac{1}{2}-3\frac{1}{2}$ a ² G-t ² H°
6135.36 6039.690 6081.421	A 15 A 25 A 25		3}-3} a ⁴ D-z ⁴ P° 3}-1\$ (34) 19-3 32-3 12-1\$	4925.657 A 4886.821 A	10	1.21 3.7 1.19 3.7 1.18 3.7 1.21 3.7		a ⁴ P_y ⁴ P° (50)	3006.35	C 6	1.34		$\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{5}{2}-4\frac{1}{2}}$ a ² G-t ² H° (75)
6111.622 6002.601 6058.113	A 25 A 4 A 5	1.04 3.08 1.05 3.10 1.04 3.08	1 1 - 2 1 1 - 2 1 - 1 	4882.183 A 4932.029 A 4904.285 A	2 4 (8) 8	1.18 3.7 1.21 3.7 1.19 3.7 1.19 3.7 1.18 3.7			9865.44 10203.45 10193.66	A 10 A 10 A 5	1.70 1.70 1.70	2.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5727.024 5698.509 5703.562	A 60 A 60 A 40	1.08 3.23 1.06 5.22 1.05 3.21	31-42 a ⁴ D-y ⁴ F° 21-02 (35) 12-22 2-12	4864.83 P 4758.742 A	.8 .	1.18 3.7 1.21 3.8 1.19 3.8			5558.752 5561.670	A 3	1.70		$ \frac{1\frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - \frac{1}{2}} a^{2}P - z^{2}S^{\circ} \frac{1}{2} - \frac{1}{2} (77) $
5706.973	A 30	1.04 3.20	1 -1 1	4716.644 A	(1-)	1.19 3.8	1 1 1 -31	7 (51)	4833.027 •4848.821	A 3 A 1	1.70 1.70	4.26 4.25	$\begin{array}{ccc} 1\frac{1}{2} - 2\frac{1}{2} & a^{2}P - y^{2}D^{e} \uparrow \\ \frac{1}{2} - 1\frac{1}{2} & (78) \end{array}$

4							REV	SE	D M C	J L.T I	PLI	T	ABLE							
Labo: I A <u>I</u> cont	Ref	Int	E I		J	Multiplet (No)	Labor I A <u>V I</u> conti	Ref	Int	E Low	P H1gh	J	Multiplet (No)	Labor I A <u>V I</u> cont	Ref	Int	Low	P High	J	Multiplet (No)
365.745 422.477	C	3	1.70	4.53	1 2 - 3 2	a ² P-x ² D° (79)	4354.979 4342.832	C C	5 6	1.88	4.73	5-3-5-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	a ² H-x ² H° (103)	3571.037 3573.516	G	4 5	2.13 2.13	5.58 5.57	51-41 44-34	a ⁴ G-q ⁴ F• †
798.661 834.22	C P	2 Fe				a ² P-v ² D° (80)	3708.721 3706.035	C	6 4	1.88 1.86	5.21 5.19	51-51 42-42	a ² H-u ² H° (104)	3571.653 3568.940	C	5 3			-	a ⁴ G-q ⁴ F*† (133)
832.835 505.690 487.008	C D	4 6 2	1.70 1.70 1.70	5.22 5.24	$ \begin{array}{c} 1\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \end{array} $	a ² P-v ² P° (81)	3082.010 3075.269	B C	6 10	1.88	5.89 5.88	51-51 42-42 -	a ² H-s ² H° (105)	5128.530 5138.431 5148.724	A A A	7 5 4	2.28 2.26 2.25	4.68 4.66 4.64	$\begin{array}{c} 4\frac{1}{2}-5\frac{1}{2} \\ 3\frac{1}{2}-4\frac{1}{2} \\ 2\frac{1}{2}-3\frac{1}{2} \end{array}$	z ⁶ D°-e ⁶ F† (133)
485.867 506.843	B C	6 3 			_		9611.60 9614.68 9691.58	A A A	80 50 40	1.95 1.94 1.94	3.23 3.22 3.21	41-41 32-32 32-32	b ⁴ F-y ⁴ F° (106)	5159.350 3741.504 *3755.701	A C	3 6	A. 04	4.03	15-05	z ⁶ D°-g ⁶ D† (124)
537.663 551.860	A A C	6 3 6				a ² D_y ² P° (82)	9738. 5 0 9582.28 9668. 9	A A A	15 6np 3p ?	1.93	3.21	12-22		5107 001	A	7			-	
639.024 643.864	Č.	<u></u>			_	a ² D-u ² F° † (83)	6430.471 6431.620 6433.17	A A A	5 4 3	1.95 1.94 1.94	3.87 3.86 3.86	41-41 31-31 31-31	b ⁴ F-x ⁴ F°† (107)	*5194.824 5195.394 *5194.824	A A A	10 5 10	2.29 2.27 2.25	4.66 4.64 4.63	42-42 32-32 32-32	z ⁶ F°-e ⁶ F† (135)
326.845 339.090 349.477 357.297	A A A	6 5 5 4	1.85 1.85 1.84	3.80 3.79 3.78	52-45 42-35 32-25	a ⁴ H-y ⁴ G°† (84)	6435.148 4722.877 4721.524	A. A.	8 6	1.00	0.00	15-15	b ⁴ F-w ⁴ G° † (108)	3898.019 3901.152 3900.175	000	6 6	2.31 2.29 2.37	5.47 5.45 5.43	51-61 41-51 31-41	z ⁶ F°-f ⁶ G† (126)
584.738 586.007 504.205	A A A	(3) 3 1	1.86 1.85 1.85	4.07 4.06 4.05	63-63 53-53 43-43	a ⁴ H-z ⁴ H°† (85)	4730.394 4545.394 4560.710	A A A	3 25* 20	1.94 1.95 1.94	4.66 4.65	22-32 43-53 33-43	b ⁴ F-v ⁴ G° (109)	3897.075 5748.412	C A	6 (1)				
522.075 501.256	A B	(2) 1 5	1.85	4.59		a ⁴ H-y ² H° (86)		A A A	15 15 6 7	1.00	4.64 4.63 4.65 4.64	-22		5656.895 *5782.601 5624.223	A A	(2)	2.32 2.37 2.32	4.50 4.50 4.52	$1\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$	b ² P_y ² P° (137)
496.864 490.815 488.898	A A A	5 20	1.85 1.85 1.84	4.59 4.59	35-45		4583.783 4474.045	A C	5 10	1.94	4.63	<u> </u>		4776.519 4742.631	A	5 5	2.37	4.95 4.92	1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	b ² P-v ² D°† (128)
452.008 462.363 469.710 468.010	0000	20 20 15 8	1.86 1.85 1.85 1.84	4.63 4.63 4.61 4.60	63-73 53-63 43-53	a ⁴ H-z ⁴ I°† (87)	4496.062 4514.191 4525.168 4464.747	A A A	8 6 5 2	1.94 1.94 1.93	4.69 4.67 4.66	34-34 35-14 14-4 21 21	b ⁴ F-t ⁴ D° (110)	5487.915 5507.753	A A	10 8	2.36 2.35	4.61 4.59	$5\frac{1}{2}-4\frac{1}{2}$ $4\frac{1}{2}-3\frac{1}{2}$	b ² H-v ² G° (129)
268.643 271.554	C	20 12			3½-4½ 6½-6½ 5½-5¾	a ⁴ H-x ⁴ H°† (88)	*4488.898 4509.287	C A A	20 3	1.53	4.07	15-15		5415.277 *5401.945	A A	10 8	2.36 2.35	4.64 4.63	$5\frac{1}{2}-6\frac{1}{2}$ $4\frac{1}{2}-5\frac{1}{2}$	b ² H-z ² I•† (130)
276.958 284.055	C	12 15			4½-4½ 3½-3½	a ⁴ H-x ⁴ H°† (88)	4232.460 4232.952 *4234.000	CCC	.15 13 13	1.95 1.94 1.94	4.86 4.86 4.85	41-41 31-31 31-31	b ⁴ F-u ⁴ F° † (111)	5240.878 5234.088	A A	9 8				b ² H-x ² H°† (131)
998.730 992.801 990.566	C C	15 12 20	1.86 1.85 (1.85 1.84	4.94	63-53 53-43 42-33	a*H-u*G* † (89)	4235.756 4104.778	C C	10 15	1.93	4.85	1출-1출 4출-3출	b4F-84D0 t	*5014.620 5002.320	A	5 4				b ² H-y ² I• † (132)
988.833 984.600 984.335	000	5 6 6	1.85 1.85	4.95	35-25 55-55 45-45 31 31	a ⁴ H-u ⁴ G°† (89)	4118.182 4123.188 4128.858	000	8 6 5	1.94 1.94 1.93	4.94 4.93 4.93	35-25 25-15 15- 5	b ⁴ F-s ⁴ D°† (113)	4591.220 4553.056 3227.409	A A C	12 7 4				b ² H-w ² H° (133)
924.658 927.926	C	10 (3)	1.86 1.85	5.00 4.99	63-63 53-53	a ⁴ H-w ⁴ H°† (90)	4807.537 4796.930	A A	25 20	3.13 3.09	4.68 4.66	 65	z ⁶ G°-e ⁶ F† (113)	3229.604	В	<u>-</u>			-	b ² H-x ² I* (134)
931.340 935.141 722.601	o o	5 6 (3)	1.84	4.98 4.98			4786.515 4776.364 4766.635 4757.50	A A A	20 10 10 8	2.07 2.05 2.03	4.64 4.63 4.62 4.61	44-34 34-24 24-14	z ⁶ g°-e ⁶ F† (113)	5725.633 5734.004 4705.099	A A	6 5	2.36 2.35 2.36			a ³ F_x ³ G° (135)
721.998 729.035 737.992	0000	4 4 5	1.85 1.85 1.84	5.17 5.16 5.14	51-41 41-31 31-21	a ⁴ H-t ⁴ G°† (91)	4757.37 4753.957 4750.990	A A A	4 7 8	2.09	4.68 4.66 4.64	5-3-5-3 40-44		4715.900 3645.596	A A C	5 3	2.35		$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	a ² F_u ² D° (136) a ² F_5°
772.402	A	6				b ⁴ P-x ⁴ D° †	4748.525 4746.638	Ā	7 5	2.03 2.02	4.63 4.62	2}-2} 1}-1}		*3265.899\$ 3256.779	C	5	2.36	6.13		a2F_t2De +
748.860 752.711 850.286 817.063	A A A	4 3 2 3	1.89	4.01	N3-03	b ⁴ P-x ⁴ D°† (92)	3695.335 3687.473 3680.113 3673.404	0000	30 127 15 12	2.12 2.09 2.07 2.05	5.46 5.44 5.43 5.41	63-73 53-63 43-53 33-43	z ⁶ g°-e ⁶ H (114)	5266.118 *5401.945	A A	(4) 8	2.67	5.01 4.96	- 41-31 31-21	b ² G_v ² F° (139)
788.549 797.973 729.544	A A A	3 2 6	1.86 1.92 1.89	3.99	출~ 호	b ⁴ P-y ⁴ S° (93)	3667.741 3663.594 3717.55 3705.83	C G	15 15 1 1	Ø • 10	5.40 5.39 5.44 5.42	02~02		4373.230 4375.304	C	4				b ² G-s ² G*† (140)
586.926 751.574	A A	6 6	1.86		2-12	b ⁴ P-x ⁴ P° (94)	*3694.622 3684.332 3675.497	C	3 3 3	2.07	5.41 5.40 5.39	45-45		5784.360 *5786.153	A A	5 7	2.75	4.89 4.86	5-4-4-3-4-3-2-3-2-3-2-3-2-3-2-3-2-3-2-3-2	z ⁴ G°-f ⁴ F (141)
640.309 624.657 706.178 666.149	B B A A	(0) (1) 8	1.86 1.92 1.89	4.53 4.54 4.53	23-13 13-13		3676.684 3672.403 3665.142	С	10 8 8	3.12 2.09 2.07	5.47 5.45 5.43	63-63 53-53 43-43	z ⁶ G°-f ⁶ G† (115)	5783.509	A .	2			-	
591.991 529.301	A B A	(3) (0) 4	1.89	4.52	1 1 -21	b ⁴ p_w ² F° (95)	3656.706 *3648.966 3641.096	C	6 5 4	8.08	3.41	15-15		5846.306 5830.719 5817.532	A	8 7 5	3.12 3.10 3.09	5.23 5.22 5.21	51-61 41-51 31-41	y ⁶ F°-e ⁶ G† (142)
071.541 042.635	C	8 5				b ⁴ P-s ⁴ D°† (96)	3006.24	F F	15N 5N 5N	2.12 2.09 2.07	6.21 6.19 6.17	61-71 51-61 41-51	z ⁶ G°-f ⁶ H (116)	5807.14 5798.905 5797.352		3 2 (1-)	3.07 3.07 3.06	0.10	12-32 12-32 2-12	
781.393	c c	3	1.92	4.93 5.19	\$-1\$ 2\frac{1}{2}-2\frac{1}{2}	b ⁴ P-v ⁴ P°	3001.90 2997.87 2997.08	F F F	10N 5N 3N	2.05 2.03 2.02	6.16 6.15 6.14	3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		Strongest		_		of V	<u>.</u>	
761.442 747.982 804.589 775.187	CCC	3 8n 3	1.86 1.92 1.89	5.17 5.15 5.17 5.15	13-13 3-13 23-13 12- 2	b ⁴ P-v ⁴ P° (97)	7356 .51	A A	30 20	2.13 3.13	3.81 3.80	 55	a ⁴ G-y ⁴ G°† (117)	4619.648 4549.644 4527.990 4265.170		8 10 5 8n	IV IV III			
738.757 734.428 747.982	C C	8 5 8n			22		7363.16 7361.39 4904.350	A A R	15 10 (9)	2.11	3.79 3.78	31 31 51 61	-40 v4v0+	*3963.626§ 3898.278 3891.119	С	4 5	II			
720.93 713.56 763.141 740.241	ф С С	1 1 6 6	1.89 1.86 1.92	5.20 5.18 5.20	1 1 2 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ⁴ P-r ⁴ D° † (98)	4904.447 4900.624 4894.218	B A	(9) (7) 6 4	3.12 3.11 2.11	4.64 4.63 4.63	41-51 31-41 31-31	a ⁴ G—y ⁴ H°† (118)	3849.324 3845.974 3425.070	C	4 6 3 6	II II			
723.324	C .	3	1.86	5.18	- 2 2 -		4706.574 4710.566 4714.113	A	12 12 10	2.13 2.12 2.11	4.75 4.74 4.73	53-63 43-53 33-43	a ⁴ G-x ⁴ H°† (119)	3261.081 3156.222 3153.549	CCC	6 10 5N	III IV IV			
524.218 529.589	A A	15 8				a ² H-v ² G° † (99)	4717.692 4291.816	A C	10 15		T. 15	2-05		3150.568 3092.72	G.	5 8	III			
515.558 540.014 474.714	A A C	2 6 12				a ² H-z ⁴ I° (100) a ² H-z ² I°	4296.107 4297.681 4298.029	C	15 12 12	8.11	4.00	<u> 55−55</u>	a ⁴ G-w ⁴ H°† (120)	3041.86 3002.442		8 6	IV IV			
457.759 468.759	č c	8 4				a ³ H-z ³ I° (101) a ³ H-w ³ F°	*4051.3529 *4050.9639 4057.074	C	12 10 10	3.13 2.12 2.11	5.17 5.17 5.16	51-51 41-41 31-31	a ⁴ G-t ⁴ G° † (121)							
					-	(102)	4063.931	С	10	2.11	5.14	3 1 -31								

Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)
<u>VII</u> I P 14.1	Anal A List A	Jan 1941	V II continued			<u>V II</u> continued	-	•••••
3093.108// A 3500 3102.395 A 3000 3110.708 A 1500 3118.376 A 1000 3125.282 A 600 3121.138 A 80 3126.215 A 150	R 0.37 4.34 R 0.35 4.31 R 0.33 4.29 R 0.32 4.27 0.39 4.34	5-6 a ⁵ F-z ⁵ G° 4-5 (1) 3-4 2-3 1-2 5-5 4-4	m3844.48 P V 3865.72 A 5 3883.43 A 2 3875.67 A 5 3891.25 A 4 3901.33 P	1.68 4.89 1.67 4.86 1.67 4.84 1.68 4.86 1.67 4.84 1.68 4.84	4-5 b ³ F-z ³ g° 3-4 (20) 2-3 4-4 3-3 4-3	4183.435 A 250 4205.080 A 250 4235.238 A 120 4164.015 A 15 4190.89 A 10 4150.08 P	2.04 4.99 2.03 4.96 2.03 4.94 2.03 4.99 2.02 4.96 2.03 4.99	5-4 b ³ G-z ³ F° 4-3 (37) 3-2 4-4 3-3 3-4
3130.362 A 100 3133.339 A 150 *3145.337 A 30 3145.971 A 30 *3145.337 A 30	R 0.35 4.29 r 0.33 4.27 0.39 4.31 0.37 4.29 0.35 4.27	3-3 2-8 5-4 4-3 3-8	3727.351 A 1000 1 3750.88 A 600 3770.974 A 400 3760.24 A 140 3778.357 A 100 3718.159 A 60	1.68 4.99 1.67 4.96 1.67 4.94 1.68 4.96 1.67 4.94 1.67 4.99	4-4 b ³ F-z ³ F° 3-3 (31) 2-3 4-3 3-2 3-4	*3217.121\$ A 400 3237.876 A 350 *3254.773\$ A 300 3249.617 A 40 3263.33 A 30	2.04 5.88 2.03 5.84 2.03 5.81 2.04 5.84 2.03 5.81	5-6 b ³ G-z ³ H° 4-5 (38) 3-4 5-5 4-4
2953.07 A 150 2957.520 A 100	0.35 4.53 0.33 4.50	3-2 a ⁵ F-z ⁵ F°† 3-1 (2)	3743.610 A 40 *2983.009 A 10	1.67 4.96 1.67 5.81	2-3 3-4 b ³ F-z ³ H°† (22)	m3093.16 P V ⁺ 3094.196 A 100 3100.938 A 100 3104.906 A 25	2.04 6.03 2.03 6.02 2.02 6.00	5-5 b ³ G-y ³ G° 4-4 (39) 3-3
3831.017 A 6 3829.655 A 5 3829.53 A 4 3852.10 A 4	1.12 4.34 1.09 4.31 1.07 4.39 1.07 4.27	4-5 a ³ F-z ⁵ G° 3-4 (3) 2-3 2-3	4270.64 A 2 4286.13 A 3 4316.258 A 2 4313.30 A 2	1.70 4.59 1.68 4.56 1.67 4.53 1.70 4.56	3-4 a ⁵ P-z ⁵ F° 2-3 (23) 1-2 3-3	3104.906 A 25 3108.704 A 30 3082.524 A 40 3086.507 A 30 3053.894 A 80	2.04 6.02 2.03 6.00 2.03 6.03 2.02 6.02 2.04 6.08	5-4 4-3 4-5 3-4 5-4 b ³ G-y ³ F°
3538.238 A 50 3531.48 A 10 3535.18 P 3563.71 A 3 3560.594 A 90 *3566.177§ A 200		4-5 a ³ F-z ⁵ F° 3-4 (4) 3-3 4-4 3-3 3-2	*4360.75 A 9n 4263.836 A 4n 4264.50 A 1 4234.351 A 7	1.68 1.53 1.70 4.59 1.68 4.57 1.67 4.56 1.68 4.59	3-3 a ⁵ P-z ³ D° 3-3 (34) 1-1	3048.891 A 70 3042.27 A 80 *3043.54\$ A 40 3041.42 A 60 3036.07 A 2	2.03 6.08 2.03 6.07 2.03 6.08 2.03 6.08 2.03 6.08	4-3 (40) 3-2 4-4 3-3 3-4
3593.323 A 600 3592.012 A 800 3589.745 A 1000	1.12 4.56 1.09 4.53 1.07 4.50	4-3 3-3 3-1	4234.251 A 7 4248.820 A 4 4203.350 A 150	1.67 4.57 1.70 4.63	2-3 1-2 3-4 a ⁵ P-z ⁵ D°	3023.882 A 20 3015.98 A 10	2.04 6.12 2.03 6.12	5-5 b ³ G-z ¹ H° (41) 4-3 b ³ G-z ¹ F°
3556.800 A 1500 3545.190 A 1000	1.12 4.59 1.09 4.57	$\frac{4-3}{3-2}$ $a^{3}F-z^{3}D^{\circ}$ (5)	4178.390 A 60 4190.40 A 15 4204.20 A 20	1.68 4.63 1.67 4.61 1.70 4.63	2-3 (25) 1-3 3-3	3012.020 A 30 3001.93 A 2	2.04 6.14 2.03 6.14	(42) 5-4 b ³ G-z ¹ G° 4-4 (43)
3530.765 A 500 3534.713 A 200 3520.022 A 120 3499.823 A 20	1.07 4.56 1.09 4.59 1.07 4.57 1.07 4.59	2-1 3-3 2-2 2-3	m4205.05 P V+ 4209.74 A 10 4231.165 A 4 4224.51 A 10	1.68 4.61 1.67 4.60 1.70 4.61 1.68 4.60	2-2 1-1 3-3 2-1	2979.102 A 5	2.02 6.16	3-3 b ³ G-z ¹ D° (44)
3516.00 A 5 3485.916 A 250 3479.837 A 80	1.12 4.63 1.09 4.63 1.07 4.61	$\begin{array}{ccc} 4-4 & a^3F-z^5D^{\circ} \\ 3-3 & (6) \\ 3-3 & \end{array}$	4220.047 A 10 3029.56 A 7 3020.65 A 6	1.67 4.59 1.70 5.77 1.68 5.76	1-0 3-2 a ⁵ P-z ³ P°	4606.59 P 4651.42 P 4688.45 P	2.21 4.89 2.21 4.86 2.21 4.84	4-5 a ¹ G-z ³ G° 4-4 (45) 4-3
3517.298 A 800 3504.432 A 400 3493.163 A 150	1.13 4.63 1.09 4.61 1.07 4.60	4-3 3-8 3-1	3022.57 A 40 3016.14 A 15 3013.102 A 80	1.67 5.75 1.68 5.77	3-1 (36) 1-0 3-3 1-1	4439.42 A 1 3401.997 A 2	2.21 4.99 2.21 5.84	4-4 a ¹ G-z ³ F° (46) 4-5 a ¹ G-z ³ H°
3484.65 A 3 3481.580 A 5	1.09 4.63 1.07 4.63	3-4 2-3	3008.610 A 70 3001.203 A 200	1.67 5.76 1.67 5.77 1.70 5.81	1-3 3-3 a ⁵ p-z ⁵ p° 3-3 (37)	3230.919 A 4 3243.74 P	3.21 6.03 3.21 6.02	4-5 a ⁻ G-2 ⁻ C
3276.12 A 1500 3271.124 A 1200 3267.709 A 1000	R 1.09 4.86 R 1.07 4.84	4-5 a ³ F-z ³ G° 3-4 (7) 3-3	3003.461 A 80 3007.296 A 15 3016.775 A 120	1.68 5.79 1.67 5.77 1.70 5.79	2-2 (27) 1-1 3-2	3259.684 A 3 3188.10 A 30	2.21 6.00 2.21 6.08	4-3 4-4 a ¹ G-y ³ F°
3298.738 A 130 3289.391 A 100 3317.295 A 2	1.12 4.86 1.09 4.84 1.13 4.84	4-4 3-3 4-3	3014.822 A 100 2988.027 A 80 2995.999 A 60	1.68 5.77 1.68 5.81 1.67 5.79	2-1 2-3 1-3	*3193.97§ A 10? 3157.900 A 40	3.21 6.08 2.21 6.12	4-3 (49) 4-3 a ¹ G-z ¹ F° (50)
3190.686 A 500 3188.522 A 300 3187.717 A 200	R 1.09 4.96	4-4 a ³ F-z ³ F° 3-3 (8) 3-3	2968.373 A 200 2976.517 A 100 2976.197 A 60	1.70 5.85 1.68 5.82	3-4 a ⁵ p-y ⁵ D° 2-3 (28) 1-3	3155.409 A 60 3143.484 A 150	3.21 6.12	4-5 a ¹ G-z ¹ H° (51)
3214.750 A 130 3208.345 A 100 3164.82 A 40	1.13 4.96 1.09 4.94 1.09 4.99	4-3 3-2 3-4	2976.197 A 60 2989.594 A 40 2983.558 A 80n 2975.650 A 50	1.67 5.81 1.70 5.82 1.68 5.81 1.67 5.82	3-3 3-3 3-2 1-1	3142.484 A 150 	2.21 6.14 	4-4 a ¹ G-z ¹ G° (53) 3-4 a ³ D-z ⁵ F°
3168.127 A 40	1.07 4.96	2–3 –	2996.70 A 3 *2983.009 A 10 2982.75 A 40	1.70 5.81 1.68 5.82 1.67 5.81	3-3 3-1 1-0	5367.53 P 5432.09 A 2 5384.89 A 8	2.26 4.56 2.26 4.53 2.27 4.56	2-3 (53) 1-2 3-3
3997.126 A 200 3973.642 A 300 3968.11 A 150 4036.779 A 60	1.47 4.56 1.42 4.53 1.39 4.50 1.47 4.53	2-3 a ³ P-z ⁵ Fe 1-2 (9) 0-1 2-3	4799.94 P 4844.31 P	1.81 4.38	5-6 a ³ G-z ⁵ G°	5439.30 A 15 5487.00 A 8 5457.10 A 4	2.26 4.53 2.26 4.50 2.27 4.53	2-2 1-1 3-2
4002.940 A 80 4067.03 A 5	1.42 4.50 1.47 4.50	1-1 3-1	4880.30 P 4867.79 P 4902.89 P	1.80 4.34 1.79 4.31 1.81 4.34 1.80 4.31	4-5 (29) 3-4 5-5 4-4	5494.35 P 5303.26 A 40 5332.65 A 9	2.26 4.50 2.27 4.59 2.26 4.57	2-1 3-3 a ³ D-z ³ D° 2-2 (54)
3951.968 A 500 3916.418 A 200 *3896.155\$ A 60 3977.732 A 60 3929.734 A 50 3991.47 A 3	1.47 4.59 1.43 4.57 1.39 4.56 1.47 4.57 1.43 4.56 1.47 4.56	3-3 a ³ P-z ³ D° 1-3 (10) 0-1 3-3 1-1 3-1	4938.63 P 4936.94 P 4951.66 P 4966.08 P	1.79 4.29 1.81 4.31 1.80 4.29 1.79 4.27	4-4 3-3 5-4 4-3 3-2 5-5 a ³ Q-z ⁵ F°	5350.37 A 5 5349.75 A 3 5357.35 A 2 5366.42 P 5325.71 P	2.26 4.56 2.27 4.57 2.26 4.56 2.26 4.59 2.26 4.57	1-1 3-2 2-1 2-3 1-2
3903.27 A 250 3866.744 A 60	1.47 4.63 1.43 4.61	3-3 a ³ P-z ⁵ D° 1-2 (11)	4434.63 P 4451.61 P 4444.30 P	1.80 4.59 1.79 4.56 1.81 4.59	5-5 a ³ G-z ⁵ F° 4-4 (30) 3-3 5-4	5213.08 P 5199.68 A 4 5234.28 P	3.27 4.63 3.26 4.63 2.26 4.61	3-4 a ³ D-z ⁵ D° 2-3 (55) 1-2
3850.409 A 7 3926.497 A 10 3883.208 A 5 3943.48 P	1.39 4.60 1.47 4.61 1.42 4.60 1.47 4.60	0-1 3-3 1-1 3-1	4470.39 P 4500.86 P 4385.45 P 4406.22 P	1.80 4.56 1.79 4.53 1.80 4.61 1.79 4.59	4-3 3-2 4-5 3-4	5215.928 A 25 5240.97 P 5264.49 P 5257.51 P	2.27 4.63 2.26 4.61 2.26 4.60 2.27 4.61	3-3 2-2 1-1 3-2
3891.98 P 3534.14 A 2	1.43 4.59 1.47 4.96	1-0 2-3 a ³ P-z ³ F° (12)	4370.27 A 3	1.81 4.63	5-4 a ³ 6-z ⁵ D° (31)	5271.26 P 5280.62 P	2.26 4.60 2.26 4.59	2-1 1-0
4389.13 P 4429.11 P 4462.76 P 4445.77 P 4478.03 P	1.57 4.38 1.56 4.34 1.55 4.31 1.57 4.34 1.56 4.31	6-6 a ³ H-z ⁵ G° 5-5 (13) 4-4 6-5 5-4	4005.712 A 800 4023.388 A 600 4035.631 A 400 4039.574 A 20 *4051.06\$ A 20 3989.803 A 15 4008.17 A 20	1.81 4.89 1.80 4.86 1.79 4.84 1.81 4.86 1.80 4.84 1.80 4.89 1.79 4.86	5-5 a ³ G-z ³ G° 4-4 (32) 3-3 5-4 4-3 4-5 3-4	4528.51 A 300 4564.592 A 200 4600.19 A 150 m4577.13 P V 4605.352 A 15 4618.12 P	2.27 4.99 2.26 4.96 2.26 4.94 2.27 4.96 2.26 4.94 2.37 4.94	3-4 a ³ D-z ³ F° 2-3 (56) 1-2 3-3 2-2 3-2
4503.13 P 4372.88 P 4414.17 P	1.55 4.29 1.56 4.38 1.55 4.34	4-3 5-6 4-5	3878.715 A 300 3899.140 A 200 3914.333 A 250	1.81 4.99 1.80 4.96	5-4 a ³ G-z ³ F° 4-3 (33)	3531.836 A 90 3530.547 A 15 3530.45 A 10	2.27 5.77 2.26 5.76 2.26 5.75	3-2 a ³ D-z ³ P° 2-1 (57) 1-0
4056.270 A 7 4075.66 A 3	1.57 4.61 1.56 4.59	6-5 a ³ H-z ⁵ F° 5-4 (14)	3914.333 A 250 *3863.81\$ A 60 3884.847 A 50 3849.758 A 3	1.79 4.94 1.80 4.99 1.79 4.96 1.79 4.99	3-2 4-4 3-3 3-4	3514.422 A 20 3517.53 P 3511.42 A 3	2.26 5.77 2.26 5.76 2.26 5.77	2-3 1-1 1-2
3715.476 A 1200 3732.760 A 800 3745.806 A 800 3703.832 A 7 *3722.16§ A 10		6-5 a ³ H-z ³ G° 5-4 (15) 4-3 5-5 4-4	3033.821 A 300 3053.39 A 300 3067.104 A 200 3062.702 A 20 3076.016 A 25	1.81 5.88 1.80 5.84 1.79 5.81 1.81 5.84 1.80 5.81	5-6 a ³ G-z ³ H° 4-5 (34) 3-4 5-5 4-4	3477.614 A 40 3469.528 A 50 3476.252 A 20 3470.263 A 20 3466.59 A 30 3467.33 A 2	3.27 5.81 3.26 5.82 3.26 5.81 2.26 5.81 3.26 5.82 3.26 5.81	3-2 a ³ D-y ⁵ D° 2-1 (58) 1-0 2-2 1-1 1-2
4737.59 A 1	1.67 4.27	2-2 b ³ F-z ⁵ G°	3085.47 A 1	1.81 5.81	5-4	3333.608 A 2	2.26 5.96	1-0 a ³ D-z ¹ S°
4388.78 A 5 4333.03 A 4 4346.89 A 3	1.67 4.53 1.67 4.50	(16) 4-3 b ³ F-z ⁵ Fe 3-2 (17) 3-1	4810.17 A 17 4331.55 A 6n 4349.97 A 6n	2.03 4.59 2.04 4.89 2.03 4.86	4-3 b ³ G-z ³ D° (35) 5-5 b ³ G-z ³ G° 4-4 (36)	3291.04 A 5 3300.905 A 6 3307.445 A 2	2.27 6.02 2.26 6.00 2.27 6.00	(59) 3-4 a ³ D-y ³ G° 2-3 (60) 3-3
4236.82 A 4 4254.41 A 15 4260.75 A 9	1.67 4.56	4-3 b ³ F-z ³ D° 3-2 (18) 3-1	4366.91 A 5n 4371.17 P 4382.33 P 4310.72 P	2.02 4.84 2.04 4.86 2.03 4.84 2.03 4.89	3-3 5-4 4-3 4-5	3233.772 A 80 3233.546 A 40 3231.952 A 80 3239.833 A 8	2.27 6.08	3-4 a ³ D-y ³ F° 2-3 (61) 1-2 3-3
4179.062 A 3	1.68 4.63	4-4 b ³ F-z ⁵ D°	4334.77 P	2.02 4.86	3-4	3234.504 A 10	2.26 6.07	2-3

36							R E V	1 8	E D M	ULT	PLE	T 1	FABLE							
Labo I A	rato: Ref	ry Int	Low Low	P High	J	Multiplet (No)	Labo I A		ry	E Low	P High	J	Multiplet (No)	Labor I A		ry Int	E Low	P High	J	Multiplet (No)
VII con	tinu	ed					V II con	tinu	ıeđ					V II cont	inue	ed.				•••
3202.711 3196.574	A A	30 3	2.27 2.26	6.12 6.12	3–3 2–3	a ³ D-z ¹ F° (62)	5928.86 5897.54 5951.45	A A A	100 50 4	2.51 2.48 2.49	4.59 4.57 4.56	3-3 1-3 0-1	o ³ P-z ³ D° (98)	5916.364 5967.77	A.	15 6	2.55	4.63	2-2	b ³ D-z ⁵ D ^e (126)
3186.86	A	10	2.27	6.14	3-4	$a^{3}D-z^{1}G^{\circ}$ (63) $a^{3}D-z^{5}S^{\circ}$	5819.93	A	80	2.45		2-3	c ³ P-z ⁵ D°	5914.28 •5047.308§	A A	5 10	2.55 2.55	4.63 4.99	2-3 3-4	b ³ D-z ³ F°
3186.10 3169.21	A A	1 2	2.27	6.14 6.16	3-2 3-21	(64) R a ³ D-z ¹ D°	3787.235 *3758.22§	A A	150 40	2.51 2.48	5.77 5.76	3-3 1-1	(99) c ³ P_z ³ P° (100)	5106.233 5132.19 5157.28	A A A	5 2 21	2.55 2.53 2.55	4.96 4.94 4.94	3-3 1-3 3-3	(127)
3160.781	A A	15 15	2.26	6.16	1-2 3-2	(65) a ³ D-y ³ P°	3794.366 3772.962 3751.222	A A A	50 80 150	2.51 2.48 2.48	5.76 5.75 5.77	3-1 1-0 1-3		3826.968 3813.12	A	30 3	2.55 2.53	5.77 5.77		b ³ D-z ³ P° (128)
3081.254 3086.210 3078.948	A A A	25 10 5	2.26 2.26 2.26	6.26 6.25 6.26	2-1 1-0 1-1	(66)	3767.720 3731.64	Ä	40	2.49 2.48	5.76	0-1	c ³ P-z ⁵ P°	3774.678 3773.80	A	15 5	2.55	5.81	2-2	ь ³ р_у ⁵ р•
3054.24 3048.65	A	7n 4	2.27	6.31	3-3	a ³ D-y ³ D°	3724.984	A	2	2.51	5.82	2-3	(101) c3p_y5pe	3761.20	*	1	2.55	5.82	3-1	(129)
3075.474	A A	2	2.26	6.31	2-3 1-8	(67)	3700.96 3709.335 3736.017	A A A	30 40 70	2.48 2.49 2.51	5.81 5.82 5.81	1-2 0-1 3-2	(103)	3604.375 3489.947	A	4 20	2.53 2.55	5.96 6.08	3-4	b ³ D_z ¹ g° (130) b ³ D_y ³ F°
4968.50	Ä	1	2.36	4.84	4-3	b ¹ G_z ³ G° (68)	3700.126 3735.158 3711.118	A A A	40 30 50	2.48 2.51 2.48	5.82 5.82 5.81	1-1 3-1 1-0		3496.27 m3485.82 m3497.00	P P	A+ A+	2.55 2.53 2.55	6.08 6.07 6.08	2-3 1-2 3-3	(131)
3547.07 3577.644	A A	5 3	2.36 2.36	5.84 5.81	4-5 4-4	b ¹ G-z ³ H° (69)	3549.030	A	3	2.48	5.96	1-0	c ³ p_z ¹ g° (103)	3497.39 3498.12	Ā	4	2.55 2.55	6.07	3-2 3-2	
3361.506 3392.659	A A	60 50	2.36 2.36	6.03 6.00	4-5 4-3	b ¹ G _y ³ G° (70)	3463.079 3434.024	A	4	2.51 2.48	6.08	2-3 1-2	03P_y3r° (104)	3453.78 3453.087	A A	90	2.55 2.55	6.13 6.13	3-3 2-3	b ³ D-z ¹ F° (132)
3315.176 3321.539	A A	50 150	2.36 2.36	6.08 6.08	4-4 4-3	b ¹ G-y ³ F° (71)	3464.17 3420.709	A	.6 5	2.51 2.51	6.07	2-2 2-3	c ³ P-z ¹ r°	3435.38	A	7	2.55	6.14	3-4	b ³ D-z ¹ G*
3282.534	A	150	2.36	6.12	4-3	b ¹ G_z ¹ F°	3401.740 3372.666	A A	1 3	2.51 2.48	6.14 6.14	2-2 1-2	(105) c ³ p_z ⁵ g• (106)	3434.46 3433.767	A	1 3	2.55 2.55	6.14 6.14	3-2 2-2	(133) b ³ D-z ⁵ g• (134)
3279.844 3265.893	A A	300 100	2.36 2.36	6.12	4-5 4-4	b ¹ G-z ¹ H° (73) b ¹ G-z ¹ G°	3382.529 3353.776	A	30 30	3.51 3.48		3-3	c ³ P-z ¹ D°	3414.879 *3414.192\$	A A	3 10	2.55 2.55	6.16 6.16	3-2 3-2	b ³ D-z ¹ D° (135)
3025.68	A	1	2.36	6.44	4-5	(74) b ¹ G-y ³ H°	3251.869	A	200	2.51	6.31	1-3 2-3	(107) c ³ p_y ³ p•	3403.159 3281.755	A A	3 10	2.53	6.16	1-2 3-3	b ³ D-y ³ D°
3032.187	A		2.36	6.43	4-4 	(75)	3257.893 3297.528 3285.022	A A A	100 20 50	2.48 2.49 2.51	6.27 6.23 6.27	1-3 0-1 3-3	(108)	3314.862 m3337.76 3315.53	A P A	50 γ+ 5	2.55 2.53 2.55	6.27 6.23 6.27	2-2 1-1 3-2	(138)
3621.203 3632.126 3627.713	A A A	150 15 60	2.36 2.37 2.36	5.77 5.76 5.76	2-2 1-1 3-1	b ³ P-z ³ Pe (76)	3290.240 3317.912	A A	50 20	2.48 2.51	6.23	1-1 3-1		3348.372 3281.120 3304.474	A A	40 40	2.55 2.55 2.53	6.23 6.31 6.27	2-1 2-3	
3645.905 3625.608 3631.482	A A A	30 50	2.37 2.37	5.75 5.77	1-0 1-3		3247.908 3261.80	A A	4 5	3.51 3.48	6.26	2-3 1-1	о ^З Р_у ^З Р° (109)	3277.71	A	30	2.55	6.31	1-2 3-3	b ³ D-y ³ P*
3607.30	A	10	2.37	5.76	0-1	_b 3p_z5pe	3288.985 3221.380	A	7 2	2.51 2.48	6.26 6.31	3-1 1-3		3318.907 3316.873 3277.082	A A A	20 20 10		6.26 6.25 6.31	3-1 1-0 3-3	(137)
3623.03 3574.340	A A	1 60	2.36	5.77 5.81	0-1 3-3	(77) ъ ³ Р–у ⁵ р°	3119.32 3115.16	A	4 2	2.51 2.48	6.4 <u>7</u> 6.44	2-3 1-1	0 ³ P_x ³ F° (110) 0 ³ P_z ³ S°	3308.480 3266.91	A	20 17	2.53 2.53	6.26	1-1 1-3	
3577.857 3573.557 3588.13		20 50 15	2.37 2.36 2.37	5.82 5.82 5.81	1-1 2-1 1-0	(78)	3083.208 3065.61	A	40	2.51	6.51	2-3	(111) 03P_x3D°	3120.726 3146.226	Ā	50 40 1	2.55		3-4 2-3	b ³ D-x ³ F° (138)
3578.636 3577.220	A A	15 10	2.37	5.81	1-3		3081.01 3089.633	A A A	50 30 4	2.48 2.49 2.51	6.51 6.49 6.51	1-3 0-1 3-3	(112)	3151.319 3146.818 *3160.781	A A A	100 10 15	2.53 2.55 2.55		1-2 3-3 2-2	
3436.393	A	а	2.37	5.96		b ³ P-z ¹ s° _(79)	3074.66 3079.75	A A	13 1	2.48 2.51	6.49 6.52	1-1 3-1	o ³ P_z ¹ P°	3110.07 3116.02	A A	31 3	2.55 2.55	6.51 6.51	3-3 2-2	b ³ D-x ³ D° (139)
3394.92 3323.731	A A	1 3	2.36 2.36	6.00	2-3 2-3	b ³ P _{-y} ³ G° (80) b ³ P _{-y} ³ F°	3062.178	A	3 15	2.49 2.51	6.52	0-1 3-3	(113) o ³ P-w ³ D°†	3116.11 3106.829	Ā	3		6.49 6.51	1-1	(100)
3249.464	A	4		6.16	2-2	(81) b ³ P-z ¹ D°	2992.378	Ã	3	2.51	6.64	2-1 -	(114)	3105.973	A	5		6.52		b ³ D-z ¹ Pe (140) b ³ D-w ³ De
3128.686 3162.714	A A	20 30	2.36	6.31 6.27	2-3 1-2	(82) b ³ P_y ³ D° (83)	5193.43 5227.70	P A	2 0	2.51 2.50	4.89 4.86	6-5 5-4	b ³ H-z ³ G° (115)	3001.754 3006.502 3008.508	A	30 20 15	2.55 2.55 2.53	6.66 6.65 6.64	3-3 3-2 1-1	(141)
3192.699 3159.365 3193.200	A A A	15 20 20	2.37 2.36 2.37	6.23 6.27 6.23	0-1 2-2 1-1		5263.99 5171.13 5217.36	A P P	15	2.50 2.50 2.50	4.84 4.89 4.86	4-3 5-5 4-4		3007.035 2997.945	A	6	2.55 2.53	6.65 6.65	3-2 1-2	
3189.76 3125.01	A A	3 20	2.36 2.36	6.23	3-1 3-2	_b 3p_y3pe	3669.410 3700.337	A	300 200	3.51 3.50	5.88	6-6 5-5	b3H-23He	5202.94	A .	8	2.59	4.96	2-3	a ¹ D-z ³ F°
3166.39 3163.024 3174.077	A A A	8 30 30	2.37 2.36	6.26 6.26	1-1 3-1	(84)	3728.335 3711.751	A A	200 10	2.50 2.51	5.84 5.81 5.84	4-4 6-5	(116)	3881.04	A	8	2.59	5.77		(142) a ¹ D-z ³ P° (143)
3128.288 3165.89	A A	10 30	2.37 2.37 2.37	6.25 6.31 6.26	1-0 1-3 0-1		3733.607 3658.266 *3695.158	A A A	10 8	2.50 2.50 2.50	5.81 5.88 5.84	5-4 5-6 4-5		3622.289 3541.341	A A	10 50	2.59 2.59	6.00	2-3 2-3	a ¹ D-y ³ G ^o (144) a ¹ D-y ³ F ^o
3024.981 3028.042	A A	50 50	2.36 2.37	6.44 6.44	3-1 1-1	b ³ P_z ³ S ^e (85)	3509.024 3513.877	A A	40 15	3.51 2.50	6.03	6-5 5-4	b ³ H-y ³ G° (117)	3542.480 3497.031	A	4 200	2.59 2.59	6.07	2-3	(145) a ¹ D-z ¹ F°
3027.600 3005.813	A A	15 30	2.37 2.36	6.44	0-1 2-3	b ³ P-x ³ F°	3527.867 3498.83 3509.20	A P P	10	2.50 2.50	6.00 6.03	4-3 5-5	(227)	3457.153	A	300	2.59	6.16		(146) a ¹ D-z ¹ D ⁰
3022.146 3019.09	A A	4 3	2.37 2.36	6.45 6.45	1-3	(86)	3448.69	A	1	2.50 2.50	6.08	4-4 5-4	ь ³ н-у ³ г•	3359.50	A	, 2	2.59	6.26		(147) a ¹ D-y ³ P• (148)
2972.263 2981.200	A A	80 70	2.36 2.37	6.51 6.51	2-3 1-2	b ³ P-x ³ D° (87)	3451.048 3420.15	A	12 2	2.50 2.51	6.08	4-3 6-5	(118) b ³ H-z ¹ H°		A	20	2.59 2.59	6.31 6.27	2-3 2-3	a ¹ D-y ³ D° (149)
2989.306 2978. 2 26 2989.74	A A A	15 20 10		6.49 6.51 6.49	0-1 2-2 1-1		3410.46 3406.06	Ā	7	2.50 2.50	6.12	5-5 4-5	(119)		A A	2 0 7		6.47 6.45	3-3 3-3	a ¹ D-x ³ F° (150)
3370.40	 A		2.37	6.03	- 6-5	a ⁱ I-y ³ G°	3408.955	A	15	2.50	6.13		b ³ H- z¹F° (130) b ³ H- z¹G°	3161.313	A	30	2.59	6.49		a ¹ D-x ³ D ^o (151)
3288.324	A	30	2.37	6.12	6-5	a ¹ I-z ¹ H°	3391.01 3134.928	A	200	2.50 2.51		4-4 6-6	(131) b ³ H-y ³ H•	3141.486 3039.767	A	40 2	2.59 2.59	6.52 6.65		a ¹ D-z ¹ P° (152) a ¹ D-w ³ D°
6027.23	A	8	2.46	4.50	0-1	(89) a ¹ 5-z ⁵ F°	3136.503 3139.733 3144.700	Ā A A	160 160 20	2.50 2.50 3.51	6. 44 6. 4 3	5-5 4-4 6-5	(122)	2963.249	A	9		6.75		a ¹ D-w ³ D° (153) a ¹ D-x ³ P° (154)
5862.80	A	15+p?		4.56	0-1	(90) a ¹ 8-z ³ p° (91)	3143.477 3126.79	A A	15 2	2.50 2.50	6.43 6.45	5-4 5-6		4038.545	A -	3	2.75	5.81		a ¹ P-y ⁵ D°
3731.983	A	20 20		5.76	0-1	a ¹ 8_z ³ p° (92)	3132.793 3033.445	A A	3 300	2.50 2.51	6.58	4-5 6-7	b3H-z3I°	*3847.323\$	A	100	2.75	5.96	1-0	(155) alp_zls*
3674.691 3270.115	A A	30 10	2.46 2.46	5.82 6.23	0-1 0-1	a ¹ g_y ⁵ D° (93) a ¹ S_y ³ D°	3048.214 3063.247 3055.942	A A A	200 200 7	2.50 2.50 2.51	6.55 6.53	5-6 4-5 6-6	(123)		A A	8 8		6.07		(156) alp_y3pe (157) alp_z1pe
3057.08	A	2	2.46	6.49	0-1	(94) a ¹ 8-x ³ D° (95)	3066.80	Â	4	2.50	6.53	5-5 -		3618.924 3507.534	A A	3 0		6.16 6.27		(158) a ¹ P-y ³ D°
3038.520	A	30	2.46	6.53	0-1	a ¹ S-z ¹ p° (96)	6226.29	A	10n	2.55	4.53	3 –2	b ³ D-z ⁵ F° (134)	3465.25	A	4	2.75	6.31		(159) alp_y3pe (160)
6031.07 6028.26	A A	40 40	2.51 2.48	4.56 4.53	2-3 1-2	c ³ P-z ⁵ F° (97)	6028.98 6086.93 6083.82	A A A	30 15n	2.55 2.55	4.59 4.57	3-3 2-2	(134) b ³ D-2 ³ D ^e (135)		A	10		6.45		a1p_x3pe (161)
6120.98	A	5		4.50	0-1	1217	0000.00	A.	10n	2.53	2.05	1-1		3285.672	Å	3	2.75	ช.51	1-2	a ¹ P-x ³ D ^e

Labora I A I	atory Ref		E :	P High	J	Multiplet (No)	Labor I A	ator; Ref		Low E	P High	J	Multiplet (No)	Labo I A	rator Ref		E I	High	J	Multiplet (No)
V II cont						(jace)		inue					(4.07)	V II con						(210)
3274.50	A	10	2.75	6.52	1-1	a ¹ P-z ¹ P°	6080.11	A	6	3.78	5.81	4-4	d3F-z3H°	3035.14	A	3N	4.89	8.96	5-4	z ³ G°-e ⁵ H
3081.30	A	10	2.75	6.75	1-1	(163) a ¹ p_x ³ p°	*5290.74 \$	A	6	3.79	6.12	2-3	(206) d3F_z1F° (207)	3038.00	A	2N?	4.94	9.00	2-3	(245) z3F°-e5p (246)
3926.32	A -	5	2.89	6.03	- 5-5	(164) a ¹ H-y ³ G°	5191.59	A	2	3.78	6,16	3–2	d3F_z1D° (208)	5530.10	A	4	5.44	7.68	 3-4	c ³ D-w ³ F°
3945.27	P		2.89	6.02	5-4	(165)	4883.415 4965.40	A A	100 40	3.78 3.78	6.31	4-3 3-3	(309) ₄₃ F- ³ 3D ₆	5562.02	A	4np?	5.45	7.67	2-3	(247) 35 350
3815.38	A .	200	2.89	6.12	5-5	a ¹ H-z ¹ H° (166) a ¹ H-z ¹ G°	5048.91 4973.16	A A	15 2	3.79 3.79	6.23 6.27	2-1 2-2		m4875.49 4842.50 4813.00	P A A	V 2n 17	5.44 5.45 5.45	7.98 8.00 8.02	3-3 2-2 2-1	c ³ D_v ³ D° (248)
*3796.48 §	A	10 4	2.89	6.45	5-4 5-6	(167) a1H_y3H°	4535.215 4596.37	A A	3n 5n	3.78 3.78	6.50 6.47	4-4 3-3	d ³ F-x ³ F° (310)	3148.738	A	15	5.44	9.36	3-3	c ³ D-t ³ D°
3484.38	Ā	2	2.89	6.43	5-4	(168)	4634.21 4590.505	Ä A	3n 7n	3.79 3.78	6.45 6.47	2-2 4-3		3163.76 3172.230	A	10 7	5.46	9.35 9.35	2-2	(249)
3415.91	A	2	2.89	6.50 6.55	5-4	a ¹ H-x ³ F° (169) a ¹ H-z ³ I°	4627.48 4517.35	A	1 3n	3.78 3.79	6.45 6.52	3–2 3–1	d ³ F-z ¹ P°	3154.80 3071.77	A A	1 2n	5.45 5.44	9.36	2-3 3-4	c ³ D-u ³ F°
3367.666 3250.775	A	300	2.89	6.68	5-6 5-4	(170) alH-yigo	4512.72	A	60n	3.78	6.51	4-3	(211) d ³ F-x ³ D°	0012111	•					(250)
3142.183	A	30	2.89	6.82	55	(171) a ¹ H-x ³ G°	4532.188 4558.46	A A	40n 20	3.78 3.79	6.51 6.49	3-2	(212)	5016.60	A .	4	5.51	7.97	2-2	(251)
3122.887	A	100	2.89	6.84	5-6	(173) a ¹ H-z ¹ I° (173)	4518.38 4538.64	A A P	3 3n	3.78 3.79 3.79	6.51 6.51 6.51	3–3 2–2 2–3		4618.52	A	3	5.51	8.19	2 – 3 -	c ¹ D-x ¹ F° (252)
3113.560	A	100	2.89	6.85	5-5	a ¹ H-y ¹ H° (174)	4524.81 4304.15	A	3	3.78	6.65	3-2	d3F-w3De	Strongest	Uncl	assified	l Lines	of V I	<u> </u>	
4162.073	A -	2	3.11	6.08	- 2-3	b ¹ D-y ³ F°	4080.44	A	2	3.78	6.81	3-3	(213) d3F-y1F0	5791.47	Ā	15				
4163.655	A .	,3	3.11	6.07	2-2	(175) b ¹ D-z ¹ F°	4085.67	A .	10n 100	3.79	6.81	2-3 4-5	(214) d ³ F-x ³ G°	3611.58 3301.66 3206.16	A A A	10n 10 15N1				
*4101.00 \$ 4046.269	A	8 50	3.11		2-3 2-2	(176)	4065.070 4053.59 *4051.34 §	A A A	60 1 100	3.78 3.79	6.83 6.83	3-4 2-3	(215)	3201.58 3195.50	Ā	15N1 15N1				
3907.52	A	3	3.11		3-3	b ¹ D-z ¹ D° (177) b ¹ D-y ³ D° (178)	4049.03	Ā	3	3.78	6.83	4-4	.3 1							
•3 6 95.158	A	8	3.11	6.45	2-2	b ¹ D_x ³ F° (179)	4017.29 3167.420	A	15n 40	3.78 3.78	6.85 7.68	4-5 4-4	d ³ F-y ¹ H° (216) d ³ F-w ³ F°	<u>Cr I</u> I	P 6.7	'4 A na:	1 A T.	ist B	Ward	h 1941
3634.13 3646.848	A A	1 7	3.11 3.11	6.51 6.49	3-3 3-1	b ¹ D-x ³ D° (180)	3174.531 3182.59	A A A	60 20	3.78 3.79	7.67 7.66	3-3 2-2	(217)	4254.346/		1000R	0.00	2.90	3-4	a7S-z7pe
3620.496	A	30	3.11	6.52	3-1	B ¹ D-z ¹ P°	3171.739 3179.416	A A	9 8	3.78 3.78	7.67 7.66	4-3 3-3		4274.803 4289.721	C	800R 700R	0.00 0.00	2.89 2.88	3-3 3- 2	(1)
3478.961	A	6	3.11	6.66	2–3	(181) b ¹ D-w ³ D°	3170.208 3177.696	A A	8 6	3.78 3.79	7.68 7.67	3-4 2-3		3732.032 3730.807	C	50 40	0.00	3.31 3.31	3-3 3-2	a ⁷ S-z ⁵ P° (2)
3385.790	A	3	3.11	6.75	3-1	182) b1D-x3p° (183)	2973.975 2985.184	A A	40 60n	3.78 3.78	7.93 7.92	4-5 3-4	d ³ F-w ³ G°† (218)	3615.645	à	30	0.00	3.41	3-4	a7s-z7D°
3337.845	A	300	3.11		2–3	(184)	2994.540	A	60	3.79	7.91	2–3 –		3635.281	C	10 1000R	0.00	3.39	3-3	(3) a ⁷ S-y ⁷ P°
3226.924	A .	40	3.11		2-1 2-2	b ¹ D-y ¹ P° (185) b ¹ D-y ¹ D°	6801.16	A	5	3.96	5.77	2-2	d ³ P-z ³ P° (219)	3578.687 3593.488 3605.333	000	900R 750R	0.00 0.00	3.45 3.43 3.42	3-4 3-3 3-2	(4)
3109.375	A .	30	3.11	7.08	-a-a	(186)	5249.22	A	17	3.96	6.31	2–3	(330) q3b-y3De	3351.966	С	13	0.00	3.68	3-3	a75-y5pe
4398.52	A	4n	3.31		3–3	alf_zlf° (187)	4963.75	A	3	3.96	6.44	3-1	d ³ P_z ³ S° (221) d ³ P_x ³ F°	3379.171	C	15	0.00	3.65	3 -2 -	(5)
4368.67 3960.37	P A	1	3.31	6.14	3-4 3-4	a ¹ F_z ¹ G° (188) a ¹ F_y ³ H°	4912.38 4823.396	A	2 6	3.96 3.96	6.47 6.51	2-3 2-3	(222) d3p-x3pe	6330.101 6362.874	C	40 30	0.94 0.94	2.89 2.88	2-3 2-2	a ⁵ S-z ⁷ P° (6)
3690.70	A	1	3.31	6.66	3-3	(189) alr_w3D°	4839.08	Ā	3	3.96	6.51	3-3	(223)	5208.436	C	500R	0.94	3.31	2-3	a ⁵ S-z ⁵ p°
3661.383	A	200	3.31	6.68	3-4	(190) a ¹ F_y ¹ G°	4408.92 4440.41 4483.50	A	40N? 5n	3.96 3.99 4.00	6.75 6.77 6.75	2-2 1-0 0-1	d ³ P-x ³ P° (224)	5206.039 5204.518	C	300R 200R	0.94 0.94	3.31 3.31	2-2 2-1	(7)
3532.285	A	30	3.31	6.81	3–3	3-0-1	4232.065	A	80n	3.96	6.87	3-1	d ³ P-y ³ s•	5021.903 5051.900	C	25 40	0.94	3.39 3.38	2-3 2-2	a ⁵ S-z ⁷ D° (8)
3512.13 3506.57	A A	3 7	3.31	6.83 6.83	3-4 3-3	a ¹ F_x ³ G° (193)	4278.893 4301.130	A A	60n 4 0n	3.99 4.00	6.87 6.87	1-1 0-1	(225)	5072.920 4942.495	c	60 200	0.94	3.37 3.43	2-1 2-3	a ⁵ S-y ⁷ P°
3277.448	A	15	3.31	7.08	3–2	a ¹ F-y ¹ D° (194)	*4143.90	A	6	3.96	6.93	2-1	d ³ P-y ¹ P° (226)	4964.928	č	100		3.42	2-2	(9)
*5275.65	A -	10	3.74	6.08	4-4	o ³ F-y ³ F°	*3991.965	A	3	3.99	7.08	1-2	d ³ P-y ¹ D° (227)	4496.862 4545.956	C	100 50	0.94	3.68 3.65	2-3 2-2	a ⁵ 5-y ⁵ P° (10)
5288.31 5280.00	A A	5 31	3.74 3.74	6.08 6.07	3-3 2-2	(195)	3070.12 3075.58	A	25 1 5	3.96 3.99 4.00	7.98 8.00 8.03	2-3 1-2 0-1	(338) d3P-A3De	4580.056 3833.49	C B	40 4	0.94	3.63 4.16	2 -1 2 - 3	a5s-z5D°
5151.87	A	3	3.74	6.14	4-4	c ³ F_z ¹ G° (196)	3075.043 3051.308	A	3 3	3.96	8.00	3-3		3852.58 3870.267	B	15 25n	0.94		2-37 2-1	(11)
4813.952 4884.06	A A	50 50	3.74 3.74	6.27	4-3 3-3	(196) o ³ F-y ³ D° (197)	6672.84	A	3n	4.23	6.08	- 3-3	b ¹ F-y ³ F° (229)	3758.72	В	4	0.94	4.22	2-2	a ⁵ 8-z ³ P°
4947.58 4811.14 4874.805	A A A	40 6 4	3.74 3.74 3.74	6.23 6.31 6.27	2-1 3-3 2-2		6517.27	A	15n	4.23	6.13	3–3	blr_z1re (230)	3192.12 3210.62	B B	5 2	0.94 0.94	4.80 4.78	2-3 2-2	(12) a ⁵ 8-z ³ D° (13)
4475.24	Ā	1	3.74		4-4		6380.11	A	40n		6.16	3-2	b ¹ F-z ¹ D° (231)	2988.549	σ	25r	0.94	5.07	2-3	a5s_x5p°
4529.08 4556.765	A	51 4	3.74 3.74	6.47 6.45	4-3 3-2	(198)	5019.855	A	100n	4.23	6.68 7.08	3-4 3-2	b ¹ F_y ¹ G° (232) b ¹ F-y ¹ D°	2994.069 2998.787	C	18 20		5.06 5.05	2-2 2-1	(14)
4453.35 4464.32	A A	30n 40n	3.74 3.74	6.51 6.51	4-3 3-2	c ³ F-x ³ D° (199)	4325.22 3343.312	A A	9n 2	4.23	7.92	3-4	(233)	2984.82 2995.10	B B	8 25	0.94	5.07 5.06	2-3 2-2	a ⁵ S-y ⁵ F° (15)
4475.70 4456.53	Ä	30n 3n		6.49	3-1 3-3	,,	3351.53	A.	1	4.23	7.91	3–3	(234)	2500 00	_		4.07		-	a ⁵ D-z ⁷ P°
*4234.55 \$	Ā	40n	3.74 3.74	6.66 6.65	4-3 3-3	c ³ F_w ³ D° (200)	3293.146 3167.49	A A	50 30	4.23	7.97 8.12	3-2 3-4	b ¹ F-x ¹ D° (235) b1F-x1G°	6580.96 6537.921 6501.212	B D D	8 30 15	1.00	2.90 2.89 2.88	4-4 3-3 2-2	(16)
4242.894 4257.02	A	30n 15n	3.74		3-1 2-1	•	3116.78	A	40	4.23	8.19	3-3	b1F_x1G° (236) b1F_x1F°	6630.015 6572.900	200	25 15		2.89	4-3 3-2	
4027.30 4019.05	A A	1 7n	3.74 3.74	6.81 6.81	4-3 2-3	o ³ F-y ¹ F° (201)							(237)	5798.46	В	25		3.15	4-5	a ⁵ D-z ⁷ F°
4016.82 3999.195	A	20n 30n	3.74 3.74		4-5 3-4	°3 ^{k−x} 3 [©] •	5642.01 5341.22	A A	60n 2	4.50	6.68 6.81	4-4 4-3	c ¹ G_y ¹ G° (238) c ¹ G_v ¹ F°	5790.59 *5785.86	P F	(5a?)	.0.98	3.13 3.11 3.10	3-4 3-3 1-2	(17)
3985.783 4001.17	A A	30n 30	3.74		2-3 4-4	(202)	5322.81	A	5	4.50	6.82	4-5	c1G_y1F° (239) c1G_x3G°	5409.791	C	500	1.03	3.31	4-3	a ⁵ D_z ⁵ P°
*3991.965	A	3	3.74	6.83	3–3	o ³ F-y ¹ H°	5241.19	A	100n	4.50	6.85	4-5	(240) c(341)	5345.807 5296.686 5348.319	0.00	500 100 350	0.98	3.31 3.31 3.31	3-2 2-1 3-3	(18)
3970.15 3 69 7.72	A	5 1	3.74 3.74	6.85 7.08	4-5 3-2	(203)	3608.32	A	1	4.50	7.92	4-4	o¹G_₩ ³ G° (242)	5298.269 5264.152	Ċ	100 200	0.98 0.96	3.31 3.31	2-2 1-1	
3138.05	A	20	3.74	7.68	4-4	(204) c3F_w3F°	3404.43	A	801	4.50	8.12	4-4	c ¹ G_x ¹ G° (243)	5300.749 5265.722	200	75 100	0.96	3.31 3.31	2-3 1-2 0-1	
3141.07		8	3.74	7.67	3 – 3 –	(205)	3345.899	A	70	4.50	8.19	4 -3 -	olG-xlF° (344)	5247.564	C	150	0.96	3.31	V-1	

			REVISED M	ULTIPLE	TT	ABLE					
Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P Low High	J	Multiplet (No)	Laboratory I A Ref		E P Low High	J	Multiplet (No)
I continued			Cr I continued				<u>Cr I</u> continued				
23.121 C 30 12.490 C 25 07.70 B 7 68.63 B 8 51.83 B 12 38.71 B 10	1.00 3.41 3 0.98 3.39 2 1.03 3.41 4 1.00 3.39 3	-5 a ⁵ D-z ⁷ D°† -4 (19) -3 -4 -3	*9394.17 A 30 *9447.00 A 50 9571.76 A 25 9667.30 A 35 *9394.17 A 30 9444.36 A 5	2.53 3.86 2.53 3.84 2.53 3.82 2.53 3.81 2.53 3.86 2.53 3.84	5-5 4-4 3-3 2-2 4-5 3-4	a ⁵ G-z ⁵ ye cont	3777.32 B 3789.49 B *3777.93 B 3796.99 B	5 2 3 5	2.53 5.80 2.53 5.79 (2.53 5.80 2.53 5.80 2.53 5.78	5-4 5-5 4-5 2-3	a ⁵ G-z ³ G° (41)
83.41 B 10 93.41 B 7 68.290 C 35 48.752 C 25 23.465 C 35	1.00 3.38 3 1.03 3.45 4 1.00 3.43 3 0.98 3.42 3 1.03 3.43 4	-2 -4 a ⁵ D-y ⁷ P° -3 (30) -2 -3	9568.58 A 4 4872.02 B 18 4885.776 C 75 4789.354 D 75	3.53 3.82 3.53 5.07 3.53 5.06 3.53 5.11	2-3 4-3 3-2 6-5	a ⁵ G-x ⁵ P° † (30) a ⁵ G-y ⁵ P° (31)	*3767.431 C *3768.08 B 3769.00 B *3768.08 B 3768.62 B	13 18 7 18	2.53 5.81 2.53 5.81 2.53 5.81 (2.53 5.81 (2.53 5.81 2.53 5.81	4-3 5-5 4-4 3-3	م5 _{4_y} 3 ₆ ه (43)
91.890 C 30 38.897 P 25.54 B 10 19.20 B 30 46.174 C 100 52.158 C 100 52.158 C 75 500.752 C 75	1.00 3.45 3 0.98 3.43 2 0.96 3.42 1 1.03 3.68 4 1.00 3.65 3 0.98 3.63 3 1.00 3.68 3	-3 -3 -3 -3 -3 -3 a ⁵ D-y ⁵ P° -3 (31) -1	*4889.376 C 100d? 4861.842 C 75 4888.530 C 40 4903.239 C 70 *4790.337 C 20 *4829.376 C 100d? 4861.205 C 35 4887.73 B 25 *4790.337 C 20	3.53 5.09 3.53 5.07 3.53 5.05 3.53 5.05 3.53 5.09 3.53 5.09 3.53 5.09 3.53 5.06 3.53 5.06	5-4 4-3 3-3 3-1 5-5 4-4 3-3 3-3 4-5	(31)	*3768.08 B 3743.884 C *3743.578 C *3748.998 C 3768.240 C 3768.240 C 3742.968 C *3748.998 C	50 45 50 50 50 35 18 50	2.53 5.81 2.53 5.83 2.53 5.83 2.53 5.83 2.53 5.83 2.53 5.83 2.53 5.83 2.53 5.83	4-5 6-6 5-5 4-4 3-3 3-8 6-5 5-4	a ⁵ G-x ⁵ G° (43)
16.137 C 75 26.188 C 65 65.512 C 50 91.394 C 60 13.373 C 60	0.96 3.63 1 0.98 3.68 2 0.96 3.65 1 0.96 3.63 0	-8 -1 -3 -3 -1 -5 • ⁵ n-• ⁵ r•	4838.66 B 8 4860.37 B 7 4571.676 C 40 4601.021 C 30 4621.893 C 45* 4637.182 C 40	2.53 5.09 2.53 5.07 2.53 5.23 2.53 5.28 2.53 5.30 2.53 5.19	3-4 2-3 6-7 5-6 4-5 3-4	a ⁵ G-z ⁵ H° (32)	3758.044 C 3768.734 C 3744.490 C *3743.578 C 3748.614 C 3757.174 C	15 15 18 45 12 18	2.53 5.83 2.53 5.81 2.53 5.83 2.53 5.83 2.53 5.83 2.53 5.83	4-3 3-2 5-6 4-5 3-4 2-3	
44.507 C 100 39.450 C 75 37.566 C 75 39.718 C 60 84.977 C 75 71.279 C 75	0.98 3.83 2 0.96 3.81 1 0.96 3.80 0 1.03 3.84 4 1.00 3.83 3	-5 a ⁵ D-z ⁵ F° -4 (33) -3 -3 -1 -4	4648.126 C 25 4600.104 C 40 *4621.963 C 45* *4637.772 C 40 4648.868 C 35 4621.00 B 4	2.53 5.19 2.53 5.22 2.53 5.20 2.53 5.19 2.53 5.19 2.53 5.20	2-3 6-6 5-5 4-4 3-3 6-5		3685.548 C *3686.803 C 3687.353 C *3686.18 B *3686.803 C *3686.18 B	50w 45w 50w 5w 45w 5w	2.53 5.88 2.53 5.88 2.53 5.88 2.53 5.88 2.53 5.88 2.53 5.88	6-5 5-4 4-3 5-5 4-4 4-5	a ⁵ G _{-v} 5 _F - (44)
59.631 C 75 51.051 C 75 13.250 C 40 91.753 C 40 73.254 C 35	0.96 3.80 1 1.03 3.83 4 1.00 3.81 3 0.98 3.80 3	-2 -1 -3 -3 -2 -1 -4 a ⁵ D-z ⁵ D° -3 (23)	*4637.772 C 40 4649.461 C 45 4526.466 C 75 4530.755 D 100* *4535.731 C 60 4540.502 C 50	3.53 5.19 3.53 5.26 3.53 5.26 3.53 5.25 3.53 5.25	5-4 4-3 6-6 5-5 4-4 3-3	a ⁵ G_z ⁵ G° (33)	3679.070 C 3688.11 B *3694.12 B 3687.545 C *3694.12 B 3693.56 B	8 7 4 30 4 3	8.53 5.89 2.53 5.88 3.53 5.87 3.53 5.88 3.53 5.87 2.53 5.87	6-7 5-6 4-5 6-6 5-5 6-5	a ⁵ G-2 ³ I° (45)
08.755 C 100 02.915 C 50 03.164 C 25 41.490 C 60 21.022 C 50 16.243 C 25 86.789 C 50 85.218 C 40	0.98 4.14 2 0.96 4.13 1 1.03 4.16 4 1.00 4.14 3 0.96 4.12 1 1.00 4.17 3 0.96 4.12 1 0.96 4.14 1	-3 -3 -3 -1 -1 -0 -4 -3 -3	4544.619 C 50 4529.851 C 25 *4535.721 C 60 4541.071 C 30 4545.335 C 25 *4527.339 C 40 4530.688 D 100* 4535.146 C 35 4539.788 C 30	2.53 5.25 2.53 5.25 2.53 5.25 2.53 5.25 2.53 5.26 2.53 5.26 2.53 5.26 2.53 5.25 2.53 5.25	2-3 6-5 5-4 4-3 3-2 5-6 4-5 3-4 2-3		*3656.261 C 3663.206 C 3666.642 C 3668.029 C *3656.261 C 3668.19 B 3665.19 B 3665.39 P	50 40 35 15 50 15 8	2.53 5.91 2.53 5.90 2.53 5.90 2.53 5.90 2.53 5.90 2.53 5.90 2.53 5.90 2.53 5.91 2.53 5.90	5-4 4-3 3-3 3-1 4-4 3-3 3-4 3-4	а ⁵ дү ⁵ р° (46)
94.035 C 40 31.032 C 12 49.534 C 40 52.218 C 30 06.55 B 5 89.723 C 15 23.522 C 12	0.96 4.13 0 1.00 4.22 3 0.98 4.18 2 0.96 4.17 1 0.98 4.22 3 0.96 4.18 1 0.96 4.23 1	-1 -3 a ⁵ D-z ³ P° -1 (34) -0 -2 -1 -3 -1	m4466.13 P Cr *4518.63 B 6 4561.30 B 3 4186.531 C 30 *4153.816 C 35 *4163.635 D 30 4191.371 C 35 4303.590 C 18 4163.067 C 9	3.53 5.30 3.53 5.26 3.53 5.26 3.53 5.50 3.53 5.50 3.53 5.48 3.53 5.47 3.53 5.50	3-2 6-6 5-5 4-4 3-3	a ⁵ G_x ⁵ D° † (34) a ⁵ G_y ⁵ G° (35)		100 50 50 50 45 20 50 15	2.53 5.92 2.53 5.93 2.53 5.92 2.53 5.92 2.53 5.92 2.53 5.93 2.53 5.93 2.53 5.92 2.53 5.92	6-5 5-4 4-3 3-2 3-1 5-5 4-4 3-3 2-2	a ⁵ G-u ⁵ p* (47)
86.634 C 7 63.25 P 59.60 B 1 44.115 C 7 45.485 C 10 47.274 C 4 26.55 B 4 33.234 C 7	1.00 4.78 3 0.98 4.76 2 1.00 4.80 3 0.98 4.78 2 0.96 4.76 1 0.98 4.80 3 0.96 4.78 1	-3 a ⁵ D-z ³ D° -3 (35) -1 -3 -3 -1 -3	*4163.625 D 20 4191.750 C 10 4204.19 B 8 4127.302 C 7 *4153.816 C 25 4163.16 P 4190.66 B 4	2.53 5.50 2.53 5.48 2.53 5.52 2.53 5.50 2.53 5.50 2.53 5.50 2.53 5.48	6-5 5-4 4-3 3-2 5-6 4-5 3-4 2-3		*3640.39 B 3636.21 B 3641.01 B 3619.460 C 3646.161 C *3665.980 C 3679.819 C	15 30 2 3+g? 10 13 13	2.53 5.92 2.53 5.93 2.53 5.92	4-5 3-4 2-3 6-7 5-6 4-5 3-4	a ⁵ G-x ⁵ H° (48)
40.951 C 6 53.880 C 50r 39.780 C 7 39.164 C 18 34.190 C 25 34.350 C 40r 18.496 C 10r	0.96 4.76 0. 1.03 5.07 4. 1.00 5.06 3. 0.98 5.05 3. 1.00 5.07 3. 0.98 5.06 3.	-3 a ⁵ D-x ⁵ P° -3 (26) -1 -3 -3 -3	4033.263 C 6 *4037.284 C 10 4042.246 C 8 4046.760 C 6 4050.02 B 4 *4033.95 B 3 *4037.284 C 10 4041.79 B 6	a.53 5.59 a.53 5.59 a.53 5.58 a.53 5.58 a.53 5.59 a.53 5.59 a.53 5.59	5-4 4-3 3-2 2-1 5-5 4-4 3-3		3688.457 C 3645.59 B *3665.980 C *3680.19 B 3665.43 B *3680.19 B	10 5 12 7 4 7 8	3.53 5.88 3.53 5.92 3.53 5.90 3.53 5.89 3.53 5.89 3.53 5.89 3.53 5.88	3-3 6-6 5-5 4-4 6-5 5-4 4-3	
18.821 C 10r 13.713 C 20r 13.030 C 15 21.558 C 50r 17.569 C 35r 14.915 C 20r 14.760 C 18r	0.98 5.07 2- 0.96 5.06 1- 0.96 5.05 0- 1.03 5.11 4- 1.00 5.09 3- 0.98 5.07 3-	-3 -2 -1 -5 a ⁵ D-y ⁵ F° -4 (27)	4046.19 B 3 *4033.95 B 3 4036.80 B 1 4027.103 C 20 *4026.166 C 18 4025.012 C 15 *4026.166 C 18	3.53 5.58 3.53 5.59 3.53 5.60 3.53 5.60 3.53 5.60 3.53 5.60	3-2 4-5 3-4 5-6 4-5 3-4 5-5	a ⁵ G-z ³ H° (37)	*3632.839 C m3805.41 P 3609.479 C 3610.052 C *3633.839 C 3605.05 P 3609.04 B 3632.46 B *3604.54 B	40 Cr 18 10 40	2.53 5.95 2.53 5.95 2.53 5.95 2.53 5.95 3.53 5.96 3.53 5.96 3.53 5.95 2.53 5.93	4-3 3-3 3-1 4-4 3-3 2-2 3-4	a ⁵ G-u' 5p• (49)
15.194 C 18r 37.044 C 15 30.245 C 25r 35.40 P 30.673 C 8 49.883 C 3 40.846 C 10r 31.353 C 7	0.98 5.06 1. 0.96 5.05 0. 1.03 5.09 4. 1.00 5.07 3. 0.98 5.06 1. 1.03 5.07 4. 1.00 5.06 3. 0.98 5.05 3.	-3 -1 -3 -3 -1	*4025.44 B 5 3963.690 C 100 3969.748 C 70 *3976.665 C 100 3983.907 C 100 3991.123 C 80 *3969.061 C 18	(3.53 5.60 (3.53 5.65 2.53 5.64 2.53 5.64 2.53 5.63 2.53 5.63		a ⁵ G-y ⁵ H° (38)	*3604.54 B 3536.89 B *3565.55 B *3537.25 B *3565.55 B *3565.15 B	1 2 4d? 3	a.53 5.96 a.53 6.02 a.53 5.99 a.53 6.02 a.53 5.99 a.53 6.03 a.53 5.99	3-3 6-5? 5-4 5-5 4-4 4-5 3-4	a ⁵ G-x ³ G* (50)
86.473 C 30r 85.995 C 35r 85.849 C 8r 86.137 C 3 05.057 C 25r 00.890 C 25r 96.580 C 15r 91.886 C 15 97.642 C 15	0.98 5.10 2 0.96 5.09 1	-2 -1 -3 -3 -1	*3969.061 C 18 *3976.665 C 100 *3984.338 C 25 3991.673 C 25 3976.01 B 5 *3984.338 C 25 3992.11 B 4	a.53 5.63 a.53 5.63 a.53 5.64 a.53 5.64 a.53 5.63 a.53 5.63 a.53 5.63 a.53 5.63 a.53 5.73	6-5 5-4 4-3	а ⁵ G-w ⁵ D° (39)	3445.10 B *3455.603 C 3465.57 B *3445.618 C *3455.602 C 3465.245 D *3445.618 C 3455.281 C	7 35 5 40 35 15 40	2.53 6.12 2.53 6.11	5-4 4-3 5-5 4-4 3-3 4-5 3-4	a ⁵ G_₩ ³ G• (51)
71.112 C 30 75.483 C 30 80.791 C 35	0.98 5.13 2 0.96 5.11 1 0.96 5.10 0	-3 -2 -1	3817.844 C 10 *3816.173 C 30 3830.874 C 7 3832.10 B 5	2.53 5.77 2.53 5.77 2.53 5.76 2.53 5.76	6-5 5-4 4-3 3-2	(39) a ⁵ G_w ⁵ pe (40)	3433.598 C *3436.187 C *3441.439 C 3447.430 C	50 50 35 30	3.53 6.09 3.53 6.13 3.53 6.13 2.53 6.13 3.53 6.11	5-5 4-4 3-3	a ⁵ G⊷w ⁵ G● (52)
90.44 A 50 47.00 A 50 74.25 A 50 70.48 A 50 34.52 A 50	2.53 3.82 4 2.53 3.81 3	-5 a ⁵ G-r ⁵ r° -4 (39) -3 -3 -1	*3818.481 C 25 *3818.173 C 20 3821.582 C 8 *3818.481 C 25 3819.97 B 5		5-5 4-4 2-3 4-5 3-3		3453.328 C 3435.679 C *3441.439 C 3447.760 C 3453.743 C 3434.112 C *3436.187 C	35 10 35 30 12 30 50 9	2.53 6.12	3-2 5-6 4 -5	

Laboratory I A Ref Int	E P J Low High	Multiplet (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)
Cr I continued	0.57. 0.47. 5.4	a ⁵ (Lx ³ F°	Cr.I continued	2.70 5.91	3-4 a ⁵ p-v ⁵ p°	<u>Cr I</u> continued 7462.37 B 100	2.90 4.55	4-3 z ⁷ P°-e ⁷ S
*3435.819 C 6d 3432.31 B 8 3431.69 C 4 *3435.819 C 6d	3.53 6.13 5-4 3.53 6.13 4-3 3.53 6.13 3-8 3.53 6.13 4-4	(53)	3841.277 C 50 3850.042 C 50 3855.571 C 30 3848.983 C 40	2.70 5.90 2.70 5.90 2.70 5.90 2.70 5.90	2-3 (69) 1-3 3-3	7400.23 B 150 7355.94 B 200	3.89 4.55 3.88 4.55	3-3 (93) 2-3
3431.995 D 7 3431.284 C 10	2.53 6.13 4-4 2.53 6.13 3-3 2.53 6.13 2-2 2.53 6.13 3-4		3854.220 C 50 3857.631 C 20 3853.176 C 12	2.70 5.90 2.70 5.90 2.70 5.90	3-3 1-1 3-3	5328.339 C 200w 5297.360 C 60w 5275.171 C 75w	2.90 5.22 2.89 5.22 2.88 5.22	4-5 z ⁷ P°-e ⁷ D 3-4 (94) 2-3
3435.488 C 3 3431.59 C 3 3362.213 C 20	2.53 6.13 2-3 2.53 6.20 6-5		3856.281 C 15 3855.286 C 12	2.70 5.90 2.70 5.90	3-1 1-0	5329.12 D 65w 5297.976 C 40w 5275.689 C 50w	2.90 5.22 2.89 5.22 2.88 5.22	4-4 3-3 2-2
*3367.53 C 15w *3379.825\$ C 8 3384.65 B 10w	2.53 6.20 5-4 2.53 6.19 4-3 2.53 6.18 3-2	(54)	3819.564 C 40 3826.425 C 40 3836.070 C 12	2.70 5.93 2.70 5.92 2.70 5.92	3-4 a ⁵ P-u ⁵ F* 2-3 (70) 1-2	5329.719 C 25w 5298.44 P 5276.03 D 75w	2.90 5.22 2.89 5.22 2.88 5.22	4-3 3-2 2-1
3388.71 B 10 *3362.70 B 8 *3367.53 C 15w	2.53 6.17 2-1 2.53 6.20 5-5 2.53 6.20 4-4		3825.390 C 20 3834.735 C 15 3842.03 B 10	2.70 5.92 2.70 5.92 2.70 5.91	3-3 2-2 1-1	4514.531 C 40 4491.678 C 30	2.90 5.63 2.89 5.63	4-3 z ⁷ P°-f ⁷ S 3-3 (95)
3379.564 C 3w 3384.24 B 3w *3362.70 B 8	2.53 6.19 3-3 2.53 6.18 2-2 2.53 6.20 4-5		3833.71 B 3 3840.70 B 4	2.70 5.93 2.70 5.91	3-3 3-1 5 5 5 -	4475.345 C 50 4261.354 C 25	2.88 5.63 2.90 5.80	2-3 4-5 z ⁷ P°-f ⁷ D
3061.652 C 5 3067.22 P	2.53 6.56 6-5 2.53 6.56 5-4		3815.433 C 30 3786.22 2 8 3792.42 B 3	2.70 5.93 2.70 5.96 2.70 5.95	3-4 a ⁵ P-u ¹⁵ F*† 3-3 (71) 1-3	4272.910 C 12 4284.725 C 12 4293.565 C 20	2.89 5.78 2.88 5.76 2.90 5.78	3-4 (96) 2-3 4-4
3071.69 P 3074.47 B 3 3076.58 B 3	2.53 6.55 4-3 2.53 6.55 3-2 2.53 6.54 2-1		3755.81 B 7 3756.83 B 2	2.70 5.98 2.70 5.98	3-2 a ⁵ P-x ³ P°† 3-2 (73)	4299.718 C 20 4305.453 C 30 *4320.592 C 30	2.89 5.76 2.88 5.74 (2.90 5.76 (2.89 5.74	3–3 2–2 4–3 3–2
8348.28 A 20	2.70 4.17 3-4		3726.85 B 4		1-1 a ⁵ P-x ³ D° (73) 3-3 a ⁵ P-t ⁵ P°	4319.641 C 40 4129.21 E (20n)	2.88 5.73 2.90 5.89	2-1 4-5 z ⁷ P°-g ⁷ D
8455.24 A 12 8555.54 A 5 8450.26 A 15	3.70 4.16 2-3 3.70 4.14 1-3 3.70 4.16 3-3 3.70 4.14 2-3		*3574.039 C 15 3602.574 C 13 3604.95 P 3601.666 C 40	2.70 6.15 2.70 6.12 2.70 6.12 2.70 6.12	3-3 a ⁵ P-t ⁵ P* 2-3 (74) 1-1 3-2	4110.87 E (8) 4097.65 E (5) 4129.96 P	2.89 5.89 2.88 5.89 2.90 5.89	3-4 (97) 2-3 4-4
8548.83 A 12 8643.03 A 12 8543.73 A 10 8636.26 A 10	2.70 4.14 2-2 2.70 4.13 1-1 2.70 4.14 3-2 2.70 4.13 2-1		*3603.745 C 12 3574.935 C 10 *3603.745 C 12	3.70 6.13 2.70 6.15 2.70 6.13	3-1 2-3 1-3	4111.36 E (6) 4097.96 E (7) 4130.47 P	2.89 5.89 2.89 5.89 2.90 5.89	3-3 3-2 4-3
8636.26 A 10 8707.42 A 7 8296.90 A 4	2.70 4.13 1-0 2.70 4.18 2-1	. 7 -	3572.748 C 13 3573.643 C 18	2.70 6.15 2.70 6.15	3-2 a ⁵ P-y ⁵ S° 2-2 (75)	4111.67 E (3) 4098.18 E (7)	2.89 5.89 2.88 5.89	3-3 2-1
8397.04 A 6 8303.19 A 6	3.70 4.17 1-0 3.70 4.18 1-1	(57)	3574.805 C 12 3548.731 C 2	2.70 6.15 2.70 6.17	1-3 2-1 a ⁵ p-t ⁵ r•	8224.09 A 8 8261.95 A 8	2.97 4.47 2.95 4.45	5-4 a ³ H-z ³ F° 4-3 (98)
5225.821 C 50 5227.75 B 25 5230.228 C 40	2.70 5.06 3-2 2.70 5.06 2-3 2.70 5.06 1-3	(58)	3481.303 C 20 3473.612 C 15	2.70 6.24 2.70 6.25	3-4 a ⁵ p-u ⁵ p• 2-3 (77)	4727.153 C 40 4693.949 C 45	2.99 5.60 2.97 5.60	6-6 a ³ H-z ³ H° 5-5 (99)
m5306.15 P Cr *5224.541 C 45	3.70 5.07 3-3 3.70 5.06 3-3	(59)	3471.49 B 7 3472.764 C 12 3470.401 C 10	3.70 6.35 3.70 6.35 3.70 6.35	1-2 3-3 2-2	4666.215 D 25 4725.95 B 7 4692.97 B 10 4695.153 C 30	2.95 5.60 2.99 5.60 2.97 5.60 2.97 5.60	4-4 6-5 5-4 5-6
5241.458 C 30 5222.676 C 30 5238.971 C 65	2.70 5.05 1-1 2.70 5.06 3-2 2.70 5.05 3-1		3470.529 C 7 3470.72 B 4 3307.755 C 8	2.70 6.25 2.70 6.25 2.70 6.43	1-1 1-0 3-4 a ⁵ P-t ⁵ D ^o †	4667.181 D 30 4543.74 C 30	2.95 5.60 2.97 5.69	4-5 5-4 a ³ H-y ³ F°
m5308.07 P Cr 5237.10 B 30 5013.316 C 100	2.70 5.07 2-3 2.70 5.06 1-2 2.70 5.16 3-4	E- E-	3312.06 B 3 •3315.19 B 1	2.70 6.43	2-3 (78) 1-27	*4518.63 B 6	2.95 5.69 2.95 5.70	4-4 (100) 4-3 a ³ H-y ³ D°
5013.316 C 100 5067.714 C 75 5113.130 C 45 5065.910 C 50	2.70 5.16 3-4 2.70 5.13 2-3 2.70 5.11 1-2 2.70 5.13 3-3	(60)	3196.37 P 3201.97 P m3201.24 P Cr	2.70 6.56 2.70 6.55 2.70 6.55	3-4 a ⁵ p-s ⁵ r° 2-3 (79) 3-3	4442.268 C 30 4410.967 C 25	2.99 5.77 2.97 5.77	(101) 6-5 a ³ H-w ⁵ F° 5-4 (102)
5110.751 C 40 5144.672 C 50 5108.93 B 12	3.70 5.11 3-3 3.70 5.10 1-1 3.70 5.11 3-3	!	3204.55 P	2.70 6.55	3- 3	4393.534 C 12 4387.496 C 30	2.95 5.76 2.99 5.80	4-3 6-5 a ³ H-z ³ G°
5143.263 C 20 5161.765 C 25	3.70 5.10 3-1 3.70 5.09 1-0	j	9900.87 A 15 9626.30 A 4 10197.05 A 3	2.97 4.32 2.90 4.18 2.97 4.18	3-3 a ³ P-z ³ P° 1-1 (80) 3-1	4375.333 C 30 4363.134 C 12	2.97 5.79 2.95 5.78	5-4 (103) 4-3 6-5 a ³ H-y ³ G°
4745.308 C 30 4806.255 C 25 4857.34 B 18	2.70 5.26 2-3 2.70 5.24 1-2	}	9752.84 A 4 9362.06 A 10 9313.55 A 8	2.90 4.17 2.90 4.22 2.86 4.18	1-0 1-3 0-1	4374.158 C 40 4346.833 C 30 4325.075 C 40	2.99 5.81 2.97 5.81 2.95 5.81	5-4 (104) 4-3
4804.64 B 15 4855.146 C 15 4891.97 B 18	2.70 5.26 3-3 2.70 5.24 2-2 3.70 5.22 1-1		4619.551 C 40 4501.788 C 35 4622.761 C 35	2.97 5.65 2.90 5.64 2.97 5.64	3-3 a ³ P-y ³ P° 1-1 (81) 3-1	4255.502 C 25 *4240.705 C 30 4226.76 P	2.99 5.89 2.97 5.88 2.95 5.87	6-7 a ³ H-z ³ I° 5-6 (105) 4-5
4853.52 P 4889.73 B 30 4909.87 B 6	2.70 5.24 3-2 2.70 5.22 2-1 2.70 5.21 1-0	.7	4622.761 C 25 4501.112 C 35 4498.730 C 35 4432.175 C 40	2.90 5.64 2.90 5.65 2.86 5.64	1-0 1-2	4266.82 B 8 4248.73 B 10	2.99 5.88 2.97 5.87	6-6 5-5
4697.062 C 40 *4698.615 C 50 4700.608 C 40	2.70 5.32 3-2 2.70 5.32 2-2 2.70 5.32 1-2	(62)	*4527.339 C 40 4424.075 C 10	2.97 5.70 2.90 5.69	3-3 a ³ P-y ³ D° 1-3 (83)	4175.945 C 15 4185.345 C 10 4189.96 B 5	2.99 5.94 2.97 5.92 2.95 5.90	6-7 a ³ H-x ⁵ H° 5-6 (106) 4-5
4459.34 B 18w 4475.30 P	2.70 5.46 3-3 2.70 5.45 2-2	a ⁵ P-w ⁵ P*	*4362.95 § B 7	2.86 5.69 2.97 5.72	0-1 2-3 a ³ P-w ⁵ D*	4210.77 B 5 4237.27 B 1 4230.29 B 4	2.99 5.92 2.99 5.90 2.97 5.89	6-6 6-5 5-4
4473.782 C 40 4487.46 B 5w 4480.769 C 18	3.70 5.45 3-2 3.70 5.45 3-1 3.70 5.46 3-3	} L 5	4377.549 C 30 4321.238 C 20	2.90 5.72 2.86 5.72	0-1	4220.45 B 5 4167.80 B 3	2.95 5.88 2.97 5.93 2.95 5.93	4-3 5-4 a ³ H-u ¹ 5 F° 4-4 (107)
4477.02 B 35w 4295.757 C 25	3.70 5.45 1-2 3.70 5.57 3-3	a 5p_v 5p•	4387.380 C 10 *4262.133 C 12 4190.16 B 15	2.97 5.79 2.90 5.80 2.86 5.80		4146.695 C 6 4123.387 C 10 4121.817 C 10	2.99 5.98 2.97 5.96	6-6 a ³ H-y ³ H° 5-5 (108)
4341.48 B 7 4382.853 C 80 4340.130 C 18 4381.112 C 35	3.70 5.54 2-2 3.70 5.51 1-1 3.70 5.54 3-2 3.70 5.51 2-1	3	4118.45 P 3886.94 P	2.90 5.90 2.97 6.15	"(85 <u>)</u>	4104.867 C 10 4146.47 B 4 4099.016 C 6	2.95 5.96 2.99 5.96 2.97 5.98	4-4 6-5 5-6
4381.112 C 35 4297.050 C 15 4343.163 C 18	3.70 5.51 3-1 3.70 5.57 3-3 3.70 5.54 1-3	3	3843.64 B 3	2.97 6.19	(86) 2-3 a ³ p_t ⁵ p°	4101.163 D 8	2.95 5.96 2.99 6.50	4-5 6-7 a ³ H-y ³ I°
4108.400 C 6 4130.613 C 13 4137.643 C 8	2.70 5.70 3-3 2.70 5.69 2-2 2.70 5.69 1-1	3 (65)	m3819.57 P Cr 3748.18 B 2 3710.60 B 4		2-3 a ³ P-w ³ D•↑ 1-2 (88)	3494.967 C 15 3488.453 C 10 3512.70 B 2n	2.97 6.50 2.95 6.49 2.99 6.50	5-6 (109) 4-5 6-6
4119.44 B 3w 4126.099 C 6 4109.584 C 8	3.70 5.69 3-2 3.70 5.69 2-1 3.70 5.70 2-3	3 1 3	*3676.33 B 18 *3604.54 B 3	2.97 6.33 2.90 6.33	1-1 (89)	*3503.38 § B 1 3481.536 C 18	2.97 6.49 2.99 6.53	5-5 6-6 a ³ H-x ³ H ^o † 5-5 (110)
4066.938 C 6	2.70 5.69 1-2 2.70 5.73 3-4	5p_w5ne	*3681.691 C 12 3613.669 C 8 3599.395 C 10	2.97 6.33 2.90 6.32 2.90 6.33	1-0 1-3	3467.715 C 18 3443.790 C 10 3472.906 C 10	2.97 6.53 2.95 6.54 2.95 6.51	4-4 a ³ H-1°
4077.089 C 12 4081.737 C 5 4075.92 B 6	3.70 5.73 3-3 3.70 5.73 1-2 3.70 5.73 3-3	3	3559.781 C 10	2.86 6.33 2.97 6.55 2.97 6.55	3-3 a ³ p-s ⁵ pe	3346.018 C 12 3346.71 B 10	2.99 6.68 2.97 6.66	(111) 6-5 a ³ H-v ³ G ^o † 5-4 (112)
4080.221 C 5 4090.305 C 6 3992.845 C 30	2.70 5.72 2-2 2.70 5.72 1-1 2.70 5.79 3-3	l	3453.84 P 3388.88 B 1 3198.112 C 7	2.90 6.54	1-1 2_3 a ³ p_v ³ po	3346.78 B 9 3257.822 C 12	2.95 6.64 2.99 6.78	4-3 6-6 a ³ H-w ³ H• †
3979.798 C 10 3972.688 C 7 3978.677 C 18	2.70 5.79 3-3 2.70 5.80 2-2 2.70 5.80 1-1 2.70 5.80 3-2	L	3188.011 C 20 3159.59 C 20	2.97 6.85 2.90 6.81	2-3 a ³ P-v ³ D° 1-3 (92)	3251.836 C 15 3245.542 C 12	2.97 6.76 2.95 6.76	5-5 (113) 4-4
3971.255 C 20 3993.968 C 15 3981.233 C 15	3.70 5.80 2-1 2.70 5.79 2-3 2.70 5.80 1-2	L 3	3144.409 C 8 3218.70 B 5 3179.283 C	3.86 6.78 2.97 6.81 3.90 6.78	0-1 2-3 1-1	3259.975 C 10 3238.087 C 8 3237.729 C 10	2.99 6.77 2.97 6.78 2.95 6.77	6-6 a ³ H-v ³ H ^o 5-5 (114) 4-4
3960.763 C 5 3962.19 B 3	2.70 5.81 2-1 2.70 5.81 1-1	a ⁵ P-z ³ 8°	3239.14 B	2.97 6.78 ——————	3-1 	3253.26 B 4 3250.58 B 4 3244.69 B 1	2.99 6.78 2.97 6.77 2.97 6.77	6–5 5–4 5–6

10.

											-								
I A		Int	E P Low High	J	Multiplet (No)	Labo I A		ry Int	E P Low Hi	gh	J	Multiplet (No)	IA		Int	Low E	P High	J	Multiplet (No)
<u>ir I</u> con	tinue	d				<u>Cr I</u> cor	t1nu						<u>Cr I</u> con	tinue	d				
3163.756 3155.149 3148.445 3169.58 3160.61	C C C B B	15 12 10 3 4	2.99 6.89 2.97 6.88 2.95 6.87 2.99 6.88 2.97 6.87	6-7 5-6 4-5 6-6 5-5	a ³ H-x ³ I° (115)	4217.626 4216.365 4222.732 4230.481 4235.98	CCCCB	30 15 20 25 15	3.00 5. 3.00 5. 3.00 5. 3.00 5. 3.00 5.	93 3 92 3 92 3	4-5 3-4 3-3 1-2 0-1	b ⁵ D-u ⁵ F° (132)	4540.719 4511.903 4500.295 4513.21	CCB	50 60 40 8+g	3.09 3.07 3.07 3.07	5.81 5.81 5.81 5.81	4-4 3-3 4-3	a ³ G-y ³ G° (150)
3152.881 3141.891	D D	5 5	2.99 6.90 2.97 6.90	6-6 5-5	a ³ H-u ³ H° (116)	4223.47 4232.866 4237.710	BCC	7 10 13	3.00 5. 3.00 5. 3.00 5.	92 2 92 2	3-3 3-2 1-1		4505.22 4484.68	B B	8	3.09 3.07	5.83 5.82	5–5 3–3	a ³ G-x ⁵ G° (151)
039.74 031.486	P C	Cr 4	2.99 7.05 2.97 7.04	6-5 5-4	a ³ H-u ³ G° (117)	4211.349 4177.17	C B	15 3	3.00 5. 3.00 5.	95 (0-1	b ⁵ D-u' ⁵ F° (133)	4425.129 4406.26	C B	12 18	3.09 3.07	5.88 5.87	4-5	a ³ G-z ³ I• (153)
3024.681	C	a	2.95 7.03	4- 3 -		4207.51 3945.968	B	2 10	3.00 5. 3.00 6.		4-4 4-5	_D 5 ը_ w5g•	4364.87 4366.33	B B	10 4	3.09 3.07	5.92 5.90	56 45	a ³ G-x ⁵ H° † (153)
0486.24 0672.17 0816.91 0647.66	A A A	20 18 8 12	3.00 4.17 3.00 4.16 3.00 4.14 3.00 4.16	3-3 2-2 4-3	b ⁵ D-z ⁵ D° (118)	3945.495 3944.25 3943.21	C B B	9 2 3	3.00 6. 3.00 6. 3.00 6.	13 3	4-4 3-3 3-2	(134) b ⁵ D-x ³ F* † (135)	4271.061 4269.951 4262.38	C C B	15 12 8	3.09 3.07 3.07	5.98 5.96 5.96	5-6 4-5 3-4	(154)
9821.62 957.19 .044.64	A A	13 13 5	3.00 4.14 3.00 4.13 3.00 4.13	3-2 3-1 1-0		3915.843 3952.399	C C	40 15	3.00 6. 3.00 6.	12 3	4-3 3-2	b ⁵ D-t ⁵ P* (136)	4209.756 4224.514 •4221.572	000	15 18 25	3.07	6.02 5.99 5.99	5-5 4-4 3-3	a ³ G-x ³ G° (155)
509.96 667.53 801.37	A A A	10 15 12	3.00 4.17 3.00 4.16 3.00 4.14	3-4 2-3 1-2		3953.163 m3919.15 3951.765	C P	18 Cr 8	3.00 6. 3.00 6. 3.00 6.	12 2	8-1 3-3 8-2		4249.81 4184.895 4213.179	P C C	12 10	3.09 3.07 3.07	5.99 6.02 5.99	5-4 4-5 3-4	
929.90 712.778 788.389	A C C	100 20	3.00 4.13 3.00 5.16 3.00 5.13	0-1 4-4 3-3	b ⁵ D-y ⁵ D° (119)	3951.097 3918.54 •3949.64	C P B	10	3.00 6. 3.00 6. (3.00 6.	15 2 13 1	1-1 3-3 1-2 0-1		4080.56 4057.19 4060.62	B B B	2 3 847	3.09 3.07 3.07	6.12 6.13 6.11	5-5 4-5 3-4	a ³ G-w ³ G• † (156)
843.24 781.195 844.606 884.452	ВССС	25 40 40 25	3.00 5.11 3.00 5.13 3.00 5.11 3.00 5.10	2-2 4-3 3-2 2-1		3917.596 3916.980 3914.96	C C B	15 10 4	3.00 6. 3.00 6. 3.00 6.	15 2	3-2 3-2 1-2	b ⁵ D-y ⁵ s° (137)	3586.23 3571.97 3553.968	B P C	4 5	3.09 3.07 3.07	6.53 6.53 6.54	5-6 4-5 3-4	a ³ G-x ³ H ^e (157)
902.182 719.821 787.036	000	25 40 20	3.00 5.09 3.00 5.16 3.00 5.13	1-0 3-4 2-3		3849.365 3858.90	C B	50 15w	3.00 6. 3.00 6.	30 3	4-5 3-4	b ⁵ D-t ⁵ F° (138)	3442.58 3425.96	B B	1 4	3.09 3.07	6.68 6.68	5-5 4-5	a ³ G_v ³ G° (158)
838.66 876.55 556.19	B B	25 25 10	3.00 5.11 3.00 5.10 3.00 5.22	1-3 0-1 4-4		3874.570 3879.222 3883.660 m3855.65	D C C P	40w 50 20 Cr	3.00 6. 3.00 6. 3.00 6.	18 1 17 0 30 4	3-3 l-2)-1 l-4		*3349.322§ 3343.342 3343.227	CCC	8 5 5	3.09 3.07 3.07	6.78 6.76 6.76	5-6 4-5 3-4	a ³ G-w ³ H°† (159)
574.41 512.69 556.19	B B B	10 10	3.00 5.21 3.00 5.24 3.00 5.23	3-2 3-3 2-1	(130) b ⁵ D-x ⁵ D° (131)	3875.14 3881.214 3885.084 3881.856	BCCC	10n 40 20 10	3.00 6. 3.00 6. 3.00 6.	18 a 17 1	3-3 3-2 1-1 3-2		3351.596 3328.80 3334.925	C B C	8 4 6	3.09 3.07 3.07	6.77 6.78 6.77	5-6 4-5 3-4	a ³ G-v ³ H° (160)
004.38 028.00	B B	35w 15w	3.00 5.46 3.00 5.45	4-3 3-2	b ⁵ D-w ⁵ P° † (133)	3804.798 3797.716	000	50 40	3.00 6.3 3.00 6.3	35 3	3-3	b ⁵ D-u ⁵ D° (139)	3344.50 3313.721	B	4 3	3.09	6.78	5-5 5-4	
981.30 998.55 980.30	P B P	4	3.00 5.48 3.00 5.47 3.00 5.48	3-3 2-2 2-3	b ⁵ D-y ⁵ G° (123)	3793.289 3790.228 3794.608 3793.879	0000	30 8 35 30	3.00 6.3 3.00 6.3 3.00 6.3	35 1 35 4 35 3	3-2 1-1 1-3 3-2		3309.82 3298.318 3302.86	B C B	4 7 6	3.07 3.07 3.07	6.80 6.82 6.80	4-3 4-4 3-3	(161)
755.137 764.643 770.670	000	8 20 12	3.00 5.59 3.00 5.59 3.00 5.59	4-5 3-4 2-3	b ⁵ D-x ⁵ F° (124)	3792.137 3790.454 3807.926	000	30 18 15	3.00 6.3 3.00 6.3	35 1 34 3	3-1 1-0 3-4		3238.50 3227.23	B	4 3	3.09 3.07	6.90 6.90	5-6 4-5	a ³ G-u ³ H• (162)
774.557 759.74 771.57	C B B	8 8 10	3.00 5.58 3.00 5.59 3.00 5.59	1-2 4-4 3-3		3797.126 3791.376 3788.864	000	30 30	3.00 6.2 3.00 6.2 3.00 6.2	35 1	3-3 1-2 1-1		3119.246 3110.860 3109.336	000	5 5 8	3.07 3.07	7.05 7.04 7.03	5-5 4-4 3-3	a ³ G_u ³ G° (163)
777.57 779.87 766.66	B B P	7 3 Cr	3.00 5.58 3.00 5.58 3.00 5.59	3-3 1-1 4-3		m3602.61 3607.92 3608.58	P P P	Cr	3.00 6.4 3.00 6.4	123	-2	b ⁵ D-t ⁵ D° (140)	3115.51 3105.57 3104.70	B B B	1 2 3	3.07 3.07 3.07	7.03 7.05 7.04	4-3 4-5 3-4	
778.50 566.60 2	B	3 7	3.00 5.58 3.00 5.70	3-2 4-3	_հ 5 _Դ -3 _Դ -	3607.25 3460.430	P C	25	3.00 6.4 3.00 6.4	13 1	-1 -0	_D 5 _{D—8} 5 բ • ϯ	*3060.63 3058.17	B B	2 3	3.07	7.13 7.11	4-4	a ³ g_t ³ g• † (164)
584.75 590.69 571.105	B B C	12 8 25	3.00 5.69 3.00 5.69 3.00 5.70	3-2 2-1 3-3	b ⁵ D-y ³ D° (135)	3469.590 3474.87 3477.161	B	15 8 7	3.00 6.5 3.00 6.5 3.00 6.5	6 3 5 2	-4 -3	(141)	3047.455 3052.229	0 -	6		7.12	4-5 3-4	
583.89 587.86 570.30	B B B	15 8 6	3.00 5.69 3.00 5.69 3.00 5.70	2-2 1-1 2-3		3479.14 *3467.022 3475.36	B C P	5 13	3.00 6.5 3.00 6.5 3.00 6.5	64 0 6 4	-1 -4 -3		9059.74 9148.45 9208.29	A	5 6 25	3.11 3.10 3.11		4-4 3-3 4-3	a ³ F-z ³ Fe (165)
515.440 519.83	C B P	25 7	3.00 5.73 3.00 5.73	4-4 3-4	b ⁵ D-w ⁵ D°† (136)	3478.77 3480.28	B	4	3.00 6.5 3.00 6.5	i5 a	-2 -1		9263.97 4954.811	Ã C	20 80	3.10	4.43 5.60	3-2 4-5	a ³ F-z ³ H°
530.12 458.538 459.738 465.357	CCC	45 25	3.00 5.72 3.00 5.77 3.00 5.77	3-4	b ⁵ D-w ⁵ F° (127)	8947.20 8976.88 9035.86	A	35 25 20	3.09 4.4 3.07 4.4 3.07 4.4	5 4	-4 -3 -2	a ³ G-z ³ F° (143)	4936.334 4953.714 4880.06	D B	150 25 25		5.60 5.60	3-4 4-4	(166)
463.337 464.907 462.774 455.45	C C B	35 25 30 7	3.00 5.76 3.00 5.76 3.00 5.76	3-3 1-3 0-1		8835.67 8925.75 8786.28	A A P	10 10	3.07 4.4 3.07 4.4 3.07 4.4	5 3	-4 -3 -4		4874.651 4787.74	C B	20 5	3.10	5.63	3-4	(167) a ³ F-y ³ F*
466.165 467.561 464.669	000	25 30 25	3.00 5.77 3.00 5.76 3.00 5.76	4-4 3-3 3-3		4922.267 4887.013	C	300 150	3.09 5.6 3.07 5.6		-6 -5	a ³ G-z ³ H° (143)	4784.70 4754.743 4801.030	P C C	20 75	3.10 3.08 3.11	5.68 5.67	3-3 2-2 4-3	(168)
468.38 403.372	B	7 35	3.00 5.76 3.00 5.76 3.00 5.80	1-1 3-2 4-5	_b 5 _{D-z} 3գ-	4870.796 4920.945 4885.957	000	100 50 50	3.07 5.6 3.09 5.6 3.07 5.6	05.	-4 -5 -4		4792.513 4747.00	B	75 4	3.10		3-2 2-3	
423.318 433.968 419.10	C B	12 20 10	3.00 5.79 3.00 5.78 3.00 5.79	3-4 2-3 4-4	(128)	4836.857 4814.265 4810.733	O O O	40 35 35	3.09 5.6 3.07 5.6 3.07 5.6	4 4	-6 -5 -4	a ³ G-y ⁵ H ^o (144)	4761.242 4759.907 4729.723	CCC	10 10 35	3.10	5.70 5.69 5.69	4-3 3-2 3-17	a ³ F-y ³ D*
434.75 430.51	B P	10 Cr	3.00 5.78 3.00 5.78	3–3 4–3		4847.177 4825.51 4822.06	C B B	18 10 5	3.09 5.6 3.07 5.6 3.07 5.6	4 5- 3 4-	-5 -4 -3		4717.688 4706.103 4680.870	000	10 25 35	3.10	5.72 5.72	3-2	a ³ F_w ⁵ D° (170)
424.281 411.093 399.823	0000	40 40 30	3.00 5.79 3.00 5.80 3.00 5.80	4-3 3-2 3-1	b ⁵ D-u ⁵ P° (139)	4756.113 4737.350	C	100 75	3.09 5.6 3.07 5.6	9 5-		а ³ д_у ³ г• (145)	4701.92 4669.67	B B	5 10	3.10	5.72 5.72 5.72	2-1 3-3 2-2	
428.501 410.304 397.251 427.71	000	35 40 30	3.00 5.79 3.00 5.80 3.00 5.80	3-3 2-2 1-1		4730.711 4724.416 4723.03	C	50 35 15	3.07 5.6 3.07 5.6 3.07 5.6	7 3. 9 4 .	-2 -4 -3	(110)	4640.55 4632.180 4599.25	B C B	35 1	3.10	5.77 5.76	3-3	a ³ F-w ⁵ F° (171)
407.72 395.417	B C	10 4047 18	3.00 5.79 3.00 5.80 3.00 5.80	2-3 1-2 0-1		4710.24 •4698.615	B C	-6 50	3.07 5.6 3.07 5.7	9 3-	-4	a ³ G_y ³ D●	4634.59 4599.00 4625.30	B B B	5 8 3	3.10 3.08	5.76 5.76 5.76	3-2 3-1	
356.760 368.252 379.782	000	30 30	3.00 5.83 3.00 5.83 3.00 5.82	4-5 3-4 2-3	b ⁵ D-x ⁵ G ^e (130)	4698.947 4684.605	0	20 12	3.07 5.6 3.07 5.7	9 3- 0 3-	-2 -3	(146)	4596.90 4584.095	В	3	3.08	5.77 5.76 5.80	3-4 2-3 4-5	a3 _{F-z} 3ge
392.26 364.14 380.55 394.83	B B B	10 10 10	3.00 5.81 3.00 5.83 3.00 5.82	1-2 4-4 3-3		4656.189 4646.495 4614.15	C C B	30 15 12	3.07 5.7 3.07 5.7 3.09 5.7	3 -	-2	a ³ G_w ⁵ D ⁶ † (147) a ³ G_w ⁵ F°	4586.138 4563.657 4601.15 4598.441	CCCBC	20 25 20 20	3.10 3.08 3.11	5.79 5.78 5.79 5.78	3-4 2-3 4-4 3-3	(172)
338.957 352.243	C	8 35 10	3.00 5.81 3.00 5.91	2-3 4-4	b ⁵ D-v ⁵ D•	4581.063 4574.45 4576.76	C B B	10 6 6	3.07 5.7 3.07 5.7 3.07 5.7	7 4 - 8 3-	-4	(148)	4569.530 4554.830	CC	20 25	3.11	5.81	4-5	a ³ F-y ³ G*
356.620 348.344 357.368	0000	8 13 12	3.00 5.90 3.00 5.90 3.00 5.90 3.00 5.90	3-3 2-2 4-3	(131)	4555.09 •4542.621	B	(101) 35	3.09 5.8 3.07 5.7	5 -		_k 3 _{G-2} 3 _G e (149)	4532.00 4569.644 4556.169	BCC	12 30 40	3.10 3.08 3.11 3.10	5.81	3-4 3-3 4-4 3-3	(173)
359.15 342.82	B B	10 10	3.00 5.90 3.00 5.91	3-2 3-1 3-4		4541.513	C	25	3.07 5.7			,/	4570.98	В	30	3.11		3-3 4-3	

Labora I A R	tory lef		E P	High	J	Multiplet (No)	Labor I A		y Int	E F Low	High	J	Multiplet (No)	Labor	ator; Ref		E P	High	J	Multiplet (No)
Cr I conti	nued						Cr I cont	inue	đ					Cr I cont	inue	a				
4527.471	C B	30 3		5.80 5.81	3-17 3-1	a ³ F_u ⁵ pe (174) a ³ F_z ³ 8°	4761.73 4752.87	B B	5 10		5.95 5.95	1-1	b ³ p_u ¹ 5 p• † (194)	3293.81 3277.86 3270.70	B B B	5 4 3		7.18 7.19 7.18	5-4 4-3 3-2	b ³ G-u ³ F• (219)
4332.569 4325.65	C B B	15 8 8 10	3.11 3.10 3.08	5.96 5.95 5.95 5.93	4-3 3-3 3-1 3-4	(175) a3p_u:5pe (176)	4707.754 4725.67 4736.13 4749.25 4697.395	C B B C	15 5 1w 15	3.36 3.35 3.36 3.35 3.35	5.98 5.97 5.97 5.95 5.98 5.97	2-3 1-1 2-1 1-0 1-3 0-1	b ³ P _{-x} ³ P• (195)	3229.204 3219.616 3211.309	C D C	10 8 8	3.42	7.26 7.25 7.25	5-6 4-5 3-4	b ³ G-t ³ H• ↑ (220)
4321.617 4312.469	C	8 5		5.96 5.96	4-5 3-4	a ³ F_y ³ H° (177)	4722.741 4526.108 4575.121	D C C	10 40 25	3.36 3.35	6.09 6.05	2-3 1-2	b ³ P-x ³ D ^e (196)	11157.03 11015.63 11905.83	A A A	25 30 25	3.43	4.55 4.55 4.55	4-3 3-3 2-3	y ⁷ P°-e ⁷ S (221)
4234.515 *4262.133 *4240.705	CCC	12 12 30	3.11 3.10 3.08	6.02 5.99 5.99	4-5 3-4 2-3	a ³ F_x ³ G° (178)	4584.934 4492.312 4482.878	C	15 40 40	3.36 3.36 3.35	6.05 6.11 6.11	3-3 3-1 1-1	b ³ P_y ³ S*	6978.46 6924.13 6881.64	B C B	300 200 100	3.43	5.22 5.22 5.22	4-5 3-4 2-3	y ⁷ P°-e ⁷ D (222)
4142.47 •4179.257	B C	5 30		6.09 6.05	4-3 3-2	a ³ F-x ³ D° (179)	4483.878 4480.263 4338.799	Ċ G	30 15	3.35 3.36	6.11	0-1 2-3	_b 3p_w ³ p•	6979.82 6925.24 6882.48	C D D	150 150 75	3.45 3.43 3.42	5.22 5.22 5.22	4-4 3-3 2-2	
4103.85 7 4106.05 4092.174	B B C	4 4 6	3.10	6.12 6.11 6.09	4-5 3-4 2-3	a ³ F_w ³ G° † (180)	4345.085 4357.525 4353.983	COAG	15 15 15	3.35 3.35 3.36 3.35	6.20 6.19 6.20 6.19	1-3 0-1 3-3 1-1	(198)	6980.91 6926.04 6883.04	B B D	50 100 150	3.43	5.22 5.22 5.22	4-3 3-2 2-1	
3374.93 3373.96 3382.07	B B B	4 2 3	3.10	6.76 6.76 6.76	4-5 3-4 4-4	a ³ F_w ³ H° (181)	4359.992 4368.89 4266.44	C B B	30 8 3w	3.36	6.19	3-1 3-2	b ³ P-u ⁵ De	5609.19 5580.51	B B	35 25	3.42	5.63 5.63	2-3	y ⁷ P°-f ⁷ g (223)
3329.053 3332.879	000	8 7 10	3.11 3.10 3.08	6.82 6.80 6.79	4-4 3-3 3-2	a ³ F-w ³ F* (182)	3153.54 3164.06	B B	5 1	3.36 3.35	7.27 7.26	2-2 1-1	(199) b3p_t3pe (200)	5508.88 5255.132 5272.010	P C C	125 50	3.45	5.67 5.80 5.78	3-2 4-5 3-4	y ⁷ P°-f ⁵ g (224) y ⁷ P°-f ⁷ D (225)
3326.590 3321.19 m3314.56	B	Cr+	3.10 3.08	6.82 6.80	3-4 2-3	3 2:-	5224.941 5225.032	g)	150*	(3.44	5.80 5.78	5-5 4-4	z ⁷ D°-f ⁷ D (201)	5287.188 5304.211 5312.878	0000	40 40 50	3.42 3.45 3.43	5.76 5.78 5.76	2-3 4-4 3-3	
3132.830 3131.211 3119.706 3138.203 3135.91	ССССВ	8 8 5 4 3		7.05 7.04 7.03 7.04 7.03	4-5 3-4 2-3 4-4 3-3	a ³ F-u ³ G° (183)	5234.082 5220.912 5273.439 5265.160 5254.918	00000	40 40 25 60 100		5.76 5.78 5.76 5.76	3-3 1-1 5-4 4-3 3-2		5318.775 m5345.61 5344.761 5340.437	C C C	40 Cr 20 35	3.45 3.43	5.74 5.76 5.74 5.73	2-2 4-3 3-2 3-1	
3073.679 3077.831 3065.067 3084.59	C C B	10 10 10	3.11	7.12 7.11 7.11 7.11	4-5 3-4 3-3 4-4	a ³ F-t ³ G° (184)	5243.395 5177.430 5184.590 5192.000 5200.188	00000	75 75 100 100 50	3.38 3.41 3.39 3.38 3.37	5.73 5.80 5.78 5.76 5.74	2-1 4-5 3-4 2-3 1-2		9730.32 9949.06 10080.32	A A	25 20 15	3.54 3.54	4.80 4.78 4.76	3-3 2-2 1-1	a ³ D-z ³ D• † (326)
3080.72	В -	5	3.10	7.11	3 – 3 -	z ⁷ F°-e ⁷ D	5027.66 4948.64	P P P		3.44 3.39 3.37	5.89 5.89 5.89	5-5 3-3 1-1	z ⁷ D°-g ⁷ D (202)	5738.554 5772.676 m5783.15	C C P	30 25 Cr	3.54	5.69 5.68 5.67	3-4 3-3 1-2	a ³ D-y ³ F° (227)
6062.75 5982.84 5916.73 5863.96	B B B	50 40 30 25	3.18 3.15 3.13 3.11		6-5 5-4 4-3 3-2	z'F°-e'D (185)	4900.83 4983.63 4947.91 4900.50	P P P		3.41 3.39 3.37	5.89 5.89 5.89	1-1 4-5 3-4 1-3		*5700.514 5736.632 m5746.32	C C P	40 15 Cr		5.70 5.69 5.69	3-3 2-2 1-1	a ³ D-y ³ D° (228)
5981.96 5915.93 5798.00 5797.53	B B P P	25 25		5.22 5.22 5.22 5.22	5-5 4-4 1-1 1-2		5702.307 5664.040 5628.645	COC	60 40 50	3.43 3.42 3.41	5.60 5.60 5.60	5-6 4-5 3-4	b ³ G-z ³ H° (203)	4835.68 4775.141	B	10 10		6.09	3-3 3-47	
4718.429 4708.040	C	75 60	3.18 3.15	5.80 5.78	6-5 5-4	z ⁷ F°-f ⁷ D (186)	*5700.514 5480.502	Č C	40 45	3.43 3.43	5.60	5-5 5-4	b ³ (L-y ³ pe	4797.69 4809.32	B	15 10	3.54 3.54	6.11 6.11	2-3 1-2	(230)
4698.456 4689.374 4680.49 4669.336 4666.513	CCBCC	60 65 50 50 55	3.15		4-3 3-2 3-1 5-5 4-4		5463.974 5442.413 5446.76 5432.347	CCBC	40 35 25 25	3.42 3.41 3.42 3.41	5.68 5.67 5.69 5.68	4-3 3-2 4-4 3-3	(304)	4764.294 4767.860 4766.63 4757.591 4767.280	CCBCD	50 30 35 18 25	3.54	6.13 6.13 6.13 6.13	3-4 3-3 1-2 3-3 3-3	(231)
4664.798 4663.832 4663.328	CCC	60 55 40	3.11 3.10 3.09	5.76 5.7 <u>4</u> 5.73	3-3 3-3 1-1		5292.865 5257.07 5236.63	C B B	10 10 10		5.77 5.77 5.76	5-5 4-4 3-3	b ³ G—w ⁵ ≱° (205)	4731.14 4633.491	В	8w 35	3.54 3.54	6.15		a ³ D_t ⁵ P° (232) a ³ D_w ³ D°
4628.473 4633.286 4639.538 4646.808	COACC	10 30 35 20	3.11 3.10 3.09	5.80 5.78 5.76 5.74	4-5 3-4 2-3 1-2		5215.29 5206.52 5193.488	B P C	35 35	3.43 3.42 3.41	5.80 5.79 5.78 5.79	5-5 4-4 3-3 5-4	b ³ G-z ³ G° (206)	m4649.54 4665.902	P C	35 Cr 35	3.54 3.54	6.20 6.19 6.33	3-3 1-1 3-3	(233) a ³ D-w ³ P•
4654.736 9009.95 9017.10	C .	35 100 75	3.31 3.31	5.73 4.68 4.68	0-1 - 3-2 2-3		*5237.35 5222.39 *5177.83 5196.443	B B B	10 10	3.43 3.42 3.41 3.43	5.79 5.78 5.79 5.81	4-3 3-4 5-5	p3G-y3G•	4430.486 4443.707 4422.697 4429.938	00000	30 30 10 20	3.54 3.54 3.54 3.54	6.33 6.33 6.33 6.33	3-1 1-0 3-2 1-1	(234)
9021.69 5791.005	A C	50 100	3.31 3.31	4.68 5.44	1-2 3-4	z ⁵ P°-e ⁵ D	5166.227 5139.654 5196.57	C C B	150 100 100*	3.42 3.41 3.43	5.81 5.81 5.81	4-4 3-3 5-4	(207)	3520.55	В	0	3.54	7.04		a ³ D-u ³ G° (235) a ³ D-u ³ F°
5787.99 5785.820 5785.002 5783.934 5783.112	00000	75 50 50 50 50			2-3 1-2 3-3 2-2 1-1	(188)	5167.96 5137.94 4346.29 4851.465	B B C	30 13 40 35	3.42 3.41 3.43 3.42	5.81 5.81 5.98 5.96	4-3 3-4 5-6 4-5	(308) р ₃ с–ў ³ н•	3385.31 3386.50 3390.77 3391.11	B B B	8 5 5	3.54 3.54 3.54 3.54	7.19 7.18	3-4 2-3 1-2 2-2	(236)
5780.97 •5781.195 5781.806	B C C	10 40 40	3.31 3.31 3.31	5.44 5.44 5.44	3-2 3-1 1-0		4831.627 4626.81	Č B	15 8	3.41	5.96	3-4 4-3	b ³ G-x ³ D•	5361.754 5340.468 5307.281	000	50 60 30	3.68 3.65 3.68	6.03 6.01 6.01	3-4 2-3 3-3	y ⁵ p•_f ⁵ D† (237)
5313.37 5314.64 5316.17	B B B	18w 15w 12w	3.31 3.31 3.31	5.67 5.67 5.67	3-2 3-3 1-3	z ⁵ P°-f ⁵ 8 (189)	4602.51 4596.38	B B	7 6	3.43 3.42	6.13 6.11	5-5 4-4	(309) b3G-w3G•+	3902.108	C	10	3.65	6.82	3-3 2-3	y ⁵ p°_e ³ D (238)
4536.55 *4572.16 *4595.05	B B B	4 7w 5w	3.31 3.31 3.31		3-4 3-3 1-3	z ⁵ p•_f ⁵ D (190)	4585.72 4560.26 •4595.05	B B	3 1 5w	3.43 3.41 3.43	6.13 6.11 6.13	5-5 3-3 5-4	b ³ G_w ⁵ G° (211)	5698.330 5694.730 5682.483	000	100 75 75	3.86 3.84 3.82	6.03 6.01 5.99	5-4 4-3 3-2	z5F°-f5D (239)
*4570.30 4593.84 4604.58	B B B	6 8v 5w	3.31 3.31 3.31	6.01 5.99 5.99	3-3 2-2 2-1		4585.088 4555.30 4532.75	C B B	18 15 10	3.43 3.42 3.41	6.13 6.13 6.13	5-4 4-3 3-2	7 (212)	5642.362 5649.371 5648.18 5597.87	C C F B	50 50 (1) 18	3.84 3.82 3.81 3.82	6.03 6.01 5.99 6.03	4-4 3-3 2-2 3-4	
5400.608 •5391.350 5405.004 5390.394	0000	50 35 35 40	3.36 3.35 3.36 3.35	5.65 5.64 5.64 5.64	3-3 1-1 3-1 1-0	(191)	3983.237 3970.07 •3941.15	C B B	7 7 3	3.43 3.43 3.41		5-6 4-5 3-4	(213)	5615.54 4275.973 4260.19	P C B	15 5w		6.74	2-3 5-5 4-4	z ⁵ F°-e ⁵ F†
5386.978 5387.573 m5275.11	C C P	75 35 Cr	3.35 3.35 3.36	5.65 5.64 5.70	1-3 0-1 3-3		3806.829 3812.250 3814.622	000	10 12 13	3.43 3.42 3.41	6.68 6.66 6.64	5-5 4-4 3-3	(214)	4291.964 *4269.02 4244.33	C B B	15 5w 3w	3.86 3.82 3.84	6.71	5-4 3-2 4-5	_
5280.289 5285.63 5293.383 5289.27	C B C B	30 15 15	3.35 3.35 3.36 3.36	5.69 5.69 5.69 5.69	1-3 0-1 3-3 1-1	(193)	3736.45 3693.09 3689.63	B B B	4 5 6	3.43 3.42	6.74 6.78 6.76	5-4 5-6 4-5	(315) b ³ (Lw ³ H• † (316)	4148.52 4163.94 4174.795	B C	2 2 10	3.84 3.83 3.81	6.82 6.79 6.77	4-3 3-2 3-1	(241)
5221.753 5214.127	CCC	50 30 45	3.36	5.72 5.72	2-3 1-2 0-1	_b 3p_w5 _D • (193)	3683.67 369 5.86	B B B	4n 5	3.41		3-4 5-6 4-5	b ³ G−v ³ H•	6029.28 6047.665	B D	18 18	3.83 3.83	5.88 5.87	6-6 5-5	a ³ I-z ³ I° (242)
*5224.541 5226.891 5228.082 5240.94	CCB	50 50 20	3.36 3.35	5.72 5.72 5.72 5.72	3-3 1-1 3-1		3671.94 3673.59 3345.14	B B	1 2 5	3.41	6.77 7.18	3-4 5-5	b ³ G-t ³ G• ↑	5746.432 5791.791 5801.14	C C B	25 20 30	3.83 3.83 3.83	5.98 5.96 5.96	7-6 6-5 5-4	(243)
							3345.36	В	4	3.42	7,11	4-4								

42							RLV		_	OLTI			TABLE							
Labo I A	ratory Ref		Low	P High	J	Multiplet (No)	Labo I A		ry Int	Low	P High	J	Multiplet (No)	I A	rato Ref	ry Int	Low	P High	J	Multiplet (No)
<u>Cr I</u> con	ntinued	1					<u>Cr I</u> con	tinu	eđ					<u>Cr I</u> con	tinu	eđ				
4621.963 4625.925 4642.011 4625.65 4640.67	C C B B	45 20 10 1	3.83 3.83 3.83 3.83 3.83	6.49	7-7 6-6 5-5 7-6 6-5	a ³ I-y ³ I° (344)	3989.986 4001.444 •4012.49 \$ 4022.263 4031.130 4003.921	C C B C D D	15 25 20 18 7	3.88 3.87 3.87 3.87 3.87 3.88	6.97 6.96 6.95 6.94 6.93 6.96	5-6 4-5 3-4 3-3 1-3 5-5	a ⁵ F_v ⁵ G [•] † (268)	8163.22 8235.89 8287.38 8322.06 8338.83 *8166.66	A A A	35 30 25 20 5	4.37 4.38 4.39 4.40 4.40	5.88 5.88 5.88 5.88 5.88	4-5 3-4 2-3 1-2 0-1 4-4	o ⁵ D-v ⁵ F° (298)
4614.523	С	12	3.83		5-4	a ³ I-1° (245) a ³ I-x ³ H°	4014.668 4023.739	ç	10 8	3.87 3.87	6.95 6.94	4-4 3-3		8238.29 8290.62	Ã	12 10	4.38 4.39	5.88 5.88	3-3 2-2	
4571.83 4578.334 4563.245 •4572.16 4579.59 4573.38	B C C B B B	12 12 15 ?w 2 1gn?	3.83 3.83 3.83 3.83 3.83 3.83	6.53 6.54 6.53 6.53 6.53	7-6 6-5 5-4 6-6 5-5 5-6	a31-x3H° (346)	3716.531 3714.39 3712.50	C B B	10w 4w 1w	3.88 3.87 3.87	7.20 7.20 7.20	5-4 4-4 3-4	(269)	8323.44 8018.04 8119.13 8185.69 8235.67	A A A	5 3 5 3	4.40 4.37 4.38 4.39 4.40	5.88 5.91 5.90 5.90 5.90	1-1 4-4 3-3 3-3 1-1	e ⁵ D_v ⁵ D•† (299)
4263.141 4280.405	C	35 25	3.83 3.83	6.73 6.73	7-8 6-7	a ³ I-z ³ K°† (247)	4481.44 4268.788	B	18 10	3.96 3.96	6.73 6.85	6-7 6-6	(270) a1 _{I-z} 1 _I e	8084.98 *8166.66 8216.28	A	10 7 5	4.38 4.39 4.40	5.91 5.90 5.90	3-4 3-3 1-3	
4297.738 4193.662	C C	30 40	3.83	6.71 6.78	5–6 7–6	a ³ I-w ³ H°	4304.471	C	13	3.96	6.90	6-5	(271) a ¹ I-u ³ H° (272)	7942.02 7989.36	A	25 12	4.37 4.38	5.92 5.93	4-5 3-4	c ⁵ p_u 5p• † (300)
4209.368 *4221.572 4193.89 4194.951	C C B C	20 25 3 20	3.83 3.83 3.83 3.83	6.76 6.76 6.78 6.78	6-5 5-4 6-6 5-6	(248)	4192.103 3527.08	,C B	15 3N	3.96	6.91 7.46	6–5 6–6 –	a ¹ I-z ¹ H° (273) a ¹ I-y ¹ I° (274)	8061.27 8128.28 8169.80	A A B	10 8 5	4.39 4.40 4.40	5.92 5.92 5.91 6.20	2-3 1-2 0-1 4-5	c ⁵ D-t ⁵ F•
4197.234 *4186.359	CC	20 15	3.83	6.77 6.78	7–6 6–5	a ³ I-v ³ H° (249)	*4542.621 4495.275	O	35 12	4.09	6.80 6.83	4-4 4-3	b ³ F_v³F ● (275)		_				-	(301)
4208.357 4197.47 4198.525	C B C	15 2 35	3.83 3.83 3.83	6.77 6.77 6.77	5-4 6-6 5-6		4531.82 4524.841	B	2 15	4.08	6.80	3-4 4-4	b ³ F-w ³ F• ↑	*5373.715 *5391.350	C	30 35	4.44 4.43	6.73 6.72	6-5 5-4	b ³ H-r ⁵ F° (302)
4179.05 *4179.257	B	7 30	3.83 3.83	6.79 6.79	7-7 6-7	a ³ I-z ¹ K° (250)	*4535.731 4553.949 *4521.141	o o	60 18 25	4.08 4.08	6.80 6.79 6.81	3-3 3-3 3-3	(276) _b 3 _{F−v} 3 _D •	4592.54 4606.375 4609.894	B C C	15 15 8	4.44 4.43 4.43	7.13 7.11 7.11	6-5 5-4 4-3	b ³ H-t ³ G• † (303)
4039.100 4048.780 4058.772	CC	20 20 20	3.83 3.83 3.83	6.89 6.88 6.87	7-7 6-6 5-5	a ³ I-x ³ I° (251)	4561.54 4169.838	B	10w	4.08	6.78	3-1	(277)	4376.798 m4371.28	C P	25 Cr	4.44	7.26 7.25	6-6 5-5	b ³ H-t ³ H [•] † (304)
4048.56 4057.81	P B	8	3.83 3.83	6.8 8 6.87	7-6 6-5		4170.202 4174.941	000	1 15 8	4.08 4.08	7.05 7.04 7.03	4-5 3-4 2-3	(278)	4373.656 4161.415	C	15 15	4.43	7.25 7.40	4-4 6-7	_b 3 _{H−w} 3 _I •
4039.30 4049.783 m3605.52	B C P	5 5 Cr	3.83 3.83 3.83	6.89 6.88 7.26	6-7 5-6 7-6	a ³ I-t ³ H°	4065.716 4076.061 4077.677	000	12 10 10	4.09 4.08 4.08	7.13 7.11 7.11	4-5 3-4 3-3	b ³ F-t ³ G° (279)	4165.519 4142.193 4174.15	C B	15 7 .3	4.43 4.43 4.44	7.39 7.41 7.39	5–6 4–5 6–6	(305)
3608.401 3612.609 3458.090	o o	10 4 10	3.83 3.83 3.83	7.25 7.25 7.40	6-5 5-4 7-7	(353)	3990.16 3976.30 3979,324	B B C	8 5 7	4.09 4.08 4.08	7.18 7.19 7.18	4-4 3-3 3-3	b ³ F-u ³ F• † (280)	4043.696 4056.793 4071.000	000	7 5 5	4.44 4.43 4.43	7.49 7.47 7.46	6-7 5-6 4-5	b ³ H-v ³ I•† (306)
*3467.022 3453.23 3376.397	C B C	12 10 10	3.83 3.83 3.83	7.39 7.41 7.49	6-6 5-5 7-7	(253) a ³ I-v ³ I°	3564.30 3562.48 •3565.55	B B B	7 4 3	4.09 4.08 4.08	7.55 7.55 7.54	4-5 3-4 2-3	b ³ F-s ³ G° (381)	3958.08 3979.22 3998.85	B B B	5 6 4	4.44 4.43 4.43	7.55 7.53 7.51	6-6 5-57 4-4	b ³ H−s ³ H• (307)
3391.372 3403.59	C B	10 8	3.83 3.83	7.47 7.46	6 -6 5 -5	(254)	3569.14	В	5	4.09	7.55	4-4		3562.29 3564.953 •3574.039	B C C	5 5 15	4.44 4.43 4.43	7.90 7.89 7.88	6-6 5-5	ъ ³ н–q ³ н• (308)
3316.503 3336.97 3353.026	C B C	5 4 6	3.83 3.83 3.83	7.55 7.53 7.51	7-6 6-5 5-4	a ³ I-s ³ H° (255)	6661.076 6669.257	CC	50 40	4.17 4.16	6.03	4-4 3-3	z ⁵ D°-f ⁵ D (282)						4-4	7 7 -
6643.023 6677.24	C B	15 10	3.83 3.83	5.69 5.68	3-4 2-3	b ³ D_y ³ F° (256)	6657.54 6734.16 6715.38 6680.19 6597.556	B B B C	30w 30 35 35w 40	4.14 4.17 4.16 4.14 4.16	5.99 6.01 5.99 5.99 6.03	2-2 4-3 3-2 2-1 3-4		5263.750 5278.262 5287.62	D C B	40 40 10w	4.47 4.45 4.43	6.82 6.79 6.77	4-3 3-2 3-1	z ³ F°-e ³ 9 (309)
6701.64 5729.203	B C	10 20	3.83 3.83	5.67 5.98	1-2 3-2	b ³ D-x ³ P°	6612.17 4796.169	B	40 -40w	4.14	6.01 6.75	2-3 4-5	z ⁵ D°-e ⁵ F †	4503.05	В	13	4.68	7.43	2-1	e ⁵ 8-x ³ 8• (310)
5777.77 5371.48	B B	25 50	3.83 3.83	5.97 6.13	3-1 3-4	(257) b ³ D-x ³ F°	4783.06 4775.53	E B	15w 10w	4.16	6.74	3-4 2-3	(283)	4656.837	Þ	10		7-41		a ¹ H-w ³ I [•] (311)
5368.546 *5373.715	C	35 30	3.83 3.83	6.13 6.13	2-3 1-3	(258)	*4769.80 4816.41	B B	4w 10w	(4.13 (4.12 4.17	6.70 6.74	1-3 0-1 4-4		4564.166 3926.649	C	40 10		7.46 7.90		a ¹ H-y ¹ I ^e (312) a ¹ H-q ³ H ^e
5362.98 5 367.78	B B	25 10	3.83 3.83	6.13 6.13	3-3 2-2		4805.24 4796.84	B B	15w 12w	4.16 4.14	6.73 6.71	3-3 2-2		6135.759	С	25	4.80	6.82	•	(313) z ³ D°-e ³ D
4930.183 4944.59 4966.80	C B B	30 22 25	3.83	6.33 6.33 6.32	3-2 3-1 1-0	b ³ D_w ³ P° (259)	3566.10 3568.36	B B	25n 3w	4.17 4.16	7.64 7.62	4-3 3-2	z ⁵ D°-f ⁵ P (284)						•	(314)
4934.89 4949.58	B B	15 12	3.83	6.33	2-2 1-1		5285.38	В	7	4.17	6.50		b ¹ I-y ³ I°	*6762.41 6757.78 6751.28	C B B	40 25 40	5.26 5.25	7.08 7.08 7.08	6-6 5-5 4-4	z ⁵ G°-e ⁵ G† (315)
4146.20 4109.98	B B	6 1	3.83	6.80 6.83	3-4 3-3	b ³ D-v ³ F° (260)	5309.47 4595.590	B	8 45	4.17	6.49 6.85	6–5 6–6	(285) b ¹ .I-z ¹ .I°	6744.66 6738.81	B B	15 18	5.25 5.25	7.08 7.08	3-3 2-2	
4093.06 4106.71 4089.63	B B B	4 0 2		6.85 6.83 6.85	1-2 3-3 2-2		4514.373 •4521.141	C	20 25	4.17 4.17	6.90 6.90	6-6 6-5	(286) b ¹ I-u ³ H° (287)	7908.30 7910.50	A A	20 18		7.16 7.16	6-5 5-4	2 ³ H°-e ³ G
4131.360 4152.775	C	10 10	3.83 3.83	6.82 6.80	3-4 2-3	b ³ D-w ³ F° (261)	4506.853	c	30	4.17	6.91	6-5	b1 I-z1H0	7917.85	Ã	18		7.16	4-3	(316)
4175.227 4149.45 4171.675	C B	8 5	3.83 3.83	6.79 6.80	1-2 3-3	,,	3747.264	C	7	4.17	7.46	6-6	(389) (389)	Strongest	Uncl		ed Lines	of <u>Cr</u>	I	
4171.675 4168.31 3907.778 3890.82	C B C B	12 2 7 4		6.79 6.79 6.99 7.00	3-2 3-3 3-2 3-1	_{р3} р_ _v 3р•	4757.326 4743.112 *4751.04	C C B	15 12w 5w	4.22 4.18 4.17	6.82 6.79 6.77	2-3 1-2 0-1	z ³ p•_e ³ D†	7771.74 6789.17 5854.27 5796.757 5753.692	A C B C C	15 18 75 40 25	v			
3510.40 3521.53	B B	5 3	3.83	7.34 7.34	3-4 3-3	b ³ D_t ³ F° (263)	8167.94	A	4	4.19	5.70	3–3	o ³ D-y ³ D°	5712.635	C	10	V			
3531.44 7185.50	B —	4 20	3.83	7.33	1 -2 -		4699.589 4723.18 4741.089	C B D	25 8 12	4.19 4.19 4.19	6.82 6.80 6.79	3-4 2-3 1-2	(391) c3D-w3F* † (393)	5681.198 5385.28 5370.356 5078.711	C B C C	60 20 ∀ 40 40	٧			
7188.06 7196.83	B B	18 18	3.87 3.87	5.59 5.59 5.59	5-5 4-4 3-3	a ⁵ F-X ⁵ F° † (264)	4488.051	C.	30	4.19	6.94	3–3	c ³ D_v ⁵ G• (393)	4884.949 4752.084	G	25 50	IIIA			
7207.85 7218.57	B B	10	3.87	5.58	2-2 1-1	E_ =	4232.222 4000.59	C B	15 4		7.11 7.27	3-3 3-2	c3p_t3g• (294) c3p_t3p•	4614.73 4611.968 4594.403	BCC	10 15 8				
6529.197 6516.026	D D	18 13	3.88 3.87	5.77 5.77	5-5 4-4	a ⁵ F_₩ ⁵ F° (265)	8707.95	A	13	4.37	5.79		(295) o ⁵ D_u ⁵ P° †	4586.99	В	8	***			
m4836.18 4840.22 4841.52 4841.73 4832.54	P F P B	Cr+ (1) 13	3.88 3.87 3.87 3.87 3.87	6.42 6.42	5-4 4-3 3-3 1-07	a ⁵ F_t ⁵ D° (266)	8718.70 8732.17 8786.96 8773.56	A A A	8 3 4 5	4.38 4.39 4.38 4.39	5.80 5.80 5.79 5.80	4-3 3-2 3-1 3-3 2-2	(396)	4489.471 4403.498 4323.523 4301.178	0000	5 w 40 30 35	IA IA IA			
4465.15 4490.56 4507.95	B B B	30 8w 4N	3.88 3.87	6.64 6.62 6.61	5-4 4-3 3-2	a5 _{F-8} 5 _{D° †} (267)	8297.58	A	3	4.39	5.88	2–3	c ⁵ D-x ⁵ H° (297)	4261.615 4206.899 4200.103 4126.925 3999.679	00000	13 10 13 6 7	III A IA			

Labore I A	atory Ref		E P	ligh	J	Multiplet (No)	Labor I A	atory Ref		E P		J	Multiplet (No)	Labora I A I	atory Ref Int	E P Low Hi	.gh	Multiplet (No)
r I cont	inued						Cr II con	tinue	đ					Cr II cont	tinued			
911.95 830.032 584.366 574.38	B C D B	(10n)* 50w 30w 3N	III A A III III				*3180.73 \$ 3197.12 3209.21 3217.44 3181.428 3196.96 3208.62	A A B A	75 75 50 50 20 20	2.53 6 2.53 6 2.53 6	5.37 5.41 5.39 5.38	42-43 33-33 23-23	a ⁴ G-z ⁴ F° (9)	5626.60 5497.86 •5419.36 5671.62 5525.90 5701.46	P P A 1 P P	3.74 5. 3.70 5. 3.81 5. 3.74 5. 3.81 5.	99 13-2 97 3-1 99 23-2 97 13-1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
559.21 558.60 552.953 550.635 547.98	C B C C B C C	2N 7w 4w 10w 3n	IV V III V IV IV?			ı	*3196.40 3935.18 3964.64 3985.96 3964.35 3986.03	A PPPPPP	3	2.69 5 2.69 5 2.69 5 2.69 5	5.83 5.83 5.81 5.79 5.81 5.79	2 2 -3 2 -	a ⁴ P_z ⁶ F° (10)	5407.62 5346.54 5318.41 5510.68 5430.90 5249.40 5246.75	A 10 A 5 A 4 A 7 A 10 A 10 A 15	3.81 6. 3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.74 6. 3.70 6.	05 13- 02 3- 05 23- 02 13- 09 13- 05 3-	13 13 13 13 15 15
525.44 508.81 508.09 474.379 3411.01 3409.36	B B C B	4N 5n 5 12 8n 7n	IA III III III				3999.00 3985.74 3999.07 3748.68 •3761.90	P P P A	7 8	2.69 5 2.69 5 2.69 5	5.78 5.79 5.78	$ \begin{array}{c} \frac{1}{2} - \frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - \frac{1}{2} \end{array} $	a ⁴ p_z ⁶ p° (11)	5322.78 5153.49 5097.29 5305.85 5191.46 5116.06	P 15 A 7 A 25 A 2 A 2	3.81 6. 3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.70 6.	12 ½-1 14 2½-2 13 1½-1	3 . 1. 1.
408.01 407.22 376.18	B B E	4n 5n 3n	IA IA				3761.69 *3761.90 3631.49	A A	7 8 50	2.69 5 2.69 5	5.97 5.97 6.09	2-12		5346.12 5210.87 4777.78	P A 7 P	3.81 6. 3.74 6.	11 1 2 -	1 2 3 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
349.072 346.09 334.690 333.605 387.70	C C C B	20w 5w 20w 15w 2M	A III III III				3677.93 3712.97 3677.69 3713.04 3631.72 3677.86	AAAAAA	30 35 40 15 40 50	2.69 6 2.69 6 2.69 6 2.69 6	6.05 6.02 6.05	12-12 2-12 22-12 12-22 2-12	a ⁴ P-z ⁴ P° (13)	4679.87 4621.41 4805.18 4698.64 4824.97	P P P P	3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.81 6.	37 1 -1 38 2 1 -2 37 1 1 -1 37 2 1 -1	14 14 14 14
3254.95 5180.701 5096.531 5095.859 3963.73 3957.28	B C C C B B	2N ? 5w ?w 3w 3w	A III III III A				3593.02 3585.54 3603.80 3585.31 3603.86 3613.21 3603.61	P A A A A	40 40 60 30 30	2.69	6.13 6.14 6.13 6.14 6.13 6.11 6.13	23-32 12-22 2-12 23-22 12-12 23-12	a ⁴ p _{-z} 6 _p ° (13)	4179.43 *4111.01 4072.56 4207.35 4133.41 4086.14 4229.81	A 12 A 18 A 4 A 7 A 8 A 1	3.81 6. 3.74 6. 3.70 6. 3.81 6. 3.74 6. 3.78 6.	74 12-2 73 2-1 74 22-2 73 12-1 72 2-1 73 22-1	to the state of th
rII I	P 16.	6 Ana	1 B L		_		3613.26 3336.16 3349.68	A A P	15 2	2.69	6.11 6.39 6.38	12- 2	a ⁴ P-z ⁴ F*	2976.718 *2961.732 2953.358 3011.42	B 35 B 50 B 35 A 7	3.81 7. 3.74 7. 3.70 7. 3.81 7.	.88 1- .91 2 1 -:	3 b ⁴ P-y ⁴ D ⁶ † 1 (27)
5643.22 5644.70 5647.40 5651.68	A A A	10 10 8 12	3.44 3.43 3.41	5.86 5.83 5.81 5.79	33-43 23-33 13-23 13-23	a ⁴ D-z ⁶ F° (1)	3032.927 3047.76 •3059.521	B A B	30 25 25	2.69 2.69	6.76 6.74 6.73		a ⁴ P-z ⁴ D ^o (15)	2984.69 2971.906	A 10 B 75	3.74 7.	.88 1 1 -	2
675.00 669.69 665.48 662.62 5700.42 5688.01 5676.50	P		3.44 3.43 3.41 3.47 3.44	5.79 5.78 5.81 5.79 5.78	3-3-3-3-3-3-3-3-3-3-1-1-1-1-1-1-1-1-1-1		3047.63 *3059.521 3067.18 3059.41 m3067.23	A B A P	25 20 10 Cr	2.69 2.69 2.69 2.69	6.73 6.73 6.73	13-13 3-13 35-13 12-2		2979.741 2985.325 2989.194 2988.056 2992.40 2994.737 2972.64	B 80 B 75 B 70 C 12 A 10 B 30 A 10	3.74 7. 3.73 7. 3.72 7. 3.75 7. 3.74 7. 3.73 7. 3.73 7.	85 3 2 -1 88 6 2 -1 86 5 2 -1 85 4 2 -1	5 a 4H-z 4H° 5 (28) 4 (28) 5 (28) 6 (28) 6 (28)
5494.52 5484.15 5475.13 § 5511.84 5495.37 5467.09	A A A A	4 20 20 35 25	3.47 3.44	6.00 5.99 5.97 5.99 5.97 6.00	31-31 21-31 11-11 31-21 21-11	a ⁴ D-z ⁶ P* (2)	4458.84 4507.19 4544.70 4571.24 4504.52 4545.49 4572.83	P P P P P P		3.09	5.86 5.83 5.81 5.79 5.83 5.81 5.79	35-45 35-35 15-35 35-35 35-35 15-15	b ⁴ D-z ⁶ F° (16)	5369.25 5410.39 5378.07 5409.28 5425.29	P P P P	3.85 6 3.85 6 3.84 6 3.84 6 3.85 6	• TO 15-	4½ a ⁴ F-z ⁶ D [•] 3½ (29) 3½ 1½
8464.02 8462.73	A A B B	4 6 150 125 75	2.43 3.41	3.3.	2-+5	a ⁴ D-z ⁴ P° (3)	4588.40 4542.77 4573.63 4590.00 4236.33	P P P		3.09 3.09 3.09 3.09	5.78 5.81 5.79 5.78	33-23 33-13 13-13		5392.95 *5419.36 5430.41 5354.66 5395.41 5368.10	P A 1 P P P	3.85 6 3.84 6 3.84 6	.14 3] .13 3] - .11 1] -	3 1 1 1 41
3383.683 3403.323 3421.20 3363.71 3391.434	B B A B	60 100 75 12 35	3.41 2.42 3.41	6.02 6.09 6.05	1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		4364.19 4380.33 4361.80 4381.03 4338.69 4363.49	P P P P		3.09 3.09 3.09 3.09 3.09 3.09	5.99 5.97 5.99 5.97 6.00 5.99	23-23 13-13 33-23 23-13 23-33 13-23	b ⁴ D-z ⁶ P* (17)	4834.13 4848.34 4864.33 4876.41 4860.30 4876.48	A 75 A 60 A 50 A 50 A 30	3.85 6 3.85 6 3.84 6 3.84 6 3.85 6	.41 4½- .39 3½- .38 3½- .37 1½- .39 4½-	4
3353.12 5349.34 \$ 3324.060 3328.351 5374.95 5342.51	A B B	20 6 25 20 3 50	3.47 3.44 3.43 3.41 2.47	6.15 6.13 6.14 6.13 6.13	31-41-31-31-31-31-31-31-31-31-31-31-31-31-31	a ⁴ D-z ⁶ D° (4)	4378.94 *4111.01 4173.60 4317.07 4113.34	P A A A	18 2 1 5	3.09 3.09 3.09 3.09	6.09 6.05 6.02 6.09	31-21 21-12 11-2 21-21	b ⁴ p-z ⁴ p• (18)	4884.57 4812.35 4836.22 4856.19	P 10 A 25 A 25 A 20		.38 32- .37 22- .41 32- .39 22- .38 12-	12 14 44 34 34
3339.804 3336.330 3368.054 3358.501 3347.837	B B B	50 40 150 75 40	3.41 3.47 3.44 3.43	6.14 6.12 6.11	35-25 25-15 15- 5		4171.92 4315.77 4113.59 4170.58	A A P	3 2 1				b ⁴ p_z ⁶ p ⁶ (19) b ⁴ p_z ⁴ F ⁶ (20)	4242.38 4261.92 4275.57 4284.21 4233.25 4252.62	A 30 A 30 A 30 A 10 A 10	3.85 6 3.85 6 3.84 6 3.85 6 3.84 6	.73 2 2 - .72 1 2 - .76 3 2 - .74 2 2 -	3 2 3 2 2 2
3133.058 3134.978 3130.371 3118.652 3147.237	B B B	125 100 75 60 50	3.47 3.44 3.43 3.41 3.47 3.44	6.39 6.38 6.37 6.39	14_24	a ⁴ D_z 4F* (5)	4063.94 4053.45 4075.63 4061.77 4054.11	P P P	1	3.09 3.09 3.09 3.09	6.14 6.12 6.13 6.14	11-21 12-21 2-11 31-31 21-21	(19)	4269.28 4234.09 4246.41 3063.84	A 10 P A 3 A 7	3.84 6 3.84 6 3.85 7	.76 2 3 - .74 1 2 -	3 } 2 }
3136.680 3128.699 3159.10 3145.10	B B A	40 40 5 10	2.44 2.43 2.47 2.44	6.38 6.37 6.38 6.37	25-25 15-15 35-25 25-15		4076.87 4087.63 4051.97 4077.50	A A A	3 3 13 4	3.09 3.09 3.09 3.09	6.13 6.11 6.14 6.13	13-13 3-3 33-3 33-13		*3073.47 2966.051 3003.924	A 8 B 40 B 35	3.85 7 3.85 8 3.85 7		5½ a ⁴ F-z ⁴ H° 4½ (32) 3½ a ⁴ F-y ⁴ D° 3½ (33) 1½
3670.16 3710.22 3742.99	P P P		2.53 2.53		-	a ⁴ G-z ⁶ F* (6)	4088.90 3715.19 3738.38 3754.59	A A A	1 20 25 20		6.11 6.41 6.39 6.38	31-41 32-31 11-21	b ⁴ D-z ⁴ F° (30)	3034.54 3055.44 2999.30	A 15 A 12 A 8	3.84 7 3.84 7 3.84 7	.96 4 5 -	4 5
3768.57 3709.25 3743.20 3769.37 3787.89 3671.12	P P P P		2.53 2.53 2.53 2.53 2.53 2.53	5.81	23 - 43 - 43 - 43 - 43 - 43 - 43 - 43 -		3765.62 3736.56 3755.13 3766.65 3753.26 3767.18	A A A P P	8 1 3 4	3.09 3.09 3.09 3.09 3.09 3.09	5.37 8.39 6.38 6.37 6.38 6.37	3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	b ⁴ D-z ⁴ F° (20)	5553.81 5721.02 5663.58 5806.31 5610.01	P P P			
3710.01 3742.20 3556.130	P P B	(1)	2.53 2.53	6.00	42-32	a ⁴ G_z ⁶ p• (7)	3360.295 *3379.825§ 3393.86	B B	100 60 30	3.09 3.09 3.09	6.76 6.74 6.73	31-31 31-31 31-31 11-11	b ⁴ D-z ⁴ D° (31)	5464.36 5500.61 5446.57 5543.86	P P P P	3.87 6	.14 25-	1 5
3408.96 3432.32 3425.09 3441.14	P A P P	3	2.53 2.53	6.15 6.13 6.14 6.12	51-41 41-31 31-31 31-31	a ⁴ G-z ⁶ D ⁶ (8)	3402.43 3378.337 3394.32 m3403.29 3361.770	A B A P B	25 25 35 Cr+ 30	3.09 3.09 3.09 3.09 3.09	6.74 6.73 6.73 6.76	31-21 21-11 11-11 21-31	b ⁴ D-z ⁴ D° (31)	5488.97 5566.06 4891.55 4964.34	P P P	3.87 6 3.89 6 3.87 6 3.89 6	.11 1½- .39 2½- .38 1½-	3½ a ² D-z ⁴ F° 3½ (36)
3409.79 3432.12 3434.43 3409.60 3431.45	PPP		2.53 2.53 2.53 2.53	6.15 6.13 6.14 6.15 6.13	42-42 31-31 31-31 31-41 31-42 32-31	a ⁴ G _{-z} ⁶ D ⁶ (8)	3379.371 3393.00		30 35	3.09	6.74 6.73	11-21 1-11 1-11 -		4930.28 4985.46 4941.03	P P	3.87 6 3.89 6 3.87 6	$.37 \frac{2}{12}$	07

44							HEV	1 8	ED.	MULT	IPL	ET T	RABLE							
IA		Int	Low	P High	J	Multiplet (No)	IA		Int	Low	P H1gh	J	Multiplet (No)	IA		Int	Low E	P High	J	Multiplet (No)
<u>Cr II</u> 4266.23 4328.91 4295.37 4352.68 4318.77 4368.20	continu P P P P P		3.87 3.89 3.87 3.89 3.87 3.89	6.76 6.74 6.74 6.73 6.73	13-25 23-25 13-15 23-13	a ² D-z ⁴ D° (37)	2985.02 2970.66 2968.67 2963.46 2956.60	ontir A A A A	7 3 15 20 10	4.13 4.16 4.15 4.14	8.32 8.31 8.31	3½-1½ 5½-5½ 4½-4½	b ⁴ G-z ² D° (56) b ⁴ G-z ² P° (57) b ⁴ G-y ⁴ G° (58)	Gr II o 3529.73 3540.28 3552.50 3558.22 3570.57 3571.64	ontin A P P P P P	3	4.41 4.40 4.41 4.40 4.41 4.40	7.90 7.88 7.88 7.86 7.86 7.85	52-52 42-42 53-42 42-32	ь ³ н- г⁴н• (89)
5104.03 m5210.88 5144.47 5243.50 5176.26 5267.10 4539.62	P P P P P A	Cr*+ 4 2	3.99 4.02 3.99 4.02 3.99 4.02	6.41 6.39 6.39 6.38 6.38 6.37	25-25 35-25 25-15	a ² F-z ⁴ F° (38)	*2965.19 2955.71 *2961.732 2959.97 2951.95 2955.12 2951.40	A B A A	50 18 10 10	4.15 4.14 4.15 4.14 4.15 4.14	8.33 8.33 8.33 8.33	41-31 32-32 51-41 42-33 42-42	b ⁴ G-y ⁴ F°† (59)	3339.90	A A A A	5 0 10 15 30 20	4.41 4.40 4.41 4.40 4.41 4.40	8.05 8.07 8.07 8.06 8.11 8.09	44-44 54-44 42-32	b ² H-z ⁴ I° (90) b ² H-z ² G° (91)
4565.78 3177.90 3026.85 3061.59 3038.52	A A A A	10 1 20 8 3	4.03 4.03 3.99 4.02 3.99	6.73 7.91 8.07 8.06 8.06	3½-1½	a ² F-z ⁴ D° (39) a ² F-y ⁴ D° (40) a ² F-z ⁴ G° (41)	*3421.62 3460.03 3450.84 3270.14	A A A	4 1 3 40	(4.30 (4.38 4.30 4.38 4.30	7.88 7.86 7.85	42-32		3384.67 3157.52 3147.84 3135.74 3134.33 3143.91	P A A A	1 1 30 25 7	4.40 4.41 4.40 4.41 4.40 4.41	8.11 8.32 8.32 8.34 8.33 8.33	52-52 42-52	b ³ H-y ⁴ G ⁶ (93) b ³ H-z ³ I ⁶ (94)
3071.03 2999.96 3034.99 3012.34 5237.34	A A A	25 10 2 	4.02 3.99 4.02 3.99	8.04 8.11 8.09 8.09	31-41 21-31 31-31 - - 41-41	a ³ F-z ³ G° (43)	3264.26 3250.79 3245.31 3247.01 3268.48 3288.04	AAAA	35 10 5 4 10 15	4.28 4.30 4.28 4.30 4.38	8.06 8.07 8.10 8.08 8.05	53-63 43-53 43-43 53-42	a ² H-z ⁴ G [•] (61) a ² H-z ⁴ I [•] (62)	3026.647 3041.74 3050.75 3017.80	B A D A	80 50 4 5	4.41 4.40 4.41 4.40	8.49 8.45 8.45 8.49	52-52 42-42 52-42 42-52	b ² H-z ² H• (95) b ² H-y ⁴ H•
5274.99 5313.59 5334.88 5279.92 5308.44 5337.79 5232.50 5280.08	A A A A A	20 25 40 15 20 12 15	4.05 4.05 4.06 4.05 4.06 4.05 4.06	6.39 6.38 6.37 6.39 6.38 6.37 6.41 6.39	32-32-32-32-32-32-32-32-32-32-32-32-32-3	(43)	3238.77 3234.06 3219.79 3053.65 3050.137 3040.92	A A A B	50 50 10 10	4.38 4.38 4.38 4.38	8.11 8.09 8.11 8.33	4 } _5	a ² H-z ² G* (63) a ² H-y ⁴ G* a ² H-z ² I* (65)	3625.30 3621.51 3644.12 3635.43	A P D P	(1)	4.41 4.48 4.48 4.48	7.88 7.86 7.86 7.85	- 41-51 31-41 42-41	b ² H-x -y- (97) (97) a ² G-z ⁴ H- (98)
5310.70 4558.659 4588.217 4618.83 4634.11 4555.02 4592.09	A B	12 100 75 35 25 20 20	4.05 4.06 4.05 4.06 4.05 4.05 4.05	6.38 6.76 6.74 6.73 6.72 6.76 6.74	1] -3	b ⁴ F-z ⁴ D ⁶ (44)	3057.86 2953.706 2969.67 3400.08	A B A	13 45 15 ———	4.30 4.28 4.30	8.33 8.33 8.45 8.45	4}-4} 5½-4½	a ² H-z ² H• † (66) a ² P-y ⁴ D•	*3658.19 3428.94 3399.54 3395.62 3415.47	A A A D	20 7 18 20 1	4.48 4.48 4.46 4.48	7.85 8.06 8.11 8.09 8.09	41-41 31-31 42-31	a ² G-z *G* (99) a ² G-z ² G* (100)
4616.64 4558.83 4589.89 3225.44 3117.28 3162.46	A P A A	18 3 8 15	4.05 4.06 4.05 4.06	6.73 6.76 6.74 7.88 8.01	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	b ⁴ F-z ⁴ H° (45) b ⁴ F-y ⁴ D°	3482.58 3430.42 3369.05 3291.75 3186.75 3154.10	AAAAA	12 3 18 40 18 3	4.36 4.38 4.36 4.38 4.36 4.38	7.91 7.88 8.03 8.03 8.24 8.19	12- 2 12- 2 2- 2		3199.87 3079.34 3087.90 3104.29 3077.24 3077.79	A A A	10 15 20 3 18 25	4.48 4.48 4.48 4.48 4.48	8.31 8.49 8.45 8.45 8.47	41-51 31-41 41-42	a ² G-y ⁴ G ⁹ (101) a ² G-z ² H ⁹ (102) a ² G-z ² F ⁹ (103)
3203.53 3229.38 3115.65 3164.28 3042.79 3071.58	A A A A	15 8 20 4 25 7	4.05 4.06 4.05 4.05 4.06 4.06	7.96 7.91 7.88 8.01 7.96 8.11 8.07	31-21 21-1 31-31 32-31 41-51 31-41	(46) b ⁴ F-z ⁴ G [•]	3163.93 3159.03 3125.02 3194.63	A A A	10 20 15 10	4.28 4.36 4.28 4.36	8.18 8.27 8.23 8.23	1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ² P-z ² D° (70)	3061.14 3954.67 *3957.56	P D A	10 5	4.46 4.48 4.46 	8.65 8.63 6.76	4½-4½ 3½-3½	a ² G_y ² G* (104)
3085.36 3093.97 3073.25 3083.62 3094.94 3045.53 3056.68	A A A A	10 15 15 10 10	4.06 4.05 4.06 4.05 4.06	8.06 8.04 8.07 8.06 8.04	22-32 12-32 42-43 32-32 22-32		3103.48 3172.08 3084.46 3121.05 3121.84 3074.91	A A A	30 40 15 8 10			12-12 12-12 12-12 12-12	(71) a ² P-y ⁴ F° (73)	6139.23 6195.18 6239.77 6112.26 6176.95 6226.66 6070.08 6147.15	A A A A A A A	7 3 1 2 2 1 2 3	4.73 4.74 4.74 4.73 4.73 4.74 4.73	6.76	15-15 35-35 35-15 15-5 25-35	(105)
3043.90 3058.38 2958.20 5478.35	A A A	8w 18 12 1	4.06	8.23	2 1 -11	b ⁴ F-z ² G ⁶ (48) b ⁴ F-z ² D ⁶ (49) b ⁴ G-z ⁴ F ⁶	3074.67 3034.05 3008.67 3557.85	A A A	3 5 3	4.36	8.43	1½-1½ 1½-3½	a ² P-x ⁴ D ⁶ (73) a ² P-z ⁴ S ⁶ (74) a ² P-z ² F ⁶ (75)	6308.18 3895.16 3513.03 3565.31 3584.01	A A A P	3 2 10 5	4.74 4.74 4.73 4.73 4.74	7.91	13-25 2-12 2-12 33-23 23-13 12-2	c ⁴ D-y ⁴ D ⁶ (106) c ⁴ D-y ⁴ P ⁶ (107)
5502.05 5508.60 5503.18 5455.80 5472.63 5477.45	A A A P	12 8 8 1 3	4.15 4.14 4.13 4.15 4.14 4.13	6.39 6.38	32-32 32-32 32-32	b ⁴ G-z ⁴ F° (50)	3566.37 •3466.25 3508.67 3376.27	A P A	1 2	4.40 4.39 4.40 4.39 4.40	7.96 7.91	31-21 21-11	b ² F-z ⁴ H° (76) b ² F-y ⁴ D° (77) b ² F-z ⁴ I° (78)	3518.62 3571.37 3588.30 3524.54 3575.69	A A P P	3 3 2	4 84	8.18 8.24 8.19	12-23 12-23 2-12	4- 2
3295.427 3307.044 3311.929 3312.18 3315.29 3322.69 3323.53	C	50 50 40 40 12 13 8	4.15 4.14 4.13 4.16 4.15	7.85	$3\frac{2}{2} - 3\frac{2}{2}$	b ⁴ G-z ⁴ H [•] (51)	3357.40 3367.42 3324.346 3335.28 3212.53	A A B A	40 13 50 40 20	4.40 4.39 4.40	8.11 8.09 8.24	31-41 21-31	b ² F-z ⁴ I° (78) b ² F-z ⁴ G° (79) b ² F-z ² G° (80) b ² F-y ⁴ P° (81)	3478.17 3528.23 •3489.45 3438.46 3445.04	A A A	3 1 2 0 5	4.72 4.73 4.74 4.72 4.73	8.31 8.31	34-34 32-32	(108) (108) (109) (109) (109)
3193.41 3131.54 3143.68 3154.04 3122.596	A B	3 5 7 5d 30	4.16 4.15 4.14			b ⁴ G-y ⁴ D ⁰ (53) b ⁴ G-z ⁴ I ⁰ (53) b ⁴ G-z ⁴ G ⁰	3247.33 3183.325 3216.55 3179.45	B A A	8 40 20 8 15	4.40 4.39 4.39	8.23	31-21 31-11 31-21 31-11	b ² F-z ² D• (82)	3426.13 3437.93 3444.34 3449.28 *3376.72 3382.79	D A A A P	8 2 4 2 5	4.73 4.74 4.74 4.73	8.38 8.38	구-1호 3출-3출 c 3출-2출	04D_y4F° (111) 04D_x4D° (112)
3147.19 3150.11 3149.83 3154.66 3159.86 3160.11 3115.28 3137.55 3139.91	P A A P A A A	20 20 5 31 12 8	4.15 4.14 4.13 4.16 4.15 4.14 4.15 4.14	8.06	43-34-43-54-43-43-33-43-33-33-33-33-33-33-33-33-33	b ⁴ G-z ⁴ G• (54)	3149.12 3145.77 3142.74 3098.16 3095.22 3098.88 *3094.94	A A A A A	15 10 18 3 3	4.40 4.39 4.40 4.39 4.40	8.38 8.38 8.38	31-21 21-11	(83) b ² F-y ⁴ G ⁶ (84) b ² F-y ⁴ F ⁶ (85) b ² F-x ⁴ D ⁶ (86)	3387.98 3278.79 3201.26 3205.11 3212.91 3229.89 3200.45	A A A A A A	3 25 25 25 18 10	4.72	3.49 3.58 3.58	1 2 -12 3 2 -32 c	4 _{D-z} 2 _F • (113) 4 _{D-x} 4 _F • (114)
3125.46 3131.54 3118.14 3121.97 3108.66 3111.95	A A A A	7 5 10 7 10 15		8.11 8.09 8.11 8.09 8.11		₀ 4 _{G—z} 2 _G • (55)	3015.510 3028.125 3031.63 3012.01 3004.47	B B A A	10 50 40 1 1		8.49 8.47 8.47 8.49	3 1 - 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	b ³ F_z ³ F• (87) b ³ F_y ⁴ H• (88)	3208.02 3226.36 3164.48 *3196.40 *3072.47 3102.58	A A A A	8 4 1 3 8	4.74 8 4.74 8 4.74 8	3.64 3.60	13-23 c 13-13	4 _{D-y} 2 _D 0 (115) 4 _{D-y} 2 _F 0 (116)
												_	•		re-					

Lab I A	oratory Ref	Int	E :	P High	J	Multiplet (No)	Labor I A	ator; Ref		E F		J	Multiplet (No)		atory Ref I	int	Low E P	High	J	Multiplet (No)
Cr II	ontinue	à					Cr II cor	tinu	ed					<u>Cr II</u> cor	tinued					
3727.37 3737.55 3751.60	A A A	40 10 3 Irl	4.76 4.75 4.75	8.07 8.06 8.04		b ² G-z ⁴ G° (117)	3461.28 *3466.25 m3482.56 3445.20	A A P P	3 2 Cr+	4.92	8.49 8.47 8.47 8.49	31-31 21-21 31-21 21-31 21-31	c ² F-z ² F° (148)	4127.08 4170.86 4181.50 4116.66	A A A	3 1 1 2	5.65 5.64 5.65 5.64	8.64 8.60 8.60 8.64	$\begin{array}{c} 2\frac{1}{2} - 2\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \\ 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 2\frac{1}{2} \end{array}$	e ² D-y ² D• (181)
3686.67 3698.00 3705.40 3679.34	A P P	20 35	4.76 4.75 4.76 4.75	8.11 8.09 8.09 8.11	35-45	b ² G-z ² G° (118)	3374.99 3377.36 •3376.72	A A A	8 5 5	4.92	8.58 8.58 8.56		c ² F-x ⁴ F° (149)	4048.02 4056.07 4066.16	P A P	4	5.64	8.68	25-25	c ² D-x ⁴ G° (182)
3313.08 3335.93 3341.98	Å A A	20 4 5	4.76 4.75 4.76	8.49 8.45 8.45	41-51 31-42 42-42	b ² G-z ² H° (119)	3306.95 3314.57 3329.45	A A	50 35 4		8.65 8.63 8.63		c ² F-y ² G° (150)	3979.51 *4012.50 \$ 4022.36	A A A	20 30 3	5.64	8.75 8.71 8.71		c ² D-y ² F° (183)
3310.65 3324.10 3304.73	A A A	35 20 5	4.76 4.75 4.75	8.49 8.47 8.49	42-32 32-22 32-32	b ² G-z ² F*	3275.92 3258.01 m3269.75	A A P	10 3 Cr+		8,69 8.69 8.68	3½-4½ 3½-3½ 3½-3½	c ² F-y ² H° (151) c ² F-x ⁴ G° (152)	3528.13 m3484.16 *3489.45	A P A	7 3r+ 2	5.65	9.15 9.19 9.17	23-33	c ² D-x ² F° (184) c ² D-w ⁴ F° (185)
3266.25 3279.54	A A	8 5	4.76 4.75 4.76	8.54 8.52 8.58	42-52 32-42	b ² G-y ⁴ H° (121)	3227.48 3241.38 3255.62	A A A	3 4 3	4.93 4.91	8.75 8.71 8.71		c ² F-y ² F• (153)	3125.79 3113.59	A A	5 5				c ² D-y ² P° (186)
3231.64 3169.20 3184.36 3189.85	A A A	8 25 15 12	4.76 4.75	8.65 8.63 8.63		(122) b ² G-y ² G* (123)	3213.46 3044.24 3038.04	A A	3 10 6	4.91 4.93 4.91	8.75 8.98 8.97	<u> 25−05</u>	c ² F-x ² G° (154)	6089.69 6179.17 6188.00	A A P	15 10	6.46 6.46 6.46	8.49 8.45 8.45	- 4½-5½ 3½-4½ 4½-4½	d ² G-z ² H° (187)
n3163.77 3140.21	P A A	0r 25 20	4.75	8.65 8.69 8.69	25-45	b ² G-y ² H° (124)	4227.73	A	1	4.96	7.88	 6출-5출	b ² I-2 ⁴ H°	6081.51 6138.77	A A	3	6.46 6.46	8.49 8.47	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-2\frac{1}{2}}$	d ² G-z ² F° (188)
3135.35 3140.67 3093.48	A A	1 40 50	4.76 4.76 4.75	8.69 8.75 8.73	44-51	b ² G-x ⁴ G° (125)	3650.37 3664.95 3661.44 3653.85	A A A P	40 30 3	4.96 4.97 4.96 4.97	8.34 8.33 8.33 8.34	63-63 53-53 63-53 53-63	b ² I-z ² I° (156)	5620.63 5678.42 4901.65	A A	12 10 15	6.46 6.46	8.65 8.63 8.98		d ² G-y ² G° (189) d ² G-x ² G° (190)
3107.58 3112.81 m3132.12 3142.97	A P P A	Cr*+ 8	4.76 4.75 4.75	8.73 8.69 8.68	43-4 33-3 32-2		*3503.36 \$ 3539.00 *3506.61	A A A	3 4 1	4.96 4.97 4.97	8.49 8.45 8.49		b ² I-z ² H° (157)	4912.49 4465.78 4511.82	A A P	12 4	6.46	9.22 9.19	41-51 31-41	(190) d ² G-x ² H• (191)
3096.11 3116.76 3090.94	A A A	35 20 2w	4.76 4.75 4.75	8.75 8.71 8.75	32-3	b ² G-y ² F° (126)	*3310.65 3314.06	A A	35 18	4.96 4.97	8.69 8.69	6)-5) 5)-4)	b ² I-y ² H° (158)	4516.56 4256.16 4268.93	P A A	5 1	6.46 6.46 6.46	9.19 9.36 9.35	45-45	d ² G−w ² G° (192)
4161.27 4161.56 4186.08	P P P	egican agramatica di della di	4.92 4.90 4.92	7.88 7.86 7.86	43-5 33-4 43-4	c ² G-z ⁴ H° (127)	3258.77 3283.04 3261.56	A A	30 20 4	4.96 4.97 4.97	8.75 8.73 8.75		b ² I-x ⁴ 6° (159)	4070.90 4049.14 4067.05	A A P	10 18		9.49 9.50 9.49	41-31 31-21 31-31	d ² G-w ² F• (193)
4179.92 4204.66 3905.88	P P		4.90 4.92	7.85	42-3	2 _{0-z} 4 ₁ •	•3965.19 4195.41	A	10	5.30	9.13	_	b ² I-1° (160) b ² D-y ⁴ P° (161)	4038.03 4003.33 4007.04	A A P	25 25	6.46	9.52 9.54 9.54		d2G-w2He
3915.30 3936.95 3862.17	P A P	1	4.90 4.92 4.92	8.05 8.05 8.11	42-4	(128)	4278.10 4145.77 4224.85	A A	1 25 30	5.31 5.30 5.31	8.19 8.27 8.23	12-12 23-21 12-12	(161) b ² D-z ² D• (162)	3089.75	A -	1				d ² G-u ² F° (195)
3889.90 3911.32 3909.25 3930.88 3924.65	P A P P	3	4.90 4.93 4.90 4.93 4.90	8.07 8.07 8.06 8.06 8.04	3-4 43-4 33-3 43-3 32-3	c ³ G-z ⁴ G• (139)	4209.03 4161.05 4135.77 4185.50	A A P P	3 2	5.31	8.23 8.27 8.28 8.26 8.28	15-05	b ² D-z ² P° (163)	6418.87 6271.83 6168.46 6415.59 6282.92 6274.94	A A A A	7 5 2 1 2	6.61 6.58	8.58 8.58 8.58 8.58 8.58	32-33-33-33-33-42-	c ⁴ F-x ⁴ F ⁶ (196)
3866.54 3866.01	A A	7 5	4.92 4.90	8.11 8.09	41-4 32-3	c ² G-z ² G• (130)	4151.00 4089.49	A A	5 2	5.31 5.30	8.31	a <u>}</u> −a	b ² D-y ⁴ G°	6068.00 6069.69	A	7	6.66 6.66	8.69 8.69		c ⁴ F-y ² H° (197)
3696.78 3614.26	A A	8 2	4.90 4.90	8.34 8.31	21 2	c ³ G-y ⁴ P° (131) c ³ G-y ⁴ G° (132)	4081.21 4082.30 4098.44	A A	10 8	5.30 5.30 5.31	8.32 8.32 8.32	21-3 23-2 13-1	b ² D_y ⁴ F ⁶ (165)	5895.90 5841.86 5827.24	A A A	4 5 5		8.75 8.73 8.69	41-51 31-42	c ⁴ F-x ⁴ G [•] (198)
3608.66	A	3	4.90	8.32	3 } _2	(133) (133)	4002.48 4017.96	A	5 3	5.30 5.31	8.38 8.38	3-3 1-3	b ² D-x ⁴ D° (166)	5110.43	A A	2	6.66		2½-3½ 4½-3½	c ⁴ F-w ⁴ D° (199)
3563.92 3547.10 3546.15	A P	5 3	4.90	8.38 8.38	44-3 34-2 32-3	(133) (133) (134)	3865.59 3905.64 3892.14	A A A	75 25 4	5.30	8.49 8.47 8.47	23-3 13-2 22-2	b ² D-z ² F* (167)	4857.60 5137.09	A -	2 	6.66		_	(200)
3457.62 3472.07 3489.07	A A A	30 25 2	4.92 4.90 4.92	8.49 8.45 8.45	45-5 35-4 45-4	c ² G-z ² H° (135)	3701.90 3694.98	A	4	5.30 5.30	8.63 8.64	01 71	b ² D-y ² G° (168) b ² D-y ² D°	5091.14 5076.15	A A A	2 4	6.80 6.79	9.22	$1\frac{1}{2} - 1\frac{1}{2}$ $2\frac{1}{2} - 1\frac{1}{2}$	c ⁴ P-x ⁴ P° (201)
3454.98 3459.29	A A	35 25	4.92	8.49 8.47	$\frac{4\frac{1}{2}-3}{3\frac{1}{2}-3}$	cag_zar• (136)	3707.13 m3631.48	A A P	3 Cr+	5.31	8.64	15-03	i (109)	Strongest	Uncla	ssified	l Lines	of C	· II	
3301.21 3308.15 3285.96	A	18 18 20		8.65 8.63 8.65	41-4 31-3 32-4	c ² G-y ² G• (137)	3576.23 3622.45	A P A	1	5.31 5.30	8.68 8.75 8.71		b ³ D-x ⁴ G° (170) b ² D-y ² F° (171)	6305.60 5913.87 4952.78 3814.00	A A A	4 3 10 12				
3269.77 3255.30	A A	15 15	4.92 4.90	8.69		c ² G-y ² H° (138)	3610.85 3276.28	P A	1	5.30	8.71			3801.21 3778.69	A A	10 Cr :	I?			
3235.26 3219.13		4 18	4.90 4.92	8.71 8.75	3 1 -2-2-	1 c2d_y2F° (139) 1 c2d_x4d°	*3286.34 \$		ō 15	5.31		11-3	b ² D-w ⁴ D° (172) b ² D-x ² F°	3750.56 3711.29 3495.56	A A A	12 7 20				
3225.39 3240.07	A	12	4.90	8.73 8.73	3 1 - 4 4 2 - 4	2 c ² G_y ² F° (139) 1 c ² G_X ² G° (140)	3178.79 3169.85	Ā	7 2w	5.31	9.19	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ² D-x ² F• (173)	3198.00	A	15				
* 29 57.56	A	5	4.90	9.07	3 } -3	2 c ² G-w ⁴ D° (141)	3190.69 3141.80	A	6 4	5.31 5.30	9.17	12-3 32-1	b ² D-w ⁴ F° (174) b ² D-x ⁴ P°	Mn I I	P 7.40) Ana:	1 B I	ist B	Мау	1941
3945.11 3874.41		(1)	4.93	8.05 8.11	3 2 -4 33-4	2 c ² F-z ⁴ I° (142) 3 c ² F-z ² G°	4761. 43	A		5.65	8.24		(175) c ² D-y ⁴ P° (176)	5394.674 5432.548	B B	10 4	0.00	2.29 2.27	21-3	a ⁶ S-z ⁸ P°
3874.76 3895.12	P	1	4.91 4.92	8.09 8.09	2 1 -3 3 1 -3	2 c ² F-z ² I ² (143) 2 c ² F-z ² G ² (143)	4832.97 4697.63	P A	2	5.64 5.65				4030.755 4033.073	В	300R 150R	0.00	3.06 3.06	$2\frac{1}{2} - 3$	a ⁶ S-z ⁶ P° (2)
3723.40 3756.55		15 3	4.50	8.24 8.19	2 2 -1	2 (144)	4684.77 4715.12	A D	1	5.65 5.64	8.28 8.26	21-1 12-	c ² D-z ² D° (177) c ² D-z ² P° (178)	4034.490 3224.761	В	100R 10	0.00	3.06 3.83	23-23	a ⁶ S-z ⁴ P°
3684.25 3715.45 3666.02	A	25 20	4.91	8.27 8.23 8.27		c ² F-z ² D° (145)	4671.36 4341.09 •4362.93		7 3	5.64 5.65 5.64	8.49 8.47	21-3	c ² D_z ² F°	3216.946 5341.065	B -	20		4.43		
•3658.19 3625.92		30	4.91	8.28	3}1 314	121c ² F-z ² P° (146) 1 c ² F-v ⁴ F°	4374.61	P P		3.03	0.41	25-2	2	5420.362 *5481.396 5407.424	B B B	10 4 5	2.15 2.13	4.41 4.41 4.43	32-3 32-3	a ⁶ D_y ⁶ P• (4)
3615.45 3633.16 3616.29 3634.04 3617.32	P P P	10 7	4.91 4.92 4.91 4.93	8.32 8.32 8.32 8.32	32-3 32-3 32-3 32-3 32-3	(146) (146) (2F_y4F** (147)	4199.02 4209.84 4223.00 4232.96	P P A P	1		8.58 8.58 8.56 8.56			5470.638 5516.771 5457.471 5505.869 5537.756	B B B	8 7 1 2 5	2.15 2.17 2.15 2.17	4.41 4.42 4.41 4.41	21-3 11-1 21-3	

					R E V	1 8 E	D M	ULTIPL	e T	ABLE							
Labo: I A		Int	E P Low High	J Multiplet (No)	Labo: I A	rator Ref		E P Low High	J	Multiplet (No)	Labor I A		ry Int	Low	P High	J	Multiplet (No)
I con	_				Mn I con	tinue	a				Mn I con	tinu	.eđ				
41.361 55.543 63.528	B B B	50r 20 8	3.11 5.16 3.13 5.18 3.15 5.19	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ⁶ D-z ⁶ D° (5)	4762.376 4766.430 4765.859	B B B	30 20 10	2.88 5.47 2.91 5.50 2.93 5.52	31-41 21-31 11-21	a ⁴ D-z ⁴ F° (31)	4147.532 4131.430 4123.543	B B B	(3) (1)	3.36 3.36 3.36	6.33 6.35 6.35	21-21 13-1 21-1	a ⁴ P-x ⁴ P° (37)
68.003 70.279 18.102	B B B	(2) 5 20	2.18 5.21 2.11 5.18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4761.536 4709.715 4727.476	B B B	10 10 10	2.94 5.53 2.88 5.50 2.91 5.52	31 31		*4110.903 4155.525 4137.257	B B	(3) (1) (1) (2) (2) (3)	3.36 3.36 3.37	6.37 6.33 6.35	15-2 15-2	
35.728 48.755 58.930	B B B	15 15 10	2.13 5.19 2.15 5.20 2.17 5.21	19- 9	4739.108 4671.688 4701.159	B B	8 3 3	2.93 5.53 2.88 5.52 2.91 5.53	1 3 -13		3115.465 3108.635	ВВ	6			21-31 21-31	a ⁴ P-x ⁴ F° (38)
79.241 83.628 82.944	B B B	12 12 13	2.13 5.16 2.15 5.18 2.17 5.19	31-41 21-31 12-21	4451.586 4464.677	B B	15 8	2.88 5.65 2.91 5.67		a ⁴ D-z ⁴ D ⁶ (22)	3107.774	B	{i} 			_	
79.422 06.719	B B	10 20r	2.18 5.20 2.11 5.35	2-12	4470.138 4472.792 4414.879	B B B	6 5 10	2.93 5.69 2.94 5.70 2.88 5.67	13-13	(88)	6491.712 6440.974 6384.669	B B	15 8	3.75 3.76	5.65 5.67	3}-3} 2}-3	b ⁴ D-z ⁴ D ⁶ (39)
23.513 34.364 41.082	B B B	20r 12 10	2.13 5.36 2.15 5.37 2.17 5.38	43-52 a ⁶ D-z ⁶ F° 32-42 (6) 23-32 13-32	4436.352 4453.005 4502.220	B B	8 6	2.91 5.69 2.93 5.70	25-15 15- 5	•	6356.057 6413.92	BCC	(2) (3)	3.13	5.67	ა _	Ī
43.983 90.215 09.592	B B B	7 10 10	2.18 5.39 2.11 5.36 2.13 5.37	*-1*	4498.897 4490.081	B B B	7 7 5	3.91 5.65 3.93 5.67 3.94 5.69	12-32 12-32 2-12		6382.169 6349.748 6519.371	B C B	(2) (3) (1) (3) (2) (1)	3.76 3.76 3.76	5.69 5.70 5.65	23-1 13- 23-3	
23.893 33.862 39.777	B B B	10 8 8	2.15 5.38 2.17 5.39 2.18 5.39	45-45 35-35 25-25 15-15	4235.290 4235.140	ВВ	8 6	2.88 5.79 2.91 5.82	$3\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 1\frac{1}{2}$	a ⁴ D-y ⁴ P° (23)	6443.492 6391.214	C		3.76 3.76	5.67 5.69	2 -1}	•
76.527 99.259	ВВ	(1) 4	2.11 5.37 2.13 5.38	2- 1 42-3 2 3 1 -2 1	4239.725 4281.099 4265.924	B B	5 6 6	2.93 5.82	1\$- \$ 2\$-2\$ 1\$-1\$		4431.922 4436.025	В	(1) (2n)				b ⁴ D-v ⁶ P° (40)
16.753 29.680	B B	5 5	2.15 5.39 2.17 5.39	12-12 12- 2	4357.659 4312.550 4384.084	B B B	5 3 (4)	2.94 5.84 2.93 5.79 2.94 5.82	12-32 12-32 2-12		3462.748 3455.04	C	{1 2}	3.76 3.76	7.32 7.33	$3\frac{1}{2} - 3\frac{1}{2}$	(41)
70.517 69.838 69.399	B B	5 4 (1)	2.11 5.47 2.13 5.50 2.15 5.52	$4\frac{1}{2}-4\frac{1}{2}$ $a^{6}D-z^{4}F^{\circ}$ $3\frac{1}{2}-3\frac{1}{2}$ (7) $a_{2}^{2}-a_{2}^{2}$	3696.568 3728.889	B B	8 (1)	2.88 6.21 2.91 6.22 2.93 6.23		a ⁴ D-y ⁴ F° (24)	5377.628 5399.489	ВВ	6	3.83 3.84	6.13	 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	z ⁴ P°-e ⁴ 8 (42)
39.14 01.730 92.812	P B B	{1 {1}}	2.11 5.50 2.13 5.47 2.15 5.50	45-35	3750.763 3763.377 3694.115	B B B	(1) (2) (3) (1) (1)	2.93 6.22 2.94 6.22 3.88 6.22	22		5413.687 4844.315	В	a (a)	3.84	6.13	2-12	,4po_e4p
85.212 78.46	B P	(1)	2.17 5.52 2.18 5.53	<u> </u>	3726.931 3601.782	B C		3.91 6.22	3 1 _3		4843.19 4838.244 4825.593	B B B	(2) (in) (i) (1)	3.84 3.84	6.38	15-15	z ⁴ P ^e -e ⁴ P (43)
77.880 86.543 95.119	B B B	40 30 20	2.11 5.55 2.13 5.57 2.15 5.59	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a^{6} D- x^{6} P° a^{6} D- $a^{$	3605.691 3583.676 3589.973	B B C	(1) (2) (1)	2.91 6.33 2.93 6.35 2.91 6.35 2.93 6.37	13-13 23-13	(25)	4826.896 4862.054 4854.604	B B B	(2) (3) (2)	0.04	6.39 6.37 6.38	11-21	
07.537 08.494 10.299	B B B	20 20 20	2.13 5.55 2.15 5.57 2.17 5.59	35-35 35-25	3407.960	С	(1)	2.91 6.53			3926.467	В	10			3 2 - 2 2	z ⁴ P°-1
29.741 23.792 19.284	B B B	13 15 15	3.15 5.55 2.17 5.57 2.18 5.59	15-15 25-35 15-25	6021.802 6016.637	ç C	50 40	3.06 5.11 3.06 5.11 3.06 5.11	 31-21		3800.552 3785.421	В	{1/1}	3.83 3.84	7.07	21-31 11-21	(44) z ⁴ P°-e ⁴ D (45)
30.668 43.731	B B	8 4	2.15 5.86 2.17 5.86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6013.498	В	30		12-32	-6ne -6n	3774.645	В					
51.424 80.756	Č B	(1) 5	2.18 5.86		4458.262 4455.821 4461.085	B B B	20 12 6	3.06 5.83 3.06 5.83 3.06 5.83	23-32 13-22	z ⁶ p•_e ⁶ D (38)	9243.29 9172.09 9114.02	A A	150 100 50	4.31 4.33 4.33	5.65 5.67 5.69	45-35 35-25 25-15	a ⁴ F-z ⁴ D•† (46)
11.905 96.027	B B	6		3½-3½ a ⁶ p-2° 1½-3½ (10)	4457.549 4455.318 4460.377	B B	8 8 6	3.06 5.83 3.06 5.83 3.06 5.83	23-23 23-23 13-13		9084.29	A B	(a)			-2- 2	
08.785 16.324	B B	(3) 4	2.17 5.90 2.18 5.90	$3\frac{1}{2}-1\frac{1}{2}$ $a^{6}D-4^{\circ}$ $1\frac{1}{2}-1\frac{1}{2}$ (11)	4457.045 4455.013	B B B	3 5 5	3.06 5.83 3.06 5.83 3.06 5.83	33-13 12- 3		4123.757 4123.279 4105.365	C B B	(2) (1) (3) (3)	4.33 4.31	7.33 7.33 7.32	31-31 21-21 41-31	a ⁴ F-x ⁴ F• (47)
54.039 78.553 96.882	B B B	5 5 6	2.11 5.90 2.13 5.90 2.15 5.90	42-32 a ⁶ D-3° 32-32 (12) 32-32	4061.742 4059.392		5 5	3.06 6.10 3.06 6.10 3.06 6.10	31-21 21-21	z ⁶ P°_f ⁶ s (39)	4113.876	В	4*				
40.399 64.711	B B	7 10	2.11 5.91 2.13 5.91		3317.305	В	10n	3.06 6.78 3.06 6.78			4048.999 4052.472 4055.214	C B B	(2) (2) (1)	4.33 4.34	7.37 7.38 7.38	3 2 - 4 2 2 2 - 3 2 1 2 - 3 2	a ⁴ F-y ⁴ G* (48)
28.090 36.778	B B	30 20	2.11 5.93 2.13 5.95	3½- (13) 4½-5½ a ⁶ D-y ⁶ F°	3314.876 *3313.524	B	6n (4/4)	3.06 6 .7 8	1 2 -32	(30)	8740.93	A	1000w	4.43	5.83	- 3-1-4-1	y ⁶ P°_e ⁶ D
48.516 56.137 50.231	B B	15 12	2.15 5.95 2.17 5.96	43-53 a ⁶ D-y ⁶ F° 33-43 (14) 33-33 13-34	3316.440 3314.393	C C	5n 6n	3.06 6.78 3.06 6.78	3 2 -3 2 2 2 -2 2		8703.76 8673.97 8737.32	A A A	500w 200w 300w	4.41 4.41 4.43	5.83 5.83 5.83	21-31 11-21 31-31	y ⁶ P°-e ⁶ D (49)
12.884 30.719	B B B	10 15 12	2.11 5.95 2.13 5.95	45-45 35-35	5504.21 *5481.396	B B	(2) 4	3.12 5.36 3.12 5.37 3.12 5.38	5-4-4-3 4-3-3-	a ⁴ G-z ⁶ F° (31)	8701.05 8672.06 8734.60	A A A	300w 300w 30w				
43.780 52.948 58.413	B B	12 12 10	2.17 5.96 2.18 5.96	35-35 15-15 2-2	5460.644 5444.096 5510.174		(1) (1n) (1)	3.12 5.38 3.12 5.39 3.12 5.36	32-22 22-12 42-42		8699.13 8670.92	A A	100w 200w	4.41		12- 2	
06.908 36.034 40.616	B B	5 6 5	2.15 5.96	42-32 32-22 32-12	5255.325 5196.591	B B	4 3	3.12 5.47 3.12 5.50	51-41 41-31	a ⁴ G-z ⁴ F° (32)	7326.51 7302.89 7283.80	A A A	400 1 300 1 250 1	4.43 4.41 4.41	6.10 6.10	31-21 21-21	y ⁶ p ° _ f ⁶ g (50)
51.135 44.567	В	5 50	2.17 5.96	12- 2	5150.890 *5117.937 5260.771	B B B	3 3 (3)	3.12 5.52 3.12 5.53 3.12 5.47	35-25 25-15	** *	6605.546 6586.343	D B	6n				y ⁶ P°-g ⁶ 8 (51)
54.362 52.119 56.019	B B	40 20 20	2.13 6.17 2.15 6.18 2.13 6.16	4-3; a ⁶ D-w ⁶ P° 32-3; (15) 32-3; 32-3; 32-3; 32-3; 1	5197.216 5149.13	B B	(1)	3.12 5.50 3.12 5.52	3 3 -3 3 2 2 -2 2		6570.834 4565.73	B B	(1) (1n)				y ⁶ P°-e ⁴ D
70.266 73.126 32.052	B B B	30 (2)	2.15 6.17 2.17 6.18 2.15 6.16	22-22 12-12 22-32	3986.826 3987.098 3985.241	В	(1) 3	3.12 6.21 3.12 6.22 3.12 6.22	51-41 41-31 31-21	a ⁴ G-y ⁴ F° (33)	8431.20	A	20Ns			-	(52)
31.330 79.627	ВВ	10 15	2.17 6.17 2.18 6.18	1½-3½ ½-1½	3982.583 3989.958 3987.464	B C	(a)	3.12 6.23 3.12 6.21 3.12 6.22	28-1*		8409.88 8395.87	A A	15Ns 10Ns	5.11	6.58 6.58	22-22 22-22 22-12	e ⁶ 8-u ⁶ P° (53)
33.516 33.420	B B	50 50	2.31 4.87 2.29 4.87		3984.177 3986.395	В	(1) (2) (1) (2)	3.12 6.22 3.13 6.22	21-21 22-32		7764.72	A	250nl			-	
54.042 70.875	В	50			3047.035 3045.593 3043.356	В	15 12 9	3.12 7.17 3.12 7.17	51-51 41-42	a ⁴ G-z ⁴ G° (34)	7733.24 7709.98 7706.52	A A	150nl 40Nl 10Nl	0.00	0.00	02-12	z ⁶ F°-f ⁶ D† (54)
89.493 17.802	B B	60 50	2.31 5.77 2.29 5.77	(17)	3043.356 3040.603 3043.770	B B	12 (3) (3)	3.12 7.18 3.12 7.18 3.13 7.17	35-35 35-25 55-45		7677.46	A .		5.39			
81.848 89.804	B B	30 40	2.29 5.77 2.27 5.77 2.31 5.77	32-45 (18) 32-32 42-42 32-32	3043.143 3041.224 3048.864 3045.808	В	(3) 4 5	3.12 7.17 3.13 7.18 3.12 7.18 3.12 7.17	42-35 32-25 42-55		7680.22 7712.42 7734.43	A A	300 100n 50n	5.47 5.50 5.52	7.07 7.10 7.11	42-32 32-32 32-13	z ⁴ F°-e ⁴ D† (55)
18.029 31.998 70.041	B B	40 50 30	2.31 5.77	25-25 45-35	3042.733	В	5 4	3.12 7.17 3.12 7.18	$3\frac{1}{2} - 4\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$		7755.15	Ā	20N1			- 15 - 5	
18.202 32.121	B	30 50	2.29 5.77	32-32 32-12	3022.749 3016.454 3011.376	В	10 8 7	3.12 7.20 3.12 7.21 3.12 7.22	51-61 41-51 31-41	a ⁴ G-z ⁴ H ^o (35)	8929.72 8926.06 8901.0	A A A	60n 15n 3p?	5.55 5.57	6.94 6.96 6.97	$3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$	x ⁶ P°-f ⁶ D† (56)
78.495 51.039 18.179	B B B	15 15 15	2.31 6.19 2.29 6.19 2.27 6.19	41-31 z ⁸ P°-f ⁸ S 31-31 (19) 32-32	3007.655 3014.668 3011.162	B B	6 5 5	3.12 7.23 3.12 7.21	23-33 53-53							- 15–95	
55.881	В -	3		_		B -	4	3.12 7.18 3.13 7.17 3.13 7.18 3.13 7.20 3.13 7.21 3.13 7.23 3.13 7.23 3.13 7.23 3.13 7.23 3.13 7.23 3.13 7.23	$\frac{32-42}{32-32}$		9429.58 9476.57 9535.72	A A A	30n 4n 5n	5.67 5.69	6.96 6.98	33-35 35-35 15-15	z ⁴ D°- f ⁶ D† (57)
04.907 89.812 42.589	B B B	(1) (1)	2.91 5.37 2.93 5.38 2.94 5.39	3½-4½ a ⁴ D-z ⁶ F° 3½-3½ (20) 1½-3½	53 48.069	ВВ	(3) (1) (2) (1)	3.36 5.65 3.36 5.67 3.37 5.69 3.36 5.67	$3\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$	a ⁴ P-z ⁴ D° (36)	9336.47 950 3. 12	A A	40n 8n				z ⁴ D°-1 (58)
42.418	В	(ā)	2.88 5.37	$3\frac{1}{2} - 3\frac{1}{2}$	5317.095 5334.804	B C	\2\ 1)	3.37 5.69 3.36 5.67	3-1 1 2-2-2-2		9633.03	Ā	4p?	5.69	6.97	1 1 2-21	17-7

Laboratory I A Ref Int	E P J Low High	Multiplet (No)	Labor I A	atory Ref Int	E P Low High	J	Multiplet (No)	Laboratory I A Ref 1		J High	Multiplet (No)
Mn I continued			Mn II con	tinued				Mn II continue	đ.		
9608.56 A 100n 9676.50 A 40 9684.9 A 15	5.79 7.07 21-32 5.83 7.10 12-32 5.84 7.11 2-12	y ⁴ P°-e ⁴ D† (60)	3474.037 3482.905 3488.676 3496.814 3497.536	A 50 A 40 A 40 A 30 A 35	1.80 5.35 1.83 5.37 1.84 5.38 1.82 5.35 1.84 5.37	3-3 2-2 1-1 3-3 1-2	a ⁵ D_z, ⁵ pe cont	6123.438 A 6125.855 A 6128.725 A 6130.794 A 6131.917 A	40 10.14 1 25 10.14 1 30 10.14 1 15 10.14 1 15 10.14 1	2.16 3- 2.16 2- 2.16 1- 2.16 0-	4 (13) 3 2
Strongest Unclassifie	d Lines of Mn I		3495.831	A 40	1.85 5.38	0-1		6122.799 A 6126.210 A	8 10.14 1 10 10.14 1	2.16 3-	.3
9686.3 A 15 8380.77 A 40 8312.43 A 40nl 7942.91 A 25 7347.82 A 15			7415.78 7369.73 7347.72 7353.52	P P P P	3.69 5.35 3.69 5.37 3.70 5.38 3.69 5.37 3.69 5.38	3-3 2-3 1-1 3-3 2-1	a ⁵ p_ z ⁵ p° (4)	6129.022 A 6131.005 A 6123.164 A 6126.516 A 6129.255 A	10 10.14 1 5 10.14 1 -1 10.14 1 0 10.14 1 0 10.14 1	2.16 1- 2.16 4- 2.16 3-	1 3 2 1
5816.844 B (5) 5780.189 B (6) 5738.286 B (6) 5551.985 B (3) 4626.544 B 4	III		7330.54 7432.27 7387.10 4755.728	P P ——————————————————————————————————	3.69 5.35 3.70 5.37	2-1 2-3 1-2 - 5-6	a ⁵ F_z ⁵ G°	3800.240 A 3801.633 A 3802.958 A 3803.881 A 3804.476 A	2 10.14 1 3 10.14 1 0 10.14 1 0 10.14 1 0 10.14 1	3.39 3- 3.39 2- 3.39 1-	.5 e ⁵ D- v ⁵ F° .4 (14) .3 .3
4605.363 B 4 4411.878 B 3 4045.206 B 4	A A		4764.7 4738.29 4730.361 4727.9	P B — B — P	5.37 7.96 5.36 7.96 5.35 7.96 5.35 7.96	4-5 3-4 2-3 1-2	(5)	3134.819 A 3135.507 A 3136.315 A	1 10.14 1 0 10.14 1 0 10.14 1	4.08 3	-5 e 5D- r 5F° -4 (15) -3
4026.435 B 4 3924.075 B 3 3801.907 B 4 \$731.932 B 5 3718.930 B 5 3693.667 B 6	V IV V V V		4343.987 4326.756 4292.246 4283.772 4284.425 4325.1 4345.6	A 2N B (3) A ON A O A O P	5.37 8.21 5.37 8.23 5.36 8.23 5.35 8.23 5.35 8.23 5.37 8.23 5.37 8.21	5-5 4-4 3-3 2-2 1-1 5-4 4-5	a ⁵ F_z ⁵ F° (6)	6105.381 A 6050.446 A 6008.395 A 6107.393 A 6051.860 A 6009.398 A	5 10.31 1 3 10.29 1 0 10.28 1 1 10.31 1 1 10.29 1 1 10.28 1	2.33 3. 2.33 2. 2.33 4. 2.33 3. 2.33 3.	-5 y ⁷ p°- f ⁷ D -4 (16) -3 -4 -3
3676.959 B 4	v V		4300.197	B (1)	5.36 8.23	3-4		6108.8 P 6052.892 A	0 10.31 1	2.33 3	-3 -2
3680.404 B 5 3420.795 B 4 3345.352 B 4 3320.693 B 4	IA IA A Ā		4206.375 4259.203 4253.02 4244.26	A ON A On C (2) C (1)		5-4 4-3 3-2 3-1	(7)	6009.962 A - 4530.034 A 4510.210 A	1 10.28 1 5 10.62 1 3 10.61 1	.3.35 4	-1 -3 x ⁷ P°- g ⁷ S -3 (17)
3303.278 B 3	<u>v</u>		3685.049	A -1X		5-5 4-4		4496.989 A	2 10.60		-3
3298.224 B 5 3270.351 B 3 3268.723 B 3 3267.794 B 4	A A A A		3708.06 3709.88 3717.53 3724.81 3706.91 3729.49	C (1) C (1) C (1) C (1) C (1) C (1) C (1)	5.37 8.70 5.36 8.68 5.35 8.67 5.35 8.66 5.37 8.70 5.37 8.68	3-3 2-2 1-1 5-4 4-3		4639.150 A 4647.585 A 4652.816 A	3 10.73 1 2 10.73 1 1 10.74 1	3.39 2	-2 w ⁵ pe_g 5 g -2 (18)
3237.414 B 30n 3235.003 B (10n 15n	IA IA IA		3725.29 3686.20	č {i}	5.36 8.67 5.37 8.72	3-2 4-5		- 6446.281 A	50N 12.15 1	4.06 6	z ⁷ F°- f ⁷ G
3233.968 B 15n 3142.670 B 4	ĬŸ V		*3509.971	A .0.	5.37 8.89	5-4	a ⁵ F-y ⁵ D° (9)	-			(19)
3101.557 B 5 3097.063 B 8	III;		3483.06 3457.809 3449.5 3446.0	C (1) A Or P P	5.37 8.92	4-3 3-2 3-1 1-0		6463.637 A 6463.195 A 6462.799 A 6462.454 A 6462.210 A	13 13.16 1 10 13.16 1 7 13.16 1 5 13.16 1 3 13.16 1	4.06 4 4.06 3 4.06 2	-6 x ⁵ F°- f ⁵ G -5 (30) -4 -3 -3
<u>Mn II</u> I P 15.6 A 3438.978 A 30	1.17 4.76 2-3	g 1941 a ⁵ g_ z ⁷ p° (1)	3029.041 3039.551 3046.266	A 50 A 40 A 30	5.35 9.43 5.37 9.43 5.38 9.43	3-2 2-3 1-3	z ⁵ pe_ e ⁵ 8 (10)	3050.661 A 3043.132 A 3034.810 A	25 † 6 † 6 †	7 1	3p_ 3pe -1 (21)
3460.039 A 8	1.17 4.74 2-3	(1)	5302.320	A 30	9.82 12.15	5-	e ⁷ D- z ⁷ F°	3033.591 A 3059.064 A	4 7 10 7 8 7	7 1	-0 -2 -1
4083.67 P 4174.31 P 4238.79 P	1.77 4.79 4-4 1.80 4.76 3-3 1.83 4.74 3-3	a ⁵ D-z ⁷ P°	5299.278 5296.968 5295.292 5294.216	A 25 A 20 A 15 A 10	9.82 12.15 9.82 12.15 9.82 12.15 9.82 12.15	4- 3- 3- 1-	(11)	3049.027 A Measures inadeq strongest uncls	quate for prepa	ration o	f list of
4128.14 B (27) 4205.37 P 4128.87 P	1.77 4.76 4-3 1.80 4.74 3-2 1.80 4.79 3-4		3466.336 3465.037	A 9	9.82 13.38 9.82 13.38	5- 4-	e ⁷ D_ y ⁷ F°	PAT OTBERR MICTO		mi ii	
4128.87 P 4207.23 P 4260.47 P	1.83 4.76 2-3 1.84 4.74 1-3		3463.330 3463.330 3463.878	A 7 A 6 A 5	9.82 13.38 9.82 13.38 9.82 13.38	3- 2- 1-	/10/				
3441.983 A 100 3480.312 A 75 3474.124 A 40	1.77 5.35 4-3 1.80 5.37 3-2 1.82 5.38 2-1	a. ⁵ Dz ⁵ p°				_					

	ratory	E P	J Multiplet	Laboratory	E P	J Multiplet	Laboratory	E P	J Multiplet
IA Fe I I	Ref Int P 7.858 Ana	Low High	(No) Feb 1943	IA Ref In	t Low High	(No)	IA Ref Int Fe I continued	Low High	(No)
5166.286 5221.43 5247.052 5254.956 5250.212 5110.414 5168.901 5204.582 5225.533 •5060.079 5127.68	J 4 P 1 V 1 V 1 B 10 B 4 J 2 V 1 T (1) P P	0.00 2.39 0.05 2.41 0.09 2.44 0.11 2.46 0.12 2.47 0.00 2.41 0.05 2.46 0.11 2.47 0.00 2.44 0.05 2.46	4-5 a ⁵ D-z ⁷ D° 3-4 (1) 1-2 0-1 4-4 3-3 3-3 3-2 1-1 4-3 3-3 3-2 3-1 3-3	8304.10 P 8310.98 P 8382.23 P 8485.89 P 7912.866 E 8075.13 O 8304.93 P 8307.61 P	5 0.86 2.39 0 0.91 2.41 0.95 2.44 0 0.99 2.46 6 1.01 2.47 6 0.86 2.41 4 0.91 2.44 0 0.95 2.46 0 0.99 2.27 0 0.91 2.39 0 0.95 3.41	5-5 a ⁵ F-z ⁷ D° 4-4 (13) 3-3 3-2 1-1 5-4 4-3 3-2 2-1 4-5 3-4	3850.820 B 12 3814.526 J 5 3876.043 J 4 3581.195/ B 250R 3647.844 B 100R 3631.464 B 125R 3618.769 B 125R 3608.861 B 100r 3589.107 B 8 3585.708 J 20 3585.320 B 30	0.99 4.19 1.01 4.24 1.01 4.19 0.86 4.30 0.91 4.35 0.99 4.43 0.86 4.29 0.91 4.43 0.86 4.29 0.91 4.35	2-2 a ⁵ F-z ³ P° 1-1 cont 1-2 5-6 a ⁵ F-z ⁵ G° 4-5 (23) 3-4 2-3 1-2 5-5 4-4 3-3
4375.932 4427.312 4481.654 4482.171 4347.239 4405.02 4445.48 4471.68 n4325.74 4389.244 4435.151 n4466.57	B 9 10 B 8 J 4 4 B 7 (1) P (1) P Fe J 2 2 J Fe	0.00 3.83 0.05 2.84 0.09 3.85 0.11 2.86 0.12 2.87 0.00 3.85 0.09 2.86 0.11 3.87 0.00 3.85 0.09 3.86 0.11 3.87	4-5 a ⁵ D-z ⁷ F° 3-4 (2) 2-3 1-2 1-3 1-3 3-3 2-2 1-1 4-4 3 3-3 2-1 1-0	m6462.72 P F 6551.68 P 6609.68 P 6260.625 I 6400.335 V (6574.238 V 6625.04 V 6221.661 U (6353.84 P 6551.68 P	3 0.86 2.80 0.91 2.82 0.95 2.84 0 0.99 2.85 2.86 2.82 2) 0.91 2.86 5 0.95 2.86 1 1.01 2.87 0.91 2.87 0 0.91 2.85 0.92 2.86 0.91 2.85 0.92 2.86 0.99 2.87	5-6 a ⁵ F-2 ⁷ F° 4-5 (13) 3-4 2-3 1-2 5-5 4-4 3-3 3-2 1-1 5-4 4-3 3-2 2-1	3586.985	0.99 4.43 0.86 4.35 0.91 4.40 0.95 4.43 0.86 4.37 0.91 4.42 0.95 4.45 0.86 4.42 0.91 4.45 0.91 4.45 0.91 4.37	2-2 5-4 4-3 3-2 5-5 a ⁵ F-z ³ G° 4-4 (24) 3-3 5-4 4-3 4-5 3-4 2-3
4216.186 4206.702 4199.97 4134.343 4149.76 4291.466 4258.320	B 8 3 W 1 V (1) P (1) 1 4 J 2	0.00 2.93 0.05 2.99 0.09 3.03 0.00 2.99 0.05 3.03 0.05 2.93 0.09 2.99	4-4 a ⁵ D-z ⁷ P° 3-3 (3) 2-2 R 4-3 3-2 3-4 2-3	5956.702 J (*5949.35 V (*5958.23 P		1-0 5-4 a ⁵ F-z ⁷ P° 4-3 (14) 3-3 4-4 5-4 a ⁵ F-z ⁵ D° 4-3 (15)	3359.496	0.86 4.53 0.91 4.59 0.95 4.53 0.91 4.53 0.95 4.59 0.99 4.63 0.95 4.53 0.99 4.63	5-4 a ⁵ F-y ³ F° 4-3 (25) 3-2 4-4 3-3 3-4 2-3
3859.913 3886.284 3899.709 3906.482 3824.444 3856.373 3878.575 3895.658 3922.914 3930.299 3927.922	B 300R B 40R B 30R B 8 B 50r B 100r B 25r B 25R B 25R B 30R	0.00 3.20 0.05 3.23 0.09 3.25 0.11 3.27 0.00 3.23 0.05 3.25 0.09 3.27 0.11 3.28 0.05 3.20 0.09 3.23	4-4 a ⁵ D-z ⁵ D° 3-3 (4) 3-2 1-1 4-3 3-2 3-1 1-0 3-4 2-3	5371.493 B 55 5405.778 B 4 5434.527 B 3 5397.131 B 4 5429.699 B 4 5446.920 B 4 5556.613 B 4 5501.469 B 1 5506.782 B 1 5497.519 B 1	0 0.95 3.25 0 1.91 3.28 0 0.91 3.20 0 0.95 3.23 0 0.99 3.25 0 1.01 3.27 2 0.95 3.20 8 0.99 3.23	3-2 2-1 1-0 4-4 3-3 2-3 2-1 1-1 3-4 1-2	3401.521 A 6 3396.978 A 4 3397.642 V 2 3442.672 J 3 3427.002 J 2 3417.373 J (1gn) 3473.497 V 1 3446.947 U 1	0.91 4.54 0.95 4.59 0.99 4.62 0.95 4.54 0.99 4.59 1.01 4.62 0.99 4.54 1.01 4.59	1-2 4-3 a ⁵ F-y ⁵ P° 3-2 (26) 2-1 3-3 2-2 1-1 2-3 1-2
3920.260 3719.935 3737.133 3745.561 3748.264 3745.901 3679.915 3705.567	B 30R B 20r B 250R B 150R J 100R B 60R J 40r B 40r B 100r	0.11 3.25 0.12 3.27 0.00 3.32 0.05 3.35 0.11 3.40 0.12 3.42 0.00 3.35 0.05 3.38	1-2 O-1 4-5 a ⁵ D-z ⁵ F° 3-4 (5) 2-3 (5) 0-1 4-4 3-3	5107.452 J (5123.723 B (4939.690 B 4994.133 B (5-5 a ⁵ F-z ⁵ F° 4-4 (16) 3-3 a-2 1-1 5-4 4-3 3-a 3-1	3245.984 V (2) 3230.09 P (2) 3223.853 V (1) 3283.430 V (1) *3287.244 V 2 3241.50 P (1) 3311.451 V (1) 3275.24 P	0.91 4.71 0.95 4.77 0.99 4.81 0.95 4.71 0.99 4.77 1.01 4.81 0.99 4.71 1.01 4.77	4-3 a ⁵ F-y ³ D° 3-2 (27) 3-1 3-3 2-2 1-1 2-3 1-3
3722.564 3733.319 3649.304 3683.054 3707.828 3440.610 3440.989 3443.878 3490.575 3475.450	B 50r B 40r J 5 G 10 V 30 J 150R J 75R A 50r A 100r G 70r	0.09 3.40 0.11 3.43 0.00 3.38 0.05 3.40 0.09 3.42 0.00 3.59 0.05 3.64 0.09 3.67 0.05 3.59	2-2 1-1 4-3 3-2 2-1 4-3 a ⁵ D-z ⁵ P° 3-2 (6) 2-1 3-3	5147.363 B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 0.91 3.32 0.95 3.35 8 0.99 3.38 4 1.01 3.40 e 0.91 3.59 0.95 3.64 0.99 3.67 0.95 3.59 0.99 3.64	4-5 3-4 2-3 1-2 4-3 a ⁵ F-z ⁵ P° 3-3 (17) 3-1 3-3 2-3	3057.446 A 40R 3067.244 A 30r 3075.721 A 25r 3083.742 A 20 3091.578 A 20 3099.968 V 15 3100.666 G 20 3100.304 G 20 3099.898 V 20 3134.111 A 10 *3125.653 C 15	0.86 4.89 0.91 4.93 0.95 4.97 0.99 4.99 1.01 5.00 0.91 4.89 0.95 4.93 0.99 4.97 1.01 4.99 0.95 4.89	5-4 a ⁵ F-x ⁵ D° 4-3 (28) 3-2 (28) 3-1 (1-0) 4-4 (3-3) 3-2 (1-1) 3-4 (2-3)
3465.863 3526.039 3497.843 3476.704 3193.214 3184.896 3180.756 3143.242 3151.867 3236.223	V 10 A 70 A 40 A 40 V 10 A 7 G 5 V 2 V (1) A 8	0.09 3.64 0.11 3.67 0.09 3.59 0.11 3.64 0.12 3.67 0.00 3.86 0.05 3.93 0.09 3.97 0.00 3.93 0.05 3.93 0.05 3.93	2-2 1-1 2-3 1-2 0-1 4-4 4-5 3-3 2-2 4-3 3-3 3-3 3-3	4690.38 P 4100.745 J 34092.512 V (14096.21 P 4177.597 J 4139.933 J 24239.847 J 2	1) 0.91 3.93 0 0.95 3.97 4 0.91 3.86 1 0.95 3.93 3 0.99 3.97 3 0.95 3.86	1-1 3-3 1-2 5-4 a ⁵ F-z ³ F° 4-3 (18) 4-4 3-3 2-3 3-4	*3116.633\$ A 12 *3984.785\$ V 10 3045.077 G 5 3092.785 V 2 3025.283 V 3 3078.014 G 4 3117.63 W 1 3057.80 P 0 3102.64 P 0 3102.64 P Fe	1.01 4.97 0.86 4.99 0.91 4.96 0.95 4.94 0.91 4.99 0.95 4.96 0.99 4.99 0.99 4.96 1.01 4.94	1-8 5-4 a ⁵ F-y ⁷ P° 4-3 3-3 4-4 3-3 3-4 2-3 1-2
3214.396 3191.659 3197.00 3200.790 3234.614 3226.727 3219.77 3265.046 3246.005 3229.123	G 8 7 (2) Y 2 2 F Fe G 8 8 G 4	0.09 3.93 0.00 3.87 0.05 3.91 0.09 3.94 0.05 3.87 0.11 3.94 0.09 3.87 0.11 3.91 0.11 3.94	4-3 a ⁵ D-z ³ D° 3-2 (8) 3-3 (8) 1-1 2-3 1-2 0-1	4197-10 P 6 4169.09 P 6 4174.917 J 5 4172.749 J 4 4173.926 J 2 4237.085 M (2 4218.12 P 4203.570 V (1 4283.87 P 6 4248.40 P 6	1.01 3.97 0.91 3.87 1.01 3.91 1.01 3.94 1.01 3.94 1.01 3.94 1.01 3.94	2-3 1-3 4-3 a ⁵ F-z ³ D ⁶ 3-3 (19) 2-1 3-3 3-3 2-2 1-1 2-3 1-2	3999.512 A 30R 3009.570 C 35r 3018.983 G 15r 3036.462 G 15 3031.638 G 15 3969.474 G 10 3987.392 A 10 3003.031 C 10 3016.186 G 12 3040.428 C 15 3041.745 V 15	0.86 4.97 0.91 5.01 0.95 5.04 0.99 5.06 1.01 5.08 0.86 5.01 0.91 5.06 0.99 5.08 0.91 4.97 0.95 5.01	5-5 a ⁵ F-x ⁵ F° 4-4 (30) 3-3 3-2 1-1 5-4 4-3 3-2 4-5 4-5
3020.643 3021.074 3020.495 3017.628 2983.574 2994.427 3000.950	V 200R G 150R V 100R G 15r G 125R G 100R* G 100R	0.00 4.09 0.05 4.14 0.09 4.17 0.11 4.30 0.00 4.14 0.05 4.17 0.09 4.30	4-4 a ⁵ D-y ⁵ D° 3-3 (9) 2-2 1-1 4-3 3-1	3820.428 I 250 3835.884 B 200 3834.225 B 100 3840.439 B 80 3849.969 B 40 3887.051 B 15 3878.021 B 60	R 0.91 4.14 r 0.95 4.17 r 0.99 4.20 1.01 4.31 0.91 4.09 0.95 4.14	5-4 a ⁵ F-y ⁵ D° 4-3 (20) 3-2 2-1 1-0 4-4 3-3	3041.745 V 15 3042.686 Q 15 3042.020 G 15 3014.176 V 3 3037.782 V 2 *3053.443 U (2)	0.99 5.04 1.01 5.06 0.95 5.05 0.99 5.05	3-4 2-3 1-2 3-2 a ⁵ F-z ⁵ 8* 2-2 (31)
3008.139 3059.086 3047.605 3037.388 3025.843	G 60R A 100R A 100R A 80R K 50R	0.11 4.21 0.05 4.09 0.09 4.14 0.11 4.17 0.13 4.20	1-0 3-4 2-3 1-3 0-1	3872.504 B 60 3865.526 B 30 3940.882 B 5 3917.185 B 8 3898.012 K 10 3734.867 B 300	1.01 4.20 0.95 4.09 0.99 4.14 1.01 4.17	3-3 1-1 3-4 2-3 1-3	8916.26 F 1 7180.020 V 1 7494.73 P 0		3-3 a ³ F-z ⁷ Pe (32) 4-4 a ³ F-z ⁵ De 3-4 (33)
2966.901 2973.236 2973.137 2970.106 2965.255 2953.940 2957.365 2981.446 2970.106 2969.364	V 60R V 60R G 40R A 20 A 50R A 30R A 20r G 40R	0.12 4.28 0.09 4.26 0.11 4.38 0.05 4.19 0.09 4.24	4-5 a ⁵ D-y ⁵ Fo † 3-4 (10) 3-3 1-2 0-1 2-2 1-1 3-2 a ⁵ D-z ³ Po 3-1 (11)	3749.487 B 2001 3758.235 B 1501 3763.790 B 1001 3767.194 B 801 3687.458 B 401 3709.246 G 751 3727.621 B 501 3743.364 G 201 3798.513 B 401 3799.549 B 50	R 0.91 4.30 R 0.95 4.34 r 0.99 4.36 r 1.01 4.38 r 0.86 4.30 r 0.91 4.34 r 0.95 4.36 0.99 4.38 0.91 4.16 0.95 4.30	5-5 a5F-y5F° 4-4 (31) 3-3 3-3 3-3 1-1 5-4 4-3 3-2 3-1 4-5 3-4	6710.31 V 2 6844.67 P 1 6929.96 P 5581.22 V 2 6739.54 V 1 6851.64 P 1 6483.95 P © 6865.43 P © 6801.87 P ©	1.55 3.35 1.60 3.38 1.48 3.35 1.55 3.38 1.60 3.40 1.48 3.38 1.55 3.40 1.60 3.42	4-5 a3r-z5p° 3-4 (34) 2-3 4-4 3-3 3-2 3-2 4-3 3-2 4-3 4-3 4-3 4-3 4-3
3007.284 2926.456 3024.033 2994.50	V 12r G 3 C 15r	0.09 4.19 0.11 4.24 0.11 4.19	1-0 3-3 1-1 1-3 0-1	3795.004 B 60 3787.883 B 50 3812.964 G 40 3790.095 B 12 3786.678 J 8	0.99 4.24 1.01 4.26 0.95 4.19 0.99 4.24	2-3 1-2 3-2 a ⁵ F-z ³ P° 3-1 (22) 1-0	5171.599 B 20 5194.943 I 10 5216.278 B 10 5041.759 B 10 5107.645 J 8 5332.903 T	1.48 3.86 1.55 3.93 1.60 3.97 1.48 3.93	4-3 (35) 4-4 (35) 3-3 (36) 3-2 (36)

Labor I A	atory Ref		E P Low High	J	Multiplet (No)	Laborat I A Re			E P Low H	ligh	J	Multiplet (No)	I.Abor			E P Low H	lgh	J	Multiplet (No)
<u>I</u> cont	inued				3_ 7	Fe I contin			4 40 -	: 60	4.7	a ³ F-x ³ D°	Fe I cont 4282.406	inued B	13	2.17 5	.05	3-2	a ⁵ P-z ⁵ S°
67.491 327.192 370.360 328.534	В В В	40 40 30 15	1.48 3.87 1.55 3.91 1.60 3.94 1.55 3.87	2-1 3-3	a ³ F-z ³ D° (37)	3068.175 3060.984	V C G G V	8 12 8 4 3	1.48 5 1.55 5 1.60 5 1.55 5 1.60 5	.59 .62 .58	4-3 3-2 2-1 3-3 2-2	(55)	4315.087 4352.737 4001.666	B B	10 9 5	2.19 5 2.21 5 2.17 5	.05 .05 .25	2-2 1-2 3-3	(71) a ⁵ p-x ⁵ p°
341.026 146.87 733.596 772.817 798.736 343.20	B P B B V P	20 Fe 4 3 (1) ©	1.60 3.91 1.60 3.87 1.48 4.09 1.55 4.14 1.60 4.17 1.48 4.14	2-2 4-3	a ³ F-y ⁵ D° (38)	3000.452 3041.639 3067.123 2988.468 3029.237	G V V G	8 10 8 2 3	1.48 5 1.55 5 1.60 5 1.48 5 1.55 5	5.59 5.61 5.62 5.61 5.63	4-5 3-4 2-3 4-4 3-3	a ³ F_y ³ G° (56)	3977.743 3974.766 3949.954 3943.339 4030.194 4009.714	I V I J V I	12 (1) 10 2 (3) 10	2.19 5	.29 .32 .29 .32 .25	2-2 1-1 3-2 2-1 2-3 1-2	(72)
68.38 67.53 602.944 854.501 880.297	P P B J	9 5 (2)	1.55 4.09 1.60 4.14 1.48 4.16 1.55 4.20 1.60 4.24	3-4 2-3 4-5 3-4 2-3	a ³ F-y ⁵ F° (39)	2962.11 3004.62	P W W	(1) (2) (1) (2n)	1.48 5 1.55 5 1.60 5	5.64 5.66	4-3 4-5 3-4 2-3?	a ³ F-x ⁵ G° (57)	3852.574 3816.340 3807.534 *3790.756 3778.697	I J G J	6 4 7 1 (1)	2.21 5 2.17 5 2.19 5	.42 .45 .42 .45	2-3 1-2 3-3 2-2	a ⁵ P-w ⁵ D° (73)
531.153 592.655 532.915 472.52 547.022	B B J P J	28 5 20 (28)	1.48 4.30 1.55 4.34 1.60 4.36 1.48 4.34 1.55 4.36 1.60 4.38	4-4 3-3 2-2 4-3 3-2 3-1		11882.80 11884.12 11638.25	D D D D	8 7 3 7	3.17 3 3.19 3 2.31 3 3.17 3 3.19 3	3.23 3.25 3.23	3-4 2-3 1-2 3-3 2-3	a ⁵ P-z ⁵ D° (58)	3774.823 3753.610 3746.486 3768.030 3776.454	G G G G	5 8 1 3	2.21 5 2.17 5 2.19 5 2.21 5	.45 .48 .49		a5p_w5F°
802.005 674.65 672.83 765.485	J P V	© © (1)	1.55 4.19 1.60 4.24 1.60 4.19	3-2 2-1 2-2	a ³ F-z ³ P° (40)	11689.98 11374.02 11422.30 11593.55	D D D	8 3 6 5	2.21 3 2.17 3 2.19 3 2.21 3	3.27 3.25 3.27 3.28		a ⁵ P_z ⁵ F°	3781.188 3792.834 3756.069 3764.21 3779.486 3739.317] V J P J V	(1) 1 0 2	2.19 5 2.21 5 2.17 5 2.19 5 2.21 5 2.17 5	.47 .45 .47	2-3 1-2 3-3 2-2 1-1 3-2	(74)
383.547 404.752 415.125 294.128 337.049 367.906	B B B B B	45r 30 20 15 10	1.48 4.29 1.55 4.35 1.60 4.40 1.48 4.35 1.55 4.40 1.60 4.43 1.48 4.40	4-5 3-4 2-3 4-4 3-3 2-2 4-3	(41)	10340.77 10379.01 10155.18 10167.4 10265.23	FFPPFPP	8 4 0 0 1 0	2.17 2.19 2.21 2.17 2.19 2.21 2.17	3.38 3.40 3.38 3.40 3.42	3-4 3-3 1-3 3-3 3-2 1-1 3-3	(59)	3751.09 *3721.278 m3726.89 3739.120 *3702.500	P V P J J	© 3 Fe 1	2.19 5 2.17 5 2.19 5 2.21 5 2.17 5	.48 .50 .51	2-1 3-4 2-3 1-2 3-3	a ⁵ P-v ⁵ D° (75)
229.760 291.466 271.764 307.906	J I B	(1) 4 35 35	1.55 4.43 1.48 4.37 1.55 4.42	3-2	a ³ F-z ³ G° (42)	10058.28 8688.633 8514.075	P	500 150 300	3.19 3.17 3.19 3.31	3.42 3.59 3.64	3-3 3-3 3-3 1-1	a ⁵ p_z ⁵ p° (60)	3711.30 3725.65 3687.100 3698.03	P P J P	а ©	2.17 5 2.19 5	5.53 5.51 5.53	2-2 1-1 3-2 2-1	F. F
325.765 202.031 250.790 147.673	B B B	35 30 25 10	1.60 4.45 1.48 4.43 1.55 4.45 1.48 4.45	4-4 3-3 4-3	3- 3-0	8387.781 8327.063 8824.227	E	1300 1300 350 600	2.17	3.64 3.67 3.59	3-3. 3-1 3-3 1-3		3707.918 3732.399 3760.534 *3612.940	G B G	8 10 6			2-2 1-2	a ⁵ P-x ³ D°
045.815 063.597 071.740 969.261 005.246 143.871	B H H B B	60r 45 40 30 25 30	1.48 4.53 1.55 4.59 1.60 4.63 1.48 4.59 1.55 4.63 1.55 4.53	4-4 3-3 3-2 4-3 3-2 3-4	a ³ F-y ³ F° (43)	7101.28 7037.04 6430.851	P P P	© © ©1 300	3.17 2.19 2.31 3.17	3.93 3.97 4.09	2-3 1-2	a ⁵ P _{-z} ³ F° (61) a ⁵ P _{-y} ⁵ D° (62)	3628.094 3618.96 3604.96 3592.881 *3636.186	V P D U V	(1)	2.19 5 2.21 5 2.17 5 2.19 5 2.19 5	5.59 5.62 5.59	2-2 1-1 3-2 2-1 2-3	(77)
133.060 032.636 064.46 090.34 130.035 132.94 200.78	B W P U P	25 (2) (0) (1) Fe	1.60 4.59 1.48 4.54 1.55 4.59 1.60 4.63 1.55 4.54 1.60 4.59 1.60 4.54	2-3 4-3 3-2 3-1 3-3 2-2 2-3	a ³ F-y ⁵ pe (44)	6297.800 6265.140 6219.290 6213.438 6151.624 6136.999	B B I L J J	10 5 6 6 5 (2) 23	3.19 3.21 2.17 3.19 2.21 2.17 2.19 3.21	4.17 4.14 4.17 4.20 4.17 4.30	2-3 1-2 3-3 2-2 1-1 3-2 2-1 1-0		3654.66 3497.110 3497.15 3509.870 3475.651 3485.342 3518.86	J A ₩	(1) 10 (1) (1) 6 7 (2)	2.17 5 2.19 5 2.21 5 2.17 5 2.19 5 2.19 5	5.70 5.72 5.73 5.72 5.73	3-3 2-2 1-1 3-2 2-1 2-3 1-2	a ⁵ p-w ⁵ pe (78)
815.842 827.825 841.051 902.948 888.517 966.066	B B B B	100r 75r 80r 20 20	1.48 4.71 1.55 4.77 1.60 4.81 1.55 4.71 1.60 4.77 1.60 4.71	4-3 3-2 3-1 3-3 2-2 2-3		*6021.82 6015.25 5958.34 5943.58	V W P P P		2.17 2.19 2.21 2.17 2.19 2.21	4.24 4.26 4.24 4.26	1-2 3-3 2-2 1-1	a ⁵ P-y ⁵ F° (63)	3521.833 3462.353 3486.556	J U	2 (1)	2.19 2.21	5.75 5.75	2-1 1-1	a ⁵ P-z ³ S° (79)
615.66 647.427 666.944 571.228 612.940 643.82 693.78	WJUVJPP	(1) 3 (1) 2 1 (1) ©	1.48 4.89 1.55 4.93 1.60 4.97 1.48 4.93 1.55 4.97 1.60 4.99 1.55 4.89	4-4 3-3 2-8 4-3 3-2 3-1 3-4 2-3	a ³ F-x ⁵ D° (46)	5881.76 5892.80 6097.08 6009.45 m6012.21 6163.560 6082.718	P P P P V V I	© N1 (1) (1) (2)	3.17 3.19 2.31 2.19 3.21	4.26 4.28 4.19 4.24 4.27 4.19 4.24 4.19	3-2 3-1 3-2 3-1 1-0 3-3 1-1 1-3	a ⁵ P-z ³ P° (64)	3487.121 3445.151 3451.915 3424.284 3428.192 3417.842 3407.53 3394.583	A G G G G G G G	20 20 10 10 8 12 ©	2.21 5 2.17 5 2.19 5 2.21 5 2.17	5.77 5.79 5.79 5.79 5.79 5.82 5.79 5.82	2-3 1-2 3-3 2-2 1-1 3-2 2-1	a ⁵ P- ¹ ⁵ D ^c (81) E
5702.500 514.48 5541.22 636.50 588.23	J P P P	1 0 0 0	1.60 4.93 1.48 4.99 1.48 4.96 1.55 4.94 1.55 4.99 1.60 4.96	4-4 4-3 3-2 3-4 2-3	(47)	m5224.30 5143.73 5102.24	P P P	T1 ©	2.17 2.19	4.53 4.59 4.63		a ⁵ P-y ³ F° (65) a ⁵ P-y ⁵ P°	*3426.383 3426.637 3477.850 3447.278 3450.328 3471.27	7 1 1	5d (2) 8 10 5	2.19 S		3-2 2-1 1-0 2-2 1-1 1-2	a ⁵ P-y ³ P° (82)
534.914 5493.29 534.914 564.11 564.3305 5513.065	P U W U W V U	© (1) (1) (1) (1) (2) (1) (2) (1)	1.60 4.96 1.48 4.97 1.48 5.01 1.55 5.06 1.48 5.04 1.55 5.06		a ³ F-x ⁵ F° (48)	5145.105 5131.475 5098.703 5079.226 5250.650 5198.714	T J J B B	(-) (2) 8 6 6 4	2.19 2.31 2.17 2.19 2.19 2.21	4.59 4.62 4.59 4.63 4.54 4.59	2-3 1-1 3-2 2-1 2-3 1-3	(66)	3407.461 3404.357 3415.530 3383.981 3392.304 3372.070	A & & & & & & & & & & & & & & & & & & &	20d 6 4 8 8 3	2.19 2.21 2.17	5.79 5.81 5.83 5.81 5.83	3-4 2-3 1-2 3-3 2-2 3-2	a ⁵ P-x ³ F° (83)
549.868 5271.693 5299.511 5335.513 5231.599	J V V V	(2) (1) (1)	1.60 5.08 1.48 5.35 1.55 5.39 1.55 5.25 1.48 5.30	2-1 4-3 3-2 3-3 4-5	a ³ F-y ⁵ G°	4745.129 4731.77 4700.42 *4889.009	PJUPPUU	(1) (1) (1) (1)	2.19 2.31 3.17 2.19 2.19	4.71 4.77 4.81 4.77 4.81 4.71 4.71	3-3 2-2 1-1 3-2 2-1 2-3 1-2	(67)	3382.403 3392.652 3399.336 3406.803 3379.017	G A J	3 15 15 6 6	2.17 2.17 2.19 2.21 2.17	5.80 5.82 5.84 5.82	3-4 3-3 2-2 1-1 3-2	a ⁵ P-z ³ H° (84) a ⁵ P-w ³ D° (85)
281.83 313.723 3223.273	P V V P	(1) (1)	1.55 5.31 1.60 5.33 1.48 5.31 1.55 5.32	3-4 2-3 4-5 3-4	a ³ F-z ⁵ H°		B B J B	18 13 6 10	2.19 2.21	4.89 4.93 4.97 4.93	3-4 2-3 1-2 3-3		*3383.692 3413.135 3422.656 3327.961	G A G	5 15 7 (1)		5.80 5.82	2-1 2-3 1-2 3-4	a ⁵ P- w⁵G°
3272.60 3293.146 3171.353 3187.68	V V P	(1) 5	1.60 5.35 1.48 5.37 1.55 5.42	2-3 4-4 3-3	a ³ F-w ⁵ D°	4442.343 4447.722 4407.714 4408.419	B J B	13 9 5 6	2.19 2.21 2.17 2.19	4.97 4.99 4.97 4.99 5.00	2-3 1-1 3-3 2-1 1-0		3346.942 3366.870 3389.748	V V V	1 5 2	2.17 2.19 2.21	5.85 5.85	3-2 2-2 1-2	(86) a ⁵ P-1° (87)
8202.66 8129.334 8161.370 8179.479	. U	© 5 4 (1)	1.60 5.45 1.48 5.42 1.55 5.45 1.60 5.48	2-2 4-3 3-2 2-1		4430.618 4371.00 4447.134 4518.58	B P J P	(3) M n ©	2.17 2.19 2.21	4.99 4.96 4.94	3-4 2-3 1-2	a ⁵ P-y ⁷ P° (69)	3343.243 3351.529 3374.221	v v	(1) 2 (1)	2.17 2.19 2.21			a ⁵ P-z ¹ G ^e (88) a ⁵ P-y ³ S ^e (89)
3068.927 3138.40 3081.83 3125.03 3154.11	5 P P P	(-) 0 0 0 0	1.48 5.50 1.55 5.48 1.48 5.48 1.55 5.50 1.60 5.51	4-3 3-4 4-4 3-3 2-2	(53)	4412.43 4478.040 4442.835 4338.260	PUJ	(2) (1)	2.19 2.17 2.17	4.96 4.94 4.94 5.01	3-3 2-2 3-2 3-4	_a 5 _{P-x} 5 _F e	3286.755 3284.588	A A	20 5		5.95	3-3 2-2	a ⁵ P-v ⁵ P° (91)
3128.901	U	1	1.55 5.49	3-2	a ³ F-y ⁵ S° (54)	4324.961 4329.54 4292.13	V P V P P	(1) © © (1) Fe ©	2.19 2.21 2.17	5.04 5.06 5.04 5.06 5.08 5.08	2-3 1-2 3-3 2-3 1-1 3-2 3-1	(70)	3292.590 3265.616 3271.002 3305.971 3306.356	G A C C	8 15 15 20 20	2.17 2.19 2.19	5.96 5.95 5.96 5.92 5.95	1-1 3-2 2-1 2-3 1-2	

50								REV	ΙS	ED M	ULT	IPLI	T	TABLE							
I	Labo A		ry Int	Low	P High	J	Rultiplet (No)	Labo I A	rato Ref	ry Int	Low	P High	J	Multiplet (No)	I A	rato: Ref	ry Int	Low	P High	J	Multiplet (No)
	<u>I</u> con			0.45	F 00		a ⁵ p_v ⁵ re	Fe I cor			0.05	E 77		-3n -5an	Fe I cor						a ³ P_v ³ F°
3288	0.722 3.972 3.133	V V A	(2) 2 6	2.17 2.19 2.21	5.94	3-4 3-3 1-2	(90)	4037 . 725 4225 . 79	Y P	(1) ©	3.41	5.33 5.33	2-3 1-2	(118)	3030.61 2976.126	P	⊙ 5	2.27	6.42	2-3 2-3	(145) a3P_u3p° †
3276	9.964 3.477	V V	(1) 4 3	2.17 2.19	5.96	3-3 2-2		4007.233	V	(1gn)	2.27	5.35	2-3	a ³ P_z ⁵ H° (119) a ³ P_w ⁵ D°	3053.065 3078.436	G.	5 3	2.41 2.47	6.46 6.48	1-3	(146)
3257	3.026 7.594 4.522	A V	8 5	2.21 2.17 2.19	5.96	1-1 3-2 3-1		3913.635 4058.766 4101.684	J V	3 (1)	3.27 3.41 3.47	5.45 5.48	2-3 1-2 0-1	(130)	3033.104 3063.939	v v	(1) (2)	2.41 2.41	6.48 6.44	1-1	a ³ P_t ³ D° †
3251	1.236	G-	8	2.19	5.98	2-3	a ⁵ p_w ³ Ge _(93)	3874.053 *4021.622 3840.20	V V P	(1) (1) (1) (0)	2.27 2.41 2.27	5.45 5.48 5.48	2-2 1-1 2-1		2996.386 2960.303	G V	5	3.41 2.47	6.53 6.64	1-2 0-1	(147) a3p_w3pe + (148)
3246	0.634 3.973	A A	4 6	2.17 2.19	5.99	3-3 3-1	а ⁵ р-х ³ р• (95)	4013.89	P		2.41	5.49	1-0	7 5						-	
3274 3269 3268		P P G	⊙ ⊙ 5	2.21 2.19 2.21	5.98 5.96 5.99	1-0 2-2 1-1		3876.671 3819.62	U P	(1)	2.27 2.27	5.45 5.50	2-3 2-3	a ^{3p} _w ⁵ F° (121) a ³ P_w ⁵ D°	10191.51 5871.04	P V	©7 (1)	2.41 2.46	3.63 4.56	43 2-2	z ⁷ D°-b ³ D (149) z ⁷ D°-d ³ F
3290	.988	G-	5	2.31	5. 96	1-3	5- 1	3981.106 4043.69	V P	(1) ©	2.41 2.47	5.51 5.53	1-3 0-1	(123)	5908.24	V	(1) (2)	2.47	4.56	1-2	(150)
	0.115 1.872	V	(1) 4	2.17 2.21	6.01	3-4 1-3	a ⁵ P-y ¹ G° (97) a ⁵ P-2°	3803.24 3965.83	P	0	3.27 3.41	5.51 5.53	2-2 1-1		4260.479 4235.942 4222.219	H I J	35 25 12	2.39 2.41 2.44	5.29 5.33 5.36	5-5 4-4 3-3	z ⁷ D°-e ⁷ D (152)
3167 *3172		P V	⊙ 2	2.17 2.19		3-4	45P_w3Fe	3825.404 4005.38	J P	(1gn) ©	3.27 3.41	5.49 5.49	3-3 1-3	a ³ P_y ⁵ S° (123)	4210.358 4198.310	j	15 20	2.47 2.39	5.40 5.33	1-1 5-4	
*3153	3.064	S	(-)	2.19	6.10	2-3 2-2	(99)	3724.380 3885.512	B	8 5	3.27 3.41	5.58 5.59	2-3 1-2	a ³ P-x ³ D° (124)	4187.802 4187.044 4191.436	J J J	20 20 15	3.41 3.44 3.46	5.36 5.39 5.40	4-3 3-2 3-1	
3165 m3172 3186	3.11	P P	© Fe	2.17 2.19 2.21		3-3 2-2 1-1	a ⁵ P_v ³ D° (100)	3918.319 3715.911 3845.170	J G K	3 4 (5)	2.47 2.27 2.41	5.62 5.59 5.62	0-1 3-3 1-1		4299.242 4271.159 4250.125	I J J	18 20 25	2.41 2.44 2.46	5.29 5.33	4-5 3-4	
3154 3166	1.41 3.59	P P	(1) ©	2.17 2.19	6.08 6.09	3-2 2-1		3678 .9 8	W	(5) (1)	2.27	5.62	2-1		4233.608	I	18	2.47	5.36 5.39	2-3 1-2	
*3192	3.970 3.417	Ŭ	(1)	2.19 2.21	6.07 6.08	2–3 1–2		3677.477 3630.67	V P	(2) ⊚†	2.27	5.62 5.67	2-3 2-3	a ³ P-y ³ G• (135) a ³ P-x ⁵ G•	3947.393 3920.645 3908.68	V U P	(1) (1) ©	2.39 2.41 2.44	5.52 5.56 5.60	5-4 4-3 3-2	z ⁷ D°-e ⁵ D (153)
	.663	V	(3r)	2.19		2-3	a ⁵ p_3° (101)	3601.42	P	•	2.27	5.70	2-3	(126) a3p_w5po	3905.66 3908.90	P P	•	3.46 3.47	5.62 5.63	3-2 3-1 1-0	
3063 3093 3121		S P W	(1) (1)	2.17 2.19 2.21	6.20 6.18 6.17	3-2 2-1 1 - 0	a ⁵ P _{-w} ³ P° (103)	3735.71 *3790.756 m3578.67	P J P	o 1 Cr	2.41 3.47 3.27	5.73 5.73 5.72	1-3 0-1 3-3	(127)	3980.65 3950.78 m3932.59	₩ P P	(1) © Fe	3.41 3.44 3.46	5.58 5.56 5.60	4-4 3-3 3-3	
3079		P	0	2.19	6.30	2-2	a ⁵ P-x ¹ G°	3722.24 3566.31	P	0	3.41 3.27	5.73 5.73	1-1 3-1		3922.08 4011.71	₽ ₩	(1) (1)	2.47 2.44	5.62 5.52	1-1 3-4	
2981	.852	G-	(-) 6	2.17 2.17		3-4 3-4	(103) a ⁵ P ₋ t ⁵ D ^o †	3542.243 3696.03	W W	(1)	2.27 2.41	5.75 5.75	2-1 1-1	a ³ P-z ³ S° (128)	3975.21 3949.23	₩ P	(1) ©	2.46 2.47	5.56 5.60	2-3 1-2	
2972 2966	3.277 3.26	Ū.	(2)	2.19 2.21	6.34 6.37	2-3 1-2	(104)	3763.57	P	⊙	2.47	5.75	0-1	a ³ P-u ⁵ D°	3615.01 3594.10	P P	00	2.39 2.41	5.80 5.85	5-5 4-4	z ⁷ D°-e ⁵ F (154)
3004	. 48	P	•	2.31	6.32	1-3	a ⁵ P-v ³ F°† (105)	3524.236 3657.143 *3683.616	V V	1 (1)	3.27 3.41 2.47	5.77 5.79 5.82	2-3 1-2 0-1	(130)	3570.60 3554.65 3544.88	P P P	000	2.44 2.46 2.47	5.90 5.93 5.95	3-3 2-2 1-1	
9362 10081	370 .40	E P	4.	2.27 3.41	3.59 3.64	2-3 1-2	a ³ P-z ⁵ P° (106)	3506.498 3618.91 3471.350	G P U	6 © 6	2.27 2.41 2.27	5.79 5.82 5.82	3-3 1-1 3-1		3225.789 3196.930	À A	25 20	2.39 2.41	6.21 6.28	5-6 4-5	z ⁷ D°-e ⁷ F (155)
10311 9013	.88	P F	o 1	2.47 2.27	3.67 3.64	0-1 2-2	(20-)	3619.66	P	0	2.41	5.82	1-0	3- 3	3180.223 *3200.475	Ğ A	20 15	2.44 2.46	6.32	3-4 2-3	(155)
	.624	P E	10	2.41 2.27	3.67 3.67	1-1 2-1		3526.465 3655.35 3504.866	J P V	4 0 3	3.27 3.41 3.27	5.77 5.79 5.79	2-3 1-1 2-1	a ³ P_y ³ P° (131)	3192.799 3175.447 3160.658	G A A	8 12 10	2.47 2.39 2.41	6.34 6.28 6.32	1-2 5-5 4-4	
m7445 m7945		P P	Fe Fe	2.27 2.41	3.93 3.97	2-3 1-2	a ³ p_z ³ F° (107)	3686.260 3678.863 3721.396	J J V	3	3.41 3.41	5.76 5.77	1-0 1-3		*3184.631 *3181.922	V U	3 (2)	2.44 2.46	6.31 6.34	3-3 2-2	
	.130	O E	4 8		3.87 3.91	3-3 1-3	a ³ p_z ³ p° (108)	3481.558	v	1 {1 1}	2.47	5.79 5.81	0-1 3-3	a ³ P-x ³ F°	3205.400 3139.661 3165.005	A U V	15 (1) 3	2.47 2.39 2.41	6.32 6.32 6.31	1-1 5-4 4-3	
8 4 01 7 512 8072	.12	P P	2 0 0	2.27	3.94 3.91 3.94	0-1 2-2 1-1		3616.326 m3490.74	U P	(1) Co	3.41 3.27	5.83 5.80	1-3 2-3	(132) a ³ P-w ³ D°	3166.24 3194.422	P V	© 3	2.44 2.46		3-2 2-1	
7373	.07	P	0	2.27	3.94	2-1	3- 5	3624.30 3670.810	¥	(1)	3.41 2.47	5.82 5.84	1-3 0-1	(133)	3222.069 3199.530	A G	20 15	2.39 2.41		5-5 4-4	z ⁷ D°-f ⁷ D (156)
6608 7016 7151	.075	V V V	20 1		4.14 4.17 4.30	2-3 1-2 0-1	a ³ P-y ⁵ D° (109)	*3476.336 3606.53 m3459.95	V P P	(2w) © Fe	2.27 3.41 2.27	5.82 5.84 5.84	3-3 1-1 3-1		*3214.044 3215.940 3221.936	V A V	20 12 2	2.44 2.46	6.28 6.30	3-3 2-2	,
6 4 81 6 9 11	.878 .52	I V	20 1	2.27 2.41	4.17 4.20	2-2 1-1		3442.364	v	5	2.27	5.85	3-2	a ³ P-1°	3178.015 3194.03	A P	10		6.30 6.27 6.28	1-1 5-4 4-3	
6392 6861	.93	V V	(1)	2.27 2.41	4.20 4.21	2-1 1-0		3587.424 3426.337	J U	2 (2)	2.41	5.85 5.87	1-3 2-1	(134) a ³ P-y ³ S°	3199.93 3210.830 3244.190	P G A	10 15	2.44 2.46 2.41	6.30	3-2 2-1 4-5	
6267 6667 6822	.17	P P P	©? 1		4.24	2-3	a ³ P-y ⁵ F° (110)	3569.99 3632.979	₩ J	(2) (1) 3	2.41		1-1 0-1	(135)	3219.581 3230.16	G P	12	2.44 2.46	6.27 6.28	3-4 2-3	
6421	. 355	В	200	2.27	4.28	0-1 2-2	a3p_z3po	3393.915	V	(1)	2.27	5.91	2-3	a ³ P-x ³ G° (136)	3227.067 3217.380	V A	3 10	2.47 2.39	6.30	1-2 5-4	z ⁷ D°-f ⁵ D
6750 6254 6663	. 262	I I B	100 6 80		4.24 4.24 4.27	1-1 2-1 1-0	(111)	m3378.73 3494.15 3538.55	P W W	Fe (1)	2.27 2.41 2.47	5.92 5.95 5.96	2-3 1-2 0-1	(136) a ³ p_v ⁵ pe (137)	3227.798 3230.963	G-	15 10	2.41 2.44	6.24 6.26	4-3 3-2	(157)
6945 6978	.208	Ĭ	150 100	2.41		1-3		3356.407 34 78.78 8	H V	(1)	2.27 2.41	5.95 5.96	2-2 1-1		3228.262 3228.900 3239.436	V G A	5 3 15	2.46 2.47 2.41	6.28 6.29 6.22	2-1 1-0 4-4	
5322 5563	. 69	V P	⊙ (3)		4.59 4.63	2-3 1-2	a ³ P-y ³ F° (113)	3342.225 3347.927	V A	5 6	2.27	5.96 5.96	2-1 2-2	a ³ P_v ⁵ F°	3248.206 3247.297 m3239.46	G V P	10 3	2.44 2.46	6.24	3-3 2-2	
5222 5436	. 4 0	P V	ĕ (2)	2.27	4.63	2-2	a ³ p_y ⁵ p°	3484.97	W	(1)	2.41	5.96	1-2	(138) a ³ P-x ³ P°	3259.991 3264.716	A G	Fe 6 (2)	2.44 2.46	6.28 6.22 6.24	1-1 3-4 2-3	
5678 5754	. 60 . 89	P P	00	2.41	4.54 4.59 4.62	2-3 1-2 0-1	(113)	3340.566 3451.628 3317.121	J G	6 2 3	2.27 2.41 2.27	5.96 5.99 5.99	2-2 1-1 2-1	(139)	3258.62 3211.989	P G	© 10	2.47 2.39	6.26	1-2 5-4	z ⁷ D°-e ⁷ P
5323 5598 5253	. 47	P P P	(1) ©	2.41	4.59	2-2 1-1 2-1		3458.304 3477.007	J V V	(1) (2)	2.41 2.41	5.98 5.96	1-0 1-2		3219.806 m3214.07	G P	10 Fe	2.41		4-3 3-2	(158)
5049	.825	В	15		4.63		a ³ P-y ³ D°	3510.443 3388.81	v P	(1)	2.47 2.41	5.99 6.06	0-1	a ³ P-2°	3233.967 3240.11 3230.210	G P V	12 © 6	2.44	6.23	3-3	
m5227 5273 4924	. 379	P J B	Fe 4 3	2.47		1-2 0-1	(114)	*3239.029	V	{1 {1}	2.27	6.08	2-3	(140) a ³ P-w ³ F°	3254.46 3256.52	P P	00	2.44	6.28 6.23 6.25	2-2 3-4 2-3	
5141 4848	. 750	V V	(3) (1)	2.41	4.77 4.81 4.81	2-2 1-1 2-1		3345.679 *3250.400	v		2.41	6.10	1-3	(141) a ³ p_v ³ D°	3241.43 3207.092	P V	2	2.47 2.39	6.28 6.24	1-2	z ⁷ D°-e ⁵ G
4630 4834	. 125	J V	(2) (1)		4.93 4.97	2-3 1-2	a ³ P-x ⁵ D° (115)	3367.161 3416.688	V V	{i} }i}	2.41 3.47	6.08 6.09	1-2 0-1	(142)	3210.230 3201.891	Ģ S	8 (-)	2.41 2.44	6.26 6.29	4-5 3-4	(159)
4908 4574	.61 .724	P J	(S) ©	2.47 2.27	4.99 4.97	0-1 2-2	(110)	*3239.029 3360.935 3233.304	A A A	(2) (1) (1) (1) (1) (1)	2.27 2.41 2.27	6.08 6.09 6.09	2-2 1-1 2-1?		3193.314 3188.819 3188.567	V G G	8 7 4	2.46 2.47	6.32 6.34 6.26	2-3 1-2 5-5	
4794 4538	. 764	P V	(1)	2.41 2.27	4.99 4.99	1-1 2-1		3214.624	V	(1)		6.11	2-2	a ³ P-z ¹ D°	*3182.076 m3177.52	V P	3 Fe+	2.41 2.44	6.29 6.32	4-4 3-3	
4439 4138		J U	(2)	2.27		2-2	a ³ P-z ⁵ g° (116) a ³ P-x ⁵ P°	3142.888 *3278.741	V V	5 4	2.27 2.41	6.20 6.18	2-2 1-1	(143) a ³ P-w ³ P° (144)	m3177.96 3160.77 3157.992	P P U	Fe (2)	2.39	6.34 6.29 6.32	2-2 5-4 4-3	
4289 4338	. 29 . 84	P P	(1) ©		5.25 5.29 5.32	2-3 1-2 0-1	a ³ P _{-X} ⁵ P° (117)	3157.15 3288.660 3263.378	V V	(3) (3) ©	3.27 3.41 2.41	6.18 6.17 6.20	2-1 1-0		*3162.335	ŭ	2n	2.44		3-2	
4083 4249 •4047	.32	V P V	(1) © (1)		5.29	3-2 1-1 2-1		3331.778	Ÿ	(ã)	3.47	6.18	1-2 0-1								

Labor I A	ator Ref		E P		J	Multiplet (No)	Labor I A	atory Ref		E I Low	P High	J	Multiplet (No)	Labor I A	atory Ref		E P Low High	J	Multiplet (No)
6 I cont 161.949 157.040 165.860 168.86 171.659 136.08 146.475	GA GB W V P U	8 8 4 2 2 0 (1) (1)	3.41 3.44 2.46 3.47 2.39 2.41	6.29 6.32 6.34 6.35 6.36 6.32	5-6 4-5 3-4 2-3 1-2 5-5 4-4 3-3	z ⁷ D°-e ⁷ G (160)	Fe I cont 3623.187 3650.280 3659.516 3619.76 3637.251 3653.763 3672.69	inued J G W V V V	8 5 8 (1) 1 1	3.43 2.44 2.39 3.43	5.80 5.82 5.80 5.82 5.80 5.82	5-5 4-4 6-5 5-4 5-6 4-5	a ³ H-z ³ H° (180)	Fe I cont 7069.54 6950.82 6860.29 6839.828 6783.71 6746.96 m6677.96 6672.88	PPVVPPP	1 1 4 3 © Fe	2.55 4.29 2.58 4.35 2.60 4.40 2.55 4.35 2.58 4.40 2.60 4.43 2.55 4.40 2.58 4.43	4-5 3-4 8-3 4-4 3-3 2-8 4-3 3-8	b ³ F-z ⁵ G• (205)
153.322 160.92 168.94 125.653 134.08 145.46 158.21	U P C P P	(1) © 15 Fe	2.46 2.47 2.39 2.41 2.44 2.46	6.35 6.36 6.37 6.34 6.35 6.36 6.37	2-3 1-1 5-4 4-3 3-3 3-1	7 . 5.	3573.842 3596.30 3595.87 3566.59 3574.37 3582.56 3603.572	W W P W U	3 {1 {1} {1} {1}	3.39 3.42 3.44 3.43	5.85 5.85 5.87 5.85 5.89 5.89	5-5 4-4 6-5 5-4 4-3 5-6	a ³ H-w ⁵ G° (181)	6783.27 6712.68 6646.98 6609.116 6575.022 6475.632	P P V I I	© (1) 30 30 12	2.55 4.37 2.58 4.42 3.60 4.45 3.55 4.42 3.58 4.45 3.55 4.45	4-5 3-4 2-3 4-4 3-3 4-3	b ³ F-z ³ G• (206)
148.46 133.96 139.10 144.488 150.20 113.31 120.03 129.18	P P P P P P P	© © 6n	3.41 3.44 3.46 3.47 3.39 3.41	6.31 6.35 6.37 6.38 6.39 6.35 6.37	5-5 4-4 3-3 2-2 1-1 5-4 4-3 3-2	z ⁷ D°-f ⁵ F (161)	3617.97 3543.09 3531.43 3528.24 3572.32 3552.42 3593.80	P W P U P	© (1) © (1) ©	3.44 3.39 3.43 3.44 3.44 3.44	5.85 5.88 5.92 5.94 5.88 5.92 5.88	4-5 6-5 5-4 4-3 5-5 4-4 4-5	a ³ H-v ⁵ F° (182)	6230.728 6137.696 6065.487 6051.00 •6005.53 6322.693 6200.323	B B P V I	25 18 15 © (1) 5	2.55 4.53 2.58 4.59 2.60 4.63 2.55 4.59 2.58 4.63 2.58 4.53 2.60 4.59	4-4 3-3 2-2 4-3 3-2 3-4 2-3	b ³ F-y ³ F• (207)
139.60 169.58 153.200 154.510 155.12	P G V P	5 2 (1) 3	2.46 3.41 3.44 3.46 3.47	6.39 6.31 6.35 6.37 6.38	3-1 4-5 3-4 2-3 1-3	z ⁷ p°-e ⁵ s	3514.62 3546.21 3564.56 3543.39 3567.36 3564.51	W U P W P	(1) (1) (1) (1) (1) (0)	3.39 3.43 3.44 3.43 3.44	5.91 5.90 5.91 5.91 5.90 5.91	6-5 5-4 4-3 5-5 4-4 4-5	a ³ H-x ³ G° (183)	6199.475 6139.65 6106.84 6290.55 6203.31 6356.293	U P P P U	(1) © © ©	2.55 4.54 2.58 4.59 2.60 4.62 2.58 4.54 2.60 4.59 2.60 4.54	4-3 3-2 3-1 3-3 2-2 3-3	b ³ F_y ⁵ p° (308)
200.475 211.494 164.308 123.353 142.445	V U V	15 4 (1) (1) 6	3.47 2.44 3.41 3.44		3-4 4-3 3-3 3-3	(162) z ⁷ D°-g ⁵ D (163) z ⁷ D°-e ⁷ S (164)	3466.279 3478.382 3484.84 3494.25 3448.19 *3475.867	V W P P	(1) (1gn) (1) (0)	2.39 2.42 2.44 2.42 2.39 2.42	5.95 5.97 5.98 5.95 5.97	6-5 5-4 4-3 5-5 6-5 5-5	a ³ H-w ³ G° (185)	5701.553 5615.308 5567.401 5778.47 5667.67 5833.93	J V V P P	(2) (2) (1) ©	3.55 4.71 3.58 4.77 2.60 4.81 3.58 4.71 3.60 4.77 3.60 4.71	4-3 3-2 3-1 3-3 2-2 3-3	p ₃ F-3 ₂ p _o
157.88 1097.49 1094.08 113.67 116.250 1109.05 1124.08	R P P U W	6 © © (1) (1) (1)	3.41 2.44 2.46 2.44 3.46	6.40 6.43 6.43 6.40 6.43 6.43	4-3 3-2 3-1 3-3? 3-3 1-1	z ⁷ p°-e ⁵ p (165)	3496.19 3437.631 3457.512 3390.25 3394.085	V V P V	(1) (1) (1) (1)	2.44 2.42 2.44	5.97 6.01 6.01 6.06 6.08	4-5 5-4 4-4 5-4 4-3	a ³ H-y ¹ G° (187) a ³ H-w ³ F° (188)	5265.94 *5235.392 5172.21 5164.70 m5162.38 5331.48 5280.91	P V P P P	(2) © Fe	2.55 4.89 2.58 4.93 2.55 4.93 2.58 4.97 2.60 4.99 2.58 4.89 2.60 4.93	4-4 3-3 4-3 3-2 2-1 3-4 2-3	b ³ F-x ⁵ D° (210)
8667.37 8988.530 8933.628 8875.45 7103.15	P I L V P	©7 5 6 1	2.42 3.44	3.87 4.16 4.20 4.24 4.16	4-3 6-5 5-4 4-3 5-5	a ³ H-z ³ D° (166) a ³ H-y ⁵ F° (167)	3395.90 3327.498 3334.223 *3339.202 3308.75 3320.650	Y V Y Y	©1 (2) (3) 2 0 (3)	2.44 2.39 2.42 2.44 2.39 2.43	6.08 6.10 6.13 6.14 6.13 6.14	4-3 6-6 5-5 4-4 6-5 5-4	a ³ H-3° (189) a ³ H-y ³ H° (190)	5069.60 5010.30 5006.72 5003.85 4566.68	P P P	0000	2.58 5.01 2.55 5.01 2.58 5.04 2.60 5.06 2.55 5.25	3-4 4-4 3-3 2-2 4-3	b ³ F-x ⁵ F° (211) b ³ F-x ⁵ P° (213) b ³ F-y ⁵ G°
7014.99 3469.12 3593.878 3462.731 3494.985 3393.605 3318.022	O PIIBBBB	(1) Fe 60 30 1000 400 10	3.44 2.39 2.42 2.44 2.39 2.42	4.30 4.39 4.35 4.39 4.35 4.40	4-4 6-6 5-5 4-4 6-5 5-4 4-3	a ³ F-z ⁵ G° (168)	3353.268 3352.929 3324.541 3331.616 3325.468 *3350.284	A A A A	(3) (1) (1) 4 3 4 (3)	2.42 2.44 3.39 3.42 3.44 (2.43 3.44	6.10 6.13 6.11 6.13 6.15 6.11 6.13	5-6 4-5 6-5 5-4 4-3 5-5 4-4	a ³ H-v ³ G° (191)	*4488.917 4513.72 4509.13 *4373.563 4337.52 4319.45 4294.04	JPP JPPP	(3) (3) (3)	2.55 5.30 2.58 5.31 2.60 5.33 2.55 5.37 2.58 5.42 2.60 5.45 2.55 5.42	4-5 3-4 2-3 4-4 3-3 2-2 4-3	b ³ F-w ⁵ D° (214)
3567.22 3667.42 3252.561 3191.562 3136.620 3344.154 3256.370	P P B B B I I	1 30 30 30 30 2	2.42 3.44 2.39 3.42 2.44 2.43 2.44	4.30 4.39 4.37 4.43 4.45 4.37 4.42	5-6 4-5 6-5 5-4 4-3 5-5 4-4	a ³ H-z ³ G° (169)	3369.14 *3235.607 3243.118 3160.342 3178.970 3155.80	U V V P	© (1) (2) (2) 3	2.44 2.43 2.44 2.39 2.43 2.39	6.11 6.25 6.25 6.30 6.30 6.30	4-5 5-4 4-4 6-6 5-5 6-5	a ³ H-x ¹ G° (192) a ³ H-x ³ H° (193a)	4288.962 4277.41 4235.65 4318.81 4322.70 4275.72 4270.31	P P P P U P	© (1) ©	2.58 5.45 2.60 5.48 2.55 5.46 2.58 5.43 2.60 5.45 2.55 5.43 2.58 5.47	3-2 3-1 4-5 3-4 3-3 4-4 3-3	b ³ F_w ⁵ F° (215)
8412.20 5858.27 5753.97	P P P V	©1 © © (3)	3.43 3.44	4.37 4.53 4.59 4.53	4-5 5-4 4-3 4-4	a ³ H-y ³ F° (170)	3183.58 3155.293 •3172.067	A A B	© 2 3	2.43 2.43 3.44	6.33	5-6 5-4 4-4	a ³ H-\ ³ F° (193)	4283.40 4246.79 4251.88	P P P	© ©	2.60 5.48 2.58 5.48 2.60 5.50	3-4 2-3	b ³ F- v ⁵ D o
5916.250 4315.95 4323.37 4271.95 4281.60	P P P	(3) 0 0 0 0	2.42 3.44 2.43 3.44	5.28 5.30 5.31 5.33	5-6 4-5 5-4 4-3	a ³ H-y ⁵ G° (171)	m3125.68 3119.495 3120.435 3148.430 3135.863 3165.08	P G U U P	6 6 (2) (1) ©	3.44 3.43	6.38	6-5 5-4 4-3 5-5 4-4 4-5	a ³ H-u ³ G° (194)	4067.275 4095.975 4078.365 4106.266 *4123.748 4134.19	B J V J P	4 4 (1) (1) ©	3.55 5.58 2.58 5.59 3.60 5.62 3.58 5.58 3.60 5.59 3.60 5.58	4-3 3-2 2-1 3-3 2-3 2-3	b ³ F-x ³ D° (317)
4177.52 4277.68 4235.84 4256.32 4247.31 4218.21 4022.45	PUPPP	(1) 0 0 0 0 (1)	2.39 2.42 2.39 2.42 2.44 2.43	5.35 5.31 5.32 5.35 5.35 5.46	6-6 5-5 6-5 5-4 4-3 5-6 6-5	a ³ H-w ⁵ F°	3144.92 3161.55 3100.838 *3106.542§	P V U	© (2) (1)	2.42 2.44 2.39 2.44	6.35	4-4 6-5	(196a) a3H-u3D°	4055.046 4071.52 4076.498 4033.19 4049.336 4011.416	V V P V	3 (1) (1) (1) (1) (1)	3.55 5.59 3.58 5.61 3.60 5.63 3.55 5.61 3.58 5.62 3.55 5.62	4-5 3-4 2-3 4-4 3-3 4-3	• •
4096.96 4100.91 4125.23 3859.214 3873.763 3878.663	P P I B V	10 8 (8) (3)	2.42 2.44 3.44 2.39 2.42 2.44	5.43 5.45 5.43 5.59 5.61 5.62	5-4 4-3 4-4 6-5 5-4 4-3	(173) a ³ H-y ³ G° (175)	3083.152 3025.638 3030.149 3031.213 3009.098 3015.913	T C G	(1) 15 15 12 3	2.39 2.42 2.44 2.39 2.42	6.50 6.51 6.50 6.51	4-3 6-6 5-5 4-4 6-5 5-4	(197)	3985.32 4005.49 4019.05 3968.38 3993.64 *4010.77 3955.77 3984.46	PP UP PW PP	© (1) © (1) ©	3.55 5.64 3.58 5.66 3.60 5.67 3.55 5.66 3.58 5.67 3.60 5.67	4-5 3-4 2-3 4-4 3-3 3-2 4-3	(319)
3893.924 3899.037 3813.07 3796.00 3813.94 3826.63 3846.949	J P U P P	Fe (1) © (1)	2.42 2.44 2.39 2.39 2.43 2.44 2.43	5.59 5.61 5.63 5.64 5.66 5.67 5.63	5-5 4-4 6-6 6-5 5-4 4-3 5-6	a ³ H-X ⁵ G° (176)	3048.929 3045.594 3005.302 3039.322 3019.291 3018.134 3004.119	V G V V	(1) (2) (3) (1) (1) (2)	2.42 2.44 2.39 2.44 2.39 2.42	6.50 6.48 6.53 6.48	5-6 4-5 6-7 5-6 4-5 6-6 5-5	a ³ H-y ³ 1° (199)	3921.27 3833.311 3864.31 3867.45 3829.771	U J P P	© (1) 5 0 (2) (3)	2.58 5.67 2.55 5.70 2.55 5.77 2.58 5.77 2.60 5.79 2.55 5.77	3-3 4-5 4-4 3-3 2-3	b ³ F-z ³ I° (230) b ³ F-u ⁵ D° (331)
3760.052 3785.950 3794.340 3753.154 3770.405	B J J V	8 6 8 (1gn)	2.39 2.42 2.44 2.39 2.42	5.68 5.68 5.70 5.68 5.70	6-7 5-6 4-5 6-6 5-5	a ³ H-z ³ I° (177)	*2986.655\$ 2980.60	V P	(1) ©	3.43 3.44		4-4 	(201)	3842.975 3824.73 3867.925 3808.731 3813.059	U V J J	(1) 1 4 57	2.58 5.79 2.60 5.82 2.58 5.77 2.55 5.79 2.58 5.81	3-2 2-1 3-4 4-4 3-3	b ³ F-x ³ F°
3689.02 3708.602 3711.92	P	(1) (1) ©		5.77 5.77 5.77	5-4 4-3 4-4	a ³ H-u ⁵ D° (178)	9373.900 9146.11 9010.55	e F F	6 3 2	2.55 2.58 2.60	3. 9 3 3. 9 7	3-3 2-2	7 7	3821.834 3779.424 3797.948 3842.90	J V J P J	3 3* (1) ©	2.60 5.83 2.55 5.81 2.58 5.83 2.58 5.79	2-2 4-3 3-2 3-4	
3666.24 3661.36 3688.877	V ₩	(1) (1)	2.43 3.44 3.44		5-4 4-3 4-4	a ³ H-x ³ F° (179)	9359.420 9246.54 9173.20 7461.534	E F P	3 2 0 (1)	2.55 2.58 2.60 2.55	3.91 3.94 4.20	4-3 3-2 3-1 4-4	(303) _b 3 _{F-y} 5 _F 0	3837.138 3791.504 *3811.05 3777.448	1 1 1	1 (1) (1) 2	3.60 5.81 3.55 5.80 3.58 5.83 2.55 5.83	2-3 4-5 3-4 4-4	b ³ F-z ³ н (223)
							7430.58 7400.87	M P	1 ©	2.58 2.60	4.24 4.26	3-3 3-3	(204)						

52							REV				PLE -						_	_	_	*******
Labor I A	ratory Ref		E Low	P High	J	Multiplet (No)	Labo: I A		'y Int	Low E	P High	J	Multiplet (No)	I A	ratory Ref		Low	P High	J	Multiplet (No)
Fe I con	tinue	1					Fe I con	t1nue	eđ.					Fe I con	tinue	1				
m3790.24	P	Fe		5.80	4-3	b ³ F-w ³ D°	3253.954	v	(3)	2.60	6.39	2-2	b ³ F-x ¹ D°	3971.82	W	(1)	2.75	5.85	3-2	a ³ G-1° (281)
m3806.76 3810.90	P P	Fe ⊙	2.58	5.82	3-2 2-1	(224)	3191.11	W	(1)	2.55 2.58	6.42 6.46	4-3 3-2	(257) b ³ F-u ³ D° (258)	3884.359 3927.61	J P	3 ©	2.68 2.72	5.86 5.86	5-4 4-4	a ³ G-z ¹ G• (282)
3824.074 3830.757	J J	1	2.58	5.80 5.82	3-3 2-2		3181.522 3176.366 3198.266	V U	4 2 (1)	2.60	6.48 6.46	2-1 2-2	(200)	*3966.630	Ĵ	10n	2.75	5.86	3-4	(202)
3848.29 3733.20	P P	© ©	2.60 2.55	5.80 5.85	2–3 4–5	b ³ F-w ⁵ G°	3232.16	P	`o′	2.60	6.42	2-3		*3861.341 3855.329	J V	2 (1w)	2.68	5.88 5.92	5-5 4-4	a ³ Gv ⁵ Fe (283)
3742.07 3750.677	₩ V		2.58	5.87 5.89	3-4 2-3	(225)	3166.435 3190.02	G- W	6 (1)	2.55 2.58	6.45 6.45	4-3 3-3	b ³ F-t ³ D° (259)	3813.638 3826.836	J J	2	2.68	5.92 5.94	5-4 4-3	•
3709.665 3727.67	Ŭ P	(1) ⊙	2.55 2.58	5.87 5.89	4-4 3-3		3159.25	P	`ō´	2.60	6.50	2-2		3892.898	٧	(1)	2.75	5.92	3-4	
3731.374 *3695.507	J V	2	2.60	5.90 5.89	2-2 4-3		3126.84 3111.686	P U	(S) ©	2.55 2.55	6.50 6.51	4-5 4-4	b ³ F-w ³ H° (260)	3827.572 3872.923	J	1	2.68 2.72	5.91 5.90	5-5 4-4	a ³ G−x ³ G• (284)
*3708.602	٧	{1 1	2.58	5.90	3-2	. 7	3093.888	<u>v</u>	(214)	2.55	6.54	4-3	b ³ F-s ³ D°	3907.464 3830.850	J J	(1) 1	2.75 2.68	5.91 5.90	3-3 5-4	
3766.092 3789.570	V J	$\binom{1}{1}$	2.58 2.60	5.85 5.85	3-2 2-2	b ³ F-1° (336)	3116.39	P _	•	2.58	6.54	3-3	(261)	3869.590 3869.562	K.	3* 3*	2.72	5.91 5.91	4-3 4-5	
3728.668	J	1	2.55	5.86	4-4		3052.78 3007.75	P P	0	2.55 2.58	6.59 6.68	4–3 3–2	b ³ F-t ⁵ P° (262)	3910.845 3770.305	J V	(3)	2.75	5.90 5.95	3-4 5-5	_a 3 _{G_w} 3 _G •
3761.416 3676.314	J B	1 6	2.58 2.55	5.86 5.91	3-4 4-5	(227) b ³ F-x ³ G°	3018.25 3054.949	P S	(-)	2.55 2.60	6.64 6.64	4-3 2-3	b ³ F-x ¹ F° (263)	3792.156 3811.892	j J	3* 2 2	2.68 2.72 2.75	5.97 5.98	4-4 3-3	(287)
3711.225 3730.945	J J	3	2.58 2.60	5.90 5.91	3-4 2-3	(538)	3054.545	5				_	(200)	3751.820 3775.860	J J		2.68	5.97 5.98	5-4 4-3	
3679.33 3708.18	W P	(<u>î</u>) ©	2.55	5.90 5.91	4-4 3-3		10422.99 10195.11	D	0	2.68 2.72	3.86 3.93	5-4 4-3	a ³ G-z ³ F° (264)	*3811.05 3828.510	Ŭ	(1) (1n)	2.72	5.95 5.97	4-5 3-4	
*3663.458	v	1	2.55	5.92	4-4	b3F-v5F°	10113.86	F	3	2.75	3.97	3–2		3748.91	P	•	2.68	5.97	5-5	a ³ G-z ¹ H°
3668.893 3675.44	U P	(1) O	2.58 2.60	5.94 5.96	3-3 2-2	(339)	8345.20 8303.11	P P	0	2.68 2.72	4.16 4.20	5-5 4-4	a ³ G—y ⁵ F° (265)	3789.178	J	3	2.72	5.97	4–5	(289)
3637.73 3653.35	W P	(1) ©	2.55 2.58	5.94 5.96	4-3 3-2		8112.17 8108.33	P	0	2.68 2.72	4.20	5-4 4-3		3704.463 3743.78	B P	10 (0) (1)	2.68 2.72	6.01 6.01	5-4 4-4	a ³ (Ly ¹ G° (290)
3660.41 *3695.054	P B	0 8	2.60 2.58	5.97 5.92	2-1 3-4		8129.32	P	0	2.75	4.26	3–2	a ³ G-z ⁵ G°	3779.213	U D		2.75	6.01	3-4	a ³ G_w ³ F°
3691.18	P	© (1)	2.60	5.94	2-3	b ³ F-v ⁵ P°	7650.95 7540.44	P P P	0	2.68	4.29	5-5 4-4 3-3	(266)	3649.508 3669.523	B	12 10	2.68	6.06	5-4 4-3	(291)
3658.55 *3663.458	U V P	(1)	2.55 2.58 2.60	5.92 5.95 5.96	4-3 3-2 3-1?	(231)	7481.74 7382.63 7344.18	P P	000	2.75 2.68 2.72	4.40 4.35 4.40	5-4 4-3		3677.630 3687.656 *3703.556	B J J	12 4 5	2.75 2.72 2.75	6.10 6.06 6.08	3-2 4-4 3-3	
3668.58 3690.095 3685.66	S P	(1) (-) ©	2.58 2.60	5.92 5.95	3-3		7347.16	P	ŏ	2.75	4.43	3-2		3722.028	Ĵ	(1)	2.75	6.06	3-4	
*3623.440	G.	1	2.55	5.95	4-5	b ³ F-₩ ³ G°	7316.77 7261.00	P P	0	2.68	4.37 4.42	5-5 4-4	a ³ G-z ³ G° (267)	3684.108 *3703.556	G J	15 5	2.72 2.75	6.07	4-3 3-2	(393) a ³ G−v³D∘
3636.995 3643.716	J V	2	2.58 2.60	5.97 5.98	3-4 2-3	(233)	7228.70 7114.55	O P	1 ©	2.75 2.68	4.45 4.42	3-3 5-4		3718.407	J.	3	2.75	6.07	3-3	_
3606.38 m3622.00	P P	⊙ Fe	2.55 2.58	5.97 5.98	4-4 3-3		7100.20 7471.75	P P	© ? ©	2.72 2.72	4.45 4.37	4-3 4-5		3705.71	P	•	2.75	6.08	3–3	(293)
3644.58	P	•	2.58	5.96	3-2	b3F-x3Pe	6677.993	В	600		4.53	5-4	a ³ G-y ³ F°	3606.679 3621.463	G B	20 15	2.72	6.10	5-6 4-5	а ³ G-у ³ Н° (294)
3562.60	P	, <u>o</u> ,	2.55	6.01	4-4	(235) b ³ F-y ¹ G°	6592.919 6546.245	B B	300 200	2.72	4.63	4-3 3-2	(268)	3638.296 3584.663	G B	12 8	2.75 2.68 2.72	6.14	3-4 5-5	
3592.486	U "	(1) (1)	2.58	6.01	3-4	(237) b ³ F-w ³ F°	6806.851 6703.573	L	10 10	2.73 2.75	4.53 4.59	4-4 3-3		3605.450 3568.977	G J	15 4	2.68	6.14 6.14	4-4 5-4	
3511.748 m3524.04 3520.85	U P W	Fe (1)	2.58 2.60	6.08 6.10	4-4 3-3 2-2	(238)	6180.216 6085.267	V V	(2)	2.72 2.75	4.71 4.77	4-3 3-2	a ³ G-y ³ D° (269)	3603.205 *3618.392	G J	10 2	2.68 2.72	6.11 6.13	5-5 4-4	a ³ G-v ³ G° (295)
3495.285 3500.564	G G	8	2.55	6.08	4-3 3-2		5391.78	P	· · ·	2.68	4.97	5-5	a ³ G-x ⁵ F°	3622.001 3581.645	Ğ. J	12	2.75 2.68	6.15	3-3 5-4	(2)
3508.52	w	(1)	2.55	6.07	4-3	b ³ F-v ³ D°	4432.90	P	0	2.72	5.50	4-3	(270) a ³ G-v ⁵ D°	3589.456 3640.388	Ğ.	3 15	2.72 2.73	6.15 6.11	4-3 4-5	
3524.075 3537.729	J J	3	2.58 2.60	6.08 6.09	3-2 2-1	(239)	4460.13	P	0	2.75	5.51	3–2	(271)	3651.469	В	30	2.75	6.13	3-4	7 4 -
*3537.4918 3544.631	n 1	(3)	2.60	6.07 6.08	3–3 3–2		4305.13 *4340.49	P	(1)	2.72 2.75	5.58 5.59	4–3 3–2	a ³ G-x ³ D° (272)	3527.90	P	© (a)		6.24	3-3	(296)
3558.21	P 	0	2.60	6.07	2–3	b ³ F-3°	*4239.847	J	8	2.68	5.59	5-5	a ³ G-y ³ G°	3459.429 3493.69	V ₩	(s) (s)	2.68 2.72	6.25 6.25	5-4 4-4	a ³ G-x ¹ G° (297)
3526.016 m3451.66	V P	1 Fe	2.58 2.55	6.08	3-3 4-5	(240) b3F_y3H°	4266.968 4288.148 4215.975	J V	(3) (1) (1)	2.72 2.75 2.68	5.61 5.63 5.61	4-4 3-3 5-4	(273)	3411.88	P	0	2.68	6.30	5-5	a ³ G-u ⁵ F•
3464.914	v	(1)	2.58	6.14	3-4	(241)	4242.588 m4291.44	V P	(1) Fe	2.72 2.73	5.62 5.59	4-3 4-5		3411.134 3439.050	V V	(1) (1) (2)	2.68 2.72	6.30 6.30	56 45	(298) a ³ G-x ³ H• (299)
3468.849 3476.853	V J	4 (2)	2.55 2.58	6.11 6.13	4-5 3-4	b ³ F-v ³ G° (242)	4313.04	P	ő	2.75	5.61	3-4		3405.83	Ŵ	(2)	2.68	6.30	55	(200)
3469.834 3448.869	V V	(1)	2.60	6.15 6.13	2-3 4-4	,,	4184.22 4213.42	U	(1) ©	2.68 2.72	5.63 5.64	5-6 4-5	a ³ G-x ⁵ G° (274)	3404.923 3404.755	V V	$\binom{1}{1}$	2.68 2.72	6.31 6.34	5-4 4-3	a ³ G-t ⁵ D° (300)
3450.14	P	0	2.58	6.15	3–3	. 7 1	4239.01 *4163.676	P V	(1)	2.75 2.68	5.66 5.64	3-4 5-5		3438.10 3434.029	P V	⊙ (1₩)	2.72 2.75	6.31 6.34	4-4 3-3	
3515.41	P	0	2.60	6.11	2-2	b ³ F-z ¹ D° (243) b ³ F-w ³ P°	4194.50 4224.63	P P V	O.	2.72	5.66 5.67	4-4 3-3		3378.676	G.	6	2.68	6.33	5-4	a3G_v3re
3410.56 3446.791 3429.80	P V P	(1) ©	2.58 2.60 2.60	6.20 6.18	3-3 3-1 3-2	(344)	4145.209 4180.41 *4215.430	y P J	(1) ©	2.68 2.72 2.75	5.66 5.67 5.67	5-4 4-3 3-2		*3404.301 3453.022	y J	(2) 3	2.72 2.75	6.34 6.32	4-3 3-2	(301)
3364.639	v		2.58	6.20	3-3	b ³ F-z ¹ Fe	4113.17	P	2 ©	2.68	5.68	5-6	a ³ G-z ³ I°	3411.353 3440.74	G P	Õ	2.72 2.75	6.33 6.33	4-4 3-4	
3383.387	Ÿ	{1 1	2.60	6.24	2-31	(245)	3998.054	I	10	2.68	5.77	5-4	(275) a ³ G-u ⁵ D°	3366.790 3399.230	V V	5 (1)	3.68 3.72	6.35 6.35	5-4 4-4	a ³ Q-4° (303)
3335.403	V	(1)		6.25	4-4	b ³ F-x ¹ G° (246)	4039.94 •4043.901	₩ V	(1) 5n	2.72 2.72	5.77 5.77	4-3 4-4	(276)	3428.41	P	°o†	2.75	6.35	3-4	_
3252.12 3227.17	P P	, (0)	2.55 2.55	6.34 6.37	4-4 4-3	(246) b ³ F-u ⁵ F° (247)	4085.26	P	0	2.75	5.77	3-4	2 2	3341.906 3373.874	A G	5 (1)	2.68 2.72	6.37 6.37	5-5 4- 5	a ³ G-6° (303)
3229.78 1		(1)	2.58	6.40	3-2	. 3_ 2 -	3971.325 3983.960	I J	9 10	2.68 2.72	5.79 5.81	. 5-4 4-3	a ³ G-x ³ F° (277)	3370.786	Ā	10	a.68	6.34	5-5	a3G_u3Ge
3285.54	P "	© (4)	2.55	6.30	4-5	b ³ F-x ³ H° (248)	4007.277 4016.54	W	(1) (1)	2.75 2.73	5.83 5.79	3-2 4-4		3369.549 3380.111	G C	8	2.72 2.75	6.38 6.40	4-4 3-3	(304)
3254.261 3260.276	v v	(1) 4		6.34	4-3	b ³ F_t ⁵ D° (249) b ³ F_v ³ F°	4024.109 4057.356	y V	(1)	2.75 2.75	5.81 5.79	3-3 3-4		3337.666 3351.750	Ç V	6 /3 /2\	2.68 2.72	6.38 6.40	5-4 4-3	
*3278.741 3314.450	V V	4	2.58 2.60	6.34 6.32	4-4 3-3 2-2	(350)	3956.681 3997.394	В	12	2.68 2.72	5.80 5.80	5-6 4-5	a ³ G-z ³ H° (278)	3403.299 3398.226	V V	(a)	2.72 2.75	6.34 6.38	4-5 3-4	
3253.839 3296.467	v U	(2) (1) (1)	2.55 2.58	6.34	4-3 3-2		4021.869 3952.606	I I I	15 12 8	2.75 2.68	5.80 5.82 5.80	4-5 3-4 5-5	(010)	*3393.609	V	(1w)	2.75	6.38	3-2	a ³ G-y ¹ D ^e
3252.928	v	4	2.55	6.34	4-5	b ³ F-u ³ G°	3981.775 3937.329	j J	7 3	2.72 2.68	5.82 5.82	4-4 5-4		3387.410	V	2	2.75	6.39	3-2	(305) a ³ G-x ¹ D° (306)
3246.492	V	3	2.58	6.38	3-4	(252)	3995.996	J	4	2.72	5.80	4-3	a ³ G_w ³ D°	3335.72 3363.815	P V	©? (1)	2.72 2.75	6.42	4-3 3-3	(306) a ³ G-u ³ D• (307)
3249.204	V.	3	2.55		4-4	b ³ F-4° (253) b ³ F-u ⁵ P°	4017.096 4036.37	V P	(1) ©	3.75 2.75	5.82 5.80	3-2 3-3	(279)	3254.734	V	(2)	2.68	6.47	5-6	a ³ G-w ³ H°
m3219.60 3217.53	P P	Fe ©	2.55 2.58	6.38 6.41	4-3 3-2	(254)	3897.896	J	8	2.68	5.85	5-6	a ³ G_w ⁵ G°	3265.55 3275.685	A A	(1)	2.75	6.50 6.51	4-5 3-4	(308)
3242.268	V	(1)	2.58	6.38	3–2	b ³ F-y ¹ D°	*3932.629 3945.119	J J	4 4	2.72	5.85 5.87	4-5 3-4	(280)	3235.592 3249.037	U V	$\begin{Bmatrix} 1 \\ 1 \\ 1 \end{Bmatrix}$	2.68 2.72	6.51	5-5 4-4	
3237.234	A	(1)	2.58	6.39	3-2	(255) b ³ F ₋₇ ° (256)	3939.114 3863.745 3890.844	J V J	(1) 3 3	2.75 2.68	5.89 5.87	3-3 5-4		3219.37	P	0	2.68	6.51	5-4	
						,,	3907.937	В	4		5.89 5.90	4-3 3-2								

				RE	VISED M	ULTIPLE	: :	LYRLE				53
Laboratory I A Ref Int	E P Low High	J	Multiplet (No)	Labo I A	oratory Ref Int	E P Low High	J	Multiplet (No)	Laboratory I A Ref Int	E P Low High	J	Multiplet (No)

IA Ref Int	Low High	(NO)			LITE	row urgu		(NO)	1 A		1110	LOW RIGH		(NO)
<u>e I</u> continued 246.05 P Fe 235.33 P ©	2.68 6.48 5-6 2.72 6.53 4-5	a ³ G-y ³ I° (309)	Fe I cont 3618.30 3620.23	P W	© (1)	2.82 6.23 2.84 6.25	5-4 4-3	z ⁷ F°-e ⁷ P (324)	Fe I cont 5835.58 5747.85	P P	0	2.82 4.93 2.82 4.97	2-3 2-2	b ³ P-x ⁵ D° (343)
162.335 U 21	2.68 6.58 5-4	a ³ G-9° (310)	*3602.534 3638.16 3635.28	G P P	3 ⊙	2.85 6.28 2.84 6.23 2.85 6.25	3-2 4-4 3-3	•	5552.85 5532.13 5529.80	P P P	• •	2.82 5.04 2.83 5.06 2.85 5.08		b ³ P-x ⁵ F° (344)
151.353 G 10 172.30 P ©	2.72 6.63 4-5 2.75 6.64 3-3	(311) a ³ G-x ¹ F°	3613.15 3653.35 3646.10 3620.00	W P P	(1) © ©	2.86 6.28 2.85 6.23 2.86 6.25 2.87 6.28	2-2 3-4 2-3 1-2		5536.59 5570.06	P P	0	2.82 5.05 2.83 5.05		b ³ P-z ⁵ S° (345)
098.191 V 6 101.003 V (2) 090.209 V (1) 073.982 V (1) 066.487 V 3	3.68 6.66 5-5 3.73 6.70 4-4 3.75 6.74 3-3 3.68 6.70 5-4 2.72 6.74 4-3	(313)	3586.75 3588.615 3572.60 3556.68 3563.61	P G U W P	(2) 3 (1) (1) ©	2.80 6.24 2.82 6.26 2.84 6.29 2.85 6.32 2.80 6.26	6-6 5-5 4-4 3-3 6-5	z ⁷ F°-e ⁵ G (325)	4741.533 4707.487 4680.475 4683.565 4657.598	B J V J	3 (2) (1) (2) (2)	2.82 5.42 2.83 5.45 2.85 5.48 2.82 5.45 2.83 5.48	3-3 1-2 0-1 2-3 1-1	b ³ P-w ⁵ D° (346)
095.270 V (2) 122.665 R (-) 067.952 V (1) 094.870 U (1) 119.04 P ©		(314) a ³ G-13° (315a)	3612.068 *3608.146 3587.253 3567.045 3554.50	G V V W	8 3 2 3 3	2.82 6.24 2.84 6.26 2.85 6.29 2.86 6.32 2.87 6.34	5-6 4-5 3-4 2-3 1-2		4687.387 4685.03 4687.67 4661.33 4664.71	J P P P	(1) © © ©	2.82 5.45 2.83 5.47 2.85 5.48 2.82 5.47 2.83 5.48	2-3 1-3 0-1 2-3 1-1	b ³ P-w ⁵ F° (347)
046.819 S (-) 959.992 C 10 990.392 C 6 011.482 G 7		a ³ G-w ¹ G° (315) a ³ G-v ³ H° (316)	3570.243 3554.922 3541.083 3542.076 3536.556 3533.201	V G G	30 40 15 15 15	2.80 6.25 2.82 6.29 2.84 6.32 2.85 6.34 2.86 6.35 2.87 6.36	6-7 5-6 4-5 3-4 2-3 1-2	z ⁷ F°-e ⁷ G (326)	4641.22 4604.23 4603.34 4605.10 4580.46	P P P P	0 000	2.82 5.48 2.82 5.50 2.83 5.51 2.85 5.53 2.82 5.51	2-1 2-3 1-3 0-1 2-2	b ³ P-v ⁵ D° (348)
965.25 P Fe 988.942 S (-	2.68 6.84 5-5 2.72 6.84 4-4		3533.008 3530.385 3522.268 3527.792	G G	5 2 (3)	2.87 6.37 2.80 6.29 2.82 6.32	0-1 6-6 5-5		4582.941 4612.64	Ŭ P	(1) ©	2.83 5.53 2.82 5.49	1-1 2-2	b ³ P-y ⁵ 5°
980.532 G 5 	2.75 6.89 3-3 2.80 5.29 6-5 2.82 5.33 5-4 2.84 5.36 4-3 2.85 5.39 3-3	(318)	3527.792 3526.377 3526.673 3529.818 3498.18 3509.12 3512.239	A A A A A A A A A A A A A	4 4 5 6 0 (1)	2.84 6.34 2.85 6.35 2.86 6.36 2.87 6.37 2.80 6.32 2.82 6.34 2.84 6.35	4-4 3-3 2-2 1-1 6-5 5-4 4-3		4635.846 4466.554 4476.021 4443.197 4454.383 4432.570	J B I B B	(1) 12 10 7 5	2.83 5.49 2.83 5.58 2.83 5.59 2.85 5.62 2.82 5.59 2.83 5.62	1-2 2-3 1-2 0-1 2-2 1-1	(349) b ³ P-x ³ D° (350)
859.748 B 15 006.126 I 20 957.302 J 20 918.999 B 30 1890.762 J 25 1872.144 I 20	2.86 5.40 2-1 2.82 5.29 5-5 2.84 5.33 4-4 2.85 5.36 3-3 2.86 5.39 3-3 2.87 5.40 1-1		3516.55 3523.30 3513.59 3493.57 3537.896	W W P P	(1) (1) (1) (1) (1) (0) (0) 4	2.85 6.36 2.86 6.37 2.80 6.31 2.82 6.35 2.83 6.31	3-3 3-1 6-5 5-4 5-5	z ⁷ F°-f ⁵ F (327)	4401.447 4290.870 4278.38 4279.864 4258.619	V J P J J	(1) (1) (1) (1)	2.82 5.62 2.82 5.70 2.83 5.72 2.85 5.73 2.82 5.72	2-1 2-3 1-2 0-1 2-2	b ³ P-w ⁵ P° (351)
044.221 T (2 985.553 J 7 1938.820 J 10 1903.317 B 12 1878.218 B 12	3.84 5.29 4-5 3.85 5.33 3-4 2.86 5.36 2-3 2.87 5.39 1-3 3.87 5.40 0-1		3512.08 3506.23 3506.58 3556.877 3526.23 3518.68	₩ ₩ P G ₩	(1) (1) (0) 7 (3) (1)	3.84 6.35 2.86 6.38 2.87 6.39 2.84 6.31 2.85 6.35 2.86 6.37	4-4 3-3 1-1 4-5 3-4 3-3		4360.73 4241.113 4307.130 4236.426 4245.258	P V J J	(1) 4 3 6	2.83 5.73 2.83 5.73 2.82 5.75 2.83 5.75 2.85 5.75	2-1 2-1 2-1 0-1	b ³ P-z ³ g° (352)
579.344 V (1 611.19 P © 1554.467 V (1 1515.17 P (1 490.34 P © 1635.62 P ©	3.84 5.52 4-4 3.85 5.56 3-3 3.86 5.60 2-2 2.87 5.62 1-1	(319)	m3512.68 3509.73 *3565.583 *3575.976 3582.69	P P G	3 2 (3)	2.87 6.38 2.87 6.39 2.85 6.31 2.86 6.31 2.87 6.31	1-3 0-1	z ⁷ F°-e ⁵ S (328)	4181.758 4175.640 m4143.83 4156.803 4125.884	J B P B J	15 10 Fe 12 (2)	2.82 5.77 2.83 5.79 2.85 5.82 2.82 5.79 2.83 5.82	2-3 1-2 0-1 2-2 1-1	_b 3 _{P-u} 5 _D • (354)
571.44 P © 525.875 V (1 495.386 V (1	2.86 5.56 2-3		3525.856 3540.121	U G	(1) 3	2.84 6.34 2.85 6.34		z ⁷ F°-g ⁵ D (329)	4107.492 4126.88	B U	(1)	2.82 5.82 2.83 5.82	2-1 1-0	,3_ 3
104.77 P 1010.77 W (1 1994.27 P © 1137.97 P ©	2.86 5.95 2-1 2.82 5.80 5-5 2.84 5.85 4-4	(320)	3512.80 3522.896 3490.04	P U P	© (1) ©7	2.85 6.37 2.86 6.37 2.86 6.40	3-3 2-3 2-3	z ⁷ F°-e ⁷ S (330) z ⁷ F°-e ⁵ P (331) z ⁷ F°-e ³ G	4184.895 4173.323 4154.502 4213.650 4203.987 4191.685	B J B B	10 2 12 5 10 (2)	2.82 5.77 2.83 5.79 2.82 5.79 2.83 5.76 2.83 5.77 2.85 5.79	2-3 1-1 2-1 1-0 1-3 0-1	b ³ P_y ³ P• (355)
056.53 U (1 1003.665 V (1 119.66 P © 1032.46 W (1 1006.768 V (1	2.85 5.85 3-4) 2.87 5.93 1-2		3315.637 *3309.397 3196.147 *3183.076 3173.608	V G V U	(3) 6 2 3 (1)	2.82 6.63 2.80 6.64 2.83 6.68 2.84 6.72 2.85 6.74	5-5 6-5 5-4 4-3 3-2	z ⁷ F°-e ³ G (338) z ⁷ F°-g ⁷ D (333)	4131.806 4132.532 •4104.133 4134.681	B J K	5 4 3	2.82 5.81 2.83 5.83 2.82 5.83	2-3 1-2 2-2	b ³ P _{-x} ³ F° (356)
610.159	2.80 6.21 6-6 2.82 6.28 5-5 2.84 6.32 4-4 2.85 6.31 3-3 2.86 6.34 2-2) 2.87 6.32 1-1	(321)	3181.85 3183.40 3187.16 3175.97	₩ ₩ P	(1) (3) (1) © (1)	2.86 6.74 2.87 6.76 2.87 6.74 2.87 6.76	3-3 1-1 1-3 0-1	z ⁷ F°-1 †	4133.903 4137.612 4114.449 4109.808 4091.561	J B B J	8 7 5 9 (1)	2.83 5.82 2.85 5.84 2.83 5.84 2.83 5.84 2.83 5.84	1-3 0-1 2-2 1-1 2-1	(357)
8547.203 J (2 8526.78 P 8551.11 P ©	2.82 6.32 5-4 2.84 6.31 4-3		2976.922 2990.33 2974.78	U P W	(1) © (1)	2.82 6.97 2.84 6.97 2.82 6.97	5-5 4-5 5-	(334) z ⁷ F°-3	4066.979 4085.011	B J	6 4	2.82 5.85 2.83 5.85	1-2	b ³ P-1° (358)
5542.56 P © 5568.423 U (1 5635.82 P © 5591.345 U (1	2.85 6.34 3-2) 2.86 6.32 2-1 2.82 6.21 5-6		11149.34 10881.65	D D	2 1	2.82 3.93 2.83 3.97	2-3 1-2	(335) b ³ P-z ³ F° (336)	4044.614 4062.446 4079.848	J J J	6 10 4	2.82 5.87 2.83 5.87 2.85 5.87	2-1 1-1 0-1	b ³ P-y ³ s• (359)
5560.07 P © 5575.976 Q 2 3 5559.45 P © 5578.380 U (1 3605.50 P Fe 5575.249 J 2 3 5587.69 P	2.85 6.32 3-4 2.86 6.31 2-3 2.87 6.34 1-2 3.87 6.32 0-1 2.80 6.22 6-5 2.82 6.37 5-4	z ⁷ F°-1 ⁷ D (322)	11783.28 11439.06 11251.09 11298.83 11119.80 10987.22	D D D D D	6 15 3 3 10 ©	2.82 3.87 2.83 3.91 2.85 3.94 3.82 3.91 2.83 3.94 2.83 3.94	2-3 1-3 0-1 2-3 1-1 2-1	b ³ P-z ³ D° (337)	4000.02 3978.466 3964.522 3961.147 *3947.533 3944.748	₩ V J J J	(1) (1) 3 (2) 5 (2)	2.82 5.90 2.82 5.92 2.83 5.95 2.85 5.96 2.82 5.95 2.83 5.96	2-3 2-3 1-3 0-1 2-3 1-1	b ³ P- w ⁵ G• (360) b ³ P- v 5 p • (361)
3584.790 J 1 36831.103 J 7 3594.632 G 8 3602.46 W 2 3595.294 V 2 3595.66 U (1	2.86 6.30 2-1 2.82 6.23 5-5 2.84 6.27 4-4 2.85 6.28 3-3 2.86 6.30 2-2		9370.57 9210.030 9117.10 9118.888 9030.67 8943.00 8946.25	PEFEFF	6 2 25 1 2	2.82 4.14 2.83 4.17 2.85 4.20 3.83 4.17 2.83 4.20 3.82 4.20 2.83 4.21	2-3 1-3 0-1 2-3 1-1 2-1 1-0	_b 3p _{-y} 5 _D ° (338)	m3927.93 3953.863 3952.704 3935.815 3935.31 3918.58	P V B W P	Fe (1) (1) 8 (2) ©	3.82 5.96 3.83 5.96 3.83 5.96 3.83 5.97 3.83 5.97	1-2 2-2 1-1 2-1	b ³ P- v 5 F° (362)
8609.46 P © 8613.08 P © 8602.10 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.85 6.27 3-4 7 2.86 6.28 2-3 2.87 6.30 1-2 3.87 6.30 0-1 3.83 6.22 5-4		8999.561 8757.193 8674.751 8611.807 9088.326 8838.433		300 35 60 40 50	2.83 4.19 2.83 4.24 2.83 4.24 2.83 4.27 2.83 4.19 2.85 4.34	3-3 1-1 3-1 1-0 1-3 0-1	b ³ P-z ³ P° (339)	3925.646 3909.830 3893.316 3918.418 3942.443 3925.946	J V J B	4 3 (1) 4 6 6	2.82 5.96 2.83 5.99 2.82 5.99 2.83 5.98 2.83 5.96 2.85 5.99	2-2 1-1 2-1 1-0 1-3 0-1	b ³ P _{-X} 3pe (364)
3630.353 J 4 3683.772 U 8 3610.703 J 8 3604.383 U (1	3.84 6.24 4-3 3.85 6.26 3-2 2.86 6.28 2-1	(323)	6979.17 6859.49 6808.80	P P P	000	2.82 4.59 2.83 4.63	2-3 1-3 2-3	b ³ P-y ³ F° (340)	*3829.458 3801.681	V J	3	2.83 6.06 2.82 6.07	2-3	b ³ p ₋₂ ° (366) b ³ p _{-v} ³ p°
3645.090 V 2 3645.494 V 1 3634.52 P C	2.84 6.22 4-4 2.85 6.24 3-3 2.86 6.26 2-2	. !	6912.43 6860.96	P P	© 1	2.83 4.63 2.83 4.62 2.82 4.62	1-1 2-1	b ³ p_y ⁵ pe (341)	3801.804 3809.043 3786.176 3793.872	J J J	(1) 4	2.83 6.08 2.85 6.09 2.82 6.08 2.83 6.09	1-3 0-1 3-3 1-1	(367)
3817.53 P 3660.33 W (1 3656.35 P © 3641.45 P © 3640.88 P ©	2.86 6.24 2-3 2.87 6.26 1-2	• • •	6518.376 6355.038 6270.238 6311.506 6229.234 6187.41	I J V V P	30 4 (3) (1) (1) ©	3.83 4.71 3.83 4.77 3.85 4.81 3.83 4.81 3.83 4.81	3-3 1-3 0-1 3-3 1-1 3-1	b ³ P-y ³ D° (342)	3778.320 3768.23	Ŭ ₩	(1)	3.83 6.09 3.83 6.11	2-1	b ³ P-z ¹ p° (368)

54			REVI	SED	MULTI	PLET	TABLE						
Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Labor I A	atory Ref Int	E F Low	High	Whiltiplet (No)	Labor I A	ratory Ref		E P Low Hi		Multiplet
Fe I continued			Fe I cont	inued				Fe I con	tinued	ı			
3655.465 J 4 *3689.457 G 12		3-2 b ³ P-w ³ P° 1-1 (369)	3649.70 3664.537	G 3		6.31 4- 6.35 3-	-5 z ⁷ P°-f ⁵ F -4 (391)	4365.902 4385.260	V V	{1 1}	2.98 5. 3.00 5.		.3 b ³ G–w ³ D° -2 (415)
3674.766 J 2 3702.033 J 3	2.82 6.18 2.83 6.17	2-1 1-0	3689.37 *3602.534	P © G 3	3.03 2.93	6.37 2- 6.35 4-	-3 -4	4239.735	U	3	2.94 5.		-6 b ³ 0-w ⁵ 0∙
3670.035 V 3 3703.824 J 3		1-3 0-1	*3645.494 *3707.048	V 1			-3 -2 z ⁷ P°-e ⁵ 5	4290.382 4299.65 *4229.516	J W J	(2) (1) (1gn)	2.98 5. 3.00 5. 2.94 5.	37 3-	-5 (416) -4 -5
3602.77 P ©7	2.82 6.24	3-3 b ³ P-z ¹ F° (370)	*3752.420	j (1			-8 (392)	4259.34 4280.63	P P	01	2.98 5. 3.00 5.	37 4- 39 3-	- 4 -3
3504.455 U (1)		(370) 8-3 b ³ P-v ³ F° (371) 8-3 b ³ P-u ³ G°	3623.51 *3679.53	P ©) 2. 99	6.34 3	-3 z ⁷ P°-g ⁵ D -4 (393)	4199.37 4255.499	P V	(1)	2.94 5. 3.00 5.		-4 -2
3448.786 V (1) 3462.808 V (1)		2-3 b3P-u3G° (372) 2-3 b3P-y1D°	3666.85 3588.52	P 0			-3 -3 z ⁷ P°-e ⁷ 8	4223.73 4284.415	P U	© (1)	2.94 5. 2.98 5.		-4 b ³ G-z ¹ G° -4 (417)
*3475.867 V (1)	2.83 6.38	1-2 (373)	3650.031 3694.005	J 4 G 20	2.99	6.37 3	-3 (394) -3	4196.533	V	{1 1}	2.94 5.	3 8 5.	-5 b ³ G-v ⁵ F°
*3457.090 V (3w) 3469.390 V (1)		3-2 b ³ P-7° (374) 1-2 b ³ P-x ¹ D°	3554.44 *3584.960	P ©			-3 z ⁷ P°-e ⁵ P -2 (395)	4203.30 4140.24 4164.80	U P U	(1) ©! (1)	3.00 5. 2.94 5. 2.98 5.	92 5	-3 (418) -4 -3
3469.390 V (1) *3431.815 J 3		(375) 2-3 b ³ p-u ³ p°	3633.64 3614.77	P ©	3.03	6.43 2- 6.40 3-	-1 -3	4237.67	P	•	3.00 5.	92 3	-4
3406.17 P © 3393.382 V (1)	2.85 6.48	1-3 (376) 0-1	3627.35 365 7.8 9	P ©			-2 -3	4156.670 4219.41 *4254.938	V P V	(1) ©	2.94 5. 2.98 5. 3.00 5.	90 4	-5 b ³ G-x ³ G [®] -4 (419) -3
*3393.609 V (1w) *3381.340 V (2) 3368.983 V (1)	2.83 6.48	2-2 1-1 2-1	3322.474 3338.643	G 5			-5 z ⁷ P°-g ⁷ D -4 (396)	4160.561 •4215.430	V J	(1) 2	2.94 5. 2.98 5.	90 5	-3 -4 -5
3403.29 P	2.82 6.45	2-3 b ³ P-t ³ D°	3342.76 3287.117	P ©	3.03 w) 2.93	6.72 2 6.68 4	-3 -4	4258.956	J -	(1)	3.00 5.		-4 -5 ъ ³ 0,w ³ 0,•
3361.959 V (1) 3432.023 V (1) 3349.739 V (1) 3419.706 V (1)	2.85 6.44	1-3 (377) 0-1? 2-3	3306.703 3320.800 3285.20	S (- V (2) U (1	n,gn)3.03	6.74 2	-3 -2 -3	4089.225 *4123.748 4141.862	J V	(1) (1) (1)	2.94 5. 2.98 5. 3.00 5.	97 4.	-5 b ³ G-w ³ G° -4 (422) -3
3419.706 V (1) 3407.06 P ©?	2.83 6.44	1-1? 2-1?	3256.52	P 0	2.99	6.77 3	-2 z ⁷ P°-e ³ P	4067.49 4104.46	P P	0	2.94 5. 2.98 5.	97 5. 98 4.	- 4 -3
3342.298 V 4 3354.068 V 3		1-1 b ³ P-8° 0-1 (378)	3238.535 *3053.443	s (-			-1 (397) - z ⁷ P°-2	4146.071 4161.488	A	(2)	2.98 5. 3.00 5.		-5 -4
3323.737 C 7		2-2 b ³ p-√3p•	*3053.443				(398)	4064.07 4130.311	P J	⊚ 5	2.94 5. 2.98 5.	97 5- 97 4-	-5 b ³ G- z¹H° -5 (423)
3239.35 P 3228.003 V (2)	2.82 6.64	1-1 (379) 3-1	10086.27	P 0			_5 b ³ G_y ⁵ F° (399)	4011.89	P V	(°)	2.94 6. 2.98 6.		-4 b ³ G-y ¹ G° -4 (424)
3335.776 V 4 *3250.400 V (2)		1-3 0-1	9038.84 9375.14 9156.23	P © P ©	2.98	4.29 4	-6 b ³ G-z ⁵ G* -5 (400) -4	4066.597 4045.139	v	(1) (1)	3.00 6.		-а ъ ³ с–а•
3289.443 V (2) 3301.227 V (2)		3-1 b ³ p-z ¹ p• 1-1 (380)	9089.413 8975.408	E 30 E 10	2.94 2.98	4.29 5 4.35 4	-5 -4	*3947.533	J	5	2.94 6.	06 5	(425) 4 b30-w3F•
*3243.406 V 3	2.82 6.62	2-3 b ³ P-y ¹ F° (381)	8868.42 *8713.19 8698.71	F 3 F (10 P ©) 2.94	4.35 5	-3 -4 -3	3979.12 3983.83 4000.466	P P J	0 0	2.98 6. 3.00 6. 2.98 6.	10 3	-3 (426) -2 -4
3207.649 V (1w)		2-3 b ³ P-11° (382)	8621.612	E 10	2.94	4.37 5	-5 b ³ G-z ³ G•	*4014.28 4035.98	₩ P	(<u>1</u>)	3.00 6. 3.00 6.	08 3	-3 -4
3047.301 S (-)	2.83 6.88	1-2 b ³ P-w ¹ D° (382a)	8582.267 8515.08 8342.21	E 15 0 20 P ©	3.00	4.45 3	-4 (401) -3 -4	3996.28 •4014.28	P W	© (1)	2.98 6. 3.00 6.		-3 b ³ G- √³pe -3 (427)
5232.946 I 40 5266.562 I 30		4-5 z ⁷ P°-e ⁷ D 3-4 (383)	8358.53 8878.26	P 0	2.98	4.45 4	-3 -5	4031.73	P	0	3.00 6.	07 3	-3
5281.796 I 10 5139.468 J 20	2.93 5.33	2-3 4-4	8747.32	F 3			-4 -4 b ³ G-y ³ F°	3981.62 4016.81	P P	© †	2.98 6. 3.00 6.		-3 b ³ G-3° -3 (428)
5193.350 I 30 5236.868 J 15 5068.774 J 10	3.03 5.39	3-3 2-2 4-3	7748.281 7664.302 7583.796	E 125 E 80 E 50		4.59 4	-4 b ³ G-y ³ F° -3 (402) -2	3897.449 3922.68	J P	(2) ©	2.94 6. 2.98 6.		-6 b ³ G-у ³ н° -5 (429)
5139.260 J 10 5191.460 J 20	2.99 5.39	3-2 3-1	7954.94	P ©	2.98	4.53 4	-4	3871.750 3903.902	J J	5	2.94 6. 2.98 6.	14 4	-5 -4
4768.397 V 3n 4787.84 V (1)	2.93 5.52 2.99 5.56	4-4 z ⁷ P°-e ⁵ D 3-3 (384)	7904.12 7798.90	P O	3.98 3.00	4.54 4. 4.59 3	-3 b ³ G-y ⁵ p° -2 (403)	3853.462 3893.391	V	(1) 7	2.94 6. 2.94 6.		-4 -5 b ³ G-v ³ G•
4800.14 V (1) 4682.58 W (1)	3.03 5.60 2.93 5.56	2-2 4-3	7112.176 6971.95	I 3 V 1			-3 b ³ G-y ³ D° -2 (404)	3919.069 3918.644	J J	3 6	2.98 6. 3.00 6.	13 4- 15 3-	-4 (430) -3
4736.165 V (1) 4760.07 P © 4877.61 P ©	3.03 5.62	3-2 2-1 3-4	6310.543 6539.72	U (1) 2.94 3.00		-4 b ³ G-x ⁵ D° -4? (405)	3868.243 3885.154 3944.890	V V J	$\begin{Bmatrix} 1 \\ 1 \\ 3 \end{Bmatrix}$	2.94 6. 2.98 6. 2.98 6.	l5 4.	-4 -3 -5
4863.78 P ©	3.03 5.56	2-3	5261.49	P o	2.94	5.28 5	-6 b ³ G-y ⁵ G•	3953.156	J	4	3.00 6.	13 3-	.4
3685.998	2.99 6.32	4-5 z⁷P°-e⁷F 3-4 (385) 2 -3	5226.42 5288.38 5318.04	P 0 P 0 P 0	2.98	5.31 4-	-5 (406) -4 -3	*3976.865 3777.061	J J	(1) (1)	3.00 6. 2.98 6.		-2 b ³ G-z ¹ D° (431) -3 b ³ G-z ¹ F°
3637.862 J 3n *3707.048 I 8	2.93 6.32 2.99 6.31	4-4 3-3	5318.04 5196.24	P ©	2.94	5.31 5-	-4	3726.06	P	· - /	2.94 6.		(432) .4 b ³ G-x ¹ G•
3736.937 J 6 3643.637 J 3 3682.17 P ©	2.93 6.31	2-2 4-3 3-2	*5326.154 5265.25 5204.95	V (1 P © P ©	3.00	5.35 3-	-4 b ³ G-z ⁵ H° -3 (407) -3	3716.71 3696.81	P P	0	2.98 6. 3.00 6.		(433) -5 b ³ G-u ⁵ F° -4 (434)
3744.105 J 4	3.03 6.32	8-1	4773.52	Р 0	7 3.00	5.59 3-	2 b ³ G-x ³ D°	3670.071	J	3	2.94 6.	50 5-	6 b ³ G-x ³ H•
3748.969 J 5 3754.506 J 1 3793.28 P	2.99 6.27	4-5 z⁷P°-f⁷D 3-4 (386) 2-3	4787.50	P ©		5.58 3- 5.59 5-	-3 (408)	3709.535 3663.95	J ₩	$\binom{1}{1}$	2.98 6. 2.94 6.		-5 (435) -5
3689.457 G 12 3746.931 J 6	2.93 6.27 2.99 6.28	4-4 3-3	4647.437 4691.414 4710.286	B 6 B 5	2.98 3.00	5.61 4- 5.62 3-	-4 (409)	3662.90 3669.68	P P	•	2.94 6. 2.98 6.	31 5- 34 4-	4 b ³ G-t ⁵ D
3773.699 J 1 3682.15 P © 3727.809 J 3	2.93 6.28	2-2 4-3	4618.765 4661.975 •4720.997	J (3) J (3) J (1) J (1)	2.94 2.98	5.61 5- 5.62 4-	-3	3708.45 3699.55	P P	0	2.98 6. 3.00 6.	31 4-	-4
3766.665 V 1		3–2 3–1	4740.343	J {1	2.98 3.00	5.59 4- 5.61 3-	-4	3632.558 3669.151	J J	3 3	2.94 6. 2.98 6.		4 b ³ G_y ³ Fe
3742.621 J 4 3793.478 J (1) 3816.92 P ©	2.99 6.24	4-4 z ⁷ p•_f ⁵ D 3-3 (387)	4626.758 *4556.129	S (-)	n 2.94	5.64 4- 5.64 5-	.5 (410)	3721.606	V	(1)	3.00 6.	3-	-2
3816.92 P © 3727.096 J 4 3769.995 V 4	2.93 6.24	2 -2 4-3 3-2	4603.956 4633.764	V (1)	3.98 3.00	5.66 4- 5.67 3-		*3623.440 3628.82 3637.05	G P P	1 © ©	2.94 6.1 2.98 6.1	8 4-	4 (438)
3790.656 J (1)	3.03 6.28	3-1	4494.47 4472.57	P © P		5.68 5- 5.70 5-		3585.193 *3608.146	V J	(2) 3	3.00 6. 2.94 6. 2.98 6.	8 5-	4
3735.325 J 6 3782.450 J 1 3793.354 V 1	2.99 6.25	4-4 z ⁷ P°-e ⁷ P 3-3 (388) 3-2	4358.505 4418.432	B 3		5.77 5- 5.77 4-		*3667.999 3658.02	V P	1 ©	2.98 6.3 3.00 6.3		
*3716.442 G 12 3747.00 P ©	2.93 6.25	4-3 3-2	4433.39 4423.145	P © V (1)	3.00 2.98	5.79 3- 5.77 4-	2 4	3663.25 3693.008	₩ J	(1) 1	2.98 6.3 3.00 6.3	5 4- 5 3-	
3703.697 J 3 m3730.46 P Co		4-5 z ⁷ P°-e ⁵ G 3-4 (389)	4461.80	P ©	3.00	5.77 3-	3 7 7	3590.08	W	(1)	2.94 6.3	7 5-	5 b ³ G-6°
3742.56 P © *3666.24 W 1	3.03 6.32 2 2.93 6.29	3-3 4-4	4326.762 4351.549 •4373.563	V (2) J 3 J (2)	2.98	5.79 5- 5.81 4- 5.83 3-	3 (413)	3633.837 *3645.494	v v	1	3.00 6.3		- 4
3697.426	2.99 6.32 3 3.03 6.34	33 32	4390.460	V (1)	2.98	5.79 4-	4	3489.670	J	4	3.94 6.4	7 6-	(441) 6 b ³ G-w ³ H ^o
3676.879 V (1)	2.99 6.34	4-3 3-2	4309.382 4367.581 4390.954	V 4 J 5 B 4	2.98 3.00	5.80 5- 5.80 4- 5.82 3-	5 (414)	3508.494 3516.403 3449.06	J G P	5 5 ©	3.98 6.5 3.00 6.5 3.94 6.5	1 7	5 (442) 4
3633.07 P (1) 3681.64 W (1)	2.99 6.34	4-5 z ⁷ P°-e ⁷ G 3-4 (390)	4304.552 4348.939	J (1)	3.94 3.98	5.80 5- 5.82 4-	5 4	*3479.683	V	(1)	3.94 6.4		
3709.03 P © 3664.69 W (1)	3.03 6.35 2	3-3	4286.440	V (1)	2.94	5.82 5-							6 b ³ G_ y³I° (443)

Labor I A	atory Ref		E P Low Hi	gh	J	Multiplet (No)	Labor I A	ratory Ref		E l	P High	J	Multiplet (No)	Labor I A	atory Ref		Low E		J	Multiplet (No)
I cont	inue	1					Fe I cont	inued	l					Fe I cont	inued					
83.692 22.499 48.478	A 2 G	5 3 (1)	2.94 6. 2.98 6. 3.00 6.	.58	5-4 4-4 3-4	b ³ G-9° (444)	4464.773 4517.530 4430.197 4564.832	V B V V	(2) (2) (2) (1)			3-3 1-1 3-1 1-0	c ³ p-y ³ p° (472)	3426.09 3388.966 3339.588	y V	(1w) (1w)	3.10 3.06 3.00	6.70 6.70 6.70	0-1 1-1 2-1	c ³ P-t ⁵ Pe (502)
09.40	P	©	3.00 6.	62		b ³ G-y ¹ F° (445)	4553.48 4583.72	P P	(1 <i>)</i>	3.06	5.77 5.79	1-2		3397.221	V	(1)	3.00	6.64	2-3	c ³ P-x ¹ F° (503)
39.202	٧	2	2. 94 6.			(445) b ³ G_y ¹ H° (446)	4393.03	P	.0	3.00	5.81	2-3		*3181.922	U	(3)	3.00	6.88	2-2	(503) c ³ P-w ¹ D° (505) c ³ P-t ³ F°
72.359 97.560	V V	$\binom{1}{1}$			4-3 3-3	b ³ G-x ¹ F° (447)	4372.994 4384.682	v v	(1) (1)	3.00	5.83	2-2 2-3	(473) c ³ P-w ³ D°	3001.66 3035.25	P P	(1) ©	3.00 3.06	7.12 7.12	2-3 1-2	(506)
57.82	P	©	2.98 6.	65		b ³ G-10° (448)	4330.81	P	0	3.00	5.85	2-2	(474) c ³ P-1°	8931.78	P -	• •	3.03	4.42	4-4	a ¹ G-z ³ G°
10.347 19.258 03.574 82.725	V V V	(2) (1) (2) (2)	2.98 6. 3.00 6.	70 74	5-5 4-4 3-3 5-4	(448) b ³ G-t ³ G° (449)	4414.23 4305.455 4387.897	P B J	⊙ 3 3	3.06 3.00 3.06	5.85 5.87 5.87	1-3 3-1 1-1	(475) e ³ P-y ³ S ^o (476)	8689.71 8254.34 7941.84	P P P	0 0	3.03 3.03 3.03	4.45 4.53 4.59	4-3 4-4 4-3	(507) a ¹ G-y ³ F° (508)
79.743 47.507	V V	(a'1) (1) (1)	2.98 6. 2.98 6.	74 66	4-3 4-5		4450.320	J	(3)	3.10	5.87	0-1	c ³ p_v ⁵ F°	7350.55	P	•	3.03	4.71	4-3	a ¹ G-y ³ D°
43.678 07.015	v v	(1)	3.00 6. 2.94 6.		3-4 5-5	b ³ G-13°	*4202.755 4260.135 4298.21	V V P	(1) (1)	3.00 3.06 3.10	5.94 5.96 5.97	3-3 1-3 0-1	(476a)	5038.81	P	©?	3.03	5.48		(509) a ¹ G-v ⁵ D° (510)
44.09	P	©	2.98 6.	67	4-5	(450) b ³ G-13°	4182.384 4239.95	J P	4	3.00 3.06	5.96 5.97	2-2		4842.19 4793.96	P P	⊙î (+)		5.58		a ¹ G-x ³ D° (511) a ¹ G-y ³ G°
75.848 12.232 36.54	V V P	(1) (1) (0)	2.94 6. 2.98 6. 3.00 6.	70	5-4 4-4 3-4	(450a)	4162.93 •4254.938 4335.46	P V P	© (1) ©	3.00 3.00 3.06	5.97 5.90 5.90	3-1 3-3 1-3	c ³ P-w ⁵ G° (477)	4636.66	P	(1) ©		5.61 5.70		(513) a ¹ G-z ³ I° (513)
22.05 57.244	P V	Fe 2	2.94 6. 2.98 6.	77	4-4	b ³ G-w ¹ G° (451)	4230.584	r U	{1 1}	3.00	5.92	2-3	o ³ P-v ⁵ P°	4514.189 *4509.306	J U	(2)	3.03 3.03	5.77 5.77	4-4 4-3	alg_u5p• (514)
80.763 53.064	V q	(1) (-)	3.00 6. 2.94 6.		3-4 5-6	b ³ G−v ³ H°	4273.87 4309.46 4195.615	W P J	(1) © (3)	3.10	5.95 5.96 5.95	1-3 0-1 3-3	(478)	4480.142 4439.643	J V	$\binom{3}{1}$	3.03 3.03	5. 79 5.81	4-4 4-3	a ¹ G-x ³ F° (515)
92.84 13.771	P	Fe	2.98 6. 3.00 6.	84 84	4-5 3-4	(452)	4250.90	P	0	3.06	5.96	1-1	3- 3	4456.331	J	(1) (2)	3.03	5.80	45	a ¹ G-z ³ H°
58.99 91.180	₩ S	{1 2 -}	2.94 6. 2.98 6.		5-51 4-4		4141.352 4170.906	U B	(1) 5	3.00	5.98 5.96		c ³ P-w ³ G° (480) c ³ P-x ³ P°	4436.931 4343.699	V J	(2)	3.03	5.82	4-4 4-4	(516) a ¹ G-w ⁵ G•
49.50	P	•	2.94 6.		5–5	b ³ G-x ¹ H° (453) b ³ G-w ¹ F°	4210.39 *4134.433	P V	(1)	3.06 3.00	5.99 5.99	1-1 3-1	(482)	4369.774	В	7	3.03	5.86	4-4	(517) a ¹ G-z ¹ G•
56.464 78.545	A A	(1)			4-3 3-3	(454)	4230.347 4248.228 4267.830	J J B	4 4 5	3.06 3.06 3.10	5.98 5.96 5.99	1-0 1-3 0-1		4298.040 4302.191	B J	(2)	3.03 3.03	5.91 5.90	4-5 4-4	(518) a ¹ G-x ³ G° (520)
13.079 45.057	A A	(2) (1)	2.98 6.	90	5-5 4-4	b ³ G-s ³ G° (455)	m4044.64	P U	Fe	3.00 3.06	6.06	2-2	c ³ P-2° (484)	4225.956 *4202.755	J V	3 (1)	3.03	5.95 5.97		a ¹ G-w ³ G° (521)
47.792 66.98	V P	©Î	3.00 6.	.90	3-3 3-4		4117.32 4013.798	V	(1) (1)	3.00	6.06	1-3 2-3	c ³ P-w ³ F°	4199.098	V J	20	3.03	5.97		a ¹ G-z ¹ H°
66.69 62.872	P S	©? (1)			5–5 5–4	b ³ G-u ³ H° (456)	4053.82 3983.35	W U	${1 \atop 1} \atop {1 \atop 1}$	3.06 3.00	6.10 6.10	1-3 3-3	(485)	4143.418	J	15	3.03	6.01	4-4	(522) a ¹ G-y ¹ G• (523)
47.047 60.545	V V	(1) (1) (2)	2.98 7.	.01	5-4 4-3	b ³ G-u ³ F° (457)	4031.243 4085.38	V P	(3)	3.00 3.06	6.07 6.08	3-3 1-3	c ³ P-v ³ D° (486)	4074.794 4052.664	J V	5 (1)	3.03 3.03	6.06 6.08	4-4 4-3	alg_w3re (524)
74.157 14.120?	v s	(2)	3.00 7. 2.94 7.		3-2 5-4	b ³ G-v ¹ G°	*4130.035 4013.822 4076.232	յ Մ	(1) 2 (1)		6.09 6.08 6.09	0-1 3-3 1-1		4070.45	P	© 7	3.03	6.07		(525)
30.757	s	(-)	2.98 7.	.05	4-5	(458) b ³ G-x ³ I° (459) b ³ G-t ³ F°†	*4004.976 3976.392	J V	{\frac{1}{1}} {\frac{1}{1}}	3.00	6.09	3-1 3-3	c ³ P-z ¹ De	3994.117 3974.65	J P	© ©	3.03 3.03	6.12 6.14	4-4	aig_y3H° (526)
82.2349 95.838 90.34	U U P	(1) (1)	3.00 7.	12	4-3 3-2 4-4	b ³ G-t ³ F* † (460)	4046.629 3867.219	V B	(1) 7	3.06 3.00	6.11	1-3 3-3	(487) c ³ p_w ³ p°	4017.156 3990.379 3955.22	J J P	6 2 0	3.03 3.03 3.03	6.11 6.13 6.15	4-5 4-4 4-3	a ¹ G-v ³ G° (527)
	•		3.00 4.			3n -3ne	3955.956 3888.825	J	3	3.06 3.00	6.18 6.18	1-1 3-1	(488)	3843.259	В	8	3.03			a ¹ G-z ¹ F°
01.72 23.65 70.26	P D P	3 ⊙	3.06 4.	. 24	3-3 1-1 3-1	(461)	3970.391 *3933.606 4006.631	J J	(2) 2	3.06 3.06 3.10	6.17 6.20 6.18	1-0 1-3 0-1		3839.259	В	7	3.03	6.25		(528) a ¹ G-x ¹ G• (529)
18.36 96.30	F	3 3	3.06 4. 3.06 4.	. 27 . 19	1-0 1-2		3808.286	J	(1)	3.00	6.24	2-3	03p_z1F0	3729.34	P	© (4)	3.03	6.34		a ¹ G-u ⁵ F° (530) a ¹ G-x ³ H°
83.09 12.95	D P	3 ©			0-1 2-3?	o ³ P-z ³ G*	3699.147 3722.23	J P	1 ©	3.00 3.06	6.34 6.37	2-3 1-3	(489) c ^{3p_t5} p° (490)	3773.364 3732.13	V P	(1) ©†	3.03	6.30	4-3	(531) a1G-t5D°
23.668	ï	13	3.00 4.	.71	2-3	(462) c ³ P_y ³ D•	3662.73 3693.79	P	0	3.00 3.06	6.37 6.40	3-3		*3740.061	Ţ	(1)	3.03	6.33	4-4	(532) a1G_V3F°
89.17 90.12 70.48	V P P	3 © ©	3.10 4.	. 81	1-3 0-1 3-3	(463)	3635.19 •3679.53	¥	(1)	3.00 3.06	6.40 6.41	3-1 1-0		3730.386 3689.897	G V	3 (1w)	3.03 3.03	6.34 6.38	4-5 4-4	(532a) a ¹ G-u ³ G• (533)
28.58 19.42	P P	0			1-1 2-1		3698.611 3782.608	յ յ V	(1) (1)	3.00 3.06	6.34	2-3 1-2	o ³ p_v ³ F° (491)	3725.498	J	(1)	3.03	6.35	4-4	a ¹ G-4° (534)
93.850 27.07	T P	(0)			2-3 1-2	o ³ P-x ⁵ P° (464)	3721.189 3636.650	v	1	3.00	6.32	2-2 2-3	₀ 3p_u ³ G•	*3695.054	В	8	3.03	6.37	4-5	a ¹ G-6° (534a) a ¹ G-t ³ D°
57.90 96.90 60.909	P P U	0 0 (1)	3.10 5. 3.00 5.	. 32 . 29	0-1 3-3 1-1		3652.26 3711.411	P J	0	3.00 3.06	6.38 6.38	2-2 1-2	(493) c ^{3p_y1} D° (494)	3617.09 3545.832	₩	(1) (1)	3.03	6.45 6.51		a ¹ G-t ³ D° (535) a ¹ G-w ³ H°
33.77	P	©	3.00 5.	.32	2-1	3. E -	*3645.090	V.	.2	3.00	6.39	2-2	e3p-x1pe	3529.531	ט	(1)	3.03			(536) a ¹ G-y ³ I°
04.038 36.931§ 79.84	T R P	(-) a ©	3.00 5.	. 45	2-3 2-2 3-1	o ³ P_w ⁵ D° (465)	3704.010 3617.788	V B	(1) 13	3.06 3.00	6.39 6.42	1-2 2-3	(495) c ³ P-u ³ D°	3522.73	P	Q	3.03	6.54	4-3	(537) alg-s3p• (538)
45.29	P	0	3.00 5.	. 50	2-3	c3pv5pe	3632.042 3645.822	J J	10 6	3.06 3.10	6.46 6.48	1-2 0-1	(496)	3437.046	G.	3	3.03	6.62		a ¹ G_y ¹ F° (539)
)25.73)82.68	P P	0			1-3 0-1	(466)	3575.374 3603.828 3548.037	J J U	4 1 (3)	3.00 3.06 3.00	6.46 6.48 6.48	3-3 1-1 3-1		3429.82 3425.009	P G	⊙ 4	3.03	6.63 6.64		a ¹ G-y ¹ H° (540) a ¹ G-x ¹ F°
786.810 374.35	B P	5 ©	3.06 5.	. 59	3-3 1-3	e ³ P-x ³ D* (467)	m3586.10	P	Fe	3.00	6.45	2-3	03P_t3D*	3410.031	ט	(1)	3.03	6.65		(541) a ¹ G-10°
86.17 772.817 811.04	P B V	© 3 (1)	3.00 5.	. 59	0-1 3-3 1-1		3581.916 *3690.450 m3526.69	U V P	(1) (1) Fe	3.06 3.10 3.00	6.50 6.44 6.50	1-3 0-17 3-3	(497)	33 29 .532	V	(8)	3.03	6.74	4-3	(543) a1G-t3G* (543a)
713.104	V	{1 1}	3.00 5.	. 62	3-1	-3n 5-a	m3647.43 3590.29	P P	Fe ©î	3.06 3.00	6.44	1-17		3395.87	P	© F•		6.67		a ¹ G-12° (543)
585.59 520.13 528.82	P P P	000	3.06 5.		3-3 1-1 3-1	c ³ P_₩ ⁵ P° (468)	3505.065 3559.506	y J	a a	3.00 3.06	6.53 6.53	3-1 1-1	c ³ P_8° (498)	m3306.35	P U	Fe (1)	3.03	6.77	4-5	a ¹ G-w ¹ G• (544) a ¹ G-v ³ H•
490.084 579.825	J V	(2) (1)		.75 .75	3-1 1-1	c ³ P_z ³ g° (469)	3600.48 m3497.89	P P	⊙î Fe	3.10	6.53 6.53	0-1 2-2	c ³ P_v ³ Pe	3238.32 3229.994	P U	⊚ (3)	3.03	6.84	4-4 4-5	(545) a ¹ G-x ¹ H°
461.205	v P		3.00 5	.77	2-3	o ³ P_u ⁵ D°	*3442.979 3392.018	A A	(1) 3	3.06	6.64 6.64	1-1 3-1	(499)	3202.562	V	а	3.03	6.89		(546) alg_wire (547)
520.24 § 526.563 432.80	P J P	(2) (1) (2)	3.10 5	. 79 . 82 . 79	1-3 0-1 3-3	(471)	3552.112 •3507.39 §	V W	1 (1)	3.06 3.06	6.53 6.58	1-2	o ³ P-s ³ D°	3190.651 3190.825	U V	(a)	3.03 3.03	6.90 6.90	4-5 4-4	a ¹ G-8 ³ G° (548)
461.989 376.782	J ♥ P	(4) (1)	3.06 5 3.00 5	.82 .82	1-1 3-1		3459.911	G.	4	3.00	6.57	3-1	(500) c ³ P_z ¹ P° (501)	*3171.353 3073.244	v s	5 (_)	3.03	6.93 7.05	4-3 4-5	a ¹ G-x ³ I°
463.14		w	3.06 5	.82	1-0		3512.95	*	(1)	3.06	6.57	11	(501)	JUI 10 - 10 TT	-	\-/			5	(549)

I A Ref Int. Low High (No) I A Ref Int Low High (No) I A Ref Int Low High	J Multiplet (No)
Fe I continued Fe I continued Fe I continued Fe I continued 6831.44 P ○? 3.20 5.00 4-3 z ⁵ p°-a ¹ F 3911.00 P (1) 3.20 6.35 4-4 z ⁵ p°-f ⁵ F 5920.520 V (2) 3.22 5.33 (5677.54 P ○ 3.20 5.05 4-3 z ⁵ p°-X 3941.283 J (3) 3.25 6.38 2-2 cont 6109.318 V (1) 3.29 5.33 (6677.90 P ○ 3.23 5.08 3-2 (551) 3955.352 J (3) 3.27 6.39 1-1	5-6 (581) 4-5 cont
6786.41 P 0 3.23 5.05 3-3 3889.33 P 3.20 6.37 4-3 5587.36 P 0? 3.25 5.46 6737.29 P 0 3.25 5.08 2-3 3910.52 P 0 3.23 6.38 3-2 5675.08 P 0? 3.29 5.46 6879.59 P 0 3.25 5.05 2-3 *3933.606 J (2) 3.25 6.39 2-1 6801.31 P 0? 3.27 5.08 1-2 509.99 P 0 3.27 5.08 1-2 509.99 P 0 3.28 5.56 509.99 P 0 3.25 5.65 P 0 3.29 5.65 509.99 P 0 3.25 5.65 P 0 3.29 5.65 F 0 0 3.29 F 0 0 3.29 F 0 0 3.29 F 0 0 3.29 F 0 0 3.	4-5 (583) 6-5 b ³ H-y ³ G° 5-4 (584)
5872.73 P 3.23 5.33 3-4 (552) 4052.466 V (1) 3.27 6.31 1-2 5277.32 P © 3.25 5.56 *5848.09 W (2n) 3.25 5.36 2-3 5317.394 V (1) 3.29 5.61 5827.89 P © 3.27 5.39 1-2 3936.79 P © 3.20 6.33 4-3 z ⁵ D°-e ³ D 5807.79 P © 3.28 5.40 0-1 3905.18 P © 3.23 6.39 3-2 (564) *5030.7844 R 5 3.22 5.66	5-5 4-4 6-7 b ³ H-z ³ I [•] 5-6 (585)
•5780.83 V (1) 3.25 5.39 2-2 m3935.86 P Fe 3.25 6.39 2-2 m5018.43 P Fe+ 3.22 5.66 5714.88 P © 3.23 5.39 3-2 3911.18 P 3.27 6.42 1-1 5052.97 P © 3.25 5.70 4006.16 P © 3.25 6.33 2-3 5324.185 I 30 3.20 5.52 4-4 z ⁵ D°-e ⁵ D 3957.62 W (1) 3.27 6.39 1-2 4975.415 U (1) 3.29 5.77	6-6 5-5 4-4 b ³ H-u ⁵ D°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(587) 6-6 b ³ H-z ³ H ⁶ 5-5 (588) 4-4
*5829.857 J 5n 3.27 5.63 1-0 3864.30 P © 3.20 6.39 4-3 4782.79 P © 3.23 5.85 5.93.174 I 10 3.23 5.52 3-4 3858.48 P © 3.23 6.43 3-2 4816.67 P © 3.25 5.85 5.339.935 I 12 3.25 5.56 2-3 3863.70 P © 3.25 6.45 2-1 *4845.656 V (2) 3.25 5.85 5.85 5.85 5.85 5.85 5.85 5.85 5	5-4 5-6 4-3 b ³ H-w ³ D ⁶ (589)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-4 (590) 6-5 b ³ H-x ³ G ^e 5-4 (591)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6-5 b ³ H-v ⁵ F° (592) 6-5 b ³ H-w ³ G° 5-4 (593)
*4531.633 J (2) $3.20 ext{ 5.92} ext{ 4-4 } ext{ } ext{ } ext{ 5} ext{ p^{\bullet}} = ext{ a} ext{ } ext{ } ext{ 3906.97} ext{ P} ext{ O} ext{ $0.92} ext{ } ext{ $0.92} ext{ $0.92} $	5-5 6-5 b ³ H-z ¹ H ^o 5-5 (594)
4504.838 J (2) 3.25 5.99 2-3 3668.214 U (1) 3.23 6.59 3-4 (568) 4009.54 P © 3.20 6.28 4-5 z ⁵ D°-e ⁷ F 3598.93 ? W (1) 3.27 6.70 1-2 4528.76 P © 3.29 6.01 3990.55 P © 3.23 6.32 3-4 (556) 3591.485 U (1) 3.28 6.71 0-1 •4029.640 V 3n 3.25 6.31 2-3 *3636.186 V 3 3.20 6.59 4-4 4446.90 P © 3.29 6.06 •4022.744 U (1) 3.27 6.34 1-2 3582.34 P © 3.27 6.71 1-1	
3997.49 P © 3.23 6.31 3-3 4280.00.266 J (1) 3.25 6.34 2-2 *3667.999 V 1 3.20 6.56 4-4 z ⁵ p°-h ⁵ p m4299.25 P Fe 3.25 6.16 4042.75 P © 3.27 6.32 1-1 m3647.84 P Fe 3.23 6.61 3-3 (569) 4327.92 W (2) 3.29 6.14 3959.46 P © 3.25 6.32 2-1 3615.19 W (1) 3.25 6.66 2-2 4330.962 V (1) 3.25 6.16 4020.05 P © 3.25 6.32 2-1 3615.19 W (1) 3.27 6.68 1-1 3616.15 P (1) 3.20 6.61 4-3 4280.53 U (1) 3.22 6.16 4084.17 P © 3.20 6.22 4-5 z ⁵ p°-t ⁷ D 3592.68 W (1) 3.23 6.66 3-2 4294.939 V (1w) 3.25 6.15	6-6 b ³ H-y ³ H° 5-5 (597) 4-4
4052.73 P © 3.23 6.27 3-4 (557) 3597.05 W 3n 3.25 6.68 2-1 4304.87 P © 3.29 6.15 4076.810 J (1w) 3.25 6.28 2-3 3700.61 P © 3.23 6.56 3-4 4325.95 P © 3.25 6.11 4080.886 V (1w) 3.28 6.30 0-1 4013.641 J (2) 3.20 6.27 4-4 3667.252 G 3n 3.20 6.56 4-3 z ⁵ D ⁰ -z ⁵ P	5-47 (598) 4-3 5-5 4-4
*4043.901 V 5n 3.23 6.28 3-3 3644.798 Ü (1) 3.23 6.61 3-2 (570) 4167.862 V (2) 3.29 6.26 4054.18 W (1) 3.25 6.30 2-2 3624.08 P © 3.25 6.66 2-1 4069.08 U (1) 3.27 6.30 1-1 3671.51 W (1) 3.25 6.61 2-2 *4038.622 Q (-) 3.29 6.36 *4004.976 J (1) 3.20 6.28 4-3 *3690.450 V (1) 3.27 6.61 1-2 *4099.08 U (1) 3.29 6.30 *4021.622 V (1) 3.23 6.30 3-2 4046.07 P © 3.25 6.30 3-1 3651.03 P © 3.20 6.58 4-5 \$\frac{5}{2}\$P^*-\$\frac{5}{2}\$G 4012.16 W (1) 3.22 6.30 \$\frac{5}{2}\$G 3618.392 J 2 3.23 6.64 3-4 (571) 4004.832 J (1) 3.23 6.30	4-4 b ³ H-x ¹ G° (599) 4-4 b ³ H-u ⁵ F° (600) 6-6 b ³ H-x ³ H°
*3618.398 J 2 3.23 6.64 3-4 (571) 4004.832 J (1) 3.23 6.30 4076.636 J 8n 3.20 6.22 4-4 z ⁵ D°-r ⁵ D 3593.33 W (1) 3.25 6.69 2-3 4098.183 J 4n 3.23 6.24 3-3 (558) 3565.83 P © 3.25 6.71 2-2 4041.911 S (-) 3.29 6.34 *4104.132 K 3 3.25 6.36 2-2 4097.099 J (1) 3.27 6.28 1-1 3558.08 P © 3.23 6.70 3-4 z ⁵ D°-e ⁵ H 4006.314 J 3 3.25 6.33 4058.227 K 4n 3.20 6.24 4-3 3496.60 P © 3.20 6.73 4-3 (572) *4041.288 V (1) 3.29 6.34	6-5 (601) 4-3 b ³ H-t ⁵ p* (602) 5-4 b ³ H- v³F * 4-3 (603)
4070.766 J 5n 3.23 6.26 3-2 4073.760 K 4n 3.25 6.28 2-1 3590.99 W (1) 3.20 6.63 $4-5$ $z^5p^0-e^3q$ 3956.459 J 9 3.22 6.34 4080.226 J 2n 3.27 6.29 1-0 3579.83 P © 3.23 6.67 3-4 (573) 3948.779 B 10 3.25 6.38 4116.97 U (1) 3.23 6.23 3-4 396.42 4131.97 P © 3.25 6.24 2-3 3621.19 P © 3.23 6.64 3-3 $z^5p^0-z^5p$ 3995.199 J (1w) 3.25 6.34	6-5 b ³ H-u ³ G ^o 5-4 (604) 4-3 5-5
4109.070 J (1) 3.28 6.28 0-1 3583.337 J 2 3.28 6.72 0-17 3989.60 P © 3.25 6.35 4067.984 J 8n 3.20 6.23 4-4 $z^5 p^6 - e^7 P$ 3518.23 P © 3.23 6.73 3-4 $z^5 p^6 - e^3 H$ 3916.733 I 6 3.22 6.37 4076.89 P (1) 3.25 6.28 2-2 3473.23 P © 3.20 6.75 4-4 $z^5 p^6 - z^5 F$ 3954.715 U (1) 3.25 6.37	5-4 b ³ H-4° (605) 6-5 b ³ H-6° 5-5 (606)
4045.59 P © 3.20 6.25 4-3 3419.157 V (1) 3.23 6.84 3-2 (576) 3998.46 P © 3.29 6.37 4043.98 P © 3.23 6.28 3-2 3503.46 P © 3.23 6.75 3-4 4108.13 P © 3.23 6.23 3-4 3473.01 P © 3.25 6.81 2-3 3797.517 B 12 3.22 6.47 4118.904 V (1) 3.25 6.25 2-3 3459.29 P © 3.27 6.84 1-2 3808.697 G 10 3.25 6.50 4030.499 J (6) 3.20 6.26 4-5 z ⁵ p°-e ⁵ G 3418.176 U (2w) 3.27 6.88 1-0 z ⁵ p°-e ³ P 3771.50 P © 3.22 6.50	4-5 6-6 b ³ H-w ³ H° 5-5 (607) 4-4 6-5
4024.735 J 6n 3.23 6.29 3-4 (560) 3502.85 P © 3.25 6.77 2-2 (577) 3784.27 P © 3.25 6.51 4018.282 J (4) 3.25 6.33 2-3 3459.61 P © 3.27 6.84 1-1 3765.542 B 20 3.22 6.50 m3986.18 P Fe 3.20 6.39 4-4 3143.990 C 8 3.20 7.12 4-4 z ⁵ D°-1 ⁵ D 3821.181 I 10 3.25 6.48 3986.30 P © 3.23 6.32 3-3 3156.275 G 5n 3.23 7.14 3-3 (578) 3805.345 B 12 3.29 6.53 3994.00 P 3.25 6.34 2-2 3160.200 V (2n) 3.25 7.16 2-2 3785.708 J (1) 3.22 6.48 3948.48 P © 3.20 6.33 4-3 3132.514 V 4n 3.20 7.14 4-3 3765.70 W (1) 3.25 6.53	5-4 6-7 b ³ H-y ³ I• 5-6 (608) 4-5 6-6
3962.43 P © 3.23 6.34 3-2 3140.385 V 5n 3.23 7.16 3-2 3167.907 V (1) 3.23 7.12 3-4 3704.336 V (1) 3.22 6.55 3967.964 J 4n 3.23 6.34 3-4 (561) 3967.964 J 4n 3.23 6.34 3-4 (561)	5-5 6-6 b ³ H-z ¹ I° 5-6 (609)
3979.65 W (1) 3.25 6.35 2-3 3150.301 V (2n) 3.27 7.19 1-2 z ⁵ D ⁰ -4 3705.70 P © 3.25 6.58 399.24 P © 3.27 6.36 1-2 (578a) (578a) 3996.26 P © 3.28 6.37 0-1 3596.26 P © 3.28 6.37 0-1 3596.26 P © 3.28 6.37 1-1 10780.71 P © 3.22 4.37 6±5 b ³ H-z ⁵ C ⁰ 3584.960 J 4 3.25 6.70 3984.93 P © 3.27 6.37 1-1 10618.75 P © 3.29 4.45 5-4 (579) 3573.896 G 4 3.29 6.70 5.70 10618.75 P © 3.29 4.45 4-3 3620.87 P © 3.29 6.70	5-4 b ³ H-9° (610) 6-5 b ³ H-t ³ G° 5-4 (611) 4-3
*3966.630 J 10n 3.20 6.31 4-5 z^5 pe_ z^5 p 3948.105 J 6n 3.23 6.35 3-4 (562) 9673.16 F 1n 3.25 4.53 5-4 b^3 H- y^3 Fe 3582.201 J 5 3.22 6.67 3957.027 J 4n 3.25 6.37 2-3 3963.108 J 6n 3.27 6.38 1-2 5807.22 P © 3.22 5.35 6-8 b^3 H- z^5 He *3966.532 V (1n) 3.28 6.39 0-1 6007.75 P © 3.25 5.31 5-5 (581) 3576.760 B 2 3.25 6.70 6085.81 P © 3.29 5.32 4-4 3612.51 P © 3.29 6.70	6-5 b ³ H-12° 5-5 (612) 5-4 b ³ H-13° 4-4 (613a)

Labo I A	rator Ref	'y Int		P High	J	Multiplet (No)	Labo I A	orato Ref	ry Int	E Low	P High	J	Multiplet (No)	Labo I A	rator Ref	ry Int	E :	P High	J	
<u>re I</u> con							Fe I com						1-1-7	Fe I con			TOM	uran		(No)
3512.74 3547.203	P J	(3) ©	3.25 3.29	6.77 6.77	5-4 4-4		4611.05 4521.65 4565.324	P P V	© © (2n)	3.29 3.26 3.26	5.96 5.99 5.96	2-2 1-1 1-2	(641)	3368.25 3391.84	P P	0	3.24 3.29	6.90 6.93	3-4 2-3	a ³ D-a ³ G• (678)
3402.256 3437.958 3469.012	A A G	(2) (3)	3.22 3.25 3.29	6.84	66 55 44	(614)	4414.47	P	(1)	3.26	6.06	1-8	a3D-20	3310.496	V	(3)	3.24	6.97	3-4	a ³ D-u ³ H• (679)
3409.20 3436.045 3430.88	W V P	(2) (2) (3) (1) ©	3.22 3.25 3.25	6.84 6.84	6-5 5-4 5-6	; :	4368.66 4419.78	P P	0	3.24 3.29	6.06 6.08	3-4 2-3	(644)	3292.022 3314.742 3282.891	o co	8 7 (2)	3.29	6.99 7.01 7.02	3-4 2-3 1-2	(679) a3D-u3F• (680)
3398.12	P P	0	3.22	6.85	6-5	ь ³ н-х ¹ н°	4341.57 4343.22	P	0 0	3.26 3.24	6.10	1-2 3-3		3271.498 3306.495 3263.45	V V P	(2) (2) (1) ©	3.24 3.29	7.01 7.02 7.03	3-3 2-2 3-2	
34 26.67 34 28.01	P	0	3.25 3.29	6.85 6.89	55 43	b ³ H-w ¹ Fe	4343.257 4409.123 4440.972	J J ♥	(2) (31) (3)	3.24 3.29 3.29	6.08 8.09 6.07	3-2 3-1 3-3	(645)	3253.610	V	4		7.03	3-4	a ³ D-v ¹ G° (681)
3307.234 3328.867	œ c	5	3.25	6.96	6-6 5-5	(617)	4377.796 4422.882	v v	(1) (in)	3.26 3.29	6.08	1-3 2-3		3191.41 3223.08 3193.74	P P P	000	3.29	7.10 7.13 7.13	3-4 2-3 1-2	a3D_t3pe (682)
3355.228 3301.927 3324.372	V V	6 (1) (2) (1) (2)	3.29 3.22 3.25	6.97 6.96 6.97	4-4 6-5 5-4		4304.15 4231.525	P V	© (1gn)	3.29 3.24	6.15 6.15	2-3 3-3		3216.06	P	<u> </u>		7.13	3-3 -	
3334.278 3359.814	V V P		3.25 3.29	6.95 6.96	5-6 4-5	_	4299.49 4374.495	P V	© (1)	3.24 3.29	6.11 6.11	3-2 2-2		7478.87 7340.78	P P	0	3.35 3.40	5.00 5.08	4-3 3-2	z ⁵ F°-a ¹ F (683) z ⁵ F°-X
3305.75 3315.17 33 36.262	P V	© (3)	3.25 3.29 3.29	6.99 7.01 6.99	4-3 4-4		4172.126 4268.744	J J	5 2	3.29	6.20 6.18	3-2 3-1		7398.78 6271.289	P	© (1)	3.42	5.08	1-2 5-5	(684) 25F0_e ⁷ D
3296.806\$	v c	(1)	3.29	7.03	4-4	(619)	4246.02 4242.730 •4229.516	P J J	© (2) (1gn)	3.26 3.29 3.26	6.17 6.20 6.18	1-0 3-3 1-1		6249.65 6232.735 6219.54	P Q P	(-) (-)	3.35 3.38	5.33 5.36 5.39	4-4 3-3 2-2	(685)
3233.053 3254.363 3280.261	d C C	8 10 8	3.22 3.25 3.29	7.04 7.05 7.05	6-7 5-6 4-5	(620)	4103.62 4171.904	P V	(3) ©	3.24 3.29	6.24 6.24	3-3 2-3	a ³ D-z ¹ F° (650)	6137.51 6145.42 6388.41	P P P	000	3.32 3.35	5.33 5.36 5.29	5-4 4-3 4-5	
0145.00	P .	© †	3.24	4.45	 33	a3D-z3Ge	*4099.08	U	(1)	3.24			a ³ D-x ¹ G°	6339.96 5615.652	P B	ŏ 50	3.38	5.33	3-4	z ⁵ F°_e 5 p
9556.56 9485.93	F P	1	3.24 3.29	4.53	3-4 3-3	(622)	*3932.629 *3966.532 3914.42	J V P	(in) ©	3.26 3.29 3.26	6.40 6.40 6.41	1-3 3-3 1-1	(651) a ³ D-u ⁵ F° (652)	5586.763 5572.849 5569.625	B B B	40 30 20	3.35 3.38	5.56 5.60 5.62	5-4 4-3 3-2 3-1	(686)
8 994. 62 91 4 0.15 91 7 3.83	P U	© (1)	3.26 3.24 3.29	4.63 4.59 4.63	1-2 3-3 2-2		3948.00 •4022.744	P U	© (1)	3.29	6.41	3-1 3-4	a3D-t5D°	5576.097 5709.378 5658.826	J K B	10 10 10	3.42 3.35	5.63 5.52	1-0 4-4	
3365.642 3293.527	E	25 20	3.24 3.29	4.71 4.77	33 22	(623)	*4041.288 3963.43	V P		3.29 3.26	6.34	3-3 1-3	(654)	5624.549 5602.955 5784.69	B J V	10 10	3.40 3.42	5.56 5.60 5.62	3-3 2-2 1-1	
7941.09 3027.96 3080.668	O P E	10 © 10nd?	3.26 3.24 3.29	4.81 4.77 4.81	11 32 21		3986.176 4040.650 4031.968	J J V	5 4 4	3.24 3.29 3.26	6.33 6.34 6.32	3-4 2-3 1-2	a ³ D_ y 3 p° (655)	5712.150 5658.542	v V	(1) (2) (1)	3.40	5.52 5.56 5.60	3-4 2-3 1-2	
3654.40 3146.67	P P	© ©	3.29 3.26	4.71 4.77	2-3 1-2		3976.564 4067.60 *4003.665	V P V	(1) © (1)		6.34 6.32 6.32	3-3 3-3 3-3		4966.096 4946.394 4910.027	B J J	8 4 (2)	3.35	5.80 5.85	4-4	z ⁵ F°-e ⁵ F (687)
130.37 157.41 9 96.22	P P	(1) © ©	3.24 3.29 3.26	5.25 5.29 5.32	3-3 2-3 1-1	a ³ D-x ⁵ P° (624)	3969.628	J	(1)		6.35		a ³ D_4°	4882.151 4863.653 4875.89	J J	(2) (2) (2) (1) (3) (3)	3.40 3.42	5.90 5.93 5.95	3-3 3-2 1-1	
3009.83 384.00	P P	0	3.24 3.29	5.29 5.25	3-2 2-3		3965.446 3929.208	V J	(1) (1)		6.35 6.38	3- 3-4	(657) a3p_5° (658) a3p_u3g°	4855.683 4843.155 4838.519	J J		3.35 3.38	5.85 5.90 5.93	5-4 4-3 3-2	
787.27 623.64 648.90	P P P	0 0	3.24 3.26 3.24	5.37 5.45 5.42	3-4 1-2 3-3	a ³ D-w ⁵ D° (625)	3966.824 3925.55	J P	{1} (1) ©	3.29	6.40	3-3 3-3	(659) a3p_u5pe	5039.266 5002.800 4950.112	V J	(2n) (2) (6)	3.35 3.38	5.95 5.80 5.85	2-1 4-5 3-4	
566.82 617.22	P W	⊙ { <u>1</u> }	3.24		3-2 3-4		38 89.38 3914.50	P	0	3.26	6.43 6.41	1-1	(660)	4907.743 4741.081	J K J	(2) (1)	3.42	5.90 5.93	2-3	5 3
562.712 535.419	y J	(1) (2) (2)	3.24		1-1 3-2	(626)	3923.03 3985.393 3951.164	P J I	© 3 9	3.24 3.29 3.26		3-2 3-3 1-3	a ³ D-y ¹ D° (661)	4679.229 4642.58 4807.725	V P	(1) (1) (2)	3.35 S	5.04	4-3 3-2	z5 F°_{-e}3F (688)
455.09 541.58 262.89	P P	00	3.24	5.51	3-3 2-2	(627)	3914.73 *3976.865	₩ J	{1 1}	3.24	6.39 6.39	3-2	a ³ D-x ¹ D° (663)	4739.699 4678.41 4860.98	V P P	(2) (1) © (1)	3.38 : 3.40 (5.92 5.99 3.04	4-4 3-3 2-2	
358.10 221.75	P P P	© (1)	3.24 3.29 3.26	5.58 5.59 5.63	3-3 3-2 1-1	a ³ D-x ³ D° (628)	3883.282 3894.005	J J	(4) (2)	3.24	6.48	3-3	a ³ D-u ³ D° (683)	4766.87 4701.90	P P	0	3.40	5.92 5.99 5.04	3-4 3-3 1-3	
246.00 020.67 021.894	P V	© (4)	3.24		3-3	a ³ D-w ⁵ Pe	*3829.458 3834.46 3861.60	V P U	1 © (1)		6.48 6.46	1-1 3-2 3-1	(000)	4259.988 4234.176 4200.930	V J J	(2) 6n 3n	3.35	3.21 3.28	4-5	z ⁵ F°-e ⁷ F (689)
871.94 813.11	P V	(1) ©	3.24	5.72	1-2 3-3	(629) a ³ D-u ⁵ D°	*3861.341 3846.803	J B	'a' 8	3.26	6.46	1-3 3-3	a ³ D-t ³ D°	*4238.027 4224.509 4172.641	J V V	4 3n	3.40 6 3.42 6	3.32 3.31 3.34	3-4 2-3 1-2	
838.09 876.19	P P	(1) ©		5.79	1-1 3-2	(630)	3836.332 3878.726 3778.509	I V J	(2) 4	3.29 3.26 3.24	6.50 6.44 6.50	2-2 1-17 3-2	(664)	4161.080 •4208.610 4205.546	V J J	(1) (1) 3n (2)	3.35 6 3.38 6	3.28 3.32 3.31 3.34	5-5 4-4 3-3	
930.04 972.90 919.73	P P P	9000	3.29	5.79 5.77	3-2 2-1 2-2	a ³ D-y ³ P° (631)	3911.699 3906.748	J	(1) 2	3.29 3.29	6.44 6.45	2-17 2-3		4346.59 4111.06 4168.635	P P V	}1 }1 (1w)	3.42 6 3.32 6	32	2-2 1-1 5-4	
790.75 859.31	P P	0	3.24	5.77 5.81 5.83		a ³ D-x ³ F°	3810.759 3779.444	У	3*	3.26	6.53 6.53	1-1	a ³ D-8° (665)	m4176.57 m4327.43	P P	Fe Fe	3.38 6 3.40 6		4-3 3-2 3-1	
808.155 873.74	V P	(1) ©	3.24	5.80 5.82	3-3 3-3	(632) a ³ D-w ³ D°	3802.283 3740.247	J J	(1)	3.24		3-3	a ³ D_v ³ P° (666) a ³ D_s ³ D°	4253.52 4238.71 4177.07	P P P	© (1)	3.32 6 3.35 6 3.32 6		44	₂ 5 _{F°…f} 7 _D (690)
791.250 780.81 841.65	V P P	(1) 0 0		5.84 5.82	2-2 1-1 3-2	(633)	3751.059 3796.90	J U	(i)	3.29 3.29	6.58 6.54	2-2 2-3	(667)	4356.313 4307.08 4369.87	V P P	(1) (3) ©	3.40 6 3.35 6	.30	54 2-1 45	
822.66 716.85	P P	0	3.26	5.82	3-1	-3n -a	3757.459 3727.03	J P	1 ©	3.26	6.57 6.57	2-1 1-1	(888)	4245.358 4278.234	M J	tri	3.32 6 3.35 6	. 22		5 F°_f 5p
807.243 757.582	s J	{ = }	3.29	5.85 5.85 5.85	3-2 3-2 1-2	a ³ D-1° (634)	3688.476 3643.80	V P	(1W) (1)	3.24	6.62	3-4 3-3	a ³ D-9° (669) a ³ D-y ¹ F°	4320.36 4320.52 4306.58	P U P	(1) (1) (1) (1)	3.38 6 3.40 6	.24 .26	4-3 3-3 3-2	(691)
776.075 737.01	Y P	(1) ©		5.87 5.87	2-1 1-1	a ³ D-y ³ s• (635)	3697.510 *3683.616	v v	(1w) (1)	3.29	6.62 6.64	2-3 2-3	(670) a ³ D-x ¹ F°	4341.23 4351.37 *4340.51	P P P	(1) © (1)	3.38 6 3.40 6	. 22 . 34	1-1 3-4 2-3	
326.36 327.02	P P	0 0		5.91	3-3	a ³ D-x ³ G• (636)	3613.45 3666.29	P P	0	3.24	6.65 6.65	3-3 2-3	(671) a ³ D-10° (672)	m4235.96	P J	Fe (2)	3.32 6	. 23		5 _{Fe_e} 7 _p
556.939 514.216	J J	{1} {1}		5.95	3-2	a ³ D_w ⁵ G ⁶ (637) a ³ D_w ⁵ pe	3568.828 3573.403	Ā	(a)	3.24 (3.29 (6.70 6.74	3-4 2-3	23D-t3Ge (673)	4336.86	P J	© 30		. 25	2-3	(692) 5 _{F°-e} 5g
594.959 516.08	V P	(2,g?) ©	3.26	5.96 5.95 5.97	3-1	(638)	3523.18 3598.71	P W	© ,1	3.24	6.74 6.67	33 33	a ³ D-i1°	4247.432 4238.816	I I J	13 10n 6n	3.35 6 3.38 6 3.40 6	. 26 . 29		(693)
192.98 579.07	P P	0	3.24	5.98	3~3	a ³ Dw ³ Ge (639)	*3651.10 3560.705	A.	(1) 5	3.29	8.67 8.70	2-3 3-4	(674) a ³ D-13°	4195.337	J J V	7n 5 (1)	3.42 6 3.32 6 3.35 6	.34 .26	4-3 1-2 5-5 4-4	
555.75 527.796	P V	©	3.26	5.96 5.97	1-2	a ³ D√5≱• (640)	*3431.815 3406.442	J J	3 3	3.29	8.88 8.88	2-3 1-2	(675) a ³ D_w ¹ D° (676)	4196.218 4198.645	J J P	4n 0	3.38 6 3.40 6 3.32 6	. 32 . 34	3-3 3-2	
566.520 533. 143	J ¥	(1) (3) (in,g?)	3.29	5.96 5.99 5.98	3-2 3-1 1-0	a ³ D-x ³ P° (641)	*3381.340	V	(3)	3.24			a ³ D-w ¹ pe (677)	4156.460	V V	(1) (1)	3.35 6 3.38 6	.32	5-4 4-3 3-2	
													(5/7)							

8 Labors			EP		J	Multiplet (No)	Labore		7	E I	High	J	Multiplet (No)	Labora I A 1	atory Ref	Int	E F	High	J	Multiplet (No)
	Ref]	Int	Low	High		(110)	Fe I cont:						• •	Fe I cont	inued					
<u>e I</u> cont:	J	5n		6.29	5-6	25F°-e7G	8978.17 8729.12	P P	⊚ 2	3.40 3.40	4.77 4.81	1-3 1-1	a ¹ P-y ³ D° (713)	4112.09 *3966.532	P V	© (in)	3.53 3.53	6.53 6.64	2-2 2-1	a ¹ D-y ³ P° (766)
154.812 175.89 182.790	J P V	9n © (Sþ,gn)	3.38	6.32 6.34 6.35	4-5 3-4 3-3	(694)	5551.29	P	° ©	3.40	5.62	1-1	a1p-x3pe	4059.726	v	3	3.53	6.57	3-1	a ¹ D-z ¹ Pe (767)
187.59 104.97	₩ U	{1 1	3.42	6.36 6.32	1-2 5-5		5245.72	P	•	3.40	5.75	1-1	(714) a1p_z3s• (715)	3989.859	J	(34)	3.53	6.62		a1D_y1F° (768)
1136.512 1154.109 1168.942	J V	(1) (1w)	3.38	6.34 6.35 6.36	4-4 3-3 3-3		5226.06	P	(1)	3.40	5.76	1-0	aip_y3pe (716)	3973.655	J	3 ©	3.53 3.53	6.64 6.65	2-3 2-3	aiD_xiF° (769) aiD_10°
1087.099 1140.441	J V	{1 1	3.32	6.34 6.36	5-4 3-2		5167.70 50 91. 73	P P	0	3.40 3.40	5.79 5.82	1-2 1-1	a1p_u5p° (717)	3953.50 3845.693	P J	(1)	3.53	6.74	2-3 2-3	(770) a1D_t3G*
1164.24 1126.192	P J	⊙ 3n	-	6.37	2-1 5-5	_z 5 _{F°-f} 5 _F	5029.623	V	(1)	3.40	5.85	1-2	a ¹ P-1° (718)	3682.226	J	20	3.53	6.88	2-2	(771) a ¹ D-w ¹ D° (772)
4114.957 4129.46	J P	(1₩) ⊙	3.35	6.35 6.37	4-4 3-3	(695)	4818.66 4815.22	P P	• •	3.40 3.40	5.96 5.96	1-1	a1 _{P-V} 5pe (719) a1 _{P-X} 3pe	3677.309	J	3	3.53	6.89	2–3	a1D_w1F0 (773)
4140.441 4150.258 4066.02	V J P	(1) (4) ©	3.42	6.38 6.39 6.35	2-2 1-1 5-4		4779.444	Ĵ	(1)	3.40	5.98	1-0	(720)	3636.23	₩	(1)	3.53	6.93	2-3	a1 _{D-8} 3 _G • (774) a1 _{D-u} 3 _F •
4090.984 4112.35	V V	(1w) (1)	3.35 3.38	6.37 6.38	4-3 3-2		4804.59	P P	(1) ©	3.40 3.40	5.97 6.06	1-1	a ¹ P-v ⁵ Fe (721) a ¹ P-2°	3538.31 *3442.979	w v	(1) (1)	3.53 3.53	7.02	2-2 2-3	(775) alp_t3re
4131.94 4176.571 4153.906	P J	© 7n 10n	3.40 3.35 3.38	6.39 6.31 6.35	2-1 4-5 3-4		4647.78 4566.990	v	(1)	3.40	6.10	1-3	(722) a1P_w3F°	3434.95	P _	`ó	3.53	7.12	3 –3	(776)
4153.906 4157.788 4158.798	J J	8n 5n	3.40 3.42	6.37	2-3 1-2		4607.08	P	©	3.40	6.08	1-3	(723) a ¹ P-V ³ D° (724)	7094.30	P	0	3.56	5.30	5-5	a ¹ H-y ⁵ G° (778)
4208.610	J J	3n 4	3.38 3.40	6.31 6.31	3-2 3-2	z ⁵ F°-e ⁵ g (696)	4461.37	W	(1)	3.40	6.17	1-0	a ¹ P_w ³ P° (725)	6019.36	P	•	3.56	5.61		a ¹ H-y ³ G ^e (780)
4238.007 4143.50	P	0	3.35	6.33	4-3	z5F0_e3D	4137.002	J	7	3.40	6.38	1-3	a ¹ P_y ¹ D° (736)	5913.35 5584.768	P V	© (1)	3.56 3.56	5.64 5.77	5-5 5-4	a ¹ H-x ⁵ G ^o (781) a ¹ H-u ⁵ D ^o
4106.437 4083.780	V J	(1) (1) (1) (1)	3.38 3.40	6.39 6.42	3-2 3-1	(697)	*4127.807 *4038.622	J Q	3n (-)	3.40	6.39	1-3	a ¹ P-x ¹ D° (727) a ¹ P-u ³ D°	5532.752	v	(1)	3.56	5.79	5-4	(782) al _{H-X} 3Fe
4183.035 4134.433 4212.06	V V P	{1} 0	3.38 3.40 3.40	6.33 6.39 6.33	3-3 2-2 2-3		4003.764	Ĵ	`a'	3.40	6.48	1-1	(728)	•5466.993	٧	(1)	3.56	5.82	5-4	(783) a1 _{H-z} 3 _H •
4084.498	J	6	3.32	6.22	5-4	z ⁵ F°-g ⁵ D	3976.615 4057.66	J P	4 ©	3.40 3.40	6.50 6.44	1-3	a ¹ P_t ³ D° 7 (729)	5374.78 •5326.154	P V	© (1)	3.56 3.56	5.85 5.87	5-5 5-4	(784) a ¹ H-w ⁵ G• (785)
4063.286 4054.833 4054.883	Y V	(3) (1) 3	3.35 3.38 3.40	6.24 6.26 6.28	4-3 3-2 3-1	(698)	3949.14	W	(1)	3.40	6.53	1-1	(730)	5365.403	J	3	3.56	5.86	5-4	a1H-z1G°
4065.402 4133.869	v J	(8) (8)	3.42 3.35	6.29 6.22	1-0 4-4		3940.044 3806.203	J A	(1) 2	3.40 3.40	6.53 6.64	1-3 1-1	a ¹ p_√3pe (731)	5231.41	U	(1)	3.56	5.92	5-4	(786) a1H_ v 5 p• (787)
4101.272 4082.125	J J V	(3) (3) (1) (1) (2)	3.38 3.40 3.42	6.24 6.26 6.28	3-3 2-2 1-1		3885.07	P	⊙7	3.40	6.58	1-3	(732)	525 7.65 5263.874	P V	(1)	3.56 3.56	5.91 5.90	5-5 5-4	(787) a ¹ H-x ³ G* (788)
4072.518 4173.18 4129.22	P U	(2) (1)	3.38 3.40	6.22	3-4 2-3		3891.928	J	3	3.40	6.57	1-1	a ¹ P_z ¹ P° (733)	5150.19 5115.788	P T	© (1)	3.56 3.56	5.95 5.97	5-5 5-4	a ¹ H-w ³ G* (789)
4099.99	P ••	0	3.42 3.40	6.26	1-3 3-3	_z 5 _{F°-e} 7g	3543.669 3410.171	J G	(4) 3	3.40 3.40	6.88 7.02	1-2	(734)	m5110.36	P	Fe	3.56	5.97	5-5	a ¹ H-z ¹ H ^o
4163.676	V J	(1) (1)		6.37	4-3	(699) z5ro_e5p	*3314.070	v	(1)	3.40	7.13	1-3	(735) alp_t3re	5028 129	J	4	3.56	6.01	5-4	(790) a ¹ H-y ¹ G ^e (791)
4051.923 4090.085	J V	(1) (2) (1)	3.38 3.38	6.43 6.40	3-2 3-3	(700)	0004 55		•	3.53	4.77	- 2-2	(736) a ¹ D-y ³ D°	4927.42	W	(1)	3.56	6.06	5-4	a1 _{H-w} 3 p≎ (792)
4079.18 4105.06 4117.872	P P V	© (1)	3.40 3.42 3.40	6.43 6.43 6.40	2-2 1-1 2-3		9924.35 9620.93	P	0	3.53	4.81	3-1	(737)	4849.67 4809.94	P V	(1)	3.56 3.56	6.10 6.13	5-6 5-5	a ¹ H_y ³ H° (793)
4097.03	P	·ø′	3.42	6.43	1-2	e	6016.66	#	(2)	3.53		2-3	[738]	4843.39 4804.529	P V	(1)	3.56 3.56	6.11 6.13	5-5 5-4	a ¹ H-v ³ G° (794)
3817.64 3811.80	W P	3n © ©		6.55 6.59 6.55	5-5 4-4 4-5	z ⁵ F°-g ⁵ F (701)	5614.58 5555.17	P P	© † ⊚	3.53 3.53	5.73 5.75	3-1 3-1	(739)	4587.132	, J	(2)		6.25	5-4	a ¹ H-x ¹ Ge
3860.74 3845.21	P P	o o		6.59	3-4		5467.76	P	0	3.53	5.79	2-2	(740) alp_u5pe	4502.592	y	{1 1}		6.30	5-6 5-5	
3804.013 3789.82	J P	(2) ©	3.32 3.35	6.56 6.61	5-4 4-3	z ⁵ F°-h ⁵ D (702)	5382.750 5275.30	T P	(-) ©	3.53	5.82 5.87	2-1 2-1		4493.37 4432.572	P J	(3)	3.56	6.30	5-5	a ¹ H-u ³ G°
3846.001 3819.50	V P	(1w) ⊙	3.35 3.38	6.56 6.61	4-3 3-2	z ⁵ F°_f ⁵ P (703)	5198.843	v	(1)	3.53		2-3	(743) a ¹ D-x ³ G°	4375.48	P .,	0	3.56 3.56	6.38	5-4 5-4	(797) a ¹ H-4°
3791.73 3843.72	U P	(1) ©	3.40	6.66 6.61	2-1 2-2		5078.53	P	© 1	3.53	5.96	3-1	(743) a ¹ D_v ⁵ pe (744)	4425.662 4382.777	v	(1) (2)	3.56		5-5	(798)
3905.01 3801.975	P J	⊙ (3w)		6.56 6.56	2-3 5-6	z5r0_f5G	5121.96 5091.72	P P	©ୀ ©	3.53 3.53		2-3 2-2	a ¹ D-v ⁵ F°	4201.73	W	{i}	3.56		5-5	
3758.11 3742.937	P V	(0)	3.40 3.42	6.69 6.71	3-3 1-3	(704)	*5031.030	R	3	3.53	5.98	2-3	a ¹ D-w ³ G° (746)	4174.419 4219.364	U B	(1)	3.56 3.56		5-4 5-6	
3785.78 3717.19 3703.43	P P P	000	3.32	6.58 6.64 6.69	5-5 5-4 4-3		5020.819	U	(1)	3.53	5. 99	3-1	a ¹ D-x ³ P° (748)	4118.549	В	15	3.56		5-6	(800) alH-zlI•
3705.26	P	0	3.38	6.71	3-2	. 5 - 7	*4889.009	U	(1)		6.06	a-a	(749)	4014.534	В	10	3.56	6.63	5–5	(801) a ¹ H-y ¹ H° (802)
3721.278 3716.442	V G∙ V	2 13 (1)	3.32 3.35 3.35	6.63 6.67 6.63	5-5 4-4 4-5	z ⁵ F°-e ³ G (705)	4844.016 4869.45	V P	(a) ©		6.08	2-3 2-3	(750)	3972.920	V	(1)	3.56	6.66	5-5	a1H-t3G* (803)
3762.205 3727.53	P	·6′	3.40	6.71	2-3		4705.464	- J	(1)		6.15	2-3	(751) a1D-v3Ge	3846.412	J 	3	3.56		5-4 5-6	(804)
3761.06 3717.84	P P	0	3.35 3.40	6.64 6.72	4-3 3-1	z ⁵ F°_f ³ D (706)	4789.654	В	7	3.53	6.11	2-2	(752) a ¹ D-z ¹ D° (753)	*3748.492§ 3756.939	J	7 4	3.56 3.56		5-5	(805)
*3695.507 3691.53	V P	(1) ©	3.40 3.42	6.74 6.76	3-3 1-1	z ⁵ F°-g ⁷ D (707)	4632.14 4663.183	P J	© (1)	3.53 3.53	6.20 6.18	2-2 2-1	a ¹ D-w ³ Pe	3743.468	J	6	3.56		5-5	(806)
*3740.061 3788.77	V P	(i) ©	3.38	6.68 6.72	3-4 3-3	•	4547.851	В	4	3.53	6.24	2-3	a ¹ D-z ¹ Fe (755)	3690.730 3627.05	J ₩	4	3.56 3.56		5-5 5-5	(807)
3416.52	P	•	3.35	6.97	4-5	z5F0_1 (708)	4343.86 4304.87	P P	0	3.53 3.53	6.37 6.40	2-3 2-2	alD-u5F°	3621.718	Ÿ	(2)	3.56	6.97	5-4	(808)
3380.004	Y	(1)		6.97	5-	(708) z ⁵ F°-3 (709) z ⁵ F°-1 ⁵ D	4392.31	P	.⊙.	3.53	6.34	2-3	a ¹ D-v ³ F°	3599.624	G G	3 6	3.56 3.56		5-4 5-4	(809)
*3243.406 3262.009 3269.240	V V V	(2) (1w)	3.35	7.13 7.14 7.16	5-4 4-3 3-2	(710)	4424.194 4378.73	V P	(1) ©		6.32 6.35	2-2 2-	(757) a ¹ D-5°	3553.741 3538.77	G- ₩		3.56	7.05	5-6	(810) a ¹ H-x ³ I°
3274.452 3286.463	V V	(3w)	3.35 3.38	7.12 7.14	4-4 3-3		4305.20	U	(1)		6.40	2-3	(759) alp_u3ge	3534.52	W	{1} (1)	3.56	7.05	5-5	(811)
3299.079 3304.36	V P	(1w) ©	3.38	7.12 7.14	3-4 3-3		4337.100	J	3	3.53	6.38	2-2	(760) a ¹ D-y ¹ D* (761)	*3479.683 3169.09	V P	(1) ©	3.56 3.56		5-4 5-6	(812)
3211.693 •3214.044	V V	8 20	3.32 3.35	7.16 7.19	5-6 4-5	(711)	4317.04	P	(1)		6.39	3-2	3 a ¹ D-x ¹ D° (762)						_	(813)
•3211.872 •3209.297	V G-	4 6	3.38 3.40	7.22 7.25	3-4 2-3		4219.59 4181.55	P P	0	3.53 3.53		2-2 2-1	aip_u3pe	8461.41 8767.65	P P	0	3.59 3.64		3-3 2-3	
3208.470 •3192.417 3197.53	G- ₩	$\binom{4}{1}$	3.42 3.38 3.40	7.26 7.25 7.26	1-2 3-3 2-2		4151.957 4240.372	V J	(1) (3)	3.53 3.53		2-2 2-1		*7086.76 7158.502	V V	3 1	3.59 3.64	5.33 5.36	3-4 3-3	(815)
3261.332	v	(2)	3.40	7.19	2-2		4133.00	P	(°)		6.53		a ¹ D-8°	6953.01 7057.96	P	0	3.59 3.64	5.36 5.39	3-3 2-2	•
3272.71	บ .	(1)	3.42	7.19	1-3 -	(712)							(765)	7125.00	P	© ?	3.67	5.40	1-1	

Lábo: I A	rator Ref	y Int	Low E	P High	J	Multiplet (No)		rator Ref	y	Low E		J	Multiplet (No)	Laborat I A Re	ory f Int	E Low	P High	J	Multiplet
Fe I con			201	11284		(10)	Fe I con			10*	uren		(10)	Fe I contin		LOW	нідл		(No)
6400.010 6411.658 6408.031 6246.334 6301.515	I I K K	800 400 60 15 15	3.59 3.64 3.67 3.59 3.64	5.58 5.60 5.60 5.60	3-4 2-3 1-2 3-3 2-2	_z 5pe_e ⁵ D (816)	3490.47 3526.96 *3476.336 3507.14 *3457.090	P P V P	© (2w) © (3w)	3.59 3.64 3.59 3.64 3.59	7.12 7.14 7.14 7.16 7.16	3-4 2-3 3-3 2-2 3-2	(835)	5280.364 V 5217.927 T 5223.191 V 5207.95 F	(1)	3.63 3.62 3.62 3.62	5.96 5.99 5.98 5.99	3-3 3-1 1-0 1-1	b ³ D-х ³ Р° (880)
6336.835 6141.734 6232.661 6302.507	K K K	12 4 5 6	3.67 3.59 3.64 3.67	5.62 5.62 5.63	1-1 3-3 3-1 1-0		3428.746 3477.98 3510.18	Y P P	(a) ©	3.59 3.64 3.67	7.19 7.19 7.19	3-2 2-3 1-3	(836)	5066.28 F 5065.201 V 5027.212 V 4970.496 V	(2) (1)	3.63 3.63 3.62 3.62	6.06 6.08 6.10	1-3 3-4 2-3	b ³ D- 3° (883) (883)
5456.48 *5466.993 5461.80 5346.34	W V P P	(1) (1) (0) (0)	3.59 3.64 3.67 3.59	5.85 5.90 5.93 5.90	3-4 2-3 1-2 3-3	_z 5pe _{—e} 5 _F (817)	5981.38 5649.66	P V	© (1)	3.62		 66 65	(837) a ¹ I-z ³ H°	*5031.030 F 4979.58 W	(1) (1)	3.63 3.63 3.63	6.08 6.10 6.07	1-2 3-3 2-3 3-3	_b 3 _{D_v} 3 _D •
5384.22 5331.20 5288.24	P P P	<u>0</u> 0	3.64 3.64 3.59	5.93 5.95 5.92	3-3 3-1 3-4	_z 5pe_e3r	*5538.54 5521.14	Y P	{1 1	3.62 3.62	5.85 5.85	6-6 6-5		5054.647 T 5018.03 F	ō	3.62 3.62	6.07 6.08	2-3 1-2	(884)
5133.22	P	ō	3.59	5.99	3-3	(818)	5465.04	P	(1)	3.62	5.88	6–5	a ¹ I-v ⁵ F° (840)	5035.025 F	. 3 · •	3.63 3.63	6.08	3-3 3-4	b ³ D-3° (885) b ³ D-√3g°
4516.27 m4611.29 4628.69	P P P	© F• ©	3.59 3.64 3.67	6.32 6.31 6.34	3-4 3-3 1-3	z ⁵ pe_e ⁷ r (819)	5397.60 5284.416	W T	(1) (-)	3.62	5.91 5.95	6-5 6-5	(841)	4968.709 V	(1)	3.62	6.11	3-3	(886) b3D-z1pe
#4525.15 4572.86 4488.140	P P J	Fe (1) (3n)	3.59 3.64 3.59	6.31 6.34 6.34	3-3 2-2 3-2		5242.495	В	.4		5.97	6-5	(843) a ¹ I-z ¹ H°	*4802.883 J *4832.734 J	(3) (2) (3)	3.63 3.62	6.20 6.18	3-2 3-1	(887) b ³ D_w ³ P° (888)
4598.74	P	` © .	3.64	6.32	2-1	E . 7	4926.82	P	•	3.62	6.13	6-5	(843) a ¹ I-y ³ H° (844)	*4845.656 V 4799.412 V 4824.162 V	{2} {1} {1}	3.62 3.62 3.62	6.17 6.20 6.18	1-0 3-3 1-1	
4596.059 4673.169 4701.052	K J J	(3n) (4) (1)	3.59 3.64 3.67	6.27 6.28 6.30	3-4 3-3 1-3	(820)	4961.908 4604.85	U P	(1) ©	3.62 3.62	6.11	6–5 6–6	(845)	4708.973 V		3.62	6.24		b ³ D-z ¹ F•
4584.732 4643.468	J Ā	(1) (2)	3.59 3.64	6.28	3-3 2-2		4595.21	P	•	3.62	6.30	6-5	(846)	4706.31 F		3.63	6.25	3-4	(889) b ³ D-x ¹ G• (890) b ³ D-u ⁵ F•
4690.146 *4556.129 4632.83	J J P	(3) 4n ©	3.67 3.59 3.64	6.30 6.30 6.30	1-1 3-2 3-1		*4531.633 *4479.612	J J	(3) (3)	3.62 3.62	6.34	6-5 6-5	(847)	4490.63 F 4448.97 F		3.62 3.62	6.37 6.40	3-3 3-3	_b 3 _{D-u} 5 F• (891)
4678.852 •4745.806	B B	7 3n	3.59 3.64	6.22 6.24	3-4 2-3	z ⁵ P°-f ⁵ D (821)	4309.036 4238.61	J P	(3)	3.62 3.62	6.48 6.53	6-6	(848) a ¹ I- y ³ I°	4605.99 F 4543.22 F 4481.04 F	0	3.63 3.62	6.31 6.34	3-4 3-3	b ³ D-t ⁵ D° (893)
4768.334 •4654.628 4709.092	J J	(1)	3.67 3.59	6.26 6.24	1-2 3-3	(001)	4203.953	v	(1)	3.62	6.55	6-5 6-6	a ¹ I-z ¹ I°	4419.30 F	•	3.62 3.62	6.37 6.41	1-8 1-0	
4727.405 4619.294	j	(3) 3n 3n	3.64 3.67 3.59	6.26 6.28 6.26	2-2 1-1 3-2		4095.63	P	•	3.62	6.63	6–5	(850) a ¹ I-y ¹ H ^o (851)	*4558.108 J 4542.422 V 4568.842 V	(1) (2) (1)	3.63 3.62 3.62	6.33 6.34 6.32	3-4 3-3 1-3	b ³ D- v ³ F• (894)
4669.174 4704.958	J J	(4) (5)	3.64 3.67	6.28 6.29	3-1 1-0		*4052.312 *4047.315	J V	(1) (1)	3.62 3.62	6.66	6-5	a ¹ I-t ³ G• (852)	4545.54 P 4579.68 P	`ó	3.63 3.63	6.34	3-3 3-2	
4667.459 4728.555 4638.016	B J J	6 3n	3.59 3.64	6.23	3-4 3-3	z ⁵ pe_e ⁷ p (822)	3813,891	v	3	3.62	6.85	6-5 6-5	(853) a ¹ I-x ¹ H°	4536.509 U	(1)	3.63	6.35	3-4	b ³ D-4° (896)
4673.28 4584.82,4	P K	(3) © 3	3.59 3.64 3.59	6.25 6.28 6.28	3-3 3-2 3-2		3759.155	¥	(1)	3.62	6.90	6-5	(854) a ¹ I-s ³ G° (855)	4527.90 P 4483.78 P	(1) ©	3.63 3.63	6.35	2- 3-4	b ³ D-5 ⁶ (897) b ³ D-u ³ G ⁶
4560.096 4596.433	J U	(2) (1)	3.59 3.64	6.29 6.32	3-4 3-3	_z 5 _{P*_e} 5 _G (823)	3597.24	P	•	3.62	7.05	6–5 	a ¹ I-x ³ I° (856)	4452.32 P	ŏ	3.63	6.40	3-3	(898)
4510.82 4564.715	P	(1)	3.59 3.64	6.32 6.34	3-3 2-2	(080)	11355.97 10725.19	D P	1 ©	3.63 3.62	4.71 4.77	3-3 2-2	b ³ D-y ³ D• (858)	4479.01 P 4425.79 P 4386.6 W	⊙ ⊙ (1w)	3.63 3.62 3.62	6.38 6.41 6.43	3-3 3-3 1-1	b ³ D-u ⁵ P° (899)
4480.27 4487.36	P P	0	3.59	6.34	3-2 3-4	z5pe_e'7g	10332.33 7323.38	P P	© ©1	3.62 3.63	4.81 5.31	1-1 3-4	ь ³ D-у ⁵ G°	4428.74 P 4393.70 P m4475.99 P	© © F•	3.63 3.62 3.62	6.41 6.43 6.38	3-2 2-1 2-3	
4462.20 •4461.989	P J	⊙ (4)	3.59 3.59	6.35	3–3 3–4	(824) _Z 5pe_f5p	7262.46 6749.52	P P	©1 ©	3.63 3.63	5.33 5.45	3-3 3-2	(859)	4418.60 P *4473.731 J	(a) ©	3.62	6.41	1-3	.3- 1-4
4516.45 4433.793 4495.986	P J J	(3n)	3.64 3.59 3.64		2-3 3-3 2-2	(825)	6603.67	P V	•	3.62	5.49	1-0	(860)	4466.183 V	(1)		6.38 6.39		b ³ D_у¹р• (900) b ³ D_7•
4414.03 4485.97	P P	`o´	3.59 3.64	6.38 6.39	3-2 3-1		6474.61 6603.20	V P	(1) ©	3.63	5.53 5.49	3-2	b ³ D_ y ⁵ D• (861) b ³ D_ y ⁵ 8•	4463.16 P *4461.989 J	⊙ (4)	3.62 3.62	6.39	3-3 3-3	(901) b ³ D-x ¹ D ⁰
4525.142 4611.285	I	5n 5n	3.59 3.64	6.31 6.31	3-2 3-2	z ⁵ pe_e ⁵ g (836)	6307.85 6301.86	P P	©	3.63 3.62	5.58 5.58	3-3 2-3	(862) b ³ D-x ³ D° (863)	4454.655 J 4360.813 V	{4} 1	3.62	6.39	1-3	(903)
4668.07 4495.566	P J	© (1)	3.67 3.59	6.31	1-8 3-3	_z 5pe_e3p	6043.738	ד ד	(1)	3.63	5.67	3-3	b ³ D-x ⁵ G°	*4376.782 V	(1) (1) (1)	3.63 3.63	6.46 6.45	3-2 3-3	b ³ D-u ³ D• (903) b ³ D-t ³ D•
*4488.917 4481.621	J J	(1) (2) (2) (3) (1)	3.64 3.67	6.39 6.42	2-2 1-1	(827)	5762.434 5754.41	V V	${1 \atop 1 \atop 1}$	3.63 3.63	5.77 5.77	3-4 3-3	(864) b ³ D_u ⁵ D° (866)	4285.832 V 4373.90 P	(1) ©		6.50 6.45	2-3 2-3	(904)
4580.600 4542.730	A K	(1)	3.64 3.67	6.33 6.39	2-3 1-2		5702.434 5707.25 5609.97	U P P	(1) 0 0	3.62 3.63 3.62	5.79 5.79 5.82	3-21 3-2 3-1		4253.93 P 4247.29 P	©	3.62 3.62	6.53 6.53	3-1 1-1	b ³ D_8• (905)
4484.227 4482.750 *4479.612	I V J	(2) (3) (5)	3.59 3.64 3.67	6.34 6.39 6.43	3-4 2-3 1-2	z ⁵ pe_g ⁵ D (828)	*5600.242 5760.351	V	(1)	3.62	5.82	1-0	. 7 . 7	4246.090 J 4088.567 V	3 (1)	3.63 3.62	6.53 6.64	3-2 3-1	b ³ D- y 3pe (906)
4401.293 m4427.30	J P	Fe	3.59 3.64	6.39 6.43	3-3 2-2		5698.05 5761.27	V W	(1) (1) (1)	3.63 3.62 3.62	5.77 5.79 5.76	3-3 3-1 1-0	b ³ D_у ³ ре (867)	4243.368 V 4082.44 W 4236.76 U	(1) (2) (2) (1)	3.62 3.62 3.63	6.53 6.64 6.53	3-3 1-1 1-3	, ,
4446.842 4347.854 4395.288	Ā	(a) (a) (a)	3.64	6.45 6.43 6.45	1-1 3-2 3-1		5707.068 5636.708	A A	{1} 1	3.63 3.62	5.79 5.81	3-4 2-3	ь ³ D-х ³ г• (868)	4239.36 P 4236.66 P	0	3.63	6.54	3-3	b ³ D-8 ³ De
4438.353 4440.479	K V		3.67 3.59	6.45 6.37	1-0 3-3	_z 5 _{pe_e} 7 _g	5568.81 5660.79	U	{1 {1}	3.62	5.84	1-1	b ³ D-w ³ D•	4181.20 P	© ©	3.62	6.54 6.57	2-3 1-1	(907) b ³ D-z ¹ P°
4523.403 4388.412	J J	(1) (2)	3.64	6.37	2-3	(829) ₂ 5 _{P9_6} 5 _P	5611.35	P	0	3.62 3.62	5.80 5.82	2-3 1-2	(869)	4172.97 P	0	3.63	6.58	3-4	(908) b ³ D-9• (909)
4423.858 4485.679	Ĭ J	(31)	3.64 3.67	6.40 6.43 6.42	3-3 3-2 1-1	(830)	5487.49 5452.119 5411.39	P U P	(1) (0)	3.63 3.62 3.62	5.87 5.89 5.90	3-4 3-3 3-3	5 _{0−ա} 5 _ն ∙ (870)	4115.89 P 4096.118 V	© (4)		6.62		b ³ D_ y 1 F • (910)
4433.223 4469.381 4476.082	J I Q	3n 5n (4)	3.64	6.43 6.40 6.43	2-1 2-3 1-2		5539.28 •5534.68	¥	{1} {1}	3.63	5.85	3-2		4074.70 P	(1) ©		6.64 6.65		b ³ D-x ¹ F° (911) b ³ D-10°
4107.75 4103.61	P P	0	3.59	6.59	3-4	z ⁵ p•_g ⁵ r	5529.15	w	(2)	3.62 3.63	5.85 5.86	2-2 3-4	(871) b ³ D-z ¹ G*	4030.490 V 3960.284 J	{i}	3.63 3.62	6.70 6.74	3-4 2-3	(912) b ³ D-t ³ G• (913)
4035.25	P	0	3.59	6.65 6.65	2-3 3-3	(831)	5493.33 5482.26	P P	0	3,62 3,62	5.87 5.87	3-1 1-1	(872) b ³ D_y ³ s• (873)	3962.65 P	0	3.63	6.74	3–3	
4147.49 4148.27 4087.79	P P P	000	3.64	6.56 6.61 6.66	3-3 2-2 3-1	₂ 5 _P e_f5 _P (832)	5431.40 5414.91	P P	0	3.63	5.90	3-4	b ³ D-x ³ G•	4058.46 P 4055.98 W	(1)	3.62	6.67 6.67	2-3	b ³ D-11• (914)
4319.74 4117.71	P U	© (4)	3.64	6.56	2-3	-5ma -3m	5386.958	T	© (1)	3.63 3.63	5.91 5.92	3-3 3-4	(874) b ³ D-y ⁵ F°	4010.18 ₩ 3787.164 J	(1) (1)	3.63 3.62	6.70 6.88		b ³ D-13° (915) b ³ D-w ¹ D°
4108.31	P	(1) ©	3.67	6.64 6.67	1-3	(833)	5327.25 5284.27 5294.555	P P T	(-)	3.62 3.62	5.94 5.96 5.96	2-3 1-2 2-3	(875)	3781.938 J	(1)		6.89		(916) b3D_w1pe
3901.0 3 389 6.6 3	P P	©† ©		6.75 6.81	3-4 2-3	₂ 5pe_ ₁ 3p (834)	5253.25 5298.789	P V	(1)		5.97 5.96	1-1 3-3		3767.73 P 3738.51 P	0	3.63 3.62	6.90 6.93	3-4 2-3	(917) b ³ D_s ³ G• (918)
							5315.78 5370.06	P P	(0)		5.95 5.96	3-3 1-1	b ³ D_√ ⁵ p• (877)						•
							5320.048 5305.41	V P	(1) •		5.95 5.95	3-2 1-2							

60							REV 1	SE	ט אג ס	LTI	PLE	T T	ABLE						_	
Labor I A	atory Ref		E Low	P High	J	Multiplet (No)		atory Ref		E I	P High	· J	Multiplet (No)	Labor I A		Int	E 1	P H1gh	J	Multiplet (No)
Fe I cont							Fe I con	tinued						Fe I cont	inued					~ =
3635.08	P	⊙7	3.62	7.02	2-2	b ³ D-u ³ F° (919) b ³ D-r ³ G°	5050.13 5085.93	P P	<u>o</u>	3.86 3.93	6.31 6.35	4-5 3-4	z ³ F°-f ⁵ F (963)	4905.15 4978.11	₩ X P	(1) ©		6-43 6-42 6-48	2-2 1-1 2-1	₂ 3p∘ _{-e} 5p (986)
3245.80 3224.05	P P	, (0,	3.63	7.43 7.45	3-4	_{p3D-r3} g• (920)	5168.18	P	©	3.93	6.31	3-2	z ³ F°-e ⁵ S (964)	4916.67 4966.30	P	© ©		6.43	1-2	
*3225.607	υ -	(1)	3.63	7.45	3 –3 –		5001.871 5014.950	B J	12 10	3.86 3.93	6.33 6.39	4-3 3-2	z3Fe_e3D (965)	4529.562 4479.00	V P	(1) ©	3.87 3.94	6.5 9 6.70	3-6 1-8	z ³ p•_ლ ⁵ ლ (987)
6451.58 6396.39	V P	(2) ©	3.68 3.68	5.59 5.61	4-5 4-4	b ¹ G—у ³ G ° (921)	5022.244 5129.658	J T	6 (1) (1)	3.97 3.93	6.42	2-1 3-3		4441.56 4429.20	P P P	000	3.87 3.91 3.87	6.65 6.70 6.70	3-3 2-2 3-2	
5849.67	P	,©,	3.68	5.79	4-4	b ¹ G-x ³ F° (922)	5099.091 5217.69	T P	(1) ©	3.97 3.97	6.39 6.33	2-2 2-3		4358.95 4404.10	P	Õ	3.91	6.71	3-1	
*5780.83 5619 .23	V P	(1) ⊙î	3.68	5.81 5.87	4-3 4-4	. 1 5	4987.83 *5007.289	P J	© (3n)	3.86 3.93	6.34 6.39	4-4 3-3	z ³ F°-g ⁵ D (966)	4579.05 4498.54	P P	0 0	3.87 3.87	6.56 6.61	3-4	z ³ p°-h ⁵ p (988)
5662.94	v	(1)	3.68	5.86	4-4	(923) big_zig•	5019.74 4885.435	P J	© 2 (2)	3.97 3.86 3.93	6.43 6.39 6.43	2-2 4-3 3-2		4487.01 4504.23	P P	<u>o</u>	3 .91 3 . 94	6.66 6.68	2-2 1-1	
5513.86	P	⊙	3.68	5.92	4-4	(924) b1G-v ⁵ F° (925)	4938.183 4978.606	K J	(2)	3.97	6.45	3-1		4568.62 4546.68	P P	0 0	3.91 3.94	6.61 6.66	11	z ³ D°-f ⁵ p (989)
5543.04 5549.94	P U	(2) (2)	3.68 3.68	5. 91 5. 9 0	4-5 4-4	blo_x3g• (926)	5058.00	W	(1)		6.37	3-3	z ³ F°-e ⁷ S (967) z ³ F°-e ⁵ P	4621.63 4377.330	P U	© (1)	3.94 3.87	6.61 6.69	1-2 3-3	z ³ D°-f ⁵ G
5543.184	V P	(2) ©	3.68 3.68	5.91 5.95	4-3 4-5	b ¹ G-w ³ G°	4933.878 5027.34 5015.30	Q P P	(1) © ©	3.93 3.97 3.97	6.43 6.43 6.43	3-2 3-1 3-3	(968)	4336.60	Þ	·©′	3.87	6.71	3-8	(990)
5423.73 53 85.58	P	o o	3.68	5.97	4-4	(927)	4630.785	U	(1)	3.93	6.59	3-4	z ³ F°-g ⁵ F	*4395.514 4405.40	V P	(1₩) ⊙	3.87 3.91	6.67 6.71	3-4	z ³ D°-e ³ G (991)
5379.580	J	(2)	3.68	5.97	4-5	b ¹ G-z ¹ H° (928)	*4607.655 4526.40	J P	3n ©	3.97 3.86	6.65 6.59	2-3 4-4 3-3	(969)	4335.89 4458.101	U V	(1) (3)	3.87 3.87	6.71. 6.64	3-3 3-3	z ³ p°-f ³ p
5288. 533	V T	(2) (-)	3.68 3.68	6.01 6.06	4-4 4-4	b1g_y1g° (929) b1g_w3F°	4538.84 4438.53 4452.62	W P P	(a) © ©	3.93 3.86 3.93	6.65 6.65 6.70	4-3 3-2		4466.939 4440.840	V V	(2) (1)	3.91 3.94	6.67 6.72	2-2 1-1	(992)
5141.55	P	, <u>o</u> ,	3.68	6.08	4-3	(930)	4492.693	V	(1n)	3.97	6.71	3-1	-3-a 15a	*4395.514 4391.87	V P	(1w) ©	3.87 3.91	6.67 6.72	3-2 2-1 2-3	
5145.73	P	0	3.68		4-3 4-5	b ¹ G-3° (931) b ¹ G-v ³ G°	*4575.80 4598.37 *4495.386	U P V	(1) © (1)	3.86 3.93 3.86	6.56 6.61 6.61	4-4 3-3 4-3	z ³ F°-h ⁵ D (970)	*4531.633 4517.60	J P	(a) ⊙	3.91 3.94	6.64 6.67	1-2	
5084.55 4809.14	P V	© (1)	3.68 3.68		4-5 4-3	(932) b1G-z1F0	4511.04 4544.50	P P	(1) (0)	3.93 3.97	6.66 6.68	3-3		4279.480 *4265.260	V J	(1) (2)	3.87 3.91	6.75 6.81	3-4	z ³ D° <u>-f</u> 3 _F (993)
•4802.883	J	(3)	3.68	6.25	4-4	(933) bld-xld•	4593.544	U P	(1)	3.93 3.97	6.61 6.66	3-2 2-1	z ³ F°-f ⁵ P (971)	4264.743 4200.09	U P	(1) ©	3.94 3.87	6.84 6.81	1-2 3-3	
4700.171	J	(2n)	3.68	6.30	4-5	(934) b ¹ G-x ³ H° (935)	4587.73 4551.667	U	© (1)	3.93	6.64	3-4	z3F0_f5G	4243.786 4220.05	V P	(1₩) ⊙	3.87 3.91	6.77 6.84	3-2 2-1	z ³ D°-e ³ P (994)
•4579.344	V	(1)	3.68	6.37	4-5	ъ ¹ G-6° (936)	4538.58 4450.77	P	0	3.97 3.86	6.69 6.64	2-3 4-4	(972)	4310.37 •4265.260	P J P	(2)	3.91 3.94	6.77 6.84	2-2	
*4509.306	U D	(1) ©	3.68 3.68	6.42 6.50	4-3 4-5	b ¹ G-u ³ D° (937) b ¹ G-w ³ H°	4471.81 4429.32	P U	$\begin{Bmatrix} 1 \\ 1 \end{Bmatrix}$	3.93 3.93	6.6 9 6.71	3-3 3-2		4357.53 3839.614	V	⊙ (S#)	3.94	6.77 7.16	1-2	z ³ D°-1 ⁵ D
4382.02 4248.72	P P	© ©î	3.68		4-4	(938) b10-9°	4456.63 •4490.773	P J	(2n)	3.86 3.93	6.63 6.67	4-5 3-4	z ³ F°-e ³ G (973)	3675.76	P	· ·	3.87	7.22	3-4	(995) z ³ D°-g ⁵ G
4189.564	U	(2)	3.68	6.6 2	4-3	(939) b1G-y1Fe	4494.05 4392.58	P U P	(1) (0)	3.97 3.86 3.93	6.71 6.67 6.71	2-3 4-4 3-3		3699.41 3683.77	P P	0	3.91 3.91	7.25 7.26	2-3 2-3	(996)
4171.696	J	(3)	3.68	6.64	4-3	(940) big_xire (941)	4428.57 4455.032	r J	(2)	3.86	6.64	4-3	z ³ Fo-f ³ D	3717.73	P	•	3.87	7.19	3-8	z ³ D°-4 (997)
4149.49	P	•	3.68		4-3	b ¹ G-10° (942)	*4490.773 4479.97	J P	(2n) ©	3.93 3.97	6.67 6.72	3-2 2-1	(974)	9959.18	P	<u>o</u>	4.06	5.30	4-5	с ³ F_у ⁵ ф (998)
4090.75 4030.90	P P	0	3.68 3.68		4-4 4-3	b ¹ G_t ³ G° (943)	*4556.129 *4558.108 4625.44	J J P	4n (1) ©	3.93 3.97 3.97	6.64 6.67 6.64	3-3 2-2 2-3		8096.874 8422.95	E O	10 2	4.06 4.13	5.58 5.59	4-3 3-2	63F_x3p• (999)
4080.08	P	0	3.68	6.70	4-4	b ¹ G-13° (944)	4354.28	P	0	3.86	6.70	4-5	z ³ F°-e ³ H	8481.96 8466.54	P P	0	4.17 4.12	5.62 5.58	2-1 3-3	• • • • • • • • • • • • • • • • • • • •
399 6.968	J -	2		6.77	4-4	(945)	4394.31 4300.21	P P	0	3.93 3.86	6.73 6.73	3-4 4-4	(975)	8680.77 8727.10	P P	0	4.17 4.17	5.59 5.58	2-2 2-3	
38 85.93 3846. 29	P P	o o	3.68 3.68		4-5 4-3	b ¹ G-x ¹ H° (946) b ¹ G-w ¹ F°	4276.684 4286.976	J V	{1} {1} {1}	3.86 3.93	6.75 6.81	4-4 3-3	z ³ F°_f ³ F (976)	7537.44 7967.03	P P	©1 ©1	4.06 4.17	5.70 5.78	4-3 2-2	c ³ F_w ⁵ P° (1000)
3829.125	J	(1)	3.68		45	(947) b ¹ G-8 ³ G°	4300.828 4197.38	V P	•	3.97 3.86	6.84 6.81	2-3 4-3	•	7219.686	ï	5	4.06	5.77	4-4	c ³ F-u ⁵ p• (1001)
3754.89	P	•	3.68	6.97	4-4	(948) b1G-u3H° (949)	4369.73 3975.85	P W	© (1)	3.93 3.86	6.75 6.97	3-4 4-	z ³ F°-2	7498.56 7617.97 7207.123	V P V	1 © 6	4.12 4.17 4.06	5.77 5.79 5.77	3-3 2-2 4-3	(1001)
3731.15 3704.80	P P	00	3.68 3.68		4-4 4-3	(949) b ¹ G-u ³ F° (950)	3742.14	P	•	3.93	7.22	3-4	(977) z3F°-g5G	7418.674 7454.02	E V	5 (1)	4.12 4.17	5.79 5.82	3-2 3-1	
3681.87	W	(1)	3.68	7.03	4-4		3673.68 3648.22	P P	0	3.86 3.86	7.22 7.25	4-4 4-3	(978)	7512.17 7132.989	P I	© 8	4.13	5.77 5.79	3-4 4-4	c3 F−x 3 F •
3661.25	P	•	3.68	7.05	4-5	(951) b ¹ G-x ³ I° (952)	10469.59	D .	30	3.87	5.05	- 3-3	z ³ D°-X	*7307.938§ 7443.031	L L	8 2	4.13	5.81 5.83	3-3 2-2	(1002)
3590.66	W	(1)	3.68		4-3	b1G-t3F° (953)	10532.21 10143.59	D P	10 ©	3.91 3.87	5.08 5.08	2-2 3-2	(979)	7418.32 7501.25	P P	00	4.13 4.17	5.79 5.81	3-4 2-3	
3291.44 3270.69	P P	© ©	3.68 3.68		4-4 4-3	b1q_r3g• (954)	10884.30 10818.36	D D	3 3	3.91 3.94	5.05 5.08	2-3 1-2		7072.82 7300.59	P P	o	4.06	5.80 5.82	45 34	с ³ F- z ³ н• (1003)
10452.70	D -	5	3.86	5.05	 4-3	z ³ F°-X	7486.13 7474.60	P P	0	3.87 3.91	5.52 5.56	3-4 3-3	z ³ D°-e ⁵ D (980)	7024.084	v	5	4.12 4.06	5.82	4-4	
8686.79	P	©	3.86	5 .29	4-5	(955) z ³ F°-e ⁷ D	7325.33	P	0	3.91	5.60	3-3	z ³ p•_e ⁵ F	7068.415 7284.843	ŗ I	40 4	4.06	5.80 5.82	4-3 3-2	c ³ F-w ³ D° (1004)
8801.78 74 77.52	P P	o	3.93 3.86		3-4 4-4	(956) z ³ F°-e ⁵ D	6226.77 6221.40 6209.73	V V P	(1) 0	3.87 3.91 3.94	5.85 5.90 5.93	3-4 2-3 1-2	(981)	7401.689 7348.51 7476.92	E P P	4 © ©	4.17 4.13 4.17	5.84 5.80 5.88	2-1 3-3 2-2	
754 1.61 75 73.76	U P	(1) ©	3.93 3.97	5.56 5.60	3-3 3- 3	(957)	6083.67 6114.41	P P	000	3.87 3.91	5.90 5.93	3-3		6793.26	v	2	4.06	5.87	4-4	ç3 <u>F_₩</u> 5 @
7268.58 7474.50 7766.72	P P P	000	3.86 3.97 3.93	5.62	4-3 2-1 3-4		6008.577 5934.658	K K	9 5	3.87 3.91	5.92 5.99	3-4 3-3	z ³ D°-e ³ F (982)	7000.633 7107. 4 61	V I P	3 4	4.13	5.89 5.90	3-3 2-2	(1005)
6220.78	٧	(1)	3.86	5. 85	4-4	z3re_e5r	5883.838 5809.249	K K	4	3.94 3.87	6.04 5.99	1-2 3-3	(908)	6745.96 *6933.628	L	⊙ 6	4.06 4.12	5.89 5.90	4-3 3-8	
6419.65	P	© 8	3.93		3-4	(958) -370 -37	5 798.194 56 78.38	V P	(a) (a)	3.91 3.87	6.04 6.04	2-2 3-2		6857.25 7120.56	V P	4 ⊙	4.06 4.12	5.86 5.86	4-4 3-4	c ³ F-z ¹ G* (1006)
6003.033 5976.799 5952.749	K K V	5 3	3.86 3.93 3.97	5.99	4-4 3-3 2-2	z ³ F°_e ³ F (959)	5304.11 5277.59	P P	{1}	3.91 3.94	6.24 6.28	3-3 1-1	z ³ D°-f ⁵ D (983)	6785.88 6963.02	P P	<u>o</u>	4.06 4.17	5.88 5.94	4-5 2-3	o ³ F_v ⁵ F*
5804.06 5838.418	Ŭ	{1 1}	3.86 3.93	5.99 6.04	4-3 3-2		5005.720	j	10	3.87	6.33	3-3	z ³ D°-e ³ D	6639.90 6796.11	P V	(§)	4.06 4.13	5.93 5.94	4-4 3-3	(1007)
6188.037 6096.689	A A	(21d) (1)	3.93 3.97		3-4 2-3		4985.261 4973.108	J	7 3	3.91 3.94	6.39 6.42	2-2 1-1	(984)	6555.87	P	•	4.06	5.94	4~3	7 . 7
5119.90 5027.51	P P	© ©	3.86 3.86		4-5 4-4	z ³ F°_e ⁷ F (960)	4896.437 4911.786 5098.594	U U K	(1) (1) (3) (2)	3.87 3.91 3.91	6.39 6.42 6.33	3-2 2-1 2-3		6682.23 6942.82 7105.90	P P P	000	4.06 4.13 4.17	5.91 5.90 5.91	4-5 3-4 2-3	c ³ F-x ³ G ⁶ (1008)
5168.1 9	P	•	3 .9 3	6.31	3–3		5048.454	V		3.94	6.39	1-3	_	6623.78	P P	0	4.06	5.93	a-3	c ³ F_v ⁵ pa
5126.598 5285.60	U P	{1} (1)	3.86 3.97		4-4 3-1	z ³ F°-f ⁷ D (961)	4977.653 4970.66 4889.113	U P U	(1) (2)	3.91 3.94	6.39 6.43	2-3 1-2	z ³ D°-g ⁵ D (985)	*6777.44	v	1	4.12	5.95	3-8	(1010)
5213.80 5238.25	P P	0	3.93 3.97	6.32	3-4 2-3	z ³ F°_e ⁵ G (962)	4889.113 4909.387 4930.331	J K	(2) (1) (2)	3.87 3.91 3.94	6.39 6.43 6.45	3-3 2-2 1-1		6509.56	v	(1)	4.06	5.95	4⊶5	c ³ F_ w³g *
5 081.86	P	0	3.86		4-4		4870.05	P	`ǿ	3.91	6.45	2-1								(1012)

Labo I A	rator; Ref		E Low	P High	J	Multiplet (No)	Labor I A		y Int	E l	P High	J	Multiplet (No)	Labo I A	rator Ref		E :	P High	J	Multiplet (No)
Fe I con				•			<u>Fe I</u> cont	inue	đ						tinue			-		
•6713.14 •6777.44 6875.98	V V	6d 1 1	4.12 4.17 4.17	5.96 5.99 5.96	3-2 3-1 3-3	o ³ F-x ³ P° (1013)	8632.42 8652.50 8355.16 8950.20	P P P	0000	4.09 4.14 4.09 4.14	5.52 5.56 5.56 5.52	4-4 3-3 4-3 3-4	y ⁵ D°-e ⁵ D (1050)	5088.16 5063.296 5011.24	P T P	{1 0	4.14 4.17 4.30	6.56 6.61 6.66	3-4 2-3? 1-2	y ⁵ De-h ⁵ D (1066) cont
6315.814 6157.734	V J	(2) 4 (3)	4.06 4.06 4.12	6.01 6.06 6.08	4-4 4-4 3-3	c ³ F_y ¹ G° (1014) c ³ F_w ³ F° (1015)	8878.76 8834.04 8779.13	P P P	000	4.17 4.20 4.21	5.56 5.60 5.62	2-3 1-2 0-1		4982.507 4983.258 4967.899	J J	8n 5n (3)	4.09 4.14 4.17	6.56 6.61 6.66	4-3 3-2 2-1	y ⁵ D°-f ⁵ P (1067)
6315.316 6380.748 6107.32 6240.266	J P U	(3) © (1)	4.17 4.06 4.12	6.10 6.08 6.10	3-3 4-3 3-3	(1015)	7187.341 7307.406 7164.469	E E E	800 500 350	4.09 4.14 4.17	5.80 5.85 5.90	4-5 3-4 2-3	y ⁵ D°-e ⁵ F (1051)	5086.77 *5057.49 5021.68	P W P	(1) ©	4.14 4.17 4.20	6.56 6.61 6.66	3-3 2-2 1-1	
6147.85 6315.42 6436.43	V P V	(-) © (1)	4.06 4.13 4.17	6.07 6.08 6.09	4-3 3-2 3-1	o ³ F_v ³ D° (1016)	7130.943 7090.404 6999.902 7016.436	I I I	150 40 30 60	4.20 4.21 4.09 4.14	5.93 5.95 5.85 5.90	1-3 0-1 4-4 3-3		•4952.646 4934.023 4910.328 4910.570	V K J J	(1n) (2n) (1w) (1w)	4.09 4.14 4.17 4.20	6.58 6.64 6.69 6.71	4-5 3-4 2-3 1-2	y ⁵ D°-f ⁵ G (1068)
•5975.355 •6127.913 5931.89	J J P	(3) ©	4.06 4.12 4.06	6.12 6.14 6.14	4-5 3-4 4-4	c ³ F-y ³ H° (1017)	7022.976 7038.251 6819.60 6880.65 6933.04	L P V U	50 40 (1) 2	4.17 4.20 4.09 4.14 4.17	5.95 5.95 5.90 5.93 5.95	2-2 1-1 4-3 3-2 3-1		4835.862 4840.329 4859.12 •4745.806 4790.56	K V W B P	(3) (1n) (1) 3n ©	4.09 4.14 4.17 4.09 4.14	6.64 6.69 6.71 6.69 6.71	4-4 3-3 2-2 4-3 3-2	
6027.057 6165.366 6215.152 6081.85	B J J P	(2) (2) ©	4.06 4.13 4.17 4.13	6.11 6.13 6.15 6.15	4-5 3-4 2-3 3-3	0 ³ F-v ³ G° (1018)	6725.39 6653.88 6916.702	V V I	(1) 60	4.09 4.14 4.14	5.92 5.99 5.92	4-4 3-3 3-4	y ⁵ D°-e ³ F (1052)	4842.78 4862.60 4858.24	V P P	(1) © ©	4.09 4.14 4.17	6.63 6.67 6.71		y ⁵ D°-e ³ G (1069)
6362.889	V	(2)	4.17	6.11	2-2	$6^{3}F-z^{1}D^{0}$ (1019)	6786.88 6704.48	V P	(1)	4.17 4.20	5.99 6.04	2-3 1-2		m4840.89 4862.54	P P	Ti ©	4.09 4.14	6.64 6.67	4-3 3-2	y ⁵ D°-f ³ D (1070)
5959.878 5643.94 5943.11	U P P	(1) © ©	4.13 4.06 4.17	6.24 6.24	3-2 4-3 2-3	(1020) c3F_z1F° (1021)	*5666.837 5703.09 5815.42 5737.71 ?	U P P	(1) © (1)	4.14 4.17 4.20 4.09	6.31 6.34 6.32 6.31	3-3 2-2 1-1 4-3	y ⁵ D°-e ⁷ F (1053)	4841.80 *4939.244 4933.19 4892.86	W J P W	(1) (2) © (1)	4.17 4.14 4.17 4.20	6.72 6.64 6.67 6.72	3-1 3-3 2-3 1-1	
5811.93 5510.23	V P	(1) ©	4.12 4.06	6.25	3-4 4-5	c ³ F-x ¹ G° (1022) c ³ F-u ⁵ F°	5859.96 5760.53 5813.33	P P P	0	4.17 4.14	6.28 6.28	2-3 3-3	y ⁵ D°-f ⁷ D (1054)	5012.16 4986.24 4918.03	P W W	(1) (1) (1)	4.17 4.20 4.21	6.64 6.67 6.72	2-3 1-2 0-1	
5563.69 5333.15	P	0	4.12 4.06	6.34 6.37	3-4 4-3	(1023)	5715.47 5796.67	P	000	4.17 4.14 4.17	6.30 6.30 6.30	3-3 3-3 3-1		4631.03 4538.20 *4720.997	P P J	© © (1)	4.09 4.09 4.14	6.75 6.81 6.75	4-4 4-3 3-4	y ⁵ D°-f ³ F (1071)
5494.468 5487.747	v K	(1) (8)	4.06 4.13	6.30 6.37	4-5 3-3	c ³ F-x ³ H° (1024) c ³ F-t ⁵ D°	5871.289 5928.50 5732.86	U P P	(1) © .0	4.14 4.20 4.09	6.24 6.28 6.24	3-3 1-1 4-3	y ⁵ D°-f ⁵ D (1055)	4688.38 4679.96	P P	0	4.17 4.20	6.81 6.84	2-3 1-2	
m5424.15 5568.71	P P P	Fe ©	4.06	6.33 6.34	4-4 3-3	(1025) c ³ F-v ³ F° (1026)	5815.16 5893.24 5974.62	V P P	(1) © ©	4.14 4.30 4.17	6.26 6.29 6.24	3-21 1-0 2-3	1	4677.59 4742.93	P P	© ©	4.14 4.17	6.77 6.77	3-2 3-3	y ⁵ D°-e ³ P (1072)
5406.36 •5630.04 5587.583 5680.26	W V W		4.06 4.13 4.13 4.17	6.34 6.33 6.34	4-3 3-2 3-4 2-3	3	5844.879 5707.70 5760.71 5947.30	U P P	(1) © © ©	4.14 4.09 4.14 4.17	6.25 6.28 6.25	3-3 4-3 3-2 2-3	у ⁵ р°-е ⁷ р (1056)	4135.77 4044.49 4085.98 4163.35 4172.97	U P P P	(1) © (1) © ©	4.17 4.09 4.14 4.17 4.20	7.16 7.14 7.16 7.14 7.16	2-2 4-3 3-2 2-3 1-2	y ⁵ D°-1 ⁵ D (1073)
5329.994 5403.823	J V	(2) (1)	4.06	6.37	4-5	c ³ F-6° (1038) c ³ F-u ³ G°	5677.68 5721.70	P	0	4.09 4.14	6.26 6.29	4-5 3-4	y ⁵ D°-e ⁵ G (1057)	3970.99 3996. 79	P P	o	4.09 4.14	7.19 7.22	4-5 3-4	y ⁵ D°-g ⁵ G (1074)
5476.298 •5535.419 5319.22 5429.43	J P P	(1) (2) (2) (0)	4.13 4.17 4.06 4.13	6.38 6.40 6.38 6.40	3-4 2-3 4-4 3-3	(1039)	5739.78 5761.08 5644.35 5516.29	P P P	0000	4.17 4.20 4.14 4.09	6.32 6.32 6.32	2-3 1-2 3-3 4-3		4046.46 4095.27 4131.75	P P P	0 0 0	4.14 4.17 4.20	7.19 7.19 7.19	3-2 2-2 1-2	y ⁵ D°-4 (1075)
5275.00 5464.286 •5235.392	W V	(1n) (1) (2)	4.06	6.40 6.38 6.42	4-3 3-2 4-3	c ³ F_y ¹ D° (1030) c ³ F_u ³ D°	5607.66 5705.32 5481.252 5568.44	P P V P	0 (2) 0	4.14 4.20 4.09 4.14	6.34 6.36 6.34 6.35	3-4 1-3 4-4 3-3	y ⁵ D°-e ⁷ G (1058)	9103.64 •9070.42 9084.20	F F P	1 2 1	4.16 4.20 4.24	5.52 5.56 5.60	5-4 4-3 3-2	y ⁵ F°-e ⁵ D (1076)
5293.973 5332.673 5387.51 5394.682 5491.84	V V R T	{1} 3 (-) 2}	4.13 4.17 4.12 4.17 4.17	6.46 6.48 6.43 6.46 6.43	3-2 2-1 3-3 2-2 2-3	(1031)	5636.00 5551.77 5568.07	P P P	0 0 0	4.17 4.09 4.14	6.36 6.31 6.35	2-2 4-5 3-4	y ⁵ D°-f ⁵ F (1059)	7511.045 7495.088 7445.776	E E E	800 400 200	4.16 4.20 4.24	5.80 5.85 5.90	5-5 4-4 3-3	y ⁵ F°_e ⁵ F (1077)
5169.30 5187.922	P V	(3) ©	4.06 4.12	6.45 6.50	4-3 3-2	c ³ F-t ³ D° (1032)	5652.01 5443.41 5524.25 5583.97	P P P	0 (1) 0	4.20 4.09 4.14 4.17	6.38 6.35 6.37 6.38	1-2 4-4 3-3 2-2		7411.178 7389.425 7306.61 7288.760	E V I	100 80 3 10	4.26 4.28 4.16 4.20	5.93 5.95 5.85 5.90	2-2 1-1 5-4 4-3	
5438.71 5317.53 5284.62	P P P	000	4.17 4.13 4.17	6.44 6.45 6.50	2-17 3-3 2-2		*5666.837	U	(1)		6.31	3-2	y ⁵ D°-e ⁵ S (1060)	7293.068 7311.101 7710.390	I I E	15 12 25	4.24 4.26 4.20	5.93 5.95 5.80	3-2 2-1 4-5	
5164.922 5236.189	s v	(-) (1)	4.13 4.17	6.51 6.53	3-4 3-1	c ³ F-w ³ H° (1033) c ³ F-8°	5493.508 5483.111 5481.451	V V T V	(1) (3) (1) (1) (2) (1)	4.17	6.33 6.39 6.42	4-3 3-2 2-1	y ⁵ D°-e ³ D (1061)	7661.223 7568.925 7491.678	E E L	30 30 12	4.24 4.26	5.85 5.90 5.93	3-4 2-3 1-2	
4978.70 5124.17	P P	© (1)	4.06 4.17	6.54 6.58	4-3 2-2	(1034) c3F_g3D• (1035)	5620.527 5573.10 5547.00 *5715.107	V W	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.17 4.20	6.33 6.39 6.42	3-3 2-2 1-1		7008.014 6898.31	V V	5 3	4.20	5.92 5.99	4-3	y ⁵ F°-e ³ F (1078)
5136.09	W	(1)	4.17	6.57	2-3 2-1	c3F-z1pe	5579.34	P	(1) © 10	4.21	6.33 6.42	2-3	y ⁵ D°-g ⁵ D	6847.60 7181.222 7038.818	P L V	(1) 10 2	4.20 4.24	6.04 5.92 5.99	3-2 4-4 3-3	
4887.37 4829.68	P P	© ©1	4.06	6.58 6.68	4-4 3-2	(1036) c ³ F-9° (1037) c ³ F-t ⁵ P°	5476.571 5473.908 5478.48 *5493.850	J J V T	(3) (1) (0) (2) (1)	4.14 4.17	6.34 6.39 6.43 6.45	4-4 3-3 3-2 1-1	(1062)	6951.62 7333.62 *7148.69 7022.39	P V R P	(1) 1n (-) ©	4.24 4.26	6.04 5.92 5.99 6.04	2-2 3-4 2-3 1-2	
4875.32 4809.26	P P	© (1)	4.17 4.06	6.70 6.62	2-1 4-3	(1038) c ³ F_y ¹ F° (1039)	5353.386 5391.493 5429.52 5480.872	V V P V	•	4.09 4.14 4.17	6.39 6.43 6.45	4-3 3-2 2-1		*6005.53 *6021.82	V W	(1) (2n)	4.16 4.26	6.21 6.31	5-6 2-3	у ⁵ г° -е ⁷ г (1079)
4912.52 4999.114	P T	©₹ (1)	4.13 4.17	6.64 6.64	3-3 2-3	c ³ F _{-X} ¹ F• (1040)	5602.788 5563.604	v I J	(2) (2) (3)	4.14 4.17	6.45 6.34 6.39 6.43	1-0 3-4 2-3		6008.35 5992.65 5961.91	P P	© ©î	4.16	6.34		y ⁵ F°-f ⁷ D
4881.726 4735.846	J J	(a)	4.12 4.06	6.65 6.66	3–3 4–5	c ³ F-10° (1041) c ³ F-t ³ G°	5543.930 5525.552 *5534.68	v W	(2) (1)	4.21	6.45	1-2 0-1 3-3	y ⁵ D°-e ⁷ S	5961.91 6060.81 6107.09	P P P	© (1)	4.20	6.24		(1080) y ⁵ F°-f ⁵ D
4800.652 4798.269	y V	(2) (2) (1)	4.13 4.17	6.70 6.74	3-4	(1042)	5334.38 5386.341	P V	(1) © (1)	4.09	6.40 6.43	3-3 4-3 3-2	(1063) y5D°_e5p (1064)	6032.67 *6127.913	V J	(1) (1) (2)	4.20	6.25		(1081) y ⁵ Fe_e ⁷ p
4854.89 4939.46	V P	(1n) ©	4.17	6.67 6.67	3-3 2-3	c ³ F-11° (1043)	5487.52 5453.98 5473.18	P P P	000	4.17 4.14 4.17	6.42 6.40 6.43	2-1 3-3 2-2	(1004)	5940.972 5996.49	V P	(2) ©	4.16	6.28 6.24 6.32	2-2 5-6 2-3	y ⁵ F°-e ⁵ G (1083)
4729.028 4785.963 4665.56	J V P	(1) (1) ©		6.67 6.70 6.70	4-5 3-4 4-4	c ³ F-12° (1043a) c ³ F-13° (1044)	5553.22 5543.03 *5538.54	P P V	© (1)	4.20 4.17 4.20	6.42 6.40 6.43	1-1 2-3 1-2		5877.770 5901.53 5918.93	U P P	(1) © (1)	4.16	6.26 6.29	5-5 4-4 3-3	
4672.02	P	0		6.77		c ³ F-w ¹ G° (1045)	*5007.289 5027.136 4991.277	J J	(3n) 5n (3) (2)	4.14	6.55 6.59 6.65	3-4 2-3	y ⁵ D°-g ⁵ F (1065)	5742.95 5738.22 5786.99	P P P	(1) © ©		6.31 6.35 6.37	5-5 4-4 3-3	y ⁵ F°_f ⁵ F (1084)
4413.40 4546.47	P P	o o		6.85 6.88	2-2	c ³ F-x ¹ H° (1046) c ³ F-w ¹ D°	*4939.244 4933.348 4925.28	J K W	(2) (3n) (1) (-)	4.20 4.21 4.09	6.70 6.71 6.59	1-2 0-1 4-4		5826.64 5859.20 5627.08	P V P	(1) ©	4.26 4.28 4.16	6.38 6.3 9 6.35	2-2 1-1 5-4	
4467.446 4538.95	U P	(1) ©		6.89 6.89	3-3 2-3	(1047) c ³ F_w ¹ F° (1048)	4983.855	K J	6n	4.09	6.70 6.56		y ⁵ D°-h ⁵ D	5691.69 5753.38 5809.88	P P	000	4.20 4.24 4.26	6.37 6.38 6.39	4-3 3-2 2-1	
4152.07	P _	<u> </u>	4.06	7.03	4-4	c ³ F_v ¹ G° (1049)	4988.963 4957.68 4969.927 4888.651 4886.335	J P J V J	(6) (3) (1) (1)	4.17 6	6.61 6.66 6.68 6.61 6.66	3-3 2-3 1-1 4-3 3-2	(1066)	5858.77 5835.10 5861.11 5876.27	P P P	0000	4.20 4.24 4.26	6.31 6.35 6.37 6.38	4-5 3-4 2-3 1-2	

62							REV	ISE	D M	ULTI	P. L E	T T	ABLE							
I A	aborato Ref	r y Int	Low	P High	J	Multiplet (No)	Labo:		'y Int	Low	P High	J	Multiplet (No)	Labor I A		ry Int	Low	P High	J	Multiplet (No)
Fe I	continu	eđ					Fe I con	tinue	d					Fe I cont	tinu	eđ				
5943.6 •6021.8		(2n)	4.24 4.26	6.31 6.31	3-2 2-2	y ⁵ F°-e ⁵ S (1085)	4112.972 4125.622	J J P	3n (1) ©	4.16 4.20 4.34	7.16 7.19 7.22	5-6 4-5 3-4	y ⁵ F°-g ⁵ G (1103)	8509.63 8496.51 8401.68	P P P	000	4.35 4.40 4.43	5.80 5.85 5.90	4-5 3-4 2-3	z ⁵ Ge_e ⁵ F (1136) cont
5793.9 5741.8		(2) (2)	4.20		4-3 3-2	у ⁵ F°-е ³ D (1086)	4132.54 4137.42 4142.628	P	(1N)	4.26	7.25 7.26	2-3 1-2		7586.044	E	150	4.29	5.92	5-4	z ⁵ Ge ³ F
*5715.1 5892.7	07 ¥	(2) (2) (1) (2) (1)	4.24	6.33	2-1 3-3	•	4067.85 4083.71 4100.35	P P P	`© ` ©	4.16 4.20 4.24	7.19 7.22 7.25	5-5 4-4 3-3		7531.171 7507.300 7869.65	E L O	60 8 4	4.35 4.40 4.35	5.99 6.04 5.92	4-3 3-2 4-4	(1137)
5814.8 5762.8 5969.5	4 P	•	4.26 4.28 4.26	6.42	2-2 1-1 2-3		*4117.872	v	(1)	4.26	7.26	2-2	_	7737.67 7647.83	P	0	4.40 4.43	5.99 6.04	3-3 2-2	
5864.2 5662.5		(2) 6	4.28 4.16		1-2 5-4	y ⁵ F°-g ⁵ D	4185.66 4234.30	P P	0	4.24 4.26	7.19 7.19	3-3 2-3	y ⁵ F°-4 (1104)	6428.80	v	(1)	4.35	6.27	4-4	z ⁵ G°-1 ⁷ D
5638.2 5641.4	66 I	(a)	4.20	6.39	4-3 3-2	(1087)	7239.885	I	6	4.19	5.90	- 2-3	z ³ P°-e ⁵ F	6543.98	U	(1)		6.24		(1138). z ⁵ Ge_f ⁵ D (1139) z ⁵ Ge_e ⁵ G
5658.6 5691.5	7 P 609 V	(1)	4.26 4.28 4.20	6.45	3-1 1-0 4-4		7311.26 7095.425 7213.84	P I P	© 3 ©	4.34 4.19 4.34	5.93 5.93 5.95	1-2 3-3 1-1	(1105)	6376.22 6303.46 6351.29	P V P	(1n) ©	4.30 4.30 4.29	6.24 6.26 6.24	6-6 6-5 5-6	z ⁵ G ⁶ -e ⁵ G (1140)
5775.0 5731.7 5711.8	71 J	(3)	4.24	6.39	3-3 2-2		5955.682	U	(1)		6.31	1-3	z ³ P°-e ⁵ s	6472.15	P	© 1	4.35	6.26	4 5	5 - 5
5705.4 5873.2 5804.4	11 V	(1) (5) (3) (3) (1) (3) (1) (3)	4.28 4.24 4.26	6.34	1-1 3-4 2-3		5762.992 5753.136	K J	10 5	4.19 4.24	6.33 6.39	2-3 1-2	(1106) z ^{3p•} _e ³ D (1107)	6148.65 6034.04	P P	(a)	4.30	6.31	6-5 5-4	z ⁵ G°_f ⁵ F (1141) z ⁵ G°_g ⁵ D
*5759.5	6 P	•	4.28	6.43	1-3		571 7.84 5 5618.646	Ľ	(3) (1)	4.27 4.19	6.42 6.39	0-1 2-2	(2201)	6054.100 6081.72	U P	(a) (a)	4.35 4.40	6.39 6.43	4-3 3-2	(1142)
5617.1 5635.8 5721.7	5 V	(1) ©	4.20 4.24 4.26	6.43	4-3 3-2 3-1	y ⁵ F°_e ⁵ P (1088)	*5655.506 m5525.48	V P	4 Fe	4.24 4.19	6.43 6.43	1- 1 2-1		6212.04 5361.637	V U	(1) (1)	4.35 4.40	6.34 6.70	4-4 3-2	z ⁵ G°_g ⁵ F
5709.9 5706.1	3 P	00	4.24	6.40	3-3 3-2		5608.98 5652.32	P V	(1)		6.39 6.43	2-3 1-2	z ³ p°-g ⁵ D (1108)	5395.25 5 469.29	₩ P V	(1) (1n) ©	4.43 4.29	6.71 6.55	2-1 5-5	(1143)
5162.2 5165.4		10n (4)	4.16 4.20		5-5 4-4	y ⁵ F°_g ⁵ F (1089)	5661.36 5522.46 *5600.242	V V	(1) (1) (2) (1) (1)	4.27 4.19 4.24	6.45 6.43 6.45	0-1 2-2 1-1		5512.277 5487.16 5432.950	V V U	(1) (1) (2n)	4.35 4.40 4.43	6.59 6.65 6.70	4-4 3-3 2-2	
5126.2 5072.0	18 T	(4) (1) (1) (2)	4.24	6.65	3-3 2-2	,,	5472.720	٧	(1)	4.19 4.19	6.45	2-1 2-3	_z 3pe_e5p	5615.18 5441.321	P	0	4.35	6.55 6.56	4-5 5-4	z ⁵ G°-h ⁵ D
5076.2 5075.1 5051.2	.7 P	(8) ©	4.28 4.16 4.20	6.59	1-1 5-4 4-3		5588.07 5646.70 5724.445	P P U	(1)	4.19 4.24 4.27	6.40 6.43 6.42	1-3 0-1	(1109)	5441.321 5466.404 5446.58	J P	{1 3}	4.35	6.61 6.66	4-3 3-2	(1144)
5016.4 5255.6	8 P 8 P	0	4.24	6.55	3-2 4-5		5517.08 5661.97	₩ ₽	(in)	4.19 4.24	6.43 6.42	2-2 1-1		5470.17 5520.19	W P	(1) ©?	4.43 4.43	6.68 6.66	2-2 2-3	
5243.7 5184.2 5109.6	192 U	(1) (3n) (2)	4.24 4.26 4.28	6.65	3-4 2-3 1-2		5027.785 5025.08	T P	(-) ©	4.19 4.24	6.65 6.70	2-3 1-2	z ^{3pe} _g ⁵ F (1110)	5455.433 m5404.12	K P	(5) Fe	4.30 4.29	6.56 6.58	6-6 5-5	z ⁵ g°_f ⁵ g (1145)
5137.3	88 J	6n	4.16	6.56	5-4	y5ro_h5D	5041.33 4922.18	P	000	4.27 4.19	6.71 6.70	0-1 2-2	•	5400.509 5389.461 5398.285	J K V	(5) (5) (1)	4.35 4.40 4.43	6.64 6.69 6.71	4-4 3-3 2-2	
5125.1 5090.7 5104.4	87 K	6n (6n) (1)	4.20 4.24 4.26	6.66	4-3 3-2 3-1	(1090)	4992.80 4993.687	P U	© (1)	4.24	6.71 6.66	1-1 2-2	z ^{3po} _h ⁵ D	5422.15 5265.42	P	0	4.30 4.29	6.58 6.64	6-5 5-4	
*5229.8 5202.2	57 J	5n	4.20	6.61	4-4 3-3		5056.856 *4952.646	A A	(1) (1n)	4.24 4.19	6.68 6.68	1-1 3-1	(1111)	5327.86 5437.19 5546.512	P P V	© ? © (1)	4.40 4.29 4.35	6.71 6.56 6.58	3-2 5-6 4-5	
5148.0 *5142.5		(1) (3) (3w)	4.26 4.28		2-2 1-1		5205.31 5004.034	P T	(1)	4.24 4.19	6.61 6.66	1-3 3-1	z ³ P°-f ⁵ P (1112)	5505.893 5461.54	T W	(1) (-) (1n)	4.40	6.64 6.69	3-4 2-3	
5228.4 5196.1 5159.0	.00 V	(in) (2w) (3w)	4.20 4.24 4.26	6.61	4-3 3-2 3-1	y ⁵ F°-f ⁵ P (1091)	4945.65 4995.41	₩ P	(1) ©	4.19 4.24	6.69 6.71	3-3 1-3	z ³ P°-f ⁵ G (1113)	5424.072 5383.374	I	45n 35n	4.30 4.29	6.58 6.59	6-7 5-6	z ⁵ G°-e ⁵ H (1146)
5308.7 5255.7	1 P	(2#/ ©	4.24	6.56 6.61	3-3 2-2		4893.70	P	O	4.19	6.71	2-2		5369.965 5367.470	I	35n 30n	4.35 4.40	6.65 6.70	4-5 3-4	1 .=,
5197.9 5133.6		© 20n	4.28		1-1 5-6	y ⁵ F°-f ⁵ G	4720.56 4775.87	P P	⊙†	4.19 4.19	6.81 6.77	2-3 2-2	z ³ pe <u>-f</u> 3F (1114) z ³ pe_e ³ p	5364.874 5401.27 5236.38	I P P	15n © ©	4.43 4.30 4.29	6.73 6.59 6.65	2-3 6-6 5-5	
5195.4 *5142.5	71 K 41 J	(8) (3w)	4.20	6.58 6.64	4-5 3-4	(1092)	*4757.583 4665.24	J P	(a)	4.24 4.19	6.84 6.84	1-1 2-1	(1115)	5267.28 5295.316	P U	(1)	4.35 4.40	6.70 6.73	4–4 3–3	
5096.9 5079.0 5104.2	02 V	(6) (1n) (1) (1) (2)	4.26 4.28 4.16	6.71	2-3 1-2 5-5		4872.69 4801.63	P	0	4.24 4.27	6.77 6.84	1-2 0-1	• •	5290.79 5184.17	P P	©	4.30 4.29	6.63 6.67	65 5- 4	z ⁵ G°-e ³ G (1147)
5067.1 *5040.9	63 V	(1) (2)	4.20	6.64 6.69	4-4 3-3 3-2		4160.78	P	<u> </u>	4.19	7.16	2-2 -	z ³ P°-1 ⁵ D (1116)	5273.62 5315.07 5326.793	P ₩ T	(1) (1)	4.29 4.35 4.40	6.63 6.67 6.71	5-5 4-4 3-3	
4986.9 5085.6		0	4.24		5-6	y ⁵ F°-e ⁵ H	8356.07	P	©	4.28	5.75	2-1	b ¹ D-z ³ S° (1117)	5409.125	V	{ - }	4.35	6.63	4-5	5-9-3-
5040.2 5021.6	5 P	000	4.20 4.24 4.26	6.65 6.70	4-5 3-4 2-3	(1093)	7820.80	P	0	4.28	5.85	3-3	b ¹ D-1° (1118)	5406.77 5417.03 5512.40	P W P	(1) ©	4.35 4.40 4.40	6.64 6.67 6.64	4-3 3-2 3-3	z ⁵ G°-f ³ D (1148)
5012.6 4954.3 4866.7	0 P	⊙ ⊙†	4.16 4.16	6.65	5-5 5-4		6756.56	P	•	4.28	6.10	2-2	b1p_w3re	5489.85	P	0	4.43	6.67	8-8	_z 5 _G •_e3 _H
4987.6 4991.8		0	4.16 4.20		5-5 4-4	y ⁵ F°-e ³ G (1094)	6571.22	U	(1)	4.28	6.15	2-3	(1130) b ¹ D-v ³ G° (1131)	5262.61 5130.91 5056.00	P P W	© © (1)	4.30 4.29 4.29	6.65 6.70 6.73	6-6 5-5 5-4	(1149)
4985.9 5074.7	8 P 57 J	0 10n	4.24	6.71 6.63	3-3, 4-5	(1001)	6736.56	P	0	4.28	6.11	2-2	b ¹ D-z ¹ D° (1122)	5245.62 5259.09	P P	0	4.29 4.35	6.65 6.70	5-6 4-5	
5065.0 *5040.9	03 A 02 A	(3)	4.24 4.26		3-4 2-3	_	6267.845 5883.06	U P	(1) ⊙?	4.28 4.28	6.24	2-3 2-2	b ¹ D-z ¹ F° (1123) b ¹ D-t ⁵ D°	5277.31 5023.476	P T	⊚ (_)	4.40	6.73 6.75	3-4 5-4	z ⁵ G°-f ³ F
5072.6 5064.9	5 P	(1) ,©		6.67	4-3 3-2	y ⁵ F°-f ³ D (1095)	6035.34	P	©Î	4.28	6.32	2-2	(1124) b ¹ D-v ³ F°	5031.901 •5057.49	R ₩	(1) ©	4.35 4.40	6.81 6.84 6.75	4-3 3-2	(1150)
5023.2 5148.2 5121.6	34 U 46 V	(3) (3) (2n)	4.26 4.24 4.26	6.72 6.64 6.67	2-1 3-3 2-2		5976.18	P	0	4.28	6.34	2-3	(1125)	5146.30 5123.28 5120.89	P P P	0	4.35 4.40 4.43	6.81 6.84	4-4 3-3 3-2	
*5060.0 5206.8	79 T 0 P	(1) ©	4.28 4.26	6.72 6.64	1-1 2-3		5816.07	P V	⊙ † (2)	4.28	6.40	2-3 2-2	b ¹ D-u ³ G° (1137) b ¹ D-y ¹ D°	5241.90 4618.568	P	(i) (a₩)	4.40	6.75 6.97	3-4 5-5	z ⁵ G°-1
5159.9 4972.3	9 P	© (1)	4.28	6.64	1-2 5-5	y ⁵ F°-g ⁷ D	5856.084 5837.709	V	(2) (1)	4.28 4.28	6.38	2-2	(1128) b ¹ D-x ¹ D°	4631.49	W	(1)		7.03		(1151) z ⁵ G°-3
4893.5 4906.8	9 P	0	4.16 4.20	6.68	5-4 4-3	(1096)	5539.831	U	(1) (2)	4.28	6.50	2-2	(1129) b1p_t3pe (1130)	8598.79	0		4.37	5.80	- 5–5	(1152) z ³ G°-e ⁵ F
4962.5 4942.5	9 P	(1) ©	4.16 4.24	6.73	5-6 3-4	y ⁵ r°-e ³ H (1097)	5698.37 5469.09	₩ P	(2) ©	4.28 4.28	6.44	2-1 2-2	b ¹ D-v ³ P°	8610.62 8562.13	P P	4 © ©	4.42	5.85 5.90	4-4 3-3	(1153)
4872.9	1 P	0	4.20	6.73	4-4	y ⁵ F°-1 ³ F	5376.849	บ	(3)	4.28	6.57	2-1	(1131) b1D-z1po	8331.941 8339.431	E E E	200 80 8	4.37 4.42	5.85 5.90	5 -4 4 -3	
4749.2 4842.7 *4807.2	1 P	⊙ (~)	4.20	6.84 6.75 6.81	3-2 4-4 3-3	(1098)	4734.100	J	(1)	4.28	6.88	2-2	(1133) b ¹ D-w ¹ D° (1133)	8360.822 8896.00 8848.25	P P	° °	4.45 4.42 4.45	5.93 5.80 5.85	3-2 4-5 3-4	
4799.0 4911.5	6 P	0	4.26 4.24	6.8 4 6.75	2-2 3-4		4725.94	V	(1n)	4.28	6.89	2-3	bip_wife (1134) bip_t3re	7945.878	E E	600 400	4.37 4.42	5.92 5.99	5-4 4-3	z ³ G°-e ³ F (1154)
4858.2 *4832.7	34 J	(a) (a)	4.26 4.28	6.84	2–3 1–2	_	4333.06	P	<u> </u>	4.28	7.12	2-2 -	(1135)	7832.224 7780.586 8198.951	E	300 80	4.45 4.43	6.04 5.92	3-2 4-4	(1134)
4465.3 4460.5		(1) ⊙î	4.20		4-5	y ⁵ F°-1 (1099) y ⁵ F°-2	8220.406 7937.166	E	1500 700	4.30	5.80 5.85	6-5 5-4	z ⁵ G°_e ⁵ F (1136)	8028.341 8414.08	E P	50 ⊙	4.45 4.45	5.99 5.92	3-3 3-4	
4384.1		©1	4.20		4- 4-4	(1100) y5F°-3	7998.972 8046.073 8085.200	E E E	700 600 500	4.35 4.40 4.43	5.90 5.93 5.95	4-3 3-2 2-1		6681.34 6635.68	P P	0 0	4.37 4.43	6.21 6.28	4-5	z ³ G°-e ⁷ F (1155)
4225.7	1 P	(1)	4.20	7.12	4-4	(1101) y5F°_15D	81 79.0 3 8248.151	O E	(1) 30	4.29 4.35	5.80 5.85	5-5 4-4 3-3		6615.03	P P	0	4.45	6.32	3-4	z ³ G°-f ⁷ D
4256.7 4278.0		(1) ©	4.24	7.14 7.12	3–3 3–4	(1102)	8232.347 8207.767	E E	50 40	4.40 4.43	5.90 5.93	3-3		6665.42 m8646.90 6700.89	P P	© Fe ©	4.37 4.43 4.45	6.22 6.27 6.30	5-5 4-4 3-2	(1156)

Laborato I A Ref	ry Int	E Low	P High	J	Multiplet (No)	Labor I A		y Int	E P Low 1	High	J	Multiplet (No)	Labor I A	ratory Ref		E Low	P High	J	Multiplet (No)
<u>Fe I</u> continu	eđ					Fe I con	tinue						Fe I con	tinued					
6622.41 P 6735.00 P 6879.51 P 6438.775 U	© © © (1)	4.37 4.42 4.45	6.23 6.25 6.25 6.33	5-4 4-3 3-3 4-3	z ³ G°-e ⁷ P (1157) z ³ G°-e ³ D	5816.36. 5855.126 5891.16 5696.10 5769.31	V V P P	(3d) (1) © © (1)	4.63 6 4.53 6	6.65 6.70 6.73 6.70 6.73	4-5 3-4 3-3 4-4 3-3	y ³ F°-e ⁵ H (1179)	6100.29 6100.23 *5958.22 5947.50 5978.17	P) P P	(1) (2) (1) ©	(4.54 4.59 4.54 4.59 4.62	6.56 6.61 6.66 6.68	3-4 2-3 3-3 2-2 1-1	y ⁵ p°-h ⁵ D (1199)
5653.889 U 5631.72 U 5549.55 P 5499.60 P	(1w) (2) ©	4.37 4.45 4.37 4.45	6.55 6.65 6.59 6.70	5-5 3-3 5-4 3-3	(1158) z ³ G°-g ⁵ F (1159)	5862.357 *5914.16 5930.173 5752.043	K V K J	8 8 8 (2)	4.59 6	3.63 6.67 6.71 6.67	4-5 3-4 3-3 4-4	y ³ F°-e ³ G (1180)	6098.28 6091.74 5950.13	P P P	0 0 0	4.54 4.59 4.54	6.56 6.61 6.61	3-3 2-2 3-2	y ⁵ P°- f ⁵ P (1200)
5780.83 V 5624.056 V 5589.00 P	(1) (1) ©?	4.42 4.37 4.45	6.55 6.56 6.66	4-5 5-4 3-2	z ³ G°-h ⁵ D (1160)	5806.727 5650.31 5859.608	P K	(2) (2) © 5	4.59 6 4.53 6	6.71 6.71 6.64	3-3 4-3 4-3	y ³ F°-f ³ D	5880.00 5879.49 5892.46	V P P	(2wd) © ©	4.54 4.59 4.62	6.64 6.69 6.71	3-4 3-3 1-2	y ⁵ p°-f ⁵ G (1201)
5749.65 P 5723.66 P 5619.60 V	(1) (1) (1)	4.42 4.45 4.37	6.56 6.61	4-4 3-3 5-6	z ³ G°-f ⁵ G	*5914.16 5905.673 5686.532	V K	8 3n (3)	4.63 6	6.67 6.72 6.70	3-2 2-1 4-5	(1181) y ³ F°-e ³ H	5640.46 5887.46 5867.01	W P P	(1n) © ©	4.54 4.54 4.62	6.64 6.72	3-3 3-3 1-1	y ⁵ pe _{-e} 5H (1202) y ⁵ pe _{-f} 3D (1203)
5708.109 V 5651.47 P 5553.586 V 5528.89 P 5436.299 U	(1) (1) (1) (1)	4.42 4.45 4.42 4.45 4.37	6.58 6.64 6.64 6.69 6.64	4-5 3-4 4-4 3-3 5-4	(1161)	5747.95 5594.661 5554.895 5565.708	V I I	(1) (2) 4 4	4.53 6	6.73 6.73 6.75 6.81	3-4 4-4 4-4 3-3	y ³ F°_f ³ F (1183)	5778.81 *5759.57 5727.75	P U	© (2) (1)	4.54 4.59	6.67 6.68 6.74	3-2 3-4 2-2	y ⁵ pe-g ⁷ D (1304)
5435.17 P 5562.12 P 5521.28 P	(e) (e) (c)	4.42 4.37 4.42	6.69 6.59 6.65	4-3 5-6 4-5	z ³ G°-e ⁵ H (1162)	5598.303 5421.85 5488.14 5705.988	J P V	4 0 0 2 2 2	4.63 6 4.53 6 4.59 6	6.84 6.81 6.84 6.75	2-2 4-3 3-2 3-4	(1163)	*5620.04 4776.34 4839.77	W V P	(1) (1n) ©	4.54 4.54 4.59		3-4 3-4 2-3	y ⁵ P°-e ³ H (1205) y ⁵ P°-1 ⁵ D (1206)
5505.75 P 5405.35 P 5412.80 P 5429.83 P 5301.33 P	00000	4.45 4.37 4.42 4.45 4.37	6.70 6.65 6.70 6.73 6.70	3-4 5-5 4-4 3-3 5-4		5679.023 5642.75 5759.270	V P U	(2) © (1)	4.59	6.81 6.77 6.77	3-2 3-2 3-3	у ³ F°-е ³ Р (1184)	4749.93 4802.53 4714.074	V V J	(1) © (1n)	4.54 4.59 4.54	7.14 7.16 7.16	3-3 2-2 3-2	y ⁵ p°_4
5339.40 P 5445.045 J	⊙ 15n	4.42	6.73	4-3 5-5	z ³ G°-e ³ G	5057.83	P	<u> </u>	4.53	6.97	4 -	y ³ F°_2 (1185)	4661.538	Р	(2n)	4.54		-	(1207)
5463.282 J 5462.970 J 5349.742 T	10n (2) (3)	4.42 4.45 4.37	6.67 6.71 6.67	4-4 3-3 5-4	(1163)	6930.35 *7145.317 *6951.261	P V I	© 5 25	4.59	6.32 6.31 6.31	3-4 2-3 3-3	y ⁵ p°-e ⁷ F (1186)	10333.24 10307.48 10156.50	P P	0 0	4.57 4.57 4.57	5.77 5.77 5.79	4-4 4-3 4-4	d ³ F-u ⁵ D° (1808) d ³ F-x ³ F°
15371.43 P 15562.712 V 5557.954 V	Fe (2) (1)	4.43 4.42 4.45	6.71 6.63 6.67	4-3 4-5 3-4	-3.00 +3.0	7053.48 6864.31 7115.25	P P P	© ©1	4.59 6 4.54 6 4.59 6	6.34 6.34 6.32	2-2 3-3 2-1	5-2 -7-	9881.51 9747.24 9950.70 10084.42	P F P	1 2 0 0	4.56 4.56 4.57 4.56	5.81 5.83 5.81 5.79	3-3 2-2 4-3 3-4	(1209)
5560.230 V 5557.90 P	(1) ©	4.42	6.64 6.67	4-3 3-2	z ³ G•_f ³ D (1164)	7120.01 7295.00 7356.81	P V P	0 1 0	4.59 6	6.27 6.28 6.30	3-4 3-3 1-2	y ⁵ P°-f ⁷ D (1187)	9937.10	P	•	4.57	5.82		d ³ F-z ³ H° (1210)
5415.201 I 5404.144 I 5410.913 I 5293.03 P 5321.106 V	35n 30n 15n © (1)	4.37 4.42 4.45 4.37 4.42	6.65 6.70 6.73 6.70 6.73	5-6 4-5 3-4 5-5 4-4	z ³ G°-e ³ H (1165)	*7222.88 7330.16 7024.649	V P V L	(1) © 10n 5n	4.62 6 4.54 6	6.30 8.30 6.30	3-3 1-1 3-3	y5p o _£5D	10026.10 9839.38 9771.06 9955.85	P P P	1 © ©	4.57 4.56 4.56 4.56	5.80 5.82 5.84 5.80	4-3 3-2 3-1 3-3	d3F_w3pe (1211)
5213.35 P 5178.798 U	`ē´ (1n)	4.37	6.73	5-4 5-4	z ³ G•_f ³ F	7473.56 7261.54 7382.99	o V V	(1) 3n 1n	4.59 6 4.54 6	6.24 6.24 6.26	2-3 3-3 2-2	(1188)	9636.69 9225.55	Y O	(1) (1)	4.57 4.56	5.85 5.90	4-5 3-4	d ³ F-w ⁵ G° (1212) d ³ F-x ³ G°
5164.56 W 5180.065 T 5285.12 P	{1 -	4.42 4.45 4.42	6.81 6.84 6.75	4-3 3-2 4-4	(1166)	7421.60 7175.937 7285.286	O V V	1 3 1	4.62 6	6.28 6.26 6.28	1-1 3-2 3-1		8848.46	P	©		5.96	2-2	(1213) d3F-y5F°
5249.099 U 5373.704 V	(1n) (1)	4.45 4.45	6.81 6.75	3-3 3-4		7366.37	ŏ v	1 3n	4.62	6.29 6.23	1-0	y ⁵ p°_e ⁷ p	8576.50 8525.04	P P	⊙	4.57 4.56	6.01 6.01	4-4 3-4	(1214) d ³ F-y ¹ G° (1215)
4838.81 P 4744.13 P	⊙? ⊙î	4.42	6.97	4-5 5-	z ³ G°-1 (1167) z ³ G°-2	7430.90 7431.94 7231.22	M P V	1 © 2n	4.59 6	5.25 5.28 5.25	2-3 1-2 3-3	(1189)	8253.78 *8149.59	P O	© 3		6.06	2-2 3-3	d ³ F-2° (1216) d ³ F-w ³ F°
4534.62 F 4566.03 P	© ©	4.42 4.45	7.14 7.16	4-3 3-2	(1168) z ³ G°-1 ⁵ D (1169)	7295.27 7093.10	P	0	4.59 6 4.54 6	5.28 5.28	2-2 3-2		8002.55 8196.52	P P	0		6.10	2-2 4-3	(1217)
4367.07 P 4320.13 P 4357.50 P	© ©1 ©	4.37 4.37 4.42	7.19 7.22 7.25	5-5 5-4 4-3	z ³ G°-g ⁵ G (1170)	7034.06 7109.67 7161.04	P P	000	4.59 6 4.62 6	5.29 5.32 5.34	3-4 2-3 1-2	y ⁵ P°-e ⁵ G (1190)	8269.66 •8149.59	P 0	© 3	4.57 4.56	6.07 6.08	4–3 3–2	d ³ F_v ³ D° (1218)
9786.62 F	2	4.59	5.85	- 3-4	_y 3r•_e5r	6917.52 7034.08 6845.93	P P P	<u>o</u>	4.59	3.32 3.34 3.34	3-3 2-2 3-2		7129.30	P P	⊙ ⊙	4.57	6.30	4-4	d ³ F-x ³ H° (1219) d ³ F-t ⁵ D°
9350.46 E 9437.91 F	10 3	4.53 4.59	5.85 5.90	4-4 3-3	(1171)	6862.481 6989.64 6803.34	V P P	4n © ©	4.59	3.34 3.35 3.35	3-4 2-3 3-3	y ⁵ P°-e ⁷ G (1191)	6949.37 6805.72 6983.53 6822.00	P P P	© © 1	4.56 4.56 4.57 4.56	6.34 6.37 6.34 6.37	3-3 2-2 4-3 3-2	(1220)
8866.961 E 8793.376 E 8764.000 E 8439.603 E 8497.00 0	150 120 100 20 8	4.53 4.59 4.63 4.53 4.59	5.93 5.99 6.04 5.99	4-4 3-3 2-2 4-3 3-2	y ³ F°-e ³ F (1172)	6803.30 6920.16 6838.08	P P V	© © 4nl	4.54 6 4.59 6 4.54 6	3.35 3.37 3.37	3-4 2-3 3-3	y ⁵ p°_f ⁵ F (1192)	6711.24 7089.73 6932.49	P P P	0 0 0	4.56 4.56 4.56	6.40 6.31 6.34	2-1 3-4 2-3	
9258.30 E 9079.599 E	20 8	4.59 4.63	6.04 5.92 5.99	3-4 2-3	3 3	6692.47 6848.86 •6951.261	P P I	1 © 25	4.59 6	3.38 3.39 3.31	3-2 2-1 3-2	y ⁵ p•_e ⁵ s	7011.364 *6947.501 7010.362 7027.60	V V V	3 3 2 (1)	4.57 4.56 4.56 4.56	6.33 6.34 6.32 6.32	4-4 3-3 2-2 3-2	d ³ F-v ³ F° (1221)
6843.671 I 6858.164 K 6885.773 L 7074.45 P	60 40 20 ©	4.53 4.59 4.63 4.59	6.33 6.39 6.42 6.33	4-3 3-2 3-1 3-3	y ³ F°-e ³ D (1173)	*7145.317 6881.74 6855.74	V M V	5 1 3	4.54 6	3.31 3.33 3.39	3-3 2-2	(1193) y ⁵ p°_e ³ D (1194)	6976.934 6930.64 6960.334	V V	3 1 2	4.56	6.33 6.34 6.35	3-4 2-3 4-4	d ³ F-4°
7031.03 P 6881.07 P 6627.558 L	© © 5	4.63 4.63 4.53	6.39 6.43 6.39	2-2	y ³ F°-g ⁵ D	6833.24 6676.86 6717.556	V P V	1 © 3	4.54 6 4.59 6	.42	1-1 3-2 2-1		6926.40 *6947.501	P V	© 3	4.56	6.35 6.35	3-4	(1222) a ³ F-5°
6715.410 V 6804.020 V	5 5	4.59 4.63	6.43 6.45	4-3 3-2 2-1	(1174)	7071.88 6976.306	۷ ۷	1	4.62 6	3.33 3.39	2-3 1-2	5 5 _	6854.82	V	2		6.37		(1224) d ³ F-6° (122 <u>4</u> a)
6105.15 P 6159.409 U 5983.704 K	(in)	4.53 4.59 4.53	6.55 6.59 6.59	4-5 3-4 4-4	y ³ Fe-g ⁵ F (1175)	6855.176 6841.349 6828.610 6663.26	I I V	150 80 50 (1)	4.54 6 4.59 6 4.62 6 4.54 6	3.39 3.43	3-4 2-3 1-2 3-5	y ⁵ P°-g ⁵ D (1195)	6977.445 6804.27 6716.24 6837.00	V V O	4 3 3 3	4.56 4.56	6.34 6.38 6.40	4-5 3-4 2-3	d ³ F-u ³ G° (1225)
5997.808 V 5973.37 P 5848.09 W	(1) © (2n)	4.59 4.63 4.59	6.65 6.70 6.70	3-3 3-2 3-3		*6713.14 6752.724 6541.49	V L P	`6d 10	4.59 6 4.62 6 4.54 6	3.43 3.45	3-3 1-1 3-3		6732.06 6764.13	V P	1	4.56	6.38 6.40 6.40	4-4 3-3 4-3	
5927.798 V 6079.02 V	(2w,d) (1)	4.63	6.71	2-1 2-2	y ³ F°-h ⁵ D	6639.71 6733.164	P L	4 6	4.59 6 4.62 6	3.45 3.45	3-1 1-0		6785.76 6769.66	P P	<u>o</u>		6.38 6.38	3-2 2-2	d ³ F-y ¹ D° (1236)
5929.700 U 5949.35 V 6018.34 P 6251.26 P	(1) (1) (2) 0	4.53 4.59 4.63	6.61 6.66 6.68	4-3 3-2 3-1	(1176)	6753.45 6936.48	P P	0		3.37	3-3 2-3	y ⁵ p°_e ⁷ s (1196)	6761.07 6745.11	P V	© 1		6.39 6.39	2-2	d ³ F-x ¹ D° (1227)
6251.26 P 6093.66 V 6094.419 U	© (1) (1)	4.59 4.59	6.56	3-4	y ³ F°-f ⁵ P	6633.764 6705.117 6842.668	K I V	50 15n 6n	4.62 6	.43	3-3 3-2 1-1	y ⁵ p°_e ⁵ p (1197)	6699.14 6667.73	V V	(1)		6.42 6.42	3-3	d ³ F-u ³ D• (1228)
6024.419 U 6024.066 K 6020.173 K	15 10n	4.63 4.53 4.59	6.66 6.58 6.64	2-1 4-5 3-4	(1177) y ³ F°-f ⁵ G (1178)	6533.97 6726.668 6810.28	V V	8n 20n 20n	4.59 6	. 42	3-3 2-1 3-3		6591.32 6364.717	V V	(1)	4.56	6.45 6.50	3-2	d ³ F_t ³ D° (1229)
6007.961 K 5852.19 W 5981.28 P	(3n) (2n) ©	4.63 4.53 4.59	6.69 6.64 6.69	2-3 4-4 3-3	(1110)	6820.43 6012.75 5995.93	O P P	8n © ©		5.43 5.59 5.65	1-2 3-4 2-3	y ⁵ p•_g ⁵ F (1198)	6306.19 6271.52 5926.83	P P P	0 0 0	4.56	6.53 6.53	3-2	d ³ F_y ³ I° (1230) d ³ F_y ³ P°
5720.89 P 5807.97 P	0	4.53	6. 69 6.71	4-3 3-2		5933.80 5715.80	P P	0		3.70	1-2 3-2	(1100)	6016.95 5991.58	P P	0 0 0		6.64 6.62	2-1 4-3 3-3	(1231) d ³ F-y ¹ F° (1232)
														-	~		۵۰۰۵	U-U	(1000)

Labo	ratory Ref		E Low	P High	J	Multiplet (No)	Labo I A	rator Ref		E Low	P H1gh	J	Multiplet (No)	Labo I A	rato Ref	ry Int	E Low	P High	J	Multiplet (No)
<u>Fe I</u> con	tinued	L					Fe I con	tinue	đ					<u>Fe I</u> con	tinu	eđ				
5955.12 5942.71 5902.52	P P V	© © (1)	4.56 4.56 4.57	6.64 6.64	3-3 2-3 4-5	d ³ F-x ¹ F° (1233) d ³ F-t ³ G°	5984.805 5987.057 *5975.355 6170.492	K K J K	8 6 4 4n	4.77 4.81 4.77	6.77 6.84 6.88 6.77	3-2 2-1 1-0 2-2	y ³ D°-e ³ P (1260)	7386.394 7351.56 7300.47 7495.67	L V O P	8n 4 1n ©	4.89 4.93 4.97 4.97	6.56 6.61 6.66 6.61	4-3 3-2 2-1 2-2	x ⁵ D°- f ⁵ P (1275)
5791.53 5661.03 5815.23 5672.28	P P P	© (1) (1)	4.56 4.56 4.57 4.56	6.70 6.74 6.70 6.74	3-4 2-3 4-4 3-3	(1334)	6103.190 6293.92 m8920.02	K P	3 © Fe	4.81	6.84	1-1 1-3 - 4-5	x ⁵ D°-e ⁷ F	7320.694 7244.86 7176.886 7155.64	V V V	5n 2n 2n 3n	4.89 4.93 4.97 4.99	6.58 6.64 6.69 6.71	4-5 3-4 2-3 1-3	x ⁵ D°-f ⁵ G (1276)
5895.007 5870.65 5891.89	U P P	(1) © (1)	4.57 4.56 4.57	6.67 6.67	4-3 3-3 4-5	d ³ F-11° (1235) d ³ F-12°	*9157.08 9328.64 8643.29 9006.72	P P F	(2) © 0 1	4.97 5.00 4.89 4.97	6.31 6.32 6.34	2-3 0-1 4-4 2-2	(1361)	7068.60 7044.60 7068.02	P O P	(1) ©	4.89 4.93 4.97	6.64 6.69 6.71	4-4 3-3 3-3	
5793.70 5770.17	P P	© ©	4.57 4.56	6.70 6.70	4-4 3-4	(1236) d ³ F-13° (1236a)	9253.72 9298.05 9178.57	P P F	© © 1n	4.99 4.89 4.93	6.32 6.22 6.28	1-1 4-5 3-3	x ⁵ D°- f ⁷ D (1363)	7083.396 7091.91 7066.15	V P P	(1) ©	4.89 4.93 4.97	6.63 6.67 6.71	4-5 3-4 2-3	x ⁵ D°-e ³ G (1277)
5438.04 5412.56	P P	⊙	4.57 4.56	6.84 6.84	4-5 3-4	d ³ F-v ³ H° (1237)	9392.77 9242.32	P F	S ©	4.99 4.97	6.30 6.30	1-1 2-1	(1222)	7079.32 7091.83	P 0	(1)	4.89 4.93	6.64 6.67	4-3 3-2	x ⁵ D°-f ³ D (1278)
5 313.839	T	(-)	4.56	6.88	2-2	d ³ F-w ¹ D° (1238) d ³ F-w ¹ F°	9259.05 9462.97	F F	15 2	4.89 4.93	6.22 6.24	4-4 3-3	x ⁵ D°-f ⁵ D (1263)	7031.42 7256.13 7225.82	P P P	(1) ©	4.97 4.93 4.97	6.72 6.64 6.67	3-1 3-3 2-2	
5313.41 5300.41	P P	© ©	4.56	6.89 6.90	3-3 4-5	1239) d3F-83G°	9550.90 9164.51 9318.13	F U F	(1) 3	4.97 4.89 4.93	6.26 6.24 6.26	2-2 4-3 3-2		7118.12 7396.50 7317.40	P P P	0 0 0	4.99 4.97 4.99	6.72 6.64 6.67	1-1 2-3 1-2	
5281.18 5218.51	P P	00	4.56 4.56	6.90 6.93	3-4 2-3	(1240)	9388.28 *9452.45	F F	3n 2	4.97	6.28	2-1 1-0		7162.37	P P	Ō	5.00	6.72	0-1	x ⁵ D°-f ³ F
5170.08	P	•	4.57	6.96	4-5	d ³ F-u ³ H° (1241)	9214.45 9394.71	F F	6 3n	4.89 4.93	6.23 6.25	4-4 3-3	x ⁵ D°-e ⁷ P (1264)	6794.60 6713.44	P P	0 0 0	4.89 4.93 4.97	6.75 6.75 6.81	4-4 3-4 2-3	(1279)
5114.52 5047.14 5019.18 5096.17	P P P	0000	4.57 4.56 4.56 4.56	6.99 7.01 7.02 6.99	4-4 3-3 2-2 3-4	d ³ F-u ³ F• (1242)	9404.80 9100.50 9024.47 *9080.48	P F F	©? 5n 15 3n	4.97 4.89 4.89 4.93	6.28 6.25 6.26 6.29	2-2 4-3 4-5 3-4	x ⁵ D°-e ⁵ G (1265)	m6705.13 6601.13 6524.76 6824.82	P P P	Fe	4.93 4.97 4.99 4.97	6.77 6.84 6.88	3-2 3-1 1-0	x ⁵ D°-e ³ P (1280)
4875.72 4837.65	P P	0	4.57 4.56	7.10	4-4 3-3	d ³ F-t ³ F° (1243)	9116.89 8 8 05.21	P P	0	4.99 4.89	6.34 6.29	1-2 4-4	(1505)	6677.49	P	Ō	4.99	6.77 6.84	2-2 1-1	
4813.72 4854.18	P P	0	4.56 4.57	7.12 7.12	2-2 4-3	7 7	8887.10 8616.27	P P	© ©	4.93 4.89	6.32	3-3 4-5	x ⁵ D°-e ⁷ G	5531.949 5602.54 5634.53	U P P	(1) © ©	4.89 4.93 4.97	7.12 7.14 7.16	4-4 3-3 2-2	x ⁵ D°-1 ⁵ D (1381)
4369.29 4253.55	P P	© ©	4.57 4.57	7.40 7.47	4-5 4-5	d ³ F-r ³ G° (1244) d ³ F-t ³ H°	8796.42 8902.94 8978.04	F P P	2 0 0	4.93 4.97 4.99	6.34 6.35 6.36	3-4 2-3 1-2	(1266)	5496.57 5552.70 5685.86	P P P	000	4.89 4.93 4.97	7.14 7.16 7.14	4-3 3-2 2-3	
4203.67	P -	Č	4.56	7.50	3 -4 -	(1245)	8538.02 8700.34	P P P	0 0	4.89 4.93	6.34 6.35	4-4 3-3		5690.07	P	0	4.99	7.16	1-3	5
10863.60 11013.27 10435.38	D D P	5 1 ©	4.71 4.77 4.71	5.85 5.90 5.90	3-4 2-3 3-3	y ³ D°-e ⁵ F (1246)	8956.26 8447.41 8819.42	P P	000	4.99 4.89 4.97	6.37 6.35 6.37	1-1 4-3 3-1		5479.95 5559.64 5613.70	P P	000	4.93 4.97 4.99	7.19 7.19 7.19	3-2 2-2 1-2	x ⁵ D°-4 (1382)
10216.351 10145.601	E E	100 80	4.71	5.92 5.99	3-4 2-3	y ³ D°-e ³ F (1247)	8710.29 8699.43 8790.62	F O F	20n (4n) 10n	4.89 4.93 4.97	6.31 6.35 6.37	4-5 3-4 2-3	x ⁵ D°-f ⁵ F (1267)	9602.07 8863.64	F F	2 1p7	4.99	6.28	- 4–5 2–2	y ⁷ P°-e ⁷ F (1283)
10065.080 9653.143 9753.129	E E E	60 20 10	4.81 4.71 4.77	6.04 5.99 6.04	1-2 3-3 2-2	(2007)	8846.82 8876.13 8446.56	F F P	5 2	4.99 5.00 4.89	6.38 6.39 6.35	1-3 0-1 4-4		9382.93	P	3n	4.96	6.28	3-3	y ⁷ P°-f ⁷ D
9297.14	P P	°°	4.71	6.04	3–2	y ³ D°-e ⁵ S	8592.97 *8713.19	O F	(2n) 10	4.93 4.97	6.37 6.38	3-3 2-2		9944.13 9608.89	F	3n © 7	4.99 4.96	6.23	4-4 3-3	(1284) y [?] pe_e [?] p (1285)
7620.538	E	25	4.71	6.33	3-3	(1249) y ³ D°-e ³ D	8808.17 8519.05	P P	4n ⊙	4.99 4.93	6.39 6.38	1-1 3-2		9248.80 9811.36 9383.40	P F P	0 2 0	4.94 4.99 4.96	6.28 6.25 6.28	2-2 4-3 3-2	
7653.783 7664.15 7370.16	L P O	6 © 1		6.39 6.42 6.39	2-2 1-1 3-2	(1250)	•9157.07 8567.78	P P	(a) ©	4.97 4.89	6.31 6.33	2-2 4-3	x ⁵ D°-e ⁵ S (1268) x ⁵ D°-e ³ D	8967.53 8798.05	P P	0	4.99 4.96	6.37 6.37	4-3 3-3	y ⁷ P°-e ⁷ 8 (1386)
7481.93 7924.14 7844.55	P P P	(1) © 2	4.77 4.77 4.81	6.42 6.33 6.39	2-1 2-3 1-2		8493.79 8466.10 8828.08	P P P	000	4.93 4.97 4.93	6.39 6.42 6.33	3-2 2-1 3-3	(1269)	8679.61 7909.60	P P	o o₁	4.94		2-3 4-5	y ⁷ P°-g ⁵ F
7353.528 7476.40	V P	1 (1)	4.71 4.77	6.39 6.43	3-3 2-2	y ³ D°-g ⁵ D (1251)	8686.77 8592.10 9036.74	P P P	© © (1)	4.97 4.99 4.97	6.39 6.42 6.33	2-2 1-1 2-3		6813.55	P	© 1		6.77	3-2	(1287) v [?] p°_e3p
7563.03 7205.51 7385.54	О Р Р	1n 0 0	4.81 4.71	6.45 6.43	1-1 3-2	(2252)	8819.48 8656.67	P P	00	4.99 5.00	6.39 6.42	1-2 0-1		6245.84	V	(1)	4.99	6.97	4-5	(1288) y [?] P°-1 (1289) y [?] P°-15D
7196.37	P	0	4.77 4.71	6.43	2-1 3-2	y ³ D°-e ⁵ P	8526.685 8471.75	E O	8 2	4.89 4.93	6.34 6.39	4-4 3-3	x ⁵ D°-g ⁵ D (1270)	5678.04 5748.15	P P	©? ⊙?	4.96 4.99	7.14 7.14	3-3 4-3	y ⁷ P°-15D (1290)
6569.231 6597.607	I V	50n 15n	4.71 4.77	6.59 6.65	3-4 2-3	(1252) y ³ D°-g ⁵ F (1253)	8459.01 8465.23 8275.91	P P O	0 0 4n	4.97 4.99 4.93	6.43 6.45 6.43	2-2 1-1 3-2		5720.79	P	(1n)	4.99	7.15	4-5	y ⁷ P°-h ⁷ D (1291)
6385.74 n6416.94 6495.779	P P U	© Fe+ 3	4.77	6.65 6.70 6.71	3-3 2-2 1-1		8342.95 8434.51 8784.44	R P F	(_) © 5	4.97 4.99 4.93	6.45 6.45 6.34	3-1 1-0 3-4		9913.19 9763.913	P E F	© 15	4.97 5.01	6.28	5-6 4-5	x ⁵ F°-e ⁷ F (1292)
6364.384 6673.84	V P	(1) ©	4.77	6.71	2-1	y ³ D°_h ⁵ D	8663.73 8584.82	P P	00	4.97 4.99	6.39 6.43	2-3 1-2		9658.94 •9868.09 9800.79	F P	3 3 ©	5.08	6.32 6.31 6.34	3-4 2-3 1-2	
6604.67 6330.856	U.	(1) (1n)	4.81 4.71	6.56 6.68 6.66	3-4 1-1 3-2	(1254)	85 27.88 8369 .87	P P	© ©	5.00 4.89	6.45 6.37	0-1 4-3	x ⁵ D°-e ⁷ S	*9452.45 9433.29 *9699.70	F F	2 © 6n	5.01	6.28 6.32 6.31	5-5 4-4 3-3	
6468.86 6671.43	P P	©	4.77 4.71	6.68 6.56	2-1 3-3	y ³ D°_1 ⁵ P	8816.86 8186.80	P O	⊙ 10nd?	4.97 4.89	6.37 6.40	2-3 4-3	(1271) x ⁵ D°-e ⁵ P	9693.69 9920.46 9531.22	F P P	1 © ©	5.06 5.08	6.34 6.32 6.34	2-2 1-1 3-2	
6713.76 6696.30 6494.52	V P P	3n © ©		6.61 6.66 6.61	2-2 1-1 3-2	(1255)	8263.86 8480.63 8424.14	P P O	© © 2n	4.93 4.97 4.93	6.43 6.42 6.40	3-2 2-1 3-3	(1272)	9878.18	P	•	4.97	6.22	5-5	x ⁵ F°-f ⁷ D
6556.79 6860.13	U P	(1) ©	4.77	6.66 6.61	3-1 1-3		8 446.4 2 8607.08	P P	•	4.97 4.99	6.43 6.42	2-2 1-1		9977.52 10016.67 10080.44 9967.32	F P P	1 © 0	5.06	6.38 6.30 6.30	3-3 2-2 1-1	(1293)
6411.10 6456.87 6253.82	P P P	1n © ©	4.77	6.64	3-4 2-3	y ³ D°-f ⁵ G (1256)	8613.93 8571.84 8671.86	P P P	000	4.97 4.99 5.00	6.40 6.43 6.42	2-3 1-2 0-1		9967.32 9834.04	P F	© 3n		6.30 6.22	2-1 5-4	x ⁵ F°_f ⁵ D
6171.01	P	©	4.71	6.69	3-3 3-2	7 . 5	7440.98 7447.43	V V	2n 1	4.89 4.93	6.55 6.59	4-5 3-4	x ⁵ D°-g ⁵ F (1273)	10057.64 10142.82 10137.06	F F P	3 2 ©	5.01 5.04	6.24 6.26 6.28	4-3 3-2 2-1	(1294)
6224.23 6419.982	P K	©7 30n	4.71 4.71	6.64	3 -4 3 - 3	y ³ D°-e ⁵ H (1257) y ³ D°-f ³ D	7351.160 7216.68 7194.92	V P O	2n © 1	4.97 4.99	6.65 6.70 6.71	3-3 1-3 0-1	- · -•	10149.09	P	0	5.08	6.29	1-0	-5me -7m
6496.456 6469.214 6290.968	K I I	20n 15n 3n	4.77 4.81	6.67 6.72 6.67	2-2 1-1 3-2	(1258)	7261.29 7212.47	P V	© 1n	4.89 4.93	6.59 6.65	4-4 3-3		9783.96 9980.55 10117.81	F P	3 2n ©	5.01	6.23 6.25 6.23	5-4 4-3 4-4	x ⁵ F°-e ⁷ P (1295)
6338.896 6634.10 6633.44	V P M	(1n) 4n 4n	4.77 4.77	6.72 6.64 6.67	2-1 2-3 1-2		7127.58 6997.13 7062.80	P P P	000	4.93	6.70 6.70 6.71	2-2 3-2 2-1		9738.624 9889.082	E E	200 40	5.01	6.24 6.26	5-6 4-5	x ⁵ F°-e ⁵ G (1296)
6055.987 6078.496	K	4	4.71	6.75	3-4	y ³ D°-f ³ F	7389.34 7363.96	P O	1n		6.56 6.61	4-4 3-3	x ⁵ D°-h ⁵ D (1274)	9861.793 9800.335 9763.450	E E E	30 20 15	5.04 5.06	6.29 6.32 6.34	3-4 2-3 1-2	•
6102.178 5898.212	K K U	4n 5 (1)	4.81	6.81 6.84 6.81	2-3 1-2 3-3	(1259)	7278.48 7282.39 7181.93	P V V	o 1n	4.97 4.99	6.66 6.68	2-2 1-1	·=-·*/	9569.960 96 2 6.562	E E	40n 30n	4.97 5.01	6.26 6.29	5 -5 4 -4	
							7142.522 7191.66	0	1n 4n (1)	4.93 4.97	6.61 6.66 6.68	4-3 3-2 2-1		9634.22 9657.30 9409.55	F F P	5 4 ⊙		6.32 6.34 6.32	3-3 2-2 4-3	
							7582.15 750 8 .53	P P	© ©		6.56 6.61	3-4 2-3								

Labo	ratory Ref		E Low	P High	J	Multiplet (No)	Labo:	rator Ref	y Int	E Low	P H1gh	J	Multiplet (No)		atory Ref Int	E Low	P High	J	Multiplet (No)
Fe I con	tinue	ı ı					Fe I con	tinue	đ					Fe I cont	inued				
9333.94 9401.09 9527.73 9573.65 9112.25 9307.94 9415.04 9024.78	F F P P F P P	2 10n 1 © © 2	4.97 5.01 5.04 5.06 4.97 5.01 5.04 4.97	6.29 6.32 6.34 6.35 6.32 6.34 6.35	5-6 4-5 3-4 2-3 5-5 4-4 3-3 5-4	x ⁵ F°-e ⁷ G (1297)	5732.29 5805.76 5835.41 5845.27 5890.48 5952.19 5633.970	P P P P	(1) (0) (0) (0) (2)	4.97 5.01 5.04 5.01 5.04 5.06		5-4 4-3 3-2 4-4 3-3 2-3 5-6	x ⁵ F°-1 ⁵ D (1313) x ⁵ F°-g ⁵ G	10353.85 10388.73 10283.87 9951.15 9953.45 10348.16 10364.13	P (3 P © P © P © P © P © P © P © P © P © P	5.42 5.48 5.37 5.42 n 5.37	6.56 6.61 6.68 6.61 6.66 6.56	4-4 3-3 1-1 4-3 3-2 4-3 3-2	w ⁵ D ^e -h ⁵ D (1346) w ⁵ D ^e -f ⁵ P (1347)
9217.54 9189.52 9289.39 9410.15 8922.66 *9080.48 9203.10 9513.24 9414.14 9443.98 9454.24	*************	5n 2n 0 1n 0 3n 0 10n 20n 10n	4.97 5.01 5.08 4.97 5.01 5.04 5.01 5.06 5.08	6.31 6.35 6.37 6.39 6.35 6.37 6.38 6.37 6.38		x ⁵ F°-f ⁵ F (1298)	*5655.506 5655.179 5650.01 5650.01 5549.66 5577.03 5595.06 5614.29 5474.09 5518.57	V V V P P P P P P P	4 2 1 1 0 0 0 0 0 0 0	5.01 5.04 5.06 5.08 4.97 5.01 5.04 5.06 4.97 5.01	7.19 7.22 7.25 7.26 7.19 7.22 7.25 7.36 7.36 7.36	4-5 3-4 2-3 1-5 4-4 3-3 2-4 4-3	(1314) (1314)	10153.30 10019.77 10032.84 9764.40 6943.67 10925.80 7430.73	P	5.42 5.45 5.48 5.43 7 5.37 5.46	6.64 6.69 6.71 6.69 7.15 6.59	3-4 2-3 1-2 3-3 4-5	w ⁵ D°-1 ⁵ G (1348) w ⁵ D°-h ⁷ D (1349) w ⁵ F°-g ⁵ F (1350) w ⁵ F°-1 ⁵ D
•9699.70	F	6n	5.04	6.31	3-2		11479.87	P	© †	5.00	6.08		a ¹ F_v ³ D° (1315)	7526.72	P 6	5.48	7.12	4-4	(1351) v ⁵ D°-1 ⁵ D
*9868.09 9343.40 9173.63 *9070.42 9324.07 9423.07	F P F O P	3 4nd 2 (1) ©	5.06 5.01 5.04 5.06 5.06 5.08	6.31 6.33 6.39 6.42 6.39 6.39	2-3 4-3 3-3 2-1 2-3 1-2	(1299) x ⁵ F°-e ³ D (1300)	10875.00 9917.93 8852.30 9482.82	P F P	© 2 ©1 ©1	5.00	6.14 6.25 6.40 6.31	3-4 3-4 3-2 3-4	(1316) alf-x10° (1317) alf-u5F° (1318) alf-t5D°	7537.97 7461.38 7448.00	P 6	5.48	7.14 7.14 7.16	3-3 4-3 3-2	(1352)
9012.098 8945.204 8919.95 8929.04 8984.87 9294.66 9147.800 9062.24 9019.84 9155.67	EEFFFFFFF	30 30 10 5 3 5 5 2 2	4.97 5.01 5.04 5.06 5.08 5.01 5.04 5.06 5.08 5.08	6.34 6.39 6.43 6.45 6.34 6.39 6.43 6.45	5-4 4-3 3-3 2-1 1-0 4-4 3-3 2-3 1-1 1-2	x ⁵ F°-g ⁵ D (1301)	8959.88 8559.98 8171.30 7846.47 7107.30	P W P P	©† (1) © ©† 0	5.00 5.00 5.00 5.00 5.00	6.38 6.45 6.51 6.58 6.74	3-3 3-3 3-4 3-3	(1320) alf-t3po (1321)	Additions 4232.724 m3199.50 3418.507	to Multi V 1 P Fe	0.11 0.11	2.99 3.97 5.82	1-2 1-3 1-0	a ⁵ D-z ⁷ Pe (3) a ⁵ D-z ³ Fe (7) a ⁵ P-u ⁵ De (81)
8892.13	P	•	5.01	6.40	4-3	x5Fe_e5p	6552.77	W	(2)	5.00	6.89	3-3	a ¹ F-w ¹ F° (1325)	Strongest	Unclassi	fied Lines	of Fe	Ī	
8905.99 7807.97 7810.81 7551.10 7552.79 7452.08	P	0 00000	5.04 4.97 5.01 5.06 5.01 5.04	6.43 6.55 6.59 6.70 6.65 6.70	3-2 5-5 4-4 2-2 4-3 3-2	(1302) x ⁵ F°-g ⁵ F (1303)	6124.08 6089.566 5041.32	P L P	© (1) ©		7.03 7.45	3-2 3-4 3-3	(1327) alf-r3g° (1328)	9666.59 9637.55 9529.31 9430.08 8145.47	F 2 F 2 F 2 G 4	n V IV* V			
7964.93 7802.49 7751.18 7719.05 7617.19 7959.21 7720.68	PP OPPOP	0 0 5n 0 0 (1)	5.04 5.06 4.97 5.01 5.04 5.01 5.06	6.59 6.65 6.56 6.61 6.66 6.56 6.66	3-4 2-3 5-4 4-3 3-2 4-4 2-2	x ⁵ F°-h ⁵ D (1304)	9008.37 8814.50 8689.83 8464.02 8300.01	P P P	2 2 0 0	5.05 5.08 5.05	6.43 6.45 6.50 6.50	3-3 2-2 3-2	X-u ³ D° (1329) X-t ³ D° (1330) X-v ³ P°	8024.50 7994.473 7808.04 7573.53 7546.177	0 3 E 20 0 6 0 2 L 4 R 3 V 2	n V n V IV*			
7689.10 7980.04	P P	ο 01	5.08 5.06	6.68 6.61	1-1 2-3		8274.28 8264.27	M	6 3	5.05 5.08	6.54 6.58	3-3 2-2	(1331) X-8 ³ D° (1332)	6975.46 6902.80 6881.46	V 2 V 3 V 3 M 1	n V n V			
7955.81 7855.41 7745.48 7965.52 7813.62	O P P P	(1) 4n © ©	5.01 5.04 5.06 5.06 5.08	6.56 6.61 6.66 6.61 6.66	4-3 3-2 3-1 2-3 1-1	x ⁵ F°-f ⁵ P (1305)	6700.90 6841.65 6406.42 6217.288	P P W	© (1)	5.05 5.08 5.08			X-w ¹ F° (1333) X-u ³ F° (1334)	6838.86 6793.62 6755.609 6726.78	V 3 M 1 V 3 D (3)			
7742.71 7879.75 7733.68 7547.89 7588.30 7505.98 7484.28 7398.98	0 P P P P P P P	4n 1 0 0 0 0	5.01 5.04 5.08 5.01 5.04 5.06	6.56 6.58 6.64 6.71 6.64 6.69 6.71 6.64	5-6 4-5 3-4 1-2 4-4 3-3 2-2 5-4	x ⁵ F°- 1 ⁵ G (1306)	10018.15 9683.57 9335.27 9348.13	P F P	(1) © 1 ©	5.05 5.05 5.05	6.32	- 3–1 2–3	X-v1ge (1335) z5se-f5D (1336) z5se-e5G (1337) z5se-f5F (1338)	6609.56 6528.53 6501.681 6042.093 5036.294 4552.544 4237.162	V 1 V 2 V 4 J 2 R 6 J (3	V IV* V			
7528.15 7463.38 7420.20 7341.78 7194.02	P P P P	00000	5.04 5.06 4.97	6.65 6.70 6.73 6.65 6.73	4-5 3-4 2-3 5-5 4-3	x ⁵ F°-e ⁵ H (1307)	*7148.69 5853.48	R P	(-) ©î	5.05		2-2	z ⁵ s ^o -e ³ p (1339) z ⁵ s ^o -1 ⁵ D (1340)	4100.17 3851.58 3739.527 3681.774 3680.801	W (3 W (4 J 3 V 1	IA			
7415.19 7384.96 7605.32 7559.68 7482.20	P P O P	© © 2n 1n	4.97 5.04 5.01	6.63 6.71 6.63 6.67 6.71	5-5 3-3 4-5 3-4 2-3	x ⁵ F°-e ³ G (1308)	10890.13 11542.96 9233.15 9052.56	P P P	©? ©? —————————————————————————————————	5.29 5.32 5.30 5.31	6.42 6.39 6.63 6.67	2-1 1-2 - 5-5 4-4	x ⁵ p° _{-e} 3 _D (1341) y ⁵ G° _{-e} 3 _G (1342)	3656.227 3634.698 3617.317 3616.572 3614.550	V 3 G 4 J 2 J 3	n IV n IV n IV			
7443.26 7746.56 7661.46	P P P	000	5.06	6.73 6.64 6.67	2-1 3-3 2-2	x ⁵ F°-f ³ D (1309)	6671.36	W	(3)	5.30	7.15	55	y ⁵ G°-h ⁷ D (1343) y ⁵ G°-g ⁵ G	3587.752 3506.40 3438.306	J 3 W (3	IV) w)			
7359.95 7312.05	P P	0	4.97 5.01	6.65 6.70	5-6 4-5	x ⁵ F°-e ³ H (1310)	6450.99 6402.43	V P	{1 1}		7.26	2 – 2? -	(1344)	3262.284 3179.538 3139.908	V 4	n V			
7160.85 *7222.88 *7086.76 6027.76 6152.82	P V V P P	© (1) 2 0 ©7	5.04 5.06 4.97	6.73 6.75 6.81 7.02 7.02	2–3	x ⁵ F°-f ³ F (1311) x ⁵ F°-3 (1312)	10555.63 10362.73 10070.58 10023.34 9676.42	P P P F	© © © 1	5.42 5.45 5.49 5.48 5.37	6.59 6.65 6.71 6.71 6.65	3-4 2-3 0-1 1-1 4-3	w ⁵ D°-g ⁵ F (1345)	3136.17 3126.175 3103.71 2991.632	W (3 G 8 W (4 G 5	n IV)			
1				-		, ,													

							REV	ISE	D M 1	ULTI	PLE									
IA	rator Ref	Int	Low Anal A	P High List	J A Tu	Multiplet (No)	IA	ratory Ref	Int	Low	P High	J	Multiplet (No)		Ref	Int	Low	P High	J	ultiplet (No)
3277.347 3302.861 3312.707 3313.996 3255.884 3281.293	A A C A A	9 4 (1) 1 8 7		4.75 4.77 4.80 4.82 4.77 4.80		a ⁴ D-z ⁶ D° (1)	Fe II co 4602.75 4582.12 4515.19 4558.58 4399.86	P P P P P	a.	2.53	5.21 5.23 5.27 5.34 5.34	31-31 15-31	a ² D-z ⁶ F° (19) a ² D-z ⁶ P° (20)	Fe II con 5100.66 5120.34 5136.788 5150.93 4993.355	P P A P	tr 1	2.83	5.21 5.23 5.23 5.24 5.27	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	,4 _{F_2} 6 _F 0 cont ,4 _{F_2} 6 _P 0
3295.814 3303.466 3234.923 3264.76 3285.425	A A P C	6 4 0 (3)	1.07 1.09 0.98 1.04 1.07	4.82 4.83 4.80 4.82 4.83	12-12 32-22 22-12 12-2	4. 6.	4480.46 4327.04 4177.70 4258.35 4119.53	P P P P		2.63 2.53 2.53 2.63 2.53	5.39 5.39 5.49 5.53 5.53	25-25	a ³ D-z ⁴ D° (31)	4893.780 *5036.92 § 4629.336 4555.890 4515.337	A A A	On 2 7 8 7	2.82 2.83 2.79 2.82 2.83	5.34 5.27 5.46 5.52 5.57		,4 _{F-z} 6 _P • (36) ,4 _{F-z} 4 _F • (37)
2953.774 2970.510 2979.349 2975.938 2961.272	A A A A	11 10 8 5 5	1.04 1.07 1.09 1.09	5.24	12- 2 -	a ⁴ D-z ⁶ F• † (2)	4211.80 4075.95 4183.20 4124.793 4205.48 4070.03	P P A P	1	2.53 2.63 2.53	5.56 5.58 5.58 5.52 5.57 5.57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ² D-z ⁴ F° (22)	4491.401 4520.225 4489.185 4472.921 466.750 4582.835 4534.166	A A A A	5 7 4 3 3 3	2.83	5.59 5.57 5.59 5.46 5.52 5.57	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
3969.40 3969.38 3981.61 3938.289 3945.21 3966.43 3914.480 3930.31	P P A P P A	2	1.66	4.77 4.80 4.82 4.80 4.83 4.83 4.83	2-12-12-12-12-12-12-12-12-12-12-12-12-12	a ⁴ P-z ⁶ D ⁹ (3)	4168.66 4035.54 3779.58 3833.02 3730.17 3798.60 3896.11	P P P P P		2.63 2.53 2.53 2.63	5.59 5.59 5.80 5.85 5.85 5.88 5.80	32-12	a ² D-z ⁴ P° (23)	4583.839 4549.467 4523.634 4508.283 4620.513 4576.331 4541.523 4648.23	A A A A A A A P	11 10 9 8 3 4	2.79 2.82 2.83 2.84 2.82 2.83 2.84	5.49 5.53 5.56 5.58 5.49 5.53 5.56 5.49		(38)
3475.74 3487.990 3508.213 3463.974 3479.914 3503.474 3456.00 3475.25	P A A A P P	3 1 1 2 3	1.66 1.69 1.72 1.66 1.69 1.72 1.66 1.69	5.21 5.23 5.23 5.23 5.23 5.24 5.23	3-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		5607.12 5864.54 6021.18 5545.26 5811.93 5986.54 5498.19 5779.65	P		2.57 2.69 2.77 2.57 2.69 2.77 2.57 2.69	4.77 4.80 4.83 4.80 4.83 4.83 4.83	21-31 11-31 11-31 21-31 21-31 21-31 21-31	b ⁴ P _{-z} 6 _D o (34)	4595.68 4138.40 4088.75 4064.75 4160.62 4104.18	PPPP		2.84 2.83 2.84 2.83	5.53 5.80 5.85 5.88 5.80 5.85		,4F_z ⁴ P°† (39)
3425.582 3381.36 3364.22 3358.78 3338.19 3316.18	A P P P	3	1.66 1.69 1.72 1.66 1.69	5.27 5.34 5.39 5.34 5.39 5.39	31-31 11-31 11-31 31-31 11-11 21-11	a ⁴ P_z ⁶ P° (5)	4670.170 4871.27 5000.73 4648.933 4855.54	A P P A	10	2.57 2.69 2.77 2.57 2.69	5.21 5.23 5.23 5.23 5.23	2 - 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ⁴ P _{-z} 6 _F • (25)	6516.053 6432.654 6369.45 5284.092 5256.89	B B B	30 8 4 3	2.88 2.88 2.88	4.77 4.80 4.82 5.21 5.23	31-31 s 31-31 s 31-31 s	6 _{S-z} 6 _{D°} (40) 6 _{S-z} 6 _{F°} (41)
3227.732 § 3213.311 3210.449 3192.917	A A A	13 13 10 9	1.66 1.69 1.72 1.66	5.49 5.53 5.56 5.53	31-31 11-31 1-11 3-11 32-31	a ⁴ P-z ⁴ D° (6)	4991.11 4634.60 4846.47 4580.055	P P P	1	2.77 2.57 2.69 2.57	5.24 5.23 5.24 5.27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b ⁴ P-z ⁶ F° (26)	5238.58 5169.030 5018.434 4923.921	P A A	1 13 13 13	2.88 2.88	5.23 5.27 5.34 5.39		6 _{S_2} 6 _{pe} (42)
3186.740 3193.809 3166.670 3170.337 3196.070	A A A	11 11 4 6	1.69 1.72 1.66 1.69	5.56 5.58 5.56 5.58	1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	.4p .4re	4665.80 4713.18 4461.43 4583.99 4386.57	P P P P		2.69 2.77 2.57 2.69 2.57	5.34 5.39 5.34 5.39 5.39	23-23 13-13 23-12		*4731.439§ 4656.974 4601.34 4663.700	A A P	3 1	2.88 2.88	5.49 5.53 5.56	31-31 a 31-31 a 31-11	6 _{S-z} 4 _D ° (43)
3183.115 3185.315 3163.091 3161.945 3142.220	A A A	8 5 (5)	1.69 1.72 1.66 1.69 1.66	5.57 5.59 5.57 5.59 5.59	13-33 3-13 3-33 13-13 23-13	a ⁴ P-z ⁴ F° (7)	4233.167 4351.764 4416.817 4173.450 4303.166	A A A A	11 9 7 8 8	2.57 2.69	5.49 5.53 5.56 5.53 5.56	23-31 13-21 2-13 23-23 12-12	b ⁴ P-z ⁴ D° (37)	4327.14 4153.98	P P			5.80	21-31 a 21-11	68-z4pe (45)
2984.831 2965.036 2964.629 3002.650 2985.545	A A A A	15 10 9 13 13	1.72	5.80 5.85 5.88 5.80 5.85	21-21 12-12 12-22 12-22 2-12	a ⁴ P-z ⁴ P°† (8)	4385.381 4128.735 4273.317 4178.855 4296.567 4369.404 4122.638	A A A A A	7 3 3 8 6 2 4	2.77 2.57 2.69 2.57	5.58 5.56 5.58	21-14 12-14 14-34 14-34	b ⁴ P-z ⁴ F° (38)	6044.53 6129.71 6150.10 6141.01 5991.383 6084.11 6113.33 6116.04	PPPBBBP	10 5 2	3.14 3.19 3.21 3.22 3.14 3.19 3.21 3.22	5.20 5.21 5.23 5.20	51-51-8 41-41-31-31-31-31-31-31-31-31-31-31-31-31-31	4 _{G-2} 5 _F e (46)
4420.75 4484.93 4381.79 4445.26 4525.75	P P P P		1.96 2.02 1.96 2.03 2.03	4.75 4.77 4.77 4.80 4.75	-55	a ² G-z ⁶ D ^e (9)	4258.155 4087.27 3824.913 3908.54	A P A P	3 4	2.69 2.57 2.57 2.69	5.59 5.59 5.80 5.85	3-13 23-23 13-13 23-12 23-12 23-23 13-23	b ⁴ P-z ⁴ P° (29)	6185.34 6196.71 6178.13 5932.05	P P P		3.19 3.21 3.22 3.19	5.18 5.20 5.21 5.27	31-21 21-11 41-51 31-41 22-31 41-31 a	4 _{G_z} 6pe +
3521.64 3522.05 3458.13 3482.05 3587.95	P P P P			5.46 5.52 5.52 5.57 5.46	41-41 31-31 41-31 31-31 31-31 31-41	a ² G-z ⁴ F° (10)	3964.57 m3764.09 3872.76 3974.160 4002.073	P P P A A	3 3		5.88 5.85 5.88 5.80 5.85	24-14-14-14-14-14-14-14-14-14-14-14-14-14		5793.16 5691.38 5362.864 5316.777 5264.801	P P A A	5 4 2	3.19 3.21	5.34 5.39 5.49 5.53 5.56	32-12 42-32 42-32 32-13 32-13 32-32 32-32 32-32 32-32	4 _{G-z} 6 _{pe} + (47) 4 _{G-z} 4 _{pe} (48)
4818.26 4169.98 4251. 4 9	P P P		2.27	4.83 5.23 5.23	- 1½- ½ 1½-3½ 1-14	a ² P _{-z} 6 _D ° (11) a ² P _{-z} 6 _F ° (12)	4825.71 4833.21 4840.00 4847.61 4867.73	P P P P					a ⁴ H-z ⁶ F° (30)	5414.089 5337.713 5435.79 5316.609 5275.994	A P A	2 0 8 7	3.21 3.22 3.22 3.14	5.49 5.53 5.49 5.46 5.52	3½-3½ 3½-3½ 3½-3½ 5½-4½ a	4 _{G—Z} 4F° (49)
4158.45 4244.53 4151.79 4018.49 4041.84 3957.66	P P P P		2.27 2.33 2.27	5.24 5.24	12- 3	a ² p_z ⁶ p°	4868.82 4870.71 4903.85 4899.90	P P P		2.66 2.68 2.66 2.68	5.20 5.21 5.18 5.20 5.27	44-45 32-35 42-55 32-42	a ⁴ H-z ⁶ P° (31)	5234.620 5197.569 5425.269 5325.559 5254.92 5477.67	A A A P P	7 6 2 2	3,21 3,22 3,19 3,21 3,22 3,21	5.57 5.59 5.46 5.52 5.57 5.46	5-2-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	
3783.347 3821.92 3746.56 3798.36	A P P	4	2.27 2.33 2.27 2.33	5.53 5.56 5.56 5.58	12-12 12-24 12-14 12-14 14-14 14-14 14-14	a ² P-z ⁴ D° (14)	4644.09 4772.77 4384.33 *4314.289§ 4278.128	P P A C	4 (1)		5.34 5.27 5.46 5.52 5.57	51-41 41-31 34-21	a ⁴ H-z ⁴ F° (32)	5346.56 4763.79 4780.60 4685.95	P P P	1	3.22 3.21 3.22 3.22	5.52 5.80 5.80 5.85	31-31 a 21-31 a 21-31 31-11	4 _{G-z} 4pe (50)
3723.92 3741.56 3786.37 3712.39	P P P		3.27 2.33 2.27	5.58 5.57 5.59 5.59	$ \begin{array}{c} 1\frac{1}{2} - \beta \frac{1}{2} \\ \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $	a ³ P-z ⁴ F° (15)	4413.600 4338.70 4439.13 4372.22	A P P	0	2.68 2.68 2.68	5.46 5.52 5.46 5.49	31-31 31-42		5728.74 5605.91 5990.59	P P P		3.32	5.34 5.39 5.39	1 1 2 2 2 b 1 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2p_z6pe (51)
3494.672 3507.387 3443.83 3478.55 3416.021	A P P	5 3 5		5.80 5.85 5.85 5.88 5.88	12-32 2-12-12-12-12-12-12-12-12-12-12-12-12-12	a ² P-z ⁴ P° (16)	4332.88 4397.27 6239.36 6229.34	P P P		2.68 2.68 2.79 2.82	5.53 5.49 4.77 4.80		a ⁴ H-z ⁴ D ^e (33) b ⁴ F-z ⁶ D ^e † (34)	5262.48 5519.83 5191.58 5470.81 5148.19	P P P P		3.32 3.18	5.53 5.56 5.56 5.58 5.58	1 2 - 2 2 b 2 - 1 2 1 2 - 1 2 1 2 - 2 1 2 - 2	
4622.40 4691.55 4591.26 4664.79	P P P		2.51 2.57 2.51 2.57	5.18 5.20 5.20 5.21	_	a ³ H-z ⁶ F° (17)	6219.54 6217.95 5171.62 5178.71	P P P		3.79 3.82	5.18 5.20	23-15-11-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	b ⁴ F-z ⁶ D° † (34) b ⁴ F-z ⁶ F° (35)	5181.97 5445.97 5126.19 4780.15	P P P		3.18 3.18	5.59 5.59	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2P_z ⁴ F° (53) 2P_z ⁴ P°
4724.07 5696.11	P P				-	a ² D-z ⁶ D ^e (18)	5180.53 5178.95 5132.67 5146.12 5154.40 5161.18	P P P P		2.83 2.84 2.79 2.82 2.83 2.84	5.23 5.20 5.21 5.23	21-24 11-24 41-44 31-34 21-24 12-12		4886.92 4627.86 4831.11 4577.78	P P P	Marongo		0.00		³ P_Z ⁴ P* (54)

Laborator I A Ref		E Low	P High	J	Multiplet (No)	Labor I A	ator Ref		Low	P High	J	Multiplet (No)	Labor I A	ratory Ref Int	E Low	P High	J	Multiplet (No)
Fe II continu						Fe II con							Fe II con					
5534.860 A 5432.98 P 5591.38 P	4	3.23 3.25 3.25	5.46 5.52 5.46	51-41 41-31 41-41	b ² H-z ⁴ F° (55)	3388.134 3358.252	A A	†2 3	3.89 3.87	7.53 7.55		b ⁴ D-z ⁴ H° (77)	*2979.096	A 3		8.09	_	b ² F-z ² H° (100)
5525.14 P		3.25	5.49		b ² H-z ⁴ D° (56)	3376.24 3252.40 3250.34 3365.413	P P	•	3.89 3.87 3.87 3.87	7.54 7.67 7.67 7.54	31-21 21-11 1-11 21-21	b ⁴ D-z ² D° (78)	3602.60 3583.54 3607.05	P P P	4.06 4.06 4.06	7.51	61-51 51-41 51-51	a ² I-z ⁴ G ^e (101)
5909.38 P 5834.93 P 5732.72 P 5735.95 P 5827.49 P		3.41 3.37 3.41 3.37	5.46 5.52 5.53 5.57 5.57 5.59	31-41 31-31 31-31 31-31 31-31 31-31 31-11	a ² F-z ⁴ F° (57)	3249.911 3362.764 3305.634 3193.76	A A A P P	1 0 1	3.87 3.87 3.89 3.87 3.87	7.67 7.54 7.62 7.74 7.77	1 1 2 - 2 2 1 2 - 2 2	b ⁴ D-y ⁴ D° (79)	3511.25 3493.34 3489.17 3486.08 3481.92 3495.16	P P P P	4.06 4.06 4.06 4.06 4.06	7.60 7.60 7.60 7.60	53-53 53-53 63-53	a ³ I-z ⁴ I• (103)
5657.93 P 5835.43 P 5824.40 P		3.41 3.37 3.41	5.49 5.53	31-31 31-31 31-31 31-21	a ² F-z ⁴ D° (58)	3163.86 3177.65 3203.509 3166.22	P A P	1	3.87 3.89 3.87	7.76 7.74 7.77	35-25 35-25 25-15		3426.81	P	4.06 4.06	7.59 7.66		a ² I-z ² G° (103)
5722.56 P 5737.68 P 5941.36 P		3.37	5.53 5.56 5.49	3 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 -		3177.260 *3295.240 3191.374	A A	1 4 1	3.87 3.87 3.87	7.76 7.62 7.74	15-35 35-35 15-35		3418.02 3398.355	P A 4	4.06 4.06	7.69	5출-4출 6출-6출	-2+ -4me
3021.407 A 2965.395 A	1 2	3.37 3.41	7.46 7.57	31-31 31-11		3164.26 3267.035 3231.702	P A A	3 5	3.87 3.89 3.87	7.77 7.66 7.69	31-41 31-41 31-31	b ⁴ D-z ² G° (80)	3360.103 m3356.24 3402.32	A 3 P Fe		7.74	53-53 63-53 53-63	(104) a ³ I-z ³ I° (105)
2984.89 P 2998.855 A 2971.616 A 2991.244 A	2 1 0	3.37 3.41 3.37 3.41	7.51 7.53 7.53 7.54	31-41 21-31 31-31 31-31 31-31	a ² F-z ⁴ G• (60)	3241.685 3259.048 3258.773	A A	10 10	3.89 3.89 3.87	7.69 7.67 7.66	3½-3½ 3½-4½ 3½-3½		3220.835 3131.719	A 0	4.06 4.06			a ² I-y ⁴ G° (106) a ² I-y ² G°
2964.131 A 2968.738 A	7	3.37 3.37	7.54 7.53	3 § _2§	a ² F-z ⁴ H°	3247.171 3237.815 3268.92	A A P	9 8	3.87 3.87 3.89	7.67 7.68 7.66	35-35	(61)	3077.168 3062.234 3080.405	A 10 A 9 A 3		8.07 8.09 8.07	61-51 51-41 51-51	a3I_y2G° (107) a2I_z2H° (108)
*2980.963 A 2954.050 A 2959.601 A	4 4 7	3.41 3.37 3.37	7.55 7.55 7.54		a ³ F-z ⁴ H° (61)	3249.657 3237.402 3259.75 3239.87	A A P P	4 5	3.87 3.89 3.89	7.67 7.68 7.67 7.68	21-21 13-13 31-23 23-13		3056.802 3049.18 3060.023	A 5 P	4.06 4.06 4.06	8.10 8.11	61-51 51-41 51-51	a ³ I-x ⁴ G° (109)
*2986.617§ A		3.41	7.54	_	a ² F-z ² De-† (63)	3177.531 3135.360	A A	10 9	3.89 3.87	7.77 7.81	31-31 31-31 31-31 11-11		3020.001	A 10				a ² I-x ⁴ F° (110)
6983.54 P 3327.63 P		3.80 3.80	5.57 7.51	35-45	b ² G_z ⁴ F° (63) b ² G_z ⁴ G° (64)	3114.295 3105.548 3144.751 *3116.590\$	A A A	7 5 5 6	3.87 3.89 3.89	7.83 7.85 7.81 7.83	15-15 3-25 35-25 35-15		3680.98 3661.17 3656.50	P P P	4.13 4.14 4.13	7.51	41-51 31-41 41-41	c ² G-z ⁴ G° (111)
3277.853 A 3307.57 P 3266.938 A 3289.347 A 3249.16 P	0 4 7	3.75 3.80 3.75 3.80 3.75	7.53 7.53 7.55 7.55 7.55	5 4 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4) ² (-z ² H°	*3105.166 3167.94 3133.048 3114.680	A P A A	5 4 4	3.87 3.87 3.87 3.87	7.85 7.77	15-35 25-35 15-25 2-15		3641.22 3636.61 3629.99 3645.78	P P P	4.14	7.53 7.53 7.54	3 1 - 3 1 4 1 - 3 1 3 1 - 2 1	_3 <u>_</u> ,4µ•
3154.201 A 3167.853 A 3130.561 A 3192.059 A	12 11 2 3	3.75 3.80 3.75 3.80	7.66 7.69 7.69 7.66		b ² G—z ² G• (66)	3070.591 3047.60 3025.99 3034.712	A P P A	ter O	3.89 3.89 3.87 3.89	7.91 7.94 7.95 7.95	3½-3½ 3½-3½ 3½-3½ 3½-3½	b ⁴ D-y ⁴ G° (83) b ⁴ D-z ² F° (84)	3636.90 3632.292 3614.873 3610.33	P A 3 A 5 P	4.14 4.13	7.53 7.53 7.55	45-35	c ² G-z ⁴ H° (112)
3146.748 A m3193.85 P 3155.950 A	2 Fe ⁺ 2				b ² G–y ⁴ F° (67)	3038.777 3023.859 2997.749	Ā	3 1 tr 4	3.87 3.87 3.89	7.94 7.95 8.00	12-32	ь ⁴ р-у ² с•	3555.08 3568.97 3564.54	P P P	4.13 4.14 4.13	7.59	32-42 42-42	
3185.095 A 3184.43 P 3070.692 A	ĩ 4	3.80 3.80 3.75	7.67 7.67 7.77	32-42 32-42		2989.01 2989.367 2986.91	P A P	tr	3.87 3.87 3.87	8.00 8.00 8.00	21-11 11-11	(85) b ⁴ D-z ² p• (86)	3493.468 3468.680 3464.497 3497.73	A 10 A 8 A 3 P	4.13 4.14 4.13 4.14	7.69 7.69	41-41 31-31 41-31	c ² G-z ² G• (114)
3075.228 A 3106.559 A	2 4	3.80 3.80	7.81 7.77	32-32 32-32	b ² 0-x ⁴ D° (68)	2989.731 2987.27	A P	0	3.87	8.00	13-13 3-13 2-13		*3484.348\$ 3499.877	A 1 A 4	4.13 4.14	7.67 7.66		c ² G-y ⁴ F° (115)
2985.29 P 3012.59 P 2978.850 A 3004.249 A	3	3.75 3.80 3.75 3.80	7.89 7.89 7.89 7.91		b ² G -y⁴G° (69)	7838.09 7534.83	P P		3.33	5.57	2−02		3495.616 3424.17	A 4	4.13			
2970.682 A 3000.059 A 2969.934 A	5 5 8	3.80	7.91 7.91 7.95	31-31 41-31 31-31 31-31	184 - 8 Fe +	3519.72 3386.452 3496.67	P A P	1	3.95 3.93 3.93	7.46 7.57 7.46	31-21 21-11 21-21	b ² F_y ⁴ P° (88)	3391.303 3357.965 3395.336	A 1 A 0 A 4	4.14	7.77 7.81 7.77	$\begin{array}{c} 4\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 3\frac{1}{2} \end{array}$	c ² G-z ² I° (116) c ² G-x ² D° (117)
2982.239 A 9403.36 P	3	3.80	7.94	_	b ² G-z ² F• † (70)	3470.242 3430.15 3452.33 3420.184	A P P A	1n 0	3.93 3.95 3.93	7.51 7.53 7.53 7.54	31-41 31-31 31-31 21-21	b ³ F-z ⁴ G° (89)	3287.468 3283.40 3279.649 3273.499	A 1 P A 2 A 3	4.13 4.14 4.13 4.14	7.89 7.89 7.89 7.91	41-51 31-41 41-41 31-31	c ² G_y ⁴ G° (118)
9214.85 P 9112.95 P 9061.33 P		3.87 3.87 3.87	5.23	2-12	b ⁴ D-z ⁶ F° † (71)	3442.239 3448.433 3406.76	A A P	3 1	3.95 3.95 3.93	7.54 7.53 7.55	31-41 31-31	b ² F_z ⁴ H° (90)	3269.772 3268.512 3243.723	A 2 A 3	4.13 4.14 4.13		32-32	
7841.40 P 7479.70 P 7389.05 P 7181.21 P		3.89 3.87 3.87	5.46 5.52 5.57	31-41 31-31 11-21	b ⁴ D-z ⁴ F°† (72)	3428.64 3436.112	P A	5	3.95 3.95	7.55 7.54 7.67	3½-3½ 3½-3½	b ² F-z ² D° (91)	3232.791 3247.398 3187.294	A 7 A 3	4.14 4.14	7.95 7.94	$3\frac{1}{2} - 2\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	c ² G-z ² F° (119)
7533.42 B 7301.57 P 7179.16 P	3	3.87 3.89 3.87 3.87	5.52 5.57 5.59	34-34 34-34 34-34 12-12		3297.888 3414.144 3323.066	A A	5 2 8	3.93 3.93 3.95	7.54 7.66	32-22 32-42	bar-zage	3162.799 3159.32 3190.84	A 8 P P	4.14	8.00 8.04 8.04 8.00	3 2 - 3 2 4 2 - 3 2 3 2 - 4 2	c ² G-y ² G• (120)
7711.71 B 7462.38 B *7307.97 § B	15 20 50	3.89 3.87 3.87	5.49 5.53 5.56	31-31 31-31 11-11	b ⁴ D-z ⁴ D° (73)	3276.606 •3296.826§ 3314.80	A A P	2	3.93 3.95 3.95	7.69 7.69 7.67	31-32 32-32 31-41	b ² F_z ² Ge (92) b ² F_v ⁴ F°	3134.17 3118.74	P P	4.13 4.14	8.07 8.09	41-51 31-41	c ² G-z ² H• † (121)
7234.51 B 7515.88 B •7320.70 § B	13 6 40	3.87 3.89 3.87	5.58 5.53 5.56	31-21 21-11		3304.433 3325.012 3295.06	A A P	1	3.93 3.95 3.93	7.66 7.66 7.67	25-35 35-35 25-25	b ² F-y ⁴ F° (93)	3079.356 3068.757 •3105.166	A 0 A 2 A 5	4.14	8.14 8.16 8.11	41-31 31-21 31-41	c ² G-x ⁴ G° (122)
7223.39 B 7655.47 B 7449.34 B 7310.24 B	8 1 6 6	3.87 3.87 3.87 3.87	5.58 5.49 5.53 5.56	31-21 21-12 11-21 21-21 11-21 12-21 2-12		3315.53 3284.996 3257.358	P A A	0 1	3.93	7.67 7.68 7.74	al al	L2m -4m	3071.653 3040.829	W 0		8.15 8.19	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$	e ² G-x ⁴ F° (123)
6456.376 A 6247.562 A	200 80	3.89 3.87			b ⁴ D-z ⁴ P° (74)	3230.496 3177.61	A P	1	3.95 3.93	7.77 7.81	31-31 31-31	b ³ F-x ⁴ D ⁶ (95)	3029.681 3013.802	A 0		8.20 8.23	 *	e ² G-y ⁴ H° (124)
*6147.735 A 6416.905 A 6238.375 A 6149.238 A	301 20 20 20	3.87 3.87 3.87 3.87	0.60	17-17		3196.63 3158.32 3211.072	P P A	1	3.93 3.93	7.81 7.83 7.77			4270.39 4247.43	P P	4.48 4.46	7.36 7.36	$3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	b ³ D-z ⁴ s• (125)
6407.30 B 6239.95 P 3535.628 A	1 2n 3	3.87 3.87 3.87	3.03	1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	b ⁴ p-z ⁴ 8°	3129.013 3120.023 3097.415 3115.492	A A A	1 1 3 1	3.95 3.93	7.89 7.91 7.91 7.91	31-41 31-31 21-21 31-21 31-21	b ² F-y ⁴ G° (96)	4046.81 4012.467 4032.946	P A 1 A 3	4.46 4.48	7.53 7.54 7.54	23-33 13-23 23-23	b ² D-z ⁴ G° (126)
3532.69 P 3533.19 P	5	3.87 3.87 3.89	7.37 7.37 7.46	1출-1출 출-1출 3}-3}	b ⁴ D-z ⁴ s• (75) b ⁴ D-y ⁴ P°	3096.296 3065.315 3083.024	A A A	5 6 3	3.95 3.93 3.95	7.94 7.95 7.95		b ² F_z ² F° (97)	4024.552 m3845.18 *3863.953 4004.15	A 5 P Fe A 1 P	4.48 4.46 4.48 4.46	7.54 7.67 7.67 7.54	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	b ² D-z ² D° (127)
3338.522 A 3369.349 A 3445.58 P 3335.90 P	3 3	3.87 3.87 3.87 3.87	7.57	24-14 14-4 24-24 14-14	b ⁴ D_y ⁴ P° (76)	m3078.44 3044.843 3002.330	P A A	Fe 5 5	3.93 3.95 3.93	7.94 8.00 8.04	$3\frac{1}{2}$ $-4\frac{1}{2}$ $3\frac{1}{2}$ $-3\frac{1}{2}$	b ³ F−y ³ G• (98)	3872.98 3841.35 3860.12	P P P	4.48	7.67 7.67	21-31 11-21 21-21	b ³ D-y ⁴ F° (138)
3369.80 P 3442.79 P 3336.34 P		3.87 3.87 3.87	7.46	13-25 2-12		3027.38	P		3.93	8.00		b ² F-z ² P° (99)	3827.67 3846.31	P P	4.48	7.68 7.68	$1\frac{1}{2} - 1\frac{1}{2}$ $2\frac{1}{2} - 1\frac{1}{2}$	

Labor I A		ry Int	E Low		J	Multiplet (No)	Labor I A	rator Ref		E Low	P High	J	Multiplet (No)	Labor I A		y Int	E I	High	J	Multiplet (No)
Fe II con						,,	Fe II co							Fe II con	tinu	ıeđ				•
3834.81 3781.510 3725.304	P A A	1 3	4.48 4.48 4.46	7.69 7.74 7.77	$ \begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 2\frac{1}{2} - 2\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $	b ² D-z ² G° (129) b ² D-y ⁴ D° (130)	6199.16 6179.378 5813.67	B A B	2 5 3	5.54 5.55	7.54 7.67	$ 3\frac{1}{2} - 2\frac{1}{2} $ $ 3\frac{1}{2} - 2\frac{1}{2} $ $ 2\frac{1}{2} - 1\frac{1}{2} $	c ² F-z ⁴ G° (162) c ² F-z ² D° (163)	4002.549 3938.969 3996.36	A A P	3 4	5.89 5.93			d ² D-x ² F° (190)
3745.36 3682.66	P P		4.46	7.77 7.81	$2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$	b ² D-x ⁴ D° (131)	5184.94 5823.17	P B	3	5.55	7.66	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	c ² F-z ² G° (164)	3975.029 3918.51	A P	2	5.93 5.89			d ² D-y ² P° (191)
3699.90 3656.77 3673.77	P P P		4.46 4.48	7.83 7.83 7.83	21-21 11-11 21-11		5747.88 5797.81	P P		5.55 5.54	7.69	3 2 - 3 2 3 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 2 4 2 3 2 4 2 2 2 4 2 2 2 2 4 2	(164) c ² F-y ⁴ F°	3762.894 m3727.04 3778.37	A P P	5 Fe	5.89 5.93	9.20	25-15	d ² D-x ² D° (192)
3644.19 3566.148	P A	3	4.46 4.48	7.85 7.94	$1\frac{1}{2} - \frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	b ² D-z ² F°	5834.06 5829.12 5804.91	P P P			7.66 7.66 7.67	23-33 33-33 23-23	c ² F-y ⁴ F° (165)	3711.974 3627.168	A A	1	5.89 5.93	9.21	$1\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 3\frac{1}{2}$	dSD_wSpo
3532.647 3548.55	A P	2	4.46 4.48	7.95 7.95		b ² D-z ² F° (132)	5800.02 5773.75	P P		5.54 5.55	7.67 7.68	$3\frac{1}{2}-2\frac{1}{2}$ $2\frac{1}{2}-1\frac{1}{2}$		3321.491 3324.838	A A	1		9.65 9.60	21-31 11-21	d ² D_w ² F° (193) d ² D_v ² F° (194)
n3497.81 3485.728 3482.39	P A P	Fe 1	4.48 4.46 4.46	8.00 8.00 8.00	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	b ² D-z ² P° (133)	5544.76 5160.824	P A	1	5.54 5.54	7.77 7.94	$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	c ² F-x ⁴ D° (166) c ² F-z ² F°	3365.640 3261.509	Ā	ō 1	5.93	9.71	21-21	4¢ L−#glo
3368.447	A	tr	4.48	8 14	21 21	h2n_v4c0	5127.866 5124.05 5164.69	A P P	1	5.55 5.54 5.55	7.95 7.95 7.94	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	c ² F-x ⁴ D° (166) c ² F-z ² F° (167)	3203.741	A	0	5.93	9.78	$3\frac{1}{2}-1\frac{1}{2}$	(195) d ² D-w ² Pe (196)
3318.862 3318.62	A P	0	4.46 4.48	8.18 8.19	$1\frac{1}{2} - \frac{1}{2}$	(134) b2D_z2S° (135) b2D_x2F° (136)	5019.478 4953.979	A A	0	5.54 5.55	8.00		c ² F-y ² G° (168)	7287.36 7264.99	ВВ	6 10		7.89 7.89	- 41-51 31-41	c ⁴ F-y ⁴ G° (197)
3292.89 n3251.34	P	Fe	4.48	8.22	2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	(136) h ² D_v ² De	4810.760 4760.15	A P	0	5.54 5.55	8.11 8.14	31-41 21-21	c ² F-x ⁴ G° (169)	7193.23 7134.99	B B	8 5		7.91	15-25	
3209.603	A P	1	4.46	8.30		b ² D-y ² D° (137)	4738.52 4661.19	P P		5.54 5.55	8.15		c ² F-x ⁴ F° (170)	6966.9 6482.205	В	2	6.18	7.95 8.10	1	c ⁴ F-z ² F° (198)
3043.31 3013.38 3024.92 3002.09 3031.63	P P P P			8.56 8.56 8.57 8.53	13-13 23-13 13-3 13-3 13-3	b ² D-x ⁴ P° (138)	4658.03 4629.90 4626.78 4610.59	P P P P		5.54	8.19 8.21	31-31 31-21 31-21 21-11	(170)	6446.43 6331.969 6433.85	B B B	20 12 3	6.20 6.19 6.19			c ⁴ F-z ⁴ F ⁶ (198) c ⁴ F-x ⁴ G ⁶ (199)
2997.298 2982.059 2993.366	A A A	7 8 1n	4.48 4.46 4.48	8.59 8.60 8.60	$\begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 2\frac{1}{2} \\ 2\frac{1}{2} - 2\frac{1}{2} \end{array}$	b ² D-y ² F° (139)	m4526.58 4474.194 4529.56	P A P	Fe On	5.54 5.55 5.55	8.27 8.30 8.27		c ² F-y ² D° (171)	6305.318 6175.158 6103.54 6045.497	B B B	15 15 8 6	6.20 6.19	8.15 8.19 8.21 8.22	15-15	c ⁴ F-x ⁴ F° (300)
4455.85	P		4.60	7.37	- - - 1-1-1-2	a ² S-z ⁴ S°	4048.831 m4044.01 4041.64	A P P	3 Fe	5.54 5.55 5.54	8.59 8.60 8.60	$3\frac{1}{2} - 3\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$	c ² F-y ² F° (172)	4444.563 4359.12	A P	1		8.97 9.02		c ⁴ F-w ⁴ F° (201) c ⁴ F-w ² C°
4147.26 4199.09	P P		4.60 4.60	7.5 7 7.5 3	5- 5		4051.21 3935.942	P A	6	5.55 5.54	8.59 8.68			4355.03 4349.28 4364.89	P P P		6.20	9.03 9.03	3 - 3 - 3 - 4 - 3 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 4	(302)
4015.20 3810.21	P P		4.60 4.60	7.67 7.83	}-1} k-1}	a ² S-z ² D° (142) a ² S-x ⁴ D°	3906.037 3673.35	Ä P	5	5.55 5.54	8.71	-1 -1	c ² F-x ² G° (173) c ² F-x ² H°	4346.50	P			9.03	3 1-41 2 1-31 -	
3796.55 3621.273	P	6	4.60 4.60	7.85 8.00	후- 호	(143)	3604.21 3610.38	P P			8.97 8.96	31-31 31-31	(174) c ³ F-w ⁴ D° (175)	6487.43 6386.75	B B	4 2	6.78 6.77			d ² F-x ² G° (203)
3624.890 3444.76	Ā	5	4.60	8.00 8.18		a ² S-z ² pe (144) a ² S-z ² Se	3608.49 3622.81 3606.18	P P P		5.54 5.55 5.55	8.96 8.95 8.97	3 2 - 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(1.0)	5519.72 5497.70	P P		6.78 6.77	9.01 9.02		d ² F-x ² F° (204)
4650.04	P				_	(145)	3557.548 m3554.50	A P	2 Fe	5.54 5.55	9.01	31-31	c ² F-x ² F° (176)	5074.063 5093.470	A A	1	6.78 6.77	9.21 9.20		d ² F−x ² D° (205)
4660.93 4495.52	P P		4.73	7.37		c ² D-z ⁴ S° (146)	3366.960 3381.003	Ā	3	5.54	9.21	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	c ² F-x ² D° (177)	4830.40 4750.49	P P		6.78 6.77			^{d3} F−# ³ F•
4324.36	P P		4.72	7.57		c ² D-y ⁴ P°† (147)	3368.626	A	0 7	5.55 5.55	9.20	$3\frac{1}{2} - 3\frac{1}{2}$	-2m2me	*3451.614\$ 3390.082	A A	2 2	6.78 1 6.77 1	0.35 0.41	31-21 31-11	d ² F_∀ ² D• (207)
4180.97 4172.20 4369.61	P P P		4.72 4.71 4.72		-2 -2	c ² D-z ² D° (148)	3257.894 3226.378 3224.86 3259.44	A A P P	3 2		9.33 9.37 9.37 9.33	$3\frac{1}{2} - 3\frac{1}{2}$	c ² F-w ² F° (178)	3451.228 3515.818	A	3 3			_იგ–ა გ -	(208)
4182.69 4176.44 4167.69	P P P		4.71 4.72 4.71	7.66 7.67 7.67	21-31 11-21 21-21	c ² D-y ⁴ F° (149)	3045.313 3046.675	A A	0 1	5.54 5.55	9.60 9.60		c ² F-v ² F° (179)	7334.66 7425.12	B P	8	7.24 7.24			(309) ₄₃ G-x ₃ H ₆
4160.28 4151.60	P P		4.72 4.71	7.68 7.68	25-15		2959.841 *2979.096 2961.119	A A A	4 3 tr	5.54 5.55 5.55	9.71 9.69 9.71	31-21 21-11 21-21	c ² F-w ² D° (180)	6677.33 6627.28	B B	3 5	7.24 7.24			(310) _{¶3} G-# ₃ H _e
4138.21 4031.456	P A	1	4.71 4.71	7.69	2½-3½ 2½-1½	c ² D-z ² G° (150) c ² D-y ² D° (151)	3078.698	 А	8n			-		5891.36 5795.87	B B	8 4n	7.24 7.24			d ² G_₩ ² F° (211)
4084.58 3863.413	P A	1	4.72	7.74	1½-3½ 21_31	(151) c ² D_v ⁴ G•	3076.455 3071.141	A A A	6n 4n 5n	5.88	9.86 9.90 9.86	5-15	z ⁴ P°-e ⁴ D (181)	3960.895 4057.457	A A	3 2	7.24 1 7.24 1	0.35 0.28	41-41 31-31	(313) 4 ³ G-4 ₃ G•
•3863.953 3827.079	Ā	ī 4				c ² D-y ⁴ G° (152)	3049.011 3055.368 •3010.220§	A A	5n 4n	5.85 5.88	9.90 9.92 9.90	1 2 - 1 3		4354.358 4507.195	A	2n On	7.62 1	0.45	- 31-31	y ⁴ D°-f ⁴ D (213)
3814.121 3806.82	A P	4	4.72 4.71	7.95 7.95	$1\frac{1}{2} - 2\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$	c ² D-z ² F° (153)	3033.445	Â.	2n	5.85	9.92	2 1 -1 1 12- 2			Α .				-	
3748.489 3759.460 3755.563	A A A	8 6 4	4.71 4.72	8.00	21-11 11-1	c ² D-z ² P° (154)	5952.55 5835.50	P P		5.93 5.89	8.00	$2\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - \frac{1}{2}$	d ² D-z ² P° (182)	4066.328	A B	12 			-	z ³ D°_e ⁴ F (314)
3566.052	A	2				2. 2.	5836.13 5856.45	P P					2 2	5785.0 4366.165	A	5N tr	7.67	0.50	42-02 22-12	y ⁴ F°-e ⁴ D (215) y ⁴ F°-f ⁴ D (216)
n3466.85 3440.25	P P	Fe	4.71 4.72	8.27 8.30	21-21 11-11	(155) c2p_y2p° (156)	5451.60 5304.26	P P		5.93 5.89	8.19 8.21	31-31 11-31	d°D-y°G° (183) d°D-x*F° (184)	6061.04	В	3n			-	x4D°_e4D
3472.886 3179.504		0 8	4.72 4.71	8.27	1½-3½ 2½-3½	c ² D-y ² F°	5408.842 5278.955 5382.52	A A P	0n	5.93 5.89 5.93	8.21 8.22 8.22	24-24 14-14 24-14		4913.366	A	1	7.83 1	0.35	1 1 -31	(217) x4D°-32 (218)
3180.1649 3175.077	A A	7 4				c ² D-y ² F° (157)	5272.413 5100.840	A A	2 4n	5.93	8.27 8.30	2}-2} 11-11	d ² D-y ² D° (185)	4598.528 4628.821 4631.895	A A A	in On On	7.77 1 7.81 1 7.83 1	0.45 0.48 0.50	31-31 21-21 11-11	x ⁴ D°-f ⁴ D (219)
3089.388	A	4				c ² D-x ² G° (158)	5173.002 4635.328	Ā A	5	5.89				4625.549 4652.280	A	tr tr	7.85 1 7.85 1	0.51	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - 1\frac{1}{2}$	
2972.769 2989.079	A A	tr n	5.46 5.57	9.61 9.69	41-41 21-21	z ⁴ F°-e ⁶ D (159)	4549.214 4625.911	A A	4	5.89 5.93			d ² D_y ² F° (186)	4319.717	A A A	in in in	7.77 1 7.81 1 7.83 1	0.63 0.67 0.69	31-41 21-31 11-21	x ⁴ D°-e ⁴ F (220)
2991.817 2958.528	A A	2n 1n	5.49 5.49	9.61	31-41 31-31	z ⁴ D°-e ⁶ D (160)	4446.248 4111.902	A A	1n 1	5.93 5.93	8.71 8.93	21-31 21-21	d ² D-x ² G° (187) d ² D-w ⁴ F°	4318.216	Ā	о́й 	7.85	0.7Ó	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
2962.936 2968.119 2972.016	A A	1n 0 0	5.53 5.56 5.58	9.69 9.72 9.73	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1-30/	4069.883 4131.17 4081.42	A P P	i	5.89	8.92	1 1 - 2 1 2 1 - 2 1	(188)	5081.920	A	tr	7.91 1			y ⁴ G°-30 (221)
6219.35	P				-	.2 ₅ -4	4143.07	P		5.93	8.91	22-12	d ² D-x ² G ⁶ (187) d ² D-w ⁴ F ⁶ (188)	4493.579 4449.663 4431.626	A A	in in in	7.89 1 7.89 1 7.91 1	0.63 0.67 0.69	25-45 45-35 35-35	(333)
6160.75 6155.24	P P		5.54 5.54	7.55 7.55	3 2-32 3 2-32 3 2-32	e ² F-z ⁴ H° (161)	4061.787 4007.73	A P	1	5. 93 5. 8 9	8.97 8.96	32-32 12-32	d ² D-w ⁴ D° (189)	m4508.26	P	Fe ⁺	7.89 1	0.63	4] -4] -	

Labo:	rator; Ref		E P Low High	J	Multiplet (No)	Labor I A	rator Ref		E P Low Hig	h	J	Multiplet (No)	Labor I A	ator; Ref		E P Low High	J	Multiplet (No)
Fe II co			20"262		()	e III co			2011 2120	-		(,		ntin				•••
2987.542	A	1n	8.00 12.13	4출-5출	у ² G°-е ⁴ Н	3198.81	A	5	10.17 14.0		3-4	c3D-z5G°	4323.81	В	2	11.17 14.02	3-3	d ³ F-z ⁵ G°
5529.940		2	8.18 10.41	1.11	(223) z ² 5°-e ⁶ p	3204.76 3215.60 3201.90	A A A	6 8 1	10.17 14.0 10.18 14.0 10.17 14.0	2	2-3 1-2 3-3	(6)	4057.51	B	4	11.17 14.21	4-4	(32) d ³ F-z ⁵ H° (33)
5529.540	Α.			-	(224)	3206.98	Ã	4	10.17 14.0		2-2		3773.80	В	tr	11.17 14.44	3-2	d ³ F-z ⁵ F° (34)
5303.419 5315.618	A	On On	8.15 10.48 8.19 10.52	41-51 31-41	x ⁴ F°-e ⁴ G (235)	3266.88	Ā	20	10.26 14.0		56	a ⁵ F-z ⁵ G°	*3697.4500 3845.68	B B	3 1	11.17 14.51 11.16 14.37	3-4 2-2	
5278.265	A	On O	8.21 10.55 8.19 12.15			3276.08 3288.81 3305.22	A A A	15 15 10	10.27 14.0 10.28 14.0 10.29 14.0	3	4-5 3-4 2-3	(7)	3586.12 3600.93	A A	9 10	11.17 14.61 11.17 14.60	4-4 3-3	
3117.505				-	(226)	3339.36 *3273.53 \$	Ā A	10	10.33 14.0	3	1-2 5-5		3603.88 3599.49	A A	9 3	11.16 14.59 11.17 14.60	2-2 4-3	
*3140.692§ 3138.207	A A	1 1n	8.20 12.13 8.22 12.15	5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	у ⁴ н°-е ⁴ н (227)	3280.58 •3292.0499	A A	6 8	10.27 14.0	2	4-4 3-3		3611.72 3587.53	A A	3	11.17 14.59 11.17 14.61	3-2 3-4	
3300.056	A .	tr	8.40 12.13	- 41-51	L•v2u•_e4u	3307.53 3278.04 3283.75	A B A	5 1d 2	10.29 14.0 10.26 14.0 10.27 14.0	3	2-2 5-4 4-3		3593.15 3250.27	A B	4	11.16 14.60 11.17 14.97	2-3 3-4	2
55001050	•	01	0110 15110	12-02	(228)	3109.32	В	1	10.26 14.2		5-5	a5F-z5H°	3294.85 3302.19	B B	1	11.17 14.92 11.16 14.90	3-2	
_			d Lines of Fe	11	•	*3129.04 \$	B A	5 8 3	10.27 14.2	3	4-4?	(8)	3176.00 3178.03	A	10 10	11.17 15.05 11.17 15.05		
*7376.46 \$ 7067.44 6586.69	B B B	20 20 5	5070.957 5061.794 5035.773	A A	2 1 3	3164.67 3013.125	A A	3 20	10.29 14.1		2-3 5-5	a5r_z5r° +	3174.09 3176.86	A A B	10	11.16 15.05 11.17 15.05	2-3	•
6517.01 6506.33	B B	5	5032.794 *5030.740%	A	1 3	3001.589 3002.99	A A	12 5	10.27 14.3 10.33 14.4	8 4	4-4 1-1	(9)	3180.17 3179.08	P B	1	11.17 15.05 11.17 15.05	3-3	
6493.05	В	8	5022.874	A	1 3	3015.230 3008.506	A A	7 5	10.27 14.3 10.28 14.3		4-5 3-4		3136.43 3110.052	A	10 10	11.17 15.10 11.17 15.14		
6491.28 6442.97 6385.473	B B B	4 6 5	5004.264 4948.848 4579.523	A A A	3 1 1	3000.836 3012.847	B B	tr 2	10.27 14.3 10.28 14.3		4-3 3-2	a ⁵ F-z ⁵ D°†	m3083.68	A P	Fe I	11.16 15.16		
6383.753	В	15	4480.687	A	1	302 7.4 6 3055.55	A A	3 5	10.29 14.3	57 57	2-1 1-0		3089.649 3084.09	B A	1 6	11.17 15.16 11.17 15.17		
6375.96 6248.916 6233.52	B B B	4n 4 3	4455.258 4451.545 4402.875	A A A	3 4 2	3007.802 3023.85 3054.134	A A A	6 8 7	10.28 14.3 10.29 14.3 10.33 14.3	57	3-3 2-2 1-1		*3004.109 3009.998	ВВ	3 1	11.17 15.28 11.17 15.27		
5962.4	В	30N	4368.262 4361.249	Ā A	1 2	3018.744 3050.463	Ã A	6 5	10.29 14.3	88	2-3 1-2		3004.490	В	<u>ī</u>	11.16 15.27		
5956.5	В	4N	4357.574	Ā	4							.3n -5ae	4391.26	В	1	11.42 14.23	5-5	a ¹ H-z ⁵ H°
5903.6 5891.9 5835.61	B B B	8N 3 3n	4331.529 4286.311 4263.895	A A A	3 1 1	*3419.49 3421.97	A	3 3	10.42 14.0 10.42 14.0		2-3 2-2	c ³ F-z ⁵ G° (11)	4927.56	A	2	11.53 14.03	 45	(42) e ³ F-z ⁵ G°
5567.815	В	10	3860.915	Ā	.3	3108.85	A	3	10.39 14.3		4-5	c ³ F-z ⁵ F°	4226.14	В	2	11.53 14.45	2-3	
5506.268 •5503.397§	A	3 1	3822.737 3725.901 3652.748	A A A	3 12 1	3143.36	A	2	10.45 14.3		3-3	c ³ F _{-z} 5 _D ° (13)	m4005.04 4022.36	P A	Fe I	11.53 14.61 11.53 14.60	4-4 3-3	
*5466.94 \$ 5466.021	B	30 30	3624.688 •3482.426§	A	2 2	3283.30 3294.50	A A	2 4	10.85 14.6 10.85 14.6		3-4 3-3	b ¹ F-z ³ F° (14)	4039.12 4021.75	A P	3	11.53 14.59 11.53 14.60	2-2 4-3	
5427.832	В	30	*3473.825		3	1005 11						.3v5aa	4035.82 4005.64	P		11.53 14.59 11.53 14.61	3-4	
5402.113 5387.136 5318.267	A A A	2 2 0	3453.595 3451.318 3386.724	A A A	2 2 3	4003.41 3464.27	A B	4	10.95 14.0		4-4 4-4	b ³ H-z ⁵ G° (15) b ³ H-z ⁵ D°	4025.67 3990.81	P B	tr	11.53 14.60 11.53 14.62		
5318.025	A	1	3356.265	A	2	3367.54	A	3	10.95 14.6		4-4	(16) b ³ H-z ³ F°	3800.43	В	1	11.53 14.78	3-2	(46) e3F_z3pe
5248.028 5169.733 5159.93	A A B	2 1 4	*3329.070 *3299.771		3 1	3396.71 3347.70	A A	7 8	10.98 14.6 10.95 14.6		6-6 5-5	(17) b ³ H-z ³ H° (18)	3500.29 *3501.75	A A	7 8	11.53 15.05 11.53 15.05		
5156.10 5149.538	B A	6 3	*3228.600§ 3223.444	A A	†3 1	3329.89 3373.51	A A	7 2	10.95 14.6	35 34	4-4 6-5	(10)	3506.93 3501.32	A P	5	11.53 15.05 11.53 15.05	2-3 4-4	
5147.09	В	2	3171.016 3165.957	A	1	*3333.27 3357.07	A	3	10.95 14.6		5-4	_b 3 _{H-y} 5po	3504.40 3503.96	A P	2	11.53 15.05 11.53 15.05		
5117.107 5101.48 5100.95	A B B	0 2N 15	3123.715	A	3n 1	3090.772	B B	tr 1	10.95 14.9		4-3 4-3	(19) _b 3 _{H_v} 5 _F •	m3452.31 *3419.49	P A	Fe I	11.53 15.10 11.53 15.14	4-3 3-2	
5100.704	A .	2	3119.660	A	11	3026.985	Ā	· 6	10.98 15.0	05	6-5	(20) b ³ H-z ³ G°	3301.09	В	tr	11.53 15.27	2-2	e ³ F-x ⁵ P° _(50)
5097.375 5093.646 5089.278	A A A	71 1 0	3115.352 3071.270	A A	3 3	m3006.95 3006.122 *3004.109	P A B	Fe III 4 3	10.95 15.0 10.95 15.0 10.95 15.0	05	5-4 4-3 4-4	(21)	*3118.75 \$ 3100.31	A P	5	11.53 15.49 11.53 15.51	4-4 3-3	e ³ F_y ³ F°
5087.25 5075.829	B A	3	*3063.8148 2968.906	Ā	1 2	0004.150							3098.93	P		11.53 15.51	2-2	
			2963.897	A	3n	4305.92 4184.09 4196.69	A A B	2 4 1	11.10 14.0 11.08 14.0 11.08 14.0	03	5-5 4-5 4-3	c ³ G-z ⁵ G• (22)	4590.68 4663.78	B B	tr 1	11.54 14.23 11.54 14.19	4-5 4-3	
						*3947.10	A	4	11.08 14.		4-4	c ³ G-z ⁵ H°	4025.07	A	3	11.54 14.61		c1G-z3F°
	I P 3		Anal B List		June 1942 b ³ F-z ⁷ P°	3663.98	В	tr	11.08 14.	45	4-3	(23) c ³ G-z ⁵ F° (24)	3515.57	A P	5	11.54 15.05	4-5	
3069.335 3120.24 *3142.22	B B B	4 1 2	6.21 10.23 6.21 10.16 6.20 10.12	4-4 3-3 2-3	(1)	3664.98 3620.27	B A	1 3	11.07 14.		3-2 5-4	c3G-z5p°	3516.58 3519.25	В	1	11.54 15.05 11.54 15.05	4-4	
3071.238 3109.59	B B	5 1	6.21 10.23 6.20 10.16	3-4 2-3		3514.87	A P	2	11.10 14.6	31	5-4	(25) c ³ G-z ³ F°	3189.74	A		11.54 15.41	4-3	c ¹ G-y ³ D° (55)
5163.74	В	1	7.84 10.23	- 4-4	9 a5G_z7po	3512.34 3511.93 3499.57	B A	tr 7	11.08 14.0 11.07 14.0 11.08 14.0	59	4-3 3-2? 4-4	(26)	5532.65	В	1	11.98 14.21	3-4	c ¹ F-z ⁵ H° (56)
	_				1 a ⁵ G-z ⁷ p° (2)	*3501.75 3489.07	A P	8	11.07 14.0 11.07 14.0	30	3-3 3-4		4714.53	В	1	11.98 14.60		c ¹ F-z ³ F° (57)
6102.59 6322.98 6487.48	P P P		8.31 10.23 8.21 10.16 8.22 10.12	3-4 2-3 1-3		3514.39 3474.41	P P		11.10 14.0 11.08 14.0	31 34	5-6 4-5	e ³ G-z ³ H° (27)	4671.25 3519.85	В	tr 1	11.98 14.62 11.98 15.49		c ¹ F_y ⁵ P° (58) c ¹ F_y ³ F°
6299.74 6458.68	P P		8.22 10.12 8.21 10.16 8.21 10.12 8.21 10.12	3-3 2-2		3448.63 3489.48	P P		11.07 14.6	55 54	3-4 5-5	•=-•						(59)
6434.44 4419.59	P	10	8.21 10.12 8.21 11.00	3-2 3-3		3458.91 •3473.82 §	B B	2 5	11.08 14.6 11.10 14.6	55 55	4-4 5-4		3525.17 3488.92	A A	3 3	13.07 16.58 13.07 16.61	2-2 1-1	
4382.31 4365.56	A B B	1 3	8.21 11.03 8.22 11.05	3-3 1-1	(4)	3167.54	В	1	11.10 15.0	00	5-5	c ³ G-y ⁵ F° _(28)	3403.51 3406.18	A A	2 2	13.07 16.70 13.08 16.70	3-2	
4371.10 4352.70	B B	1 4	8.31 11.03 8.21 11.05	3-2 2-1		*3120.03 § 3108.78	P	3	11.10 15.0 11.08 15.0	05	5-5 4-4	(28) c ³ G- z ³ G° (29)	*3410.74	A	3	13.07 16.69		
4430.95 4395.78	A A	7 6	8.21 11.00	3-3 1-3		3102.55 3120.84 3110.85	P A A	2	11.07 15.0 11.10 15.0 11.08 15.0	05	3-3 5-4 4-3		*3410.74 *3357.40	A A	3 4	13.08 16.70 13.08 16.75		_(6 2)
5156.0	A	4	8.60 11.00	- 4-3	b ⁵ D-z ⁵ p•	3107.950 3100.48	A P	8	11.08 15.0 11.07 15.0	05	4-5 3-4		3370.23 *3339.0466	A A	3n 2	13.07 16.85 13.08 16.89	1-1	(63)
*5127.32 5086.69 5193.89	B B B	6 3 4	8.62 11.03 8.62 11.05 8.62 11.00	3-2 2-1 3-3		3070.072	A	5	11.08 15. 11.07 15.	10	4-3 3-2	c ³ G-z ³ D° (30)	3263.04 3238.74	A A	1 2	13.07 16.85 13.08 16.89	1-2 3-3	
*5127.32 5073.78	B B	6 3	8.62 11.03 8.62 11.05	2-2 1-1		3035.802 3011.060	A B	3 1	11.07 15.			o ³ G-y ⁵ D° (31)	3264.22	A	3	13.07 16.85	2-2	1
5194.43 5114.10	B B B	4 1 2	8.62 11.00 8.62 11.03	2-3 1-3 0-1								(31)	3096.86 3099.05	A A	3 2	13.07 17.06 13.08 17.06		
5063.30	٥		8.61 11.05	- -														

						REVI	SE	D M	ULTIPLE	T T	ABLE						
Labo I A	rator Ref	ry Int	E P Low High	J	Multiplet (No)	Labor I A		y Int	E P Low High	J	Multiplet (No)	Labor I A	atory Ref		E P Low High	J	Multiplet (No)
III (contir	nued				Fe III co	ntir	nued				Fe III co	ntinu	led			
70.34	A .	4	13.53 16.23	2-2	(66)	4098.54	В	1	15.17 18.18		y ⁵ D°-e ⁷ D (101)	5149.33 5100.706 5030.75	B B B	7 10 6	4143.87 4121.31 4113.45	B B B	7 6 7
32.97	A		13.53 17.12	2-1	c ¹ D-z ¹ P° (67)	3788.91 3496.29	B A	tr 4	15.17 18.43 15.18 18.71	4-4	y ⁵ D°-e ⁷ S (102) y ⁵ D°-e ⁵ D	5002.02 4948.54	B B	8	4113.23 4109.95	B B	7 5
73.3 85.6 60.8	A A A	4 3 3	14.11 16.33 14.12 16.37 14.12 16.38	5-6 4-5 3-4	d ³ G−y ³ H° (68)	*3482.36 \$ 3491.16	В	4d 2	15.16 18.71 15.17 18.71	3-4 2-3	(103)	4596.09 4573.14	B B	5 5	4008.81 3964.11	B B	5 5
76.88	A	4	14.11 17.22	5-5 4-4	d ³ G−w ³ G∘ (69)	4237.21 *4238.7869	B B	2 5	15.27 18.18 15.27 18.18	2-2 2-1	x ⁵ P°-e ⁷ D (104)	4559.09 4535.50 4271.47	B B B	6 5 6	3743.40 3652.65 3589.77	B B B	8 6 5
53.76 47.10 45.08	P A A	Fe III 4 3	14.13 17.34 14.13 17.34 14.13 17.34	3-3 4-3	(69)	4211.51	В	3	15.25 18.18 15.28 18.71	1-2	x ⁵ p•_e ⁵ p	4266.88 4255.20	B B	5	3367.02 3338.72	ВВ	6
28.44	A	2	14.13 17.34		d ³ G_y ¹ F°	3598.22 3572.46	В	1	15.25 18.71	1-2	(105)	4249.95 4243.85	B B	7 8	3309.40 3304.31	B B B	6 9 6
47.40 93.52 86.94	P A A	Fe II 3 4	14.11 17.41 14.13 17.37 14.13 17.38	5-4 4-3 3-2	d3G_v3F° (71)	4462.90 4467.36	B B	3 1	15.42 18.18 15.42 18.18	2-3? 2-1?	y ³ D°-e ⁷ D (106)	4235.54 4222.39	В	10 8	*3295.24 \$	В	8
82.19 60.84	A A	6 6	14.11 17.76 14.12 17.79	5-5 4-4	d ³ G_v³G● (72)	4100.52	В	3	15.42 18.43	2-3	y ³ D°-e ⁷ S (107)	4220.32 4210.87 4200.38	B B B	5 10 6	3151.86 3123.18 3121.08	B B	10 10
58.74 59.18 57.40	A A A	4 3 4	14.13 17.79 14.11 17.79 14.13 17.79	3-3 5-4 4-3		4621.39 4616.95	ВВ	3	15.51 18.18 15.51 18.18	2-3 3-2	y ³ F°-e ⁷ D (108)	4200.06 4189.10	B B	6 7	3086.311 3044.438	B B	6 5
31.62	A	5	14.11 17.82	5-4		4626.53 4624.42	B B	i tr	15.51 18.18 15.51 18.18	2-1 2-2	(212)	4179.25 4174.27	B B	5 10			
06.94 15.80 33.27	A A A	4 3 3	14.12 17.85 14.12 17.84 14.12 17.82	4-3 3-2 4-4	(73)	3831.75 3860.46	B B	tr 1	15.49 18.71 15.51 18.71	4-3 3-3	y ³ F°-e ⁵ D (109)	4154.98 4145.74	B B	8 5			
62.44	A	6	14.11 17.90	5-4	d ³ G-x ¹ G° _(74)	5436.80	В	1	15.91 18.18	- 2–3	y ³ P°-e ⁷ D						
56.54	A	2	14.12 17.91	4-3		5286.74 5443.88	B B	tr 3	15.85 18.18 15.91 18.18	0-1 3-1	(110)	Co I I I		4 Anal	A List B	Feb	
22.00 45.877	A	3 3	14.11 18.20 14.12 18.17	5-5 4-4	(76)	4908.74	В	1	15.91 18.43	2-3	y ³ P°-e ⁷ S (111)	4233.996 4339.13 4361.913	E P A	(1N)	0.00 2.91 0.10 2.94 0.17 3.00	3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ⁴ F-z ⁶ F° (1)
35.80 87.659	B B	1 1	14.26 18.19 14.19 18.19	6-5 3-4	z ⁵ H°-e ⁷ D (77)	5269.15	В	4	16.37 18.71	5-4	y ³ H°-e ⁵ D	4361.031 4190.712 4252.302	C A A	(1n) 20 12	0.22 3.05 0.00 2.94 0.10 3.00	15-25 45-45 35-35	
46.399	В	tr	14.38 18.43	_	z ⁵ F°-e ⁷ S	5243.3 5282.1	A A	10	18.19 20.54 18.19 20.52	5-4 4-3	e ⁷ D-y ⁷ P° (113)	4285.782 4303.235 *4109.706	A A E	6 3 (1d)	0.17 3.05 0.22 3.09 0.00 3.00	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
94.156		1	14.44 18.43	2-31 -	(78)	5306.6 *5235.3 \$	A A	4 5	18.18 20.51 18.19 20.54	3-2 4-4	(220)	4179.90 4229.955	P A C	(2n)	0.10 3.05 0.17 3.09 0.22 3.11	3 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
38.31	В	1	14.37 18.18	2–2	(79)	*5276.2 \$ 5302.5 5229.57	A A B	7 6 2	18.18 20.52 18.18 20.51 18.18 20.54	3-3 2-2 3-4		4268.032 4059.321	G.	(1n) (1)		1출- 출 4출-4출	a4F_z6D°
47.119	В	1	14.38 18.43	3 – 3	z ⁵ n•_e ⁷ s (80)	5272.0 5299.9	A A	3 5	18.18 20.52 18.18 20.51	2-3 1-2		4088.291 4108.488 3956.270	A F A	(1) (2)	0.00 3.04 0.10 3.13 0.17 3.18 0.00 3.13	3 1 - 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	(2)
86.880	В	tr	14.43 18.43	2–3 –	z ⁵ g°_e ⁷ S (81)	5833.65 58 91. 5	C	10 6	18.43 20.54 18.43 20.52	3-4 3-3	e ⁷ S-y ⁷ P*	4011.089 4054.618 4198.425	A C	2	0.10 3.18 0.17 3.22 0.10 3.04	31-21 21-11 31-41	
69.82	A	4	14.56 17.26	4-4	(82)	5929.5	Ā	5	18.43 20.51	3-2	(141)	4189.50 4177.59	H H	(2) (2) (1) (1)	0.17 3.12 0.22 3.18	$3\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$	
53.18	A A	3 2	14.56 17.85 14.56 17.90		d ¹ G-y ¹ H° (83) d ¹ G-x ¹ G°	5953.65 5920.0	C	6 7w	18.71 20.78 18.71 20.79	4-3 -2	e ⁵ D-w ⁵ p°	3909.933 3979.518	A A	15 10	0.00 3.16 0.10 3.20	41-51 31-41	a ⁴ F-z ⁶ G° † (3)
90.60	A	4	14.56 17.91		(84) d ¹ G-x ¹ F°	5901.0	Ā	3	18.71 20.80	- 1	e ⁵ D-w ⁵ F°	4027.032 4057.195	A A	10 5	0.17 3.24 0.23 3.27 0.17 3.26	15-25	
54.35	A	3	14.56 18.13	4-3	(85) d1g_u3g• (86)	3007.2	A	20wn	18.71 22.81	-	(116)	3992.014 3526.847	G A	(1) 100R		2½-2½ 4½-4½	a ⁴ F-z ⁴ F°
18.34	A	6	14.56 18.40	4-4 -	(86) d ¹ G-w ¹ G° (87)	6032.30 5999.30 5978.90	000	7 5 5n	18.73 20.78 18.73 20.79 18.73 20.80	2-3 2-3 2-1	e ⁵ 8_₩ ⁵ ₽° (117)	3575.361 3594.870 3602.079	A A A	60r 50R 40R	0.10 3.55 0.17 3.61 0.22 3.65	3 1 - 3 1 2 1 3 1 3 - 3 1 3 - 3 1 3 1 3 1 3 1 3 1 3	a ⁴ F-z ⁴ F° (4)
46.77 52.55	B B	tr tr	14.61 18.19 14.61 18.18	4-5 4-3	z ³ F°-e ⁷ D (88)					-	y ⁷ P°-f ⁷ D	*3474.018 3520.075	F A	100R 15	0.00 3.55 0.10 3.61	45-35 35-25 25-15	
03.282	В	1	14.60 18.71	3–3	z ³ F°-e ⁵ D† (89)	4164.79 4137.93 4120.97	A A A	20 10 8	20.54 23.51 20.52 23.51 20.51 23.50	4-5 3-4 2-3	(118)	3550.592 3631.390 3652.541	A A A	20r 20r 15	0.17 3.65 0.10 3.50 0.17 3.55 0.22 3.61	$3\frac{1}{2} - 4\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	
74.94 87.11	ВВ	1 tr	14.64 18.19 14.65 18.19	5-4 4-5	z ³ H°-e ⁷ D (90)	4166.86 4139.37 4122.06	A A A	9 8 8	20.54 23.51 20.52 23.51 20.51 23.50	4-4 3-3 2-2		3647.658 3465.792	A A	12 100 R	0.22 3.61 0.00 3.56		a4F-z4G* †
43.067	В	2	14.65 18.71 14.65 18.71	4-4		4168.41 4140.51	A	4 6 8	20.54 23.51 20.52 23.50 20.51 23.50	4-3 3-2 2-1		3513.478 3529.032	A A A	50R 30r 25r	0.10 3.61	3 1 - 4 1 2 1	a ⁴ F-z ⁴ G°† (5)
143.439				4-3		4122.98 4081.19	A A	7	20.54 23.57	4-3	y ⁷ P°-f ⁷ S	3533.356 3415.519 3456.924	A A	5 9	0.22 3.72 0.00 3.61 0.10 3.67 0.17 3.72	41-41 31-31	
46.714 60.162		3	14.66 18.71 14.67 18.71	2-3 1-2	y ⁵ P°-e ⁵ D (92)	4053.28 4035.54	A A	5 4	20.52 23.57 20.51 23.57	3-3 2-3	(119)	3483.80 3412.633	A C	(6) 80R	0.17 3.72	25-25 43-33	a ⁴ F-z ⁴ D°
24.25 60.85	ВВ	1 3	14.78 18.18 14.81 18.18	- 2-1 1-3	z ³ P°-e ⁷ D (93)	*3954.38 3968.78	A A	12	20.78 23.90 20.79 23.90	3-4 3 -3	w ⁵ P°-f ⁵ D (120)	3431.582 3442.918 3455.237	Ā A A	50r 40r 25r	0.00 3.62 0.10 3.70 0.17 3.76 0.22 3.80 0.10 3.62 0.17 3.70 0.22 3.76 0.17 3.62 0.23 3.76	31-21 21-11	(6)
88.71	В	tr	14.84 18.18	0-1		3978.43 *3954.38	A A	4 12	20.80 23.90 20.78 23.90	1-2 3-3	(150)	3510.426 3502.63	A A	30r 30r	0.10 3.62 0.17 3.70	31-31 21-21	
40.08 68.21	B	3 1	14.78 18.71 14.81 18.71	2-3 1-2	z ³ P°-e ⁵ D (94)	m3969.43 3979.42 3980.14	P A A	Fe I 5 3	20.79 23.90 20.80 23.90 20.80 23.90	2-3 1-1 1-0		3491.316 3584.801 3552.720	A C A	15 15 8	0.22 3.76 0.17 3.62 0.22 3.70	15-15 25-35 15-25	
28.44 777.43	ВВ	2 1	14.97 18.19 14.92 18.18	4-5 2-2	y ⁵ F°-e ⁷ D (95)	4310.37	A	12n	22.77 25.63	-	z ⁷ F°-e ⁷ G	3153.692 3132.218	E A	(1) 4			a ⁴ F-z ² G° †
324.72	A	3	15.00 18.71	5-4	y5F°_e5D	4304.81 4296.86	A	10n 10n	22.77 25.63 22.76 25.63	5-6 4-5	(121)	3237.028 3191.297	A A	8 4	0.00 3.91 0.10 4.04 0.10 3.91 0.17 4.04	$3\frac{1}{2} - 4\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	**/
374.95 399.77		4 3 4	14.97 18.71 14.94 18.71 14.97 18.71	4-3 3-2 4-4	(96)	4286.13 4273.42	A	10n 7n	22.75 25.63 22.75 25.63	3-4 2-3		3136.726 3219.150	A A	5 5	0.00 3.93 0.10 3.93 0.17 4.05 0.17 3.93 0.22 4.05	41-31 31-31	a ⁴ F-z ³ F° (8)
355.49 374.65	A B	2	14.92 18.71 14.94 18.71	2-2 3-4		4372.4	A	20wn	22.81 25.63	-	w ⁵ F°-e ⁵ G	3186.350 3281.585 3227.752	A A A	5 2 2	0.17 4.05 0.17 3.93 0.33 4.05	21-21 21-31	
877.77	В	tr	15.05 18.71	- 4-4	z ³ G°-e ⁵ D (97)	Strongest (Some pos	Uncl	lassifie v Fe TT\	d Lines of Fe	111	\-~~/	3121.415 3139.947	C A	10 12	0.00 3.95	41-31 31-21	a ⁴ F-y ⁴ D*
051.08 053.59	ВВ	2 1	15.14 18.18 15.14 18.18		z ³ D°-e ⁷ D	6185.1	В	5	5353.78	В	5	3149.310 •3159.662	A A	10 10	0.00 3.95 0.10 4.03 0.17 4.09 0.22 4.13 0.10 3.95 0.22 4.09 0.17 3.95 0.22 4.03	21-11 11-11	107
711.32	В	3	15.14 18.18	2-2 3-3	(98) z ³ p•_e ⁷ s	5875.6 5854.1 5587.9	B B B	5 5 5	5340.92 5339.92 5291.78	B B B	5 7 5	3203.026 3199.322 3189.752	A A A	4 4 5	0.10 3.95 0.17 4.03 0.23 4.09	23-23 23-23 13-13	
158.18 184.18	ВВ	tr 1	15.14 18.71 15.16 18.71	2-2 1-2	z ³ D°-e ⁵ D (100)	5466.46 5430.14	В	5 5	5284.85 5272.86	B B	5 6	m3264.83 3241.05	P A	Ço (3)	0.17 3.95 0.22 4.03	21-31 11-21	
	-				,,	5 402.27 538 7.3 5	B	5 5	5260.25 5227.53	B B	10 6						
						5375.68 5363. 8 0	B	5 6	5216.99 5177.73	B	8 5						

Laboratory I A Ref Int	EP J Multiplet Low High (No)	Laboratory I A Ref Int	E P J Multiplet Low High (No)	Laboratory I A Ref Int	EP J Multiplet Low High (No)
Co I continued		Co I continued		Co I continued	
3082.614 A 13r 3158.772 A 13 3147.060 A 15r 3137.328 A 10 •3079.394 A 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3405.120 C 150R 3409.177 C 60r 3417.154 A 50r 3433.045 A 60R 3334.146 A 30r	0.43 4.05 $4\frac{1}{2}-4\frac{1}{2}$ $b^4F-y^4F^0$ 0.51 4.13 $3\frac{1}{2}-2\frac{1}{2}$ (23) 0.58 4.19 $\frac{1}{2}-2\frac{1}{2}$ 0.63 4.22 $\frac{1}{2}-1\frac{1}{2}$ 0.43 4.13 $\frac{1}{2}-3\frac{1}{2}$ 0.51 4.19 $\frac{3}{2}-2\frac{1}{2}$ 0.58 4.22 $\frac{1}{2}-1\frac{1}{2}$	3326.564 C 2 *3314.073 A 8 3287.827 C (2) 3275.66 A (1)	1.70 5.41 $2\frac{1}{2}-3\frac{1}{2}$ $a^4P-w^4F^9$ 1.73 5.46 $1\frac{1}{2}-3\frac{1}{2}$ (43) 1.70 5.46 $2\frac{1}{2}-2\frac{1}{2}$ 1.73 5.50 $1\frac{1}{2}-1\frac{1}{2}$
*3079.394 A 5 3089.596 A 10 3098.194 A 10 3013.592 A 8 3043.481 A 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3354.374 A 20 *3388.163\$ A 30r 3483.410 A 20r *3474.018 F 100R 3462.804 A 60r	0.51 4.19 3½-3½ 0.58 4.22 3½-1½ 0.51 4.05 3½-4½ 0.58 4.13 3½-3½ 0.63 4.19 1½-3½	3359.284 A 6 3401.617 C 2 3373.969 A 4 3318.398 A 4	1.70 5.38 2½-3½ 8 ⁴ P-x ² F° 1.73 5.36 1½-2½ (44) 1.70 5.36 2½-2½
3044.004 A 30R 3061.822 A 20r 3072.341 A 15r 3086.777 A 15r	0.00 4.05 4½-4½ a ⁴ F-y ⁴ F° 0.10 4.13 3½-3½ (11) 0.17 4.19 3½-3½ 0.23 4.33 1½-1½	3409.646 C (2) 3370.322 A 10 3474.530 A 6	0.51 4.13 3½-3½ b ⁴ F-z ³ D°† 0.58 4.24 2½-1½ (24) 0.58 4.13 3½-3½ 0.63 4.13 1½-3½	3346.310 C 1 3319.561 C (2) 3345.146 E (1) 3387.47 A 1	1.70 5.42 $3\frac{1}{2}$ $3\frac{1}{2}$ $4^4P - x^2D^9$ 1.73 5.42 $1\frac{1}{2}$ $1\frac{1}{2}$ (45) 1.70 5.42 $3\frac{1}{2}$ $1\frac{1}{2}$ 1.73 5.43 $1\frac{1}{2}$ $3\frac{1}{2}$ 1.78 5.42 $\frac{1}{2}$ $1\frac{1}{2}$
2987.166 A 15r 3017.548 A 15r 3048.888 A 12r 3121.566 C 10	0.00 4.13 4\frac{1}{2}-3\frac{1}{2} 0.10 4.19 3\frac{1}{2}-3\frac{1}{2} 0.17 4.33 2\frac{1}{2}-1\frac{1}{2} 0.10 4.05 3\frac{1}{2}-4\frac{1}{2}	*3521.731 C 5 3337.171 A 8 3333.388 A 10	0.43 4.13 42-42 b ⁴ F-y ² G° 0.51 4.21 32-32 (25) 0.51 4.13 32-42 0.58 4.21 32-32	3286.545 C 1 *3326.27 A (1)	1.73 5.49 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ P-z ² S° 1.78 5.49 $\frac{1}{2}$ $\frac{1}{2}$ (46)
3118.249 A 5 3110.821 A 5	0.17 4.13 23-35 0.22 4.19 12-32	3412.339 C 80R 3395.370 A 40r	0.51 4.13 3½-4½ 0.58 4.21 3½-3½ 0.43 4.38 4½-3½ b ⁴ F-y ² F°	3358.035 A 4 3364.719 E (3) 3388.232 C 1 3339.256 E (1)	1.70 5.49 $3\frac{1}{2}-3\frac{1}{2}$ $a^4P-y^4P^\circ$ 1.73 5.51 $1\frac{1}{2}-1\frac{1}{2}$ (47) 1.78 5.54 $\frac{1}{2}-\frac{1}{2}$ 1.70 5.51 $3\frac{1}{2}-1\frac{1}{2}$
3062.199 A 5 3034.432 A 6 3118.636 A 1 3071.957 A 6 3158.293 E (1)	0.10 4.13 $3\frac{1}{2}-2\frac{1}{2}$ $a^4F-z^2D^0$ 0.17 4.24 $3\frac{1}{2}-1\frac{1}{2}$ (12) 0.17 4.13 $3\frac{1}{2}-3\frac{1}{2}$ 0.23 4.24 $1\frac{1}{2}-1\frac{1}{2}$ 0.23 4.13 $1\frac{1}{2}-3\frac{1}{2}$	3127.252 A 7 3105.929 A 3 3193.164 A 5 *3159.662 A 10 3249.995 A 6	0.51 4.48 3½-3½ (26) 0.51 4.38 3½-3½ 0.58 4.48 2½-3½ 0.58 4.38 2½-3½	3243.579 C 2 3283.777 C 3 3303.881 A 4	1.73 5.54 $1\frac{1}{2}$ $\frac{1}{2}$ 1.73 5.49 $1\frac{1}{2}$ $-\frac{1}{2}$ 1.78 5.51 $\frac{1}{2}$ $-\frac{1}{2}$
2989.590 A 15r 3000.545 A 7 3064.370 A 5 3054.734 C 4	0.00 4.13 42-42 a ⁴ F-y ² G°† 0.10 4.21 32-32 (13) 0.10 4.13 32-42 0.17 4.21 32-32	3198.660 A 5 	U.03 4.40 12-22	3103.983 C 5 3136.999 C 1 3113.473 A 6 3131.829 A 1 3173.140 A 1	1.70 5.68 $3\frac{1}{2}-2\frac{1}{2}$ $a^4P-x^4P^\circ$ 1.73 5.67 $1\frac{1}{2}-1\frac{1}{2}$ (48) 1.70 5.67 $3\frac{1}{2}-1\frac{1}{2}$ 1.73 5.67 $1\frac{1}{2}-\frac{1}{2}$ 1.73 5.67 $\frac{1}{2}-\frac{1}{2}$
4966.581 A 2 5071.40 P		4699.180 A (0) 4484.513 A (2) 4619.329 G (1) 4411.786 E (1)	0.92 3.67 3 1-31 1.04 3.72 2 1-21 0.92 3.73 3 1 -2 1	3107.044 C 3 3095.716 A 3 3137.755 A 4	1.70 5.68 $3\frac{1}{2} - 3\frac{1}{2} a^4 P - v^4 D^0$ 1.73 5.73 $1\frac{1}{2} - 2\frac{1}{2}$ (49) 1.78 5.71 $\frac{1}{2} - 1\frac{1}{2}$
5091.282 G (1) 5085.695 G (1) 4907.125 C (2)	0.43	4121.318 A 60 4118.774 A 50 3952.917 C 25	0.92 3.91 $3\frac{1}{2}$ $4\frac{1}{2}$ a^{2} F- z^{2} G* 1.04 4.04 $2\frac{1}{2}$ (38) 0.92 4.04 $3\frac{1}{2}$ $3\frac{1}{2}$	3103.405 A 4	1.73 5.71 $1\frac{1}{2}$ - $1\frac{1}{2}$ 17 1.78 5.74 $\frac{1}{2}$ - $\frac{1}{2}$ 1.70 5.71 $2\frac{1}{2}$ - $\frac{1}{2}$
4953.179 A 2 4987.853 A 2 5007.286 A (2) 4796.378 A 1 4855.235 A (1)	0.58 3.05 2½-2½ 0.63 3.09 1½-1½ 0.43 3.00 4½-3½ 0.51 3.05 3½-3½	4092.386 A 25 4110.532 A 25 3945.326 A 15 4270.427 A (1n)	0.93 3.93 3 1 -3 1 a ² F-z ² F° 1.04 4.05 2 1 -2 1 (29) 0.92 4.05 3 1 -3 1 1.04 3.93 2 1 -3 1	3040.812 A 1 3109.506 A 4 3086.393 A 4 3063.25 A (1)	1.70 5.76 $2\frac{1}{2}-2\frac{1}{2}$ $a^{4}P-v^{2}P^{6}$ 1.73 5.70 $1\frac{1}{2}-1\frac{1}{2}$ (50) 1.70 5.70 $3\frac{1}{2}-1\frac{1}{2}$ 1.73 5.76 $1\frac{1}{2}-2\frac{1}{2}$
4912.399 A 1 4959.682 A (1) 4727.936 A 3	0.63 3.11 1 2- 2	4066.365 A 15 4132.155 C 4 3965.236 A 2	0.93 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F-y^{4}D^{9}$ 1.04 4.03 $3\frac{1}{2}-3\frac{1}{2}$ (30) 0.93 4.03 $3\frac{1}{2}-3\frac{1}{2}$	3145.022 A 3 3050.932 C (3) 3073.520 A 3	1.78 5.70 $\frac{1}{2}$ - $1\frac{1}{2}$ 1.70 5.75 $2\frac{1}{2}$ - $1\frac{1}{2}$ $a^4P-y^4S^9$ 1 1.73 5.75 $1\frac{1}{2}$ - $1\frac{1}{2}$ (51)
4732.051 A (5) 4588.730 A 1	0.51 3.13 3\frac{1}{2} (15) 0.43 3.13 4\frac{1}{2} \frac{1}{2} 0.51 3.18 3\frac{1}{2} \frac{1}{2} 0.58 3.22 3\frac{1}{2} \frac{1}{2}	3995.306 A 60 4045.386 A 20 3885.275 A 6	0.93 4.01 $3\frac{1}{2}$ $4\frac{1}{2}$ $a^{2}F-y^{4}G^{\circ}$ 1.04 4.10 $2\frac{1}{2}$ (31) 0.92 4.10 $3\frac{1}{2}$ $3\frac{1}{2}$	3039.563 A 3 *3024.400 A (1) 3061.983 E (1)	1.70 5.76 $3\frac{1}{2}-1\frac{1}{2}$ $a^4P-y^2P^{\circ}$ 1.73 5.81 $1\frac{1}{2}-\frac{1}{2}$ (52) 1.73 5.76 $1\frac{1}{2}-1\frac{1}{2}$
4828.908 A (1) 4677.528 F (1) 4880.25 H (2) 4857.938 G (1) 4837.948 G (2)	0.51 3.04 34-44 0.58 3.12 24-34 0.63 3.18 14-24	3965.011 E 1 3811.065 A 5 3935.964 A 30	1.04 4.16 2½-3½ 0.92 4.16 3½-3½ 0.92 4.05 3½-4½ a ³ F-v ⁴ F°	3096.408 A 3 	
4030.898 A 30 4058.183 A 8 4076.134 A 3 4082.593 A 3	0.43 3.50 4½-4½ b ⁴ F-z ⁴ F° 0.51 3.55 3½-3½ (16) 0.58 3.61 2½-3½ 0.63 3.65 1½-1½	3997.901 A 40 3841.458 A 5 3922.755 A 7 3884.601 A 10	0.92 4.05 $3\frac{1}{2} - 4\frac{1}{2} a^3F - y^4F^0$ 1.04 4.13 $3\frac{1}{2} - 3\frac{1}{2}$ (32) 0.93 4.13 $3\frac{1}{2} - 3\frac{1}{2}$ 1.04 4.19 $3\frac{1}{2} - 3\frac{1}{2}$ 1.04 4.23 $3\frac{1}{2} - 1\frac{1}{2}$	7437.16 C 1 7478.77 C (1) 7124.47 C 1 7250.13 C 1	1.87 3.55 $2\frac{1}{2}-3\frac{1}{2}$ $b^4P-z^4F^\circ$ 1.95 3.61 $1\frac{1}{2}-3\frac{1}{2}$ (53) 2.00 3.65 $\frac{1}{2}-1\frac{1}{2}$ 1.87 3.61 $\frac{3}{2}-3\frac{1}{2}$ 1.95 3.65 $1\frac{1}{2}-1\frac{1}{2}$
3952.326 C 8 3987.117 A 6 4019.288 A 5 4130.538 E (1n) 4150.429 A 2	0.43 3.55 44-35 0.51 3.61 32-35 0.58 3.65 25-15 0.51 3.50 32-45 0.58 3.55 22-35	3842.047 A 30 3861.164 A 30 3998.554 E (in)	0.92 4.13 $3\frac{1}{2}-3\frac{1}{2}$ $a^{2}F-z^{2}D^{0}$ 1.04 4.24 $3\frac{1}{2}-1\frac{1}{2}$ (33) 1.04 4.13 $3\frac{1}{2}-3\frac{1}{2}$	7084.974 A 100 7052.872 A 60 7016.602 A 35 6771.040 A 50	1.87 3.62 $3\frac{1}{2}-3\frac{1}{2}$ $5^4P-z^4D^0$ 1.95 3.70 $1\frac{1}{2}-2\frac{1}{2}$ (54) 2.00 3.76 $\frac{1}{2}-1\frac{1}{2}$ 1.87 3.70 $3\frac{1}{2}-3\frac{1}{2}$
3941.728 A 30 3978.650 A 10 3991.684 A 6	0.43 3.56 42-52 b4F-z4G° 0.51 3.61 32-42 (17) 0.58 3.67 22-32 0.63 3.72 12-32 0.43 3.61 42-42	3845.468 A 60 3894.073 A 60 3745.491 A 25	0.92 4.13 3\frac{1}{2} a^2 F - y^2 G^\circ\text{1.04} 4.21 2\frac{1}{2} - 3\frac{1}{2} (34) \\ 0.92 4.21 3\frac{1}{2} - 3\frac{1}{2}	6814.950 A 40 6872.32 A 40 6551.466 A 3 6678.818 A 5	1.95 3.76 $1\frac{1}{2}-1\frac{1}{2}$ 3.00 3.80 $\frac{1}{2}-\frac{1}{2}$ 1.87 3.76 $3\frac{1}{2}-1\frac{1}{2}$ 1.95 3.80 $1\frac{1}{2}-\frac{1}{2}$
3994.542 A 6 •3876.831 A 30 3906.287 A 10 3933.918 A 6	0.63 3.73 12-25 0.43 3.61 47-45 0.53 3.67 35-35 0.58 3.72 27-25 0.43 3.67 47-35	3569.370 A 80R 3587.186 A 70R 3480.719 C 4 3704.060 A 25	0.92 4.38 $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F - y^{2}F^{0}$ 1.04 4.48 $3\frac{1}{2}$ $-2\frac{1}{2}$ (35) 0.92 4.48 $3\frac{1}{2}$ $-3\frac{1}{2}$ 1.04 4.38 $3\frac{1}{2}$ $-3\frac{1}{2}$	5935.391 A 6 5922.365 C (in)	1.87 3.95 $3\frac{1}{2} - 3\frac{1}{2} b^4 P - y^4 D^6$ 1.95 4.03 $1\frac{1}{2} - 3\frac{1}{2}$ (55)
3808.102 A 10 3850.945 A 4 3873.120 A 60	0.51 3.74 35-45	3489.399 A 60r 3518.340 A 50R 3618.010 A 4	0.93 4.46 $3\frac{1}{2}-3\frac{1}{2}$ $a^{3}\mathbf{F}-\mathbf{y}^{3}\mathbf{D}^{\circ}$ 1.04 4.55 $3\frac{1}{2}-1\frac{1}{2}$ (36) 1.04 4.46 $3\frac{1}{2}-3\frac{1}{2}$	5469.305 C 4 5381.105 C 5 •5651.734 C (1n)	1.87 4.13 $3\frac{1}{2}-3\frac{1}{2}$ $b^4P-z^2D^{\circ}$ 1.95 4.24 $1\frac{1}{2}-1\frac{1}{2}$ (56) 1.95 4.13 $1\frac{1}{2}-3\frac{1}{2}$
3873.953 A 40 3881.869 A 25 3894.976 A 20 3974.726 A 10	0.51 3.70 3½-3½ (18) 0.58 3.76 3½-1½ 0.63 3.80 1½- ½	6450.230 A 80 6282.636 A 40	1.70 3.62 3 3 a4P-s4D° 1.73 3.70 1 3 3 (37)	4781.432 A 3 4737.769 A 2 4608.908 A (0) 4930.373 A 1	1.87 4.46 3½-3½ b ⁴ P-y ³ D° 1.95 4.55 1½-1½ (57) 1.87 4.55 3½-1½ 1.95 4.46 1½-3½
3957.928 A 15 3940.887 A 12 *4063.174 A (0) m4019.30 P Co	0.51 3.62 32-35 0.58 3.70 25-25 0.63 3.76 12-15 0.58 3.62 35-35 0.63 3.70 12-25	6230.968 C 10 6189.005 A 10 6093.144 A 10 6116.994 A 8	1.70 3.70 3-13 1.73 3.76 15-15	4834.359 G — 4086.300 A 15 4068.541 A 8	2.00 4.55 2 -1 2
3542.976 E 2 3496.681 C 15 3417.795 C 6	0.43 3.91 44 44 b ⁴ F-z ² G* 0.51 4.04 37-35 (19) 0.43 4.04 47-35 0.51 3.91 37-45 0.58 4.04 22-32	6005.030 A (3) 5984.092 A 3 5530.780 A 10	1.70 3.76 $2\frac{1}{2} - 1\frac{1}{2}$ 1.73 3.80 $1\frac{1}{2} - \frac{1}{2}$	4058.600 A 6 3973.144 A 10 3990.299 A 6 4013.942 A 7	1.87 4.89 32-32 b ⁴ P-x ⁴ D° 1.95 4.98 12-32 (58) 3.00 5.04 2-12 1.87 4.98 32-32 1.95 5.04 12-12 3.00 5.07 2-2
3627.806 A 25r 3564.947 A 25r 3521.567 C 30r	0.51 3.91 3\frac{1}{2} \frac{1}{2} \\ 0.58 4.04 2\frac{1}{2} - 3\frac{1}{2} \\ 0.43 3.93 4\frac{1}{2} - 3\frac{1}{2} b^4 F - z^2 F^4	*5265.523 F (1) 5483.354 A 40	1.70 3.93 32-32 a ⁴ P-z ³ F° 1.70 4.05 32-32 (38) 1.70 3.95 32-32 a ⁴ P-y ⁴ P° 1.73 4.03 12-32 (39)	3898.485 A 4 3947.125 A 3	1.87 5.04 $3\frac{1}{2} - 1\frac{1}{2}$ 1.95 5.07 $1\frac{1}{2} - \frac{1}{2}$
3490.736 A 10 3605.370 A 30r 3558.773 A 13	0.43 3.93 4 3 5 6 4 -2 2 p 0.51 4.05 3 2 -3 2 -3 0.51 3.93 3 2 -3 3 3 -3 3 3 -3 3 3 3 3 3 3 3 3 3	5331.456 A 15 5301.042 A 15 5230.210 A 25	1.78 4.09 1-19 1.70 4.03 25-25 1.73 4.09 15-15	4033.399 A 4 4092.848 C 3	1.95 5.01 $1\frac{1}{2} - 1\frac{1}{2}$ (59) 2.00 5.01 $\frac{1}{2} - 1\frac{1}{2}$
3608.307 C 3 3502.278 A 100R		5247.921 A 15 5165.156 A 3 5149.796 A 4	1.78 4.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3856.796 A 4 3946.633 A 2 3568.426 C 2	1.87 5.07 3½-3½ b ⁴ P-3° 1.95 5.07 1½-3½ (60) 1.87 5.33 3½-3½ b ⁴ P-x ⁴ G° 1.95 5.33 1½-3½ (61)
3506.310 A 80R 3512.640 A 60R 3523.423 A 25r 3585.154 A 25R	0.43 3.95 41-31 14-y400 0.51 4.03 33-25 (31) 0.58 4.09 27-15 0.63 4.13 15-5 0.51 3.95 32-35	3726.653 A 5 3760.401 A 4 3812.470 C 4	1.70 5.01 3-1-1 a4P-z48° 1.73 5.01 1-1-1 (40) 1.78 5.01 2-1-2	3645.190 A 5 3732.390 A 20 3814.457 A 5	1.87 5.18 $3\frac{1}{2}-3\frac{1}{2}$ $5^{4}P-z^{4}P^{6}$ 1.95 5.18 $1\frac{1}{2}-1\frac{1}{2}$ (62)
3574.967 A 35r 3560.891 A 30r 3656.962 A 7 3624.955 A 8	0.51 3.95 3+35 0.58 4.03 2+35 0.63 4.09 1+15 0.58 3.95 2+35 0.63 4.03 1+35	3548.438 A 7 3577.260 A 3 3626.020 A 2 3546.707 A 6	1.70 5.18 23 23 a4P-z4P* 1.73 5.18 19-19 (41) 1.78 5.18 2-19 1.70 5.18 22-19	3878.750 A (4) 3730.476 A 20 3816.318 A 15 3816.458 A 15	2.00 5.18 \$-\$ 1.87 5.18 32-12 1.95 5.18 12-2 1.95 5.18 14-24
3453.514// A 200R 3529.816/ A 80R 3509.843 A 50r	0.43 4.00 4½-5½ b ⁴ F-y ⁴ G* 0.51 4.01 3½-4½ (22) 0.58 4.10 24-34	3578.903 C 6 3579.029 C 6 3624.337 A 5	1.73 5.18 13 3 1.73 5.18 13 3 1.78 5.18 2-12	*3876.831 A 20 3525.872 C 3 3654.441 A 5	2.00 5.18 2-12 1.87 5.37 22-12 b ⁴ P-z ² P°† 1.95 5.32 12-2 (63)
3495.882 A 50r 3449.441 C 60R 3443.644 A 80R 3449.170 C 60R	0.63 4.16 19-39 0.43 4.01 42-42 0.51 4.10 32-32	3377.080 A 5 3422.900 A 4 3463.499 C 3	1.70 5.36 3 3 3 4 P - **D* 1.73 5.34 1 3 3 (48) 1.78 5.34 5 1 5 1 7 0 5 34 3 3 3	3600.803 A 3 3711.646 A 3	1.95 5.37 13-13 2.00 5.32 3-3
3367.111 A 30r 3385.219 A 25r	0.58 4.16 3\frac{1}{2}\frac{1}{2}\frac{1}{2} 0.43 4.10 4\frac{1}{2}\frac{1}{2}\frac{1}{2} 0.51 4.16 3\frac{1}{2}\frac{1}{2}\frac{1}{2}	3394.916 C 2 3420.474 A 5 m3442.98 P Co 3400.471 A 1	1.70 5.34 3-35 1.73 5.34 13-13 1.78 5.36 2-3 1.73 5.36 12-3		
			• •		

Laboratory E P J Multiplet Laboratory E P J Multiplet I Laboratory E P J Multiplet I A Ref Int Low High (No) I A Ref Int Low High (No)

CO I continued

<u>co 1</u> con	o zaide	~					00 1 0011	OTHE	•					00 I COII	CIME	_					
3543.256 3639.443 3693.364 3562.912	A C A	15 10 2 7	1.95 2.00 1.87	5.36 5.34 5.34 5.34	2 - 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7987.36 7417.38 7590.57 7154.688	A C A	5 10 2 8	2.03 2.07 2.03	3.76	3 - 3 a ² 1 1 - 3 (2 - 3 (1 - 1	D-z ⁴ D° (89)	3578.076 3637.319 3556.120	A G	6 4 (1)				a ³ P_v ⁴ D° (117)	
3636.713 3670.041 3560.306 3614.10	A C A	6 3 5 (0)	1.95 2.00 1.87 1.95	5.34 5.36	1}-1} 2- 2	· ·	7315.73 7004.81 5991.890	C C	(3) 30	2.07 2.03	3.76 3.80 4.13	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	D-z ² D°	3534.769 3647.081 3596.510	A A A	4 5 5	2.27 2.32 2.27			a ² P-v ² D° (118)	
3487.712 3516.675	A C	8	1.87 1.95	5.41 5.46	-	b ⁴ P-w ⁴ F°† (65)	5590.744 5688.593 5883.421	Ä C .A	10 2 (3)		4.24 4.24 4.13	31-31 a ³ 1 11-11 (31-11 11-31	(90)	3421.029 3387.061	C	(1) 1	2.27 2.27			a ³ p_u ⁴ p° (119)	
3523.701 3615.387	C A	7 6	1.87 1.95	5.38 5.36	21-31 11-25	b ⁴ P-x ² F° (66)	m5354.01 5034.06 5113.232	P H C	Ço (3) 6	2.07 2.03 2.07	4.38 4.48 4.48	$3\frac{1}{2} - 3\frac{1}{2} a^{2}$ $1\frac{1}{2} - 3\frac{1}{2} ($ $3\frac{1}{2} - 3\frac{1}{2} ($	D _у²г° (91)	3478.555 3378.736 3423.35	C A A	8 5 (1)	2.27 2.27 2.32	5.82 5.92 5.92	12-32 13-3	a ³ P-w ² F ⁶ (130) a ³ P-y ² S ⁶ (131)	
3478.744 3552.989 3480.012 3551.666	C A C	7 8 6 2	1.95	5.42 5.42 5.43	23-23 13-13 23-13 13-23	b ⁴ P-x ² D° (67)	5176.085 4899.520 4974.47	A A G	30 3 (1)	2.03	4.46 4.55 4.55	3 2 - 2 2 a 2 I 1 2 - 1 2 (2 3 - 1 2 (3373.226 3417.673	A C	7 5	2.27 2.32	5.93 5.93		a ² P-x ² 5° (122)	
3607.04 3485.700	A A	(0) 4	2.00 1.95	5.43 5.49	-1- <u>-</u> 11	b ⁴ P-z ² s° (68)	5094.955 4371.130	A A	\8' 5	2.03 2.07	4.46	$1\frac{1}{2} - 2\frac{1}{2}$ $2\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$ (1)	D-x ⁴ D° †	3338.519 3402.064 *3358.003	C A	1 4 3	2.27 2.32 2.27	5.97 5.95 5.95	$1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	a ² P-x ² P° (123)	
3537.707 3243.840 3317.93	A A	8 (0)	1.87 1.95	5.49 5.68 5.67		68) b ⁴ P-x ⁴ P° (69)	4187.246 4192.856 4139.452	A A A	4 (2N) 3	2.03 2.07 2.03	4.98 5.01 5.01	21-13 a21		3382.071 3263.213 3226.986	E A A	3 4 4	2.32 2.27 2.32	5.97 6.05 6.14	ş-1ş 1 1 -11	a ² P_w ² P° † (124)	,
3359.066 3254.202 3312.148 3307.156 3365.014	A C A C	3 12 7 7 2	3.00 1.87 1.95	5.67	2-13 23-13 13-3 13-23		3735.928 3749.930 3693.476	C A A	12 9 8	2.07 2.03 2.03	5.37 5.32 5.37	3 - 1 a a 3 I 1 - 1 a (3073.664 3107.540	G A	(1) 1		6.29		a ² P_v ² P°† (125)	
3247.170 3271.778	A A	8	1.87 1.95	5.68 5.72	2-12 23-33 12-22	b ⁴ P-v ⁴ D° (70)	3755.447 3734.139 3777.543	A A A	10 7 6		5.36 5.34 5.34	3 - 3 a a a a a a a a a a a a a a a a a	D-w ⁴ D° (96)	7712.661 7610.24 7217.34	A C C	6 2 (2)	2.53 2.62 2.53	4.13 4.24 4.24	13-23 3-13 13-13	b ² P-z ² D° (126)	
3325.240 3209.80 3279.254 3298.680	A A A	10 (1) 5	2.00 1.87 1.95 2.00	5.71 5.73 5.71	3-13 23-23 13-13		3731.268 3774.599 3707.465	A A A	8 6	2.03 2.07 2.03	5.34 5.34 5.36	11-11 21-11 11-11 11-11	1	4268.446 4404.932	A A	2 3				b ² P-x ² D° (127)	
3298.880 3216.996 3253.416 3174.905	A C E	6 1 1	1.87 1.95	5.74 5.71 5.74 5.76	3 - 3 3 - 1 1 - 2 3 - 2	. _h 4p_ #2no	3693.106 3605.015 3645.440 3559.597	A C E E	8 5 3	2.07 2.03 2.07 2.03	5.41 5.46 5.46 5.50	31-31 a ³ 1 11-31 (31-31 11-12	D-w ⁴ F° (97)	3969.116 3960.997 3851.848	A A A	8 6 2				b ³ P-w ³ D° (128)	
3287.192 3224.632 3235.532	A A A	7 4 6	1.95 1.87 1.95	5.70 5.70 5.76	12-22 12-12 22-12 12-22	b ⁴ P-v ³ D° (71)	3733.483 3708.823	A A	12 12	2.07	5.38 5.36	3 - 3 a a a a a a a a a a a a a a a a a	D-x ² F° (98)	3870.534 3991.831	A C	(2)	2.53 2.62	5.73 5.71		b ³ P_v ⁴ D° † (129)	
13333.41 3173.56 3192.220	P A A	Co (1) 3	2.00 1.87 1.95	5.70 5.76 5.81	2-12 23-12 13- 1	b ⁴ P-y ² P° (72)	3751.625 3683.047 3643.181	A A A	5 20 9		5.42 5.42	3½-3½ a ³ [1½-1½ (3½-1½		3819.908 4003.596 3892.118	A A A	4 2 3	2.53 2.62 2.53	5.76 5.70 5.70	15-15		
3234.119 3235.783 3278.842	C C A	(2) 6	1.95 3.00 2.00	5.76 5.81 5.76	15-15 2-15 5-15		3684.479 3641.784 3585.808	Ö A C	10 6	2.07	5.42 5.42 5.51	15-05		3817.940 3863.607 3759.684 3925.151	A C A	(4) 2 3 3	2.53 2.62 2.53 2.62	5.76 5.81 5.81 5.76	12-12 2- 2 12- 2 2-12	b ² P_y ² P° (131)	
3154.794 3161.652 3182.118	A A A	10 5 7	1.87 1.95 2.00	5.79 5.85 5.88	2 −1±		*3521.731 3458.028	c c	3	2.03	5.54 5.64	$3\frac{1}{2}-1\frac{1}{2} a^{2}D$ $1\frac{1}{2}-\frac{1}{2} (1$ $3\frac{1}{2}-3\frac{1}{2} a^{2}D$		3754.346	A	4			41 61	. 2- 2	
3103.735 3139.98 3152.707 3082.844	A P A C	5 Co 6 2	1.87 1.95 2.00 1.87	5.85 5.88 5.91 5.88	25-25 15-15 2-15 25-15		m3334.12 3368.67 3421.628	P G A	(1) 3	2.03 2.07 2.03	5.73 5.73 5.64	$3\frac{1}{2} - 3\frac{1}{2}$ a^{3}		3631.948 3728.840 3591.746	C A A	2 3 4	2.53 2.62 2.53	5.93 5.93	1	(132) b2P-x280 (133) b2p-x2po	
3111.339 3120.10 3188.377	Č A	ž (3) 7	1.95 1.87 1.95	5.91 5.83 5.82	21-11 12- 2 21-31 11-21	b ⁴ P-w ² F° (74)	3420.790 3396.457 3432.318 3390.396	A C C	7 1 3 5	2.07 2.03 2.07	5.68 5.67 5.67 5.67	$3\frac{1}{2}-3\frac{1}{2}$ a^{2} D $1\frac{1}{2}-1\frac{1}{2}$ (1	D-x ⁴ P° 103)	3614.34 3686.477	A	(1) 2				b ² P _{-X} ² Pe (134)	
3129.481 3099.667 3140.715	A A	3 2 2	1.95 2.00	5.82 5.93 5.93		b ⁴ P-x ² s° (75)	3424.500 3348.112	A A	10 8	2.03 2.07 2.03	0.0.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3504.728 3502.998 3417.353 m3594.87	A E E P	(2d) (1d) Co	2.53 2.62 2.53 3.62	6.05 6.14 6.14 6.05	12-12 12-12 12-12	_р Зр _{-w} Зре (135)	
3015.686	A	3 (17)				6 ⁴ P-x ² P°† (76)	3355.940 3356.464 •3322.198	A A	2 6 8	2.03 2.07 2.03		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-y ⁴ s°	3496.070 3604.469	C A	3 4	2.69 2.77	6.22		a ² H-y ² H°	
3026.373 3060.048 3090.251	A A Á	6 5 4	1.87 1.95 3.00	5.95 5.98 5.99	31-31 11-31 1-31 1-11	b ⁴ P-t ⁴ D° (77)	3342.734 3264.842 3308.688	C A E	8 5 (1)	2.07 2.03 2.03	5.76 5.81 5.76	$3\frac{1}{2}-1\frac{1}{2}$ a^{3} D $1\frac{1}{2}-\frac{1}{2}$ (1 $1\frac{1}{2}-1\frac{1}{2}$		3469.683 3553.161	E	(2n) 2	2.69 2.77		5}-4} 42-3}	a ² H-w ² G° (137)	
3005.766 3050.496 3087.806 2996.549	A A A	3 3 3	1.87 1.95 2.00	5.98 5.99 6.00 5.99	12-12 12-12 2- 2		3321.912 3232.874 3265.352	C A A	(9) 3			31-31 a ³ D 11-31 (1		3174.140 *3235.532 3245.750	A A	8 6 (1)	2.69 2.77 2.77		51-41 41-31 41-41	a ³ H_v ³ G° (138)	
3048.108 3017.254 3044.04	A A P	3	1.95	6.00	1출~ 출	b ⁴ P_v ² F° (78)	3210.219 3180.290	A	5 2	2.03	5.91	1 1 2 2		7388.689 7586.72	A C	5 (4)	2.71 2.86	4.38	- 2-3-3-1 1-2-2-1	b ² D-y ² F° (139)	
7809.24	c -	(1) (1)			_	(78) a ² G-z ⁴ G° (79)	3283.466 3260.814 3293.861	A C	9 9 2			21-31 a ³ D 11-21 (10 21-21		6937.81 7054.042 7285.28	C A C	4 10 4				b ² D-y ² D°†	
7996.80 6563.403 6450.09	C A P	40 Co	2.13 2.03 2.13	3.67 3.91 4.04	3½-3½ 4½-4½ 3¾-3¾	(79) a ² G-z ² G• (80)	3168.060 3154.678 3137.454	C C E	6 5 3	2.03	5.95	$\frac{3\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-1\frac{1}{2}}$ a ² D. 11-12-12	.08)	4624.561 5004.187 4904.172	A G	(0) (1)				b ² D-z ² pe (141)	
6146.38 6910.84 6490.344	D C	(3) 6	3.03 3.13	4.04 3.91	45-35 35-45 41-21	80)	3169.766 3110.021	A C	9 5		5.96 6.00	31-31 a ³ D 11-31 (10)_v ³ F° .09)	4543.810 4815.900	A A	6				b ³ D-x ³ D° (143)	
6429.913 6829.92	A D	(1)				(81)	6946.31 6632.438	C A	(2) 15	2.27 2.27	4.05 4.13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-z ³ F° ; 10) -z ³ D°†	4545.985 m4813.45	A P	Co			- 13-95		
5890.487 5915.551 5659.121 6168.86	A A A D	13 10 3 (1)	2.03 2.13 2.03 2.13	4.13 4.21 4.21 4.13	41-41 31-31 41-31 31-41	a ² G-y ² G° (82)	5647.234 5523.310	Č A	15	2.32	4.46	½-1½ (1: 1½-3½ a ³ p-	11) -y ² D°	4375.540 4431.608	A	3				b ² G-x ² G• (143)	
5266.506 5235.188	A A	25 15	2.03	4.38 4.48		a ² G-y ² F° (83)	5408.119 3915.503	A C A	(3)	2.27 2.27	4.55 5.42	1 2 3 2 a 3 p. 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2	-x ³ D•	4158.420 4179.226 3676.552	A A	4 3 13				b ² G_w ² F° (144) b ² G_y ² H°	
3712.177 3843.692	A	6		5.34	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$	a ³ G-w ⁴ D° (84)	3977.184 3917.115 3835.497	A A C	3 8 (2)			1 2 3 2 a 3 P - 1 2 1 1 1 1 2 - 1 2 1 1 1 1 2 - 1 2 1 2		3702.237 3699.017 3649.329	A C	13 2n 8				ხ ² G_y ² H° (145) ъ ² G_υ ² E°	
3651.254 3707.01 3690.715	A G A	4 7				a ² (L-w ⁴ F° † (85)	3893.067 3662.158	Ē A	8			1 2 2 a 3 P - 2 (11 1 2 - 3 a 3 P - 2 (11		3634.713 3632.839	Á	7 7				b ² G-u ² F° (146) b ² G-x ² H°† (147)	
3816.876 3438.713	A C	5 4				a ³ G-x ³ F° (86) a ³ G-z ³ H°	3611.701 3562.097 3620.422	A A	10 6 5			$1\frac{1}{2}-3\frac{1}{2} a^{3}P$ $\frac{1}{2}-1\frac{1}{2}$ (11 $1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-3\frac{1}{2} a^{3}P$		3609.752 3341.341 3339.15	A A	5 (4)				(147) b ² (1—8 ² pe (148)	
3586.082 3381.498 3503.717	E C C	3 4 3				a ² G-z ² H° (87) a ² G-x ² G° (88)	3684.960 3633.340 3677.835	A A G	3 3 (1)	2.32 2.27 2.32	5.67 5.67 5.67	11-31 a ³ P- 1-11 (11 11-11 1-11	16)	3322.198 3314.073	A A	8 8				(148) b ² G_¥ ² G•† (149)	
		J	w.13	J. 00	<u>05-9</u> 5	(06)						- -								,,	

Laborato I A Ref	ry Int	E P Low Hig	J h	Multiplet (No)	Labor I A	ator Ref		E Low	P • High	J	Multiplet (No)	Labor I A		y Int	E Low	P High	J	Multiplet (No)
Co I continu	eđ				Co I cont	inue	đ					Co I con	tinue	ed.				
4530.949 A 4469.547 A 4466.881 A 4471.550 A	30 15 10 5	2.91 5.6 2.94 5.7 3.00 5.7 3.05 5.8	7 .3 § –3 §	z ⁶ F°_e ⁶ F	3485.368 3461.173 3446.088 3437.680	A A C A	15 15 12 6n	3.10 3.16 3.20 3.24		61-71 51-61 41-51 31-41	z ⁶ G°-e ⁶ H† (163)	5257.621 5158.854	A	10 2	3.95 4.03		-	y ⁴ D°-e ⁴ P† (188)
4478.319 A 4483.918 A 4421.337 A 4374.918 A	4 3 4 3	3.09 5.8 3.11 5.8 2.91 5.7 2.94 5.7	5 13-13 7 3-3 1 53-43 7 43-33		3448.358	C	4	3.24	6.82	3] - 3] -	z ⁶ G°-3 (163)	8093.932 7908.679 7869.868 7871.370	A A A	8 6 2 2	4.00 4.01 4.10 4.16	5.53 5.57 5.66 5.73	51-41 41-31 31-21 21-11	y ⁴ G°e ⁴ F† (189)
4391.568 A 4417.398 A 4445.711 A 4581.596 A 4565.578 A	4 5 4 20 15	3.00 5.8 3.05 5.8 3.09 5.8 2.94 5.6 3.00 5.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.	6908.08 7398.72 6901.52 7406.23	CDCD	(5) (1) (2) (1)	3.39 3.51 3.39 3.51	5.18 5.18 5.18 5.18	15-25	c ² D_z ⁴ P° (164)	5342.703 5343.383 5276.183 5250.003	A A A	50 20 8 7	4.10	6.31 6.32 6.43 6.51	51-61 41-51 31-41 21-31	y ⁴ G°-e ⁴ H† (190)
4549.658 A 4533.985 A 4517.094 A	10 7 4	3.05 5.7 3.09 5.8 3.11 5.8	7 2 3 - 3 5 1 1 5 - 2 5 5 5 - 1 5		5086.663 6474.558 5495.682	A A A	(3) a	3.39 3.51 3.39	5.43 5.43 5.64		c ² D_x ² D• † (165) c ² D_w ² D• †	5333.647 5334.821 5336.163	A A A	5 6 3	4.00	6.32	5 } -5 }	y ⁴ G°-g ⁴ F† (191)
3343.530 E 3299.11 A	(1) (0) (1) (2)	2.91 6.6 2.94 6.6	9 4] -4]	z ⁶ F°-f ⁴ G (151)	5558.825	A	3	3.51	5.73		c ² D-w ² D•† (166)	5344.570 5545.937	A	(in) 2	4.01 4.10	6.32	41-41 31-31	y ⁴ G°-g ⁴ F† (191)
3272.76 A 3371.015 C 3351.138 A	{1 2 1	2.92 6.6 2.94 6.6 3.00 6.6	1 4] -5]		5210.042 5368.904	Å	(2)	3.39 3.51	5.76 5.81		c ² D_y ² P° (167)	5325.276 5316.772	A A	10 7	4.00 4.01	6.32 6.33	51-51 41-41	y ⁴ G°-e ⁴ G† (192)
3356.842 A 3318.60 A	(1)	3.05 6.7 3.09 6.8	3 2}-3} 1 1}-2}		4331.231 4494.746	A	3 2	3.39	6.24 6.26	3출-3출 1출-3출 -	c ³ D-u ³ F° (168)	5524.990 5407.520	Ā	4 5		6.33	31-41 21-31	(200)
3326.991 C 3277.662 A 3270.198 C	8 3 2	3.91 6.6 3.94 6.7 3.00 6.7	3 54-54 1 44-44 8 34-34	z ⁶ F°_f ⁶ F (152)	6082.431 6122.640 *6000.668	A A	15 8 5	3.50 3.55	5.53 5.57 5.66	41-41 31-31	z ⁴ F°-e ⁴ F† (169) ?	8372.79 *8589.78 8379.44	A A	(10) (3) (3) (8)	4.05	5.53 5.57	41-41 31-31	y ⁴ F°-e ⁴ F† (193)
3272.405 C 3251.656 A 3220.62 A	(2) (3) (4)	3.05 6.8 3.91 6.7 2.94 6.7	1 5-4-4-5 8 4-3-3-5		5946.484 5965.040	A A F	5 (2)	3.61 3.65 3.50	5.73	43-33		8208.57 8151.95	A A A	\8 \8 \6	4.22	5.73 5.57	$1\frac{1}{2} - 1\frac{1}{2}$ $4\frac{1}{2} - 3\frac{1}{2}$	
3229.36 A 3354.213 C	(3)	3.00 6.8 3.94 6.6	2 4} -5}		5846.575 5826.299	A A	(3)	3.55 3.61	5.66 5.73	3 1 - 2 1 2 1 2 1 2		8055.996 80 4 3.306	A	3	4.13 4.19	5.66 5.73	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3329.013 A 3314.345 C 3305.730 A 3294.536 C	3 3 3	3.00 6.7 3.05 6.7 3.09 6.8 3.11 6.8	8 2] -3] 2 1] -2]		5212.699 5146.753 5126.201	A A A	25 15 10	3.50 3.55 3.61	5.87 5.95 6.01	41-41 31-31 31-31	z ⁴ F°- <u>f</u> ⁴ F† (170)	5453.338 5359.200 5325.949	A A A	(1) 6 4		6.32 6.43 6.51	43-53 33-43 23-33	y ⁴ F°-e ⁴ H (194)
3319.822 A 3278.105 A m3264.82 P	4 2 Co	3.91 6.6 3.94 6.7 3.00 6.7	3 51-41 1 41-3 8 31-2	z ⁶ F°-e ⁶ D (153)	5122.767 5332.652 5265.786 5219.008	A A A	8 5 4 2	3.65 3.55 3.61 3.65	6.06 5.87 5.95 6.01	15-15 35-45 35-35 15-35		5454.573 5637.734 5515.990	A A A	30 3 (1)	4.13	6.32 6.32 6.43		y ⁴ F°-g ⁴ F† (195)
3259.20 A 3346.932 A	(6) 8 5	3.05 6.8 3.94 6.6	3 4] -4]	•	3972.506	A	6	3.50	6.61	41-51	z4F0_f4G	5402.000	A	3	4.33	6.51	12-12	
3329.466 A 3308.814 A 3292.22 A	{1 {1}}	3.00 6.7 3.05 6.7 3.09 6.8	8 25-25 4 15-15		3938.856 3951.717 3904.790	A A E	(in)	3.55 3.61 3.65	6.69 6.73 6.81	23-33 13-33	z ⁴ F°-f ⁴ G (171)	5444.585 5381.776 5425.621	A A	(a)	4.05	0.00	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	y ⁴ F°-e ⁴ G† (196)
3375.238 E 3313.116 A	(1)	3.05 6.7 3.11 6.8	4 글-1글	•	5352.046	A	30	3.56	5.87	 51-41	z ⁴ 6°_+ ⁴ F+	53 47.4 99 5310.219	A	(1n)	4.13 4.19	6.44 6.51	2 1 -21	
3319.478 C 3276.483 A 3293.210 A 3304.119 A	8 4 3 3	3.91 6.6 2.94 6.7 3.00 6.7 3.05 6.7	3 51-61 1 41-51 5 31-41 9 21-31	z ⁶ F°_e ⁶ G (154)	5280.631 5266.302 5268.498	Ä A A	20 10 10	3.61 3.67 3.72	5.95 6.01 6.06	42-32 32-32 32-12	z ⁴ G°-f ⁴ F† (172)	5312.650 5124.718	A	8 2	4.19 4.22	6.51	2 1 -3 1 1 1 -2 1 -	y ⁴ F°-g ² F† (197)
3287.575 A •3315.035 C	.3	3.09 6.8 3.11 6.8	5 1 3-2 5 5 3-1		4035.542 3991.528	A A	8 4	3.61	6.62 6.71	5}-6} 4}-5}	z ⁴ G°-f ⁴ H (173)	5353.500 5362.781	A A	25 15	4.13 4.21	6.43 6.52	41-51 3-42	у ² G°-е ² Н (198)
3250.51 A 3260.286 C 3254.63 A	(5w) (2) (9)	2.91 6.7 3.00 6.7 3.05 6.8	9 3] -3] 5 3] -2]		3978.864 m3972.53	C P	Co	3.67	6.77	34-44 32-32		5341.328 5339.528	A C	7 4		6.44 6.53	41-41 31-31	y ² G°-e ² G† (199)
3294.098 C 3211.01 A	(2) (4)	3.09 6.8 2.94 6.7	9 4] _3]	•	6454.998 6595.869	A A	40 13	3.62 3.70	5.53 5.57	31-41 31-31	z ⁴ D°-e ⁴ F†	6347.843	A	10	4.38	6.32	_	y ² F°-g ⁴ F† (300)
3339.780 A 3319.156 C 3308.482 A	8 4 4	3.94 6.6 3.00 6.7 3.05 6.7	2 3 3 - 2 8 3 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	z ⁶ F°_e ⁶ P (155)	6477.861 6395.158	A	10 8	3.76 3.80	5.66	1 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		6351.448 5984.253	A A	3				(300) y ² F°-e ² G (301)
4749.68 A	10	3.04 5.6	 4 4 1 -51	z ⁶ D°-e ⁶ F	5483.962 5477.089 5470.460	A A A	10 5 4	3.62 3.70 3.76	5.87 5.95 6.01	34-44 34-34 14-34	z ⁴ D°-f ⁴ F† · (175)	6049.110	Ā		4.48	6.53	2 § -3 § -	(301)
4771.108 C 4768.072 A 4754.358 A	6 5 3	3.12 5.7 3.18 5.7 3.22 5.8	1 34-4 7 34-3 1 14-3	(156)	5452.305 5287.574 5326.247	A C	3 3 3	3.80 3.62 3.70	6.06 5.95 6.01	3-13 3-3-3 3-2-2-		6617.126 6591.834	A E	6n (1)	4.46 4.55	6.32 6.43	$3\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	y ³ D°-e ³ P
4734.828 A 4629.359 A 4663.403 A 4682.361 A	2 15 12 9	3.24 5.6 3.04 5.7 3.12 5.7 3.18 5.8	5 3-1 1 45-4 7 35-3	t	4594.633 4625.767	A A	4 2		6.30 6.37	-	z ⁴ D°-e ⁴ D† (176)	8819.11 8750.13	A B	100 60	5.13 5.22	6.53 6.63	 5-1-4-1 4-1-3-1	x ⁴ G°-h ⁴ F† (203)
4693.190 A 4698.389 A	6	3.22 5.8 3.24 5.8	5 1 1-1 7 1-1		4596.903 4526.794	A	5 2	3.62 3.70	6.30 6.43	3}-2} 3}-1	z ⁴ D°-e ⁴ P† (177)							
4527.919 A 4581.380 F 4623.020 A	(1) (2N) (1)	3.04 5.7 3.12 5.8 3.18 5.8	1 3-2-2		4570.024 4704.386	A A	(2)	3.62 3.70	6.32 6.32		z ⁴ D°-g ⁴ F†	Strongest 3443.203	Unc:	lassified 5	Lines	of <u>Co</u>	I	
4657.390 A 3361.553 A	51	3.22 5.8 3.04 6.7	(15- 5	7	7027.797	A	6	3.91	5.67	_	z ² G°-e ² F†	3177.266	Ă	8	<u> </u>			
3398.811 A 3401.913 C	(2n)	3.12 6.7 3.22 6.8	5 3½-42 5 1½-3	z ⁶ D°-e ⁶ G† (157)	7134.290 5133.467	A A	5 15	4.04 3.91	5.77 6.32			Co II I	D 1	7.1 Ans	.1 C	List A	Vor	1943
4867.870 A	35	3.10 5.6	4 6 5	z600_e6F+	5156.366 4756.722	Ā	10 (1)	4.04	6.43 6.51	31-41 42-31	z ² G*-e ⁴ H (180)	3621.22	A	100	2.19	5.60	3-4	48 ⁵ P-4p ⁵ F°
4840.253 A 4813.476 A 4792.855 A	25 20 15	3.16 5.7 3.20 5.7 3.24 5.8	1 53-4 7 43-3 1 33-2	z ⁶ G*-e ⁶ F†	5125.715 5108.903	A A	7 10	3.91 3.91	6.32 6.33		z ² G°-e ⁴ G† (181)	3578.03 3555.93 3545.03	A A A	30 10 25		5.68 5.73 5.68	2-3 1-2 3-3	(1)
4779.979 A 4776.311 A	10 6	3.27 5.8 3.28 5.8	2 41-1		4746.115	A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.91	6.51		z ² G°-g ² F (182)	3517.48 3514.21	A	10 5	2.23	5.73 5.78	2-2 1-1	
4971.935 A *4928.290 A 4882.704 A	2 2 3	3.16 5.6 3.20 5.7 3.24 5.7	1 44-4 7 33-3		4767.142	A		4.04	6.63			3501.73 3446.40	A A	200 100		5.72 5.81	3 -4 2 - 3	4s ⁵ P-4p ⁵ D°
4843.454 A 4813.966 A	3 2	3.27 5.8 3.28 5.8	5 12-1	<u> </u>	7743.27 8112.13 7553 970	C D	(5) (1)	3.93 4.05	5.53 5.57	31-41 21-31	z ² F°-e ⁴ F (183)	3423.85 3415.78	A A	75 75	2.26 2.19	5.87 5.81	1-2 3-3	• - •
3564.115 A 3522.856 E	4	3.16 6.6 3.20 6.1	2 5}-6 1 42-5	z ⁶ G°-f ⁴ H† (159)	7553.970 7634.50	A C	(5)	3.93 4.05	5.57 5.66	3 § -3 §	•	*3388.18 § 3387.72 3358.59	A A A	50 60 10	2.26 2.19	5.87 5.91 5.87	2-2 1-1 3-2	
*3491.987 C 3468.973 A	3 3	3.24 6.5 3.27 6.6	13 35-31	Ż	5211.832 5077.410	A A	3 3	3.93 3.93	6.30 6.36		z ³ F°-e ⁴ D (184)	3352.80 3370.94	A	30 50		5.91 5.92	2-1 1-0	
3505.133 A 3472.707 C 3452.18 A	3 (1n) (2)	3.10 6.0 3.16 6.1 3.20 6.1	3 6-5 1 5-4	z ⁶ G•_f ⁶ F† (160)	4795.853	A	2 (1)	3.93	6.51	3 1 - 3 2	z ² F°-e ⁴ H (185) z ² F°-g ² F (186)	Voc	1	emsts s	· · · · · · ·	anoti-	n ^* '	iat of
3496.794 C	6	3.10 6.0	3 6}-6	z ⁶ G°-e ⁶ G†	4785.070 4778.233	A	(1)	3.93 4.05	6.51	ă <u>₹</u> −â 2 	(186)	Measures stronger	uncl	assified	lines	of Co	<u> </u>	
3471.382 A 3477.836 A 3476.360 C	7 4 5n	3.16 6.1 3.20 6.1 3.24 6.1	1 54-5 5 44-4 9 31-3	z ⁶ g°-e ⁶ g† (161)	5254.652 5287.785	A A	 8 5	3.95 4.03	6.30	31-31	y ⁴ D°-e ⁴ D† (187)							
3447.281 C 3472.196 E	3	3.27 6.1 3.28 6.1	35 a } _a		5230.363 5210.834	G A	(1) 3	4.09 4.13	6.45 6.50	12-13	(201)							
										_								

REVISED MULTIPLET TABLE

'*										•		•								
Labo I A	rator Ref	y Int	Low	P High	J	Multiplet (No)	Labo: I A		ry Int	E Low	P High	J	Multiplet (No)	Labo I A	rator Ref		Low Low	P High	J	Multiplet (No)
<u>N1 I</u> I	P 7.6	1 Anal	. A I	List B	Mar	ch 1942	Ni I con	tinu	ed					<u>Ni I</u> con	tinue	đ				
3946.18 3749.045 3832.873 3885.87 4093.62	P B P P	8 5		3.29 3.38 3.45	3-3 4-3 3-2 2-1 3-4	(1)	3392.992 3446.263 3423.711 3367.892	B B B	100R 100R 50R 8	0.03 0.11 0.21 0.03 0.11	3.69 3.82 3.69	3-3 2-2 1-1 3-2	a ³ D-z ³ D° (20)	3287.221 *3029.297	В	3		5.42		b ¹ D-x ¹ D° (55) b ¹ D-x ³ P° (56)
3624.733	В	15	0.00	3.40	3-4 4-5		3328.714 3472.545 *3548.185	B B B	5 70R 20r	0.11		2-1 2-3 1-2		6767.778	C	20	1.82	3.64	0-1	(57)
3739.229 3792.337	В	10 5		3.47 3.53	3-4 2-3	(2)	3248.457	В	8	0.03		3-4	a3D-z3ge	6177.258	В	(3)	1.82	3.82	0-1	a ¹ S-z ³ D° (58)
3561.751 3669.241 3730.751	B B B	10 12 4	0.00 0.16 0.27	3.47 3.53 3.58	4-4 3-3 2-2		3234.649 3165.508	B B	10r 3	0.11	3.92 3.92	2-3 3-3	(21)	5476.906 5079.961	В	50 (3)	1.82	4.07	0 -1 0 -1	a ¹ S-z ¹ P° (59) a ¹ S-y ³ D°
3498.19 3611.54	P P	•	0.00	3.53	4-3 3-2		3243.058 3315.663	B B	25R 30R	0.03 0.11	3.83 3.83	3-3 2-3	a ³ D-z ¹ F° (22)						_	(60)
3502.595 3602.281 3437.280	B B B	8 15 30R	0.00 0.16 0.00	3.52 3.59 3.59	4-5 3-4 4-4	a ³ F_z ⁵ F° (3)	3200.423 3271.118 3362.806	B B B	5 10 6	0.03 0.11 0.21	3.88 3.88 3.88	3-2 2-2 1-2	a ³ D-z ¹ D° (23)	7028.95 6928.52 7714.27	P P G	3	1.93 1.94 1.93	3.68 3.72 3.53	2-3 1-2 2-3	a ³ P_z ⁵ Fe (61) a ³ P_z ³ Pe
3507.694 3577.240 3351.06	B B P	8 2	0.16 0.27 0.00	3.68 3.72 3.68	3-3 2-2 4-3		3114.124 3197.113	ВВ	20R 10r	0.11	4.07	2-1 1-1	a ³ D-z ¹ P° (24)	7261.94 7197.07 6914.562	G G D	3 5 50	1.94 1.93 1.94	3.64 3.64 3.73	1-1 3-1 1-0	(62)
3467.502 *3548.185	B B	12 20r	0.16	3.72 3.75	3-3 3-1		3050.819	В	100R	0.03	4.07	3-4	a ³ D_y ³ F°	7788.95 7414.51	Ğ	2 2	1.94	3.53 3.64	1-3	
3670.427 3664.095	B B	20 20	0.16 0.27	3.53 3.64	3-2 3-1	a ³ F-z ³ P° (4)	3101.554 3134.108 3037.935	B B B	100R 60R 60R		4.09 4.15 4.09	2-3 1-2 3-3	(25)	7291.48	В	(8)	1.93	3.62	2-3	a ³ P-z ³ F°
3793.608	В	8	0.27	3.53	2-2	7 7	3054.316 2992.595	B B	50R 20R	0.11	4.15 4.15	2-2 3-2		7110.91 7062.97	B B	(6) (4)	1.94	3.66 3.69	2-3 1-2	(63) a ³ P _{-z} 3 _D e (64)
3391.050 3571.869 3519.766	B B B	5′R 5∪R 20R	0.00 0.16 0.27	3.64 3.62 3.78	4-4 3-3 2-2	(5)	3002.491 3003.629	ВВ	100R 60R		4.14	3-3 2-2	a ³ D-y ³ D°† (36)	7001.57 6586.328 6532.891	B B B	(4) 6 (3)	1.93 1.94 1.93	3.69 3.82 3.82	2-3 1-1 2-1	
3409.578 3413.478	B	8 25R	0.00	3.62 3.78	4-3 3-2		3057.638 3981.651	B B	50R 20R	0.21	4.25 4.25	1-1 2-1	(20)	*6180.093	В	(in)	1.93	3.92		
3551.534 3688.415	B B	8 15		3.64 3.62	3-4 2-3		3064.623 3080.755	B B	25R 20R	0.11		2-3 1-2		6482.811	В	5	1.93	3.83	2-3	(65) a ³ P_z ¹ Fe (66)
3369.573 3500.852 3483.774	B B	80R 25R 25R	0.27	3.66 3.69 3.82	4-3 3-2 2-1	a ³ F-z ³ D° (6)	2994.460	В	25R		4.15	3-4	(27)	6314.666 6364.597	C D	15 (1)	1.93 1.94	3.88 3.88	2-3 1-3	a ³ P-z ¹ D ^e (67)
3527.982 3612.741 3641.641	B B B	15 30R 4	0.16 0.27 0.27	3.66 3.69 3.66	3-3 2-2 2-3		4298.767 4164.636 4074.897	B D B	(2) 1 2	0.43 0.43 0.43	3.29 3.38 3.45	2-3 2-3 2-1	a ¹ D-z ⁵ D° (38)	5754.675 5796.078 5892.878	B C	10 (2)Fe 12	1.93 7 1.94 1.98	4.07 4.07 4.07	2-1 1-1 0-1	a ³ P-z ¹ P° (68)
3232.963 3371.993 3380.885	B B B	25R 15r 15r		3.82 3.82 3.92	4-5 3-4 2-3	a ³ F_z ³ 3° (7)	3972.171 3904.64	B	10	0.43 0.43	3.53 3.58	2-3 2-2	a ¹ D-z ⁵ G• (29)	5711.905 5592.283	B B	5 8	1.93	4.15	2-3 1-2	a ³ P_y ³ F° (69)
3226,984 3282.696	B B	5 8	0.00	3.82	4-4 3-3		3783.530 3736.813	В	30r 15	0.43 0.42	3.68 3.72	2-3 2-2	a ¹ D-z ⁵ F° (30)	5553.693 5587.865	В	2 5		4.15 4.14	2-2 2-3	a ³ P-y ³ D° (70)
3145.121 3221.652	B B	3 10r	0.00	3.92 3.83	4-3 4-3	a ³ F-z ¹ F°	3705.12 3973.562	P B	25	0.43	3.75 3.53	2-1 2-2	a ¹ p_z ³ p°	5424.654 5435.871 5388.350	B B B	4 5 (2)	1.98	4.22 4.25 4.22	1-2 0-1 2-2	(70)
3366.168 3469.486 3320.257	B B	20R 15 20R	0.16 0.27 0.16	3.83 3.83	3-3 2-3	(8) a ³ F-z ¹ D°	3831.690 3858.301	B B	20 40 r	0.43	3.64 3.62	2-1 2-3	(31) a ¹ D-z ³ F°	5353.415 4762.627	B B	3	1.94	4.25 4.52	1-1 2-3	a ³ P-y ¹ D°
3420.741	В	5	0.27	3.88 3.88	3-2 3-3	(9)	*3674.15 3807.144	P B	15 35r	0.42	3.78 3.66	2-2 2-3	(32) a ¹ D-z ³ D°	4791.00 4019.055	E D	(1) (3)	1.94	4.52 5.00	1-3 3-3	(71) a ³ P-2°
3249.440 3031.870	B B	6 10r	0.27	4.07	2-1 4-4	a ³ F-z ¹ P° (10) a ³ F-y ³ F° (11)	3775.572 3634.941	B B	30r 13	0.42 0.42	3.69 3.82	2-2 3-1	(33)	3564.67	P		1.93	5.39	2-3	a ³ P-x 3p 0
3145.719 3184.367	B B	8 8	0.16	4.09 4.15	3-3 2-2	(11)	3523.074	В	4		3.92	2–3	(34)	3696.65 3713.336	P D	(3)	1.93 1.94	5.27 5.27	3-3 1-1	a ³ P_y ³ pe (74)
3019.143 3097.118 3159.521	B B B	20R 15r 3		4.09 4.15 4.07	4-3 3-2 3-4		3619.392 3566.372	В	150R 100R	0.43		2-3	a ¹ D-z ¹ F ⁶ (35) a ¹ D-z ¹ D ⁶	3696.29 3713.696	P D	1	1.93 1.94	5.27 5.27	3-1 1-3	• • • •
3235.753	В	4	0.27	4.09	2-3	2 - 2 -	3380.574	В	80R	0.42	4.07	2-1	(36) a ¹ D-z ¹ Po	3642.387	В	3	1.98	5.37	0-1	a ³ P_y ¹ P°
2984.131 3045.006 3105.469	B B B	12R 10r 15r	0.00 0.16 0.27	4.22	4-3 3-2 3-1	a ³ F_y ³ D° (13)	3365.766 3310.202	B B	15r 5	0.42	4.09 4.15	2-3 2-2	(37) a ¹ D-y ³ F° (38)	3529,625 3545.16	D E	{1 1	1.93 1.94	5.42 5.42	2-2 1-3	a ³ p_x ¹ p° (76)
3107.714 3129.314 3195.573	B B B	4 7 6	0.16 0.27 0.27	4.14 4.22	3-3 2-2 2-3		3322.310	В	15r	0.42	4.14	2-3	a ¹ D-y ³ D°	3176.292	В	2	1.94			a ³ P-x ³ P° ,(77)
309 9.115	В	12r	0.16			a ³ F-z ¹ G°	3250.743 3225.020	B B	9 10r	0.42 0.43	4.22 4.25	2-2 2-1	(39)	3181.740 3183.251 3183.038	B B B	5 4 3	1.93 1.94 1.98	5.82	2-3 1-2 0-1	a ^{3p} _v ³ pe (78)
*2991. 095	В	4	0.27	4.40	2-3	a ³ F_y ¹ F° † (14)	3101.879 3012.004	B B	40R 75R		4.40	2-3	a ¹ D_y ¹ F° (40)	3170.715 3154.585	B B	3	1.93 1.94		2-2 1-1	
3912.979	В	.5		3.18	3-4	23D-z5D°					4.52	- 2–3	a ¹ D-y ¹ D° (41)	3164.166	В	2	1.94	5.84		a ³ P_4° _(?9)
3889.671 3778.063 3811.32	B B F	15 5 (2)			1-2 3-3 1-1	(15)	6128.990 6007.313 5925.81	B D P	(3) 3	1.67 1.67 1.67	3.68 3.72 3.75	2-3 2-2 2-1	b ¹ D-z ⁵ F° (42)	*2991.095	В _	4	1.93	6.05	2–3	a ³ P-6° (80)
*3674.06 3693.932 3772.530	P B B	10 8 6	0.03	3.38 3.45	3-3 3-1 1-0		6643.641 6256.365	C	20 15	1.67	3.53	2-2	b ¹ D_z ³ pe	11196.70	P	10	2.73			a ¹ G-z ¹ F° (81)
3587.931	В	13	0.03	3.47	3-4	a ³ D-z ⁵ G°	6327.603	В	.5	1.67	3.64	3-1 3-3	(43) b ¹ p-z ³ F°	8770.68 8702.49	A A	10 6		4.14	4-3 4-4	a ¹ G_y ³ D° (82) a ¹ G_z ¹ G°
3609.314 3661.951 3523.444	B B B	10	0.11 0.21 0.03	3.58 3.53	2-3 1-2 3-3	(16)	5847.010 6191.186	В	(3) 12	1.67	3.78 3.66	2-3 2-3	(44) b ¹ D-z ³ D°	7385.24	В	1	2.73	4.40		(83) a ¹ G_y ¹ F°
3553.483 3461.652	В	7	0.11	3.58	3-3	-3n -5no	6108.121 5748.343	C B	8 3	1.67	3.69 3.82	2-3 2-1	(45)	4837.65	P _		2.73	5,28	4-3	(84) a ¹ G-w ³ D° (85)
3452.890 3513.933	B B	40R 15	0.03 0.11 0.21	3.68 3.72	3-4 3-3 1-3	a ³ D-z ⁵ F° (17)	5709.559	В	13	1.67	3.83	2-3	b ¹ D-z ¹ F° (46)	4401.547 4459.037	B B	30 20		5.98		z ⁵ D°-e ⁵ F
3374.221 3413.939 3485.888	B B B	15r 13r	0.03	3.68 3.72 3.75	3-3 2-2		5578.734	В	5		3.88	3-3	b ¹ D-z ¹ D° (47) b ¹ D-z ¹ P°	4470.483 4462.460	B B	15 10	3.38 3.45	6.06 6.15 6.22	3-4 3-3 1-3	(86)
3485.888 3337.014 3387.466	B B		0.03	3.78 3.75	1-1 3-2 2-1		5137.075 5102.971	B B	8 (4)	1.67	4.07		b ¹ D-z ¹ P° (48) b ¹ D-y ³ F°	4436.981 4284.683 4325.607	B B B	5 6 6	3.48 3.18	6.26 6.06	0-1 4-4 3-3	
3524.541 3492.956	B B	200R 150R	0.03	3.53 3.64	3-2 3-1	a ³ D-z ³ pe (18)	4976.345 5003.751	В	(4) (2)	1.67	4.15	3-2	(49)	4359.585 4384.543	B B	10 5	3.38 3.45	6.15 6.22 6.26	2-2 1-1	
3510.338 3610.462 3597.705	B B	80R 60R	0.21	3.73 3.53	1-0 3-2	,/	4843.165 4786.293	B B	(2) (3)	1.67	4.14 4.22 4.25	2-3 2-2 2-1	b ¹ D-y ³ D° (50)	4161.34 4221.696 4285.19	P B P	(2)	3.29	6.15 6.22 6.26	4-3 3-2 3-1	
3722.484	В	15	0.21	3.53	1-1		4519.986	В	4	1.67	4.40		b ¹ D-y ¹ F° (51)	4389.870 4574.03	B E	(1)	3.45	6.26	1-1	z ⁵ D°-f ³ D
3414.765// 3515.054 3458.474	B B B	150R	0.03 0.11 0.21	3.62	3-4 2-3 1-2	a ³ D-z ³ F° (19)	4331.645	В	13	1.67			b ¹ D-y ¹ D° (52)	4443.441	В	(1) (4)		6.08 6.26	2-3 0-1	(87)
3433.558 3361.556	В	70R 20R	0.03	3.62 3.78	3-3 2-2		3435.489 3338.758	B B	3 3	1.67		2-3 2-1	b ¹ p _{-x} 3p ₀ (53) b ¹ p _{-y} 1p ₀	4414.20 4410.516	P B	4	3.29		3-4	z ⁵ D°-e ³ F (88)
32 86.946	В	8	0.03	3 .78	3–2			-	=			~-1	b ¹ D_y ¹ P° (54)	4565.13 4367 .36	P P	(1)	3.38 3.45		2-3 1-2	

Laborat I A Re	tory ef		E :	P Kigh	J	Multiplet (No)	Labor I A	rator; Ref		E :	P High	J	Multiplet (No)	Labor I A	ator; Ref		E :	P High	J	Multiplet (No)
Ni I contin	nued						Ni I cont	inue	đ					<u>Ni I</u> cont	inue	đ				
4057.347 E 4200.464 E 4184.475 E 4148.75 F	B B	(2) 5 (4)	3.29 3.29 3.38 3.45	6.33 6.23 6.33 6.42	3-3 3-4 2-3 1-2	z ⁵ D°-f ³ F (89)	7393.63 7715.63 7167.01 7826.81 7917.48	B B B	10 (7) (4) (4) (7) (2) (1)	3.59 3.68 3.72 3.68 3.72	5.26 5.28 5.45 5.26 5.28	4-3 3-2 2-1 3-3 2-3	z ⁵ F°-e ³ D (109)	4713.84 4795.84 4864.282 4705.93	P E B E	(1) (2n) (1)	3.53 3.64 3.73 3.64	6.15 6.22 6.26 6.26	2-3 1-2 0-1 1-1	z ³ P°-e ⁵ F (128)
3327.392 E 3293.674 E 3277.23 E	B D E P	{1/1}	3.29 3.38 3.45 3.28	7.00 7.13 7.22 7.00	3-2 3-1 1-0 3-3	z ⁵ D°-f ³ P (90)	7286.56 8034.56 6928.25	B B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.75 3.72 3.68	5.45 5.26 5.46	1-1 2-3 3-2	z ⁵ F°-e ¹ D	4904.413 5139.255 5328.70	B B P	10 3	3.53 3.64 3.73	6.04 6.04 6.04	2-1 1-1 0-1	z ³ P°-e ³ S (129)
3217.830 E 3233.174 E 3213.423 E 3268.971 E	B B B	8 4 5n 2n	3.18 3.29 3.38 3.45	7.01 7.11 7.22 7.23	4-3 3-2 2-1 1-1	z ⁵ D°-e ⁵ P (91)	5017.591 4998.233 5012.464 4953.204	B B B	10 2 2 3 3	3.52 3.59 3.68 3.72	5.98 6.06 6.15 6.22 6.26	5-5 4-4 3-3 3-3 1-1	(110) _Z 5 _F °_e5 _F (111)	4855.414 5082.354 4852.560 4811.999 5085.479	B B B B	15 (4) (2n) (2) (2)		6.07 6.07 6.07 6.21 6.07	3-3 1-1 3-1 1-0 1-3	z ³ p°_e ³ p (130)
3223.534 H	P B B	3 2	3.48 3.18 3.29 3.29	7.22 7.01 7.16 7.01	0-1 4-4 3-3 3-4	z ⁵ D°-1 ³ F (92)	4912.030 4866.267 4831.183 4873.437 4857.382 5157.993	B B B B B	2 10 10 4 2 (3)	3.75 3.52 3.59 3.68 3.72 3.59	6.06 6.15 6.22 6.26 5.98	5-4 4-3 3-2 2-1 4-5		4829.028 5042.195 4870.845 4815.92 4713.069	B B E B	15 4 2 (1) (2)	3.53 3.64 3.73 3.53 3.64	6.08 6.09 6.26 6.09 6.26	2-3 1-2 0-1 2-3 1-1	z ³ P°-f ³ D (131)
	B B	7 5	3.18 3.29	7.02	4-4 3-3	z ⁵ D°-e ⁵ D† (93)	5192.524 5096.874 5010.045	B B B	2 2 (2)	3.68 3.72 3.75	6.06 6.15 6.22	3-4 2-3 1-3		4513.90 4752.426	P B	4	3.53 3.64	6.24	2-1	z ³ po-e ¹ p
3209.912 H 3206.952 H 3219.811 H	B B B	5 5 4n 3	3.18 3.29 3.38 3.45	7.03 7.14 7.23 7.28	4-5 3-4 2-3 1-2	z ⁵ D°-f ⁵ F (94)	4849.12 4976.155 4980.161	P B B	(in)	3.52 3.59 3.59	6.07 6.07 6.07	5-5 4-4 4-5	z ⁵ F°-e ³ G (113)	4913.970 4506.302 4703.808	B D B	3 (1) 4	3.73 3.53 3.64	6.24 6.27 6.27	0-1 2-2 1-3	(132) z ³ po_f ¹ D (133)
3118.56 I	B P	3	3.48 3.18	7.31 7.14	0-1 4-4	e . e	5168.660 4873.27	B P	6	3.68 3.72	6.26	3-4 3-3	5	*4490.541	В	(3)	3.53	6.28	2-3	z ³ po-e ¹ F
	B D	2 4	3.18 3.29	7.14 7.05	4-5 3-3	z ⁵ D°-e ⁵ G (95) z ⁵ D°-1 ³ D	4952.334 5128.03 4863.931	E B	(in) (i) (3n)	3.59 3.68 3.72	6.08 6.09 6.26	4-3 3-2 2-1	z ⁵ F°_f ³ D (113)	4553.175 4231.040	B B	(3) .5	3.64 3.53	6.35	2-3	z ³ p°-e ¹ S (135) z ³ p°-g ³ D
	P _		3.38	7.05	2–3 -	(96)	m5142.98 5216.512 4918.712	P D B	N1 2 (2)	3.68 3.72 3.75	6.08 6.09 6.26	3-3 3-3 1-1		4390.322 4252.107	B B	(2n) (2)	3.64 3.73	6.45 6.63	1-2 0-1	(136)
7034.42 I	B B G-	2 (1)	3.47 3.53 3.58	5.26 5.28 5.45	4-3 3-2 3-1	z ⁵ G°-e ³ D (97)	4808.52 4941.920	E B	(1) (2)	3.52 3.59	6.09	5-4 4-3	z ⁵ F°-e ³ F (114)	3844.276 3987.090	B D	(S) (3N)	3.53 3.64	6.74 6.74	3-1 1-1	z ³ P°_f ³ S (137)
7126.71	B G	(1) (2) (1)	3.53 3.58	5.26 5.28	3-3 3-2		4760.23 4937.337	P B D	4 3	3.68 3.59 3.68	6.28 6.09 6.09	3-2 4-4 3-3	(111)	3701.63	P		3.53	6.86	2–3 -	z ³ P°-f ¹ F (138)
4648.659 I 4604.994 I	В	25 15 12 10	3.37 3.40 3.47 3.53	5.98 6.06 6.15 6.22	6-5 5-4 4-3 3-2	z ⁵ G°-e ⁵ F (98)	5131.770 4836.27 5220.307 4890.45	E B P	(1) 2	3.72 3.72 3.75	6.28 6.09 6.28	2-3 2-3 1-2		7617.00 7422.30 7409.39 7525.14	B B B	5 15 8 2	3.64 3.62 3.78 3.62	5.26 5.28 5.45 5.26	4-3 3-2 2-1 3-3	z ³ F°-e ³ D (139)
4600.372 I 4786.541 I	B B	6 15 10	3.58 3.40 3.47	6.26 5.98 6.06	2-1 5-5 4-4		4559.945 4501.692 4675.639	B D B	(3) (1) (2)	3.52 3.68 3.59	6.23 6.42 6.23	5-4 3-2 4-4	z ⁵ F°_f ³ F (115)	6690.80 7327.67	B B	(2) (4)	3.62 3.78	5.46 5.46	3-2 3-2	z ³ F°-e ¹ D (140)
4715.778 H 4686.218 H 4900.97 H 4874.809 H	B B E B	8 5 (1) (2) (3)	3.53 3.58 3.47 3.53	6.15 6.22 5.98 6.06	3-3 2-2 4-5 3-4		4655.661 4845.17 4738.43 4617.94	B E E	(3) (2) (2) (3) (1) (1)	3.68 3.68 3.72 3.75	6.33 6.23 6.33 6.42	3-3 3-4 2-3 1-2		5265.748 5058.03 5099.322	B B	(2) (2) 5	3.64 3.62 3.64	5.98 6.06 6.06	4-5 3-4 4-4	z ³ F°-e ⁵ F (141)
4565.45 I	B P		3.58	6.07	2-3 6-5	z ⁵ g°-e ³ g	4325.361 4521.924	B D	(1)	3.59 3.72	6.44 6.45	4-3 2-2	z ⁵ F°-g ³ D (116)	4886.992 5067.82 4925.578	B E B	(3) (1) 2	3.78 3.64	6.15 6.22 6.15	3-3 2-2 4-3	
4523.74 I 4740.165 I	E P B	(1) (2)	3.47 3.53 3.47	6.07 6.26 6.07	4-4 3-3 4-5	(99)	3908.931 4025.44	B D	8n (1N)	3.59 3.68	6.75 6.75	4-5 3-4	z ⁵ F°_f ³ G (117)	4754.768 4967.551	B D	(1)	3.62 3.78	6.22	3-2 2-1	7 7
4614.58 E	e e B P	(3) (1) (1) 3 N1	3.53 3.58 3.58 3.53	6.07 6.26 6.26 6.08	3-4 2-3 2-1 3-3	z ⁵ G°-f ³ D (100)	3559.930 3496.350 3485.110 3396.50	B B B	2 5 2n	3.52 3.59 3.68 3.59	6.99 7.13 7.23 7.23	5-6 4-5 3-4 4-4	z ⁵ F°-e ³ H (118)	5039.259 5080.523 5035.374 4984.126	B B B	(2r) 30 12 10	3.62 3.64 3.62 3.78	6.07 6.07 6.26	3-2 4-5 3-4 2-3	z ³ F°-e ³ P (142) z ³ F°-e ³ G (143)
4921.18 I	P B			6.09	2-2 5-4	z ⁵ g°-e ³ F	3542.00 3611.418	E D	{1 1}	3.52 3.59	7.01 7.01	5-4 4-4	z ⁵ F°_1 ³ F (119)	5076.321 4681.05	B P	(3)	3.64 3.62	6.07 6.26	4-4 3-3	
4705.50 H 4701.336 H	B B B	(4n) (1) (2) 3	3.47 3.47 3.40		4-3 4-4 5-4	(101) z ⁵ g•_f ³ F	3537.634 3482.73 3483.62	D E P	{1 {1}	3.52 3.59 3.68	7.01 7.13 7.23	5-5 4-4 3-3	z ⁵ F°-g ³ G (120)	5051.527 4996.850 5010.961	B B B	(2N) (2n) (3n)	3.64 3.62 3.62	6.08 6.09 6.08	4-3 3-2 3-3	z ³ F°-f ³ D (144)
4302.13 I 4463.427 I	P B B	(3)	3.47 3.47 3.53	6.33 6.23 6.33	4-3 4-4 3-3	(102)	*3606.852 3575.952	B B	4 3	3.59 3.68	7.01	4-5 3-4		5035.961 5000.335 4945.458	B B B	(3N) 4 2	3.64 3.62 3.78	6.09 6.09 6.28	4-4 3-3 3-2	z ³ F°-e ³ F (145)
4567.415 I 4484.54 I	D E E	{i} (i)	3.53 3.58 3.53	6.23 6.33 6.26	3-4 2-3 3-4	z ⁵ G°-e ¹ G	3530.595 3488.293 3599.530 m3624.72	B B D P	4 3 (1) N1	3.52 3.59 3.59 3.72	7.02 7.13 7.02 7.13	5-4 4-3 4-4 2-3	z ⁵ F°-e ⁵ D (121)	4646.94 4995.65 5347.71	P P		3.62 3.62 3.78	6.28 6.09 6.09	3-2 3-4 3-3	7 3
	B B	5 4	3.40 3.47	6.99 7.12	5-6 4-5	(103) z ⁵ G°-e ³ H (104)	3421.342 3396.184	B B	7 6	3.52 3.59	7.13 7.22	5-6 4-5	z ⁵ F°-e ⁵ H (133)	4763.950 4547.234 4666.994	B B B	4 3 2	3.62 3.78	6.23 6.33 6.42	4-4 3-3 3-2	z ³ F°_f ³ F (146)
3309.32 I 3421.22 I	B P P	4n	3.53 3.40 3.40	7.22 7.13 7.01	3-4 5-4 5-5	z ⁵ G°_g ³ G (105)	3422.878 3444.251 3337.36 3405.50	B B P P	4 5	3.68 3.72 3.59 3.68	7.29 7.31 7.29 7.31	34 2-3 4-4 3-3		4580.619 4400.26 4727.851 4832.704	B E B B	(3) (1) (2) 2	3.64 3.62 3.62 3.78	6.33 6.42 6.23 6.33	4-3 3-2 3-4 2-3	
3479.264 E	B B B	4 3 4	3.47 3.47 3.53	7.13 7.01 7.13	4-4 4-5 3-4		3516.234 *3480.183	B B	8 4	3.52 3.59	7.03 7.14	5-5 4-4	z ⁵ F°-f ⁵ F (123)	4664.32 4965.14	P E	(1)	3.62 3.78	6.27 6.27	3-2 2-2	z ³ F°-f ¹ D (147)
		15 10	3.37 3.40	7.02 7.13	6-7 5-6	z ⁵ G°-e ⁵ H (106)	3476.63 3467.732 3467.12	B B E	3n 4 (1)	3.68 3.72 3.75	7.23 7.28 7.31	3-3 3-2 1-1		4647.42 4946.037	P B	$\binom{1}{3}$	3.62 3.78	6.28 6.28	3-3 2-3	z ³ F°-e ¹ F (148)
3282.827 F 3281.880 F 3312.992 F	B B B	5 5 4	3.47 3.53 3.58 3.40	7.22 7.29 7.31 7.22	4-5 3-4 2-3 5-5		3415.67 3428.42 3573.27 3517.03	P P P		3.52 3.68 3.68 3.72	7.14 7.28 7.14 7.23	5-4 3-2 3-4 2-3		4400.870 4355.911 4330.720 4370.041	B B B	3 3 2 (3)		6.44 6.45 6.63 6.44	4-3 3-2 2-1 3-3	z ³ F°-g ³ D (149)
3307.013 E	B B P	5 3	3.37 3.40 3.47	7.03 7.14 7.23	6-5 5-4 4-3	z ⁵ g°-f ⁵ F (107)	3518.634 3477.864 3442.559	B B B	8 2 4n	3.52 3.59 3.68	7.03 7.14 7.27	5-6 4-5 3-4	z ⁵ F°-e ⁵ G (134)	4038.27 4009.984	P B P	(3)	3.64 3.62	6.70 6.76	4-4 3-3	z ³ F°-g ³ F (150)
3308.91 I 3401.166 I	P P B B	N1 8 5	3.53 3.58 3.40 3.47	7.28 7.31 7.03 7.14	3-2 3-1 5-5 4-4		3511.94 *3480.183 m3413.46 3471.63	E B P P	(1) 4 N1	3.72 3.75 3.52 3.68	7.24 7.30 7.14 7.24	2-3 1-2 5-5 3-3		3958.60 4035.96 4230.39	P P		3.78 3.64 3.78		2-2 4-3 2-3	• -
3331.26 I 3366.807 I	P	10 6	3.53 3.37 3.40	7.23 7.03 7.14	3-3 6-6 5-5	z ⁵ ge_e ⁵ g (108)	3191.875	В	2		7.39	5-5 -	z ⁵ F°-g ⁵ F (125)	3970.503 3944.126 3912.310	B B B	10n 12n 8n	3.64 3.62 3.78	6.75 6.75 6.93	3-4 2-3	z ³ F°-1 ³ G (151)
3245.370 E	B B B	4n 4 6	3.47 3.53 3.58	7.27 7.24	4-4 3-3 2-2	,,	7122.24 7522.78 7182.00	B B B	100 3 8	3.53 3.64 3.73	5.26 5.28 5.45	3-3 1-3 0-1	z ^{3pe} -e ³ D (126)	3511.613 3651.67	D P	3	3.62 3.64	7.13	3-4? 4-4	z ³ F°-g ³ G (152) z ³ F°-e ⁵ D
3194.76 I 3271.17 I	P P	N1	3.40 3.47	7.30 7.27 7.24	5-4 4-3		7182.00 7030.06 6842.07	B B	3 8	3.53 3.64	5.28 5.45	3-3 1-1 3-1		3537.243 3528.891	D B	(1) (3)	3.64	7.13	4-3	(153) z3ro_f5r
3403.432 E 3359.106 E	B B	(1) 8 8		7.30 7.03 7.14	3-2 5-6 4-5		6432.06	G B	(1) (4)		5.45	3-3	z ³ po_e ¹ D	m3523.47 3494.703	P D	N1 (1)	3.78 3.78	7.28	2-2 2-1	(154)
3375.561 F	B 	2n 	3.58	7.24	2-3		6772.36	В	5	3.64	5.46	1-3	(127)	352 6.54 0	В	3	3.64	7,14	4- 5	z ³ F°_e ⁵ G (155)

6 FINDING LIST I A Type Element Multiplet No. I A Type Element Multiplet No.

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I, A	Туре	Element	Multiplet No.	
489.10		Yb I	3	6560.099		He II	2	6634.10	P ·	Fe I	1258	
489.68 490.344		Zr I Co I	65 81	6560.68 6561.032		Si I D	62 1	6634.36 6635.15		Gd II Ni I	94 264	
491.28		Fe II		6562.817		H	1	6635.68	P	Fe I	1155	
491.28	P	N I Ti II	21	6563.403		Co I	80	6636.53		La II	61	
491.61 491.712	P	Mn I	91 39	6563.86 6565.62		Hf II Ti I	81	6637.01 6638.24		N I A II	20 20	
492.0		N II	45	6565.88		v I	48	6639.35	P	Fe I	1279	
493.05		Fe II	10	6567.22	P	Fe I	168	6639.71	P	Fe I	1195	
493.780		Ca I	18	6567.39		Hf II	90	6639.72		AII	20	
494.11 494.52	P	Gd II Fe I	123 1255	6568.00		Gd II	121	6639.90	P	Fe I	1007	
494.985	r	Fe I	168	6569.261 6569.31		Fe I Sm II	1253 62	6640.90 6641.06		0 II 8 II	4 25	
495.45		Al II	65	6527.10		He II	7	6642.79		La II	103	
495.779 496.456		Fe I Fe I	1253	6570.834		Mn I	51	6643.023		Cr I	256	
496.456		Ba II	1258 2	6570.96 6571.22		La II Fe I	47 1121	6643.536 6643.641		Sr I Ni I	8 43	
497.689		Ti I	102	6572.781		Ca I	1	6643.79		A II	20	
498.19 498.759		La II Ba I	104 6	6572.900 6574.238		Cr I Fe I	16 13	6644.60		Hf II N I	34 20	
								6644.96			20	
498.950 499.52		Fe I N I	13 21	6575.022 6575.180		Fe I Ti I	206 286	6645.11 6646.52		Eu II N I	8 20	
499.649		Ca I	18	6576.95	P	N1 I	283	6646.90	P	Fe I	1156	
500.25		AII	26	6578.03		CII	2	6646.98		Fe I	206	
501.212 501.681		Cr I Fe I	16	6578.51		La I V I	1 32	6647.06	D	Hf II	65	
503.989		Sr I	8 .	6578.96 6580.22		N1 I	265	6647.90 6648.08	P P	Fe I Fe I	551 13	
504.164		v I	48	6580.96		Cr I	16	6653.41	-	N I	20	
504.9 506.33		N II Fe II	45	6581.22		Fe I	34	6653.75		C1 II	38	
,,,,,,		re 11		6582.85		C II	2	6653.78		0 I	65	
506.45 506.5279		N I Ne I	21 3	6584.53		Hf II	99	6653.88		Fe I	1052	
508.135		Ti I	102	6584.89 6586.328		Y I N1 I	1 64	6656.61 6657.54		N I Cr I	20 282	
508.742		Ca I	18	6586.343		Mn I	51	6660.49		Si II	202	
509.16		A II	21	6586.69		Fe II		6661.076		Cr I	282	
509. 56 511. 62		Fe I Hf II	1012 69	6587.75 6588.91		C I Sm I	22 1	6661.39 6661.68		N1 I Cl II	246 38	
512.61		Hf II	49	6591.32		Fe I	1229	6663.26		Fe I	1195	
516.026		Cr I	265	6591.834	_	Co I	202	6663.446		Fe I	111	
516.053		Fe II	40	6592	P	C IV	10	6665.42	P	Fe I	1156	
517.01		Fe II		6592.472	_	N1 I	248	6665.43	P	Fe I	34	
517.27 518.376		V II Fe I	230 . 342	6592.91 6592.919	P	Ti I Fe I	102 268	6666.36 6666.548		A II Ti I	25 101	
519.371		Mn I	39	6593.878		Fe I	168	6666.94		0 11	85	
521.39		s II	25	6595.326		Ba I	6	6667.17	P	Fe I	110	
522.3 522.38		N II Cl II	45 59	6595.869		Co I Cr I	174	6667.42	P	Fe I	168	
524.76	P	Fe I	1280	6597.556 6597.607		Fe I	282 1253	6667.73 6669.257		Fe I Cr I	1228 282	
526.99		La II	33	6598.594		N1 I	249	6671.36		Fe I	1343	
527.20	P	Si I	52	6598.9529		Ne I	6	6671.41		La II	33	
527.312		Ba I	6	6599.112	_	Ti I	49	6671.43	P	Fe I	1255	
527.49 528.53		S1 I Fe I	62	6601.13 6603.20	P P	Fe I Fe I	1280 862	6671.51		Sm I Si II	1	
529.197		Cr I	265	6603.67	P	Fe I	860	6671.88 6672.84		V II	229	
531.44		V I	48	6604.60		Sc II	19	6672.88	P	Fe I	205	
531.66 532.891		Hf II N1 I	48 64	6604.67		Fe I	1254	6673.84	P	Fe I	1254	
533.0		N II	45	6605.546 6605.98		Mn I V I	51 48	6675.271 6676.86	P	Ba I Fe I	6 11 94	
533.97		Fe I	1197	6607.02	P	Ti II	91	6677.24	•	Cr I	256	
537.921		Cr I	16	6607.82		V I	59	6677.25		Ti I	274	
539.72	_	Fe I	405	6608.03		Fe I	109	6677.33		Fe II	210	
541.49 542.80	P	Fe I	1195	6609.116		Fe I	206	6677.49	P	Fe I	1280	
543.17		Hf II La I	100 7	6609.20 6609.56		Hf II Fe I	105	6677.54 6677.96	P P	Fe I Fe I	551 205	
543.51		V I	48	6609.64		Al II	76	6677.993	•	Fe I	268	
543.98 545.2		Fe I	1139	6609.68	P	Fe I	13	6678.03		Zr II	128	
545.2 545.80		N II Mg II	45 23	6610.04 6610.58		. Gd II N II	108 31	6678.149 6678.19		He I O II	46 85	
546.245		Fe I	268	6612.17		Cr I	282	6678.2764		Ne I	6 6	
546.276		Ti I	102	6613.74		Y II	26	6678.60	P	Ti I	213	
546.791		Sr I	8	6613.83	P	Fe I	13	6678.818		Co I	54	
547.58	P	Fe I	13	6615.03	P	Fe I	1155	6680.19		Cr I	282	
548.72 550.01		HC II	111	6617.126	n	Co I	202	6680.26		Ti II	112	
550.244		Sr I	12	6617.14 6617.266	P	N1 I Sr I	248 8	6681.03 6681.23		C1 II	38 94	
551.466	_	Co I	54	6621.24		Ni I	97	6681.34	P	Fe I	1155	
551.68 552.77	P	Fe I Fe I	13 1995	6622.28	_	Gd II	110	6682.23	P	Fe I	1008	
554.18		La II	1325 109	6622.41 6622.53	P	Fe I N I	1157 20	6683.2 6684.36		He II A II	7 20	
554.226		Ti I	102	6623.78	P	Fe I	1010	6686.04		C1 II	20 38	
555.20		Si I	62	6624.86		v i	48	6687.57		y I	1	
555.87	P	Fe I	1007	6625.04		Fe I	13	6690.80		Ni I	140	
556.066		Ti I	102	6627.28		Fe II	210	6692.47	P	Fe I	1192	
556.79. 557.40		Fe I Y I	1255	6627.558		Fe I	1174	6693.842		Ba I	6	
557.87		Sc I	1 24	6627.62 6630.01 5		O II Cr I	85 16	6695.97 6696.30	P	Al I Fe I	5 1255	
557.91		Hf II	66	6630.5		N II	41	6696.30 6696.39	r	re I Al II	1255 29	
558.02		V I	59	6632.438		Co I	111	6698.63		Al I	5	
			1).4									
558.05 559.580		Sc I Ti II	24 91	6633.44 6633.764		Fe I Fe I	1258 1197	6699.14 6699.46		Fe I	1228 29	

Type Element Multiplet No.

I A

Labo I A	ratory Ref		Low E I		J	Multiplet (No)	Labor I A	ator; Ref		E F		J	Multiplet (No)		Ref	Int	E l Low		J	Multiplet (No)
<u>i I</u> cor	tinued	L					N1 I cont							Cu I cont			7 00	E 77	41 1	42po 52g
025.73 116.181	G B	(1) 6n	4.22 4.25	6.27 6.27	2-2 1-2	y ³ D°-f ¹ D (251)	7381.94 7559.62 7624.75	B B G	(5) (3) (2)	5.34 5.50 5.61		4-5 3-4 2-3		8092.634 7933.130	A	300 160		5.33	13- 3	4 ² p° -5 ² s (6)
997.610	B	2n		6.28		y ³ D°-e ¹ F (252)	6861.24	В	(3) (3)		7.14	4-5 2-2	w ³ F°e ⁵ G	5218.202 5153.235 5220.070	A A A	80 100 25	3.80 3.77 3.80	6.17 6.16 6.16	1 1 2 2 3 3 - 1 3 1 2 - 1 3	4 ² p°-4 ² D (7)
863.97 821.143	G B	(2) (2)		6.35 6.70	1-0 3-4	y3D°_e1s (253) y3D°_g3F	7297.75 7220.79	B B	(3)	5.34		4-3	w3F0_13D	4530.785	A	110	3.80			4 ² p°_6 ² g (8)
1976.71 1657.38	P E	(1) (2)	4.22	6.70 6.90	2-3 1-2 3-3	(254)	9689.35		3	5.43	6.70	- 2–3	(294) x ¹ D°-g ³ F	4480.350	A .	100	3.77	6.52	<u>₹</u> - ₹	(8)
1817.847 1115.982	B B	(3)	4.14	7.13	3-4	y ³ D°-g ³ G	8586.20	P	1		6.86	2-3	(295) x ¹ D°-f ¹ F	Cu II I	P 20	0.18	Anal A	List 1) Ma	y 19 42
102.74 1235.54	P P		4.22	7.23	2-3 3-3	(255) y ³ D°-1 ³ D	Strongest	Uncl	assified	l Lines	of Ni	I		4555.922	A	(100)	8.20	10.91	2-2	4p ³ po-s ² 3p
357.85	P .	(1)	4.33		a–3	(256)	10295.05 9396.57	A A	5 20					4832.236 4505.997 4758.421	A A A	30 (75) 30	8.20	10.94 10.94 10.98	1-1 3-1 1-0	(1)
3451.580	В	(2)Fe?	4.15			z ¹ G°-e ⁵ F (257)	6362.414 6012.251	D B	(5) (5) (5n)					4889.690 5060.635	A	30 30		10.91 10.94	1-3 0-1	
6421.507 5923.930	B B	(5n)	4.15 4.15		4-5 4-4	z1G°_e3G (258) z1G°_f3F	4594.908 4142.320	B B	(5n) (4)					3686.555	A	(100)	8.45	11.80	3-4	4p3r°-s2 1g
5643.099	В	(1) (2)	4.15	6.33	4-3	(259)	4006.136 3762.618 3665.924	B B B	(3) 2	III V				4043.502	A	75	8.75	11.80	- 3-4	(2) 4p ³ p°-s ² 1c
1842.01 1838.651	E B	(1) 2	4.15	6.70 6.70	4-3	z1G°_g ³ F (260)	3647.71	E	3	II						40	14.14		-	(3) 4d ³ S-4f ³ P°
4546.930	B E	5 (1)	4.15 4.15			z ¹ G°-f ¹ F (261) z ¹ G°-f ¹ G	3335.59 3332.180 3309.428	E B B	2n 6n 2n	V V				4671.686 4681.990 4673.555	A A A	50 30	14.14 14.14 14.14	16.77	1-1 1-0	(4)
1424.84		 -				(262)	3268.064 3264.44	B E	4n 2n	Ÿ V				4909.726	A	100	14.27	16.78	- 5-6	4d ³ G-4f ³ H° †
7333.49 6635.15	B B	(2)Fe?	4.40	6.08	3-3 3-4	y1F°-f ³ D (263) y1F°-e ¹ G	3233.88 3199.342	E B	2 3n	v v				4931.653 4918.373	Ā	100 30	14.28 14.54	16.78	4-5 3-4	(5)
6580.22	В	(2n)	4.40			(264) y1F°_e1F (265)	3151.259	В	4n	V				4985.503	A	40	14.33	16.81	- 3-4	4d ³ D-4f ³ F° †
7953.11	В	(1)	4.52	6.07	- 3–1	y1D°-e3p							- 4040	5088.260 4937.196	A A	30 20	14.37 14.56		2-3 1-2	(6)
7890.22 7855.12	В В	(3) (3) (1)	4.52 4.52		2-3 2-2	(266) ylp°-f3p (267)	N1 II I	P 18	8 8	2.85	List A 6.36		1942 b ² D-z ⁴ D° (1)	5051.778	A	60	14.37			4d ³ F-4f ³ G° †
7082.22	G		4.52	6.26	2-1	y1D°_e3F	3454.16 3373.98	A A	5 4 5	2.85	6.51 6.51 6.62	13-2 23-2 13-1	•	5012.611 5067.082	A	20 30	14.36 14.63	16.82 17.07	3-4 2-3	(7)
7863.79 7173.73	B B	(5) (2)	4.52 4.52	6.24	2-3 2-1	(268) y1p°_e1p	3350.42 3274.90 3290.69	A A A	3 1		6.62	23-1 12-	-	4812.940	A	40	14.47	17.04	1-2	4d ¹ P-4f ¹ D° (8)
7063.57	В	(3)	4.52	6.27	2-2	(269) y ¹ D°-f ¹ D (270)	3208.91	A	1	2.85		2] _3	b ³ D-z ⁴ G° (3)	4953.733	A	50	14.55	17.04	 4-5	4d1g-4f1H°
7024.86	В	3	4.52	6.28	2-3	y ¹ D°-e ¹ F (271)	3032.44 3063.93	A A	3	2.85 2.94	6.92 6.97	3 1 2 - 3	b ² D-z ⁴ F° (3)	5006.787	A	30	14.59	17.05	- 2-3	(9) 4d ¹ D-4f ¹ F°
5664.017 5268.348	B	3 2	4.52	6.70 6.86	2-3 2-3	y1D°_g3F (272) y1D°_f1F	3769.455	В	5	3.09		_	a ⁴ P-z ⁴ D° (4)	5065.448	A	40		17.06		(10) 4d ¹ F-4f ¹ G°
4971.354	_	3		7.00		(273) y1D°_f3P (274)	3576.762 3471.35 3608.7	B C P	3	3.06 3.07 3.09	6.51 6.62 6.51	2-1	5							(11)
8606.45	A	10	5.26	6.70	- 3 -4	x ³ D°-g ³ F	3465.62 3407.30	C	1 8	3.06 3.07	6.62 6.69	13-1 23-1	<u> </u>	Zn I I	P 9.	35 A	nal A	List B	Мау	1942
7095.40	В		5.26	7.00	3-2	(275) x ³ D°-f ³ P	3495.6 3401.76	P A	а	3.09 3.06	6.62 6.69	12- 1	2	3075.901	A	90	0.00	4.01	0-1	4 ¹ S-4 ³ P° (1)
7067.50	В	(2)	5.26	7.01	3-4	(276) x ³ D°-1 ³ F (277)	3290.54	A	17	3.09	6.84 7.22		2 a ⁴ P-z ⁴ F° (5) 2 a ⁴ P-z ² F°	4810.534 4722.159	A A	65 75		6.63 6.63	2-1 1-1	4 ³ P°-5 ³ S (2)
7657.30	В	(3)	5.39	7.00	3–2	x ³ F°_f ³ P (278)_	2988.05 3087.07	A A	5 20	3.09 3.09	7.09	2 1 -2	1 a4p_z2p° +	4680.138	A	45	3.99	6.63	0-1	4 ³ P°-5 ¹ S
7032.16	G.	(1) (3)	5.26 5.39	7.01 7.05	4-5 3-3	x3F°-g3G (279) x3F°-13D	3397.82	A	1	3.59	7.22	_	(7) 1 a ² P-z ² F°	4292.885 3345.020	A	8 150	4.01 4.06	7.75	2–3	(3) 4 ³ P°-4 ³ D
7433.48	В				-	(280)						_	(0)	3302.588 3282.333 3345.572	A A A	150 100 100	4.01 3.99 4.06	7.75	1-2 0-1 2-2	(4)
7735.99	G-	(1)	5.27	6.86	2–3 –	y ³ P°_f ¹ F (281)	4362.10 4244.80	C	1	4.01 4.01	6.92		a ² G-z ⁴ F° (9)	3302.941 3345.934	A A	125 30	4.01 4.06	7.75	1-1 2-1	
7170.14 7521.09	B G	(s) (s)	5.28 5.49	7.00 7.13	3-2	w ³ D°-f ³ P (282)	4384.6 4192.07	P	1	4.01 4.01			1 a ² G-z ² G° 1 (10)	3072.062 3035.781	A A	70 35	4.06 4.01		2-1 1-1	4 ³ p°_6 ³ s (5)
7501.81 7141.62	G B	(1) (1)	5.57 5.28	7.22 7.01	1-0 3-4		4067.051 3849.58	B B	3 2		7.22	41-3 31-2	1 a ² G-z ² F° 1 (11)	3018.352	A	30	3.99	8.08	0-1	
7409.17 7401.17 6576.95	P P	Ni	5.49 5.57 5.28	7.16 7.24 7.16	2-3 1-2 3-3	(283)	4071.0 4015.50	P	1	4.01	7.05 7.09		2 a ² G-z ² D°	6362.347	A	100	5.77			4 ¹ po_4 ¹ D (6)
	r				-	3.00 3.0		•			11.40	_	(12) ½ z ⁴ P°-e ⁴ F	5181.995 4629.814	A A	30 12	5.77 5.77		1-0 1-2	(7)
8968.20 0061.29	A	30 10	5.32 5.47	6.70 6.70	5-4 4-3	(284)	3881.92	С	1				(13)	4113.210	A	12		8.77	1-2	(8)
8877.07 9710.21	A P	10 1	5.47 5.59	6.86 6.86	4–3 3–3	y ³ G°-f ¹ F (285)	Measures stronger	inad uncl	equate f assified	or prep l lines	of N1	n of II	list of	6928.319	A	10	6.63		- 1-2	5 ³ 8-6 ³ P°
7386.21 7481.49	B G	(7) (5)	5.32 5.47	6.99 7.12	5-6 4-5	у ³ G°-е ³ Н (286)								6938.472 6943.202	A A	6 2	6.63 6.63	8.40 8.40	1-1 1-0	(10)
7552.52 7290.87	P B	(1)	5.59 5.32	7.22 7.01	3-4 5-5	у ³ 0°-g ³ 0		P 7.			List D		1943							
7419.35 7545.69	B G	(1) (2) (2)	5.47 5.59	7.13	4-4 3-3	(287)	3247.540/ 3273.957	A	1000 600	0.00		\$-1 \$-	1 4 ² 5-4 ² P° 1 (1)	Zn II I	P :	17.89	Anal A	List		ay 1942
6813.598 7037.37	B B	(3) (2)	5.32 5.47	7.22	5-6 4-5	у ³ С°-е ⁵ Н (288)	5105.541	Ā	300	1.38	3.80	 2-1	1 48 ² 2 _{D-4} 2pe	7478.79 5894.351 6214.58	B A B	20 20 12	3.09 5.98 6.09	8.08	5-1	4 ² p°-d ⁹ s ^{2 2} D
7266.22	В	(4)	5.59	7.29	3-4 		5782.132 5700.240	A A	30 30	1.64	3.77 3.80	12-1	2 2		_					
9106.40 0321.10	A A	30 5	5.34 5.50	6.70 6.70	4-4 3-3	w ³ F°-g ³ F (289)	3093.989 3208.231 3010.838	A A	40 60 100	1.38 1.64	5.37 5.48 5.48	21-3 11-2 21-2	2 148 ^{2 2} D-464p ⁴ D° 1 (3)	7588.48 7732.50	B	15 10		12.54	₹-1 2-	5 ² S-5 ² P° (2)
8095.93	G-	(1)		7.13	2-1	(290)	3010.838 3194.099	A	100				² / ₂ ² ² D_4s4p ² P°		A A		11.96	14.48	21-3-3-11-2-2	1 4 ² D-4 ² F° (3)
7401.13 7458.92	B G	(4) (1) (1)		7.01 7.16 7.24	4-4 3-3 2-2		3063.411 2997.364	A	80 80	1.64	5.75	11-2	148 ^{2 2} D-484p ² D				11.07		- 2-2	
`567.35	G	(1)	3.01	1.64	a - a		3036.101	Ā	100	1.64	5.70	1 } -1	(5)							

78							REV	I S	ED MI	ULT	IPL	ET :	TABLE							
La I A	borate Rei	ory f Int		P High	J	Multiplet (No)	Labo I A		ory Int	E Low	P High	.	Multiplet (No)	Labo I A		ry Int	Low E	P High	J	Multiplet (No)
	I P 5			List B	•	1943	Br II Se	e ir	ntroduction	on					tinu					
4172.04 4032.97		10R 10R		3.06 3.06	1	4 ³ P°_5 ³ g	Kr I Se	e ir	ntroduct1	on				6435.02 6191.73 6402.005	A A B	500 1007 50	0.07	1.99	2] -1	a ² D-z ² D° (2)
Ga II	See in	ntroductio	n				<u>Kr II</u> Se	e ir	troduction	on .				6222.59 6138.44	A A	501 151	0.00	1.98	11-31 21-31	a ² D-z ⁴ D°†
					_									6023.41 4674.84	Ą	201 125	0.00	a.05		
3124.81		(20)	0.88		3-3	4p ¹ D-5s ³ P°	Rb I I 7800.227/	/ A	10R	0.00		}-1}		4643.69 4760.98	A	150 40	0.00	3.66 3.66		a ² D-z ² F° (4)
3269.49 3039.06		(40) (60)	0.88		2-1 2-1	(1) 4p ¹ D-5s 1P°	7947.60 4201.851	A B	10R 8 R	0.00	2.94		(1) 5 ² g_6 ² p° (2)	4128.31 4142.86 4235.94	A A A	300 200 100	0.07 0.00 0.07	3.05 2.98 2.98	14-14 34-14	a ² D-y ² D*
4685.83	37 B	(30)	2.02	4.65	 01	(2) 4p ¹ g_5s ³ pe	4215.556	В	7 R		2.93	<u> </u>	(3)	4039.83 4174.14	A	60 100	0.00	3.05	1출-2출	
4226.57		(50)	2.02		0-1	(3) 4p1g_5s1pe (4)	Rb II Se	e in	troduction	on 		*******		4047.64 4083.71	A	80 100	0.00	3.05 3.02		(6)
3067.13		(10)	2.02		O-1 	4p 1g_4d3pe (5)	<u>8r I</u> I	P 5.	67 Anal	LA 1	List C	Мау	1943	4102.38 4077.38 4167.52	A A A	350 300 100	0.07 0.00 0.07	3.07 3.03 3.03	24-34 14-24 22-22	a ² D_y2 y• (?)
1125.28 0947.51 0734.14	. A	25 30 25	4.83 4.65 4.62	5.78	2-3 1-2 0-1	5s ³ P°-5p ³ D† (6)	6892.585		200	0.00	1.79	_	51g_53pe	3620.95 3592.92	A A	400 200	0.07	3.47 3.43	31-11 11-11 12-12	a ² D-x ² P*
0405.05 9625.72		40 35	4.83 4.65		3-3 1-1	5s ³ P°-5p ³ P† (7)	4607.331/		600R	0.00	2.68	- 0-1	5 ¹ g _5 ¹ p • (2) 5 ³ p •_6 ³ s	3552.70 3021.74	Ā	40 15	0.00	3.47 4.15		a ² D-y ⁴ D° (9)
							7070.071 6878.313 6791.022	A	2000 1000 500	1.84 1.79 1.77	3.58 3.58 3.58	2-1 1-1 0-1	(3)	2996.94 3045.36 3005.26	A A	20 12	0.07	4.13 4.13 4.11	15-25 25-25 15-15	(a)
<u>le II</u> 5893.42	IP1	.5.9 Ana 25	1 A 7.70	List E		1943 53g 53pe	4962.263 4872.493 *4832.075	A A B	40 40 50	1.84 1.79 1.77	4.33 4.32 4.32	2-3 1-2	5 ³ P [●] -5 ³ D (4)	2984.25 2974.59	Å	50 35	0.07	4.20	31-31 11-31	a ³ D-x ³ F° (10)
8021.09		<u> 30</u>	7.70	9.75	-	5 ² 8-5 ² P° (1)	4967.944 4876.06 4971.668	A C A	30 15 3		4.32 4.32 4.32	0-1 3-3 1-1 3-1		3022.28 2964.96 2995.26	Ă	12 30	0.07	4.15		a ² D-x ² D• †
1814.80 1742.00 1824.20	В	(200) (50) (10)	9.80 9.75 9.80	12.36 12.36 12.36	13-33 3-13 18-13	5 ³ P°-5 ³ D (3)	4811.881 4784.320	A	40 30		4.40	2-2 1-1	5 ³ pe_5p ² 3p	*5466.46//	A	300	1.42	4.19	-	
					-22		4876.325 *4832.075 4722.278	B B	20 50 30	1.84 1.79 1.79		2-1	(5)	5527.54 5581.87 5630.14	A A A	350 350 150 100	1.39 1.37	3.63 3.58 3.54	31-41 21-31 11-21	a ⁴ F-z ⁴ G• † (12)
As I	I P 10	Anal B			Мау 19		4741.923	Â	30 25	1.77	4.62	0-1 3-1	5 ³ p•_7 ³ s	4839.87 4845.67	A	60 50	1.35 1.42 1.39	3.97 3.94		a ⁴ F-y ⁴ F° (13)
8032.85 8075.32 8119.60	A	40 20 50	2.30 2.24 2.30	6.37 6.26 6.26	1-1-1-1	4p ² P°-5s ⁴ P† (1)	4361.710 4326.445	A A	20 8	1.79	4.62	1-1 0-1	(6)	4852.69 4859.84 4906.11	A A A	50 40 6	1.37	3.91 3.89 3.94	23-23 13-13 43-31	(13)
9923.03 0023.98	A A	(150) (100)	6.53	7.77	21-21 11-11	5s ⁴ P-5p ⁴ P° (2)	3351.246 3322.231 3366.333	A A	150 30 50		5.53 5.51 5.51	2-2 1-1 3-1	5 ³ pe_4d ² ³ p (7)	4893.44 4781.04 4799.30	A A A	6 10 15	1.37 1.39 1.37	3.89 3.97 3.94	24-14 34-44 24-34	
833.76 8654.16	A	100	6.26	7.51	\$- \$	5s ⁴ P-5p ⁴ D° (3)	3329.988 3307.534 3301.734	A	30 50n 50	1.79 1.79 1.77	5.50 5.52 5.51	1-0 1-3 0-1		4819.64 4527.25	Ā	10 80	1.35	3.91	1] _3	<u>.4π_v4n</u> •+
8564.71 8541.65 826.69	A A A	100 50 (140)	6.37 6.26 6.53	7.81 7.70 7.81	5−1 5	(3)	6408.463	A	100		4.19	-	4 ³ D- 445p ³ F•	4527.80 4505.95 4487.47	Ā A A	50 50 40	1.39 1.37	4.13 4.11	2 } _1+	a ⁴ F_y ⁴ D°† (14)
267.29 821.76 597.94	A A A	25 150 (100)		7.70 7.66 7.66	1-		6503.989 6617.266 6546.791	A A	80 50 -20	2.25 2.24	4.15 4.11 4.15	2-3 1-2 3-3	(8)	4475.72 4487.28 4477.45	Ā A A	20 20 25	1.39 1.37 1.35	4.15 4.13 4.11	13-33 33-33 33-33 13-13	
869.69 428.94	A A	100 100		7.92 7.72	21-21 1-11	5s4P-5p2D°†	6643.536 5480.865	A A	20 40		4.11	2–2 3–3	4 ³ D-4d5p ³ D°	4513.58	A	4	1.89		-	_a 3 _{F_v} 4pe
300.62 305.62	A A	50 50	6.53 6.37	7.86 7.86	21-11 12-12	5s ⁴ P-5p ⁴ S° (5)	5504.184 5521.765 5534.794	A A A	30 25 15	2.24 2.26	4.49 4.48 4.49	3-3 1-1 3-3	(9)	4581.32	A	6	1.89		-	a ² F_y ⁴ P° (15)
							5540.051 5450.836 5486.136	A A A	15 15 15		4.48 4.51 4.49	2-1 2-3 1-2		6845.24 6950.32	A	10 8	2.36 2.35	4.17 4.13	21-31 12-22	z ⁴ P°-e ⁴ D† (16)
8 II 170.47	I P 19		al B	List	-	ne 1943	4891.980 4868.700	A A	25 20	2.26 2.25	4.78	2-3	4 ³ D-4 ³ F° (10)	Strongest	Uncl	assified	Lines	of Y	Ĺ	
022.81 651.53	A	10 10 10		11.77	1-1 0-1	5s ³ P°-5p ¹ P (1)	4855.045	Ä	30		4.78	1-3 		3587.75 3424.16 3278.43	A A A	30 7 5	IIIA			
558.31 331.54	A A	10	9.77	11.99	1-3	.5s ³ p°-5p ³ D† (2)		A .	8	2.49	4.88		4 ¹ D_4 ¹ F° (11)	3091.70		15	III			
985.60 730.92	A A	8	10.06 9.77 9.77	12.24	3-2 1-1 1-3	5s ³ P°-5p ³ P† (3)		A	60	2.68	4.56	1-3	5 ¹ P°-5p ² ¹ D (12)	<u>Y 11</u> I P	12.	3 Anal	. A. Li	lst A	June	1942
105.80 552.37	A A	10 1 8	10.06 9.77	12.48 12.48	2-1 1-1	5s ³ P°-5p ³ S† (4)	o ••• -			1	•			4204.69	A	10	0.00			a ¹ S_z ³ P°
110.30	A	10 1	10.33	12.34	1-1	5s1p0_5p3p†	4077.714//		400r	0.00		} -1 }	, 1942 5 ² 8-5 ² P°	3633.13 3496.08	A A	80 80		3.40 3.53		a ¹ S_z ¹ P° (2) a ¹ S_z ³ D°
107.80 352.25	A	_	10.22			(5) 5g1pe_5p1p (6) 5c1pe_5p1g	4215.524		300r	0.00	2.93		(1)	3112.05	A	4	0.00	3.97		(3) 21g_y3pe (4)
					1-0	(7)	10327.314 10914.877 10036.658	A A	1000 200 300	1.83 1.80 1.80	3.03 2.93 3.03	34-14 14-14 14-14	4 ³ D_5 ³ P° (2)	4309.62 4398.02 4422.59	A A	50 50	0.13	3.04 2.94	2-1	3 _{D-z} 3 _p (5)
e I I	. p 9.5	71 Anal	B 1	1st C	June	1942	4305.447	A	40		5.89	-	5 ² P°_6 ² S	4235.73 4358.73	A A A	40 20 30	0.10 0.13 0.10	2.89 3.04 2.94	1-0 3-3 1-1	
918.88 002.00	A A	25 15	5.95	7.33 7.32	June 2-3 3-2	5 ⁵ 8°-5 ⁵ P	4161.796 3464.457	Ā	30 50	3.03			(3) 5 ³ P°-5 ³ D	4199.27	A P	5	0.10	3.04 3.23	1-3 3-3	x ³ D-z ¹ D°
038.65	Ã	10 -	5.95	7.31	3-3 3-1 -	(1)	3380.711 3474.887	A A	50 10	2.93 3.03		12-12	5 ² P°-5 ² D (4)	3982.59 3950.35	A	150 200	0.13 0.10	3.23 3.23	2-2 1-3	(6)
327.30 386.45 307.60	A A	3		7.49 7.48 7.49	1-1	5 ³ 8°-5 ³ P (2)	w	o -	4 4	•		.		3710.30// 3774.33 3788.70	A A A	500 300 200	0.18 0.13 0.10		3-4 8 2-3 1-2	3 _{D-z} 3 r° (7)
	lee int	troduction			1-0		<u>Y I</u> I P	A	Anal A	L1s1	1.94	June 19		3832.89 3818.34 3878.28	A A A	100 60 20	0.18 0.13	3.40	3-3 2-2 3-2	
		troduction		~~~			6557.40 6793.71 6687.57	A	30 80 80	0.00 0.07 0.00	1.88 1.85	14-21 24-21 14-11	a ² D_z ⁴ F° (1)	3776.56 3747.55	A A	75 40		3.40		a ³ D-z¹P• (8)
<u> </u>		- ouuction					6933.55	A	6	0.07	1.85	11-11 21-11 21-11					0.10	J. TU		(3)

Labor			E P	High	J	Multiplet (No)	Labora I A R	tory lef		E P Low	High	J	Multiplet (No)	Labors I A F	tory Ref	Int	E P	High	J	Multiplet (No)
IA Y II cont	Ref		LOW	urgu		(110)	Y II conti				0			Y II cont	Inued					
3600.74	A	300		3.61	3-3	$\mathbf{a}^3 \mathbf{D} - \mathbf{z}^3 \mathbf{D}^{\circ}$		A C	20nl 5nl		6.79 6.78	2-2 2-1	$z^{1}D^{0}-e^{3}D$ (40)	3457.088 3429.42	C	4nl 3n		7.56 7.56	2-1 0-1	y ³ P°-f ³ S (77)
3611.06 3601.93	A A	200 100	0.10	3.55 3.53 3.55	2-2 1-1 3-2	(9)		c	5nl		6.88		z ¹ D°-e ¹ D	3093.76	A	1 0n	3.99	7.97	2-2	y ³ P°_f ³ P
3664.62 3628.71 3549.02	A A A	150 100 100	0.13	3.53 3.61	2-1 2-3		00001122	С	30nl		7.23	2-3	z ¹ D°-e ¹ F	*3110.65 *3126.16	A A	2n 4n	,3.99	7.93 7.93	1-1 2-1	(78)
3584.53	Ã	100		3.55	1-2		3069.26	A	5n	3.23	7.25	2-1	z ¹ D°-f ³ D	3078.64	A A	4n 2n	3.97	7.91 7.97 7.93	1-0 1-2 0-1	
3242.30 3216.70	A A	150 100	0.13	3.99 3.97	3-2	a ³ D_y ³ P° (10)	3026.47	С	10nl	3.23	7.31	2-3	(43) z ¹ D°-e ³ G (44)	3103.3 3030.214	C	4n		8.06	2-3	y ³ P°-g ³ D
3203.33 3200.28 3195.62 3179.42	A A A	60 50 50 10	0.13	3.96 3.99 3.97 3.99	1-0 2-3 1-1 1-2		2978.18	A -	3n		7.37	2-1	z ¹ D°-e ¹ P (45)	3023.50	À -	2n		8.05	1-2	(79) z ¹ F°-e ³ D
3135.17	A	5		4.13	3-3	a3p_z1F°	3668.489 3635.334	C	50nl 20nl	3.51 3.40	6.87 6.79	4-3 3-2	z ³ F°-e ³ D (46)	4607.94 4465.4	A A	 10nl		6.79 6.88		(80) z1F°-e1D
3095.88	A	5	0.13	4.12	2 – 3	(11)	3605.46 3556.083	C	10nl 5nl	3.36 3.40	6.78 6.87	2-1 3-3		3967.69	C	15nl		7.23		(81) z ¹ F°-e ¹ F
4682.32	A	20	0.41 0.41	3.04 2.94	2-2 2-1	a ¹ D-z ³ P° (12)	3507.964	С	8nl	3.36	6.88	2-2	z ³ F°-e ¹ D _(47)	3846.516	C	3n		7.32	3-3	(82) z1F°-f3D
4881.44 4374.94	A A	2 300		3.23	2-2	a ¹ D-z ¹ D°	3193.48	A	2nl	3.36	7.23	2–3	z ³ F ⁶ _e ¹ F (48)	3675.64	С	5nl	4.13	7.47	3-2	z ¹ F°-f¹D (84)
4124.91	A	15	0.41	3.40	2-3	(13) a ¹ D-z ³ F°	3232.00 3182.42	A A	3n 3nl	3.51 3.40	7.32 7.28	4-3 3-2 3-3	z ³ ř°-ŕ ³ D (49)	3330.880	C	20nl	4.12	7.82	3-4	z ¹ F°-e ¹ G (85)
4177.54	A	125	0.41	3.36	2-2	(14) a ¹ D-z ¹ P°	3144.37 *3114.45	A A	2n 10n	3.40 3.36	7.32 7.32	2-37		3896.804	c	10nl	5.50	8.67	1-2	y1Po_h1D
4127.57 3857.26	A P	2	0.41	3.40 3.61	2-1 2-3	(15) a1D_z3D°	*3110.65 3081.600	A C	2n 2n	3.40 3.36	7.37 7.37	3-2 ? 2-2	z ³ F°-e ³ P (50)	•						(86)
3930.66 3951.59	Ā	15 5	0.41	3.55 3.53	2-3 2-1	(16)	3173.07	A	100nl	3.51	7.39	4-5	z3Fo_e3G	Strongest		assified 10n	i Lines	of Y I	<u>.I</u>	
3448.82	A	10	0.41	3.99	3-3	a ¹ D-y ³ P°	3129.933 3128.789	C	40nl 20nl	3.40 3.36	7.34 7.31	3-4 2-3	(51)	8429.36 4734.52 3407.7	A A	5n 3n				
3467.88	A .	5	0.41	3.97	2-1 2-3	(17) a ¹ D-z ¹ F°	3077.14	A	4n	3.36	7.37	2-1	z ³ F°_e ¹ P _(52)							
3327.89	A	100	0.41	4.13	ವ–ಎ –	(18)	3001.43	A	2	3.36	7.47	2-2	z ³ ro_r¹D (53)	_					_	
5610.36 5509.91	A A	30·1	1.03	3.23 3.23	3-2 3-3	a ³ F-z ¹ D ^e (19)	2980.69 3006.0	C A	20nl 2nl	3.51 3.51	7.65 7.61	4-4 4-3	z ³ F°_e ³ F† (54)		6.9			1st C	June	1942 _a 3 _{F-z} 5g• †
5087.42	A	1001	1.08	3.51	4-4	a3F_z3F°						-	z1po_e3D	6832 .93 6762 .3 8	A	12 30		1.88 1.83	3-3 2-2	(1)
5205.73 5200.42	A	80 60	0.99	3.40 3.36	3-3 2-2	(20)	3643.4	A C	3nl 3nl	3.40 3.40	6.78 6.88	1-1	(55) z ¹ P°-e ¹ D	6127.49 6143.23	A A	200 150	0.15 0.07	2.17 2.08	4-4 3-3	a ³ F-z ³ F° (2)
5320.78 5289.82	A	41 51	1.08 1.03 1.03	3.40 3.36 3.51	4-3 3-2 3-4		3544.001 3109.3	A	1	3.40	7.37	1-2	(56) z1p°-e ³ p	6134.58 6407.03	A A	125 4	0.00 0.15	2.01 2.08	2-2 4-3	
4982.13 5119.12	A	15 1 20 1	0.99	3.40	3-3		3160.60	Ā	1n	3.40	7.30	1-1	(57)	6357.10 5885.61	P A	.8	0.07	2.17	3-2 3-4	
5123.21	A	50 1	0.99	3.40	3-1	a ³ F_z ¹ P°	*3114.45	A	10n	3.40	7.36		z ¹ P°-e ¹ S (58) z ¹ P°-e ¹ P	5935.23 6062.88	A A	10 12	0.00	2.08	2-3 3-2	a3F_z5F* †
4883.69 4900.13	A A	200 150	1.08	3.61 3.55	4-3 3-2	a ³ F_z ³ D° (22)	3104.82 3027.75	A A	4n 3	3.40 3.40	7.37	1-1	(59) z1po_f1p	5955.37	Â	12	0.00	2.07	3-1	(3)
4854.87 4786.58 4823.31	A A A	150 20 30	0.99 1.03 0.99	3.53 3.61 3.55	2-1 3-3 2-2		3081113	^				-	(60)	5879.79 5797.76	A A	40 25	0.15	2.25	4-3 3-2	a ³ F-z ³ D ^e † (4)
4713.26	В	(1)	0.99	3.61	2-3		3782.302 3800.883	C	50nl 15nl	3.61 3.55	6.87 6.79	3-3 2-2	z ³ D°-e ³ D (61)	5735.70	A	30	0.00	2.15	2-1	a ³ F-z ³ G° †
4173.76	A	?	1.03	3.99	3–2	a ³ F_y ³ P° (23) a ³ F_z ¹ F°	3792.56 3872.308	Ö	10nl 5nl	3.53 3.61	6.78	1-1 3-2		4688.45 4633.99 4575.52	A A A	40 50 40	0.15 0.07 0.00	2.79 2.73 2.70	4-5 3-4 2-3	(5)
4064.99 3997.43	A	2 1	1.08	4.13	4-3 3-3 2-3	(34)	3812.18 3714.3	C A	5nl 5nl	3.55 3.55	6.78 6.87	2-1 2-3		3916.64	A	10	0.15	3.30	4-5	a3r_y5go
3946.21	A	s	0.99	4.13			3703.323 3684.903	C	5nl 5nl	3.55 3.53	6.88 6.88	2-2 1-2	z ³ D°-e ¹ D (62)	3879.04 3849.26	A A	10 30		3.25 3.21	3-4 2-3	(6)
7450.32 7406.23	A A	5 2	1.74 1.73	3.40 3.40	2-1 1-1		3409.87	C	4nl	3.61	7.23	3-3	z ³ D°-e ¹ F	3900.51 3989.29	A A	(10) 7	0.00	3.16 3.16	2-2 3-2	
7332.97	A	3	1.71	3.40	0-1	3- 3-0	3319.78	Ç	15nl	3.61	7.32 7.28	3-3 2-2	z ³ D°-f ³ D (64)	3968.25 •3929.53§	A A	80 150	0.15	3.26 3.21	4-5 3-4	a ³ F_y ³ G°† (7)
6613.74 •6795.41	A	30 30	1.74 (1.73 1.71	3.61 3.55 3.53	2-3 1-2 0-1	a ³ P_z ³ D° (26)	3308.4 3318.6 3333.606	A A C	20nl 4nl 2n	3.55 3.53 3.55	7.25	1-1 2-1	(01)	3885.41	Ā	100	0.00	3.18	3-3	
6832.49 6858.25	A	4 5	1.74	3.55 3.53	2-2 1-1		3293.9	Ă	3n	3.53	7.28	1-21		3890.32 3863.88	A A	125 100	0.15 0.07	3.33 3.26	4-4 3-3	a ³ F-x ³ F° (8)
6896.00	Ā	10	1.74	3.53	2–1	7 - 7	3282.51 3286.71	A	3 3n	3.61 3.55	7.37 7.30	3-2 3-1	z ³ D°-e ³ P (65)	3835.96 3966.65	A A	100 50 100	0.00 0.15 0.07	3.26	2-2 4-3 3-2	
5497.42 •5521.56		50 30		3.97	2-2	(27)	3312.39 3231.20	C A	4n1 2n	3.53 3.55	7.26 7.37	1-0 3-2		3921.80 3791.39 3780.53	A A A	80 100		3.33 3.26	3-4 2-3	
5546.02 •5544.61 { 5473.40	A A	10 l 10 l 20 l	1.74 1.73 1.73	3.97 3.96 3.99	2-1 1-0 1-2		3304.01 3336.25	C	2n 4n1	3.61 3.61	7.34 7.31	3-4 3-3	z ³ D°-e ³ G (66)	3896.53	A	10	0.07	3.24	3-3	a3F-x1F0 +
5480.75	Â	151	1.71	3.97	0-1		3212.40	A	5nl	3.53	7.37	1-1	z ³ p°-e ¹ p	3864.33	A	40		3.35	4-3	(9) a ³ F-x ³ D° (10)
5196.43	, A.	101		4.13	2-3 2-4	_(28)	3055.3	A	50nl	3.61	7.65 7.61	3-4 2-3	(67) z3pe_e3r (68)	3847.01 3822.41 3766.71	A A	30 40 60	0.07 0.00 0.07	3.23	3-2 2-1 3-3	(10)
3280.91	A	1 Ag	1.74	5.50	2-1 -	(29)	3036.59 3053.27 3082.16	C C A	25nl 15nl 3n	3.55 3.53 3.61	7.57	1-2 3-3	(00)	3764.38	Â	80	0.00	3.28	2-2	7_ 4
8835.85	A	7	1.83	3.23	2-2	(30)	3066.02	A	4n	3.55	7.57	3-2	7	3891.39	A	100	0.15			a ³ F_z ¹ G° † (11) a ³ F_w ³ F°
8066.20	A	1	1.83		2-2	b ¹ D_z ³ F° (31)	3050.5	A	1n	3.53	7.58	1-0 -	z ³ D°_f ¹ S (69)	3663.64 3623.87	A A A	300 300 100	0.07	3.52 3.48 3.44	4-4 3-3 2-2	(12)
7881.90	A	10	1.83		2-1 2-3	(32)	4279.3 4364.01	A A	5nl	3.99 3.97	6.87 6.79	2-3 1-2		3586.28 3714.13 3661.20	A A	30 30	0.15	3.48 3.44	4-3 3-2	
6951.68 7193.74 7264.19	A A A	3 1 10	1.83 1.83 1.83	3.61 3.55 3.53	3-3 3-3 3-1	(33)	4364.17	Ä	÷	3.96	6.78	0-1		3575.79 3550.46	A A	100 30	0.07	3.52 3.48	3-4 2-3	
5728.91	A	101	1.83	3.99	3-3	b ¹ p_y ³ p°	4264.88	A	1n	3.99	6.88	3-2	(71)	3601.18	A	400	0.15		4-5 3-4	a ³ F-x ³ G° † (13)
5781.69	A	51	1.83	3.97	2-1		3848.194 3824.78	C	8nl 5nl	3.99 3.97		2-1 1-1	(72)	3547.69 3519.60	A	100 125	0.00	3.55	2–3	
5402.78	A	50 l 30nl	1.83	4.12 5.50	2-3 2-1	(35)	3813.8 3808.7	A	2nl 1n	3.96 3.99		0 -1 2-3		3533.22 3501.33	A A	60 15	0.15 0.07	3.65 3.60	4-5 3-4	a ³ F_y ⁵ F°† (14)
3362.00	A				 	(36)	3696.6	A	25nl	3.99	7.32	2-3	(73) y3P°-f ³ D	3566.10	A	100	0.15	3.61	4-3	a3F_v3D° t
7388.46	A	1	1.94	3.61	4-3	(37)	3727.09 3758.9	C A	30nl 3nl	3.97 3.97	7.28	1-3 1-1	(74)	3509.32 •3471-18 \$	A	100 100	0.07	3.59 3.56	3-2 2-1	(15)
5662.95	A	300	1.94	4.13	4-3 	a ¹ d-z ¹ F° (38)	3650.45	A	2n	3.99		3-3 3-1		3447.36	A	100	0.00	3.58	2-1	(16)
3225.17	A C	5nl 2n	3.04 2.94		2-3 1-2		*3721.398§ 3689.2	C A	4 2n	3.99 3.96		0-1	_	3430.29 3465.63	A	8 10	0.15 0.15	3.71	4-4 4-3	
3198.42	U					. (00)	3716.91	C	7n1	3.99	7.31	2-3	y ³ p°_e ³ G (76)	*3414.66 \$ 3368.63	A A	20 5	0.07 0.00		3-2 2-1	

80							REV	ΙS	E D 1	ULT	I P L	E T	TABLE							
Lab I A	orato Ref	ry Int	Low E	P High	J	Multiplet (No)	Lab I A	orato Ref	r y Int		P High	J	Multiplet (No)	Lab I A	orato: Ref	ry Int	E I Low	H1gh	J	Multiplet (No)
Zr I co	ntinu	eđ					Zr I co	nt1nu	.ed					Zr II c	ontin	ued				
3353.65	A .	20	0.15		4-4	(18)	4866.07 4883.61	A A	5 5	0.73 0.68	3.21	4-4	(44)	3340.55 3356.08	A A	15 18	0.16 0.09	3.86 3.77	41-31 31-21	a ⁴ F_z ⁴ F°
3234.12 3212.02 3191.23	A A A	100 100 100	0.15 0.07 0.00	3.91	4-5 3-4 2-3	(19)	4881.25 4784.94 4815.05	A A A	4 12 12	0.65 0.68 0.65	3.26			3393.13 3214.19	A	10 40	0.09	3.68 3.93	2-1-1-3 3-1-4-5	
3282.73 *3250.42\$	A A	15 35	0.15	3.91	4-4 3-3		4828.05	Ā	10	0.63				3231.69 3272.21	A A	30 8	0.04	3.86 3.77	2 1 -34 12-22	
3085.34	A	12	0.07		3-2		4327.76 4239.31	A A	200 150	0.73 0.68		4-4	(45)	*3288.81 3319.03	A A	10 8		3.85 3.76	31-21 21-11	a ⁴ F-z ² D° (4)
3014.44	A	15	0.00	4.09	2-2	(20) a ³ F-u ³ F• † (21)	4241.68 4241.20 4240.35	A A A	80 50 50	0.65 0.62 0.60	3.53			3241.01 3284.72 3208.33	A A A	25 20	0.00	3.85	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
3029.52 3011.73	A	300 250	0.15	4.17	4-3 3-2	a3F_u3p+ † (22)	4302.88 4294.78	A A	15 20	0.73 0.68	3.60 3.56	5-4 4-3		3165.98	A	4 10		3.85 4.06	1}-3}	a ⁴ F_z ⁴ D°
2985.36	A	200	0.00	4.13	2 - 1 		*4282.20 { 4268.01 4166.37	A A A	20 20 20	0.65 0.62 0.68		3-2 2-1 4-5		3138.66 3129.76	A A	25 12	0.09 0.04	4.03 3.98	41-31 31-21 21-11	(5)
7111.71 7439.89	A A	20 10	0.52 0.54	2.25 2.20	2-3 1-2	a ³ P-z ³ D°† (23)	4187.56 4201.45	A A	20 20	0,65 0.62	3.60	3-4 2-3		3125.92 3110.87 3095.07	A A A	12 8 12	0.09	3.95 4.06 4.03	14- 4 34-34 24-24	
7554.73 7336.03	A A	5 4	0.52 0.52	2.15 2.20	0 -1 2-2		4213.86	A	15	0.60	3.53	1-2		3099.22 3068.02	A A	10 2	0.00 0.04	3.98 4.06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6140.50 6192.96	A A	15 5	0.52 0.54		2-2 1-1	a ³ P_z ³ P° (24)	4081.22 4072.71 4064.16	A A A	100 100 100	0.73 0.68 0.65	3.75 3.71 3.68	5-4 4-3 3-2	(46)	3065.20 3061.33	A A	3		4.03 4.13	1 2 - 2 2	.4r. v2no
6120.86 *6304.35 6213.06	A A A	(5) (3) 8	0.52 0.54 0.54	2.53 2.50 2.53	2-1 1-0		4055.03 4044.57	A A	60 25	0.62	3.66 3.65	2-1 1-0		3060.11 3019.84	Ā	3	0.04 0.04	4.07 4.13	21-11 21-21	a ⁴ F-y ² D° (6)
6124.86	Ā	5	0.52	2.53	1-3 0-1		4023.99 4024.92 4027.20	A A A	30 40 40	0.68 0.65 0.62	3.75 3.71 3.68	4-4 3-3 3-3		3030.91 2991.40	A A	10 5		4.07 4.13	$1\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - 2\frac{1}{2}$	
5620.16 •5680.93	A	15 15	0.52 0.54	2.71 2.71	2-1 1-1	a ³ P-z ³ S• † (25)	4030.03 3977.32	A A	30 3	0.60 0.65	3.66 3.75	1-1 3-4		3697.49	A	30	0.46	3.80	- 4}-5}	b4F-z4Ge
5385.14	A	40	0.52	2.81	2-2	a ³ P_y ¹ D° _(26)	*3988.68 4002.55	A	10 8	0.62 0.60	3.71 3.68	2-3 1-2		3766.83 3843.03	A	25 30	0.36	3.68 3.57	$3\frac{1}{2}$ $-3\frac{1}{2}$	(7)
5133.42 5277.40	A A	6 8	0.52 0.54	2.88	2-3 1-3	a ³ P-y ³ D°† (27)	5664.55	A	25	0.63	2.81	 2-2	a ¹ D-y ¹ D°	3934.14 3832.94 3903.77	A A A	20 1 1	0.46	3.45 3.68 3.57	15-25 45-45 35-35	
5311.42 5224.94 5362.56	A A A	6 6 6	0.52 0.52 0.54	2.84 2.88 2.84	0-1 2-3 1-1		4732.34	A	15	0.63	3.24	2-3		3984.76	A .	4	0.36	3 .4 5	3 }-3 }	4 9
4948.77	A	2	0.52	3.01	2-3	a ³ P_y ¹ F°	4542.22	A	20	0.63	3.35	2-3	(48) a ¹ D-x ³ D°† (49)	3729.74 3814.97 3667.06	A A A	5 2 3	0.41	3.77 3.64 3.77	41-31 31-21 31-31	b ⁴ F-z ² F° (8)
4604.42	A	8	0.52	3.20	2-3	a ³ P _{-z} ⁵ P° †	4135.68	A .	10		3.61	2-3	a ¹ D-v ³ D°† (50)	3756.96 *3613.43	Ā	1 2	0.36	3.64 3.77	21-21 21-31	
45 35.75	A	30	0.52	3.24	2–3	(29) a ³ P-x ¹ F• _(30)	4183.31 3530.22	A	10 15	0.63	3.58 4.13	2-1	(51)	3711.95	A	1	0.32	3.64	12-32	. 4 4
4360.80 4507.11	A A	15 30	0.54		2-3 1-3	a ³ p-x ³ p•† (31)	3360.45	A	25	0.63	4.30	2-3 2-2	(52)	3556.61 3576.88 3614.79	A A A	30 20 18	0.41	3.93 3.86 3.77	44-44 34-34	b ⁴ F-z ⁴ F° (9)
4553.01 4043.57	A A	12 30	0.52	3.23 3.57	0 –1 2 –2	a ³ P-x ³ P• †	3090.44 3136.95	A	6	0.63	4.62	3-2	(53) a ¹ D-u ³ P°	3674.74 3636.46	Ā A	40 8	0.32 0.46	3.68 3.86	14-14 44-34	
4108.39 4121.45	A A	15 30	0.54 0.54	3.54 3.53	1-1 1-0	(32)	*3157.82	A	30 50	0.63	4.56	2-1 2-3	(54) a ¹ D-w ¹ F°	3668.46 3718.86 3499.58	A A A	8 6 8	0.36	3.77 3.68 3.93	3 1 - 2 1 2 2 1 1 2 2 1 2 1 2 2 2 2 2 2 2	
3613.70	A	15	0.52	3.93	2-1	a ³ P-y ³ s° †	3139.79	A	30	0.63	4.56	2-3	(55) a ¹ D-v ³ G°	3525.81 3573.09	Ā	8	0.36	3.86 3.77	21-31 11-21	
3269.66	A	40	0.52	4.29	3-3	(33) a3p_y5pe † _(34)	6445.76	A	10	0.99	2.91	 4-3	(56) a ¹ G_y ³ F°	3588.32 3630.03	A A	6 10		3.85		b4F-z2D°
3260.11 3045.82	A A	40 10	0.52	4.30 4.57	2-2 2-3	a ³ p_w ¹ p• † (35) a ³ p_v ³ p•	3877.60	A	40	0.99	4.18	4-5	(57) a ¹ G-z ¹ H°	3536.94 3587.98	Ā	5 7	0.36	3.76 3.85 3.76	23-13 23-23 14-14	(10)
3094.79 •3157.82	A A	15 50	0.52	4.50	2-1 1-0	(36)	3535.16	A	30	0.99	4.49	4-4	(58) a ¹ G-x ¹ G• (59)	3497.00	A	2		3.85	1 2 2 2	.4- 4-0
3063.58§ 3095.82	A	8 12	0.54 0.52	4.57 4.50	1-3 0-1		3005.50	A	60	0.99	5.10	4-4	a1G_w1g (60)	3430.53 3410.26 3404.84	A A A	30 20 12	0.46 0.41 0.36	1.06 1.03 3.98	43-33 33-23 23-13	b ⁴ F-z ⁴ D° (11)
3120.74 3132.06	A A	125 50	0.52 0.54	4.47 4.48	2-3 1-2	a ³ P_t ³ D° (37)	4341.13 4366.45	A A	20 15	1.39 1.36	4.23 4.19	3-4 3-3	a ⁵ P-w ⁵ D° †	3399.36 3377.45	A A	10 6	0.32 0.41	3.95 1.06	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{2}$	
3131.11 3113.50	A	25 8	0.52	4.46 4.48	0-1 2-3	,,	4394.94 4413.04	Ā	.8 12	1.34	4.15 4.19	1-2 3-3	(61)	3363.81 3367.81 3331.90	A A A	5 5 2	0.32 3	1.03 3.98 1.06	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
3148.81 3130.05	A	25 8	0.54 0.52	4.46 4.46	1-1 2-1		4430.45 4431.48	A	13 10	1.36 1.34	4.15 4.13	3-3 1-1		3327.67	Ā	3			23-33 12-23	
3005.36 3108.36	A A	40 10	0.52 0.54	4.62 4.51	2-2 1-0	a ³ P-u ³ P* † (38)	5046.61	A	10	1.53	3.97	- 4-5	_Ъ 3 _{F—w} 3գ• ϯ	3275.15 3287.31 3240.85	A A P	2 3	0.32 4	.13	21-21 11-11	b ⁴ F-y ² D° (12)
9015.16	В	20	0.73		-	-5m -5ae +	5064.93 5078.28	A	15 30	1.48	3.91 3.87	3-4 2-3	(62)	2998.34	A	1				b ⁴ F-z ³ P°
9276.89 9547.26	B B	25 25	0.68	2.10 3.01 1.94	5–6 4–5 3–4	a ⁵ F-z ⁵ G°† (39)	4683.43 4707.78	A A	15	1.52	4.16	4-4	b ³ F_v ³ F° †	2968.95	A	13	0.46 4			
9822.30 10084.70	B B	30 13		1.88 1.83	2-3 1-2		4711.91	A	4 8	1.48	4.10 4.14	3-3 4-4	(63) b ³ F-u ³ F• †	2978.07 2979.18	A	12 12	0.41 4	. 55 . 50	3+-2+ 3+-1+	b ⁴ F-y ⁴ F° † (14)
8070.12 8133.00	A A	(25) (20)	0.73 0.68	2.26 2.20	55 44	a ⁵ F-z ⁵ F° (40)	4657.64 *4644.82	A A	7 8	1.48 1.44	4.13 4.09	3-3 2-2	(64)	4096.63	Ā.	4		.57	2] _3]	a ² D-z ⁴ G° (15)
8212.59 8305.94 8389.42	A A	(18) (15)	0.65 0.62	3.15 3.11	3–3 2–2	,,	6313.05	A	50	1.58	3.53	 5 - 6	а ³ G-z ³ н• †	4211.88 4258.05	A	12 12	0.52 3	• 45	2 } -2 }	
8370.21 8414.00	A A A	(8) (10) (7)	0.60 0.73 0.68	2.07 2.20 2.15	1-1 5-4 4-3		6470.25 6489.68	A A	15 25	1.58	3.48 3.45	4-5 3-4	(65)	3836.76 3958.24	A A A	60 50		.77	21-31 11-21	a ² D-z ² F° (16)
8464.65 8498.44	A A	(10) (10)	0.65 0.62	2.11 2.07	3-2 3-1		4753.06	Α.	3	1.87	4.46	- 6–7	a ³ H-z ³ I°	3998.98 3738.13		30	0.56 3			
7849.38 7944.65 8063.10	A A A	(15) (15) (10)	0.65	2.26 2.20 2.15	4-5 3-4 3-3		4719.12 4762.78	A	10 8	1.85	4.47	5-6 4-5	(66)	3800.73 3838.28	A A A	5 5 5	0.52 3	.86 .77 .77	21-31 11-21 21-21	2D_z4F° (17)
8201.73	A	(10)	0.60	2.11	1-3	_								3915.94 3955.82	A P	25	0.52 3	-68	1 1 -1 1 52-12	
7870.00 7956.69 8058.14	A A A	(12) (7) (7)		2.25	3-2	a ⁵ F-z ³ D°† (41)	<u>Zr II</u> I	P 13	.97 A	nal A	List	A Ju	ly 1942	3750.65 3817.59	A A	6 12		.85 .76	2] -2]	a ² D-z ² D° (18)
7169.14	A	150	0.62	2.45	3-1 5-4	a ⁵ F-z ⁵ D° †	3391.96 //		100	0.16	3.80		•	3855.43 3714.77	Ä A	3 15	0.56 3	•76	3 - 1 1 1 1 - 2 1	(10)
7097.78 7102.95	A	150 80	0.68 0.65	2.42 2.39	4-3 3-2	(43)	3438.23 3496.18 3572.47	A A A	100 50 30	0.09 0.04 0.00	3.68 3.57 3.45	34-44 34-34	a ⁴ F-z ⁴ G° (1)	3520.87	A	_5.	0.56 4	.06	3] -3] 8	2D_z4D0
7103.77 7087.35	A	40 20	0.60	2.36 2.34	2-1 1-0		3505.67 3551.94	A A	12 18	0.16	3.68 3.57	13-23 43-44 33-34		m3556.54 3457.56	P A	Zr+ 13			3 <mark>-2-2</mark>	(19) 3n -3ne
4687.80 // 4710.08	A	150 100	0.73 0.68	3.36 3.30	5-6 4-5	a ⁵ F_y ⁵ G° (43)	3613.08 3672.65	A A	13 3		3.45 3.45	31-31 31-31 31-31		3479.02 3510.46	A A A	5 7	0.53 4	.07	13-13 13-13 33-13	(30) _{3D} -A _{3D}
4739.48 4772.32 4815.62	A A A	100 80	0.65 0.62	3.25 3.21	3-4 3-3		3419.10 3478.29	A A	5 4		3.77 3.64	41-31 31-31	a4F_z2F° (2)	3334.62	A	9				r _S D-z _S Ge
4788.69 4805.88	A A A	60 8 15	0.60 0.73 0.68	3.16 3.30 3.25	1-2 5-5 4-4		3424.82 3305.15	A A	7 15	0.04	3.77	34-34	\~/	3871.13	A	7	0.52 4			(32) ^{2D-} 235•
4824.29 4851.36	A A	12 12	0.65 0.62	3.21 3.16	3-3 2-2		3388.29 3273.04	A A	15 75	0.00 0.16	3.64	1] -2]	.4= -4=-	3182.86 3129.16	A A	35 10		43 2	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(33) (33) (33)
4887.72 4893.12 4905.09	A A A	(2) 2 (4)	0.68	3.25 3.21	5-4 4-3		3279.26 3306.27	Ā	65 25	0.09 0.04	3.86 3.77	31-31 31-21	a ⁴ F-z ⁴ F° (3)	3157.00	A	10		43	1-1-1-	
		17/	V•05	3.16	3–2		3357.26	A	15	0.00	3.68	11 11								

Lab I A	orator; Ref		Low E		J	Multiplet (No)	Labo:		ry Int	E Low		J	Multiplet (No)	Labo I A	ratory Ref]		E :		J	Multiplet (No)
<u>Zr II</u> c	ontinu	eđ					Zr II co	ntinı	ued						ntinue					
2981.02 3036.50	A A	13 7 3	0.56 0.52 0.52	4.70 4.59 4.53	23-33 13-33 13-13	a ² D-y ⁴ D° (24)	4442.50 4024.45	A A	2 12	0.99	3.77 4.06		a ⁴ P _{-z} 3 _F • (53) a ⁴ P _{-z} 4D•	4222.41 4266.72	A A	3 1	1.20 1.18	4.13 4.07	1 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	b ⁴ P-y ² D° (80)
3086.44 3111.15 3125.21	A A A	3 4		4.52 4.47	2}-1} 1}- }		4018.38 4040.24 4071.09	A A A	10 4 4	0.96 0.93	4.03 3.98 4.03	1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(54)	3853.07 3819.84 3792.32	A A A	2 2 3	1.23 1.20 1.18	4.43 4.43 4.43	21-11 11-11 1-11	b ⁴ P-z ² P° (81)
3036.39 3064.64 3089.00	A A A	15 3 1	0.56 0.52 0.56		21-31 11-21 21-21		4077.05 4085.68 4131.31 4123.38	A A A	3 5 1	0.96		15-15 25-15 15-5		3717.02 3561.11 3690.98	A A P	3	1.20 1.23 1.18			b ⁴ P-y ⁴ D° (82)
3003.73 3020.45 3044.12	A A A	15 5 4	0.56 0.52 0.56	4.66 4.61 4.61	21-31 11-21 21-21 21-21	. a ² D-y ² F° . (26)	3941.92	A	3	0.99	4.13	2 } -2 }	a ⁴ P-y ² D° (55)	3607.39 3578.22	A A	7 7	1.23 1.20			b ⁴ P-z ⁴ S° (83)
3013.32 2990.10	A A	8 3	0.56	4.65 4.65	21-11 11-11	a ² D-z ⁴ S° (27)	3692.60 3588.80 3512.67	A A A	1 3 3	0.96 0.99 0.96	4.43 4.47		4P-z2po (56) 4P-z2po (57)	3554.09 3506.04 3521.28	A A P	7 4		4.75 4.71		b ⁴ P-z ⁴ P° (84)
4273.52 4090.52	A A	4 10	0.75 0.75	3.64 3.77	11-21	(28) (28) (28)	3485.31 3334.25 3396.34	A A A	5 10 7	0.93 0.99 0.96	4.47 4.70 4.59		a ⁴ P-y ⁴ D° (58)	3506.48 3549.51 3529.99 3478.50	A A A	2 10 5 3	1.20	4.71	21-11 11-1 11-21	
4156.24 4224.27 3991.14	A A A	15 3 40	0.71 0.75 0.75	3.68 3.68	12-12	(29)	3432.41 3433.90 3458.93 3480.40	A A A	7 8 10 5	0.93 0.99 0.96 0.93	4.52 4.59 4.52 4.47	3-11 3-21 1-1		*3497.90 3302.66 3343.81	A A A	13 71 4	1.18	4.71 4.97 4.89] -1]	b ⁴ P-x ⁴ D° (85)
4045.63 4110.05	Ā	15	0.71 0.75			a ² P_z ² D° (30)	*3497.90 3507.66	A A	12 4	0.99 0.96	4.52 4.47	2 - 1 - 1 - 1 - 1 - 1 - 1	45 450	3369.27 3394.63 3402.52	A A A	3 3 1	1.23 1.20 1.18	4.89 4.84 4.81	21-21 11-11 1-1-1	(65)
3772.06 3767.89 3823.72 3807.41	A A A	5 1 2		4.03 3.98 3.98 3.95	15-25 5-15 15-15	a ² P-z ⁴ D° (31)	3403.69 3431.57 3454.57 3469.94	A A A	8 6 4 4	0.99 0.96 0.93 0.99	4.62 4.55 4.50 4.55	13-23 13-23 3-13 23-23	a ⁴ P-y ⁴ F° (59)	3424.64 3008.13 3015.67	A A A	1 3 1	1.20 1.23 1.20	5.33 5.30	13-13	b ⁴ P-y ⁴ P° (86)
3660.92 3667.40 3720.29	A A P	3 1	0.75 0.71 0.75	4.13 4.07 4.07	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	a ² P-y ² D° (32)	3481.44 m3520.91 3362.70	A P A	Zr+ 4	0.96 0.99 0.99	4.50 4.50 4.66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.4p_v2re	m3036.33 3025.16 2987.80 2998.49	P A A	Zr+ 3w 5 2	1.20	5.30 5.28 5.33 5.30	21-11 11-21 11-21 1-11	
3483.54 3437.16	A A	13 10		4.30 4.30		a ² P_z ² 5° (33)	3376.25 3413.39	A A	7 5	0.96 - 0.99	4.61 4.61		a ⁴ P-y ² F° (60)	5124.98	A -	 2			-	a ² H-z ⁴ F°
3354.39 3280.75 3322.99	A A A	7 3 10	0.75 0.71 0.75	4.43 4.47 4.47	1 1 1 1	a ³ P-z ² P° (34)	3374.71 3338.41 3313.70	A A	15 10 8	0.99 0.96 0.93	4.65 4.65 4.65	1\$-1\$ \$-1\$		4379.78 4442.99 4308.94	A A A	9 25 4	1.53 1.48 1.48			(87) a ² H-z ² G° (88)
3311.34 3218.68	A A	1 7	0.71	4.43 4.59	- 1- 2 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −	a ² P-y ⁴ D° (35)	3285.89 *3288.81 3272.30	A A P	10		4.75 4.71 4.70	\$- \$	a ⁴ P-z ⁴ P° (62)	3874.37	A	1	1.48	4.66	43-33	a ² H-y ² F°
3318.52 3276.37 3295.03	A A	7 1 1	0.75 0.71 0.75	4.47 4.47 4.50		a2P_y4F°	3324.03 3296.41 3251.46 3264.81	P A P A	7 6	0.99 0.96 0.96 0.93	4.71 4.70 4.75 4.71	2 - 1 - 1 - 1 - 2 - 1	•	3505.47 3463.02 3459.95	A A A	15 35 3	1.53 1.48 1.48			a ² H-y ² G• (90)
3200.67 3088.28	A A	3 1	•	4.61 4.75	1] -2]	(36) a ² P-y ² F° (37) a ² P-z ⁴ P°	3106.58 3133.49 3155.68	A A A	35. 25 10	0.99 0.96 0.93	4.97 4.89 4.84	21-31 11-31 1-11	a ⁴ P-x ⁴ D° (63)	3326.81 3359.96 3402.87 3285.77	A A A	15 12 7 3		5.24 5.15 5.15 5.24	54-54 54-44 54-44 44-54	a ² H-z ² H° (91)
3128.79 3091.30	A	1	0.75 0.71	4.70 4.70	12 2	(38)	3165.45 3178.10 3181.58	A A A	7 15 8	0.99 0.96 0.93	4.89 4.84 4.81	23-23 13-13 2- 3		3275.65	A	1				a ² H-x ² F° (92)
3021.97 3010.28	Å	1 2w1	0.71	4.84	-	a ² P-x ⁴ D° (39)	3210.98 3204.36 2975.16	A A A	3 4 1	0.99 0.96 0.96	4.84 4.81 5.10	24-14 12-2 13-13	a4p_y2p• †	6100.04 6114.78	A A	3 2	1.75 1.66	3.68	15-15	0 ² D-z ⁴ F° (93)
4277.37 4317.32 4454.80 4496.96	A A A	4 12 10 15	0.80 0.71 0.80 0.71		31-41 21-31 31-31 21-21	a ² F-z ⁴ G° (40)	3009.85 3048.42	A	3	0.93	5.03 5.04		a ⁴ P-y ² P° † (64) a ⁴ P-y ² G° (65)	5418.01 5191.60 5112.28	A A A	1 7 7	1.75 1.75 1.66	4.13	2 } -2 }	b ² D-z ⁴ D° (94) b ² D-y ² D° (95)
4149.33 4308.99	A A	75 30				a ² F-z ² F° (41)	4816.47	A	1	1.01	3.57	 43	30 -400	5311.78 5000.91	A	3	1.75 1.66	4.07 4.13	$2\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-2\frac{1}{2}$	
4339.56 4029.68 3936.07	A A	3 20 7	0.80	3.64 3.77 3.93	31-21 21-31 31-41	. ₂ 3 _{F_z} 4 _F 0	4461.22 4613.95 4399.44	A A	10 5 2	1.01 0.97 0.97	3.77 3.64 3.77	44-34 34-24 35-35	(66) a ² G-z ² F° (67)	4445.88 4186.70 4310.62	A A	1 12 5	1.66 1.75	4.43 4.70 4.59	15-15 21-31 11-21	b ² D-z ² P° (96) b ² D-y ⁴ D° (97)
3921.02 4034.10 4031.35	P A A	5 2	0.71 0.80 0.71	3.86 3.86 3.77	21-31 31-31 21-21	a ² F_z ⁴ F° (42)	4215.76 4401.35	A	1 3	0.97	3.93	43-43 32-22	8~(}_ 2.**	4383.10 4296.74	A A	1 8	1.66	4.47	$1\frac{1}{2} - \frac{1}{2}$ $2\frac{1}{2} - 3\frac{1}{2}$	b ² D_y ⁴ F°
4150.97 4161.20 4048.68	A A	10 20 25	0.80 0.71 0.80	3.00	25-15		4286.51 4034.84	A A	5 0		3.85 4.03		(69)	4364.91 4342.23 4231.64	A A A	4 1 8	1.66	4.55 4.50 4.66	13-23 13-13 23-33	b ² D-y ⁴ F° (98) b ² D-y ² F°
4050.32 3934.80 3782.24	A A	15 20 4	0.71 0.71 0.80		31-11 21-21 31-31	$\begin{array}{ccc} & a^2F-z^2D^{\circ} \\ & (43) \\ & & \\ & & \\ & & & \\ & & & \\ & & & &$	3698.17 3751.60 3796.47 3655.56	A A A	100 75 20 7	1.01 0.97 1.01 0.97	4.34 4.26 4.26 4.34	41-41 31-31 41-31 31-41	a ² G-z ⁴ D° (70) a ³ G-z ² G° (71) a ² G-y ⁴ D°	4179.81 4312.23 3833.87	A A	15 3 2				b ³ D-y ³ F° (99)
3721.69 3823.41 3771.98	A A A	3 3 2	0.71 0.80 0.71	4.03 4.03 3.98	24-24 34-24 24-14	a ² F-z ⁴ D° (44)	3344.80 3408.09	A A	15 10	0.97	4.70 4.59	41-31	a ² G-y ⁴ D° (72)	3813.98 3923.92 3678.91	A	0 1 10	1.66	4.89	11-31 21-31 21-31	b ² D-x ⁴ D° (100)
3682.67 3709.27 3671.28	A A	60 20	0.71 0.80 0.71	4.13 4.07	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ² F-y ² D° (45)	3309.90 *3414.65 \$ 3443.57	A	12 7	0.97 1.01 0.97	4.62	41-31 31-21	a ² G-y ⁴ F° (73)	3662.14 3582.08	A A	8	1.66	5.03	12-12 12-12	b ² D-y ² P° (101)
3613.43 3481.14 3479.39	A A	35 30	0.71 0.80 0.71			a ² F-z ² G° (46)	3378.30 3373.42 3387.87	A A A	5 8 12	1.01 0.97	4.66 4.61	32-32 41-31 31-21	a ² G_y ² F° (74)	3633.49 3565.41 3661.33 3539.05	A A A	10 5 4 4	1.75 1.66 1.75 1.66	5.15 5.12 5.12 5.15	21-21 11-11 21-11 11-21	b ² D-x ² D° (103)
3568.14 3314.49	A A	10	0.80	4.43	3] _1	a ² F-z ² po	3337.93 3115.73	A A	2	1.01		4] -3]	a ² G-x ⁴ D°	3527.42 3396.66 m3483.59	A A P	7 6 Zr+	1.75 1.66 1.75	5.25 5.29 5.29	$2\frac{1}{1}$ $-3\frac{1}{2}$ $2\frac{1}{2}$ $-2\frac{1}{2}$	b ² D-x ² F° (103)
3166.29 3181.94 3228.81	A A	8 7 15	0.80 0.71 0.80			a ² F-y ⁴ D° (48)	3054.84 3028.05 3057.22 3025.70	A A A	30 20 5 2	1.01 0.97 1.01 0.97	5.05 5.04 5.04 5.05	44-44 34-34 44-34 34-44	(75) a ² G-y ² G° (76)	3222.48 3161.01 3236.17	A A A	15 2 1	1.75 1.66 1.75	5.58 5.56 5.56	21-31 11-11 21-11	b ² D-w ² D° (104)
3212.85 3256.53 3155.95	A A A	6 1 1	0.71 0.71 0.71			a ³ F-y ⁴ F° (49)	2976.61	A	10	1.01	5.15	4 <u>}</u> -4날 -	a ² G-z ² H°† (77)	3183.26 3074.55 3110.52	P A A	1 1	1.75 1.66	5.63 5.67		b ² D-x ² P° (105)
3191.93 3164.32 3237.54	A A A	12 20 1	0.80 0.71 0.80	4.66 4.61 4.61	31-31 21-21 31-21	a ² F-y ² F° (50)	4854.65 4359.74	A A	0 10	1.23	3.77 4.06	2}-3} 2}-3}	b ⁴ P-z ² F° (78) b ⁴ P-z ⁴ D° (79)	*6106. 4 7		3	1.75		- 15-15	b ² G-z ² F°
3120.72 3122.61 3054.39	P A A	Z r 1 3	0.71 0.80 0.71	4.66	2 5 -3 5	a ³ F_z ⁴ P° (51)	4370.96 4403.35 4414.54 4440.45	A A A	8 6 5 10	1.20 1.18 1.23 1.20	4.03	1+-3+ +-1+ 3+-3+ 1+-1+	(19)	4761.67 4894.43 4925.90	A A A	1 0 1	1.75 1.74 1.75			(106) b ² G-z ² G° (107)
3013.66	A .	0		4.89		a ² F-x ⁴ D° (52)	*4457.43 \$ 4485.44 4495.44		8 2 3	1.18 1.23 1.20	3.95 3.98	23-13 13-13 13-3		4191.50 4325.64	A A	6 3	1.75	4.70	44-34	b ² G-y ⁴ D° (108)

Labora I A R	tory ef		E Low	P High	J	Multiplet (No)	Labo I A		ory Int		P High	J	Multiplet (No)	Labo:		y Int	E Low	P High	J	Multiplet (No)
Zr II cont	inue	ed					Zr II co	ntin	ued					Cb II co	ntinu	eđ.				
	A A	5 1		4.62 4.55	43-3 1 35-25	b ² G-y ⁴ F ^b (109)	4908.67	A	1		5.63		a ² S-x ² P° (145)	3781.379 3898.292	A A	200	1.69 1.69	4.86	3-4	b ³ F_z ³ G• † (9)
	A A	5 7		4.66 4.61	41-31 31-21	b ² G-y ² F° (110)	3612.34 3650.73	A.	7		6.53 6.49	2-13 2- 2	a ² 9_w ² P° : (146)	3863.056 3763.13	A A	150 8n	1.58	4.78	2-3 4-4	b ³ F-2 ³ F• †
3818.78	A	1	1.74	4.97	3 } -3	b ² G-x ⁴ D°	3026.18 3018.53	A A	3w1 3w	3.93 3.86		 41-41	z ⁴ F°-e ⁴ F†	3831.840 3818.862 3952.367	A	200 200 100n	1.69 1.58	4.91 4.81	3-3 2-2	(10)
3731.26	A A	40 35	1.74	5.05 5.04	41-41 31-31	(112)	3000.59 3024.72	A A	3w 3w		7.88	21-21 21-1	. (141)		A		1.69		3–2	
	P A	10	1.75 1.74	5.04 5.05	3 }-4 5		2988.74	A	4w	4.13	8.25	 2 1 -21	. v ² D•_e ² D	Strongest 3717.06	Uncl	.assified 300	Lines	of <u>Cb</u>	<u> II</u>	
3611.90	A A	25 15	1.74	5.24	41-51 31-41	b ² G-z ² H° (113)	2966.27	A	2w	4.07	8.23	1] -1] -	y ² D°-e ² D (148)	3659.602 3510.262	A A	300 400				
3530.85	A A	1 6	1.75	5.15 5.25			3229.73 3278.89	A A	1 1 2	4.43 4.47	8.25 8.23	1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	z ² P°-e ² D (149)	3432.708 3283.463 3263.365	A A A	400 400 300				
	A A	8 4	1.74	5.29 5.25	31-21 31-31	b ² G-x ² F° (114)	Strongest	Unc	lassifie	d Lines				3260.564 3127.526	A A	350w 500				
	A A	5 5	1.83	4.13 4.07	 2] -2]	c ² D-y ² D° (115)	3827.27 3423.82	A A	1 31					3064.530 3034.95 3032.767	A A	250r 200wR				
5477.82	A	2	1.82	4.07	2] -1		3068.32 *3063.63 §	A A	2 w 3 wl					2994.725	A A	400rs 300w				
4565.43	A A A	1 3 1	1.82 1.77 1.77	4.43 4.47 4.43	25-15 15-15 15-15	c ² D-z ² P° (116)	3038.59 3018.08	A A	2 2 w											
4289.18	A	2	1.82	4.70			2994.05	A	4 w				*****	Mo I I I 3798.259 /		6 Anal 50R	0.00	ist D	-	1942 a ⁷ S-z ⁷ P*
	A A	2	1.82 1.77	4.62 4.55	21-31 11-21	c ² D-y ⁴ D° (117) c ² D-y ⁴ F° (118)								3864.115 3902.968	A A	50R 50R 50R	0.00	3.25 3.19 3:16	3-4 3-3 3-2	(1)
	A. A	2 5	1.82		21-31 11-31	c ² D-y ² F° (119)	<u>Cb I</u> I I		Anal C		D J 3.17	uly 19 4 1 _5 1		3112.125 3158.156	A A	5n 5R	0.00		3-4 3-3	a ⁷ S-z ⁷ D ^e (2)
3757.80	A	8	1.82	5.10		c ² D_y ² P° (120)	4079.726 4100.918	A A	1000w 600w	0.09 0.05	3.11 3.06	31-41 31-31	a ⁶ D-y ⁶ F°† (1)	3208.838	A	10n	0.00	3.85	3–2	
	A. A	1	1.77	5.03 5.04			4133.813 4137.090 4139.703	A A A	400 300 400w	0.00	3.01 2.98 3.11	1 - 2 - 3 - 1 - 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1		3132.591 3170.333 3193.969	A A A	10R 10R 10R		3.94 3.89 3.86	3-4 3-3 3-2	a ⁷ S-y ⁷ P° (3)
	A. A.	1	1.82	5.15 5.13	2] -2]	c ² D-y ² G ⁶ (121) c ² D-x ² D ⁶ (122)	4152.575 4164.661 4163.658	A A A	500 300 250		3.06 3.01 2.98	41-41 31-31 31-31		5506.51	В.	40R	1 77	7 57	- 2 2	a5g_z5pe
3651.50 A	A.	ž	1.77		13-23	2- 2	4168.122	A	250w	0.00	2.96	13-13	6- 6	5533.01 5570.46	B B	30R 25R	1.33 1.33 1.33	3.56	2-3 2-3 3-1	(4)
3599.91 A	A A	4	1.82	5.25 5.29		c ² D-x ² F° (123)	3791.209 3824.882	A	300r 100	0.13	3.38 3.31	32-32	a ⁶ D-y ⁶ D° †	6030.66	В.	9	1.53	3.57	- 4-3	a ⁵ D-z ⁵ P° †
3511.55 A 3550.11 F	A P	8	1.82	5.30	2] -1글	c ² D-y ⁴ P° (124)	3713.018 3739.80 3759.556	A A	300r 300r 200r	0.09	3.45 3.39 3.33	41-41 31-31	a ⁶ D-x ⁶ D°† (3)	5888.32 5791.86	B B	6 6 7	1.46 1.41	3.56 3.54	3-2 3-1	(5)
3282.84 A	1	12 20	1.82	5.58 5.56	31-31 11-11	c ² D-w ² D° (125)	3790.138 3802.928	A A	200r 400r	0.13	3.39 3.33	41-31 31-21	a ⁶ D-x ⁶ D°† (3)	5858.28 5751.41 5689.22	B B B	6 7	1.46 1.41 1.38	3.57 3.56 3.54	3-3 2-2 1-1	
3236.61 A		4 3	1.77	5.58 5.63	1 § -3 § 3 § -1 §	c ² D-x ² P°	3798.127 3787.064 3697.850	A A A	300r 150 200	0.05 0.03 0.05	3.30 3.28 3.39	21-11 11-1 21-3		4626.467 4662.767	A A	10 5	1.52		4-3 3-2	a ⁵ D-y ⁵ P° †
3159.12 A 3197.08 A	١.	5 3	1.77	5.67 5.63	$1\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	c ² D-x ² P° (126)	3726.235 3742.393	Ā A	250 200r	0.00	3.33	19-24		4661.933 4524.344	A A	5 10	1.41 1.46	4.06 4.19	3-1 3-3	(0)
3015.86 A	٠ _	8	1.83	5.91	2] _2]	c ² D-w ² F° (127)	3580.277 3575.850	A A	400r 200	0.13 0.09	3.58 3.54	41-31 31-21	a ⁶ D_y ⁶ P°† (4)	4576.500 4595.160	A	10 10	1.41 1.38	4.11	3-2 1-1	_
6346.54 A 6678.03 A		1 3	2.40 3.41	4.34	3 1 - 4 1 2 1 - 3 1	b ² F-z ² G°	*3535.304	A	400w	0.09	3.58	3 } _3 }		4277.246 4288.65 4293.228	A A A	12 5n 10	1.52 1.46 1.41	4.34	4-5 3-4 3-3	a ⁵ D-z ⁵ F° † (7)
4661.78 A		5	2.40			b ² F_y ² G° (129)	a							3833.757	A	10n	1.52	4.74	4-4	a ⁵ D-z ⁵ D° †
4494.41 A		* 8	2.41 2.40	5.15		b ² F-x ² D° (130)	<u>Cb II</u> I 3094.172//			0.51		July 19 56	_a 5 _{F-z} 5 _G • †	3828.883 3826.701 3822.987	A A A	10 10 5	1.46 1.41 1.38	4.64	3-3 2-2 1-1	(8)
4553.96 A 4482.04 A		12 3	2.41 2.40	E 4 E	a1 41	. 2 2	3130.780 3163. 4 03	A A	1500wR 1000R	0.44 0.37	4.38 4.38	4-5 3-4	(1)	3901.775 3886.825	A A	10 (3)	1.52 1.46	4.69 4.64	4-3 3-2	
4333.28 A		15	3.40	5.25 •	3 } -3 }	(131) bar-xare	3194.983 3225.478 3191.096	A A A	700R 500wR 200w	0.29		1-2 5-5		3869.085 3847.252 3763.356	A A A	10 10 5	1.41 1.38 1.46	4.58	2-1 1-0 3-4	
*4282.21 § A 4267.30 P 4348.64 P	•	6	2.41 2.40 2.41	5.29 5.29 5.25	23-23 33-23 23-33	(131) b ² F-x ² F° (132)	3215.595 3236.403 3254.070	A A A	300wr 300r 200r		4.28 4.19 4.12	4-4 3-3 2-2		3770.517 3781.597	A A	8 10	1.41 1.38	4.69	2-3 1-2	
4805.91 A		2	2.40	5.33	31 ol	h2r4po	3028.436	A	300w	0.44	4.51	4-3	a ⁵ F-z ³ D° †	3405.934 3384.617	A A	10r 10n	1.52 1.46	5.11	4-5 3-4	a ⁵ D-y ⁵ F* † (9)
3881.97 A 3914.36 A		7 7	2.40 2.41	5.58 5.56	31-21 31-11	(133) bar-wapo (134)	3076.864 3099.180 2982.100	A A A	200 100 100		4.39 4.31 4.51		(3)	3358.130 3344.750 3327.308	A A A	10 10 10r	1.41 1.38 1.35	5.07	2-3 1-2 0-1	
6787.15 A	_		2.48		-	bap_zas•						_	3n 3-04	3361.371	A	10r		5.20	4_4	a ⁵ D-8° †
6313.57 A		1	2.48	4.43	1 2 - 2	(135) b2P_z2pe (136)	3412.934 3408.678 3409.191	A A A	150 100 100	0.76	4.51 4.39 4.31	1-3	a ³ P-z ³ D°† (3)	3289.016	A	10 r	1.41	5.17	2-3	(10) a ⁵ D_7° † (11)
6028.64 A *6106.47 A		2 2	2.42 2.48				3540.961	A	200	1.03	4.51	- 43	a ³ F-z ³ D° †	4012.51 4062.09	C A	(1) 5Nr	2.07	5.15	6-5 5-4	a ⁵ G-y ⁵ F° † (13)
4703.03 A		5	2.48	5.10	1-1-1	b ² P-y ⁴ F° (137) b ² P-y ² P° (138)	3619.514 3651.182	A A	300	0.98	4.39 4.31	3-3 3-1	(4)	4084.391 4107.477	A A	10n 8r	2.07 2.06	5.09 5.07	4-3 3-3	(15)
4734.94 A 4841.98 A 4601.97 A		1 0 2		5.03 5.10	1 1	(136)	3145.405 3180.290	A A	500rs 400		4.95 4.86		a ³ F-z ³ G° † (5)	4103.158 4056.037	A	10 10	2.05 2.07	5.06 5.11	2-1 4-4	
4629.07 A 4574.49 A		5 6	2.48 2.42	5.15 5.13	1 2 3 3	b ³ P-x ³ D° (139)	3206.350 3223.332	A A	300rs 100	0.93 1.03	4.78 4.86	2-3 4-4	(5)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
4674.41 A		1					3247.478	A	150w	0.98	4.78	-		Mo II I	ΡÌ	Anal D			ug 194	
4388.50 A 4323.62 A		2 2			.1 -1	b ³ P-x ³ F° (140) b ³ P-y ⁴ P°	3440.589 3479.567 3515. 4 31	A A A	200 150 200w	1.31	4.95 4.86 4.78		a ³ G-z ³ G• † (6)	3446.085 3524.646	A A	6 8	2.94 2.94	6.52 6.45	41-41 31-31	4 _F _ 4 _F • (1)
3982.01 A		3	2.48 2.43	5.58	1 1 2 3 1	(141) b3P_w3D° (143)	3485.432	A	300w	1.36	4.97	5-4	a3G-23F0 +	3596.351 3670.668 3522.063	A A	4 3 2	2.98 2.94	6.34 6.45	14-14 44-34	
4002.95 A		3	2.48	5.56	1 2 1 2	(1#4)	3426.562 3478.79	A	250w 100	1.31	4.91 4.81	4-3 3-3	(7)	3585.91 3643.47 3448.542	B A A	3n 3	2.94 2.95 2.94	6.39 6.34 6.52	34-21 34-11 34-41	
3922.36 A 3048.28 A		1 5					4367.966	A	100n	1.69	4.51		b ³ F-z ³ D° †	3534.688 3622.850	A A	3 2	2.94 2.95 2.95 2.98 2.94 2.95 2.95 2.95 2.95 2.95	6.45 6.39	31-31 11-31	
3032.00 A 3075.55 A		3	2.43 2.48	6.49 6.49	12- 2	(143) b3P_w3P° (144)	4579.446 4527.648	A	150n 50n	1.69 1.58			(8)	3136.465 3187.592	A A	4	2.94 2.94	6.88		4F_ 4De †
	_		•		•									3250.747	_	3 -	2.95	6.75	3 } -1 }	,

Laboratory I A Ref Int	E P J Multiplet Low High (No)	Laboratory I A Ref Int	EP J Multiplet Low High (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)
o II continued 250.689 A 10 363.644 A 10 433.501 A 8 209.649 A 5 279.023 A 10 377.765 A 10	3.13 6.03 3 2 2 4 D 4P° † 3.10 5.93 2 1 2 (3) 3.04 5.83 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Ru II I P ? Anal 3690.032 A 80 3657.574 A 50 3734.454 A 25 3777.919 A 10 3177.060 A 100 3294.220 A 80	D List C Sept 1943 2.39 5.74 31-41 4D 6p° † 2.39 5.77 31-31 (1) 2.53 5.84 21-21 2.62 5.89 12-12 2.39 6.28 31-41 4D 6p° † 2.53 6.28 22-32 (2)	Rh II continued 3477.828 A 200 3093.481 A 200 3096.740 A 150 3062.201 A 100 3008.996 A 200 3047.160 A 200 2879.382 A 2	3.43 6.98 3.47 7.46 3.59 7.57 3.43 7.46 3.47 7.57 3.59 7.64 3.43 7.57	3-4 5p 5p 5p 3-3 (4) 1-2 3-3 2-2 1-1 3-2
941.478 A 10 961.503 A 15 986.201 A 6 635.144 A 20 688.307 A 15 693.645 A 10 702.553 A 8 719.74 A 3	3.13 6.36 31 41 4D 6D° † 3.13 6.34 31 32 12 3.10 6.30 32 12 3.13 6.53 31 41 4D 4F° † 3.10 6.45 32 32 32 3.01 6.34 31 32 32 3.01 6.34 31 32 32 3.01 6.34 32 32	3339.810 A 50 3369.395 A 25 3175.317 A 10 3143.657 A 15 3107.586 A 10 3094.555 A 8 3221.378 A 15	2.62 6.32 14-24 2.67 6.34 5-14 2.39 6.36 3-32 2.39 6.36 32-32 2.39 6.36 32-32 4D-6P°† 2.53 6.52 22-22 (3) 2.53 6.36 32-32	3962.167 A 75 3035.013 A 200 3187.889 A 200 3307.362 A 200 3864.891 A 75 3166.948 A 200 3173.678 A 100 3081.585 A 100	3.47 7.64 3.59 7.66 3.43 7.30 3.47 7.30 3.59 7.37 3.47 7.48 3.47 7.48	3-1 1-0 3-4 5p_ 5pe 3-3 (5) 1-3 3-3 1-1 3-1
755.54 A 5 743.34 A 6 292.312 A 12 320.902 A 5 339.215 A 5 347.269 A 3 346.403 A 4 380.215 A 3	3.10 6.39 31-31 3.04 6.34 12-12 3.13 6.88 31-31 4D-4D° 3.10 6.82 32-32 (6) 3.04 6.75 12-12 3.01 6.70 12-12 3.13 6.82 32-32 3.13 6.82 32-32 3.10 6.75 22-12	3976.593 A 100 3965.564 A 100 3979.957 A 60 3977.326 A 30 3979.736 A 40 3991.626 A 40 3998.896 A 30	2.39 6.54 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3267.480 A 250 3240.516 A 150 3211.947 A 150 3815.012 A 100 3754.13 P	3.92 7.69 4.03 7.83 4.18 8.02 4.23 7.46 4.29 7.57	- 3 _G 3 _F · . 4-3 (6) 3-2 (6) 2-3 3 _P 5 _D · . 1-2 (7)
379.762 A 3 267.639 A 3 271.666 A 4 297.684 A 3	3.04 6.70 13 3 3.10 6.88 23 3 3.04 6.83 13 23 3.01 6.75 2-12	3259.0077 A 20 3060.252 A 8 3221.978 A 20 3075.336 A 6	3.75 6.54 3½-4½ 3F-4Fe† 2.66 6.69 3½-3½ (6) 2.75 6.58 3½-3½ 3F-4De† 2.66 6.67 3½-3½ (7)	3720.69 P 3269.60 P 3188.603 A 150 3147.931 A 8 3140.272 A 50 3119.837 A 5	4.33 7.64 4.23 8.00 4.29 8.16 4.32 8.34 4.23 8.16 4.29 8.34	3-3 3p 3p 3p 1-3 (8) 0-1 2-3 1-1
u I I P 7.5 Anal 799.347 A (8) 798.901 A (8) 728.030 A (10R) 726.926 A (10R) 730.433 A (4)	C List D Aug 1942 0.00 3.35 5-4 a ⁵ F-z ⁵ D°† 0.15 3.40 4-3† (1) 0.00 3.31 5-5 a ⁵ F-z ⁵ F°† 0.15 3.46 4-4 (2) 0.26 3.57 3-3	Rh I I P 7.7 Anal 3692.357 A 50 3657.987 A 50 3596.194 A 20 3612.470 A 15	O.00 3.34 4 3 4 4 5 6 7 (1) 0.19 3.56 3 5 2 1 (1) 0.32 3.75 2 5 1 7 2 1	Pd I I P 8.30 Ana 3634.71 B 700R 3516.95 A 500r 3571.16 A 200	1 A List D 0.81 4.31 0.96 4.47 1.25 4.70	Aug 1942 3-2 5s ³ D-5p ³ P° 2-1 (1) 1-0
742.280 A (10) 760.031 A (4) 661.353 A (6) 417.353 A (30) 430.772 A (7) 498.942 // A (50R)	0.33 3.63 2-2 0.88 3.67 1-1 0.15 3.52 4-5 a ⁵ F-z ³ G°† 0.26 3.87 3-4 (3) 0.33 3.93 2-3 0.00 3.53 5-6 a ⁵ F-z ⁵ G°†	3434.893 // A 200R 3700.909 A 30 3507.316 A 20 3474.780 A 20 3502.524 A 50 3396.85 A 100R	0.00 3.59 41-51 a4F-z4G°† 0.19 3.53 31-42 (2) 0.32 3.84 21-32 0.43 3.98 11-22 0.00 3.52 41-42	3799.17 B 75 3832.31 B 75 3404.60 // A 1000R 3609.56 A 600R 3481.17 A 400r 3480.76 A 300r 3218.98 A 20	0.96 4.21 1.25 4.47 0.81 4.44 0.96 4.38 1.25 4.79 0.81 4.38 0.96 4.79	3-2 1-1 3-4 5s ³ D-5p ³ F° 2-3 (2) 1-2 3-3 3-3 3-2
436.737" A (30R) 596.179 A (30) 593.022 A (30) 589.215 A (5) 301.587 A (8) 554.509 A (10R)	0.15 3.74 4-5 (4) 0.26 3.69 3-4 0.33 3.77 2-3 0.38 3.82 1-2 0.00 3.74 5-5 0.81 3.52 4-5 a ³ F-z ³ G°†	3528.024 A 30 3462.040 A 30 3470.657 A 30 3583.098 A 10 3666.215 A 15 3323.092 A 50R 3283.573 A 20R	0.00 3.63 41-41 a4F-z4F*† 0.19 3.69 32-32 0.43 3.98 12-12 0.19 3.63 32-42 0.32 3.69 22-32 0.19 3.63 32-42 0.19 3.63 32-42 0.19 3.90 31-42 a4F-z2G*† 0.32 4.08 22-32 (4)	3242.72 A 1000R 3421.24 A 500 3302.15 A 400 3287.26 A 50 3065.30 A 100 3372.02 A 300 3718.92 B 100	0.81 4.63 0.96 4.56 1.35 4.98 0.81 4.56 0.96 4.98 0.96 4.62	3-3 5s ³ D-5p ³ D° 2-2 (3) 1-1 3-2 2-1 2-3
297.711 A (10) 410.026 A (8) 212.063 A (10) 584.445 A 30 681.786 A 10 080.600 A (20)	1.00 3.87 3-4 (5) 1.13 3.93 2-3 0.81 3.74 4-5 a ³ F-z ⁵ G°† 1.00 3.69 3-4 (6) 1.13 3.77 2-3 0.81 3.83 4-3 a ³ F-y ⁵ F°†	3597.147 A 30 3478.906 A 15 3543.948 A 10 3271.612 A 10 3788.474 A 15	0.41 3.84 3½-3½ a³D-z⁴q° † 0.41 3.96 3½-3½ a³D-z²D° 0.70 4.18 1½-1½ (6) 0.41 4.18 3½-1½ 0.70 3.96 1½-3½	3002.66 A 50 3114.05 A 300 3027.92 A 100 3258.80 A 300 3021.74 A 10	1.35 4.56 0.81 4.92 0.96 4.92 0.96 5.03 1.35 5.03 0.96 5.04	1-2 3-3 58 ³ D-5p ¹ F° 2-3 (4) 2-2 58 ³ D-5p ¹ D°† 1-3 (5) 2-1 58 ³ D-5p ¹ P°
144.164 A (10) 199.902 A (10) 867.839 A (8) 984.858 A (10) 097.791 A (10)	1.00 3.98 3-8 (7) 0.81 3.75 4-4 a ³ F-z ³ F°† 0.81 4.00 4-3 a ³ F-z ³ D°† 1.00 4.10 3-3 (9) 1.13 4.15 3-1	3856.515 A 10 3958.865 A 30 3799.311 A 20 3822.262 A 15 4128.870 A 20	0.70 3.90 $3\frac{1}{2}$ $4\frac{1}{2}$ $a^{2}F-z^{2}G^{\circ}$ † 0.96 4.08 $3\frac{1}{2}$ $3\frac{1}{2}$ (7) 0.70 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}F-z^{2}F^{\circ}$ 0.96 4.19 $3\frac{1}{2}$ $3\frac{1}{2}$ (8) 0.96 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$	3251.66 A 300 4213.95 B 300 3690.35 B 300 3894.19 B 300 3958.66 B 300	1.45 4.38 1.45 4.79 1.45 4.62 1.45 4.56	1-1 (6) 3-3 5s ¹ D-5p ³ F° 3-2 (7) 2-3 5s ¹ D-5p ³ D° 3-2 (8)
309.267 A 30 636.235 A 35 155.136 A 12 171.028 A 40 142.763 A 8 040.744 A 6 911.593 A 3	0.92 3.35 4-4 a ⁵ D ₋ z ⁵ D°† 1.06 3.25 3-4 (10) 1.12 3.51 1-2 0.92 3.31 4-5 a ⁵ D ₋ z ⁵ F°† 1.06 3.46 3-4 (11) 1.12 3.57 2-3 1.12 3.63 1-2	3538.142 A 4 3793.217 A 15 3833.889 A 10 4121.682 A 15	0.70 4.19 3½-3½ 0.70 3.96 3½-3½ e ² F-z ² D° 0.96 4.18 2½-1½ (9) 0.96 3.96 3½-3½	3489.79 A 200r 3553.10 A 500r 3441.40 A 300 3433.44 A 250	1.45 4.98 1.45 4.93 1.45 5.03 1.45 5.04	3-1 3-3 58 ¹ D-5p ¹ F° (9) 3-3 58 ¹ D-5p ¹ D° (10) 3-1 58 ¹ D-5p ¹ P° (11)
869.153 A 25 921.074 A 12 907.888 A 8 669.977 A 8 757.841 A 30 372.208 A (10)	1.06 3.57 3-3 1.12 3.63 2-3 0.93 3.57 4-3 0.93 3.53 4-5 a ⁵ D-z ³ G°† 0.92 3.75 4-4 a ⁵ D-z ³ F°†	Rh II I P ? Anal 3207.297 A 250 3028.808 A 75 3074.081 A 50 3434.57 P 3162.284 A 100	C List D Nov 1942 3.13 6.98 4-4 ³ F- ⁵ D° † 3.39 7.46 3-3 (1) 3.56 7.57 2-3 3.39 6.98 3-4 3.56 7.46 2-3	Pd II See introduction	LA List C	May 1942
709.484 A 35	(13) 1.13 3.75 4-4 b ³ F-z ³ F°† (14)	3159.254 A 300 3151.500 A 75 3386.129 A 2 3233.324 A 250 3239.101 A 30 3019.819 A 150 2988.387 A 50	3.13 7.04 4-5 3F-5F++ 3.39 7.30 3-4 (2) 3.56 7.30 2-3 3.56 7.65 2-3 3F-5G++ 3.56 7.65 2-3 (3)	388Q.682// A 1000R 3382.890 A 1000R 	3.76 5.25 3.65 5.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

84	REVISED MULTIPLET TABLE		
Laboratory E P J Multiplet I A Ref Int Low High (No)	Laboratory E P J Multiplet I A Ref Int Low High (No)	Laboratory I A Ref Int	E P J Multiplet Low High (No)
Cd I I P 8.96 Anal A List D Aug 1943 3261.050 A 10R 0.00 3.78 0-1 51s-53po	Cs I I P 3.88 Anal A List D Nov 1943 8531.10 // A 4000R 0.00 1.45 1-11 63s-63P°	<u>Ba II</u> continued 5013.00 D (10)	5.99 8.45 3\\\ 5.96 8.45 2\\\\ - (10)
5085.824 A 100R 3.93 6.36 2-1 5 ³ P°-6 ³ S 4799.918 A 100R 3.78 6.36 1-1 (2) 4678.160 A 50 3.72 6.36 0-1	8943.50 A 2000R 0.00 1.38 $\frac{1}{2}$ - $\frac{1}{2}$ (1) 4555.421 B (2000R) 0.00 2.71 $\frac{1}{2}$ - $\frac{1}{2}$ 6 ² S-7 ² P° 4593.195 B (1000R) 0.00 2.69 $\frac{1}{2}$ (2)	4957.15 D (10) 4309.32 D (8) 4267.95 D (8)	5.96 8.45 $2\frac{1}{2}$ (10) 5.99 8.85 $3\frac{1}{2}$ $4^2F^0-7^2G$ 5.96 8.85 $2\frac{1}{2}$ (11)
6438.4696 B 100 5.39 7.31 1-8 5 ¹ P°-5 ¹ D (3)	Cs II See introduction	6378.91 D (5) 6135.83 D (4)	6.17 8.11 $\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-9 ² S 6.10 8.11 $\frac{1}{2}$ $\frac{1}{2}$ (12)
Cd II See introduction	Ba I I P 5.19 Anal A List C Nov 1942	5981.25 D (8) 5784.18 D (8) 5999.85 D (3)	6.17 8.24 $1\frac{1}{2}$ $-3\frac{1}{2}$ $7^{3}P^{\circ}$ $-8^{2}D$ 6.10 8.23 $\frac{1}{2}$ $-1\frac{1}{2}$ (13) 6.17 8.23 $1\frac{1}{2}$ $-1\frac{1}{2}$
	7911.338 A (200) 0.00 1.56 0-1 6 ¹ s-6 ³ P°	4997.81 D (3) 4847.14 D (3)	6.17 8.64 $1\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-10 ² 8 6.10 8.64 $\frac{1}{2}$ $\frac{1}{2}$ (14)
<u>In I</u> I P 5.76 Anal A List D Aug 1942	5535.484// A 1000R 0.00 3.23 0-1 6 ¹ s-6 ¹ P° (2)	4843.46 D (8)	6.17 8.72 1½-3½ 7 ² P°-9 ² D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3501.107 A 300R 0.00 3.53 0-1 6 ¹ 5-566p ¹ P° (-5) 3071.583 A 100R 0.00 4.03 0-1 6 ¹ 5-7 ¹ P°	4708.94 D (8) 4850.84 D (2)	6.10 8.72 ½-1½ (15) 6.17 8.72 1½-1½
In II See introduction	7059.941 A (2000) 1.18 2.93 3-4 5 ³ D-5d6p ³ F° †	4405.23 D (4) 4287.80 D (3)	6.17 8.98 $1\frac{1}{2}$ $\frac{1}{2}$ 7^{2} P°-11 ² S 6.10 8.98 $\frac{1}{2}$ $\frac{1}{2}$ (16)
	7380.398 A (1000) 1.14 2.83 2-3 (5) 7672.092 A (600) 1.13 2.72 1-2 7488.083 A (200) 1.18 2.83 3-3 7780.479 A (400) 1.14 2.78 2-3	4325.73 D (6) 4216.04 D (5) 4329.62 D (3)	6.17 9.03 $1\frac{1}{2}-2\frac{1}{2}$ $7^{2}P^{0}-10^{2}D$ 6.10 9.02 $\frac{1}{2}-1\frac{1}{2}$ (17) 6.17 9.02 $1\frac{1}{2}-1\frac{1}{2}$
<u>Sn I</u> I P 7.30 Anal A List D Aug 1942 3009.136 A 700R 0.21 4.31 1-1 5p ³ P-6s ³ P° 1	6498.759 A 300r 1.18 3.08 3-3 5 ³ D-5d6p ³ D° 6527.312 A 250 1.14 3.03 2-2 (6)		
3175.046// A 2000R 0.42 4.31 2-1 (1) 3034.120 A 900R 0.21 4.28 1-0	6595.326 A 200 1.12 2.99 1-1 6693.842 A 70 1.18 3.03 3-2	La I I P 5.59 Anal	
3330.620 A 500r 1.06 4.77 2-2 5p ¹ p-6e ³ P° 3801.022 A 2000R 1.06 4.31 2-1 (2)	6675.271 A 80 1.14 3.99 2-1 6341.682 A 150 1.14 3.08 2-3 6450.854 A 135 1.12 3.03 1-3		0.13 2.04 $2\frac{1}{2}-3\frac{1}{2}$ $a^{2}D-z^{2}F^{\circ}$ 0.00 1.88 $1\frac{1}{2}-3\frac{1}{2}$ (1) 0.13 1.88 $2\frac{1}{2}-3\frac{1}{2}$
3262.340 A 2500R 1.06 4.85 2-1 5plp-6alpo (3)	6110.784 A 300r 1.18 3.20 3-2 5 ³ p-5 ₄ 6p ³ p° † 6063.117 A 200 1.14 3.17 2-1 (7) 6019.470 A 100 1.12 3.17 1-0		0.13 2.21 $2\frac{1}{2}$ $3\frac{1}{2}$ $a^{2}D-y^{2}F^{0}$ 0.00 2.08 $1\frac{1}{2}$ $3\frac{1}{2}$ (2) 0.13 2.08 $3\frac{1}{2}$ $3\frac{1}{2}$
5631.707 A 500 2.12 4.31 0-1 5p ¹ S-6s ³ P° (4)	5971.699 A 100 1.14 3.20 2-2 5997.088 A 100 1.12 3.17 1-1	5455.14 A 400 5501.34 A 300	0.13 2.39 $3\frac{1}{2} - 3\frac{1}{2}$ $a^2 D - y^2 D^0 +$ 0.00 2.24 $1\frac{1}{2} - 1\frac{1}{2}$ (3)
4524.744 A 1000 2.12 4.85 0-1 5p ¹ S-6s ¹ P° (5)	3993.401 A 80 1.18 4.28 $3-4$ $5^3D-4^3F^{\circ}$ 3935.717 A 50 1.14 4.27 2-3 (8) 3909.910 A 40 1.12 4.27 1-2	5271.18 A 150	0.13 2.47 21-11 a ² D-y ² Pe+ 0.00 3.49 11-1 (4)
	3995.656 A 30 1.18 4.27 3-3 3937.870 A 20 1.14 4.27 2-2	4280.27 A 100	0.13 3.01 2½-3½ a ² D-w ² F° † 0.00 3.95 1½-3½ (5)
Sn II I P 14.57 Anal A List D Aug 1942 6453.50 A 70 7.02 8.93 $\frac{1}{2}$ -1 $\frac{1}{2}$ 6 2 5-6 3 Pe 6844.05 A 25 7.02 8.83 $\frac{1}{2}$ - $\frac{1}{2}$ (1)	5777.622 A 400r 1.67 3.80 2-3 6 ³ P°-6 ³ D† 5519.047 A 200 1.56 3.80 1-2 (9) 5424.551 A 100 1.51 3.79 0-1 5800.229 A 100 1.67 3.80 2-2	6709.49 A 200	0.37 2.21 21-31 a4F-y2Fe+ 0.33 2.08 11-32 (6)
3351.97 A 60 7.34 11.03 21-31 p ² 3D-4 ² F° 3283.21 A 50 7.26 11.02 11-21 (2)	7905.751 A 500 1.67 3.23 2-1 6 ³ P°-7 ³ S 7392.411 A 400 1.56 3.23 1-1 (10) 7195.235 A 200 1.51 3.23 0-1	6394.23 A 600 6410.98 A 300	0.51 2.48 4½-5½ a ⁴ F-z ⁴ G°† 0.43 2.36 3½-4½ (7) 0.37 2.30 2½-3½ 0.33 2.22 1½-2½
Sb I I P 8.64 Anal A List D Sept 1942	Ba II I P 9.96 Anal A List B Nov 1943	5789.32 A 250d? 5769.32 A 80	0.51 2.64 41-41 a4F-y4F*† 0.43 2.56 31-31 (8) 0.37 2.51 31-21 0.33 2.48 11-19
3347.10 A 5 2.28 5.97 1 2-2 5p ² P°-68 ⁴ P 3383.15 A 100 2.02 5.67 2-1 (1) 3637.83 A 250 2.28 5.67 12-1 (1) 3722.79 A 200r 2.02 5.34 2-2	4554.033 // A 1000R 0.00 2.71 1-11 625-62P° 4934.086 B 700R 0.00 2.50 1-1 (1)		0.51 3.88 41-31 a4F-y4p° † 0.43 2.82 31-21 (9) 0.37 3.77 31-11
4033.55 A 200 2.28 5.34 1 = 1	6141.718 A 600r 0.70 3.71 31-11 53D-62P°	5106.23 A 150d	0.33 2.75 15- 5
3267.51 A 700r 2.02 5.80 $\frac{1}{2}$ (2)	6141.718 A 600r 0.70 3.71 $2\frac{1}{2}-1\frac{1}{2}$ $5^{2}D-6^{2}P^{2}$ 6496.896 A 600r 0.60 3.50 $1\frac{1}{2}-\frac{1}{2}$ (2) 5853.675 A 300 0.60 2.71 $1\frac{1}{2}-1\frac{1}{2}$		0.51 2.87 4½-3½ a ⁴ F-1°† (10) 0.51 3.81 4½-4½ a ⁴ F-x ⁴ F°†
3504.48 A 50 2.28 5.80 14-4 3029.63 A 500r 2.02 6.10 3-13	4899.934 A 35 2.71 5.23 $\frac{1}{2}$	4567.90 A 200 4549.50 A 50	0.51 3.21 4½-4½ a ⁴ F-x ⁴ F°† 0.43 3.13 3½-3½ (11) 0.37 3.08 2½-2½ 0.33 3.08 1½-1½
Sb II See introduction	4130.648 A 80 2.71 5.70 1 2 2 6 6 PP 6 PD 3891.781 A 50 2.50 5.67 1 1 4 (4)		12-12
ma T T D 0 00 4002 D 1404 D 5 1000	4166.003 A 20 2.71 5.67 12-12 (4)	La II I P 11.38 Ana	l A List B Nov 1943
Te I I P 8.96 Anal B List D June 1942 9722.88 A 100 5.46 6.73 2-3 65so-65p	8710.82 C (3n) 5.70 7.11 $2\frac{1}{2}$ - $3\frac{1}{2}$ $6^{2}p$ - 5^{2} F° 8737.74 C (3n) 5.67 7.08 $1\frac{1}{2}$ - $2\frac{1}{2}$ (5)		0.34 1.94 4-4 a ³ F-z ³ F°† 0.13 1.77 3-3 (1)
10051.55 A 50 5.46 6.69 2-2 (1) 10091.13 A 25 5.46 6.69 2-1	5391.60 D (10) 5.70 7.99 $3\frac{1}{2}-3\frac{1}{2}$ 6^{2} D- 6^{2} F° 5361.35 D (8) 5.67 7.97 $1\frac{1}{2}-3\frac{1}{2}$ (6)	7066.24 A 300 6808.88 A 30	0.13 1.77 3-3 (1) 0.00 1.75 2-3 0.13 1.94 3-4 0.00 1.77 2-3
I I See introduction		6774.28 A 100	0.13 1.95 3-3 a ³ F-z ¹ F°†
I II See introduction	4326.74 D (2) 5.70 8.55 $2\frac{1}{2}$ $-3\frac{1}{2}$ $6^{2}D-7^{2}F^{\circ}$ 4297.60 D (2) 5.67 8.54 $1\frac{1}{2}$ $-2\frac{1}{2}$ (7)		0.34 3.05 4-4 a ³ F-z ¹ Go + (3) 0.34 3.37 4-4 a ³ F-y ³ F°
Xe I See introduction	6874.09 D (10) 5.99 7.78 $3\frac{1}{2}$ $4^{2}F^{\circ}-5^{2}G$ 6769.63 D (10) 5.96 7.78 $3\frac{1}{2}$ (8)	5805.77 A 130 5808.31 A 60	0.13 3.25 3-3 (4) 0.10 3.12 3-2 0.24 2.25 4-3
Xe II See introduction	5480.30 D (3) 5.99 8.24 $3\frac{1}{2}$ $4^2F^0 - 8^2D$ 5428.79 D (2) 5.96 8.23 $2\frac{1}{2}$ (9)	6172.72 A 10 5493.45 A 20	0.13 2.12 3-2 0.13 2.37 3-4 0.00 2.25 2-3

																				00
Labo I A	orator Ref	y Int	Low E	P High	J	Multiplet (No)	Labo I`A	rator Ref	ry Int	E Low	P High	J	Multiplet (No)	Labo: I A		'y Int	Low E	P High	J	Multiplet (No)
La II c	ontin	req					La II co	ntin	neq					La II co	ntinu	req				
6305. 4 6	A	10	0.34	3.20	4-4	a ³ F-z ³ H°	5880.63	A	50	0.23	2.33	1-3	$a^{3}D-z^{1}D^{o}+$ (35)	3705.81 3780.67	A	80 50?	0.77		2-2	a ³ P-x ³ P°
5 29 0.83	A	50	0.00	2.33	2-2	a ³ F-z ¹ D° †	5183.42 5122.99	A A	400 200	0.40	2.78 2.73	3-3 3-2	a ³ D-z ³ D° (36)	3854.91 3835.09	A A A	30 50	0.71 0.77 0.71	3.97	1-1 3-1 1-0	(55)
4921.80 4920.98	A A	300 300	0.24	2.75 2.63	4-5 3-4	(6) a ³ F-z ³ G• (7)	5114.55 5301.97	Ā	300 300	0.23	2.65 2.73	1-1 3-2	(50)	3637.15 3714.87	Ä	40 40	0.71	4.10 3.97	1-2	
4899.92 5163.61	Ā	200 40	0.00	2.52 2.63	2-3 4-4	***	5303.54 4946.47	Ā	100 50	0.32	2.65 2.73	3-1 1-3		0122701	•					
5156.74 5423.82	A	40 4		3.52 3.52	3-3 4-3		4999.46	A	200	0.40	2.87	3-2	a ³ D-z ³ P°	5380.97	A	100	0.91	3.21	0-1	a ¹ S-y ³ D° (56)
4860.90	A	80		2.78	4-3	a3r_z3D°	4970.39 4809.00	A A	100 100	0.33	2.80 2.80	3-1 1-0	(37)	4991.27	A	80	0.91	3.39	0-1	a1g_z1pe (57)
4740.27 4662.51	A A	120 200	0.13	2.73 2.65	3-2 3-1	(8)	4840.03 4804.04	A A	30 80	0.33	2.87 2.80	3-3 1-1		4354.40	A	300	0.91		0-1	a ¹ S-y ¹ P° (58)
4645.28 4522.37	Ā	100 400	0.13	2.78 2.73	3-3 2-2		4682.12	A .	5	0.23	2.87	1-2	3- 1-0	4036.59	A	15d	0.91	3.97	0-1	a ¹ S-x ³ P° (59)
4435.84 4300.44	A	10 60	0.00	2.78 2.87	2-3	a ³ F-z ³ P° †	4713.93 4570.97	A	40 10 400	0.40	3.02	3-2 3-3	a ³ D_y ¹ D° (38)	9657.00	A	30	0.92	2.20	4-4	
4086.72	A	300		3.02	2-2	(9) a ³ F-y ¹ D°	4429.90 4699.62	A A	50	0.23	3.02	1-2 3-3	a ³ D_y ¹ F°	6636.53	A	5	0.92	2.78	4-3	(60) a ¹ G-z ³ D°
4432.95	A	201		3.03		(10) a ³ F_y ¹ F° +	4558.46	Ā	300	0.32	3.03	2-3	(39)	5863.70	A	80	0.92	3.03	4-3	(61) a ¹ G-y ¹ F° (62)
4076.71	Ā	40	0.00	3.03	3-3	(11)	3988.51 4031.68	A A	500 300	0.40 0.32	3.50 3.38	3-3 2-2	a ³ D-y ³ D° (40)	4796.67	A	25	0.92	3.50	4-3	
3794.78 3790.83	A A	400 300	0.24	3.50 3.38	4-3 3-2	a ³ F-y ³ D° (13)	4151.98 4141.73	A A	250 200	0.23	3.31	1-1 3-2	(10)	4739.80	A	15	0.92	3.53	4-4	
3849.02 3662.08	A A	100 30	0.00 0.13	3.21 3.50	2-1 3-3		4275.64 3886.37	A A	100 150	0.32	3.21	2-1 2-3		4748.73	A	150	0.92	3.52	4-5	a ¹ G_z ¹ H° (65)
3650.19 3530.67	A A	80 8	0.00	3.38 3.50	2-2 2-3		3921.54	. A	300	0.23	3.38	1-3		4042.91	A	300	0.92	3.98	4-3	a1G-x1F° (66)
3759.08	A	300		3.53	4-4	a3F-x3Fe	3949.10 / 4123.23	A	600 400	0.40 0.32	3.53 3.31	3-4 2-3	a ³ D-x ³ F° (41)	6958.11	A	100	1.25	3.02	2-2	b1D-y1D°
3871.64 3784.81	Ā	200 15	0.13	3.31 3.26	3-3 2-3	(13)	4077.35 4238.38	A	300 400	0.23	3.26 3.31	1-3 3-3		5486.86	Ą	5		3.50	2-3	(67) b ¹ D-y ³ D° †
3936.22 3628.83 3725.05	A A	50 60 2 0	0.13 0.13 0.00	3.26 3.53 3.31	3-2 3-4 2-3		4196.55 4315.90	A A	250 30	0.32 0.40	3.26 3.26	2-2 3-2		*6296.08	A .	300	1.25	3.21	2-1	(68)
3645.43	A .	200	0.00	3.39	2-3 2-1	a ³ F_z ¹ p°	4025.87 3916.05	A A	50 300	0.32	3.39 3.39	2-1 1-1	a ³ D-z ¹ P° (43)	5971.09 6126.09	A A	8 50	1.25 1.25	3.31 3.26	2-3 2-2	b ¹ D-x ³ F° (69)
3510.00	A	15	0.13	3.64		(14) a3F_y3p•	3808.79	A	15	0.40	3.64	3-2	a ³ p_y ³ p• +	5769.06	A	60	1.25	3.39	2-1	b ¹ D-z ¹ po (70)
3550.82	A	6	0.00	3.48	2-1	(15)	3910.81 3715.53	A A	10 l 50	0.32	3.48 3.64	3-1 2-3	(43)	5535.66	A	80	1.25	3.48	2-1	b ¹ D-y ³ P° † (71)
3108.46	A	8	0.00	3.97	2-1	a ³ F-x ³ P° (16)	3601.07	A	20nl	0.32	3.75	2-1	a ³ D-y ¹ P°	4934.83	A	100	1.25	3.75	2-1	b15_y1po (72)
3306.98 3104.58	A	8 50	0.24	3.98 3.98	4-3 2-3	a ³ F-x ¹ F° † (17)	3512.93	A .	10	0.23	3.75	1-1	(44)	4530.54	A	15	1.25		2-1	b ¹ D-x ³ pe (73)
6952.52	A	10	0.17	1.95	- 2 7	a ¹ D-z ¹ F°	3337.49 3380.91	A	300 300	0.32	4.10 3.97	3-2	a ³ D-x ³ P° (45)	•4522.37	A	400	1.25	3.98	2-3	b ¹ D-x ¹ F° (74)
5936.22	A	30	0.17	2.25	2-3	(18) a ¹ D-y ³ F°	3344.56 3265.67	A	200 600 150	0.23	3.92 4.10	1-0 3-3		4286.97	A	300	1.94		4-5	z ³ F°-e ³ G†
6320.39	Ã	200	0.17	2.12	2-3	(19)	3303.11 3193.02	A	25	0.23	3.97 4.10	1-1		4385.20 4692.50 4655.49	A A A	40 200 400	1.77 1.75 1.94	4.59 4.38 4.59	3-4	(75)
5712.39	A	30	0.17	2.33	3-3	a ¹ D-z ¹ D° (30)	3453.17 3376.33	A A	50 50	0.40	3.98 3.98	3-3 2-3	a ³ D-x ¹ F° (46)	4743.08	Â	250	1.77	4.38	4-4 3-3	
5259.38	A	50	0.17	2.52	2–3	a ¹ D_z ³ G° (21)		•				_	(10)	4525.31 4427.52	A A	100 100	1.94 1.77	4.67 4.56	4-4 3-3	z ³ F°-e ³ F (76)
4728.41 4826.87	A A	100 30	0.17 0.17	2.78 2.73	2-3 2-2	a ¹ D-z ³ D° (23)	6129.57 6100.37	A A	50 30	0.77	2.78 2.73	2-3 1-2	a ³ P-z ³ D° (47)	4619.87 4703.27	Ā	300 150		4.42	3-2 4-3	(10)
4986.83	A .	100	0.17	2.65	3-1	4 7	6174.15 •6296.08	A A	6 300			0-1 2-2		4668.91 4269.50	A A	250 300	1.77	4.43	3-2 3-4	
4574.87 4691.17	A	200 50	0.17 0.17	2.87 2.80	2-2 2-1	a ¹ D- z ³ P° (23)	6358.12 6570.96	A A	30 1		2.65 2.65	1-1 2-1		4383.44	A	100	1.75		2–3	7
4333.76	A	500	0.17	3.02	3-3	a ¹ D-y ¹ D° (24)	5874.00	A	6		2.87	3-2	a ³ P-z ³ P° †	4647.50 4378.10	A	100 50	1.94	4.59	3-3	z ³ F°-e ¹ F (77)
4322.51	A	100	0.17	3.03	2-3	a ¹ D_y ¹ F° (25)	6067.13 5892.66 5703.32	A A A	6 4 20	0.71	2.80	2-1 1-0 1-2	(48)	4334.96	A	100 200	1.75		2-3	z ³ F°-e ³ D†
3713.54 3846.00	A A	100 20		3.50 3.38	2-3 2-2	a ¹ D_y ³ D° (26)	5727.29	Ā	30	0.65	2.87 2.80	0-1		4217.56 4192.35 4099.54	A A A	100 150	1.94 1.77 1.75	4.72	4-3 3-2 2-1	(78)
4067.39	A	100	0.17	3.21	2-1		5464.37	A	25	0.77	3.03	2-3	a ³ P_y ¹ F° (49)	3994.50 4152.78	A A	10 100	1.77	4.86	3-3	
3929.22 3995.74	A A	300 400	0.17 0.17	3.31 3.26	2-3 2-2	a ¹ D-x ³ F° (27)	4526.12 4613.38	A A	200 200	0.77	3.50 3.38	2-3 1-2	(49) a ³ P-y ³ D° (50)	4349.99	 A	100	1.94			z ³ F°-e ¹ G
3840.72	A	60	0.17	3.39	2-1	a ¹ D-z ¹ P°	4824.05 4724.42	A A	100 40	0.65 0.77	3.21 3.38	0-1 2-2	• •	4023.58	Ā	40	1.77		3-4	(79)
3557.26	A	.8		3.64		(28) a ¹ D-y ³ P°	4935.61 5062.91	A A	10 20		3.21 3.21	1-1 2-1		4671.82	Ą	300	1.95			z1F°-e30
3735.85 3 45 2.18	A	10 40		3.48 3.75	2-1 2-1	(29) a ¹ D-y ¹ P°	*4850.58	A	30		3.31		a ³ P-x ³ F°	5080.21	A	40		4.38	3-3	(80)
3143.76	A	40		4.10		(30) a ¹ D-x ³ P°	4830.51 4716.44	A A	10 80	0.71		1-2	(51) a ³ P-z ¹ P°	4540.71 4719.93	A	10 150	1.95 1.95		3-4 3-3	z ¹ F°-e ³ F† (81)
3249 .35	Ã	80	0.17		3-1	(31)	4605.78 4508.48	A A	100 10	0.71	3.39	1-1	(52)	4663.76	A	300	1.95	4.59	3-3	z ¹ F°-e ¹ F (82)
3245.13	A	150	0.17	3.98	2-3	a ¹ D-x ¹ F° (32)	4296.05	A	300	0.77			a ³ P-y ³ P°	4230.95	A	150	1.95	4.86	3-3	z ¹ F°-e ³ D (83)
8262.30	A	300		2.37	- 3 -4	a ³ D-y ³ F°	4455.79 4559.28	A A	50 100	0.71 0.77	3.48	1-1 3-1	(53)	4263.59	A	300	1.95	4.84	3-4	z ¹ F°-e ¹ G (84)
8390.48 8526.99	A	300 300	0.23	2.25 2.12	2-3 1-3	(33)	4580.05 4204.03	A A	150 100	0.71 0.71	3.40 3.64	1-0 1-2		4050.08	A	200	1.95	4.99	3-2	z1F°_e1D (85)
6671.41 8837.91	A	40 15	0.40 0.32	2.25 2. 12	3-3 2-2		4364.66	A	100	0.65	3.48	0-1	3n 1n-	4859.18	Ą	5n	2.05			z ¹ G°-e ³ G†
8859.03	A	5	0.40	2.20	3-4		4143.77 4058.08	A	15 5	0.77 0.71		3-1 1-1	a ³ P_y ¹ P° (54)	5302.62	A	150	2.05	4.38	4-3	(86)
						(34)														

86							K E V	156	L D MAIL	,										
Labo I A	rator Ref	y Int	E Low	P High	J	Multiplet (No)	Labo I A	rator Ref	'y Int	E Low	P High	J	Multiplet (No)	Lab I A	orator Ref		Low E	P High	J	Multiplet (No)
La II co	ntinu	eđ					La II co	ntinu	ıed					La II c	ontinu	ed				
4717.58 4911.34	A A	50 10	2.05 2.05	4.67 4.56	4-4 4-3	z ¹ G°-e ³ F (87)	3049.39 3054.02 3081.42	A A A	5 6 6n	2.78 2.73 2.65	6.83 6.77 6.65	3-4 3-3 1-2	z ³ D°-f ³ F† (115)	*4600.59	A	5n	$\binom{3.64}{3.48}$	6.32 6.16	2-3 1-2	y ³ P°-f ³ D† (148)
*4850.58	A	30	2.05	4.59	4-3	z ¹ G°-e ¹ F (88)	3022.26	A	5nl	2.73	6.81	3-3	$z^3D^{\bullet}-g^1D$	4538.87	A	8nl	3.64	6.36	2-3	y ³ P°_f ¹ D (149)_
4419.16	A	30	2.05	4.84	4-4	z ¹ G°-e ¹ G (89)						_	(116)	4132.50	A	10nl	3.64		2-3	y ³ P°-g ³ D (150)
5048.04 5279.11	A	30 1 40		4.82 4.59	4-5 3-4	y ³ F°_e ³ G (90)	6188.09 6443.05 6307.25	A A	100 l 50 n 20 n	2.87 2.80 2.80	4.86 4.72 4.76	2-3 1-2 0-1	z ³ p°_e ³ D† (117)	3767.05 3885.09	A	5n 4	3.64 3.64	6.92	2-2 2-1 -	y3pe_é3p † (151)
5480.72 5566.92 5806.56	A A A	25 40 8.	2.12 2.37 2.25	4.38 4.59 4.38	2-3 4-4 3-3		6315.79 5808.63	A	50 8	2.80	4.76 4.99	1-1 2-3	z ³ po_e ¹ D	9346.69	A	15	3.52	4.84	5-4	z ¹ H°-e ¹ G (152)
5381.77	A	50	2.37	4.67	4-4	y ³ F°-e ³ F†	3460.31	A	51	2.87	6.44	2-3	(118) z ^{3po} _f ¹ F	4880.20	A	10n	4.10	6.63	- 2–3	x ³ P°-g ³ D†
5340.66 5381.91	A	100 100	2.25 2.13	4.56 4.42	3-3 3-3	(91)	3283.95	A	8 n	2.87	6.63	2-3	(119) z ³ P°-g ³ D†	4502.16	A	10n]	3.97	6.71	1-1	(153) x ³ pe_e ³ s (154)_
4952.06 5002.12	A A	40 40	2.37 2.25	4.86 4.72	4-3 3-2	y ³ F°-e ³ D† (92)	3329.07 3326.21	A A	8 5	2.80 2.87	6.51	1-2 2-1	(130) z ³ p•_e ¹ p†	3411.76 3580.10	A A	30nl 8n	4.10 4.10	7.72 7.55	3-3 3-1	x3p°_f3p+ (155)
4688.65	Ã	40	2.13	4.76	2-1		3212.56	A	5	2.87	6.71	3-1	(121) z ^{3p°} -e ³ s†	3578.89 3294.44	A A	5n 10	3.97 3.97	7.42	1-0	(===,
4996.82	A .	50	2.37	4.84	4-4	y ³ F°-e ¹ G (93)						-	(122)	3407.00	A	8n1	3.92	7.55	0-1	3ne3ne
4498.76	A	10	2.2 5	4.99	3-2 -	y ³ F°_e ¹ D (94)	3932.53 3694.27	A	10 l 7 n	3.02	6.16 6.36	2-2 2-3	y ¹ D°-f ³ D† (123) y ¹ D°-f ¹ D	3217.12 3112.63	A	8n 8n	4.10 3.97	7.94 7.94	2-2 1-2	x ³ P°-g ³ P† (156)
5188.21 5377.08	A A	500 200	2.44 2.29	4.82 4.59	6-5 5-4	z ³ H°-e ³ G (95)	3612.34	A	50	3.02	6.44	2-3	(124) y ¹ D°-f ¹ F	3174.88 3191.39	A A	10nl 10n	4.10 4.10	7.99 7.97	2-3 2-2	x ³ P°-h ³ D† (157)
5671.54 4891.43	A A	100 10	2.20 2.29	4.38 4.82	4-3 5-5	,,	3420.54	A	5 n	3.02	6.63	2-3	(125) y1D°-g ³ D†							11
5167.28	A .	10	2.20	4.59	4-4	3 3	3520.72	A	10 nl	3.02	6.53	2-3	y1D°-f3G	5173.83	A .	251	3.98	6.36	3-2	x ¹ F°-f ¹ D (158) x ¹ F°-f ¹ F
5204.1 4 5226.20	A	300 40 1	2.29	4.67 4.56	5-4 4-3	z ³ H°-e ³ F (96)	3397.77	A	40 nl	3.02	6.65	3-3	(127) y ¹ D°_f ³ F (128)	5014.45 4194.36	A	30nl 30n	3.98	6.44		(159) x1F0-f1G
5157.43	A	150	2.20	4.59	4-3	z ³ H°-e ¹ F _(97)	6718.68	A	60	3.03	4.86	- 3-3	y1F°_e3D†	4134.00	•				-	(160)
4843.29	A	5	2.29	4.84	5-4	z ³ H°-e ¹ G (98)	6801.38	A	5	3.03	4.84	3-4	(129) y1F°_e1G	4562.5	A	5n	4.38	7.08	3–3	e ³ G-1° (161) e ³ G-2°
5458.68	A	50	2.33	4.59	2-3	z ¹ D°-e ¹ F (99)	6273.76	A	100	3.03	4.99	3-2	(130) y1F°-e1D (131)	5066.99	A	20n 15nl	4.82	7.25 7.50	5-4 4-4	(162) e ³ G-4°†
5172.89 5090.56	A A	20 1 20 1	2.33 2.33	4.72 4.76	2-3 2-1	z ¹ D°-e ³ D† (100)	3427.57	A	. 8	3.03	6.63	3-3		4341.30	A				-	(163)
4636.42	A	80	2.33	4.99	2-2	z ¹ D°-e ¹ D	4363.05	A	50 1	3.50	6.32	- 3-3	y ³ D°-f ³ D	5107.54	A	6n	4.67	7.08	4-3	e ³ F-1° (164)
3007.32	A	5	2.33	6.44	2-3	(101) z ¹ D°-f ¹ F	4443.94 4207.61	A	20 nl 10 l	3.38 3.21	6.16 6.14	2-2 1-1	(133)	4304.11	A	10nl	4.67	7.53	4 - -	e ³ F_5°† (165)
5973.52	A	130 1	2.75	4.82	- 55	(102) z ³ g•_e ³ g†	4634.95 4474.03 m4193.37	A A P	35 1 10 La+	3.50 3.38 3.38	6.16 6.14 6.32	3-2 2-1 2-3		4113.28	A	40 1	4.59	7.59	3-	e ¹ F-6° (166)
6310.91 6642.79	A A	200	2.63	4.59	4-4 3-3	(103)	4180.97	Ā	131	3.21	6.16	1-3		4131.74	A	5n	4.86	7.85	- 3 -	e ³ D-7°
6714.08 5652.3	A A	80 10 n	2.75 2.63	4.59 4.82	5-4 4-5		3939.85 3816. 25	A A	20 l 10 n	3.50 3.21	6.63 6.44	3-3 1-1	y ³ D°-g ³ D† (134)	3817.24	A	8n	4.72	7.95	2-3	(167) e ³ D-8° (168)
6446.62 6399.04	A A	200 400	2.75 2.63	4.67 4.56	5-4 4-3	z ³ G°-e ³ F† (104)	3925.09	A	5	3.38	6.53	2-3	y ³ D°-f ³ G (135)	Stronges	t. linel	aggifie	d Lines	of La	II	(100)
6498.19	Ä	250	2.52	4.43	3-2	(104)	3701.81 3641.66	A A	40 1 50 1	3.50 3.38	6.83 6.77	3-4 2-3	y ³ D°-f ³ F† (136)			La III		· <u>-</u>		
5948.30	A	30	2.52	4.59	3-3	z ³ G°_e ¹ F (105)_	3581.68	Ā	20 nl	3.81	6.65	1-2		5817.83 4516.38	A A	10n 5nl				
5532.17 5610.53	A A	10 20	2.63 2.52	4.86 4.72	4-3 3-2	z3G°_e3D (106)	3731.48	A	8 n	3.50	6.80	3-4 -	у ³ D°-е ³ Н (137)	4210.22 4201.50 4193.34	A A A	50nl 6n				
5901.95	A	401	2.75	4.84	5-4	z ³ G°-e ¹ G (107)	4411.21 4337.78	A A	25 nl 10 l	3.53 3.31	6.16	3-2	x ³ F°-f ³ D† (138)	4161.94	A	8n				
6830.83	A	6	2.78	4.59	3-4	z ³ D°-e ³ G†	4098.73	A	5		6.32	3-3	x ³ F°-f ¹ D	4133.33 4007.64	A A	6nl 7n 51				
6554.18 6732.80	A A	? 40		4.67 4.56	3-4 3-3	(108) z ³ D°-e ³ F (109)	3981.36 3979.08	A A	10 l 8 l	3.26 3.53	6.36	2-2 4-3	(139) v3F°_g3n+	3963.04 3962.03	A A	101				
6968.78	Â	25	2.65	4.42	1-2	_	3864.49	A	1001	3.53	6.72	4-5	(140) x ³ F°-f ³ 0†	3747.96 3665.22	A A	51 101				
6813.68	A .	50		4.59	3-3	z ³ D°-e ¹ F† (110) z ³ D°-e ³ D†	3773.12 3780.53	A A	150 1 50 ?	3.31		3-4 2-3	(141)	3610.25 3298.72	A	30 l 5 n				
5927.71 6203.51	A A	30 50 1	2.73	4.86	3-3	z ³ D°-e ³ D† (111)	3736.41	A	15 l	3.53	6.83 6.77	4-4		3208.13 3018.95	A	6 6nl				
5848.95 6374.08 6085.43	A A A	20 30 10	2.78	4.76 4.73 4.76	1-1 3-2 2-1		3570.10 3474.84	A A	30 nl 8 l		6.81	3-3 2-2	(142) x ³ F°-g ¹ D†	3004.68	Ä	5n				
5447.59	A	10	2.73	4.99	2-2	z ³ D°-e ¹ D†	3423.9	A	5	3.31	6.93	3-4	(143) x ³ F°-f ¹ G†	_						4040
3484.39	A	101	2.78	6.32	3-3	(112) z ³ D°-į ³ D†	2985.43	A	5	3.26	7.39	2-2		La III	IP1	.9.1 A 300	nal C 1.68	List /		ov 1942 6 ² 5–6 ² P°
3432.81 3209.13	A	5 6	2.73	6.32	2–3 3–3	(113) z ³ D°-g ³ D†	4481.31	A	25 nl	3.39	6.14	- 1-1	(145) z ¹ P°-f ³ D	3171.68 3517.14	A	300	1.68	5.19	1-11 2-11	(1)
3263.98 3253.41	A A A	5 10n	2.73	6.51 6.44	3-3 1-1	(114)	3059.91	A	8	3.39	7.43	1-0	(146) z1po_f3p+	Ce I No	analy	sis Ma	y 1943	(Temper	rature	Class)
					_			-				-	(147)					-		

IA	rator; Ref			High	J Dec 194	Multiplet (No)	Labor I A	Ref	Int	E l Low		J	Multiplet (No)	Labor I A Ce II con	Ref	Int	E l		J	Multiplet (No)
roup I 186.599 248.676	C	600 200	0.38 0.20			a ⁴ H-z ⁴ I° (1)	5518.491 5610.257	A C	10 20			-	a ⁴ G-z ⁴ H° (26) a ² F-z ² G°	3942.746 4075.714 3999.242 4386.835	C C B A	150 150 500 (15) (5)	(0.29 (0.23	3.38) 3.04)	$4\frac{1}{3}-5\frac{1}{3}$ $3\frac{1}{3}-4\frac{1}{3}$	b ⁴ H°-z ⁴ I (57)
306.724 562.360 528.472	G A A	100 400 150	0.04 0.00 0.38	3.11	35-45 65-65		4624.899 4148.901	A A	60 (25)	0.61	3.31 3.58		(27)	4296.786 4486.909 4242.723	A A	150 (15)	(0.85 (0.29		61-61 41-41	b4H°-z2G
572.277 628.160 418.784 382.167	A A A	250 500 200 200	0.20 0.04 0.38 0.20	2.90 2.71 3.18 3.02	51-51 42-41 61-61 51-51	a ⁴ H-z ⁴ H° (2)	4167.804 4110.381 4155.532	A A A	(12) 60 (6)	0.61	3.60 3.61 3.61	31-41 21-31 31-31	2 ² F-z ⁴ D° (38) 2 ⁸ F-z ⁴ F° (39)	4349.789 4087.297 3808.124	A A B B	100 (4) 300	(0.29 (0.29 (0.29	-	-	(58) b ⁴ H°-z ² H (59)
296.680 460.213 680.458 560.959	A C C	200 400 (2) 60 125	0.04 0.00 0.38 0.20 0.04	3.91 3.77 3.02 3.91 3.77	41-41 31-31 61-51 51-41 41-31 51-61		6035.487 6034.204 5975.830 6043.386	C C A	(4) (4) 20 60	1.13 0.98 0.85 0.72	3.18 3.02 2.91 2.77	61-61 51-51 41-41 31-31	b ⁴ H-z ⁴ H°† (30)	4123.872 4083.233 3912.424 4077.470	A A B B	150 200 300 75		3.85) 3.72) 3.45) 3.32)	61-61 51-51 41-41 41-31	b ⁴ H ^e -z ⁴ H (60)
523.077 151.970 137.646 239.912	C C A	200 400 200		3.18 3.02 2.91	51-61 41-51 31-41		4893.968	C	15				ь ⁴ н_у ² д° (31)	3919.813 3836.112	A A	100 (15)	0.70	3.85)	51-61 31-41	
483.900 450.732 209.409§	A A	100 75 (25)	0.38	3.14 2.98 3.14	61-51 51-41 51-51	a ⁴ H-z ³ H° (3)	5613.698 5768.895	A C	(5) 20	0.94	3.14 2.98	 65	a ² I-z ² H° (32)	3931.369 3854.322 3854.187	B B	100 100	(0.29 (0.23			b ⁴ H°-y ⁴ H (61) b ⁴ H°-112
198.724 934.46 144.492	A P A	60 (10)		3.98 3.14 2.98	43-43 43-53 33-43		4410.641	С	30	0.87	3.66	- 4-3-3-3	a ² G_y ² F°	3694.91 1	A	60	(0.29	3.63)	4 } -5 }	(62) b ⁴ H°-y ² H (63)
133.800 127.367	C	500 150	0.38			a ⁴ H-z ⁴ G°	4339.317 4062.223	A A	30 60	0.87 0.88	3.71 3.92	41-41 31-31	(33) (33) (34)	4407.278 3908.408	A A	(40) 125				b ⁴ H°-x ² H† (64) b ⁴ H°-y ⁴ G
133.800 073.477	000	500 200	0.04	3.02 3.03	41-31 31-21	a ⁴ H-z ⁴ G° (4)	4117.013 4163.516	C A	75 (20)	0.87 0.88	3.86 3.85	41-51 31-42	а ² G-у ² н° (35)	3646.965	C	300				(65) b ⁴ H°-131†
081.222	A A	150 125	0.00	3.02		a ⁴ H-z ² I° (5)						-		3501.453	В	60				(66) b ⁴ H°-141 (67)
388.007	A	(8)		3.20	_									32 79.84 2 3164 . 154	B A	125 200	(0.29			b ⁴ H°-171 † (68) b ⁴ H°-186 †
606.402 593. 932	A A	50 200	0.43 0.22	3.11 2.90	51-61 41-51	a ² H- z ⁴ I° (6)								3146.407	В	200				(69) b⁴Ḥ°−188†
198.669 582.502	A A	75 (10)	0.43	3.02 2.91		a ³ H-z ⁴ H° (7)	Ce II Gr	up I	I See					3622.145	A	100	(0.85	4.26)	6 } -6 }	6 ⁴ H°-y ² I (71)
560.280	A	125	0.43		51-51	a ² H-z ² H°	3562.091 4053.506	A A	(6) 100	(0.52	3.98)	61-71 31-41	a ⁴ H°-z ⁴ I† (36)	2990.873	A	80	(0.29			ь ⁴ н°-209 (72)
471,240 844.87 227.746	A P A	200 100	0.22 0.43 0.22	2.98 2.98 3.14	43-43 53-43 43-53	a ² H-z ² H° (8)	3848.597 4080.435 4222.599	C B A	150 (5) 300	(0.52 (0.36 (0.12	3.73) 3.38) 3.04)	53-53 53-53 43-43		3272.253 3169.183	A C	250 150				b ⁴ H°-213 (73) b ⁴ H°-221
144.995	A	60	0.22	3.20	43-43	a ² H-z ⁴ G•	3718.380 3803.097	Ç	200 200	-			a ⁴ H°-z ⁴ G† (37)	3218.944	C	200				(74) b ⁴ H°-229
165.606 142.398 4 61.138	C A A	200 150 50	0.43 0.22 0.43	3.39 3.20 3.20	51-61 41-51	(9) a ² H-z ² I° (10)	3815.831 3942.151	A C B	250 125	(0.00	3.36) 3.13)	3 § _2 §		3201.714	C	300	(0.85	4.71)	6] -5] -	(75) b ⁴ H°-232 (76)
285.366 118.144	A C	30 300		3.31		a ² H-z ² G° (11)	3653.108 3668.719	A A	125 (12)	(0.36 (0.00	3.73) 3.36)		a ⁴ H°-z ⁴ F (38)	4117.288 4253.356 4246.711	A A A	(20) 50 (30)	(0.74 (0.46 (0.46	3.73) 3.36) 3.17)	3\-4\\ 1\\-2\\\ 1\\-2\\\ 1\\-1\\\	e ⁴ D°-z ⁴ F (77)
993.822	C	200	0.43	3.52		a ² H-y ² G° (12)	3853.164	A .	125	(0.00			a ⁴ H°-z ² G (39)	3914.949	A	(18)	•			a ⁴ D°-126
918.276	C .	200	0.22	3.37			3709.286 3667.981 3709.933	A A A	400 400 500	(0.52 (0.36 (0.12	3.85) 3.72) 3.45)	64-64 54-54 44-44	a ⁴ H°-z ⁴ H† (40)	4193.094	C	50	(0.74	3.68)	3 } _3 }	(78) a ⁴ D°-132 (79)
330.582 075. 304	A C	25 20	0.39			b ³ H-z ⁴ I° (13) b ³ H-z ³ H°	3716.365 3764.117	A A	600 150	(0.00	3.32)	34-34	а ⁴ н°-у ² н	3234.274	С	300			-	a ⁴ D°-173 (80)
079.681	c	75	0.90	3.33	_	(14)	3660.641	C	250				(41) a ⁴ H°-116† (43)	3933.731 4046.341 4071.814	C B C	(60) 100 150	(0.70	3.84)	41-51 31-41	a ⁴ F°-z ⁴ G (81)
187.452 274.244	C A	60 75	0.73 0.56	3.11 2.90	71-61 61-51	a ⁴ K-z ⁴ I° (15)	3927.383	В	(4)				a4Ho-x2H	4391.661 4255.784	A A	250 60	(0.70	3.13)	44-44	
353.534 044.008	A A	50 25	0.40	3.18	52-42	a ⁴ K-z ⁴ H° (16)	3534.051 3545.603 3426.208	CBC	300 (3) 250	(0.52 (0.36 (0.12	4.01) 3.84) 3.72)	61-51 51-41 41-31 31-21	a ⁴ H°-y ⁴ G (44)	4398.787 4399.203	A A	(20) 60	(0.55 (0.33	3.36) 3.13)	3 1 -3 1 2 1 -2 1	
022.871	С.		0.56		_		3485.054 3441.210	c c	400 150	(0.00	3.34)	35-45	а ⁴ ӊ°-159	4068.836 4330.445 4337.777	A A A	75 30 125	(0.70 (0.32	3.73)	41-41	a ⁴ F°-z ⁴ F† (82)
467.537 714.83 846.574	A A C	(5) (8)	0.61 0.58 0.48	3.37 3.20 3.02	41-51 31-41 21-31	a ⁴ F-z ⁴ G° (17)	3393.920 3142.312	C A	50 (25)				(45) a ⁴ H°-z ³ I (46)	3876.974 4054.991	A A	(15) 50	0.55	3.73)	31-41 11-21	
773.942 680.127	c c	50 25	0.44	3.03	19-29	a4F-z2G°	3728.423		250			_		4119.877	A	(20)	(0.33			a ⁴ F°-z ⁴ H†
429.270	С	100	0.61			(18) 4F_v ⁴ G°	3788.753 4028.411	A A A	75 150	0.47	3.73	64-64 54-54	a ⁴ I°-z ⁴ I† (47)	3967.048 3960.914	A A	100 125				a ⁴ F°-z ² D (84)
442.72 078.321 444.393	P A A	60 60	0.58 0.48 0.44	3.36 3.50 3.22	41-51 31-41 21-31 11-21	(19)	4299.362 3757.862	B A	60 (15)	(0.17	J. 0 + J			4193.874 4187.323	A A	(35) (35)	(0.55	3.50)	31_41	a ⁴ F°-116 (85) a ⁴ F°-x ² H
491.10 317.591 497.849	P A	30 25	0.61 0.58	3.36 3.50	41-41 31-31 21-21		3878.372	A	150	(0.17			a ⁴ I°-z ⁴ G (48)	3882.446	A	75	(0.32	3.50)	11-1	a ⁴ F°-z ⁴ D
861.164	A	(18)	0.48	3.50	43-33		4024.491 3834.556 3931.088	C B A	60 100 135	0.32	3.53	51-51	a ⁴ I°-z ² H (49)	3631.194	В	125	(0.33	3.72)	2 } -3 }	a4F°-y4G (88)
463.410 565.842	A A	60 50	0.48	3.24 3.52	25-15 :	a ⁴ F_z ⁴ D° (30) a ⁴ F_y ² G°		B C	(5d)					4336.255 4119.015	A A	50 (25)	(0.70 (0.55	3.55) 3.55)	41-31 31-31	a ⁴ F°-123 (89)
423.678 370.716	A C	(25) 50	0.58	3.37 3.37	31-31 31-31	a ⁴ F-z ⁴ D° (20) a ⁴ F-y ² G° (21)	3795.256 3940.338	C B	(5) 100	10.32	3.401	61-51 51-41 41-31	a ⁴ I°-z ⁴ H (50)	3722.759 4098.981	A A	(12) (15)				a ⁴ F°-139 (90)
119.784 067.279	A A	(20) 50 (20)	0.58	3.60 3.61	41-41 31-31	4 _{F-z} 4 _F 0 (22)	3922.005 3653.670 3769.046	C B	(2s) 250 (5)	(0.17 (0.47 (0.17	3.85) 3.45)	61-61 41-41		3904.340	A B	(5)				a ⁴ F°-136† (91)
123.488 115.374 161.175	C A A	(20) 150 (18)	0.48 0.44 0.48	3.47 3.44 3.44	24-24 14-14 24-14		3560.798 3577.458	C	500 500	(0.67 (0.47	4.14) 3.92)	7}-6} 6}-5}	a ⁴ I°-y ⁴ H (51)	3760.694 3519.077	A	(6) (25)	(0.33	3.83)	3 1 -3 1	
117.175	Α.	15	0.92		_	₂ 4 _{I-z} 4 _I °	3698.650 3786.632 3426.583	B B B	(5) 150 (4)	(0.32 (0.17 (0.32 (0.17	3.69) 3.43) 3.92)	54-41 44-31 54-51		3276.251 3436.304	A A	(18) (15)				a ⁴ F°-175 (93) a ⁴ F°-180†
365.710 409.224 368.901	A A A	15 80 40	0.77 0.62 0.53	3.11 2.90 3.71	61-61 51-51 41-41	a ⁴ I-z ⁴ I° (23)	3507.945 3655.851	Ā	125 500	(0.32	3.69)	53-43		3229.363 *3227.1149	Ā	(25) 300				a ⁴ F°-180 † (94) a ⁴ F°-181
468.37 472.297	P C	Ce I					3898.273 3719.797	C A	100 (15)	(0.47 (0.32	3.63) 3.63)	6}-5} 5}-5}	a ⁴ I°-y ² H† (52)	3405.977	G	100				(95) a ⁴ F°-184
393.391 512.085	A C	100 150	0.62	3.91 2.77	51-41 41-31	2 ⁴ I-2 ⁴ H° (34)	3718.190	В	150	•	-		a ⁴ I°-116 (53)	3189.638	A	(30)				(96) a ⁴ F°-186 (97)
360.541 334.455	A A	75 60	0.92			a ⁴ I-y ⁴ I° (25)	3659.227 3520.522	A	135 150				a ⁴ I°-123 (54) a ⁴ I°-132	3379.172 3366.554	C B	100 150				a ⁴ F°-187 (98) a ⁴ F°-188
512.215 525.329	Ä	50 50	0.62	4.35 4.24	51-51 41-41	1==7	3446.721	A					(55) a ⁴ I°-156 (56)	3171.615	В	300	(0.33	4.22)	21-31	a ⁴ F°-188 (99)

TA REL INC DOWNERS (MO)	Ref Int		(No)
Ce II continued <u>Ce II</u> continued <u>Ce II</u> cont	inued	Low High	(20)
(142)	A 150		$3\frac{1}{2}-3\frac{1}{2}$ $6\frac{4}{9}$ $6\frac{1}{1}$ 6
3236.735 A 150 (0.55 4.36) $3\frac{1}{2}-3\frac{1}{2}$ $a^{\frac{1}{2}}$ $a^{\frac{1}{2$	A 75		(187)
$\frac{1}{100}$	C 100 A (20) A 100	(0.93 4.01) (0.56 3.54) (0.56 3.72)	$5\frac{1}{2}-5\frac{1}{2}$ $5\frac{1}{4}$
3177.137 A (20) $(0.55 - 4.44)$ $3\frac{1}{2} - 3\frac{1}{2}$ (103) 3271.151 A (18) $(0.44 - 4.28)$ $4\frac{1}{4} - 3\frac{1}{4}$ 6^{4} 6^{4} 6^{4} 6^{4} 6^{4}	B 60		
3274.864 C 150 (0.70 4.47) $4\frac{1}{2}-4\frac{1}{2}$ $8\frac{4}{10}$ -213 3314.721 A 100 (0.49 4.22) $3\frac{1}{2}-3\frac{1}{2}$ (146)	в 60	(0.56 3.70)	21-12 b40°-134
3082.304 A (20) (0.55 4.55) $3\frac{1}{2} - 3\frac{1}{2}$ $a_{10}^{4} = 217$ 3295.289 A 80 (0.49 4.24) $3\frac{1}{2} - 2\frac{1}{2}$ $b_{10}^{2} = 219$ (105) (147) 3923.109 3199.279 A (25) (0.70 4.56) $4\frac{1}{2} - 4\frac{1}{2}$ $a_{10}^{4} = 218$ 3285.224 A 125 (0.49 4.25) $3\frac{1}{2} - 2\frac{1}{2}$ $b_{10}^{2} = 219$ (105)	C 125	(0.56 3.70)	$3\frac{1}{2}-3\frac{1}{2}$ $5\frac{4}{9}$ $0^{\circ}-135$ (191)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B (5)		$3\frac{1}{2}-3\frac{1}{2}$ b4G°-136 (192)
(107) 7407 570 4 70 41 71 2679 2074	B (4) B 100		3½-4½ b4G°-y2G (193) 3½-3½ b4G°-145
4539.755 B 200 (0.33 3.04) 32-42 (108) 3103.377 A 125 (0.44 4.42) 42-42 b26-209 (151) 3921.731	B 100		$3\frac{1}{2}-3\frac{1}{2}$ b $G^{2}-153$
3760.404 B (2) (0.32 3.60) 41-41 a ³ Ge-z ⁴ G† (152) 3442.380	A 75	(0.56 4.14)	$2\frac{1}{2}-2\frac{1}{2}$ b ⁴ G°-180 (196)
3613.701 A 150 (0.32 3.73) 43-43 a ² G ^o -z ⁴ F 4696.12 P (0.97 3.66) 33-43 (153)	C 60		$3\frac{1}{2}-1\frac{1}{2}$ b ⁴ G°-181 (197)
4278.866 A (20) (0.32 3.20) 4½-3½ a ² G ² -z ² G 4725.090 C 20 (0.52 3.13) 1½-2½	A 100 A (18)		$3\frac{1}{2}-3\frac{1}{2}$ $6^{\frac{1}{2}}$ $6^{\frac{1}{$
4495.389 A (4) (0.68 3.36) 2*=2* b*F*=Z*F	A (18) A (30)		$3\frac{1}{2}-3\frac{1}{2}$ b ⁴ G°-307
4131.089 B 100 (0.33 3.31) 33-43 (112) 4120.829 A 150 (0.32 3.31) 42-42 4380.060 A (30) (0.62 3.44) 32-12 b4f°-2 ² D 3055.243	C 150		(200) 2½-1½ b ⁴ G°-222
(155) 3628.247 A (10) (0.32 3.72) 4½-5½ a ² G°-z ⁴ H† 4104.996 C 50 (0.62 3.63) 2½-3½ b ⁴ F°-127 *3952.573 B 125 (0.33 3.45) 3½-4½ (113) (156) 3956.284 3943.141 B (5) (0.32 3.45) 4½-4½ (113) (4373.818	C 150	(0.61 3.73)	_ (201)
4361.661 A (18) (0.53 3.36) 34-34 c ² 6°-z ⁴ 6† 4449.336	A 50 A 200	(0.56 3.38) (0.61 3.38)	$5\frac{1}{2}-6\frac{1}{2} a^{2}H^{\circ}-z^{4}I$ $4\frac{1}{2}-5\frac{1}{2}$ (202) $5\frac{1}{2}-5\frac{1}{2}$
3838 542 4 150 (0.33 3.54) 31.21	B 50 A 50		51-51 a ² H°-z ² H 41-41 (203) 41-52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 75		
4270.189	A (25) A 60	(0.61 3.85) (0.56 3.45)	$5\frac{1}{2}-6\frac{1}{2}$ $a^{2}H^{\circ}-z^{4}H^{\dagger}$ $4\frac{1}{2}-4\frac{1}{2}$ (204)
(116) 4153.67 P (0.53 3.50) 3\frac{1}{2}-4\frac{1}{2} (159) 3938.086	B (7) B (4)	(0.56 3.69) (0.56 3.43)	41-41 a ³ H°-y ⁴ H† 42-32 (205)
3539.086 A 300 (0.32 3.81) $4\frac{1}{2}$ - $3\frac{1}{2}$ a^{2} G^{0} -145† 3958.266 B (6) (0.72 3.84) $4\frac{1}{2}$ - $4\frac{1}{2}$ (160) 4075.853	B 125 C (25)	(0.61 3.63)	51-51 a2Ho-v2H
	B 300	(0.56 3.63)	4 1 -5 1
(130)	B (4)		- · (207)
	B (5) A (12)	(0.61 3.84) (0.56 3.84)	51-41 a2H°-y4G 41-41 (208)
(123) 4017.596 A (108) (0.78 3.79) 44-44 (26"-yed 4197.998	B (5) A 100	(0.61 3.55) (0.56 3.55)	$5\frac{1}{2}-4\frac{1}{2}$ a ² H°-122 $4\frac{1}{2}-4\frac{1}{2}$ (209)
$4257 \cdot 121$ A (20) (0.46 3.36) $3\frac{1}{2} - 3\frac{1}{2}$ (123) 3357.215 A 125 (0.53 4.20) $3\frac{1}{2} - 4\frac{1}{2}$ $c^2 c^2 - 187$ 3895.114	B 125		5½-4½ a ² H°-142 (210)
3766.514 R (4n) (0.46 3.73) 31.41 32rg4r 3344.761 A 300 (0.53 4.22) 32-32 600-1887 3521.880	C 200		$5\frac{1}{2}-4\frac{1}{2}$ a ² H ⁰ -177
4479.432 A 30 (0.42 3.17) $3\frac{1}{2}-1\frac{1}{2}$ (166)	B 125 C 300		$4\frac{1}{2}-3\frac{1}{2}$ a ² H°-188 (212) $5\frac{1}{2}-6\frac{1}{2}$ a ² H°-y ² I
4320.723 A 60 (0.46 3.31) $3\frac{1}{2}-4\frac{1}{2}$ $a^2F^{\circ}-z^2H$ (167) (167	A 200		(213) 4½-3½ a2H°-205
4100-(10 B (d) (0.40 5.45) 39-49 80 -27H (168)	A 250	(0.56 4.39)	4½-3½ a2H°-207
3857.240 B (4) (0.42 3.61) $3\frac{1}{2}$ 31	A 250		$4\frac{1}{2}-3\frac{1}{2}$ a ² H°-210 (216)
5/55-465 A /5 (0-46 5-70) 65-15 E-F-154	A (20)	(0.61 4.47) (0.56 4.47)	51-41 a2H°-213
3792.326 A 50 (0.46 3.71) $3\frac{1}{2}$ $3\frac{3}{2}$ $3\frac{3}$	A (25)	(0.73 3.79)	3½-4½ b ³ F°-y ³ G
3246.674 A 60 (0.42 4.23) $3\frac{1}{2}-3\frac{1}{2}$ $8\frac{2p}{p}-188$ 4427.917 B (6) (0.53 3.32) $3\frac{1}{2}-3\frac{1}{2}$ (171)	A (10)		2318) 23-13 b2F°-167
3594.190 A 150 (1.31 4.79) 3 2 3 4 2 2 4 2 2 3 2 8 3 2 3 2 3 2 4 2 2 3 2 3 2 3 3 3 3 3 3 3	B 76	(0.60 3.43)	(219)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A (15)	(0.60 3.68)	11-11 a2001
4400 000 P 70 (0.50 7 40) al al 470 4404 7007 455	A (25)	(0.60 3.83)	$\begin{array}{c} 1\frac{1}{2} - \frac{1}{2} & (231) \\ 1\frac{1}{2} - \frac{1}{2} & a^{2}D^{2} - 147 \\ & (232) \end{array}$
4310.699 A (30) (0.49 3.36) $3\frac{1}{2}-3\frac{1}{2}$ (133) 4090.947 A (6) (0.83 3.84) $4\frac{1}{2}-4\frac{1}{2}$ $a^{\frac{1}{4}}G^{-}y^{\frac{1}{2}}G^{-}y^{\frac{1}$	B 50		2½-2½ a ² D°-161 (223)
3992.386 A 125 (0.44 3.53) $4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$ 61	A (15)	(0.73 3.58)	1½-1½ a ² P°-124
	A (15)		(234) $1\frac{1}{2}-3\frac{1}{2}$ $a^{2}P^{2}-136$ (225)
4176.080 A (12) (0.49 3.45) 3 - 42 (135)	A (15)	(0.73 3.82)	1½-1½ a ³ P°-146 (226)
93468 1136 A B (0.53 4.00) 31 31 (470) 4700 074	A (8) A (5) A (8)	(0.90 3.73) (0.74 3.73)	$6\frac{1}{2}-6\frac{1}{2}$ a ² I°-z ⁴ I $5\frac{1}{2}-6\frac{1}{2}$ (227) $5\frac{1}{2}-4\frac{1}{2}$
4168.067 B (4) (0.44 3.43) $4\frac{3}{2}$ (136) 3609.887 C 350 (0.89 4.31) $5\frac{1}{2}$ $4\frac{1}{2}$ a^4 G^0 -199 *5347.806§ 4197.668 B (4) (0.49 3.43) $3\frac{1}{2}$ $-3\frac{1}{2}$ (179)			
3051,975 C 60* (0.53 4.58) 24_14 e409 220 4004 405	A 30 P	(0.90 3.53) (0.74 3.31)	$6\frac{1}{2}-5\frac{1}{2}$ a^2 $1^{\circ}-z^2$ H $5\frac{1}{2}-4\frac{1}{2}$ (228)
4107.426 B 200 (0.49 3.50) 3-44 (138) 3252.483 C 30 (0.89 4.69) 5\frac{1}{2}-5\frac{1}{2} a^4G^-239	W (30)		5\frac{1}{2} - 4\frac{1}{2} a^2 I^o - z^4 H (229)
1 4106 881 B (E4) (0 40 7 E6) 71 61 1246 446	C 300 C (4)	(0.90 4.41) (0.74 3.50)	$6\frac{1}{2}-5\frac{1}{2}$ $a^{2}I^{\circ}-x^{2}H$ $5\frac{1}{2}-4\frac{1}{2}$ (230)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A (40)		5½-5½ a ² I°-z ² I (231)
3953.660 A (12) (0.49 3.61) $3\frac{1}{2}-3\frac{1}{2}$ bage -136 (140) 3063.010 C 400 (0.89 4.93) $5\frac{1}{2}-4\frac{1}{2}$ a $\frac{1}{4}$ G -248 3590.598 (185)	A 125		5½-4½ a ³ I°-184 (232)
3672.789	A 60	(0.90 4.36)	6½-6½ a ² I°- y2 I . (233)

Labo I A	orato Ref	ry Int	Low E	P High	J	Multiplet (No)	Labo I A		'y Int	E P Low H	High	J	Multiplet (No)	Labor I A		y Int	E Low	P High	J	Multiplet (No)
II o	ontin	ued					<u>Pr II</u> I	P 1	Anal	C List	в і	Dec 19	41	<u>Pr II</u> cor	ntinu	eđ				
43.888 823.837	B B	100 200	(0.79 (0.79	4.19)	44-34	d ² G°-y ⁴ H (234) d ² G°-186	4628.751 4535.921 4517.595	A	100 60 40		3.72 3.72 3.79	5-5 4-5 5-5	a ⁵ I°-2 (1) a ⁵ I°-3†	4254.420 4664.647 3971.164	A A A	30 30 40	0.63 0.42 0.43	3.07 3.53	7-7 6-6 6-7	a ³ I°-z ³ I† (27)
500.583	В	60	(0.79	4.22)	41-31	(235) d2G°-188 (236) d2G°-237	*4429.238	A A	60	0.00 2	2.79	4-5	(2)	4329.415 4008.714	A A	25 75	0.88	3.71	5–6 7–7	a ³ I°-z ⁵ H†
83.670	C .	100				(237)	4744.925 4487.821	A	40 20	0.05 2	8.80 8.80	6–6 5–6	a ⁵ I°-4 (3)	3982.063 3962.445	A A	150 40	0.43	3.52 3.33	6-6 5-5	(28)
40.883 864.370	A A	(20) (10)	(0.90	3.58)	3-12 3-4-1	c ² F°-124 (238) c ² F°-y ² G	4100.746// 4143.136 4179.422	A A A	150 150 150		3.56 3.35 3.16	8–9 7–8 6–7	a ⁵ I°-z ⁵ K (4)	4395.788 4096.822	A A	30 25	0.43	3.23 3.23	6-5 5-5	a ³ I°-19 (29)
89.444	В	30				(239) c ² F°-164 (240)	4222.98 4408.844 4405.849	A A A	150 200 80	0.05 2 0.00 2 0.55 3	8.98 8.80	5–6 4–5 8–8		4347.490 4054.845	A A	30 80	0.42	3.26 3.26	6-6 5-6	a ³ I°-22† (30)
7 41. 727 716.930	A.	(10) (10)				c ² F°-186 (241) c ² F°-188	*4429.238 4449.867	A A	100 150	0.37 3	3.16 2.98	7-7 6-6		4338.694	A	25	0.42			a ³ I°-23†
559.328	A A	(6)	(0.90	4.36)	3 } _3 }	(242) c ² F°-205	*4496.429 4734.177 4754.635	A A A	250 25 (15)	0.37 2	3.80 3.98 3.80	5-5 7-6 6-5		4302.100 4015.389	A A	(60) 40	0.42	3.29 3.29	6–5 5–5	a ³ 1°-25 (32)
73.455	C	100	(0.90	4.55)	3 } -3 }	(243) c ³ F°-217 (244)	4707.541 4454.382 4368.327	A A A	20 30 150	0.05 2	2.83 2.83 3.83	6-5 5-5 4-5	a ⁵ I°-5 (5)	4568.545 4243.528 3964.261	A A A	(30) 20 40	0.63 0.42 0.22	3.33 3.33 3.33	7– 6 6–6 5–6	a ³ I°-z ³ H (33)
60.16	A	(25)				b ² D°-129 (245)	4651.517	A	75		2.86		a ⁵ I°-6	4403.605	A	25	0.63	3.43	7–8	a ³ I°-30 (34)
.59.033 896.883	B A	50 40				b ² D°-164 (246) b ² D°-216	4297.764	A	80	0.00 2	2 .87	4–5	(6) a ⁵ I°-7 - (7)	5110.768 5173.898	A A	60 60	1.14	3.56	- 10-9 9-8	a ⁵ L°-z ⁵ K†
18.276	С	500			-	(247) c ⁴ F°-169	4206.739 4189.518 4164.192	A A A	100 125 100	0.55 3 0.37 3 0.20 3	3.32 3.17	8-8 7-7 6-6		5220.113 5259.743 5322.778	A A A	50 80 60	0.79	3.16 2.98 2.80	9-6 8-7 7-6 6-5	(35)
33.091	A	50	(1.27	4.86)	3] -3] -	(248) c ⁴ F°-244 (249)	4118.481 4225.327 4458.336	A A A	200 150 25	0.55 3	3.92 3.32	5-5 4-4 8-7		4801.150	A	15	0.48	3.05	6-5	a ⁵ L°-z ⁵ I†
13.996	A	30				ъ ^З н°-z ⁴ н (250)	4412.155 4333.913 4305.763	A A A	20 100 100	0.37 3 0.20 3 0.05 2		7-6 6-5 5-4		5034.415 5135.125	A A	20 20	1.11	3.56 3.35	- 9 - 9 8-8	a ⁵ K°-z ⁵ K†
42.135	A C	(8)				b ² H°-159 (251) b ² H°-z ² I (252)	3966.573 3965.263 3964.825	A A A	80 150 250	0.37 3 0.20 3 0.05 3	3.48 3.32 3.17	7-8 6-7 5-6		5219.053 5292.630 5381.262	A A A	20 30 60	0.79 0.65 0.51	3.16 2.98 2.80	7-7 6-6 5-5	1=17
84.675 07.289	A A	100 125				b2Ho-y2I	4044.818 3953.516	A A	60 125	0.55 3	3.05 3.67	4–5 8–8	a ⁵ I°-z ³ K†	5195.110 5206.562	A A	20 20	1.11		9-8 8-7	a ⁵ K°-z ⁵ I (38)
63.427	A	(40)	(1.04	3.93)	- 3] -2]	(253) b ⁴ D°-158	3997.054 4241.019	A	40 60	0.55 3	3.46 3.46	7-7 8-7	(9)	5195.307 5129.520 5110.382	A A A	30 40 60	0.79 0.65	3.17 3.05 2.92	7-6 6-5 5-4	,
46.681	A	(20)				(254) b ⁴ D°-175 (255)	4141.257 4578.139	A A	80 25	0.55 3 0.37 3	3.53 3.07	8-7 7-6	a ⁵ I°-z ³ I (10)						-	.5-0 5-4
15.877 79.424	A A	(20) 50				b ⁴ D°-177 (256)	3908.033 3918.856	A A	150 150	0.55 3 0.37 3	5.52	8-7 7-6	a ⁵ I°-z ⁵ H (11)	6025.723 6305.262 6244.344	A A A	20 4 5	1.43 1.36 1.19	3.32 3.17	7 -7 6-6	b ⁵ I°-z ⁵ I† (39)
60.975	c	60				b4D°-205 (257) b4D°-238	3947.633 3994.834 3908.431	A A B	100 200 200	0.20 3 0.05 3 0.00 3	3.14 3.16	6-5 5-4 4-3		6161.194 6165.945	A	50 60	1.05 0.92	3.05 2.92	5-5 4-4	
94.779	A	(30)	(1.25	4.06)	- 2]- 3]	(258) e ² F°-171	3699.952 3925.456	A	(12) 75		3.14	7-7 4-4	_	Strongest	Uncl	assified	Lines	of Pr	<u>11</u>	
rongest	· Ima	1000161	led Lines	of Ca	TT	(259)	4191.615 3989.718 3920.524	A A A	20 100 15	0.20 3 0.05 3 0.00 3	1.15	6-5 5-5 4-5	a ⁵ I°-16 (12)	3880.466 3877.225 3865.458	B B B	100 200 100	V V			
43.963 71.475	. one.	20 20	A A red Tives	or <u>ce</u>	11		4421.231 4178.273	A A	40 50	0.37 3 0.20 3	3.16	6-6	a ⁵ I°-17 (13)	3854.905 3852.805	B B	100 150	V V			
82.462 57.842 47.143	CCC	40 15 20	V V V				3972.164 4081.018 3889.330	A A A	100 50 75	0.05 3 0.20 3 0.05 3	3.23	5-6 6-5 5-5	a ⁵ I°-19 (14)	3851.617 3850.825 3846.605 3830.719	B B B	200 150 125 125	V V V			
37.282 69.502	C C	60 20	v v				3823.571 4272.271	A A	(10) 80	0.00 3		4–5	a ⁵ I°-22	3826.292 3818.281	B B	100	v v			
44.704 31.745 11.394	C	75 30 60	V V V				4039.357 4171.824	A A	30 40	0.20 3		6–6 7–6	(15) a ⁵ I°-z ³ H	3816.166 3800.303 3792.524	B B B	125 200 100	V V			
70.094 23.837	B B	15 60	V V				3949.438 3769.695	A A	125 30	0.20 3 0.05 3		6-6 5-6	(16)	3772.854 3764.811	В	100	V IV			
							3912.898 3885.190	A A	135 75	0.20 3		6-5 6-6	a ⁵ I°-26 (17) a ⁵ I°-27†	3761.867 3739.193 3687.039	B B B	250 100 125	IV IV			
<u>III</u> 55.585	IP:	19.5 600	Anal A (2.25			1943 fs ³ F°-fp ³ G	*3711.099 4282.440	Ā	75 (25) 60		.38	5–6	(18) a ⁵ I°-30	3668.830	B	150	ĬŸ			
31.559 43.609 28.564	A A	500 150 400	(2.00 (1.97 (2.25	6.C7) 5.55) 6.07)	3-4 2-3 4-4	(1)	4033.857	Ā	75	0.37 3		7–8	(19)	Nd II I		/sis M Anal C			p erat u pr 194	re Class)
70.894 53.262	A A	300 150	(2.00 (2.35	5.55) 5.93)	3-3 4-4	fs ³ F°-fp ³ F	4534.154 4510.160 4468.712	A A A	60 100 150	0.63 3 0.42 3 0.22 2	.16	7-8 6-7 5-6	a ³ I°-z ⁵ K (20)	*4959.130\$ 4835.982		60 15			-	a ⁶ I-1° (1)
43.956 27.332 56.35	A A P	200 125 Ce+	(2.00 (1.97 (2.25	5.57) 5.92)	3-3 2-2 4-3	(2)	4879.121 4826.649 5251.738	A A	(30) (40) 12	0.63 3 0.43 2 0.63 2	.16 .98	7-7 6-6 7-6		4920.692 4799.423	A A	60 10	0.06			a ⁶ I-308 30
54.368 41.247 31.548	A A A	150 250 400	(2.00 (2.00 (1.97	5.57) 5.93)	3-2 3-4 2-3		4672.081	A	40	0.33 3		5-6	a ³ I°-6†	4859.030 4825.482	A A			2.86	6 1 -5 1	a ⁶ I-z ⁶ H ^o (3)
59.374	A	300	(2.25		4-3	fs ³ F°-fp ¹ F†	4323.551	A A	30 25	0.83 3			a ³ I°-7	4811.343 *4706.542§	A A A					(3)
10.516 06.974 57.575	A A A	200 200 100	(2.25 (2.00 (1.97	5.97)	3–2	fs ³ F°-fp ³ D†	4261.796 4180.68	A A	15 (8)	0.42 3 0.22 3	.32	6 -7 5-6	(23)	4609.148 4612.473 4414.432	A	(1) 4 8	0.06 0.06	2.86 2.74 2.86	41-41 41-51	
85.089	A	200	(1.97	5.97)	2-1 2-2	a 3ma - 1-	4589.76 4492.427 4351.849	A A	(5d) 15 50	0.63 3 0.43 3 0.23 3	.17 .05	7-7 6-6 5-5		4505.75 4680.734	A A	(8) 30	0.00	2.74	3 } -4 }	a ⁶ I-218 7 1
22.736		200		6.33)		fs ³ F°-fp ¹ G (5)	4561.461 5292.10	A A	(6) 60*	0.88 8 0.63 2		5-4 7-8	a ³ I°-10	4569.849 4465.075	A A	2 10	0.06			a ⁶ I-3° (5)
04.596 47.05	A A	100 300	(2.29 (2.29			fs ¹ F°-fp ¹ F (6) fs ¹ F°-fp ³ D	4859.038 *4496.429	A A	12 250	0.42 2	.96	6-6 5-6	a ³ I°-10 (24) a ³ I°-11† (25)	4763.865 4556.136	A A	20 12	0.18			a ⁶ I_4° (6)
57.214	A	300			3-4	(7) fs ¹ Fo_fn ¹ G	4056.543	A	80	0.63 3	.67	7-8	a ³ 1°-z ³ K	4451.978	A	50	0.00			
56.556	A	125	(2.29	6.33)	3-2	(8) fs ¹ F°-fp ¹ D (9)	4062.817 4413.765 4359.795 4762.727	A A A	125 50 30 20	0.42 3 0.22 3 0.63 3 0.42 3	.01 .46	6-7 5-6 7-7 6-6	(26)	4709.714 4506.582	A	30 30	0.18	2.80 2.80	54-5 1 41-51	a ⁶ I_5°† (?)
I No	anal	ys1s	May 1942	3 (Tem	peratu	re Class)				-										

90							REVI	SE	D M C	JLTI	PLE		ABLE						,]+4m ³
Labo I A	rator Ref	y Int	E I	P High	J	Multiplet (No)	Labor I A	ator Ref		E F Low	High	J	Multiplet (No)	Labor I A	atory Ref	Int	Low I	ligh	J M	ultiple t (No)
Nd II co							Nd II con	tinu	eđ				•	Nd II con	_		0.00	7 00	glel-	6v -6v• •
4411.052 4342.071	A A	150 20	0.18 0.06	2.98 2.91	51-51 42-45	a ⁶ I-z ⁶ I°† (8)	3328.270	A	80	0.00	3.71 3.76		a ⁶ I-30037 (40) a ⁶ I-30453	5708.280 5804.020 5421.559	A A A	40 60 20	0.86 0.74 0.74	3.02 2.87 3.02	43-43 43-53?	6K-z6K• †
4375.039 4232.378	A A	30 150 200	0.00	2.82	3 1 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3339.063 3282.777	A	60 8	0.06	3.76		a ⁶ I ₋₃₀₄₅₃ (41)	5302.279	A	6				(80)
4247.367 4412.265	A A	200	0.06	2.86	41-41	a ⁶ I-23171 (9)	3334.471 *3231.349§	A A	50 (8)	0.18 0.06	3.88 3.88	51-41 41-41	a ⁶ I-25° (42)	*5356.976§ 5431.526 5311.461	A A A	15 40 12	1.12	3.39 3.31	73-63 63-53	(80)
4314.511	A .	50 300	0.00	3.70	3½-4½ 81-91	(9) ₈ 6 _{7-z} 6 _K ∘	5255.510	A	50	0.20	2.55	- 4 <u>1</u> -41	a ⁴ I-1°	541631 5250.816	Ā A	15 8	0.86	3.13 3.09	51-41 42-32	
4012.250 4061.085 4109.455	A A	200 200	0.47	3.51	74-84 64-74	a ⁶ I-z ⁶ K° (10)	5212.365	A	30	0.20	2.57		a ⁴ I-20830 (44)	5276.879	A	8	0.86		51-41 5	
4156.083 4177.321	A A A	250 200 400	0.18 0.06 0.00	3.02	55-65 45-55 34-45		5603.651 *5191.448\$	A A	5 100	0.38	2.58 2.58	51-51 41-51	a ⁴ I-2° (45)	5474.734	A	10			6 } _6 } 8	
4303.573 4284.518 4325.766	A A	100 150	0.63 0.47	3.51 3.32	81-81 71-71		5361.174	Ą	3 6		2.86 2.74	61-51 51-41	a ⁴ I-z ⁶ H ^o (46)	5455.815 5668.868	A. A	20 15	1.41			(83) 6K-29027 †
4358.169 4351.295 4400.828	A A A	200 40 100	0.32 0.18 0.06	3.15 3.02 2.87	64-64 54-54 43-44		5228.427 5089.837 *4867.839§	A A A	8	0.20	2.63 3.74	45-45	7	•6385.196§	Α.	150	1.16	3.09	5 <u>}</u> -5 <u>}</u> 11	06I-25014
4368.632	A	60	0.06	2.89		a ⁶ I-6° (11)	4647.759 4820.336	A A	3 30	0.20	2.86	4½-5½	a ⁴ I-3°	*5620.62 \$ 5718.120	P A	500 12	1.54 1.40	3.73 3.56	8월-8월 1 7월-7월	61-y ⁶ 1•† (86)
4272.789 4556.735	A	30 12	0.00	2.89			5092.797	A	30	0.38	2.80		a4I-5° †	5842.391 5740.862	A A	8 15 15	1.16	3.39 3.31 3.13	63-63 53-53	
4366.315 4270.565	A	12 25	0.06	2.89 2.89	$\frac{4\frac{1}{2}-4\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$	a ⁶ I-7° (13)	4446.387 4567.606	A A	200 12	0.20	2.98 2.91	41-51 41-41	(48) a ⁴ I-z ⁶ I° (49)	5891.528 5706.206	A	15	0.93			
4465.601 4282.570	A A	10 15	0.18	2.95 2.95	51-51 43-51	a ⁶ I-8°† (13)	4715.589	Ā	25	0.20	2.82			5614.303	A	(10)	1.04	3.24	4-1-4-1	(87)
4246.879	A	(10)	0.06	2.97	41-41	a ⁶ I-9°† (14)	4456.394 4462.985 4451.566	A A A	40 250 400	0.56	3.51 3.32 3.15	74-84 64-74 54-64	a ⁴ I-z ⁶ K° † (50)	Strongest	Uncl	assifie	d Lines	of <u>Nd</u>	11	
4156.265 4374.923	A	30 20	0.00	2.97 3.00	5-4-2-5-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4	a ⁶ Į-10°	4385.663	A .	150	0.20	3.02	45-25		5451.115	B B	100 20	IV III			
4199.099 4110.472	A	10 40		3.00 3.00		a ⁶ I-10° (15)	4597.013 4914.385	A A	20 15	0.20	2.89		a ⁴ I-6° (51) a ⁴ I-7°	4832.276 4542.603 4282.443	B B	60 50	IA			
4173.379 4085.815		8 30	0.06	3.02 3.02	41-31 35-35	a ⁶ I-11° (16)	4594.447	A	6	0.20	2.89		a ⁴ I-7° (52)	*4135.325 4031.807	B B	50 100	IA			
4277.279	A	6	0.18	3.07 3.07		a ⁶ I-13°† (17)	4501.808 4763.624	A	50 5	0.20	2.95 2.97		a ⁴ I-8°† (53) a ⁴ I-9°	4023.002 4012.704	B B	80 50	III			
4109.073 4457.179		100 (5)	0.06	3.09		a ⁶ I-25014 (18)	4463.407	A	30	0.20	2.97		a ⁴ I-9° (54) a ⁴ I-10°	4007.435 4004.010	B B	50 60	III			
4080.227	A	50 80	0.06	3.09 3.73	4½-5½	(18) - ₈ 6 ₇₋₁₇ 6 ₇ •	4703.576 4381.290	A A	15 (10)	0.38	3.00		(55) a ⁴ I-11°	3994.684 3953.525	B	80 60	III IV			
3973.269 3990.103 4020.872	A	60 60	0.47 0.32	3.56 3.39	73-73 63-63	a ⁶ I-y ⁶ I° (19)	4120.654	Ā	6		3.73	71-81	(56) • a ⁴ I-y ⁶ I° • (57)	3934.823 3920.965 3911.169	B B B	50 100 60	IV III IV			
3951.154 4018.826	A	150 30 80		3.31 3.13 3.09	5-5-5- 4-4-4-3 31-31	•	4106.582 4100.240 3979.479	A A A	8 15 60	0.38	3.56 3.39 3.31	53-63 43-53	. (37)	3905.886	В	100	III			
3991.743 4205.595 4227.719	A	40 30	0.63	3.56 3.39	8 1 - 7 1 7 1 - 6 1	•	4371.069 4358.699	A	(10) 15	0.74 0.56	3.56 3.39	73-73 63-63		3901.850 3900.226 3890.940	B B B	50 60 60	IV III III			
4133.361 4179.585	A	50 30 50	0.32 0.18 0.06	3.13		; †	4217.282 4211.286	A	5 40	0.38 0.20		4-4-4-	•	3890.580	В	50	IV			
4075.272 3780.391 3805.359	. А	20 100	0.47	3.73		† †	4541.269 4266.716	A A	50 30	0.38 0.20		5}-5} 4}-5	a ⁴ I-13° (58)	3889.929 3878.582 3848.524	B C B	50 50 80	IA IA IA			
3848.233 3807.227	A	50 (15)	0.18 0.06 0.00	3.31	4 } -5	•	4256.239	A	8	0.20	3.10		a ⁴ I-25138 (59)	3836.541 3814.725	B B	60 60	III			
*3937.575 4234.196		5 6	0.18			a ⁶ I-13°† (20)	4797.157	A	20		3.13		a ⁴ I-15°† (60) a ⁴ I-16°	3808.772 3803.474	ВВ	30 40	III			
4069.267	' A	80 60	0.06			(20)	4144.553 4075.116	A	30 60	0.20			4I-26182†	3784.250 3763.475	B B	80 60	III			
*3976.836 4961.396		10	0.63	3.12		(21) a ⁶ I-25235 (22)	4307.778	A	15		3.24		(62) a ⁴ I-21° (63)	3758.944 3741.427	В	4 0 50	III			
4413.784	L A	(5) (4)	0.32				4059.961 4000.493	A A	50 30	0.20			a ⁴ I-20°	3728.130 3723.506	В	50 50	III			
4034.012 3952.195		100	0.00	3.12		a ⁶ I-14° (23)	4123:881	A	40	0.38	3.3 7		(64) 1 a ⁴ I-22° (65)	3685.804 3673.542	C	60 50	V			
4391.110 4186.033	3 A	10 8 30	0.32 0.18 0.06	3.13	64-5 54-5 44-5	a ⁶ I-15° (24)	4051.145	A	60	0.38	3.43		a41-27744†	3672.363 3665.180	C B	50 50	IV TTT			
4024.785 4113.826		20	0.18	3.18		a ⁶ I-16° (25)	3982.355 3769.644	A A	20 40	0.38 0.20			a ⁴ I-28170 (67)	3609.788 3592.595 3587.504	B B B	40 60 50	III IV IV			
3958.001 3863.409	L A	4 0 60	0.06			} (25) } a ⁶ I-y ⁶ H°	4338.697	A	80	0.74			a ⁴ I-29027 (68)	3543.352	В	50	IV IV			
3941.512	3 A	150	0.06	3.19	42-4	(26) a ⁶ I-17°† (27)	3811.073 3615.817	A A	30 30	0.38 0.20	3.62 3.62		a ⁴ 1-29298 (69)	3393.641 3364.950 3300.148	B B B	60 50 7 0	IA IA			
3863.32	7 A	80 80	0.00			4 (27) 4 a6I-26041	3470.866	A	20	0.20			a ⁴ I-30453 (70)	3285.093	В	50	IV			
3838.98: 3894.62'		40	0.00			a ⁶ I-26182	3522.044 3354.621		25 10	0.38 0.20	3.88 3.88	51-4 41-4	a ⁴ İ-25° (71)	3275.218 3134.897 3133.603	B B B	60 50 100	IV V V			
4040.79		100	0.18	3.24	5 } -6	a ⁶ I-18°	6257.834	A	(25)	0.55	2.55	 5-}-4	1 a ⁶ L-1°	3116.141 3115.172	B B	60 100	v v			
4038.12 •3887.86		30	0.18 0.06	3.24	5-4-4 4-4	a ⁵ I-19° (31)	5548.474		8	0.55			((6)	3098.476 3092.915	ВВ	50 60	V V			
3811.77	4 A	20	0.00	3.24	32-4	Ž	5361.474 5234.195	A	60 50	0.68 0.55	2.98	6-5-5-5-5-5-4-5-5-4-5-5-4-5-5-5-5-5-5-5-	1 a ⁶ L-4° (73) 1 a ⁶ L-z ⁶ I° 2 (74)	3075.380 3014.165	B B	50d 60	V V			
4220.25 4030.47 3880.77	0 A	25	0.32 0.18 0.06	3.24	54-5 44-5	a ⁶ I-21° 1 (32)	5130.596	A	40			10}-9	1 a ⁶ L-z ⁶ K°†	3007.975	B	50	v			
3826.41	6 A	60	0.06	3.29		a ⁶ I-20° (33)	5192.621 5249.585 5293.168	A		1.13 0.97 0.88	3.51 3.32 3.15	83-8 83-7 73-6	a ⁶ L-z ⁶ K° † (75)			_ =				0.40
3752.679 4043.59			0.00	3.37		1 a ⁶ I-32° 1 (34)	5293.106 5273.431 5319.818	A	50	0.68 0.55	3.02	0 5 -0	2			67 Ana:		.st D 2.35	Apr 1	942 a ⁷ F-z ⁹ G•†
3869.04	5 A	30	0.18	3.37			5442.274		40	0.68	2.95		2 a ⁶ L-8°	6671.51 6588.91	A	500	0.39	2.26	5–6	(1)
3851.74 3714.80		20	0.06			1 a ⁶ I-23° 2 (35)	5165.140	A	10	0.68	3.07		12 a ⁶ L-12° (77)	5659.86 *5516.09	B B	400 500d		2.28 2.27 2.52	1-3	a ⁷ F-38° (2) 37° 59°)
4228.20 4021.33			0.47 0.32			a ⁶ I−24°† 2 (36)	5934.747 5811.572		(10) 13		2.82	4-3-3-5-5-5	a ⁶ K-z ⁶ I° (78)	4841.701 3925.216	B B	400 400	0.50 0.10	3.05 3.24	6-5 2-1	103° 118°
3973.65	0 A			3.43	_	a ⁶ I-27744 (37)	5702.244	A	20	0.74	2.91			*3756.411	§ B 	600 300		3.39 3.37		127° a ⁷ F-z ⁷ G°†
3614.67		. (8)	0.06				5371.935 5485.699	A	80	1.26	3.70 3.51 3.32	9-5-9 8-5-8 7-1 7	a ⁶ K-z ⁶ K°† (79)	4296.743	" в	300	0.50	3.37	υ- <i>ι</i>	a ⁷ F-z ⁷ G° †
4175.60 39 63.1 1		. 50 . 60		3 3.58 7 3.58	8 1 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	\$ a51-29027 \$ (39)	5594.425 5688.525				3.32	62-6	1							

		REVISED	MULTIPLET TABLE		91
Laboratory I A Ref Int Sm II I P 11.4 A	E P J Multiplet Low High (No) unal B List C Mar 1943	Laboratory I A Ref Int	EP J Multiplet Low High (No)	Laboratory I A Ref Int	E P J Multiplet Low High (No)
4704.397 A 500 4648.160 A 100 4606.514 A 100 4092.266 A 400 3970.528 A 200 3941.874 A 300	0.00 2.62 1 1 8 F 1 ° 0.00 2.66 1 1 5 ° 0.00 2.68 2 1 5 ° 0.00 3.08 2 1 3 3 ° 0.00 3.11 1 1 3 5 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 3 ° 0.00 3.13 2 1 3 7 °	<u>Sm II</u> continued 3601.692 A 200 3583.394 A 150 3530.600 A 150 3382.399 A 600 3320.155 A 600d 3312.415 A 400	0.18 3.61 31-31 a8F-107° 0.18 3.63 31-41 110° 0.18 3.68 31-41 118° 0.18 3.83 31-31 133° 0.18 3.90 31-32 136° 0.18 3.91 31-31 a8F-137°	Sm II continued 3662.905 A 200 3592.603 A 1500 3402.464 A 500 *3384.658 A 300 3354.185 A 150 3344.353 A 200	0.38 3.75 5 4½ 8°F-125° 0.38 3.81 5 6 6½ (39) z8g° 0.38 4.00 5 4 4½ 146° 0.38 4.02 5 5 5 147° 0.38 4.06 5 4 2 149° 0.38 4.07 5 4 2 151°
3745.605 A 200d 3693.989\$ A 1200 3304.523 A 200 3250.372 A 200d 3207.185 A 400	0.00 3.29 1 2 8F-z8G° 0.00 3.34 1 1 (2) z8G° 0.00 3.73 1 1 124° 0.00 3.80 1 1 129° 0.00 3.85 1 1 134°	*3301.678 A 100 3285.664 A 200 3230.559 A 400 3187.006 A 200 3178.125 A 200	0.18 3.92 3\frac{1}{4}(21) 138° 0.18 3.94 3\frac{1}{3}\frac{3}{2}141° 0.18 4.00 3\frac{1}{4}\frac{1}{2}146° 0.18 4.06 3\frac{1}{4}\frac{1}{2}149° 0.18 4.07 3\frac{1}{2}\frac{1}{2}151°	3321.179 A 800 3272.807 A 200 3253.943 A 200 3215.262 A 200 3196.182 A 150 •3187.216 A 300	0.38 4.09 5 5 5 48F-153° 0.38 4.15 5 5 5 5 (40) 155° 0.38 4.17 5 5 6 162° 0.38 4.24 5 5 5 5 166°
4777.846 A 200 4719.838 A 200 4687.183 A 400 4676.911 A 500 4523.037 A 150 4239.704 A 300 4183.764 A 150	0.04 2.62 1½- ½ a ⁸ F-1° 0.04 2.66 1½-1½ (3) 2° 0.04 2.67 1½-1½ 4° 0.04 2.68 1½-1½ 5° 0.04 2.77 1½-2½ 9° 0.04 3.95 1½-1½ a ⁸ F-18°	4615.690 A 300 4403.360 A 100 4225.328 A 400 4041.675 A 200 3891.210 A 100 3799.542 A 300 3241.586 A 100	0.19 2.86 $\frac{1}{2}$ $\frac{1}$	4961.936 A 250 4816.012 A 100 4717.718 A 150 4523.912 A 250 4433.885 A 300	0.43 2.92 3 4 4 a ⁶ F-15° 0.43 2.99 3 4 4 (41) 21° 0.43 3.05 3 3 3 4 4 43° 0.43 3.16 3 4 4 43° 0.43 3.22 3 4 4 49°
4042.723 A 200 4023.231 A 300 3993.308 A 200 3896.977 A 600	0.04 2.96 1 1 1 2 8 F 18° 0.04 2.99 1 1 4 20° 0.04 3.09 1 1 33° 0.04 3.11 1 2 34° 0.04 3.13 1 2 1 37° 0.04 3.21 1 2 2 8 F 47°	4938.100 A 100 4577.690 A 250 4552.659 A 150 4499.475 A 125	0.25 2.75 1 2 2 a ⁶ F-8° 0.25 2.94 1 2 2 (23) 17° 0.25 2.96 1 1 18° 0.25 2.99 1 2 2 20° 0.25 3.08 1 2 2 32°	4373.462 A 100 4286.640 A 100 4234.573 A 200 4203.051 A 125 4068.334 A 100	0.43 3.25 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3792.025 A 150 3787.203 A 100 3789.197 A 200 3739.197 A 200 3724.902 A 200 3708.410 A 200	0.04 3.21 12-22 a8F-47° 0.04 3.29 12- 2 (5) z8g° 0.04 3.30 12-12 61° 0.04 3.34 12-12 z8g° 0.04 3.35 12-22 76°	4360.720 A 150 4169.478 A 200 4129.231 A 100 4083.584 A 100 4064.576 A 300	0.25 3.08 12-25 32° 0.25 3.21 12-25 a6r-47° 0.25 3.24 13-25(24) 52° 0.25 3.27 12-15 55° 0.25 3.28 12-15 59° 0.25 3.36 12-2 74°	3971.397 A 300 3843.500 A 200 3831.501 A 400 3800.370 A 100 3774.294 A 150	0.43 3.54 3\frac{1}{2}-2\frac{1}{2}a^6F-100^\circ\circ\circ\circ\circ\circ\circ\cir
3634.928 A 200 3634.928 A 200 3632.504 A 100 3340.579 A 800 3254.377 A 500 3241.161 A 500	0.04 3.41 12-12 88F-z8G° 0.04 3.44 12-12 (6) 85° 0.04 3.45 12-2 86° 0.04 3.73 12-1 134° 0.04 3.83 12-12 133° 0.04 3.83 12-12 134°	3986.045 A 150 3788.125 A 400 3762.588 A 200 3712.764 A 200 3711.543 A 200	0.25 3.51 11-21 a ⁶ F-95° 0.25 3.53 11-21 (25) 99° 0.25 3.57 11-21 104° 0.25 3.57 11-11 105°	*3756.411\$ A 600 3535.653 A 150 3396.187 A 250 4834.618 A 100	0.43 3.72 3½-3½ a ⁶ F-123° 0.43 3.92 3½-3½(44) 133° 0.43 4.07 3½-2½ 150° 0.48 3.04 6½-5½ a ⁶ F-25°
1791.584 A 200 1745.680 A 500 1669.396 A 500 1458.517 A 400	0.10 3.68 32-12 8 ⁸ F-5° 0.10 3.70 32-12 (7) 6° 0.10 2.75 32-22 8° 0.10 2.87 32-32 14° 0.10 2.94 32-32 17°	3650.188 A 200 3214.125 A 150 	0.25 3.63 1½-3½ 111° 0.25 4.09 1½-3½ 152°	4595.291 A 250 4537.952 A 200 4424.339 A 600 4362.040 A 300 4350.465 A 300d	0.48 3.17 $6\frac{1}{2}-6\frac{1}{2}(45)$ 44° 0.48 3.20 $6\frac{1}{2}-6\frac{1}{2}$ 46° 0.48 3.27 $6\frac{1}{2}-5\frac{1}{2}$ 56° 0.48 3.31 $6\frac{1}{2}-5\frac{1}{2}$ 64°
1345.858 A 150 1323.284 A 200 1237.663 A 200 1210.352 A 150 1155.217 A 100	0.10 3.96 31-11 88F-18° 0.10 3.02 31-11 (8) 23° 0.10 3.03 21-21 24° 0.10 3.07 21-31 30°	4646.684 A 200 4473.015 A 150 4452.727 A 250 4334.153 A 400 4318.936 A 500	0.38 3.82 41-31 a8F-12° 0.28 2.92 41-41 16° 0.28 3.93 41-41 25° 0.28 3.04 41-51 25° 0.28 3.05 41-31 27° 0.28 3.12 41-31 a8F-36° 0.28 3.13 41-51 (27) 38°	4280.789 A 400 4123.956 A 150 3885.286 A 1000 3767.358 A 200 3706.752 A 300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
149.831 A 200 1042.905 A 250 1976.270 A 200 1948.113 A 300 1943.239 A 200	0.10 3.16 2 3 48F-42° 0.10 3.21 3 2 3 9 47° 0.10 3.23 2 3 5 50° 0.10 3.23 3 2 5 3 50°	4285.496 A 200 4279.678 A 200 4244.702 A 200 4109.405 A 150 4066.737 A 200	0.28 3.16 4\frac{1}{2} 42° 0.28 3.16 4\frac{1}{2} 43° 0.38 3.18 4\frac{1}{2} 45° 0.28 3.28 4\frac{1}{2} 4\frac{1}{2} 8^8 F-58° 0.28 3.31 4\frac{1}{2} 4\frac{1}{2} (28) 63°	3649.527 A 500 3604.285 A 800 3568.271 A 1500 3418.514 A 500 3347.298 A 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
917.442 A 200 880.766 A 150 862.054 A 150 830.293 A 200 812.067 A 150 805.626 A 200	0.10 3.25 $3\frac{1}{2} - 3\frac{1}{2}$ $5\frac{1}{4} \circ$ 0.10 3.28 $2\frac{1}{2} - 1\frac{1}{2} \cdot a^{8}r - 59 \circ$ 0.10 3.30 $3\frac{1}{2} - 1\frac{1}{2} \cdot (10)$ 61° 0.10 3.33 $3\frac{1}{2} - 3\frac{1}{2} \cdot (10)$ 61° 0.10 3.34 $2\frac{1}{2} - 1\frac{1}{2} \cdot z^{8} \circ$ 0.10 3.35 $2\frac{1}{2} - 3\frac{1}{2} \cdot 71 \circ$	3987.428 A 80 3935.764 A 150 3857.912 A 100 3851.880 A 150 3833.828 A 200	0.28 3.48 4½-5½ 91° 0.28 3.48 4½-4½ a8F-92° 0.28 3.50 4½-4½ (29) 94°	*3306.388 A 500 *3301.678 A 100 3286.229 A 300 3276.747 A 200 3239.657 A 300	0.48 4.17 62-52 a8F-157° 0.48 4.23 62-62 163° 0.48 4.23 62-62 163° 0.48 4.24 62-52 164° 0.48 4.25 62-52 166° 0.48 4.29 62-62 168°
797.283 A 150 793.971 A 500 731.258 A 600 688.418 A 100 670.840 A 1000	0.10 3.35 2½-3½ 71° 0.10 3.35 2½-3½ 8 ⁸ F-72° 0.10 3.36 2½-3½(11) 73° 0.10 3.41 2½-3½ z ⁸ G° 0.10 3.45 3½-1½ 87° 0.10 3.47 3½-3½ z ⁸ G°	3800.887 A 400 3735.980 A 500 3692.221 A 150 *3667.932\$ A 150d 3627.014 A 400 3609.491 A 1200	0.28 3.62 4½ -5½ 109°	4948.627 A 150 4713.057 A 150 4615.441 A 150 4519.633 A 200 4454.629 A 200	0.54 3.04 43-51 a6F-25° 0.54 3.16 43-42(49) 43° 0.54 3.23 43-43 49° 0.54 3.27 43-53 56° 0.54 3.31 43-53 64°
627.971 A 100 623.316 A 200 621.229 A 600 584.259 A 100 511.227 A 150	0.10 3.51 3 2 2 a 8 - 95° 0.10 3.51 3 2 2 13 96° 0.10 3.51 3 2 2 97° 0.10 3.55 3 2 3 102° 0.10 3.62 3 108°	3609.491 A 1200 *3384.658 A 300 3368.568 A 200 3336.124 A 200 3310.661 A 500 3187.787 A 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*4220.659 A 200 4188.128 A 200 *4178.019 A 100d *4155.217 A 100 4107.387 A 200	0.54 3.47 41-31 a ⁶ F-z ⁸ G° 0.54 3.49 41-32 (50) 93° 0.54 3.50 41-41 94° 0.54 3.51 41-31 97° 0.54 3.55 41-41 101°
295.813 A 300 231.528 A 200 216.850 A 300 187.216 A 300	0.10 3.85 3 1 48F-134° 0.10 3.92 3 3 3 139° 0.10 3.94 3 3 141° 0.10 3.98 3 3 144°	3169.875 A 250 4952.371 A 150 4566.206 A 200 4543.948 A 250	0.28 4.17 42-52 157° 0.33 3.83 32-32 a ⁶ F-12° 0.33 3.03 32-32 32 27° 0.33 3.13 32-32 36° 0.33 3.13 32-32 36° 0.33 3.13 32-32 36°	4075.845 A 250 3979.200 A 150 3826.202 A 400 *3760.694 A 500 3650.998 A 150	0.54 3.57 4 4 4 3 6 F 103° 0.54 3.64 4 3 3 (51) 113° 0.54 3.77 4 4 4 127° 0.54 3.82 4 4 173° 0.54 3.82 4 4 173° 0.54 3.82 4 4 138°
815.808 A 400 693.628 A 150 674.599 A 600 591.818 A 100 511.829 A 200	0.18 2.75 3 2 a a Fr 8° 0.18 2.81 3 3 3 4 14 11° 0.18 2.81 3 3 3 4 12° 0.18 2.87 3 4 14° 0.18 2.92 3 4 15°	4420.526 A 200 4292.182 A 150 *4064.576 A 300 4035.110 A 250 3976.430 A 200	0.33 3.12 32 32 47° 0.33 3.31 32 32 47° 0.33 3.37 32 32 46° 0.33 3.39 32 12 85° 0.33 3.44 25 12 88° 0.33 3.46 32 12 88° 0.33 3.51 32 32 97°	3389.325 A 200 3371.209 A 150 3333.635 A 150 3228.784 A 200	0.54 4.18 4 3 4 3 4 6 7 159° 0.54 4.20 4 3 3 (52) 161° 0.54 4.24 4 4 165° 0.54 4.36 4 171°
390.858 A 600 329.016 A 400 309.012 A 200 365.075 A 100d 220.659 A 200	0.18 2.99 3 4 4 a ⁶ F-21° 0.18 3.03 3 3 2 4 15 24° 0.18 3.05 3 3 3 2 27° 0.18 3.05 3 3 2 3 2 32° 0.18 3.11 3 2 2 3 34°	3947.838 A 100 3881.383 A 100 3847.511 A 150 3838.941 A 200 3764.370 A 300	0.33 3.46 3 12 88° 0.33 3.51 3 2 3 97° 0.33 3.54 3 3 3 4 6 7 100° 0.33 3.55 2 3 3 3 107° 0.33 3.61 2 3 3 107° 0.33 3.62 2 108° 0.33 3.63 2 2 111°	4913.248 A 150 4847.760 A 200 4718.329 A 150 4467.342 A 500 4378.236 A 150 4236.745 A 250	0.66 3.17 5\\ \frac{1}{2} \cdot \frac{6}{2} \cdo
178.019 A 100d 152.209 A 200 113.902 A 100 047.160 A 80 019.982 A 80	0.18 3.14 3-2-2 a ⁸ F-39° 0.18 3.16 3-3-4(16) 42° 0.18 3.18 3-3-4 45° 0.18 3.23 3-2-4 51° 0.18 3.25 3-2-5 54°	3755.276 A 200 •3743.868 A 500 •3707.167\$ A 100d 3645.387 A 200 3369.455 A 200	0.33 3.62 31 110° 0.33 3.63 22 21 111° 0.33 3.66 21 12 a ⁶ F-116° 0.33 3.72 22 32 (35) 123° 0.33 3.99 22 12 145° 0.33 4.07 22 22 150°	4153.332 A 100 4118.551 A 400 4082.600 A 100d 3728.469 A 400 3467.874 A 100	0.66 3.63 51-41 8 ⁶ F-110° 0.66 3.65 51-44 (54) 114° 0.66 3.65 51-41 118° 0.66 3.97 51-61 143° 0.66 4.23 51-61 163° 0.66 4.24 51-41 165°
986.682 A 150 946.511 A 200 928.279 A 400 990.080 A 200 975.545 A 200	0.18 3.38 3\frac{1}{2}4\frac{1}{2}a^8F58^\times 0.18 3.31 3\frac{1}{2}4\frac{1}{2}(17) 63^\times 0.18 3.33 3\frac{1}{2}-3\frac{1}{2} 66^\times 0.18 3.36 3\frac{1}{2}-3\frac{1}{2} 76^\times 0.18 3.37 3\frac{1}{2}-2\frac{1}{2} 76^\times	4854.365 A 150 4889.568 A 250 4642.235 A 500 4593.544 A 150	0.38 2.92 5 4 4 a F-15° 0.38 2.93 5 4 4 (38) 16° 0.38 3.04 5 5 5 25°	7082.37 A 400d 6862.82 A 1001	0.66 4.24 5 4 165° 0.88 2.62 1 4 4 8 H 1° 0.88 2.68 1 2 1 5 5°
371.778 A 300 335.725 A 100d 324.175 A 200 760.694 A 500 743.868 A £00	0.18 3.37 3 4 4 a ⁸ F-77° 0.18 3.40 3 4 (18) 81° 0.18 3.41 3 2 280° 0.18 3.47 3 3 2 280° 0.18 3.48 3 4 92°	4593.544 A 150 4434.323 A 400 4421.138 A 300 4368.031 A 150d 4347.801 A 400 4362.677 A 300	0.38 3.16 54-54 243° 0.38 3.16 54-64 43° 0.38 3.20 54-64 49° 0.38 3.22 54-44 49° 0.38 3.22 54-65 57°	6790.00 A 200d 5116.700 A 100d -7039.22 A 600d	0.93 2.75 21-21 a ⁶ H-8° 0.93 3.34 22-12(56) z ⁸ G°
736.805 A 100 710.869 A 100 708.654 A 300 345.290 A 300 534.290 A 1500d?	0.18 3.50 3½-4½ a ⁸ F-94° 0.18 3.51 3½-3½(19) 96° 0.18 3.51 3½-3½ 97° 0.18 3.57 3½-4½ 103° 0.18 3.58 3½-4½ z ⁸ G°	4256.393 A 400 4266.128 A 100 3983.138 A 200 3982.397 A 800 3780.927 A 150 3718.877 A 500	0.38 3.28 5½-6½ 57° 0.38 3.31 5½-4½ a ⁸ F-63° 0.38 3.48 5½-5½ (38) 91° 0.38 3.52 5½-5½ 98° 0.38 3.64 5½-5½ 112°	7042.24 A 500d 6856.03 A 400d	1.07 2.82 4½-3½ a ⁸ H-12° 1.07 2.87 4½-3½(58) 14°

-92		REVISED MULTIPLET TABLE	
Laboratory I A Ref Int	E P J Multiplet Low High (No)	Laboratory EP J Maultiplet IA Ref Int Low High (No)	Laboratory EP J Multiplet IA Ref Int Low High (No)
Sm II continued		Eu I I P 5.64 Anal A List D Apr 1942	Eu II continued
7030.44 A 800d 6731.84 A 500d	1.16 2.92 5½-4½ a ⁸ H-15° 1.16 2.99 5½-4½(59) 21°	4594.03// A 10000R 0.00 2.69 3½-4½ a85°-y8P 4627.22 A 8000R 0.00 2.67 3½-3½ (1) 4661.88 A 7000R 0.00 2.65 3½-3½	3531.151 A 60 3.23 6.73 5-5 z ⁹ P-e ⁹ D° 3313.33 A 400 2.99 6.71 4-4 (24) 3272.77 A 400 2.93 6.71 3-3 cont 3319.89 A 80 2.99 6.71 4-3
6472.34 A 300d	1.37 3.28 7½-6½ a ⁸ H-57° (60)		3377.78 A 600 2.93 6.70 3-2 3308.03 A 300 2.99 6.72 4-5 $z^{9}P_{-9}^{-2}D^{0}$
8032.03 A 250d •7039.23 A 600d	1.41 3.94 $3\frac{1}{2}-3\frac{1}{2}$ $a^{8}G-17^{\circ}$ 1.41 3.16 $3\frac{1}{2}-4\frac{1}{2}(61)$ 43°	Eu II I P 11.21 Anal B List C May 1942 3819.67 A 6000R 0.00 3.23 4-5 a 95-29 P	(25) 4485.15 A 100 3.31 6.06 4-4 z ⁷ P-e ⁹ So (26)
6569.31 A 1000d	1.49 3.37 8½-7½ a ⁸ H-75° (62)	4129.73 A 5000r 0.00 2.99 4-4 (1) 4205.05 A 6000r 0.00 2.93 4-3 3724.94 A 4000 0.00 3.31 4-4 a ⁹ 5°-z ⁷ P	4383.17 A 200 3.31 6.13 4-3 z ⁷ P-e's° 4464.97 A 200 3.36 6.13 2-3 (27)
8025.12 A 400	1.51 3.05 3½-3½ b ⁸ F-27° (63)	3688.42 A 1500 0.00 3.35 4-3 (2)	3616.152 A 100 3.31 6.73 4-5 z ⁷ P-e ⁹ D ^e 3673.19 A 80 3.35 6.71 3-3 (38)
8510.90 A 200d 8348.68 A 150d	1.59 3.04 41-51 b F-25° 1.59 3.06 41-51 (64) 28° 1.59 3.16 41-41 43°	3991.33 A 300 0.00 4.13 4-5 a ³ S ² -Z ² D 3077.358 A 200 0.00 4.01 4-4 (3) 3173.607 A 100 0.00 3.89 4-3	3678.259 A 100 3.36 6.72 2-1 $z^7P-e^7D^0$ (29) 3396.58 A 200 3.31 6.95 4-5 $z^7P-f^7D^0$
7837.27 A 400 7928.14 A 800	1.59 3.16 4½-4½ 43° 	4435.58 A 3000 0.21 2.99 3-4 a ⁷ 5°-z ⁹ P 4522.59 A 2000 0.21 2.93 3-3 (4)	(30) Strongest Unclassified Lines of <u>Eu II</u>
8485.99 A 400d	1.68 3.13 6½-5½ a804-38°	3971.98 A 4000r 0.21 3.31 3-4 a ⁷ S°-z ⁷ P 3930.50 A 4000r 0.21 3.35 3-3 (5)	3861.18 A 80 V 3815.495 A 80 V
8048.70 A 400d	1.74 3.27 6½-5½ b ⁸ F-56°	3907.10 A 3000r 0.21 3.36 3-2 3097.45 A 100 0.21 4.19 3-2 a ⁷ 8°-103	3717.69 A 80 V
8026.32 A 500d		3054.94 A 600 0.21 4.25 3-3 a ⁷ s ⁶ -y ⁹ P1	3687.78 A 80 V 3679.500 A 80 V 3390.783 A 80 V 3130.73 A 80 V
8068.46 A 800	1.74 3.27 4½-5½ 8 ⁸ P-56° (68)	6645.11 A 8000 1.37 3.23 6-5 a ⁹ D ^e -z ⁹ P 7370.22 A 2500 1.31 2.99 5-4 (8) 7426.57 A 1500 1.27 2.93 4-3	3130110 X 00 1
8305.79 A 500d 7935.08 A 400d	1.79 3.28 $7\frac{1}{2}$ $-6\frac{1}{2}$ 8^{0} -57° 1.79 3.37 $7\frac{1}{2}$ $-7\frac{1}{2}$ (69) 75°	7426.57 A 1500 1.27 3.93 4-3 6437.64 A 4000 1.31 3.23 5-5 7194.81 A 1500 1.27 2.99 4-4 7301.17 A 2500 1.24 2.93 3-3	<u>Gd I</u> I P 6.16 Anal C List D June 1943
Strongest Unclassifie	d Lines of <u>Sm II</u>	6303.41 A 2000 1.27 3.23 4-5 7077.10 A 3000 1.24 2.99 3-4	7168.37 A 3000 0.21 1.93 6-5 a ⁹ D ^e -z ⁹ P 7733.50 A 1500 0.12 1.72 5-4 (1)
4515.094 A 150 4478.657 A 125	IX	7317.55 A 1500 1.32 3.93 2-3 6173.05 A 2000 1.31 3.31 5-4 a ⁹ D°-z ⁷ P ⁺	6730.73 A 1500 0.12 1.96 5-6 a ⁹ D°-z ¹¹ 6828.25 A 1500 0.07 1.87 4-5 (2)
4444.259 A 150 4352.101 A 200 4381.009 A 100	IX IX IX	6049.51 A 2000 1.27 3.31 4-4 (9) 5872.98 A 500 1.24 3.35 3-3	6916.57 A 2000 0.03 1.81 3-4 6991.92 A 1500 0.00 1.77 2-3
3962.995 A 200d 3959.527 A 100	III III	5818.74 A 1000 1.22 3.35 2-3	5856.22 A 4000 0.12 2.23 5-6 a ⁹ D ^o -z ⁹ F 5696.22 A 8000 0.07 2.23 4-5 (3)
3903.417 A 500 3875.193 A 100	III	*3917.39 \$ A 60 1.37 4.52 6-5 a ⁹ D°-y ⁹ P* 4017.58 A 100 1.31 4.39 5-4 (10) 4151.52 A 20 1.27 4.25 4-3	5617.91 A 4000 0.00 2.20 2-3 6114.07 A 2000 0.21 2.23 6-6
3854.209 A 300 3848.779 A 200d	III	*3964.90 § A 60 1.27 4.39 4-4 4112.04 A 30 1.34 4.35 3-3	5851.63 A 5000 0.12 2.23 5-5 5632.25 A 2500 0.00 2.19 2-2
3797.730 A 600 3780.763 A 300 3778.136 A 400	III III III	3928.87 A 15 1.24 4.39 3-4 4085.38 A 40 1.23 4.25 2-3	5701.35 A 2500 0.03 2.19 3-2
3767.755 A 150	iii III	3741.31 A 400 1.37 4.67 6-5 a ⁹ D°-x ⁹ P 3761.12 A 300 1.31 4.60 5-4 (11) 3799.009 A 100 1.27 4.52 4-3	4313.845 A 2000 0.03 2.69 3-3
3758.968 A 200 3757.529 A 300 3741.288 A 300	III	3674.634 A 50 1.31 4.67 5-5 3714.904 A 100 1.27 4.60 4-4	4306.340 A 1500 0.00 2.87 2-2
3739.117 A 300 3737.141 A 300	III	3765.93 A 150 1.24 4.53 3-3 3683.267 A 40 1.24 4.60 3-4 3743.556 A 100 1.22 4.52 2-3	4053.642 A 2500 0.12 3.17 5-6 (5) 4078.700 A 3000 0.07 3.09 4-5
3721.847 A 400 3712.109 A 100 3706.979 A 200	III III IV	3713 45 A 125 1.24 4.57 3-2 a ⁹ D°-115	4058.219 A 2500 0.03 3.07 3-4
3706.979 A 200 3700.922 A 150 3677.793 A 200	III IV	3508.852 A 20 1.31 4.83 5–4 20°-y°P 3508.731 A 10 1.27 4.79 4–3 (13) 3646.75 A 35 1.22 4.61 2–2	5015.04 A 1500 1.05 3.51 8-9 a ¹¹ Fe-z ¹ 5103.45 A 2000 0.98 3.40 7-8 (6) 5155.845 A 1500 0.92 3.32 6-7
3670.677 A 150 3662.693 A 200	III IV	3646.75 A 35 1.22 4.61 2-2 3440.999 A 80 1.24 4.83 3-4 3461.38 A 80 1.22 4.79 2-3	5197.768 A 1300 0.88 3.35 5-6 5219.40 A 3000 0.84 3.30 4-5
3656.221 A 200 3638.767 A 400	IV IV III	3710.870 A 80 1.31 4.64 5-6 a ⁹ D°-116	5255.805 A 1500 0.81 3.16 3.4 5251.180 A 2000 1.05 3.40 8-8 5283.076 A 3000 0.98 3.32 7-7
	III	3611.57 A 100 1.27 4.69 4-4 a DD-121 (15) 3603.20 A 200 1.27 4.70 4-4 a DD-122	7 5301.67 A 4000 0.92 3.25 6-6 5307.30 A 4000 0.88 3.20 5-5 7 5321.777 A 4000 0.84 3.16 4-4
3580.941 A 300 3566.836 A 150 3559.101 A 300d	III	0(16)7-	5331.777 A 4000 0.84 3.16 4-4 5302.78 A 3000 0.81 3.14 3-3 5321.496 A 2000 0.79 3.11 2-2
3418.151 A 300 3408.676 A 400	IV IV	3543.153 A 80 1.23 4.71 2-2 (17)	5348.67 A 2000 0.79 3.09 2-1
3365.863 A 400 3350.875 A 200 3348.683 A 200	III	3623.54 A 150 1.37 4.78 6-7 a ⁹ p°-125 (18) 3552.516 A 100 1.31 4.79 5-5 a ² p°-126	5350.38 A 4000 1.54 3.85 7-8 a ⁹ F°-z ⁹ (5353.26 A 3000 1.46 3.77 6-7 (7)
3348.683 A 200 3343.494 A 200 3325.258 A 300	IA IA IA	(19) 3369.055 A 200 1.31 4.98 5-6 a ⁹ p°-131	5343.00 A 3000 1.39 3.70 5-6 5333.30 A 8000 1.34 3.66 4-5
3316.579 A 300	IV	3435.022 A 80 1.37 4.98 6-6 (20)	
3307.017 A 500 3298.104 A 500 3273.483 A 500	III III IV	(21)	Gd II I P ? Anal C List B Sept 1943
3253.401 A 300	IA	4355.09 A 300 3.23 6.06 5-4 z ⁹ P-e ⁷ S° 4011.69 A 100 2.99 6.06 4-4 (22) 3943.08 A 40 2.93 6.06 3-4	3763.00 A 50 0.24 3.52 $6\frac{1}{2} - 5\frac{1}{2}$ a ¹⁰ D°-z ² 3952.00 A 300 0.14 3.27 $5\frac{1}{2} - 4\frac{1}{2}$ (1)
3218.614 A 300 3211.734 A 400	IV IV	3380.35 A 100 2.99 6.64 4-4 z ⁹ P-1°	3993.213 A 200 0.08 3.17 42-33 3656.152 A 1500 0.14 3.52 52-52
3193.014 A 300 3183.916 A 400	I V	3521.09 A 100 3.23 6.74 5-6 $z^9P_{-}e^9P_{-}$	3871.54 A 80 0.08 3.27 4½-4½ † 3934.824 A 300† 0.03 3.17 3½-3½ 3587.186 A 40 0.08 3.52 4½-5½
3152.525 A 300	IV	3366.39 A 300 2.93 6.71 3-4	3763.00 A 50 0.34 3.52 62-52 a100°-z 3952.00 A 300 0.14 3.27 52-42 (1) 3993.213 A 200 0.08 3.17 42-32 3871.54 A 80 0.08 3.27 42-42 1 3934.824 A 3001 0.08 3.27 42-42 3587.186 A 40 0.08 3.52 42-52 38816.64 A 250 0.03 3.27 32-42 3894.696 A 2000 0.00 3.17 22-32

			REVISED A	OPILLE	IIABEE			75
Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P Low High	J Multiplet (No)	Laboratory I A Ref Int	E P J Low High	Multiplet (No)
Gd II continued			Gd II continued			Gd II continued		
3422.466 A 10000	0.24 3.84	$6\frac{1}{2}$ - $7\frac{1}{2}$ a ¹⁰ D°-z ¹⁰ F $5\frac{1}{2}$ - $6\frac{1}{2}$ (2)	4078.444 A 1300	0.60 3.68	$5\frac{1}{2}-6\frac{1}{2} a^8 D^{\circ}-z^{10}F$ $4\frac{1}{2}-5\frac{1}{2}$ (15)	3009.650 A 150	0.60 4.70 $5\frac{1}{2}-4\frac{1}{2}$	a8D0_8 t
3545.797 A 3000 3671.20 A 1500 3716.36 A 1000	0.14 3.62 0.08 3.44 0.03 3.35	45-55 35-45	4184.252 A 2000 4212.001 A 800 4251.733 A 2000	0.49 3.44 0.42 3.35 0.38 3.28	35-45 25-35	2969.267 A 50	0.60 4.75 $5\frac{1}{2} - 5\frac{1}{2}$	a8De_9
3759.00 A 300 3646.19 A 3000	0.00 3.28 0.24 3.62	31-31 61-61	4380.490 A 1500 4343.179 A 1500	0.35 3.24 0.60 3.44	12-22 52-52	2965.428 A 400 3012.190 A 600	0.60 4.76 $5\frac{1}{2}-5\frac{1}{2}$ 0.60 4.69 $5\frac{1}{2}-4\frac{1}{2}$	a ⁸ D°-z ⁶ F† (39)
3743.47 A 2000 3768.39 A 2000 3796.37 A 2500	0.14 3.44 0.08 3.35 0.03 3.28	5 1 - 5 2 3 4 2 4 3 3 5 - 3 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6	4310.981 A 200 4322.195 A 125 *4327.125§ A 1500	0.49 3.35 0.38 3.24 0.35 3.20	41-41 21-21 11-11	4510.380 A 30d?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3813.97 A 2000 3855.56 A 200	0.00 3.24 0.24 3.44	23-23 63-53	4478.795 A 250 4419.032 A 800	0.60 3.35 0.49 3.28	51-41 41-31	4344.487 A 40	$0.43 3.27 3\frac{1}{2}-4\frac{1}{2}$	a85°-z10p
3844.579 A 500 3850.69 A 800 3852.45 A 1000	0.14 3.35 0.08 3.28 0.03 3.24	5\$-4\$ 4\$-3\$ 3\$-2\$	4387.674 A 300 4369.771 A 500	0.42 3.24 0.38 3.20	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4498.276 A 300 4215.023 A 600	0.43 3.17 3½-3½	(31)
3850.97 A 1200	0.00 3.20	3 1 -1 1	4360.917 A 250		$3\frac{1}{2}-4\frac{1}{2} a^8 D^6-3$ (16)	4390.953 A 300		a ⁸ S°-z ¹⁰ F (32)
3968.361 A 60 3887.157 A 40 3831.80 A 100	0.14 3.25 0.08 3.25 0.03 3.25	51-41 a ¹⁰ D°-2 41-42 (3) 31-42	3843.80 A 25 4162.732 A 500 4188.099 A 60	0.60 3.81 0.49 3.46 0.42 3.37	5½-4½ a ⁸ D°-z ⁸ P† 4½-3½ (17) 3½-2½	4364.140 A 25 4073.195 A 400		a ⁸ S°-2 (33) a8s° -8p+
3367.093 A 100	0.14 3.81	51-41 a10po-z8p	3719.53 A 300 4070.390 A 200	0.49 3.81 0.42 3.46	3 1-2 1 4 1 - 4 1 3 1 - 3 1	4191.067 A 800		a ⁸ S ⁹ -z ⁸ P† (34)
3654.62 A 2000d 3697.73 A 1000	0.08 3.46 0.03 3.37	41-31 (4) 31-81 43-41	3645.62 A 300 4013.953 A 60	0.42 3.81 0.38 3.46	3	*4170.108§ A 150	0.43 3.38 $3\frac{1}{2} - 3\frac{1}{2}$	a85°-3 (35) a85°-z10D†
3308.517 A 80 3605.665 A 100 3682.26 A 800	0.08 3.81 0.03 3.46 0.00 3.37	42-42 33-33 83-83	4167.159 A 40	0.42 3.38	$3\frac{1}{2}-3\frac{1}{2}$ a ⁸ D°-3 †	3881.84 A 50 3760.71 A 200		
3268.335 A 400 3571.933 A 300	0.03 3.81 0.00 3.46	3 1 - 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3822.17 A 80 3826.05 A 200	0.60 3.83 0.49 3.72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3763.33 A 60 3769.45 A 100	0.43 3.70 3½-3½ 0.43 3.70 3½-3½	a ⁸ S ^e -z ⁸ D (37)
3732.45 A 100	0.08 3.38	$4\frac{1}{2}-3\frac{1}{2} a^{10}D^{0}-3$ (5)	3902.398 A 1000 3957.672 A 1000 3987.214 A 600	0.42 3.59 0.60 3.72 0.49 3.59	3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	3512.219 A 800		a8ge_z6p+
3524.196 A 1000 3491.954 A 2000	0.03 3.53 0.00 3.53	3½-3½ a ¹⁰ p°-4 3½-3½ (6)	3872.62 A 60 *4130.372 A 3000	0.42 3.61 0.60 3.59	32-32 52-42	3441.790 A 400 3469.307 A 100	0.43 4.01 $3\frac{1}{2}$ - $3\frac{1}{2}$ 0.43 3.98 $3\frac{1}{2}$ - $3\frac{1}{2}$	a ⁸ S°-z ⁸ F† (39)
3439.990 A 6000 3454.145 A 1500 3518.632 A 30	0.24 3.83 0.14 3.72 0.08 3.59	$6\frac{1}{2}-6\frac{1}{2} a^{10}D^{0}-z^{10}D$ $5\frac{1}{2}-5\frac{1}{2}$ (7) $4\frac{1}{2}-4\frac{1}{2}$	3916.508 A 3000 3836.91 A 300 3760.92 A 100	0.60 3.75 0.49 3.71 0.42 3.70	$5\frac{1}{2}-5\frac{1}{2}$ $a^{8}D^{9}-z^{8}D^{+}$ $4\frac{1}{2}-4\frac{1}{2}$ (20) $3\frac{1}{2}-3\frac{1}{2}$	3463.984 A 5000 3468.989 A 3000	0.43 3.99 $3\frac{1}{2}-4\frac{1}{2}$ 0.43 3.98 $3\frac{1}{2}-3\frac{1}{2}$	a ⁸ S ^e _y ⁸ P (40)
3449.616 A 800 *3423.92 \$ A 1500 3549.365 A 3000	0.03 3.61 0.00 3.60 0.24 3.72	33-33 23-23 63-53	3760.92 A 100 3699.73 A 800 3969.293 A 300 3839.64 A 300	0.42 3.70 0.35 3.69 0.60 3.71 0.49 3.70	15-15 55-45 44-35	3482.602 A 800 3315.590 A 400 3358.434 A 300		a85°_y10p
3584.962 A 3000 3494.404 A 3000	0.14 3.59 0.08 3.61	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3767.04 A 500 3730.84 A 1000	0.42 3.70 0.38 3.69	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3010.899 A 250	0.43 4.52 $3\frac{1}{2}-4\frac{1}{2}$ 0.43 4.55 $3\frac{1}{2}-2\frac{1}{2}$	
3454.904 A 2000 3350.474 A 10000 3392.530 A 2000	0.03 3.60 0.14 3.83 0.08 3.72	3 1 - 2 1 5 1 - 2 1 5 1 - 2 1 5 1	3787.56 A 400 3758.31 A 200 3712.70 A 2000	0.49 3.75 0.42 3.71 0.38 3.70	42-52 31-41 21-31	2993.038 A 500		
3473.219 A 2000 3418.733 A 2000	0.03 3.59 0.00 3.61	3 <u>1</u> -4 <u>1</u> 3 <u>1</u> -3 <u>1</u>	3687.74 A 800 3578.596 A 30	0.35 3.70 0.49 3.94	1½-3½ 4½-3½ a ⁸ D°-z ⁶ P†	4734.427 A 100 4802.575 A 80 4316.052 A 600	0.66 3.27 $5\frac{1}{2}-4\frac{1}{2}$ 0.60 3.17 $4\frac{1}{2}-3\frac{1}{2}$ 0.66 3.52 $5\frac{1}{2}-5\frac{1}{2}$	a ¹⁰ F°-z ¹⁰ P† (43)
3462.997 A 200 3365.591 A 400	0.14 3.71 0.03 3.70	$5\frac{1}{2}-4\frac{1}{2} a^{10}D^{\circ}-z^{8}D^{+}$ $3\frac{1}{2}-3\frac{1}{2}$ (8) $3\frac{1}{2}-1\frac{1}{2}$	3409.297 A 500 3321.348 A 30	0.42 4.04 0.38 4.10	4½-3½ a ⁸ D°-z ⁶ P† 3½-2½ (21) 2½-1½	4627.66 A 40 4719.040 A 60	0.60 3.27 41-41 0.55 3.17 31-31	
3345.985 A 2000 3422.751 A 500 3401.067 A 300	0.00 3.69 0.14 3.75 0.08 3.71	35-15 55-55 45-45	3510.133 A 30 *3369.618 A 400 3296.668 A 30	0.42 3.94 0.38 4.04 0.35 4.10	31-31 31-21 11-11	4327.140 A 200 4073.759 A 1500	0.60 3.52 4½-5½ 0.82 3.84 7½-7½	a ¹⁰ F°-z ¹⁰ F†
3360.711 A 1000 3336.180 A 2500	0.03 3.70 0.00 3.70	3 1 - 3 1 2 1 - 2 1	3468.083 A 200	0.38 3.94	22-32	*4262.092§ A 2500 4438.266 A 150	0.82 3.84 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	(44)
3362.233 A 10000 3358.620 A 8000 3331.383 A 4000	0.08 3.75 0.03 3.71 0.00 3.70	45-55 35-45 25-35	3481.275 A 5000 3450.376 A 4000 3416.948 A 2500	0.50 4.14 0.49 4.07	$5\frac{1}{2}-6\frac{1}{2} a^{8}D^{6}-z^{8}F^{+}$ $4\frac{1}{2}-5\frac{1}{2}$ (33) $3\frac{1}{2}-4\frac{1}{2}$	4481.056 A 300 4521.296 A 100	0.60 3.35 41-41 0.55 3.28 31-31	
3196.532 A 150			3416.948 A 3500 3399.406 A 500 3399.991 A 1200	0.42 4.03 0.38 4.01 0.35 3.98	25-45 25-35 15-25	4558.080 A 250 4394.719 A 25 4550.954 A 150	0.50 3.20 15-15 0.82 3.62 75-65 0.73 3.44 65-55	
3052.511 A 50 3133.094 A 150	0.00 4.04 0.00 3.94	41-31 a ¹⁰ D°-z ⁶ P† 21-22 (9) 22-32	3557.053 A 1000 3481.797 A 3000 3439.784 A 1500	0.60 4.07 0.49 4.03	51-51 41-41 21-21	4581.086 A 200 *4597.91 § A 500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3161.369 A 2500 3145.00 A 2500	0.24 4.14 0.14 4.07	$6\frac{1}{2}-6\frac{1}{2}$ $a^{10}D^{\circ}-z^{8}F$ $5\frac{1}{2}-5\frac{1}{2}$ (10)	3439.784 A 1500 3424.592 A 1200 3590.468 A 100	0.42 4.01 0.35 3.96 0.60 4.03	13-13 55-45	4601.05 A 500 4596.978 A 400 3959.523 A 500?	0.55 3.24 31-21 0.52 3.20 21-11 0.73 3.84 61-71	
3119.08 A 60 3101.911 A 850d 3098.899 A 300	0.08 4.03	45-45 35-35	3505.512 A 3000 3467.267 A 3500	0.49 4.01 0.42 3.98	12-12 12-22 12-12 12-2	*4163.092§ A 250 4344.300 A 100	0.66 3.62 $5\frac{1}{2}$ $-6\frac{1}{2}$ 0.60 3.44 $4\frac{1}{2}$ $-5\frac{1}{2}$	
3223.740 A 10007 3171.09 A 125	0.34 4.07 0.14 4.03	25-25 65-55 55-45	3451.233 A 2000 3432.994 A 1500	0.38 3.96 0.35 3.95	12- 2	4408.248 A 400 *4466.547\$ A 500 4506.333 A 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3138.094 A 80 3124.250 A 150 3119.336 A 25	0.08 4.01 0.03 3.98 0.00 3.96	200 - 100 -	*3640.18 \$ A 50 3480.547 A 60 3528.545 A 300	0.60 3.99 0.42 3.97 0.49 3.99	51-41 a ⁸ D°-y ⁸ P† 32-31 (23) 43-42 31-32 31-32 31-31 12-32	4757.791 A 80	0.66 3.25 5\frac{1}{2}-4\frac{1}{2}	a ¹⁰ F°-2†
3085.621 A 60 3093.846 A 25	0.14 4.14 0.08 4.07	5 1 6 1 4 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3466.952 A 600 3439.208 A 3000	0.42 3.98 0.38 3.97	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	4321.110 A 200 4382.061 A 60	0.55 3.37 3½-2½	(45) a ¹⁰ Fo_z8p† (46)
3083.350 A 200 3076.925 A 2000	0.03 4.03 0.00 4.01	33-43 23-33	*3461.952\$ A 300 3425.930 A 600 3412.753 A 80	0.42 3.99 0.38 3.98 0.35 3.97	3 1 -4 1 31-31 11-21	4253.366 A 800 4330.606 A 600 3791.72 A 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3160.69 \$ A 200 3135.034 A 200	0.08 3.98 0.03 3.97	$\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ a ¹⁰ D°-y P† 3\frac{1}{2}-3\frac{1}{2} (11)	3407.61 A 1500?	0.60 4.22	5½-5½ a ⁸ D°-y ¹⁰ P	3791.72 A 30 4204.857 A 300 4296.076 A 1000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3156.532 A 2000 3123.989 A 1000 3119.941 A 800	0.08 3.99 0.03 3.98 0.03 3.99	41-31 a ¹⁰ p°-y P† 31-32 (11) 41-42 31-42 32-42 32-42	3374.688 A 300 3356.513 A 80 3419.069 A 50	0.49 4.15 0.43 4.10 0.49 4.10	4½-4½ (24) 3½-3½ 4½-3½	*4359.152 A 40 4308.233 A 40		a ¹⁰ F°-3† (47)
3098.644 A 800 3100.504 A 10000	0.00 3.98	3½-3½ 61-51 a10ne_v10n	3309.582 A 60 3313.731 A 600 3318.055 A 100	0.49 4.33 0.43 4.15 0.38 4.10	5-5-5-4 a ⁸ pe-y ¹⁰ p 4-4-4-5 (34) 3-3-5-4-4-5-5-4-4-5-5-3-4-5-3-2-3-2	4140.450 A 100		
3081.993 A 8000 3068.643 A 4000	0.14 4.15 0.08 4.10	61-51 a ¹⁰ p°-y ¹⁰ p 51-42 (12) 41-31 51-51	3161.638 A 40	0.60 4.50	5] -5] a ⁸ p•-y ⁸ D†	4063.59 A 200		a ¹⁰ F°-4 (48)
3027.602 A 8000 3032.845 A 10000 3034.051 A 8000	0.14 4.22 0.08 4.15 0.03 4.10	5 5 -5 5 45-4 5 34-34	3003.583 A 150 2960.926 A 500 3143.131 A 400	0.42 4.53 0.38 4.55 0.60 4.52	51-51 a ⁸ D°-y ⁸ D† 32-32 (25) 23-32 (25) 55-42 (25) 31-22 (25) 31-22 (25) 32-22 (25) 32-22 (25)	4098.606 A 3000 *4130.372 A 3000 4217.195 A 500	0.82 3.83 $7\frac{1}{2}-6\frac{1}{2}$ 0.73 3.72 $6\frac{1}{2}-5\frac{1}{2}$	a ¹⁰ F°-z ¹⁰ D† (49)
2980.154 A 6000 2999.045 A 8000	0.08 4.22 0.03 4.15	32-32 42-52 42-52 32-42 32-32	3053.570 A 600 2991.520 A 150	0.49 4.53 0.43 4.55	45-35 35-35	4098.900 A 400 4045.148 A 100	0.55 3.60 34-24	
3010.129 A 8000		-	3077.077 A 800 3009.366 A 60 2972.742 A 150	0.49 4.50 0.42 4.52 0.38 4.53	45-55 35-45 24-34	3983.008 A 80 4037.332 A 1500	$\begin{array}{ccccc} 0.73 & 3.83 & 6\frac{1}{2} - 6\frac{1}{2} \\ 0.66 & 3.72 & 5\frac{1}{2} - 5\frac{1}{2} \end{array}$	
4506.931 A 60	0.43 3.16	$3\frac{1}{2}-4\frac{1}{2} a^{8}D^{\circ}-1\uparrow$	3028.981 A 200	0.60 4.67	53-43 a8D0-7†	4132.275 A 3000 4037.897 A 1200 4001.257 A 600	0.55 3.61 35-35 0.53 3.60 35-35	
4235.148 A 100 4446.487 A 350 4494.853 A 35	0.60 3.52 0.49 3.27 0.43 3.17	51-51 a8D°-21OP† 41-41 (14) 31-32 31-41 32-32			(36)	3959.436 A 3007 4070.288 A 600	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4341.282 A 600 4426.151 A 80	0.43 3.17 0.43 3.27 0.38 3.17	35-45 25-35				3994.165 A 800 3971.754 A 300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	-							

94		REVIS	ED MUL		TABLE		
Laboratory I A Ref Int		tiplet Laborat	ory of Int Lo	- ·	J Multiplet (No)	Laboratory I A Ref Int	EP J Multiplet Low High (No)
Gd II continued	-	Gd II conti				Gd II continued	
4085.564 A 2000 4049.429 A 1200 3973.981 A 500 3983.246 A 300 3895.230 A 200 3971.062 A 100 m3916.61 P Gd ⁺ 3881.94 A 30	0.66 3.71 5 4 4 (0.60 3.70 4 3 3 4 (0.55 3.70 3 2 3 4 4 4 6 (0.55 3.70 3 2 3 4 4 4 6 (0.55 3.70 3 2 3 2 3 6 (0.50 3.70 3 2 3 2 3 6 (0.50 3.70 3 2 3 2 3 6 (0.50 3.70 3 3 3 3 3 6 (0.50 3.69 1 3 1 3 1 3 1 3 1 4 1 4	0F°-z ⁸ D† 4427.606 A (50) 3997.764 A 4154.862 A 4246.568 A 4316.266 A 4383.119 A 4359.636 A 4444.102 A 4400.18 A	300 1. 250 1. 150 1. 150 1. 150 1. 30 1.	06 4.14 51 10 4.07 45 13 4.03 35 15 4.01 35 17 3.98 15 15 3.98 25		4582.38 A 300 4471.29 A 200 4433.635 A 60 4646.326 A 40 4520.070 A 150 4467.227 A 80 4554.989 A 50 4488.401 A 80 4374.243 A 30	1.25 3.94 42-32 a ⁶ D°-z ⁶ P† 1.28 4.04 32-22 1.31 4.10 22-12 1.32 3.94 32-32 1.33 4.04 22-22 1.33 4.04 12-22 1.35 4.10 2-12 1.35 4.07 42-52 a ⁶ D°-z ⁶ F†
3918.236 A 150 3875.46 A 100 3854.177 A 50	0.60 3.75 $4\frac{1}{2}$ $5\frac{1}{2}$ 0.52 3.70 $3\frac{1}{2}$ $3\frac{1}{2}$ 0.50 3.70 $1\frac{1}{2}$ $3\frac{1}{2}$	4438.13 A	30 1.	.17 3.95 1]	-4 b ⁸ D°-y ⁸ P† -3 (68)	4463.347 A 80 4731.373 A 50	1.25 4.07 4½-5½ a ⁶ D°-z ⁸ F† 1.25 4.01 4½-3½ (83) 1.33 3.95 1½-½
3709.13 A 50 3576.772 A 25 *3614.21 A 100 3591.912 A 30 3569.566 A 40	0.82 4.14 7½-6½ a ¹⁰ 0.50 3.95 1½- ½ (0.73 4.14 6½-6½ 0.60 4.03 4½-4½ 0.55 4.01 3½-3½	0F°_z ⁸ F	150 1. 100 1. 150 1. 140 1.	.15 3.97 23 .13 3.99 3 .15 3.98 2	-45 -45 -35	4570.977 A 40 4509.082 A 50 3791.17 A 300 3807.65 A 25 3764.60 A 50	1.28 3.98 3½-3½ a ⁶ D°-y ⁸ P† 1.25 3.98 4½-3½ (84) 1.25 4.50 4½-5½ a ⁶ D°-y ⁸ D† 1.28 4.52 3½-4½ (85) 1.25 4.52 4½-4½
3567.654 A 40 3543.768 A 500 3558.468 A 250 3544.985 A 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3581.91 A 3600.963 A 3626.32 3 3629.51 A 3558.189 A	A 200 1. A 40 1. A 80 1. A 400 1.	.06 4.50 5 .10 4.53 4 .13 4.53 3 .17 4.57 1 .06 4.53 5 .10 4.53 4	-5) b ⁸ D°-y ⁸ D -4) (69) -3) -1)	3764.60 A 50 3755.56 A 40 3641.39 A 125 3613.490 A 80	1.25 4.52 4½-4½ 1.25 4.53 4½-3½ 1.28 4.67 3½-4½ a ⁶ D°-7† (86) 1.28 4.70 3½-4½ a ⁶ D°-8
3593.445 A 60 3564.046 A 60 3554.802 A 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0F°-y ⁸ P† *3592.709 A (52) 3608.753 A 3613.392 A 3625.26 A	A 200 1 A 150 1 A 60 1 A	.13 4.55 3 .15 4.57 2 .10 4.50 4	-25 -15 -52	3517.890 A 60	1.25 4.75 $4\frac{1}{2}$ $5\frac{1}{2}$ $a^{(107)}$ $a^{(88)}$
3466.498 A 150 3193.174 A 200 3137.940 A 80	0.66 4.52 51-41 a ¹⁰	Ore_y ¹⁰ P+ 3634.757	A 100 1 A 100 1 A 80 1 A	.13 4.52 3 .15 4.53 3 .17 4.55 1	-41 1-31 1-32	3512.496 A 600 3617.164 A 300 3610.76 A 300 3592.709 A 1500d	1.28 4.69 32-42 (89) 1.31 4.73 22-32 1.33 4.77 12-22
3089.204 A 30 3212.274 A 50 3162.764 A 25 3108.230 A 30	0.55 4.55 33-25 0.66 4.50 53-53 0.60 4.50 43-53 0.55 4.52 33-42	3412.583 A *3451.914§ A 3388.065 A	A 25 1		5-45 DOD01	3580.618 A 40 3579.549 A 25 *3567.116 A 30 3553.716 A 40	1.35 4.79 \$-1\$ 1.38 4.73 3-3\$ (1.33 4.79 12-1\$ (1.35 4.81 2-2 1.33 4.81 12-2
3040.34 A 150	0.60 4.66 $4\frac{1}{2}-3\frac{1}{2}$ a ¹⁰	(DD) 33(4:204 A		.06 4.75 5	(71) 1-5½ b ⁸ D°-9 2-5½ (72)	3428.467 A 500	
3075.422 A 30	0.66 4.67 5½-4½ alc 0.66 4.69 5½-4½ alc 0.60 4.73 4½-3½ (0F°_7† (56) 3332.133 A 0F°_z ⁶ F† 3426.342 A	A 1000 1	.06 4.76 5	1-5} b ⁸ D°-z ⁶ F† 1-35 (73) 1-25	3464.132 A 100? 3503.206 A 60	1.25 4.85 $4\frac{1}{2}$ $4\frac{1}{2}$ a^{6} D° $-x^{8}$ P † 1.28 4.85 $3\frac{1}{2}$ $-4\frac{1}{2}$ (90) 1.31 4.84 $3\frac{1}{2}$ $-3\frac{1}{2}$
3058.119 A 80 2987.074 A 80		7701 204 /	A 200 1 A 150 1	.11 4.19 17	-2 1 -1 1 -4 1	3395.120 A 1000 •3402.073 A 1000 3407.56 A 600?	1.25 4.88 $4\frac{1}{2}$ $4\frac{1}{2}$ $a^{6}D^{0}$ $-z^{6}D$ 1.28 4.91 $3\frac{1}{2}$ $-3\frac{1}{2}$ (91) 1.31 4.93 $3\frac{1}{2}$ $-3\frac{1}{2}$
5860.73 A 1000 5010.821 A 400	1.06 3.16 $5\frac{1}{2}-4\frac{1}{2}$ b^{8} 1.06 3.52 $5\frac{1}{2}-5\frac{1}{2}$ b^{8}	D°-1† 3390.498 A	A 30 1 A 100 1	.13 4.77 3 .15 4.79 3	- 2 1 - 1 1 - 1	3413.273 A 400 3417.330 A 150 3367.661 A 150	1.33 4.95 $1\frac{1}{2}$ 1.35 4.96 $\frac{1}{2}$ 2 1.25 4.91 $4\frac{1}{2}$ 3 $\frac{1}{2}$
5010.821 A 400 6049.50 A 80 5583.68 A 800 5956.48 A 200 5096.063 A 200	1.13 3.17 $3\frac{1}{2}$ $3\frac{1}{2}$ 1.06 3.27 $5\frac{1}{2}$ $4\frac{1}{2}$ 1.10 3.17 $4\frac{1}{2}$ $3\frac{1}{2}$ 1.10 3.52 $4\frac{1}{2}$ $5\frac{1}{2}$	3300.976	A 400 1 A 30 1 A 60 1	.10 4.76 4 .13 4.69 3	2-5 2-42 3-32 b ⁸ D°-x ⁸ P† 3-42 (74)	3379.756 A 400 3393.630 A 400 3405.038 A 150 3430.238 A 40 3427.362 A 80	1.28 4.93 32-22 1.31 4.95 22-12 1.33 4.96 12-2 1.31 4.91 22-32 1.33 4.93 12-22
4805.817 A 100 5267.322 A 40 5176.285 A 800 •5469.72 § A 800 5728.32 A 60	1.06 3.62 5 6 b8 1.10 3.44 4 5 5 1 1.06 3.44 5 5 5 1 1.10 3.35 4 4 4 5 1 1.13 3.38 3 3 3 3	D°-z ^{1O} F† 3329.345 4 (60) 3366.532 4 3320.438 3 3350.097 4	A 400 1 A 50 1 A 300 1 A 400 1	.13 4.84 3 .15 4.83 2 .13 4.85 3 .15 4.84 2	1-3-1 1-2-1 1-4-1 1-3-1 1-3-1 1-3-1	3425.624 A 50 3257.072 A 100 3274.183 A 300 3281.607 A 200	1.35 4.95 ½-1½ 1.35 5.03 4½-5½ a ⁶ D°-y ⁸ r† 1.38 5.05 3½-4½ (92) 1.31 5.07 3½-3½
5728.32 A 60 5371.621 A 40 5644.84 A 300 5856.96 A 150 6011.12 A 30	1.06 3.35 53-43 1.10 3.38 43-33 1.13 3.24 33-23 1.15 3.20 33-13	3226.318 3236.106 3242.834	A 1000 1 A 150 1 A 50 1	.06 4.88 5 .10 4.91 4 .13 4.93 3	2-2 1-41 b ⁸ D°-z ⁶ D† 1-31 (75) 1-25 1-15	3282.305 A 400? 3279.529 A 200 3242.304 A 150 3255.819 A 150 3264.137 A 60	1.33 5.09 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5616.21 A 300 4483.328 A 300	1.06 3.25 $5\frac{1}{2}-4\frac{1}{2}$ b^{8} 1.06 3.81 $5\frac{1}{2}-4\frac{1}{2}$ b^{8}	D°-2 *3262.515 / (61) 3263.373 / D°-z ⁸ P† *3262.515 /	A 80 1 A 125 1	.10 4.88 4 .13 4.91 3	\$-4\$ \$-3\$ \$-3\$	3270.515 A 100 3224.297 A 60 3238.621 A 300	1.35 5.12 $\frac{1}{2}$ $\frac{1}{2}$ 1.25 5.07 $\frac{1}{2}$ $\frac{1}{2}$ 3.25 5.09 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
4483.328 A 300 4551.455 A 30 5304.923 A 25 5357.790 A 50	1.06 3.81 5 4 4 b 8 1.10 3.81 4 4 4 4 4 1.13 3.46 3 2 3 2 3 1.15 3.46 3 2 3 2 3 1.15 3.46 3 2 3 2 3 2 3 1.15 3.46 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3	(62) 3289.150 2 3102.551 3133.852	A 100 1 A 1000 1	.13 4.88 3	\$-4 \$	3250.187 A 300 3259.250 A 250 3072.565 A 1000	1.31 5.11 $3\frac{1}{2}-1\frac{1}{2}$ 1.33 5.13 $1\frac{1}{2}-\frac{1}{2}$
5394.321 A 125 5470.53 A 50	1.13 3.38 $3\frac{1}{2}$	(63) 3146.878	A 800 1 A 250 1 A 300 1	.10 5.03 4 .13 5.05 3 .15 5.07 2 .17 5.09 1	2-42 2-42 2-32 2-32	3089.954 A 400 3093.058 A 150 3101.185 A 135	1.28 5.28 $3\frac{1}{2}$ – $3\frac{1}{2}$ (93) 1.31 5.30 $3\frac{1}{2}$ – $1\frac{1}{2}$ 1.28 5.26 $3\frac{1}{2}$ – $3\frac{1}{2}$
4453.931 A 60 4711.975 A 80 5023.133 A 200 *5020.368§ A 80 5062.862 A 150	1.06 3.83 51-61 b8 1.10 3.72 42-52 1.13 3.59 31-42 1.15 3.61 31-32 1.17 3.60 13-32	70°-z ¹⁰ D 3101.407 (64) 3120.181 3128.560 3130.812	A 50 1 A 125 1 A 200 1 A 300 1	.06 5.03 5 .10 5.05 4 .13 5.07 3 .15 5.09 3 .17 5.11 1	1-6 b b p - y f f † 2-5 (76) 2-4 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2 3-3 2	3113.172 A 250 3108.360 A 150 3129.696 A 80 3118.600 A 150	1.35 5.30 $\frac{1}{2}$ - $1\frac{1}{2}$
*4639.001 A 200 *4958.788§ A 800 4973.896 A 30	1.06 3.72 $5\frac{1}{2} - 5\frac{1}{2}$ 1.10 3.59 $4\frac{1}{2} - 4\frac{1}{2}$ 1.13 3.61 $3\frac{1}{2} - 3\frac{1}{2}$	3117.974 3121.760	A 40 1 A 80 1		~ ~	5877.26 A 1000 6634.36 A 1500 6681.23 A 1000	1.42 3.52 5½-5½ a ¹⁰ po-z ¹⁰ p 1.31 3.17 3½-3½ (94) 1.42 3.27 5½-4½
5031.562 A 80 4878.049 A 30 4910.838 A 50 4984.905 A 60	1.10 3.61 45-35 1.13 3.60 35-25	2972.17 2985.521 2983.060	A 100 1 A 100 1 A 60 1	.13 5.28 3 .15 5.30 2 .13 5.26 3 .17 5.30 1	1-21 b ⁸ D°-y ⁶ P 1-15 (77) 1-31 1-11	6681.23 A 1000 6846.60 A 1200 5733.86 A 4000 6305.15 A 1500	1.37 3.17 $4\frac{1}{2} - 3\frac{1}{2}$ 1.37 3.52 $4\frac{1}{2} - 5\frac{1}{2}$ 1.31 3.27 $3\frac{1}{2} - 4\frac{1}{2}$
4582.53 A 400 4728.468 A 300 4791.150 A 40	1.06 3.75 5\frac{1}{2}-5\frac{1}{2} b^8 1.10 3.71 4\frac{1}{2}-4\frac{1}{2} 1.13 3.70 3\frac{1}{2}-3\frac{1}{2} 1.06 3.71 5\frac{1}{2}-4\frac{1}{2} 1.10 3.70 3\frac{1}{2}-3\frac{1}{2} 1.13 3.70 3\frac{1}{2}-3\frac{1}{2} 1.15 3.69 21.1	3002.197 3002.710 (65)	A 60 1	.17 5.28 1	\$-3 \$	5597.21 A 200 5951.60 A 80 6106.19 A 100	1.42 3.62 5 6 a 10 pe_z10 f + 1.37 3.44 45 5 (95) 1.42 3.44 5 5 5
4894.30 A 600 4654.986 A 100 4732.60 A 600	1.17 3.69 $1\frac{1}{2}$ $-1\frac{1}{2}$ 1.06 3.71 $5\frac{1}{2}$ $-4\frac{1}{2}$ 1.10 3.70 $4\frac{1}{2}$ $-3\frac{1}{2}$	5586.16 5871.81			12-32 a ⁶ D°-z ⁸ P (78) 12-32 a ⁶ D°-3 †	6727.83 A 125 6346.65 A 400	1.42 3.25 $5\frac{1}{2}$ $4\frac{1}{2}$ a^{10} P° -2 1.31 3.25 $3\frac{1}{2}$ $4\frac{1}{2}$ (96)
4801.05 A 500 4865.02 A 400 4786.908 A 150	1.13 3.71 35-45	2000.40	A 30 1 A 300 1	.28 3.61 3 .31 3.61 2	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	5164.543 A 150 5987.11 A 150 5749.41 A 500	1.42 3.81 5½-4½ a ¹⁰ P°-z ⁸ P† 1.31 3.37 3½-2½ (97) 1.31 3.46 3½-3½
4834.232 A 300 4873.339 A 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A 100 1 A 60 1	25 3.70 4 28 3.70 3	1-3 a ⁶ D°-z ⁸ D† 1-3 (81)	5749.41 A 500 5545.01 A 250	1.31 3.53 3½-2½ a ¹⁰ p°-4 (98)
							• •

Lab I A	orato: Ref	ry Int	E Low	P High	J	Multiplet (No)	Labo I A		ry Int	E Low	P High	J	Multiplet (No)	I		rato	ry Int	E		J	Multiplet
Gd II c	ontin	req				,	Gd II co			20.11			(110)			ntin		Low	High		(No)
5125.56 *5252.14 5419.876 5372.216 5560.69 5500.43 5375.393	A A A	400 500 150 300 600 600	1.37 1.31 1.42 1.37	3.83 3.72 3.59 3.72 3.59 3.61 3.60	52-61-42-43-43-43-32-32-32-3	a ¹⁰ P°-z ¹⁰ D† (99)	4241.276 4197.069 4153.510 4115.376 4141.017 4108.401	A A A A	80 150 125 80 25 50	1.61 1.59 1.58 1.57 1.57	4.55	12-12 12-12 12-22 2-12	a ⁸ F°_y ⁸ D† (117) cont	7385 5162 4223	- .97 .47	A A A	80 50d 60	2.34	4.01 4.73 5.26	21-31	2°-z ⁸ F (139) 2°-z ⁶ F† (140) 2°-y ⁶ P (141)
5393.659 5179.919	A A	100 125	1.42	3.71 3.75	51-41 45-55	a ¹⁰ pe_z ⁸ D† (100)	4059.370 3722.068	A A	80 100	1.72			a ⁸ F°-z ⁶ F† (118) a ⁸ F°-y ⁸ F†	7748 4965		A	40 60	2.40	3.99		3°_y&P+ (142)
*4666.448	A	40	1.37	4.01								-	(119)	4608		A A	4 0	2.40 2.40	4.88 5.07		3°-z ⁶ D (143) 3°-y ⁸ F †
4803.536 4716.576		80 30	1.42 1.37	3.99 3.98	51-41 43-31	a ¹⁰ P°_z ⁸ F † (101) a ¹⁰ P°_y ⁸ P † (102)	7908.06 6314.22	A A	40d? 50	2.19	3.75 4.14		c ⁸ D°-z ⁸ D† (130) c ⁸ D°-z ⁸ F†	8089	06						(144)
*4639.001 4406.67	A	200 400	1.31		3½-3½	-10ne10na	7197.08 6568.00	A A	80 100	2.27 2.19	3.98 4.07	5-6-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	(121)	5441		A A	60 4 0	2.46 2.46	4.73		4°-y ⁸ P† (145) 4°-z ⁶ F
4421.24 •4522.82	A A A	200 250	1.31	4.22 4.10 4.15	3 2 - 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	a ¹⁰ P°-y ¹⁰ P†	6996.76 6857.13	A A	1500 600	2.22 2.19	3.98 3.99	2 1 -2 1 51-41	_с 8 _D •_у8 _P	*5178 5200			100 30		4.85	3 2 - 4 2 3 2 - 3 2	(146)
4514.505 4325.566 4347.310	A A A	200 200 400	1.37 1.37	4.10 4.22 4.15	43-33 43-53 32-42		6920.62 7000.75	A A	250 200	2.20 2.21	3.98 3.97	51-41 41-31 31-21	(122)	4726		A A	40	2.46 2.46	4.84 5.07		(147) 4°-y ⁸ F†
4003.850	A	30		4.50	51-51	a ¹⁰ P°-y ⁸ D†	6900.73 6945.98 7051.00	A A A	200 150 200	2.20 2.21 2.22	3.99 3.98 3.97	41-41 31-31 21-21		*3402	.072	A	1000	2.46	6.09		(148) 4°-w ⁸ P†
3748.88	A	50	1.37	4.66	41-31	(104) a10pe_6	6299.07	A	40	2.19	4.15		c ⁸ D°-y ¹⁰ P								(149)
3489.281	A	40		4.85	31-41	(105) a10pe_x8p (106)	6494.11 4968.575	A A	80 50	2.20 2.19	4.10		(123) c ⁸ D°-7	Str 01		Une:	lassifie 300	ed Lines V	of <u>Ga</u>		
3414.207 3363.974	A A	60 30	1.43 1.37	5.03 5.03	51-61 42-52	a ¹⁰ pe_x8p (106) a ¹⁰ pe_y8F † (107)	4916.78	A	25		4.70		(124) c ⁸ D°-8	8316 7963	. 38 . 25	A A	500 500	A A			
6610.04	A	80	1.65	3.52	_	a8F°-z10p+	4799.859 4888.542	A A	60 40	2.19 2.21	4.76 4.73	51-51 31-31	(125) c ⁸ D°-z ⁶ F† (126)	7930 7846		A A	3000 3000	V V			
6480.11 7172.26	A A	200 600		3.62 3.44		(108) a ⁸ F°-z ¹⁰ F† (109)	4839.616 4923.578	A A	40 60	2.22 2.19	4.77 4.69	21-21 51-41 41-31	(120)	*7844 7324	89	A	300 400	٧			
7252.70 7394.90	A A	400 150	1.65 1.61	3.35 3.28	51-41 41-31	(109)	4875.966 4664.272	A A	50 30	2.20	4.73 4.85		c8D°-x8P+	7147 7135 7037	73	A A A	500 250 600	V V V			
7505.35 5721.99	A A	80 200	1.59	3.24 3.81	3 ۇ –2∌	.8me .8me	•4337.510§	A	80	2.19	5.03			6985.	89	A	1500	v			
6704.18 6622.28	Ā A	60 50	1.61	3.46 3.46		a ⁸ F°-z ⁸ P† (110)	4335.290 4304.087 4292.747	A A A	25 25 25	3.19 3.21 2.22	5.03 5.07 5.09	5 2 -5 2 3 2 -3 2 2 2 -2 2	c8D°_y8F † (128)	*6980 6887 5913	63 55	A A	250 300 800	V V			
6260.31 6180.42 6380.95	A A	40 300 600		3.59 3.72 3.59	25-45	a ⁸ F°-z ¹⁰ D	3191.044 3172.169 3200.454 3177.490	A A A A	125 30 60 30		6.06 6.09 6.06 6.09	5 1 - 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	c ⁸ D°-w ⁸ P† (129)	*5911. *5754. 5538. 4397.	17 § 32		500 250 300 300	IV V V			
6080.65 6004.57 5904.07	A A A	300 500 800	1.72 1.65 1.61		61-51 51-41 41-31	a ⁸ F°-z ⁸ D (112)	3206.466	A	400	2.27	6.13	1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		4304. 4297.	895	A A	400 400	v v			
5855.24 5845.71 5884.59 5897.62 5840.47 5815.85	A A A A A	300 80 30 200 200 250	1.59		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6752.67 7006.16 7118.86 7054.62 7085.52 7164.90	A A A A	2000 1000 800 200 50 25	2.30 2.36 2.24	4.14 4.07 4.03 4.01 3.98 3.96	7-6-1- 6-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-	a ⁸ G°-z ⁸ F† (130)	4253. 4238. 4197. 4137. 4111.	782 681 104	A A A A	800 500 800 500 500	V V V V			
5820.99 5801.30 5807.05 4881.925	A A A	200 40 100 200	1.57 1.58 1.56	3.69 3.70 3.69 4.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ⁸ F°_z ⁶ P†	6718.14 6988.75 6959.24 6971.66 7058.02	A A A A	150 100 150 100 80	2.31 2.30 2.26 2.24	4.14 4.07 4.03 4.01 3.98	62-62 52-52 42-42 32-32 23-23		4063. 4062. 4053. 4049. 4023.	590 294 858	A A	1500 500 1000 2000 300	V V V IV			
5092.251 5108.91	A A	600 500				(113) a8F°_z8F†	7116.77 7146.13	A A	150 40	2.22 2.22	3.96 3.95	13-14		4013.	798	Ą	250	v			
5098.38 5100.937	A	400 100	1.72 1.65 1.61 1.59		49-49 39-39	(114)	6702.12 7141.17	A A	40 25	2.30 2.24		5 \frac{1}{2} - 6 \frac{1}{2} 3 \frac{1}{2} - 2 \frac{1}{2}	a ⁸ G°-y ⁸ P†	4008. 3996. 3895.	320	A A A	400 800 400	V IV V			
5175.839 5256.030 5178.104	A A A	50 50 100	1.56 1.72 1.65	4.07	62-53 53-43		5621.43 5510.58	A A	100 80	2.31	4.50 4.50	61-51	a ⁸ G°-y ⁸ P† (131) a ⁸ G°-y ⁸ D† (132)	3842. 3801.	20	Ā	400 400	ĮÝ V			
5187.237 5186.915 4954.025 5031.290 5050.878	A A A A	250 200 50 250 300	1.58 1.57 1.65 1.61	3 95	32-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	•	4996.373 4881.925 4821.955	A A A	800 800	2.26 2.24 2.23	4.73 4.77 4.79	41-31 31-21 25-11	a ⁶ G°-z ⁶ F† (133)	3782. 3770. 3733. 3719.	34 69 08	A A A A	300 300 300 800	V V V V			
5071.023 5111.930	A A	200 30	1.58	4.03 4.01 3.98	25-35 15-25		4800.100 4772.728	A	60 30	2.22 2.22	4.81	2-12 2-12		3664. *3457.		A A	2000 300	V V			
5156.76 5210.488	A A	200 200		3.96	2-12	-8ma8m +	4755.347	A .	30	8.88			a ⁸ G°-x ⁸ P†	3364. 3330.	341 340	A A	500 800	V V			
5191.081 5199.211 5160.896 5160.105	A A A	250 60 100 40		3.97 3.99 3.98 3.97	31-31 41-41 31-31 21-21	a ⁸ F°_y ⁸ P† (115)	4540.016 4521.94 4486.352 4517.10	A A A	200 150 100 30	2.31 2.30 2.30	5.03 5.05 5.03	63-53 53-43 53-63	(134) a8G°_y8F† (135)	3084.0 3005.0	007 092	A A	250 300	V V V			
5149.841 5130.28 5140.839	A	50 200 400	1.59 1.58	3.98	3 3 -4 3 2 3 -3 1		3287.192 3252.743	A A	40 30	2.30 2.26			a ⁸ G°_w ⁸ P† (136)	3002.0 2963.0		A	1000 400	V V			
4936.155 4806.165 4892.11	A A A	50 40 30	1.57 1.72 1.65 1.58	3.97	15-25	(116)	7017.73 7133.16 7242.24	A A A	60 100 60	2.25 2.25 2.25		21-31 : 21-21 : 21-11		Tb II		anal					re Class)
4436.225 4296.30 4229.803 4173.556 4127.721	A A A A	200 400 200 100 25		4.50 4.52 4.53 4.55 4.57	61-51 51-41 41-31 31-31 31-31		7189.57	A .	800			3] -3] :					,				
					c x																

Laboratory E P J Multiplet I A Ref Int Low High (No)	Laboratory E P J Multiplet I A Ref Int Low High (No)	Laboratory E P J Multiplet I A Ref Int Low High (No)
Dy I No analysis May 1942 (Temperature Class)	Tm II continued	Hf I continued
Dy II No analysis May 1942 (Temperature Class)	3678.862 A 80 1.11 4.46 3-3 a ¹ F ^e -45 3431.195 A 100 1.11 4.70 3-4 (12) 52 3399.951 A 70 1.11 4.74 3-47 53 3374.512 A 100 1.11 4.76 3-3 54	3332.73 A 200 0.00 3.70 2-3 a ³ F-29° 3162.57 A 80 0.00 3.90 2-2 (2) 32° 3072.88 A 300 0.00 4.02 2-2 34° 3018.32 A 80 0.00 4.09 2-2 35°
<u>Ho I</u> No analysis May 1942 (Temperature Class)	3374.512 A 100 1.11 4.76 3-3 54 3327.578 A 40 1.11 4.81 3- 55 3267.401 A 80 1.11 4.88 3-3 a ¹ F°-57	3018.32 A 80 0.00 4.09 2-2 35° 2980.82 A 100 0.00 4.14 3-2 37°
Ho II No analysis May 1942 (Temperature Class)	3236.806 A 150 1.11 4.93 3-4 (13) 58 3231.509 A 60 1.11 4.93 3-3 59	4174.33 A 50 0.29 3.25 3-3 a ³ F-16° 3523.02 A 60 0.29 3.79 3-4 (3) 30° 3312.87 A 100 0.29 4.02 3-2 34°
Er Not separated May 1942	Strongest Unclassified Lines of Tm II	3131.81 A 150 0.39 4.23 3-2 41° -3080.84 A 80 0.39 4.30 3-4 a ³ F-43°
Tm I IP? Anal D List D Jan 1943	5782.356 B 100 V 5709.976 B 100 IV 4626.565 B 80 IV	3087.41 A 80 0.29 4.31 3-2 (4) 45° 3020.54 A 100 0.29 4.38 3-3 46° 2964.88 A 150 0.29 4.45 3-4 47°
4386.434 A 200 0.00 2.81 3½ a ² F°-2 4359.929 A 300 0.00 2.83 3½ (1) 3	3996.518 B 200 III 3817.395 B 100 III	3820.74 A 50 0.56 3.79 4-4 a ³ F-30°
	3725.061 B 200 III 3535.522 B 100 III 3462.198 B 300 III	3173.94 A 100 0.56 4.45 4-4 (5) 47° 3156.68 A 50 0.56 4.47 4-3 48°
3949.275 A 100 1.08 4.21 2 a ² F°-15 3916.476 A 200 1.08 4.23 2 (2) 16	3441.505 B 200 III 3362.619 B 300 III	5719.18 A 40 1.11 3.27 2-1 a ³ P-17° (6)
Strongest Unclassified Lines of Tm I 5971.28 A 200 I	3309.804 B 100 IV 3240.230 B 125 IV 3151.036 B 200 IV	5552.12 A 40 0.70 2.92 2-3 a ¹ D-11° (7)
5895.646 A 300 I 5764.300 A 200 I 5675.853 A 400 I	3131.257 B 400 IV	
5631.404 A 150 I 5307.121 A 200 I	<u>Yb I</u> I P 6.23 Anal B List D May 1942	Hf II I P 14.8 Anal B List B Nov 1942 3253.70 A 80 0.38 4.17 3 3 3 2 D-z 4F°
4203.730 A 300 I 4187.616 A 500 I 4105.843 A 600 I 4094.188 A 700 I	5556.48 A 1500 0.00 2.22 0-1 6 ¹ s-6 ³ P° (1) 3987.98 // A 2000 0.00 3.09 0-1 6 ¹ s-6 ¹ P°	3253.70 A 80 0.38 4.17 $3\frac{1}{2} - 3\frac{1}{2}$ $a^{2}D-z^{4}F^{e}$ 3399.80 A 150 0.00 3.63 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ (1) 3793.37 A 60 0.38 3.63 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ 3561.65 A 80 0.00 3.47 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$
3883.132 A 400 I 3751.812 A 100 I	7699.49 A 1500 2.43 4.04 2-1 6 ³ P°-7 ³ S	3193.53 A 40 0.38 4.24 23 23 a ² D-z ⁴ D°† 3145.32 A 25 0.00 3.92 13 14 (2) 3479.29 A 40 0.38 3.92 33-12
3744.066 A 300 I 3717.915 A 500 I	6799.61 A 1000 2.22 4.04 1-1 (3) 6489.10 A 800 2.13 4.04 0-1	3428.37 A 20 0.00 3.60 1½- ½
		3016.94 A 6 0.00 4.09 1 2 (3)
<u>Tm II</u> I P ? Anal B List B Jan 1942 4526.565 A 80 0.00 2.67 4- a ³ F°-1	<u>Yb II</u> I P 13.05 Anal D List D May 1943 3289.36 A 800 0.00 3.75 $\frac{1}{2}$ $-1\frac{1}{2}$ 6^{2} 8 -6^{2} P° 3694.19// A 1000 0.00 3.34 $\frac{1}{2}$ $-\frac{1}{2}$ (1)	3317.99 A 20 0.38 4.10 $3\frac{1}{2}$
4481.273 A 200 0.00 2.75 4- (1) 2 4199.918 A 100 0.00 2.94 4-4 3 3958.101 A 200 0.00 3.12 4-47 4	3694.19// A 1000 0.00 3.34 ½— ½ (1)	3134.73 A 150 0.38 4.31 2½-2½ a ² D-z ⁴ G°†(5)
3890.528 A 60 0.00 3.17 4- 5 3848.023 A 1000 0.00 3.21 4- a ³ F°-6	<u>Lu I</u> I P 5? Anal B List D May 1942	3352.06 A 80 1.03 4.71 $4\frac{1}{2}$
3761.913 A 600 0.00 3.28 4-4 (2) 7 3761.331 A 800 0.00 3.28 4-3 8 3701.364 A 350 0.00 3.33 4-4 9	6004.53 A 100 0.25 2.30 2 3 4 2 3 6 7 † 5736.55 A 40 0.00 2.15 1 3 2 (1)	4093.16 A 150 0.45 3.47 14-14 3933.65 A 40 1.03 4.17 44-34 4335.15 A 5 0.78 3.63 34-24
3668.088 A 120 0.00 3.36 4-4 10 3608.766 A 200 0.00 3.42 4-3 a ³ F°-11	5135.10 A 100 0.25 2.65 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3139.67 A 15 0.78 4.71 31.41 3462.65 A 15 0.61 4.17 32.31 3880.82 A 40 0.45 3.63 13.21
3536.576 A 80 0.00 3.49 4-3 (3) 13 3425.630 A 150 0.00 3.60 4-4 13 3397.499 A 100 0.00 3.63 4-3 4-3 (4)	3841.17 A 100 0.25 3.46 2-1-2 a ² D- ² P°?	3505.22 A 150 1.03 4.55 41-31 a4F-x4D° 3569.03 A 80 0.78 4.34 32-32 (7)
3291.001 A 120 0.00 3.75 4-4 15 3276.811 A 50 0.00 3.77 4-4 a ³ F°-16 3258.048 A 150 0.00 3.79 4-3 (4) 17	4124.73 A 100 0.00 2.99 1	3719.37 A 70 0.61 3.93 34.14 3918.10 A 100 0.45 3.60 14.4 3273.66 A 6 0.78 4.55 34 34
3241.530 A 200 0.00 3.81 4-4 18 3210.825 A 50 0.00 3.84 4-4 20 3133.886 A 250 0.00 3.94 4-4 22	Strongest Unclassified Lines of <u>Lu I</u> 5001.15 A 100 III	3273.66 A 6 0.78 4.55 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4677.858 A 40 0.03 3.67 3- a ³ F °-1	4518.58 A 200 III 3647.77 A 50 III	3355.38 A 25 0.45 4.24 $1\frac{1}{2}-2\frac{1}{2}$ 3176.85 A 50 0.61 4.49 $2\frac{1}{2}-1\frac{1}{2}$ a $4F-z^3P^0$ 3389.83 A 70 0.45 4.09 $1\frac{1}{2}-\frac{1}{2}$ (8) 3054.52 A 15 0.45 4.49 $1\frac{1}{2}-1\frac{1}{2}$
4529.376 A 80 0.03 2.75 3- (5) 2 4242.153 A 300 0.03 2.94 3-4 3 3995.586 A 80 0.03 3.12 3-47 4		
3883.437 A 200 0.03 3.21 3- 6 3795.759 A 600 0.03 3.28 3-4 a ³ F°-7	<u>Lu II</u> I P ? Anal A List B May 1942 3507.39 A 100 0.00 3.52 0-1 a ¹ S-z ³ P°	3379.98 A 20 0.45 4.21 13-14 (9) 3384.70 A 30 0.45 4.10 13-22
3795.169 A 80 0.03 3.28 3-3 (6) 8 3734.124 A 300 0.03 3.33 3-4 9 3700.256 A 300 0.03 3.36 3-4 10	(1) 5476.69 A 300 1.75 4.01 3-2 a ³ D-z ³ P°	2975.89 A 150 0.61 4.75 2\frac{1}{2}-3\frac{1}{2}a^4Fz^4G^0\frac{1}{2}+3\frac{1}{2}a^4+3\frac{1}{2}+3\frac{1}{2}a^4+3\frac{1}{2}+3\fr
3566.472 A 100 0.03 3.49 3-3 12 3453.665 A 200 0.03 3.60 3-4 a ³ F°-13 3425.082 A 300 0.03 3.63 3-3 (7) 14	6221.88 A 300 1.54 3.52 3-1 (2) 6463.11 A 300 1.46 3.37 1-0 4994.14 A 130 1.54 4.01 3-2	3388.21 A 20 0.61 4.31 24-24 3495.75 A 20 0.78 4.31 34-24
3425.082 A 300 0.03 3.63 3-3 (7) 14 3316.875 A 60 0.03 3.75 3-4 15 3302.454 A 150 0.03 3.77 3-4 16 3283.400 A 50 0.03 3.79 3-3 17	5983.90 A 100d 1.46 3.52 1-1 4839.62 A 30d 1.46 4.01 1-2	3031.16 A 120 0.61 4.68 2½-1½ a ⁴ F-y ² D° † 3025.29 A 30 1.03 5.11 4½-3½ a ⁴ F-z ² F° †
3266.633 A 80 0.03 3.81 3-4 a ³ F°-18 3235.448 A 90 0.03 3.84 3-4 (8) 20	3876.65 A 100 1.54 4.73 3-1 a ³ D-z ¹ P° (3) 3077.59 A 150 1.54 5.55 3-3 a ³ D-z ³ F°†	3025.29 A 30 1.03 5.11 41-31 a4p-26p+ 7 3101.39 A 100 0.78 4.76 31-21 (12) 2968.82 A 120 0.61 4.76 21-21
3173.828 A 200 0.03 3.92 3-3 31 3157.344 A 180 0.03 3.94 3-4 22 3098.597 A 100 0.03 4.01 3-27 34	3397.07 A 150 1.46 5.09 1-2 (4) 3254.32 A 90 1.75 5.55 3-3 3472.48 A 120 1.54 5.09 2-2	4926.99 A 8 1.66 4.17 23-3 a4P-z4F° † 6279.84 A 20 1.66 3.63 33-23 (13) 6835.29 A 50 1.66 3.47 23-13
3015.296 A 100 0.03 4.13 3-4 37	4785.43 A 60 3.14 4.72 2-1 alp-glp*	
3900.790 A 90 1.08 4.25 2-27 a ³ F°-33 3810.734 A 50 1.08 4.32 2-2 (9) 37 3756.860 A 100 1.08 4.37 2- 40	(5) 3623.98 A 40 2.14 5.55 2-3 a ¹ D-2 ³ F° 4184.26 A 130 2.14 5.09 2-2 (6)	4272.85 A 60 1.66 4.55 23-37 a4P-z4D° † 4664.14 A 150 1.60 4.24 13-27 (14) 5040.82 A 150 1.48 3.92 1-17 5269.85 A 10 1.60 3.92 17-17
3704.848 A 50 1.08 4.41 2-3 41 3665.812 A 60 1.08 4.45 2-3 a ³ F°-44	3554.43 A 200 2.14 5.61 2-2 a ¹ D-z ¹ D° (7)	5399.85 A 10 1.60 3.93 11-12 5809.50 A 30 1.48 3.60 1-12 5463.38 A 10 1.66 3.93 22-12 4367.90 A 40 1.66 4.49 23-12 a4p-z2po
3653.614 A 80 1.08 4.46 2-3 (10) 45 3557.796 A 80 1.08 4.55 2-3 47 3481.750 A 30 1.08 4.63 2-2 48		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3285.609 A 60 1.08 4.84 2-2 56	Hf I I P ? Anal D List D Dec 1942 5550.60 A 50 0.00 2.22 2-2 a ³ F- 2°	5075.92 A 30 1.66 4.10 31-31 a4p-z3pe+
3929.583 A 100 1.11 4.25 3-27 a ¹ F°-33 3838.198 A 200 1.11 4.32 3-2 (11) 37 3798.752 A 80 1.11 4.35 3-2 39	5181.86 A 40 0.00 2.38 2-3 (1) 5° 3777.64 A 50 0.00 3.27 2-1 17° 3682.25 A 200 0.00 3.35 2-2 18°	4934.46 A 60 1.60 4.10 13-35
3783.561 A 60 1.11 4.37 3- 40 3730.810 A 40 1.11 4.41 3-3 41	3497.49 A 150 0.00 3.53 2-3 24° 3472.38 A 100 0.00 3.55 2-1 25°	4097.21 A 8 1.66 4.68 2½-1½ a ⁴ p-y ² po (17)

Laborat I A Re:	ory [Int	E P Low	High	J	Multiplet (No)	Labo Ì A	rator Ref	y Int	Low E	P High	J	Multiplet (No)	Lab I A	orato: Ref	r y Int	E Low	P High	J	Multiplet (No)
Hf II conti					(3.27		ntin		20	6		(,	Hf II c			20#			(110)
3699.72 A 3800.39 A 3780.09 A	. 7	1.60 1.48	4.74		a ⁴ P-z ⁴ P° (18)	4319.51 3867.32	A A	8 15	2.20	5.39	1 1 2 2 3		4904.51 4848.46 5080.44	A A A	30 20 10	3.37 3.33	6.04 5.91 5.76	21-31 11-21 1-11	b ⁴ P-y ⁴ D° † (83)
3883.77 A 3923.91 A 3624.00 A	40		4.84 4.74 5.00	25-15 15- 5 15-25		4049.44 4008.46	A A	10 8	2.20	5.25 5.28	1를-1를 1를-1를	(53) a ² P-y ² P•†	5164.56 5156.06	A A	8 5	3.52 3.37	5.91 5.76	3 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
3665.35 A 3984.03 A	_		4.84] -1글	a ⁴ P-z ³ F°†	3597.42 3964.96	A	10 15	1.88	5.31 5.31	12- 2	(54)	4765.78 4760.59	A A	12 20	3.33 3.33	5.92 5.93		b ⁴ P-x ² D° (84) b ⁴ P-z ⁴ S°
3413.74 A 3349.17 A	8.	1.66	5.28 5.28	2] _1]	(19) a ⁴ P-y ³ P• † (20)	3487.57 3199.99	A A	8 30	2.20 1.88	5.74 5.74	1 1 2	a ² P-z ² 5° (55)	4570.70	A	30	3.52	6.22		(85) b4P_y4P° (86)
3203.67 A			5.52	1 ½ - 1 ½ 2 ½ - 3 ½	a ⁴ P-y ² F°† (21)	3206.77 3055.43	A A	4 9	3.20 1.88	6.05 5.92	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	a ² P-x ² D° (56)	4321.36 4268.10	A	30 5	3.37 3.33	6.22	\$ −1 \$	
4605.79 A			4.17	 2 1 -3 1 3 1 -3 1	a2F-z4F° †	4807.14	Ą	30	2.15	4.71	 4}-4	, a ² G-z ⁴ F°	4436.18 4141.84	A	9 5	3.52 3.33	6.31 6.31	2 −1 2	b ⁴ P-w ² D° † (87)
5348.40 A 5767.18 A 6980.91 A	30 200	1.49 1.86	4.17 3.63 3.63	23-23 33-23	(33)	6222.81 5128.53	A A	10 20	2.19 2.15	4.17 4.55		a ² G-z ⁴ D° †	4007.36	A	10	3.52		_ `	b ⁴ P-x ⁴ P° † (88)
6248.95 A 4586.25 A	10	1.86	3.47 4.55		a ³ F-z ⁴ D°	4050.67 3998.51	A A	7 6d	3.19 2.15	5.23 5.23	31-41 43-41	(58) . a ² (1-z ⁴ (10 † . (59)	6997.83 6135.10	A A	30 30	3.47 3.47	5.23 5.48		b ² G-z ⁴ G° (89) b ² G-y ⁴ F°†
4486.14 A 5187.75 A 5071.23 A	30	1.86	4.24 4.24 3.92	31-31 31-31 31-31 31-11	(23)	4809.18 4735.75 5801.71	A A A	6 10 15	2.19 2.15 2.19	4.75 4.75 4.31	31-31 41-31 31-31	•	6567.39 6027.57	A	60 20	3.51 3.47	5.39	3 3 -2 3	(90) b ² g_y ² F° †
4029.16 A 4113.58 A			4.55	2 } -3	a ² F-z ² P°	4162.40 4790.72	A A	50 40	2.15 2.19	5.11 4.76		a ² G-z ² F°†	6473.89 4599.46	Ā	20 40	3.51	5.42	3+-2+	(91)
5524.35 A 4533.18 A	50	1.86	4.10		(34) a ³ F-z ³ D* (35)	3478.98 3701.15	A	30 40	2.15	5.69	T. 17	a ² G-y ⁴ F°†	5346.30 5247.10	A A	40 60	3.47 3.51 3.47	5.82	41-41 31-31 41-31	(92)
4735.67 A	20	1.49	4.10	3 } -3 }	a ² F-z ⁴ G°	3849.52	A A	25	2.15 2.19	5.48 5.39			4675.45 4865.43	A A	10 10	3.51 3.51	6.15	3 1 - 4 1 3 1 - 2 1 3	b ² G-x ² D°
3661.05 A 3782.78 A 4269.67 A	8 20	1.49 1.86	5.23 4.75 4.75	23-33 33-33	(26)	3661.73 3817.20 3705.40	A A A	2 20 15	2.15 2.19 2.19	5.52 5.42 5.52	33-23 33-33	a ² G_y ² F° (62)	4125.10 4452.70	A A	5 10	3.47 3.51	6.46 6.28	41-31 31-21	b ² G-x ² F° (94)
4370.95 A 5034.33 A	8		4.31 4.31	3 1 - 2 1 3 1 - 2 1		3080.64 3394.99	A A	100 30	3.15 3.19	6.15 5.82	43-43	a ² G-z ² G°† (63)	4123.54	A	10	3.51	6.51	3 } _2 }	PSG-#SDe
3747.48 A 3872.55 A			5.16 4.68		a ² F-y ² D°† (27)	3358.30 3011.24	A A	8 20	2.15 2.19	5.82 6.28	31-31 41-31 31-31	a ² G-x ² F°†	3810.59 3979.40	A A	10 40	3.51 3.47	6.75 6.57		b ² G-w ² F°
3932.40 A 3797.95 A			5.00 5.11		a ³ F-z ⁴ P°† (28) a ³ F-z ³ F°	6647.06	A	100	2.86	4.71		(64)	3864.75	A	30	3.47	6.66		(97) b ² G-y ² G° † (98)
3771.36 A 3407.76 A	8	1.49	4.76 5.11	$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$	(39)	8236.13 6041.44 7328.64	A A A	10 6 30	2.67 2.67 2.49	4.17 4.71 4.17	34-34 34-44 34-34	b ⁴ F-z ⁴ F° (65)	6584.53 7983.66	A	40 5	3.82	5.69	- 5 1 -41	a ² H-y ⁴ F°
3220.66 A 3092.26 A	50 20	1.49	5.69 5.48	31-41 21-31 31-31	a ² F-y ⁴ F° (30)	7277.67	A	50	2.86	4.55	41-31 31-21	b4F-z4D° †	7016.99	A A	6	3.94 3.94	5.48 5.69	41-31 41-41	(99)
3410.18 A 3162.61 A 3495.94 A	40 40 10	1.49 1.86	5.48 5.39 5.39	33-33 23-23 33-23		7861.22 8581.88 97 42. 28	A A A	8 57 1	2.67 2.49 2.33	4.24 3.92 3.60	25-15 15- 5	(66)	5289.98 6542.80 5565.56	A A A	10 50 5	3.82 3.94 3.94	6.15 5.82 6.15	54-44 41-31 41-41	a ² H-z ² G° (100)
3383.39 A 3376.68 A	6 4		5.25 5.52	2½-1½ 3½-3½	a ² F_y ² F° † (31)	6557.91 7030.33 7757.89	A A A	100 150 15		4.55 4.24 3.92	31-31 21-21 11-11		3762.51	A	25	3.94	7.22	43-33	a ² H-x ⁴ D° (101)
3140.77 A 3064.68 A	15 20		5.42 5.52	2 } -3 }		5969.38 •6156.25	A A	5 3d	2.49 2.49	4.55	2] -3]	b ⁴ F_z ² P°	4682.68 3900.64	A A	8 20	3.94 3.82	6.57 6.98		a ² H-w ² F° (102) a ² H-z ² H°†
3046.03 A 3116.95 A	30 8		5.91 5.82		a ² F-y ⁴ D°† (32) a ² F-z ² G°†	7021.23 7663.09	Ā A	30 30	2.33	4.09	1분- 분	(67) b ⁴ F-z ² D°†	4613.74 4422.76	A A	50 150	3.94 3.82	6.61	41-41 51-41	(103)
6644.60 A	300		3.63	_	(33) b ² D-z ⁴ F°†	4334.65 4817.22	A	30 80	2.86	5.70	41-51	(68) b ⁴ F-z ⁴ G°	4047.96 4524.74	A A	50 30	3.82 3.94	6.87 6.66	51-41 43-33	a ² H-y ² G° † (104)
4999.69 A	40 50	1.77	4.24	11-21	b2D-z4D0+	5444.07 6230.84	A A A	30 20	2.33	4.75 4.31	$3\frac{1}{2} - 4\frac{1}{3}$ $2\frac{1}{2} - 3\frac{1}{3}$	(03)	6609.20	A	8	4.05	5.91	- 2] -2]	c ² D-y ⁴ D°
6935.16 A 6754.61 A	100	1.77	3.92 3.60	21-13 12- 2	(35)	5194.57 5929.35 6511.62	A A A	6 5 6	2.86 2.67 2.86	5.23 4.75 4.75	41-41 31-31 41-31		5110.61	A	7		6.46		(105) c ² D-x ² F° (106)
5360.44 A 5324.26 A 4541.31 A	40 30 20	1.77	4.09	23-13 13-13 13-13	b ² D-z ² P° (36)	4622.71 5264.95	A A	100 80	2.49 2.33	5.16 4.68	21-21 13-15	b ⁴ F-y ² D° (70)	4486.65 4241.93	A A	20 7	4.05	6.80 6.96		c ² D-x ⁴ P° (107) c ² D-w ² P°
5058.18 A 5311.60 A	10 150		4.31 4.10	$1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-2\frac{1}{2}$	b ² D-z ² D° (37)	5057.03 4699.72	A A	30 40	2.67 2.49	5.11 5.11	3 1 -3 1 25-3 1	b ⁴ F-z ² F°† (71)	3945.36	A	10n	4.05	7.17	2] -2]	(108) c ² D-v ² D° (109)
4731.36 A	40	2.14	4.75		b ² D-z ⁴ G° _(38)	5079.65 4350.52	A A	60 150	2.33	4.76 5.69			67 19.4 0 7398.96	A A	50 10	4.62	6.46	3 1 - 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	b ² F-x ² F° (110)
4249.33 A 3648.35 A	30 6	1.77			_{b²D−y²D•}	4245.84 4232.43 4703.62	A A A	20 60 10	2.49 2.33	5.39 5.25 5.48	41-41 21-21 11-11 42-31	(72)	6550.01 7278.72	A A	10 6		6.51		b ² F-w ² D° (111)
4320.69 A 4020.25 A 4573.81 A	40 5 20	3.14 1.77 3.14	5.00 4.84 4.84	21-21 11-11	b ³ D-z ⁴ P° (40)	4535.38 4466.41	A A	30 30		5.39 5.25	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		5673.58	A	10	4.62	6.80		b2F-x4P° †
4158.90 A	30	2.14			b ² D-z ² F°† (41)	4187.68	A	8	2.33	5.28		b ⁴ F_y ² P° †	5493.22	A	6	4.62	6.87		(112) b2F_y2G° † (113)
4127.80 A 3698.39 A	40 10				b ² p_y ⁴ F° †	4640.14 4490.60 4336.66	A A A	30 30 30	2.86 2.67 2.67	5.52 5.42 5.52	44-34 34-24 34-34	b ⁴ F-y ² F° (74)	4179.55 3946.00	A A	10 7n	4.62	7.57	•	b2F_u2D° (114) b2F_y2F°†
3935.64 A 3485.16 A	30		5.28 5.31	21-11 11-1	b ² D-y ² P° (43)	4206.59 4071.22	A A	80 6	2.49 2.49	5.42 5.52	21-21 21-31		Strongest	Uncl	assifie	d Lines	of <u>Hf</u>	II	(115)
3518.75 A 3659.02 A	15 4		0.20	15-15	_b 2 _{D-y} 2 _F °	3877.11 3806.07 3766.92	A A A	40 40 50	2.67	6.04 5.91 5.76	41-31 31-21 21-11	b ⁴ F-y ⁴ D°† (75)	7061.90 6850.07	A A	30 ? 601				
3384.14 A 3195.63 A	10 8	1.77	5.42	1] -2]	~ (44) b ² D-y ⁴ D° †	3737.88	A .	15	2.33	5.63 6.15	15- 5		6548.72 4519.02 4443.07	A A A	10 10n 20				
3110.87 A	40				b ² D-z 28°	3744.98 3917.47	A	15 20	2.67	5.82		b ⁴ F-z ² G° † (76). b ⁴ F-x ² D° †							
3024.78 A	15	2.14	8.22	3 <mark>출-1출</mark> 1	646) b ² D-y ⁴ P°† (47)	3438.24 3218.20	A	15 8	2.33 2.67	5.92 6.51		64F_w2D° †	<u>Ta I</u> I	P ?	Anal C	List		c 1942	
5391.36 A 5590.73 A	10 5		4.09	13-13	8 ³ P-z ³ P°† (48)	3323.35	A	30	2.86	6.57	4-3-3-3-3-1	(78) b ⁴ F-w ² F° (79)	5402.51 5212.75	A	40w 35w	0.00	2.28	11-11 11-21 11-11	1 2°
6531.66 A 6512.61 A	30 10	2.20	4.09	1글-3글 8	a ² P-z ² D°†	7561.08	A	10	3.37	5.00		b ⁴ P-z ⁴ P° (80)	4574.32 3970.10 3077.24	A A A	15 15 15d?	0.00 0.00 0.00	3.11	13-13 13-23 13-23	17° 52°
5298.06 A 5842.23 A	100 80		4.21	ۇ -1≱	(49) m ² P-z ⁴ G°	6306.17 6563.86	A	5 10	3.52 3.37	5.48 5.25	1출-1출	b ⁴ P-y ⁴ F° † (81)	5328.38	Ā.	20w	0.25	2.56	- 2] -1글	a ⁴ F-4°
4177.50 A 4417.37 A	20 100	2.20			(50) a ² P-y ² D°† (51)	6455.85	A	20	3.37	5.28	1-1-1-	b ⁴ P-y ² P°† (82)	5037.65 2965.54	A A	30 20 r		2.70	2 1 -1 1 2 1 -1 1	62° (2) 8°
	2.7	= · - •		c -2	·									•				-	
i																			

98							R E V	1 5 1	. ע				* D D B							
Labo: I A		y Int	Low E	P High	J	Multiplet (No)	Labo: I A		'y Int	Low Low	P H1gh	J	Multiplet (No)	Labor I A	atory Ref		Low	High	J	Multiplet (No)
Ta I con	tinue	đ					W II con	tinue	od					<u>Ir I</u> II	9.2	Anal	B L1	t D	Dec 19	
5811.10	A	2041	0.49	2.61	3 1 _2 1 _	a ⁴ F-6° (3)	3657.59 3361.11	A A	120 100	1.09 1.09	4.46 4.76	ţţ	(3)2°	3800.122 3448.967	Å	60 r 60	0.00 0.50	3.25 4.08	41-41 11-21	a ⁴ F-z ⁶ D° † (1)
5 461.31 3063.56	A A	25 18r	0.69 0.69	2.95 4.72	41-31 42-31	a ⁴ F-12° (4)78°	3572.48	A	300	1.31	4.76	- 1½- ½	2-2° (3)	3513.638 3266.446	A	80 r 60	0.71	3.51 4.49		a ⁴ F _{-z} ⁶ F ⁰ † (2)
6925.35 5776.76	A A	20d?	0.75	3.51 3.88	- - - - - - - - - - - - - - - - -	a ⁴ P ₋ 3° (5)10°	3024.51	A	300	1.40	5.48	a l _a l _	3-7° (4)	3437.006		60			-	a ⁴ F_z ⁶ G ⁰ † (3)
5413.47 5349.08 5136.47 4921.29	A A A	20w 25w 30w 25	0.75 0.75 0.75 0.75	3.03 3.05 3.15 3.25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14° 15° 18° 31°	3149.87	A	500	1.63	5.54	-	4-11° (5)	4268.096 3368.472 3992.114	A A	80 60 80				b ⁴ F-z ⁶ D ⁰ † (4) b ⁴ F-z ⁶ F ⁰ † (5)
5419.19 5354.67	A A	30w 30w			_	a ⁴ P?-14° (6) 15°	*3189.24 3177.22 3051.30 3021.98	A A A	100 1 150 400 100	1.66 1.66 1.66 1.66	5.53 5.54 5.70 5.74	31-41 31-31 31-31 31-41	5- 9° (6)10° 13° 15°	3220.772 3915.384 3068.897	A A A	100 r 60 60		4.18 4.37 4.37		b ⁴ F-z ⁶ G• † (6)
5141.63 4926.02	A	30w 35	0.75	3.15 3.25	13-13 13-13 -	21°	3463.52 3179.44	A A	200 150	1.66		_		3198.917 3212.121	A A	60 60	0.88	4.74		b ⁴ F-z ⁴ D° † (7) b ⁴ F-z ⁴ G° †
5939.75	A	20₩	1.20	3.28	1년 -	a ⁶ D-23° (7)	3175.97 3036.68	A A	200 100	1.66	5.54 5.72	21-11 21-21	6- 5° (7)10° 11° 14°							(8)
5944.01	A	304?			1] -2] -	(8)	3343.40 3160.03	A A	120 300	1.83	5.53 5.74	4}-4} 4}-4}	8- 9° (8)15°	Pt I I I	9.2	Anal	B Li	st D	Dec 19	943
5435.27	A	30				a ⁶ D?-35° (9)	3401.90	A	150	1.85	5.48	-	9_ 7° (9)10°	3315.05 3290.23	A A	8 6	0.00 1.35	3.72 5.00	3-4 1-3	a ³ D-z ⁵ D°†
6045.38	A .	30				a ⁶ p_28° (10)	3342.46 3376.17	A	400	1.85	5.54	-		3064.71 3139.39 3156.59	A A A	50 10 10		4.03 4.03 5.16	3-2 3-3 1-1	a ³ D-z ³ P° †
7148.61 6430.78 4936.41	A A	30 30 30	1.51 1.51 1.51	3.43 4.01	31-31 31-31 31-21	a ⁶ D-20° (11)28° 52°	*3189.24	Â	1001	1.87	5.74	3 1-41 -	10- 9° (10)15°	2997.97	A	30	0.10			a ³ D-z ³ Fe (3)
7346.37 6485.36	A A	30 30	1.65	3.33 3.55	- 41-31 41-41	a ⁶ D-26° (12)32° 39° 53°	3555.18 3486.14	A A	120 100	2.00 2.00	5.48 5.54	2-2-2-1-5 2-1-5 2-1-5	11- 7° (11)11°	3408.14 3966.37	A A	15 6	0.10 1.25	3.72 4.36	4-4 3-3	a ³ F-z ⁵ D° † (4)
5997.24 5037.33	A	35w 30w	1.65	3.71 4.10	44-44 43-33 -	53 °	3529.57	A	100	2.04	5.54	4 <u>-</u> 3-3-2 -	13-10° (13)	3042.65 4164.54	A A	2 0 5	0.10 1.25	4.16 4.21		a ³ F_z ⁵ Ge (5) a ³ F_z ³ Fe †
5404.95	٨	35w	2.13	4.41	3 } _1½	9-62° (13)	3549.08 3358.62 3343.09	A A A	150 200 100	2.05 2.05 2.05	5.53 5.72 5.74	31-41 31-21 31-41	13- 9° (13)14° 15° 17°	3638.80 5368.97	Â	8 3	1.25	4.64	3-4 2-3	(6)
<u>Ta II</u> Se	e int	roduction	on				*3243.36	A	100	2.05		— —	17	3301.87	A	10	0.81	4.55	2-2	a ³ P-5° (7)
							3010.76	A	100	2.35	6.45	4출-3물 	15-27° (14)	Pt II Sec	1nt:	roduet 1				
<u>WI</u> IP	7.94				June		*3243.36	A	100	2.47	6.28	3 <mark>출-4출</mark> 	16-23° (15)							
4244.374 4680.539 4843.829	A A A	200 400 500	0.60 0.41	3.23 2.96	3-3 3-2	d ⁴ s ² 5p_d4sp ² p•† (1)	3151.31	A	300	2.87	6.78	4] -5]	19-38° (16)	Au I I I	9.2	Anal	A L1	st D	Dec 19	42
5053.300 5006.169 5224.680 5514.712	A A A	500 400 400 500	0.21 0.77 0.60 0.41	2.65 3.23 2.96 2.65	1-1 4-3 3-3 3-1		3345.86	A	200w	2.89	6.58	3 } -1}	30-31° (17)	3122.782 6278.30 •5064.69	B A A	(150) 35n 15	1.13 2.65 2.65	5.08 4.61 5.08	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	a ³ D_6 ³ P° (1)
4102.713 3881.402 3835.058	A A A	150 100 (5)	0.77 0.60 0.41		4-3 3-3 2-2	d ⁴ e ^{2 5} D−d ⁴ sp ⁵ p∾† (2)		P 7.8	35 Anal	LB L	ist D	Мау	1942	7510.74 5837.29	A A	200 40	5.08 4.61	6. 73 6. 73	- 1}- 2-2	6 ² P°-7 ² 8 (2)
3757.093 3864.335	A A	{3} 3}	0.41		2-2	a ⁴ s ³⁵ D–a ⁴ sµ ⁵ D°† (3)	4889.15 5275.54		2000 1000	0.00	2.52 2.34	21-31 21-21	a6g_z8p*	4793.63 4065.09	A A	100 45	4,61	7.66	13-23	6 ² Pe-6 ² D
3829.133 4219.383 3570.662 3760.133	A A A	(3) (3) (5) (6) (4) (5)	0.21 0.77 0.60 0.41	4.05 3.69	1-1 4-3 3-4 2-3		3460.47 // 3464.72 3451.88	A A A	1000 800 600		3.57 3.56 3.58	$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 1\frac{1}{2}$	a ⁶ g_z ⁶ p° (3)	4811.61 Au II See	inti	60 roduction	5.08 on	7,65	19-19	
3631.959 3682.101 3757.929	A A A		0.21 0.77 0.60	4.13	1-3 4-5 3-4	d ⁴ s ²⁵ D−d ⁴ sp ⁵ F°1 (4)														
3872.835 4047.948 3847.501	A A A	(5) (3) (4) (2) (3)	0.41 0.21 0.00		3-3 1-3 0-1	, -,	0s I I 4420.468	P 8.1	7 Anal 400R	0.00	st D 2.79	Dec 19	943 1–36°	Hg I I I 5460.743	10.3 A	39 Ans 500R		7.70		1942 6 ³ p°_7 ³ g
3570.662 3326.194	A A	(6) 60	0.41			d ⁴ s ^{2 5} D−313° (5)362°	4260.854 3528.602 3301.559	A A A	300 400R 500R		3.90 3.50 3.74	4-5 4-4 4-5	(1)27° 32° 37°	4358.343 4046.557	Ā	300 100	4.87		1-1 0-1	(1)
3300.819 3215.578 3191.577	A A A	150 150 60	0.60 0.77	4.34 4.61 3.87	3-4 4-5 0-1	351°	3267.945 *3058.66	A A	400R 500R	0.00	3.78 4.03	4-4 4-4	39° 41°	3663.274 3131.845	A	50R 100	5.44 4.87	8.81 8.81	2-2 1-3	6 ³ P°-6 ¹ D
3176.602 3046.452 3041.876	A A	30 50 25	0.21 0.21	4.09 4.26 4.47	1-3 1-3 3-1	331° 344° 361°	3752.524	A	400R	0.34	3.63	_ _ 2_3 _	2-35° (2)	3650.144 3125.668	A B	100R 200R		8.82 8.81	2-3 1-2 -	6 ³ P°-6 ³ D† (3)
4008.769 4074.374 4294.623	A A A	1000 500 1000	0.36	3.44 3.39 3.24	3-4 3-3 3-2	d ⁵ s ⁷ S−d ⁴ sp ⁷ P• (6)	4135.784 3963.628 3782.195 3336.150	A A A	200 500 400R 200R	0.51 0.51 0.51 0.51	3.63 3.78	3-4 3-3 3-4 3-3	3-32° (3)35° 39° 43°	5790.659 5769.598	A A	300 300	6.67 6.67	8.81 8.81		6 ¹ P°-6 ¹ D (4) 6 ¹ P°-6 ³ D† (5)
3867.986 4302.123	A A	300 500	0.36 0.36	3.56 3.23	3-4 3-3	d ⁵ s ⁷ S-d ⁴ sp ⁷ D° (7)	3262 200	A A	500R 500R		4.30	3-4 3-2	45° 46°	Many lines				re		
4757.565 3617.522 3780.770	A A	800 300	0.36 0.36 0.36	3.78	3-2 3-3	d ⁵ s ⁷ B-d ⁴ sp ⁵ p°		A A	100 300		3.59 3.74	5-5	4-34° (4)37°							
3207.248 3049.694	A A	80 60	0.36 0.36	4.21 4.41	3-2	(8) d ⁵ s ⁷ 8- 341° (9)357°	3370.588 3156.248	A	300R 500R	0.64	4.30 4.55	5-4 5-5 	45° 53°	<u>Tl I</u> I I	6.08 A	Anal	0.96	1st D 3.27	Dec 1	1942 6 ² P°-7 ² 8 (1)
3017.447	A	60	0.36	4.45	3-4	360°	4112.018	A	150	0.71	3.71		5 –36° (5)	3775.724	A	500R	0.00			
<u>W II</u> I	P T	Anal D	List	D D	ec 194	:3	3560.855	A	150R	1.08	4.55		7–53° (6)	3519.24 3529.38 <u>Many line</u>		500R 100R w fine s	0.96 0.96 structu	4.47 4.46 re	12-22	6 ² P°-6 ² D†
3641.42 3286.57	A A	150 100	1.08	4.46 4.83	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	4F-1° (1)3°								Tl II Sec	int	roductio	on			
Ī																				

	WALLDED WORLD INDO
Laboratory EP J Multiplet IA Ref Int Low High (No)	Laboratory EP J Multiplet IA Ref Int Low High (No)
Pb I I P 7.38 Anal A List D Dec 1943	Bi II See introduction
3639.568 A 500R 0.97 4.36 1-1 6p ³ P-7e ³ P*† 4057.812 A 1000R 1.31 4.36 2-1 (1) 3683.469 A 1000R 0.97 4.32 1-0	Rn I See introduction
3739.940 A 300 2.65 5.95 2-2 6p ¹ D-7s ³ P ⁶ 7228.974 B (2000) 2.65 4.36 2-1 (2)	Ra I I P 5.25 Anal A List D May 1942
3572.734 A 200R 2.65 6.10 2-1 6p ¹ p-7s ¹ P° (3)	4835.91 // A 100 0.00 3.56 0-1 718-71P° (1)
Pb II See introduction	
	Ra II I P 10.10 Anal A List D May 1943
Bi I I P ? Anal B List D Dec 1942	3814.42 // A 300 0.00 3.24 \(\frac{1}{2}\)-1\(\frac{1}{2}\) 7\(^2\)B-7\(^3\)P* 4683.38 A 100 0.00 2.64 \(\frac{1}{2}\)-\(\frac{1}{2}\) (1)
3067.712// A 9R 0.00 4.03 1½- ½ 6p ⁴ 5°-1 (1)	Th I Wo analysis Dec 1942
4722.652 to (8) (10) $(1.41 4.02$ (2) (3) (3)	
Wide fine structure	

				99	
Laborat I A Re		E Low	P High	J Multiplet (No)	
Th II I P	7 Anal	C Lis	t D J	uly 1944	
3539.589 A	400	0.00	3.49	12-32 a3D-z4F0 t	١
4277.322 A	400	0.00	2.89	12-12 a2D-y2po t	•
3610.794 A 4019.137// A	30 1500	0.51 0.00	3.93 3.07	$\begin{array}{ccc} 2\frac{1}{2} - 3\frac{1}{2} & a^2 D - y^2 F^{\circ} + \\ 1\frac{1}{2} - 3\frac{1}{2} & (3) \end{array}$	ł
3180.199 A	400	0.19	4.07	- 2] -3] a ⁴ F-z ⁴ F° 1	
3392.040 A	300	0.19	3.83	$3\frac{1}{2}-3\frac{1}{2}$ a ⁴ F-y ² G° 1	r
4391.114 A	600	0.55	3.36		٢
4919.814 A	500	0.76	3.27	3\frac{1}{2}-3\frac{1}{2} a^4H^0-z^4G1 (7)	ł
Th III See	introduc	tion			•

U Not separated Dec 1942

REVISED MULTIPLET TABLE

						F	ORBIDDE	N LINES						
IA	Low		J	Multiplet (No)	I A	E I		J	Multiplet (No)	I A		P High	J	Multiplet (No)
Be I I P 4548.3	0.00	(2.71)	0-1	2s ² 1s-2s2p ³ p*	F IV I P 4059.3 3996.3	0.08 0.03	3.12 3.12	2-2 1-3	3p ^{3 3} P-2p ^{2 1} D	7869.5		2.66	2–0	3p ² 1p-3p ² 1s (3F)
	44 20				3532.2	3.13	6.61	3-0	2p ² 1 _{D-2p} 2 1 _S (2F)	s I I	P 10.31			
<u>CI</u> IP: 9849.5	0.01	1.26	2-3	2p ² ³ P-2p ² ¹ D						10819.8 11305.8	0.00	1.14	2-2 1-2	3p4 3p-3p4 1p
9823.4 9808.9	0.00	1.26	0-3	(1F) 2p ² ³ p-2p ² ¹ s	<u>Ne III</u> I 3868.74 N	P 63.3	3.19	2-2	3p4 3p-3p4 1p	4506.9 4589.0	0.00	2.74 2.74	3-0 1-0	3p ⁴ 3p-3p ⁴ 1s (2F)
4627.3 4621.5	0.01	2.67	2-0 1-0	(ar)	3967.51 N	0.08	3.19	1-3 2-0	(1F) 2p4 1s	7724.7		3.74	2-0	3p ⁴ ¹ D-3p ⁴ ¹ S
8727.4	1.26	2.67	2-0	2p ² 1p-2p ² 1s (3F)					(ar)					(3F)
<u>ni</u> ip	14.49					96		دا دا	_{2p} 3 2 _p e_2p3 2pe		P 23.3	7.07	41 41	3p ³ 4g 0_3 p ³ 2pc
5200.7 51 98. 5	0.00 0. 0 0	2.37 2.37	$1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	2p ³ 4s°-2p ³ 2p° (1F)	4716 ? 4730 ? 4714 ?	(4.76 (4.76	7.38) 7.38) 7.38)	21-11 11-12 21-12 11-12	(1F)	4068.62 4076.22	и 0.00	3.03	$\frac{1\frac{1}{2}-1\frac{1}{2}}{1\frac{1}{2}-\frac{1}{2}}$	(1F)
3466.4	0.00	3.56	11/2-	2p ³ 4se-2p ³ 2pe (2F)	4717 7	(4.76	7.38)	12-12		6717.0 6731.3	0.00	1.84	1 1 2 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3p ³ 4s°-3p ³ 2p° (2F)
0395.4 0404.1	2.37 2.37	3.56 3.56	2}- 1}-	3p ³ 2p ^e -3p ³ 2pe (3F)	<u>Ne V</u> I P				. 2 3 2 1.	10317.7 10336.0 10369.7	1.84 1.83 1.84	3.03 3.03 3.03	21-12 12-12 22-12 12-12	3p ³ 2p ⁰ -3p ³ 2p ⁰ (3F)
					3425.8 N 3345.9 N	0.10	(3.74) (3.74)	2-2 1-2	3p ² 3p _{-3p} 3 1 _D (1F)	10284.3	1.83	3.03	1-1-1	
6583.6 N		1.89	2-2	3p ² 3p-2p ² 1p	2972 1	(3.74	7.89)	2- 0	2p ^{2 1} D-2p ^{2 1} s (2F)	<u>8 III</u>	I P 34.9			
6548.1 N 6527.4	0.00	1.89 1.89	1-3 0-2	(1F)						9532.1 9069.4	0.10 0.04	1.40	2-2 1-3	3p ^{2 3} P-3p ^{2 1} D
3070.8 3063.0	0.02 0.01	4.04 4.04	2-0 1-0	2p ² 3p _{-2p} 2 1 _S (2F)	Na IV I I	98.5				3796.7 3721.1	0.10	3.35	2-0 1-0	3p ² 3p-3p ² 1g (2F)
5754.8 N	1.89	4.04	2-0	3p ² 1 _{D-2p} 2 1 _S (3F)	3319.3 3445.9		3.72 3.72	2-2 1-3	2p ⁴ 3p _{-2p} 4 .1p (1F)	6310.2		3.35	3-0	3p ² 1 _{D-3p} ² 1 _S
<u>01</u> IP	13.56				<u>Na V</u> I P	138.0								(01)
6300.23 L 6363.88 L	0.00	1.96	2-2 1-2	2p ⁴ 3p _{-2p} 4 1p (1F)	4011.2 4021.6 4017.5	5.83 5.83 5.83	8.90 8.90 8.90	21-11 12-1 21-1 12-12	2p ³ 2p•-2p ³ 2p•	<u>s VIII</u> 9917.9	IP†	1.24	11 1	. _{2p} 5 2pe_2p5 2pe
2972.3		4.17	1-0	2p ⁴ ³ p _{-2p} ⁴ ¹ s (2F)	4015.3	5.83	8.90	13-13				1.04	1½- ½	(1F)
5577.350A	1.96	4.17	3-0	2p ⁴ 1p _{-2p} ⁴ 1s (3F)	<u>Mg VI</u> II	186.1				6 VII				
				(OF)	3485.5	6.70	10.24	3 1 -11	3p3 3pe-3p3 3pe	<u>s XII</u> 7536	0.00	1.64	} -1 }	3p ² P-3p ² P
<u>0 II</u> I P	35.00				3503.0 3500.4 3488.1	6.70 1 6.70 1	10.23	$\begin{array}{c} 3\frac{1}{2}-1\frac{1}{2} \\ 1\frac{1}{2}-\frac{1}{2} \\ 3\frac{1}{2}-\frac{1}{2} \\ 1\frac{1}{2}-1\frac{1}{2} \end{array}$	(1F)					(1F)
3728.91 N 3726.16 N	0.00	3.31 3.31	$1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	2p ³ 4s°-2p ³ 2p° (1F)						<u>Cl II</u>	I P 23.70			
7319.4	3.31	5.00	21-11	2p ³ 2p•_2p ³ 2p•		P 241.1			70 70	8579.5 9125.8	0.00	1.44	2-2 1-2	3p4 3p-3p4 1p
7329.9 7318.6 7330.7	3.31 3.31 3.31	5.00 5.00 5.00	21-11 11-1 21-1 11-11	(2F)	3074.0 3093.4 3098.7	7.59 1 7.59 1 7.59 1	l1.58 l1.58	21-12 12-12 12-12	3p ³ 2pe-3p ³ 2pe (1F)	3583.2 3675.0	0.00 0.09	(3.44) (3.44)	2-0 1-0	3p ^{4 3} P-3p ^{4 1} S (2F)
					3068.8	7.59 1	11.61	1 1 1 1 1 1		6152.9		(3.44)	2-0	3p4 1 _{D-3p} 4 1 _S
	P 54.71			2.7. 2.4	<u> 81 I</u> I P	8.12								(3F)
5006.84 N 4958.91 N 4931.8	0.01	2.50 2.50 2.50	2-2 1-3 0-2	2p ² 3p-2p ² 1p	6589.74 6526.85	0.03 0.01		2-0 1-0	3p ² 3p-3p ² 1s	<u> </u>	I P 39.7			
4363.21 N	2.50	5.33	a-0	2p ² 1 _D -2p ² 1 _S (2F)	10991.52	0.78	1.90	3-0	3p2 1 _{D-3p} 2 1 _S	3342.7 3353.4	0.00	3.69 3.68	$1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	3p ³ ⁴ se-3p ³ 2pe
									(3F)	5517.2 5537.7	0.00 0. 00	2.24 2.23	$\begin{array}{c} 1\frac{1}{2}-3\frac{1}{2} \\ 1\frac{1}{2}-1\frac{1}{2} \end{array}$	3p ³ 4s°-3p ³ 2p° (1F)
<u>F II</u> I P 4789.5		0.50		- 4 3- 4 4	<u>PI</u> IP1	0.9				8481.6 8501.8	2.24 2.23	3.69 3.68	21-11 11-1	3p ³ 2pe_3p ³ 2pe (3F)
4869.3		2.58 2.58	2-2	2p ⁴ ³ P-2p ⁴ ¹ D (1F)	8787.6 8799.1	0.00	1.40	$1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	3p ³ 4s ^e -3p ³ 2pe (1F)	8550.5 8433.7	2.24 2.23	3.68 3.69	21-11 12-12 22-12 12-12	(01)
4157.5	2.58	5.55	2-0	3p ⁴ 1D-3p ⁴ 1s (3F)	5332.4 5339.7		2.31 2.31	$1\frac{1}{2}-1\frac{1}{2}$ $1\frac{1}{2}-\frac{1}{2}$	3p ³ ⁴ S°-3p ³ ² p° (2F)					
					n			• • • • • • • • • • • • • • • • • • • •		8046.1	I P 53.2 0.17	1.70	2-2	3p ^{2 3} P-3p ^{2 1} D
	D 00 00				<u>PII</u> I P 11898.2	0.06	1.10	2-2	3p ²	7530.9	0.06	1.70	1-2	(1F)
	P 62.39		_ 1	22 ~ ~									~ ~	
F III I 1 5721.2 5733.0		6.36 6.36	21- 11-	2p ³ 2p•-2p ³ 2p•	11483.2 4736.6	0.02	2.66	1-2 2-0	(1F) 3p ² 3p-3p ² 1s	3203.3 3118.3		4.03	2-0 1-0	3p ²⁻³ p-3p ² 1 _S (2F)

FORBIDDEN	LINES
-----------	-------

					F	ORBIDDE	N LINES						
IA	E P Low High	J	Multiplet (No)	Î A	E I Low		J	Multiplet (No)	IA	E l Low		J	Multiplet (No)
A III I P	40.8			Ca V I	P 84				Sc VII	I P ?			
7135.8 7751.0	0.00 1.73 0.14 1.73	2-2 1-2	$_{3p^{4}}^{3p}_{-3p^{4}}^{3p}_{D}$	5308.9 6085.9		2.32 2.32	3-2 1-3	3p ⁴ 3p _{-3p} 4 1p (1F)	4987 1 5045 1 5224 1	(0.08 (0.00 (0.08	2.45)	21-11 11-1 21-1	3p ^{3 2} De-3p ^{3 2} Pe (1F)
3005.1 3109.0	0.00 (4.11) 0.14 (4.11)	2-0 1-0	3p ⁴	3996.3	2.32	5.41	8-0	3p ⁴ 1 _{D-3p} 4 1 _S (3F)	4824 ?	\0.00 	2.56)	12-12	
5191.4 N	1.73 (4.11)	3-0	3p ⁴ 1 _{D-3p} 4 1 _S (3F)	-				(ar)	T1 I	D 6 81			
				Ca VI	[P 7				12168.80	0.05		4-3	a ³ F-a ³ P
<u>A IV</u> I P 6	31			3646.3 3702.7	0.00	3.38 3.33	$1\frac{1}{2}-3\frac{1}{2}$ $1\frac{1}{2}-1\frac{1}{2}$	3p ³ 4se-3p ³ 2pe (1F)	12012.60 11849.83 11856.02 11771.95			3-1 2-0 3-3 2-1	(1F)
4711.4 4740.3	0.00 2.62 0.00 2.60	13-33 12-12	3p ³ 4s ^e -3p ³ 2pe (1F)	5587.2 5631.0	3.38 3.33	5.59 5.52	21-11 11-12 21-12 11-12	3p ³ 2 _D e_3p ³ 2pe (2F)	11621.54 8777.26	0.00	1.06	3-3 4-4	a ³ F-b ³ F
7236.0 7263.3	2.62 4.33 2.60 4.30	2-1-1-1 1	3p ³ 2p°-3p ³ 2p° (2F)	5766.4 5460.0	3.38 3.33	5.52 5.59	$1\frac{2}{2} - 1\frac{2}{2}$		8716.24 8669.28 8884.12	0.02 0.00 0.05	1.42	3-3 2-2 4-3	(2F)
7332.0 7169.0	2.62 4.30 2.60 4.33	21-12 12-2 22-2 12-12	,,						8799.09 8613.35	0.02	1.42 1.45	3-2 3-4	
				Ca VII	I P †			0.7. 0.4	8588.84 8970.23 8488.93	0.00 0.05 0.00	1.44 1.42 1.45	2-3 4-2 2-4	
<u>A V</u> I P 78	3			5615.8 4938.6	0.50 0.20	2.70 2.70	2-2 1-3	3p ²	8521.66	0.05	1.50	4-4	a ³ F-a ¹ G
7006.3 6434.9	0.25 2.01 0.09 2.01	2-2 1-3	3p ^{2 3} p-3p ^{2 1} D (1F)	3688 7	2.70	(6.05)	3-0	3p ² 1p-3p ² 1s (2F)	8367.07 8249.61	0.02 0.00 0.05	1.50	3-4 2-4	(3F) _a 3 _{F-a} 5 _P
4610 7	2.01 (4.69)	2-0	3p2 1p-3p2 1s					(br)	7287.25 7213.88 7150.21	0.02	1.73	4-3 3-2 2-1	(4F)
			(2F)	Ca XII	I P 655				7328.50 7238.29	0.05	1.73	4-2 3-1	
				3329.3	0.00	3.71	1월~ 월	3p ⁵	7173.92 7126.40 7087.39	0.00 0.00	1.73	3-3 2-2 2-3	
<u>AX</u> IP? 5534.6	0.00 2.23	1킬- 킬	2p ⁵ 2pe_2p ⁵ 2pe					(1F)	6739.63 6670.76	0.05		4-5 3-4	a ³ F-a ³ G (5F)
		-2- 2	(1F)						6617.12 6768.65	0.00 0.05	1.87	2-3 4-4	(5)
				<u>Ca XIII</u> 4086.5	I P 7	3 A9	2-1	2p4 3p-2p4 3p	6692.48 6791.02 6642.57		1.87	3–3 4–3 3–5	
AXI IP			4.7. 4.7	4000.5	0.00	3.02	2-1	(1F)	6595.88	0.00	1.87	3-4	
6919	0.00 1.78	2–1	3p ⁴ 3p-3p ⁴ 3p (1F)						5828.12 5794.16 5755.60	0.05 0.03 0.00	2.15	4-3 3-2 3-1	a ³ F-a ³ D (6F)
					I P ?			0.7.0.7	5867.87 5812.53	0.05 0.02	2.15 2.14	4-2 3-1	
A XIV I P	1			5648 1	0.00	(2.19)	0-1	2p ^{2 3} p-2p ^{2 3} p (1F)	5755.39 5737.59 5699.57	0.03 0.00 0.00	2.17 2.15 2.17	3-3 2-2 2-3	
4359 7	0.00 2.83] _1]	2p ² P°-2p ² P° (1F)						5629.54	0.05	2.24	4-2	a ³ F-b ³ P
				Sc II	I P 12.8				5587.73 5555.33 5561.66	0.02 0.03	2.22	3-1 2-0 3-2	(7F)
<u>K IV</u> I P 6	82.5			9285.20 9191.34	0.02	1.35	3-2 3-3	a ³ D-b ¹ D (1F)	5535.09 5509.51	0.00	2.23 2.24	2-1 2-2	
6101.1 6794.8	0.00 2.02 0.21 2.02	2-2 1-3	$_{3p^{4}}^{3p}_{-3p^{4}}^{1}_{D}$	9134.50 8649.11		1.35	1-2 3-0	a ³ D-a ¹ S	5614.62 5562.94	0.05	2.25 2.34	4–6 3–5	a ³ F-a ³ H (8F)
4511.0	2.02.4.76	2-0	3p4 1 _{D-3p} 4 1 _S	8567.60 8518.20	0.01	1.45 1.45	3-0 2-0 1-0	(2F)	5542.54 5630.85 5595.31	0.00 0.05	2.23 2.24	2-4 4-5	(01)
4511.0	2.02 4.76	2=0	(2F)	8347.24 8307.67	0.02 0.01	1.50 1.49	3-2 2-1	a ³ D-a ³ P (3F)	5664.02	0.03	2.23	3-4 4-4	
				8279.99 8384.28	0.00 0.03 0.01	1.49	1-0 3-1 2-0 2-2	,,	5584.81 5518.00	0.05	2.26	4-4 3-4	a ³ F-b ¹ G (9F)
<u>KV</u> IP1			7 4 7 2	8326.66 8271.32 8261.21	0.01 0.00	1.50	1-1		5466.67 5396.71	0.00	2.33	2-4 4-2	a ³ F-c ³ P
4125 ? 4166 ?	0.00 (2.99) 0.00 (2.96)	15-25 15-15	3p ³ 4s°-3p ³ 3p° (1F)	8403.62 8225.25	0.02	1.49 1.50	3-0 1-2		5358.79 5312.52	0.00	2.32 2.32	3-1 2-0	(10F)
6316.6	(2.99 4.95)	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3p ³ ² D°-3p ³ ² p° (2F)	11896.48	0.31	1.35	2-2	a ¹ D-b ¹ D	5334.30 5310.36 5286.31	0.02 0.00 0.00	2.32 2.33	3-2 2-1 2-3	
6349.5 6446.5 6223.4	(2.96 4.91) (2.99 4.91) (2.96 4.95)	$\begin{array}{c} 2\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - \frac{1}{2} \\ 2\frac{1}{2} - \frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array}$	(2F)	10872.05	0.31	1.45	2-0	(4F) a ¹ D-a ¹ S (5F)	5025.53 4982.92	0.02	2.48 2.48	3-1 2-1	a ³ F-a ¹ P (11F)
				10399.33 10456.86	0.31 0.31	1.49	2-2 2-1	(5F) a ¹ D-a ³ P (6F)	5043.30	0.05	2.49	4-2	a^3F-b^1D
<u>KVI</u> IP1	7			10486.97	0.31	1.49	2-0		4988.75 4946.76	0.02	2.49	3-2 2-2	(12F)
6229.2 5603.2	0.36 2.34 0.14 2.34	2-3 1-3	$3p^2 \frac{3}{1}P - 3p^2 \frac{1}{1}D$	10780.17 10660.35 10569.44		1.76 1.76 1.76	4-4 3-4 3-4	a ³ F-a ¹ G (7F)	4898.49 4847.01	0.05 0.02	2.57 2.57	4-5 3-5	a ³ F-a ¹ H (13F)
4097 7	2.34 (5.35)	3-0	3p ² 1p-3p ² 1s (2F)	-					11933.60 11881.68	0.84 0.83	1.88	5-5 4-4	a ⁵ F-a ³ G (14F)
			(SF)	Sc III	I P 24.65				11835.06 12024.89 11950.77	0.82 0.84	1.87 1.87	3-3 5-4	(11)
				3945.34 3914.83	0.02	3.15	21-1 11-1	3 ² D-4 ² S (1F)	11950.77 11792.55 11767.30	0.83	1.87 1.88	4-3 4-5	
<u>Ca I</u> I P 6 4912.82	0.00 2.51	0-2	4 ¹ 5-3 ³ D				-5- 5	· /	11748.60 12095.67	0.81 0.84	1.87 1.87	3-4 2-3 5-3	
4916.18	0.00 2.51	0-1	(1F)	Sc VI	P 1117				11679.85 11681.81 11690.94	0.82 0.81 0.81	1.87	3-5 2-4 1-3	
4575.46	0.00 2.70	0-2	4 ¹ S-3 ¹ D (2F)	4672.2	0.00		2-2	3p4 3p-3p4 1p	9258.83	0.83	2.17	4-3	a ⁵ F-a ³ D
				5539.6	0.41	4.64	1-2	(1F)	9288.45 9281.86 9189.22	0.82 0.81 0.82	2.14	3-2 2-1 3-3	(15F)
<u>Ca II</u> I P	11.82			3590.8	2.64	6.08	2-0	3p ⁴ 1 _{D-3p} 4 1 _S (2F)	9235.10 9245.82	0.81 0.81	2.15 2.14	2-3 1-1	
7291.46 7323.88	0.00 1.69 0.00 1.69	1-21 1-11	4 ² S-3 ² D (1F)						9137.01 919 9.44	0.81 0.81		2-3 1-2	
		-											

102

REVISED MULTIPLET TABLE

					EN LINES					
E P Low High	J	Multiplet (No)	I A	E P Low High	J	Multiplet (No)	I A	E P Low High	J	Multiplet (No)
ued					, .	4 2			.1 -1	.4 2
0.82 2.24 0.81 2.23 0.81 2.22 0.81 2.24 0.81 2.23 0.81 2.23	3-2 2-1 1-0 2-3 1-1	a ⁵ F-b ³ P (16F)	11971.26 11782.27 11735.52 11602.41 11557.08	0.05 1.08 0.03 1.08 0.03 1.08 0.01 1.08 0.01 1.08	35-15 25-25 16-15	a ⁴ F-a ³ D (1F)	8648.73 8625.93 8722.54 8553.73 8549.64	0.15 1.58 0.13 1.56 0.15 1.56 0.13 1.58 0.12 1.56	45-55 35-45 45-45 35-55 25-45	b ⁴ F-a ³ H (16F)
0.84 2.25 0.83 2.24 0.82 2.23 0.84 2.24 0.83 2.23 0.84 2.23	5-6 4-5 3-4 5-5 4-4 5-4	а ⁵ F-а ³ Н (17F)	11432.93 11458.27 11396.50 11618.68 11242.12 11228.14	0.00 1.08 0.05 1.13 0.03 1.11 0.05 1.11 0.03 1.13 0.01 1.11	1 ۇ -2 ۇ	a ⁴ F_a ² G (2F)	7119.56 7051.04 7115.47 7055.06 6999.99 7003.95 6963.02	0.15 1.88 0.13 1.88 0.15 1.88 0.13 1.88 0.12 1.88 0.12 1.88 0.11 1.88	4 - 4 - 3 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 3 - 4 - 4	b ⁴ F-b ³ G (17F)
0.82 2.24 0.81 2.23 0.82 2.33	3-5 2-4 3-2	a ⁵ F-c ³ P	11110.92 10956.10 10901.79	0.00 1.11 0.05 1.18 0.03 1.16	15-05	a ⁴ F-a ⁴ P (3F)	6434.04 6436.55 6391.51 6405.27	0.13 2.05 0.12 2.04 0.12 2.05 0.11 2.04	31-11 21-11 21-11	b ⁴ F-b ³ P (18F)
0.81 2.32 0.81 2.33 0.81 2.32 0.81 2.33	1-0 2-3 1-1 1-2		10758.32 10747.64 10676.61 10608.18 10640.19	0.03 1.18 0.01 1.16 0.00 1.16 0.01 1.18 0.00 1.16	12-12		5080.84 5032.69 5065.43 5047.91	0.15	41_31	b ⁴ F-b ³ F (19F)
0.83 3.57 0.82 3.56 0.81 3.55 0.81 3.55	5-4 4-3 3-2 2-1 1-0	a ⁵ F-a ⁵ D (19F)	10503.47 10116.66 10148.57 10031.39	0.00 1.18 0.01 1.23 0.00 1.23 0.00 1.23	1 ½ - 3 ½ 2 ½ - 1 ½ 1 ½ - ½ 1 ½ - 1 ½	a ⁴ F-a ² P (4F)	5021.69 4987.68 5002.63	0.13 2.58 0.11 2.59 0.11 2.58	13-23 12-32	b ⁴ F-c ² D
0.84 3.57 0.83 3.56 0.82 3.55 0.81 3.55 0.83 3.57 0.82 3.57 0.81 3.56 0.81 3.55	5-3 4-2 3-1 2-0 4-4 3-3 2-2 1-1		10379.73 10300.86 10233.37 10203.05 10163.13 10125.99 10066.92	0.05 1.24 0.03 1.23 0.01 1.22 0.03 1.34 0.01 1.23 0.00 1.23 0.01 1.24	41-31-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	a ⁴ F-b ⁴ P (5F)	4165.41 4187.46 4147.21 4169.40 4129.49 4156.25 4116.60	0.13 3.08 0.13 3.11 0.12 3.08 0.13 3.11 0.11 3.08 0.11 3.11	35-25 35-25 25-25 25-25 25-25 15-25	(aor)
0.82 3.57 0.81 3.57 0.81 3.56 0.81 3.57 0.81 3.57	3-4 2-3 1-3 2-4 1-3		9972.59 8085.17 8060.16	0.00 1.23 0.00 1.24 0.05 1.57 0.03 1.56	1½-3½ 4½-3½ 3½-1½	a ⁴ F-b ² D (6F)	9649.94 9398.59 9642.42 9405.71	0.60 1.88 0.57 1.88 0.60 1.88 0.57 1.88	31-41 21-31 31-31 21-41	a ² F-b ² G (21F)
0.90 2.17 0.90 2.15 0.90 2.14	2-3 2-3 2-1	a ¹ D-a ³ D (20F)	7976.95 7975.58 7894.10 7916.25 7835.98	0.03 1.57 0.01 1.56 0.01 1.57 0.00 1.56 0.00 1.57	22-12 22-22 12-12 12-22		6250.51 6124.57 6227.19 6147.13	0.60 2.58 0.57 2.59 0.60 2.59 0.57 2.58	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ² F-b ² F (22F)
0.90 2.24 0.90 2.23 0.90 2.22	2-2 2-1 2-0	a ¹ D-b ³ P (21F)	8074.29 8028.94 8138.59 7966.36	0.05 1.58 0.03 1.56 0.05 1.56 0.03 1.58	41-51 31-41 41-41 31-51	a ⁴ F-a ² H (7F)	4925.84 4916.81 4982.73 4861.41	0.60 3.11 0.57 3.08 0.60 3.08 0.57 3.11	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	a ² F-c ² D (23F)
0.90 2.32 0.90 2.32 0.90 2.48	2-1 2-0 2-1	(23F) a ¹ D-a ¹ P	6725.67 6647.05 6722.02	0.05 1.88 0.03 1.88 0.05 1.88	41-41 31-31 41-31	a ⁴ F-b ² G (8F)	8229.81 8166.83 8189.44	1.08 2.58 1.08 2.59 1.08 2.59	$ \begin{array}{r} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 $	a ² D-b ² F (24F)
0.90 2.49	2-3 	a ¹ D-b ¹ D (24F) a ¹ D-a ¹ F (25F)	6589.42 6592.93 6548.87	0.01 1.88 0.01 1.88 0.00 1.88	$\begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 2\frac{1}{2} - 4\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \end{array}$	4m h2p	7917.03 6077.80 6151.82	1.08 2.63 1.08 3.11 1.08 3.08	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a ² D-a ² S (25F) a ² D-c ² D (26F)
1.06 2.17 1.05 2.15 1.04 2.14 1.06 2.15	2-3 1-2 0-1 2-2	a ³ P-a ³ D (26F)	6083.36 6087.77 6047.46 6053.14 6013.28	0.03 2.05 0.01 2.04 0.01 2.05 0.00 2.04 0.00 2.05	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(9F)	6065.34 8491.16	1.08 3.11	1 2-22	a ² G—b ² F (27F)
1.06 2.14 1.05 2.17 1.04 2.15	2-1 1-3 0-2	7_ 7	4877.01 4823.44 4862.80 4837.42	0.05 2.58 0.03 2.59 0.05 2.59 0.03 2.58	43-33 34-23 43-23 34-33	a ⁴ F-b ² F (10F)	8363.05 8405.16 6172.91	1.11 2.59	3 2 - 2 2 3 2 - 2 2 3 2 - 2 2	a ² G-c ² D (38F)
1.05 2.23 1.06 2.23 1.05 2.22 1.05 2.24	2-2 1-1 2-1 1-0 1-2	(27F)	4793.03 4806.83 4771.54 4785.21	0.01 2.59 0.01 2.58 0.00 2.59 0.00 2.58	23-23 13-23 13-23 13-32		8789.70 8651.14 8743.66	1.18 2.58 1.16 2.59 1.18 2.59	21-31 11-21 21-21	a ⁴ P-b ² F (29F)
1.06 2.22 1.04 2.24	0 -3	a ³ p_c ³ p	4031.15 4041.57 4004.07 4020.20 3983.08	0.05 3.11 0.03 3.08 0.03 3.11 0.01 3.08 0.01 3.11	44-34 34-14 34-24 24-15 24-34	a ⁴ F-c ⁵ D (11F)	83 48.9 3 6377.83	1.16 2.63 1.18 3.11		a ⁴ P-a ² S (30F) a ⁴ P-c ² D (31F)
1.05 2.32 1.06 2.32 1.05 2.32 1.05 2.33	1-1 2-1 1-0 1-2	(28F)	4005.07 3968.23 -	0.00 3.08 0.00 3.11		h ⁴ r_e ⁴ P	6473.52 6328.46 6409.46	1.18 3.08 1.16 3.11 1.16 3.08	25-15 15-25 2-15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.06 2.32 1.04 2.33 1.06 2.48	2-0 0-2 2-1	a ³ P-a ¹ P (29F)	11884.57 11823.03 11714.28 11778.39	0.12 1.16 0.11 1.16 0.12 1.18 0.11 1.16	24-14 14-24 14-14 14-14	(12F)	9108.42 8798.79 8703.03	1.23 2.59 1.23 2.63 1.22 2.63	$1\frac{1}{2} - 2\frac{1}{2}$ $1\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{1}{2}$	a ² P-b ² F (32F) a ² P-a ² S (33F)
1.04 2.48 1.06 2.49 1.05 2.49	0-1 2-2 1-3	a ³ P-b ¹ D (30F)	11117.80 11178.94 11024.82	0.12 1.23 0.11 1.22 0.11 1.23	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	b ⁴ F-a ² P (13F)	6569.73 6616.12 6671.31	1.23 3.11 1.22 3.08 1.23 3.08	$ \begin{array}{c} 1\frac{1}{2} - 2\frac{1}{2} \\ \frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $	a ² P-c ² D (34F)
1.44 2.49 1.42 2.49	3-2 2-2	b ³ F-b ¹ D (31F)	11185.70 11173.94 11151.54 11057.76	0.13 1.24 0.12 1.23 0.11 1.22 0.12 1.24		b ⁴ F-b ⁴ P (14F)	9199.54 9071.07 9149.11	1.24 2.58 1.23 2.59 1.24 2.59	21-31 11-31 21-21	b ⁴ P-b ² F (35F)
		(32F)	11080.02 10965.77	0.11 1.23 0.11 1.24		4 3	8763.95 8719.70	1.23 2.63 1.22 2.63		b ⁴ P-a ² S (36F)
1.50 2.57	4–5	a ¹ G-a ¹ H (33F)	8661.20 8661.96 8565.94 8585.04 8490.71 8529.50 8436.37	0.15 1.57 0.13 1.56 0.13 1.56 0.12 1.56 0.12 1.57 0.11 1.56 0.11 1.57	4 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b ⁴ F-b ² D (15F)	6590.88 6651.26 6693.12 6550.29 6625.75	1.24 3.11 1.23 3.08 1.24 3.08 1.23 3.11 1.23 3.08	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	b ⁴ P-c ³ D (37F)
	Low High	Low High 1ed 0.82 2.24 3-2 0.81 2.23 2-1 0.81 2.23 1-1 0.81 2.24 2-3 0.81 2.24 1-2 0.81 2.24 1-2 0.81 2.23 1-1 0.81 2.24 1-2 0.81 2.23 1-1 0.81 2.24 1-2 0.82 2.23 3-4 0.84 2.25 5-6 0.83 2.24 4-5 0.83 2.23 4-4 0.84 2.23 5-4 0.82 2.33 3-4 0.84 2.23 5-4 0.82 2.33 3-2 0.81 2.32 1-0 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.32 1-1 0.81 2.33 1-2 0.81 2.35 1-2 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 2-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.81 3.55 3-1 0.82 3.57 3-3 0.81 3.56 3-2 0.81 3.55 3-1 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.56 1-2 0.82 3.57 3-3 0.81 3.57 1-3 0.90 2.17 2-3 0.90 2.17 2-3 0.90 2.24 3-2 0.90 2.32 2-1 0.90 2.24 3-2 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.32 2-1 0.90 2.48 2-1 1.06 2.14 1-1 1.06 2.15 1-2 1.04 2.24 0-2 1.05 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.23 1-1 1.06 2.24 1-2 1.04 2.33 0-1 1.06 2.33 2-1 1.06 2.32 2-0 1.04 2.32 1-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.32 0-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.32 2-0 1.04 2.32 0-1 1.05 2.32 1-1 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.32 2-0 1.04 2.33 0-2 1.06 2.34 1-2 1.06 2.32 2-0 1.04 2.34 0-2 1.04 2.34 0-2 1.05 2.32 1-1 1.06 2.49 1-2 1.44 2.49 3-2 1.44 2.49 3-2 1.45 2.57 4-5	Low High (No) 1ed 0.82	Low High (No)	Low High (No) Low High Low Low Low High Low Low			100 100	Table Tabl	1

					FORBIDDE	n lines					
IA	E P Low High	J h	Multiplet (No)	,I A	E P Low High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)
T1 II con	tinued			V II cont	inued			<u>V II</u> cont	inued		
11478.92	1.56 2.6	3 11/2-1	b ² D-a ² S	7459.30 7468.52	0.04 1.70 0.03 1.68	4-3 3-3	a ⁵ D-a ⁵ P (4F)	9982.17 9733.52	1.12 2.36 1.09 2.36	4-4 3-4	a ³ F-b ¹ G (16F)
8039.68 8106.38	1.57 3.11 1.56 3.08	1 21-21	(38F) b ² D-c ² D (39F)	7457.80 7541.95	0.01 1.67	2-1 4-3	(*E')	8674.27	1.12 2.55	3-4 4-3	a ³ F-b ³ D
8192.33 7956.90	1.57 3.08	8 2] _1]	(551)	7515.13 7387.47	0.03 1.67 0.03 1.70	3-1 3-3		8490.18 8413.83	1.09 2.55 1.07 2.53	3-2 3-1	(17F)
				7411.90 7418.75	0.01 1.68 0.00 1.67	2-2 1-1		8485.90 8347.16	1.09 2.55 1.07 2.55	3–3 2–2	
M4 TTT T	P 27.6			7332.06 7373.32 7398.95	0.01 1.70 0.00 1.68 0.00 1.67	2-3 1-2 0-1		8343.02 8235.69	1.07 2.55 1.09 2.59	2–3 3–2	a^3F-a^1D
T1 III I 12417.8	0.05 1.0	5 [,] 4–3	a ³ F-a ¹ D	7294.30 7353.77	0.00 1.70 0.00 1.68	1-3 0-2		8101.03	1.07 2.59	2-2	(18F)
12061.0 11799.5	0.03 1.05	5 3-2	(1F)	5549.49	0.04 2.27	4-3	$\mathbf{a^5}_{\mathbf{D}-\mathbf{a^3}\mathbf{D}}$	6114.85 6040.31	1.09 3.11 1.07 3.11	3-2 3-3	a ³ F-b ¹ D (19F)
9706.8	0.05 1.32		a ³ F-a ³ P	5527.92 5504.22	0.03 2.26 0.01 2.26	3-2 3-1	(5F)	5634.78	1.13 3.31	4-3	a ³ F-a ¹ F
9594.5 9488.3	0.02 1.31	0 2-0	(2F)	5509.63 5496.84	0.03 2.27 0.01 2.26 0.00 2.26	3-3 2-2 1-1		5554.68 5493.10	1.09 3.31 1.07 3.31	3–3 2–3	(20F)
9487.4 9428.3 9324.8	0.02 1.32 0.00 1.31 0.00 1.32	1 2-1		5482.91 5478.76 5475.59	0.01 2.27 0.00 2.26	2-3 1-2		11918.75	1.43 3.46	1-0	a ³ P-a ¹ S
7152.8	0.05 1.78	8 4-4	a ³ F-a ¹ G	5472.09	0.00 2.26	0-1		11852.49	1.47 2.51	2-2	(21F) a ³ P-c ³ P
7033.0 6991.8	0.02 1.78 0.00 1.78		(3F)	5282.88 5245.25	0.03 2.36 0.01 2.37	3-3 2-1	a ⁵ D-b ³ P (6F)	11658.88 12219.66	1.43 2.48 1.47 2.48	1-1 3-1	(22F)
3337.7	1.05 4.74	4 2-3	a ¹ D-a ³ D	5227.25 5254.49 5225.90	0.00 2.37 0.01 2.36 0.00 2.37	1-0 2-3 1-1		11568.38 11324.18 11368.21	1.42 2.49 1.42 2.51 1.39 2.48	1-0 1-3 0-1	
3363.2 3378.4	1.05 4.72	3 3-3	(4F)	5235.07 5216.07	0.00 2.36 0.00 2.37	1-3 0-1		11471.69	1.47 2.55	2-3	a ³ P-b ³ D
3008.4	1.05 5.15		a^1D-b^1D	4965.31	0.03 2.51	3-2	a ⁵ D-c ³ P	10983.23 10835.22	1.42 2.55 1.39 2.53	1-3 0-1	(23F)
			(5F)	5002.88 4968.65	0.01 2.48 0.00 2.49	3-1 1-0	(7F)	11479.51 11098.96	1.47 2.55 1.43 2.53	2-2 1-1	
3608.5 3622.9 3631.8	1.32 4.74 1.31 4.72 1.30 4.70	3 ~1-2	a ³ P-a ³ D (6F)	4940.22 4985.27	0.01 2.51 0.00 2.48 0.00 2.51	2-3 1-1 1-3		11606.00 11019.11	1.47 2.53 1.47 2.59	2–1 2–2	a^3P-a^1D
3638.4 3640.6	1.30 4.70 1.32 4.72 1.31 4.70	3 2-3		4923.05 4976.33	0.00 2.51	0-1		10561.05	1.43 2.59	1-3	(24F)
3656.3 3593.3	1.33 4.70	3-1		4928.68 4898.64	0.04 2.55 0.03 2.55	4-3 3-2	a ⁵ D-b ³ D (8F)	9644.96 9292.19	1.47 2.75 1.43 2.75	2-1 1-1	a ³ P-a ¹ P (25F)
3826.7	1.32 5.15		a ³ p _ b ¹ D	4896.87 4897.21	0.01 2.53 0.03 2.55	2-1 3-3		9106.60	1.39 2.75	0-1	31-
3214.5 3207.6	1.31 5.15 1.30 5.15		(7F)	4874.21 4880.00	0.01 2.55 0.00 2.53	2-3 1-1		7526.46 7309.90	1.47 3.11 1.43 3.11	2-2 1-2	a ³ P-b ¹ D (36F)
4140.4 7	1.73 4.72	3 0-21	a ¹ S-a ³ D	4872.80 4857.50 4871.43	0.01 2.55 0.00 2.55 0.00 2.53	2-3 1-2 0-1		9356.40	1.57 2.89	6-5	a ³ H-a ¹ H
4163.6 7	1.73 4.70		(8F)	4012140				9282.92 9217.51	1.56 2.89 1.55 2.89	5-5 4-5	(27F)
3615.5	1.73 5.15	5 0-2	a ¹ S-b ¹ D (9F)	9570.34 9454.15	0.39 1.68 0.37 1.67	5-4 4-3	a ⁵ F-b ³ F (9F)				. 3 1
4160.9	1.78 4.74		a ¹ G-a ³ D	9358.90 9395.23	0.35 1.67 0.37 1.68	3-2 4-4 3-3		8582.52 8544.49	1.67 3.11 1.67 3.11	3-2 2-2	b ³ F-b ¹ D (28F)
4200.6 3661.3	1.78 4.72		(10F) a ¹ G-b ¹ D	9313.72 9253.44 9256.51	0.35 1.67 0.33 1.67 0.35 1.68	3-3 3-4		7556.03 7518.35	1.68 3.31 1.67 3.31	4-3 3-3	b ³ F-a ¹ F (29F)
0002.0			(11F)	9209.25 9183.58	0.33 1.67 0.32 1.67	2-3 1-2		7489.15	1.67 3.31	2-3	(501)
				9279.59	0.37 1.70	4-3	a5 _{F-a} 5 _P	11444.66	1.81 2.89	5-5	а ³ G-а ¹ н
<u>ti VII</u> I	P 140			9268.77 9235.60	0.35 1.68 0.33 1.67 0.35 1.70	3-2 2-1 3-3	(10F)	11315.52	1.80 2.89 1.80 3.31	4-5	(30F)
4144.8 5104.5	0.00 2.98 0.56 2.98		3p ⁴	9144.25 9165.30 9166.00 9043.52	0.35 1.70 0.33 1.68 0.32 1.67	2-3 1-1		8138.62 8076.58	1.80 3.31 1.79 3.31	4-3 3-3	a ³ G-a ¹ F (31F)
0.000				9043.52 9096.76	0.33 1.70 0.32 1.68	2-3 1-2		9595.85	2.03 3.31	4-3	b ³ G-a ¹ F
3263.1	2.98 6.76	3 2-0	3p ⁴ ¹ D-3p ⁴ ¹ S (3F)	8698.69	0.39 1.81	5-5	a ⁵ F-a ³ G	9522.24	2.02 3.31	3–3	(32F)
				8627.35 8579.15 8774.69	0.37 1.80 0.35 1.79 0.39 1.80	4-4 3-3 5-4	(11F)	V III I	P 29.6		
Ti VIII	I P T			8698.18 8553.87	0.37 1.79 0.37 1.81	4-3 4-5 3-4		8745.0	0.04 1.45	31-21	3d ³ 4F-3d ³ 4P
4468 '7	(0.13 2.90	0) 2] _1]	3p ³ 2p°-3p ³ 2p° (1F)	8510.24 8490.44	0.35 1.80 0.33 1.79	3-4 2-3		8735.0 8683.4	0.02 1.43 0.00 1.42 0.02 1.45	31-31 21-15 15-5 21-25	(1 F)
4545 ? 4779 ?	(0.13 2.72	3) 2 5- 5	(1F)	7477.26	0.39 2.04	5-5	a ⁵ F-b ³ G	8599.1 8625.8 8493.1	0.00 1.43 0.00 1.45	$1\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$	
4263 7	(0.00 2.90	J) 15-15		7431.08 7387.74 7540.14	0.37 2.03 0.35 2.02 0.39 2.03	4-4 3-3 5-4	(12F)	8615.4	0.07 1.50		3d ³ 4F-3d ³ 2G
				7387.74 7540.14 7475.84 7370.00 7344.03	0.39 2.03 0.37 2.02 0.37 2.04	5-4 4-3 4-5 3-4		8598.3 8782.6	0.04 1.48 0.07 1.48	41-41 31-31 41-31 31-41 21-31	(2F)
VII I P			5- 3-	7344.03 7321.87	0.35 2.03 0.33 2.02	3-4 2-3		8437.9 8457.2	0.04 1.50 0.02 1.48		
11414.22 11580.17 11715.20	0.04 1.12 0.03 1.09 0.01 1.07	9 3 <u>–</u> ,3	a^5D-a^3F (1F)	6497.76 6456.04	0.37 2.27 0.35 2.26	4-3 3-2	a ⁵ F-a ³ D (13F)	6233.9 6215.6	0.04 2.02 0.02 2.00	31-31 21-11 21-21 11-12 12-22	3d ³ 4 _{F-3d} 3 2 _D (3F)
11757.86 11857.28	0.04 1.09	9 4-3 7 3-2		6415.69 6431.11	0.33 2.26 0.35 2.27	3-1 3-3	(101)	6159.3 6160.1	0.02 2.02	23-23 13-13	- '
11246.87 11444.61 11619.10	0.03 1.12 0.01 1.09	3 3-4 9 2-3		6405.67 6382.03	0.33 2.26 0.32 2.26	2-2 1-1		6104.8	0.00 2.02		3d ³ 4F-3d ³ 2H
	0.00 1.0		-53-	6381.13 6372.11	0.33 2.27 0.32 2.26	2-3 1-2		6098.1 6065.2	0.07 2.10 0.04 2.08	41-51 31-41	(4F)
8545.12 8763.28 8878.98	0.03 1:4' 0.01 1.42 0.00 1.39	3 2-1	a ⁵ D-a ³ P (3F)	5662.62 5613.81	0.37 2.55 0.35 2.55	4–3 3–2	a ⁵ F-b ³ D (14F)				
8471.07 8709.38	0.01 1.4	7 2-2 3 1-1		5613.81 5605.36 5611.94	0.33 2.53 0.35 2.55	2-1 3-3 2-3 1-1	,/		48.3		
8420.72 8682.13	0.00 1.4° 0.00 1.4°	7 1-3 3 0-1		5575.69 5579.65	0.33 2.55	2-2 1-1		8815.9 8575. 4	0.04 1.44 0.00 1.44	3-2 3-3	3d ² 3 _{F-3d} 2 1 _D (1F)
7533.84 7497.68	0.04 1.60 0.03 1.6	8 4-4	a5 _{D-b} 3 _F (3F)	5573.84 5550.25	0.33 2.55 0.32 2.55	2-3 1-2		7611.2 7551.9	0.04 1.66 0.00 1.63	3-2 2-1	3d ² 3 _{F-3d} 2 3p (2F)
7469.44 7571.69	0.01 1.6° 0.04 1.6°	7 2-2	(0.7	10800.75	1.13 2.27	4-3	a ³ F-a ³ D	7431.2	0.00 1.66	2-2	
7526.94 7460.57	0.03 1.6° 0.03 1.6°	7 3-2 8 3-4		10576.98 10382.14	1.09 2.26 1.07 2.26	3-2 2-1 3-3	(15F)	5446.0 5326.5	0.09 2.36 0.04 2.36	4-4 3-4	3d ^{2 3} F-3d ^{2 1} G (3F)
7440.63 7430.26	0.01 1.6 0.00 1.6	7 2-3 7 1-2		10510.25 10355.93	1.09 2.27 1.07 2.26	2-2		5237.7	0.00 2.36	2-4	
				10291.94	1.07 2.27	2-3			P 173?		3p4 3p-3p4 1p
								3686 4734	0.00 3.35 0.74 3.35	2-2 1-2	3p* 3P-3p* 1D (1F)
											_

REVISED MULTIPLET TABLE

					FORBIDDE	N LINES					
I A	E P Low High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)	I A	E P Low High	J	Multiplet (No)
	6.74		.7 ₀ .5 ₀	Cr I cont		4.3	a ⁵ D-b ³ P	<u>Cr II</u> cont 5339.65	inued 1.54 3.85	41-41	a ⁶ D-a ⁴ F
4577.32 4575.84 4573.93	0.00 2.70 0.00 2.70 0.00 2.70	3–3 3–2 3–1	a ⁷ S-a ⁵ P (1F)	5285.34 5239.47 5197.31	1.03 3.36 1.00 3.35 0.98 3.35 1.00 3.36	4-3 3-1 2-0 3-3	(15F)	5299.42 5270.19 5247.84	1.52 3.85 1.50 3.84 1.49 3.84	41-41 31-31 21-21	(13F)
4149.52 4251.99	0.00 2.97 0.00 2.90	3-2 3-1	a ⁷ S—a ³ P (2F)	5226.64 5193.82 5165.98 5181.21	1.00 3.36 0.98 3.35 0.96 3.35 0.98 3.36	3-3 3-1 1-0 3-3		5354.15 5313.88 5279.80	1.54 3.85 1.52 3.84 1.50 3.84	12-15 43-35 33-25 25-15	
4117.09 4113.42 4114.10	0.00 3.00 0.00 3.00 0.00 3.00	3-4 3-3 3-3	a ⁷ S-b ⁵ D (3F)	5162.53 5150.07 5146.55	0.96 3.35 0.96 3.36 0.96 3.35	1-1 1-3 0-1		5285.21 5255.97 5238.35	1.52 3.85 1.50 3.85 1.49 3.84	3\$-4\$ 3\$-3\$ 1\$-3\$	
4116.36 3672.37	0.00 3.36	3-1 3-2 3-1	a ⁷ 8-b ³ P	5134.16 5124.41 5098.44	0.96 3.36 1.03 3.43 1.00 3.42	0-2 4-5 3-4	a ⁵ D-b ³ G (16F)	5228.44 5368.91 5323.64 5242.00	1.48 3.84 1.54 3.84 1.52 3.84 1.50 3.85	41-31 41-31 31-11 21-41	
3678.71 7016.80	0.00 3.35	2-3	(4F) a ⁵ 8-a ⁵ P	5083.54 5083.54 5154.28 5126.25	0.98 3.41 1.03 3.42 1.00 3.41	2-3 4-4 3-3	(101)	5224.30 5219.02	1.49 3.85 1.48 3.84	1 \$-3 \$ \$-2 \$	
7013.33 7008.84	0.94 2.70 0.94 2.70	2-2 3-1	(5F)	5182.71	1.03 3.41	4-3		5248.64 5157.59 5206.02	1.52 3.87 1.50 3.89 1.50 3.87	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ⁶ D-a ² D (14F)
6059.21 6280.22 6420.88	0.94 2.97 0.94 2.90 0.94 2.86	2-2 2-1 2-0	a ⁵ 8-a ³ P (6F)	<u>Cr II</u> I	P 16.6			5127.09 5174.95 5108.57	1.49 3.89 1.49 3.87 1.48 3.89	1 2 - 1 2 1 3 - 2 3 2 - 1 2	
5990.31 5982.55 5983.99	0.94 3.00 0.94 3.00 0.94 3.00	2-4 2-3 2-2	a ⁵ S-b ⁵ D (7F)	8000.12 8125.50 8229.81	0.00 1.54 0.00 1.52 0.00 1.50	21-41 21-31 21-31 21-11 21-11 21-11	a ⁶ S-a ⁶ D (1F)	5034.05 4924.81 4985.64	1.54 3.99 1.52 4.02 1.52 3.99	41-31 31-21 31-31	a ⁶ D-a ² F (15F)
5988.76 5992.15	0.94 3.00 0.94 3.00	3-1 3-0		8308.68 8357.78	0.00 1.49 0.00 1.48			4887.27 4947.17 4859.87	1.50 4.03 1.50 3.99 1.49 4.03	42-32 32-32 32-32 32-32 32-32 32-32 32-32	
5092.97 5105.16 5108.53	0.94 3.36 0.94 3.35 0.94 3.35	2-2 2-1 2-0	a ⁵ S-b ³ P (8F)	4992.68 5049.73 5092.60	0.00 2.47 0.00 2.44 0.00 2.43	23-33 23-23 23-13 23-13 23-13	a ⁶ S-a ⁴ D (2F)	9223.25	2.47 3.81		a ⁴ D-b ⁴ P
8351.14	1.03 2.53	4-5	a ⁵ D-a ⁵ G	5119.47 4581.18	0.00 2.41	2 1 -21	a ⁶ S-a ⁴ P	9512.58 9686.70 9033.73	3.44 3.74 2.42 3.70 2.44 3.81 2.43 3.74	31-21 23-13 13-3 23-23 13-13	(16F)
8043.80 7938.41 7867.83	1.00 2.53 0.98 2.53 0.96 2.53 1.03 2.53	3-4 3-3 1-3 4-4	(9F)	4580.80 4580.88 3993.57	0.00 2.69 0.00 2.69 0.00 3.09	23-13 22-2 23-31	(3F) a ⁶ S-b ⁴ D	9364.08 9590.94 8899.71 9274.58	2.42 3.74 2.41 3.70 2.42 3.81 2.41 3.74	12-12 12-23 12-23 2-12	
8183.69 8045.57 7940.71 8185.52	1.00 2.53 0.98 2.53 1.03 2.53	3-3 3-2 4-3		3991.47 3992.08 3993.29	0.00 3.09 0.00 3.09 0.00 3.09	$3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - \frac{1}{2}$	(4F)	9806.20 9651.02	3.47 3.73 3.44 3.72	3 1 - 4 1 2 1 - 3 1 3 1 - 3 1 3 1 - 3 1	a ⁴ D-a ⁴ H (17F)
8047.93 7387.23	1.00 2.53 1.03 2.70	3-2 4-3	a ⁵ D-a ⁵ P	3239.07 3298.61	0.00 3.81 0.00 3.74	21-21 21-11 21-11 21-1	a ⁶ S-b ⁴ P (5F)	9866.49 8929.91	2.47 3.73 2.47 3.85		a ⁴ D-a ⁴ F
7269.33 7177.04 7383.38	1.00 2.70 0.98 2.70 1.03 2.70	3-2 2-1 4-3	(10F)	3337.77 3202.25	0.00 3.70 0.00 3.85		a ⁶ 5-a ⁴ F	8792.09 8703.79 8652.17	2.44 3.85 2.42 3.84 2.41 3.84	3 - 4 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	(18F)
7264.51 7273.06 7181.74	1.00 2.70 1.00 2.70 0.98 2.70 0.96 2.70	3-1 3-3 2-2 1-1		3207.46 3212.75 3216.32	0.00 3.85 0.00 3.84 0.00 3.84	21-41 21-31 21-21 21-11	(6F)	8970.56 8831.94 8730.02 9013.04	3.47 3.85 3.44 3.84 3.43 3.84 3.47 3.84	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
7117.45 7185.39 7122.07 7087.10	0.98 2.70 0.96 2.70 0.96 2.70	3-3 1-2 0-1		3188.79 3170.55	0.00 3.87 0.00 3.89	21-21 21-11	a ⁶ S-a ² D (7F)	8858.94 8826.02	2.44 3.84 2.47 3.87		a ⁴ D-a ² D
7125.65 7091.68	0.96 2.70 0.96 2.70	1-3 0-2		3089.76 3066.29	0.00 3.99 0.00 4.02	2 1 -21	a ⁶ 8-a ² F (8F)	8520.22 8653.20 8400.89	2.44 3.89 2.44 3.87 2.42 3.89	3 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(19F)
6333.46 6484.72 6561.75	1.03 2.97 1.00 2.90 0.98 2.86	4-2 3-1 3-0	a ⁵ D-a ³ P (11F)	12471.70 12168.18	1.54 2.53 1.52 2.53	41-51 31-41 21-31	a ⁶ D-a ⁴ G (9F)	8530.15 8328.78	2.42 3.87 2.41 3.89	1 2-2 3 2-1 2	a ⁴ D-a ² F
6249.35 6414.93 6511.90	1.00 2.97 0.98 2.90 0.96 2.86	3-2 2-1 1-0		11943.75 11789.27 12460.65	1.50 2.53 1.49 2.53 1.54 2.53 1.52 2.53	14-24		8106.88 7806.88 7947.28 7960.85	3.47 3.99 3.44 4.03 3.47 4.03 2.44 3.99	3 1 - 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	(20F)
6184.51 6367.28 6140.20 6342.98	0.98 2.97 0.96 2.90 0.96 2.97 0.96 2.90	3-3 1-1 1-3 0-1		12170.50 11951.78 12463.08 12178.83	1.52 2.53 1.50 2.53 1.54 2.53 1.52 2.53	43-43 33-33 23-23 43-33 33-22		7706.58	2.42 4.03	31-21 21-31 12-22	
6117.60	0.96 2.97	0-2 4-4	a ⁵ D-b ⁵ D	10719.84 10500.65	1.54 2.69 1.52 2.69		a ⁶ D-a ⁴ P (10F)	10373.30 10388.07 10380.40	2.53 3.72 2.53 3.72 2.53 3.72	5-6-6-5 4-5-5-5 5-5-5-5	a ⁴ G-a ² I (21F)
6167.84 6106.17 6067.88	1.00 3.00 0.98 3.00 0.96 3.00	3-3 2-2 1-1	(13F)	10331.86 10502.67 10331.43	1.50 2.69 1.52 2.69 1.50 2.69	41-21 31-11 21-21 31-21 21-12 21-21 21-11		10119.57 10223.27	2.53 3.75 2.53 3.74	5-6-6-1 4-5-5-1 3-4-1	a ⁴ G-a ⁴ H (22F)
6249.75 6169.37 6111.14	1.03 3.00 1.00 3.00 0.98 3.00	4-3 3-2 2-1		10210.20 10333.39 10209.78	1.49 2.69 1.50 2.69 1.49 2.69	13-3 23-23 13-13		10305.67 10366.26 10215.85 10307.34	2.53 3.73 2.53 3.72 2.53 3.74 2.53 3.73	3 3 -4 3 2 3 -3 3 5 3 -5 3	
6071.35 6176.08 6104.67 6062.98	0.96 3.00 1.00 3.00 0.98 3.00 0.96 3.00	1-0 3-4 2-3 1-2		10137.00 10211.69 10136.59 10138.47	1.48 2.69 1.49 2.69 1.48 2.69 1.48 2.69	13-23 13-23 1-13 2-22		10377.34 10372.30 10299.79 10373.98	2.53 3.73 2.53 3.73 2.53 3.73	35-35-45-45-45-45-45-45-45-45-45-45-45-45-45	
6045.80 6251.33 6174.44	0.96 3.00 1.03 3.00 1.00 3.00	0-1 4-3 3-1		7974.31 7845.41	1.54 3.09 1.52 3.09		a ⁶ D-b ⁴ D (11F)	9337.40 9388.12	2.53 3.85 2.53 3.85	51-41 42-31	a ⁴ G-a ⁴ F (23F)
6114.66 6112.75 6061.50	0.98 3.00 0.98 3.00 0.96 3.00	2-0 3-4 1-3		7752.86 7688.64 7965.96	1.50 3.09 1.49 3.09 1.54 3.09	23-13 13-3 43-33	•	9432.18 9457.95 9343.61	2.53 3.84 2.53 3.84 2.53 3.85	50-40-30-40-30-40-30-30-30-30-30-30-30-30-30-30-30-30-30	
6040.94 5975.39	0.96 3.00 1.03 3.09	0-2 4-5	a ⁵ D-a ³ G	7847.76 7757.43 7853.51	1.52 3.09 1.50 3.09 1.52 3.09	42-31-31-31-31-31-31-31-31-31-31-31-31-31-		9386.74 9427.18 9342.24	2.53 3.85 2.53 3.84 2.53 3.85	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
5949.99 5913.34 6026.18	1.00 3.07 0.98 3.07 1.03 3.07	3-4 2-3 4-4	(13F)	7750.56 7684.16 7647.06	1.50 3.09 1.49 3.09 1.48 3.09	12-12		9381.78 9228.60	2.53 3.85 2.53 3.87		a ⁴ G-a ² D
5972.59 6049.37 5926.18	1.00 3.07 1.03 3.07 1.03 3.11	3-3 4-3	a ⁵ D-a ³ F	7758.47 7681.89 7642.61 7689.65	1.50 3.09 1.49 3.09 1.48 3.09 1.49 3.09	23-34 14-24 14-34 14-34 12-34		9072.86 9223.81 8446.39	2.53 3.89 2.53 3.87 2.53 3.99	31-21 21-11 31-21 31-21	(34F) a ⁴ G-a ² F
5876.92 5876.23 5951.24	1.03 3.11 1.00 3.10 0.98 3.08 1.03 3.10	4-4 3-3 2-2 4-3	(14F)	7689.65 7640.39 5442.82	1.49 3.09 1.48 3.09 1.54 3.81		a ⁶ D-b ⁴ P	8272.21 8445.28 8268.36	2.53 3.99 2.53 3.99 2.53 4.02	41-31 31-21 31-31 21-21	(25F)
5934.73 5852.48 5819.54	1.00 3.08 1.00 3.11 0.98 3.10	3-2 3-4 2-3		5552.93 5615.19 5386.27	1.52 3.74 1.50 3.70	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(13F)	8441.27	2.53 3.99	21-21 21-31 	
5836.21 6010.53 5795.58	0.96 3.08 1.03 3.08 0.98 3.11	1-3 4-3 3-4		5505.25 5579.06 5341.39	1.50 3.74 1.49 3.70 1.50 3.81	41-21 31-11 21-21 31-21 31-21 21-21 21-11		11056.70 11785.17 12300.16	2.69 3.81 2.69 3.74 2.69 3.70	21-21 11-11 1-12	a ⁴ P-b ⁴ P (26F)
5780.29 5815.79	0.96 3.10 0.96 3.08	1-3 0-2		5470.51 5557.14 5308.68	1.49 3.74 1.48 3.70 1.49 3.81	15-25		11782.63 12300.77 11058.94	2.69 3.74 2.69 3.70 2.69 3.81	2 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	
				5 449.43 528 8. 83	1.48 3.74 1.48 3.81	3-13 2-22		11784.63	2.69 3.74] _1]	

FORBIDDEN LINES E P High Multiplet (No) I A Multiplet (No) Multiplet (No) E P IA E P High High Low Low Mn V I P 75.7 Cr V continued Cr II continued 6396.2 6346.2 6220.7 3d² 1p-3d² 1s (4F) 41-21 31-1 31-2 31-2 31-2 21-1 3d3 4F-3d3 4P 2.10 2.05 2.03 3.85 3.84 3.84 a⁴P-a⁴F (27F) 2-0 0.17 10696.87 21-31 12-31 2-12 21-31 11-12 21-12 0.10 (1F) 10758.04 2.69 0.04 10797.66 3d2 3p-3d2 1s 0.10 10807.8 2-0 1-0 10755.91 10798.14 3.84 3.84 1.98 2.69 (5F) 3.12 2.05 10394.3 1.94 6159.3 0.00 0.04 0.00 6088.5 2.03 10796.00 2.69 3.84 5991.0 21-21 11-11 21-11 11-21 1-11 $a^{4}P-a^{2}D$ (28F) 2.05 10491.99 2.69 2.69 3.87 6029.7 0.00 5868.3 10299.05 3.89 3.89 Cr VIII I P 1847 3d³ ⁴F-3d³ ²G 5889.0 0.17 2.27 2.69 3.87 10494.00 3p5 2pe_3p5 2pe 1글- 글 0.10 10298.63 2.69 89 10098.2 0.00 1.22 5863.1 2.21 2.21 (1F) 6069.2 0.17 0.10 a⁴P-a²F 3.99 4.02 4.02 5694.8 9491.15 2.69 (29F) 2.69 5703.3 2.21 9274.68 0.04 9273.10 2.69 5591.9 0.00 2.21 Cr IX I P 2097 0.10 0.04 0.04 0.00 2.83 2.85 2.83 4528.7 3d3 4F-3d3 2P $3p^4 3p_{-3p^4} 1_{D}$ 3273.5 4407.9 0.00 2-2 1-2 4398.4 4432.8 3.77 (3F) Cr III I P 31 3d⁴ ⁵D-3d⁴ ³P 4331.9 2.85 2.20 2.12 2.30 2.13 2.20 2.13 5785.4 0.07 4365.2 0.00 4-3 3-1 3-3 2-1 2-3 1-1 1-3 0-1 0-2 5945.1 5712.7 0.04 3.04 3.04 3.04 3.04 3.04 0.17 0.10 0.10 3d3 4F-3d3 2D 4308.4 (4F) I P 15.57 Mn II 4196.3 4203.5 5884.9 5689.3 5843.6 0.02 $a^{7}S-a^{5}S$ (1F) $a^{7}S-a^{5}D$ (2F) 0.04 10553.58 0.00 1.17 3-2 2.20 2.12 2.20 5618.9 4120.7 0.01 0.00 6978.57 6850.42 0.00 3-4 3-3 3-2 3-1 3.04 1.77 4055.5 0.00 4062.2 5600.1 6763.56 1.82 3d^{4 5}D-3d^{4 3}F (2F) 5550.3 0.07 2.29 1.84 4-4 3-3 2-2 4-3 3-2 3-4 2-3 1-2 4-2 5505.1 0.04 2.29 3-3 3-2 3-1 a⁷8-a⁵P (3F) 0.02 2.28 0.00 5471.3 3344.72 3.69 3.69 Mn VI IP? 5572.6 5523.3 0.04 2.28 3337.82 0.00 3d^{2 3}F-3d^{2 1}D 4-2 3-2 2-2 5483.3 5453.4 0.04 2.29 6277.3 0.21 0.00 a⁷S-b⁵D (4F) 3049.05 4.05 4.06 4.06 4.05 3-4 3-3 3-2 3-1 5933.4 0.09 2.17 5435.6 5591.3 0.01 2.28 3042.61 3042.44 5679.3 4-2 3-1 2-0 3-2 2-1 3d2 3F-3d2 3P 0.02 5432 2.29 3044.52 0.00 5907.1 0.21 2.30 2.23 2.19 2.30 2.23 2.29 1-3 5783.4 5625.0 0.09 (2F) *5418.0 a⁵S-a⁵P (5F) 2-3 2-2 4896.65 3.69 3.69 5601.6 0.09 3d⁴ ⁵D-3d⁴ ³G (3F) 4894.1 4876.0 4870.8 4-5 3-4 2-3 4-4 3-3 3-5 0.07 2.59 2.57 4889.49 1.17 5541.7 0.00 4881.87 ã-1 5374.6 0.00 2. 30 2-2 0.02 2.56 3d2 3F-3d2 1G? 4.06 4.06 4.05 a^5S-b^5D (6F) 4275.21 2-3 2-2 2-1 3.40 3.40 3.40 4-4? 3-4? 2-4? 4928.9 1.17 3866.9 0.21 0.04 0.04 0.03 0.01 0.07 2.56 2.59 2.57 2.56 2.56 4911.9 4842.4 4274.87 4278.97 (3F) 3631.4 2-4 1-3 4-3 4835.4 a⁵D-a⁵G (7F) 3.40 3.41 3.41 4-5 3-4 2-3 4965.6 7547.77 1.77 7696.30 7805.96 1.82 Mn IX I P 2217 3.41 3.41 3.41 3.41 3.41 1-3 4-4 3-3 2-2 4-3 3-3 1.84 1.77 1.80 7879.32 7540.74 7693.38 3p5 2pe_3p5 2pe 7978.7 0.00 1.55 1출~ 글 Cr IV I P 50.4 (1F) 7805.47 7537.93 1.82 1.79 1.75 1.74 1.79 1.75 1.74 1.79 7390.6 7338.0 41-21 31-1 21-2 31-3 21-1 21-2 21-2 3d3 4F-3d3 4P 0.12 (1F) 7692.91 1.80 3.41 0.03 0.07 0.03 0.00 0.03 0.00 7233.4 7180.4 7171.6 a⁵D-a⁵P (8F) 6423.45 1.77 3.69 4-3 3-3 2-1 3-3 2-2 1-1 2-3 1-2 0-1 Mn X I P 247? 6523.23 6590.10 1.80 3.69 3.70 3.69 7111.4 3p4 3p-3p4 3p 9997.3 0.00 1.23 2-1 6535.99 1.80 (1F) 3p4 3p-3p4 1p 1.82 3.69 7051.7 6603.99 4122.6 1.23 4.23 1-2 6906.1 0.00 6642.66 (2F) 6617.06 1.82 3.69 3d3 4F-3d3 2G 6915.6 0.12 1.90 1.86 6656.77 . 69 0.07 0.13 0.07 0.03 0.03 6893.2 7086.7 (2F) 6668.63 1.85 3.70 1.86 6731.2 6746.2 1.90 a⁵D-b⁵D (9F) 4.05 4-4 3-3 3-2 1-1 4-3 3-2 2-1 Fe I I P 7.858 4.06 5473.94 1.80 6591.0 5530.11 5574.04 1.82 1.48 1.55 1.60 a⁵D-a³F 8347.55 0.00 4-4 3-3 2-2 4-3 3-3 3-4 6640.0 0.05 0.09 0.00 1.84 4.05 8231.52 5394.78 1.77 4.06 8151.33 7959.00 2.40 2.40 2.40 $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ 3d³ 4F-3d³ 3p (3F) 5296.3 0.07 5473.37 5536.98 1.55 5209.1 5145.5 0.03 7964.27 8647.89 0.05 1.82 4:05 60 3-1 1-0 3-4 2-3 1-2 0-1 5579.73 1.84 4.05 1.48 0.09 0.11 0.00 0.09 0.11 2-3 1-3 4-2 2-4 1-3 0-2 5494.80 4.05 1.55 1.60 1.60 8431.56 41-21 31-13 31-23 21-23 21-23 11-32 5071.6 0.12 2.55 3d3 4F-3d3 2D 4.06 4.06 4.05 1.83 5530.69 2.55 4976.5 0.07 (4F) 7708.83 0.07 0.03 0.03 0.00 0.00 4971.8 4899.4 2.55 5561.21 8868.91 8564.56 1.48 2.55 2.55 2.55 4894.8 8337.65 0.12 1.60 4843.1 4838.7 a⁵D-a⁵P (2F) 2.55 5696.36 0.00 2.17 4-3 Mn IV 3-3 2-1 4-2 3-1 3-3 I P 52 0.05 0.09 0.00 2019 2.21 2.19 5775.05 0.13 0.07 0.13 0.07 3d³ 4_{F-3d}3 2_H (5F) 4907.6 2.63 2.60 5804.45 5639.55 4-2 3-1 2-0 3-2 2-1 3d⁴ ⁵D-3d⁴ ³P 0.11 0.07 0.03 0.07 2.76 2.63 2.55 2.76 4873.4 4969.3 4662.7 2.60 2.63 2.60 0.05 2.21 4823.3 5708.96 4908.8 4799.4 0.03 4591.4 5872.77 0.09 2.19 2-2 1-1 2-3 1-2 0-1 1-3 0-2 2.63 2.55 2.76 5867.17 5934.41 0.11 2.21 4761.9 0.03 1-0 2-3 1-1 1-3 0-1 0-2 0.01 4863.9 0.11 2.19 2.21 2.17 4535.7 5936.99 2.63 2.76 2.63 5898.30 5999.99 4719.7 0.01 Cr V I P 72.8 4497.4 0.01 5968.87 1.84 1.84 1.84 7252.8 4-2 3-2 2-3 3d² 3_{F-3d}2 1_D 4478. A 6932.4 0.06 5439.72 2.27 4-2 3-1 2-0 a^5D-a^3P 0.00 6700.1 0.00 3d4 5D-3d4 3F (2F) 4528.3 2.41 2.47 2.37 2.41 2.47 4-4 3-3 2-2 0.11 5224.15 5170.84 0.05 2.83 4480.6 4442.0 4548.5 2.82 1.98 1.94 1.91 1.98 1.94 4-2 3-1 2-0 3-2 2-1 2-3 3d2 3F-3d2 3p 6705.5 0.14 0.03 3-2 2-1 1-0 2.81 5565.68 0.05 6586.7 6462.3 0.06 (2F) 0.11 0.07 0.07 2.82 4-3 3-4 2-3 1-2 4-2 3-4 1-3 0-2 5303.99 0.09 4495.3 0.11 5220.56 6430.7 6376.6 0.06 1-0 2-2 1-1 1-3 0-1 0-2 4461.0 5656.39 5356.32 0.09 0.11 0.11 2.83 . 27 0.03 4427.7 2.82 2.41 2.27 2.41 6230.4 0.00 4405.2 2.81 5715.94 4563.7 0.11 2.81 5382.26 5745.49 4523.6 3d2 3r-3d2 1g 0.14 2.87 4-4 4408.5 4396.9 0.06 2.87 (3F) 4391.1

2.82

0.01

4387.4

2.87

IA	E P Low High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)	Į A	E P Low High	J	Multiplet (No)
Fe I con	tinued			<u>Fe I</u> conti	nued			Fe I conti	nued		
4843.34 4886.56 4916.26 4789.19 4847.58 4942.95 4956.35	0.00 3.55 0.05 3.58 0.09 3.60 0.00 3.58 0.05 3.60 0.05 3.55 0.09 3.58	4-4 3-3 2-2 4-3 3-2 3-4 2-3	a ⁵ D-b ³ F (4F)	8022.25 8164.85 8289.45 7876.34 8054.83 7773.91	0.86 2.39 0.91 2.42 0.95 2.44 0.86 2.42 0.91 2.44 0.86 2.42	5-6 4-5 3-4 5-5 4-4 5-4	a ⁵ F-a ³ H (13F)	10264.65 10592.32 10771.88 9974.41 10318.68 9731.40	1.48 2.68 1.55 2.72 1.60 2.75 1.48 2.72 1.55 2.75 1.48 2.75	4-5 3-4 2-3 4-4 3-3 4-3	a ³ F_a ³ G (23F)
4961.18 4751.75 5014.37 5002.01 4983.42	0.11 2.60 0.00 2.60 0.09 2.55 0.11 3.58 0.12 2.60	1-3 4-3 3-4 1-3 0-3	а ⁵ р-а ³ ф	7390.42 7406.61 7510.54 7168.42 7317.43 7536.93 7604.53	0.86 2.55 0.91 2.58 0.95 2.60 0.86 2.58 0.91 2.60 0.91 3.55 0.95 2.58	5-4 4-3 3-3 5-3 4-3 4-4 3-3	a ⁵ F-b ³ F (14F)	8466.95 8649.72 8792.49 8233.22 8488.19 8086.73	1.48 2.94 1.55 2.98 1.60 3.00 1.48 2.98 1.55 3.00 1.48 3.00	4-5 3-4 2-3 4-4 3-3 4-3	a ³ F-b ³ G (24F)
4603.66 4631.93 4640.05 4544.36	0.00 2.68 0.05 2.72 0.09 2.75 0.00 2.72 0.05 2.75	4-5 3-4 2-3 4-4 3-3	(5F)	7658.84 7741.96 7756.59 7759.25	0.99 2.60 0.95 2.55 0.99 2.58 1.01 2.60	3-2 3-4 3-3 1-3		8490.34 8469.75 8794.80	1.55 3.00 1.60 3.06 1.60 3.00	3-2 2-1 2-3	a ³ F-c ³ P (25F)
4578.83 4693.56 4694.59	0.05 2.68 0.09 2.72	3-5 2-4		7899.63 7859.60	0.99 2.55 1.01 2.58	2-4 1-3		7935.32 8321.51	1.48 3.03 1.55 3.03	4-4 3-4	a ³ F-a ¹ G (26F)
4680.05 4493.23 4377.37	0:11 2.75 0.00 2.75 0.00 2.82	1-3 4-3 4-3	a ⁵ D-b ³ P	6760.61 6836.94 6884.50	0.86 2.68 0.91 2.72 0.95 2.75	5–5 4–4 3–3	a ⁵ F-a ³ G (15F)	6954.69 7107.04 6823.42	1.48 3.25 1.55 3.29 1.48 3.29	4-5 3-4 4-4	a ³ F-b ³ H (27F)
4437.10 4473.46 4458.57 4494.57 4510.63 4516.60 4532.09	0.05 2.83 0.09 2.85 0.05 2.82 0.09 2.83 0.11 2.85 0.09 2.82 0.11 2.83	3-1 2-0 3-2 3-1 1-0 2-2 1-1	(6F)	6633.48 6731.89 6973.07 7005.23 7008.89 6525.11 7147.16 7134.08	0.86 2.72 0.91 2.75 0.91 2.68 0.95 2.72 0.99 2.75 0.86 2.75 0.95 2.68 0.99 2.72	5-4 4-3 4-5 3-4 2-3 5-3 3-5 2-4		7016.21 7109.01 7439.58 7316.44 7321.23 7541.42	1.48 3.24 1.55 3.29 1.60 3.26 1.55 3.24 1.60 3.29 1.60 3.24	4-3 3-2 2-1 3-3 2-2 2-3	a ³ F-a ³ D (28F)
4554.49 4550.64 4573.23	0.11 2.82 0.12 2.83 0.12 2.82	1-3 0-1 0-2		7092.89	1.01 2.75	1-3	5 3-	6231.27 6393.72	1.55 3.53 1.60 3.53	3-2 2-3	a ³ F-a ¹ D (29F)
4203.39 4217.71 4229.86 4144.97 4178.93 4278.21	0.00 2.94 0.05 2.98 0.09 3.00 0.00 2.98 0.05 3.00 0.05 2.94	4-5 3-4 2-3 4-4 3-3 3-5	a ⁵ D-b ³ G (7F)	6616.18 6682.18 6710.88 6730.99 6758.48 6808.42	0.95 2.82 0.99 2.83 1.01 2.85 0.99 2.82 1.01 2.83 1.01 2.83	3-3 3-1 1-0 2-3 1-1 1-3	a ⁵ F-b ³ P (16F)	5746.99 5952.21 6113.97 5946.87 6100.26 6094.65	1.48 3.63 1.55 3.62 1.60 3.62 1.55 3.63 1.60 3.62 1.60 3.63	4-3 3-3 2-1 3-3 2-2 2-3	a ³ F-b ³ D (30F)
4269.60 4263.07 4107.51	0.09 2.98 0.11 3.00 0.00 3.00	2-4 1-3 4-3		5931.19 5971.33 6018.54 5815.53	0.86 2.94 0.91 2.98 0.95 3.00 0.86 3.98	5-5 4-4 3-3 5-4	a ⁵ F-b ³ G (17F)	5609.27 5799.53	1.48 3.68 1.55 3.68	4-4 3-4	a ³ F-b ¹ G (31F)
4108.02 4104.59 4099.29 4179.45 4153.72 4130.47 4230.40 4185.74	0.00 3.00 0.05 3.06 0.09 3.10 0.05 3.00 0.09 3.06 0.11 3.10 0.09 3.00 0.11 3.06	4-3 3-1 2-0 3-2 2-1 1-0 3-3 1-1	a ⁵ D-c ³ P (8F)	5893.89 6093.32 6099.31 6113.40 5742.07 6226.64 6196.75 6177.21	0.91 3.00 0.91 a.94 0.95 2.98 0.99 3.00 0.86 3.00 0.95 2.94 0.99 2.98 1.01 3.00	4-3 4-5 3-4 2-3 5-3 3-5 2-4 1-3		11524.46 11237.04 11790.50 11018.07 11518.28 11764.23 11495.96	3.17 3.24 2.19 3.29 3.21 3.26 3.17 3.29 2.19 3.24 2.21 3.29	3-3 2-3 1-1 3-3 2-1 2-3 1-3	a ⁵ p-a ³ p . (33F)
4263.62 4201.56 4280.04 3812.07 3814.58 3889.58	0.11 3.00 0.12 3.06 0.12 3.00 0.00 3.24 0.05 3.29 0.09 3.26 0.00 3.29	1-3 0-1 0-3 4-3 3-3 2-1	a ⁵ D-a ³ D (9F)	6019.63 5955.61 5902.64 6114.52 6016.15 6178.35	0.95 3.00 0.99 3.06 1.01 3.10 0.99 3.00 1.01 3.06 1.01 3.00	3-3 2-1 1-0 2-3 1-1 1-3	a ⁵ F-c ³ P (18F)	8456.74 8596.27 8775.19 8467.54 8623.51 8585.14 8746.99	2.17 3.63 2.19 3.62 2.21 3.62 2.17 3.62 2.19 3.62 2.19 3.63 2.21 3.63	3-3 2-3 1-1 3-3 2-1 2-3 1-2	a ⁵ P-b ³ D (33F)
3754.98 3846.46 3873.51	0.05 3.26 0.05 3.24	4-2 3-1 3-3		5212.95 5268.82	0.86 3.22 0.91 3.25	5-6 4-5 3-4	a ⁵ F-b ³ H (19F)				a ³ P- a ¹ P
3856.98 3917.64 3917.23 3884.57	0.09 3.29 0.11 3.26 0.09 3.24 0.11 3.29	2-2 1-1 2-3 1-2		5289.66 5147.16 5193.13 5074.90	0.95 3.29 0.86 3.25 0.91 3.29 0.86 3.29	5-5 4-4 5-4		10908.34 9775.94 11044.11	2.27 3.40 2.27 3.53 2.41 3.53	2-1 2-2 1-3	(34F) a ³ P-a ¹ D (35F)
3931.50 3945.70 3898.19 3403.65 3454.34 3493.55 3405.39	0.12 3.26 0.11 3.24 0.12 3.39 0.00 3.63 0.05 3.62 0.09 3.62 0.00 3.62	0-1 1-3 0-2 4-3 3-2 2-1 4-3	a ⁵ D-b ³ D (10F)	5180.78 5194.19 5352.29 5304.06 5390.75 5427.17 5404.80	0.86 3.24 0.91 3.29 0.95 3.26 0.91 3.24 0.95 3.29 0.99 3.26 0.95 3.24	5-3 4-2 3-1 4-3 3-2 3-1 3-3 2-3	a ⁵ F-a ³ D (20F)	9093.67 10196.82 10770.38 9106.17 10235.17 9136.73	2.27 3.63 2.41 3.62 2.47 3.62 2.27 3.62 3.41 3.62 2.27 3.62	2-3 1-3 0-1 2-3 1-1 2-1	a ³ P-b ³ D (36F)
3458.73 3452.54 3489.07 3516.17	0.05 3.63 0.05 3.63 0.09 3.62 0.11 3.62	3-1 3-3 2-2 1-1		5363.91 5477.40 5481.17 5412.97	0.99 3.29 1.01 3.26 0.99 3.24 1.01 3.29	1-1 3-3 1-2		10601.80 10867.84 11069.08	2.39 3.56 2.42 3.56 2.44 3.56	6-5 5-5 4-5	a ³ H-a ¹ H (37F)
3487.23 3511.64 3527.33	0.09 3.63 0.11 3.62 0.12 3.63	2-3 1-2 0-1		5532.41 4454.37	1.01 3.24 0.86 3.63	1-3 5-3	• ⁵ F-b ³ D	10075.00 10314.96	2.39 3.62 2.42 3.62	6-6 5-6	a ³ H-a ¹ I (38F)
3509.78 3522.76	0.11 3.63 0.12 3.62	1-3 0-2		4548.32 4630.06 4545.20	0.91 3.62 0.95 3.62 0.91 3.63	4-2 3-1 4-3	(21F)	9822.50 9986.60	2.42 3.68 2.44 3.68	5-4 4-4	a ³ H-b ¹ G (39F)
9836.83 9998.31 10055.97 10178.29 10262.84 10239.79 10452.56 10443.95	0.91 2.17 0.95 2.19 0.99 2.21 0.95 2.17 0.99 2.19 1.01 2.21 0.99 2.17 1.01 3.19	4-3 3-2 2-1 3-3 2-8 1-1 2-3 1-2	a ⁵ F-a ⁵ P (11F)	4623.19 4685.99 4618.97 4677.94 4723.39 4674.64 4715.21 4711.86	0.95 3.62 0.99 3.63 0.99 3.63 0.99 3.62 1.01 3.62 1.01 3.63 1.01 3.63	3-2 2-1 3-3 2-2 1-1 2-3 1-2 1-3		11450.66 11786.08 12073.48 11765.16 12019.17 11997.43	2.55 3.63 2.58 3.62 2.60 3.62 2.58 3.63 2.60 3.62 2.60 3.63	4-3 3-3 2-1 3-3 2-2 2-3	b ³ F-b ³ D (40F)
9386.96 8643.14	0.95 2.27 0.99 3.41	3-3 3-1	a ⁵ F-a ³ P (12F)	11537.68 12025.23	1.48 2.55 1.55 2.58	4-4 3-3	a ³ F_b ³ F (33F)	10916.64 11202.11	2.55 3.68 2.58 3.68	4-4 3-4	b ³ F-b ¹ G (41F)
8413.97 9619.74 8771.24 9778.70	1.01 2.47 0.99 3.27 1.01 2.41 1.01 3.37	1-0 3-3 1-1 1-3	• •	12387.48 11233.90 11791.90 12372.55 12645.23	1.60 2.60 1.48 2.58 1.55 2.60 1.55 2.55 1.60 2.58	2-2 4-3 3-2 3-4 2-3	, -,				

I A	E P Low High	J	Multiplet (No)	IÀ	E P Low High	J	Multiplet (No)	I A	E P Low High	J	Multiplet (No)
Fe II I	P 16.16			Fe II cont	inued			Fe II cont	inued		
7419.43 7523.37 7552.38 7637.52 7686.90 7665.29 7806.22 7803.90 7733.12 7926.90 7874.23 7999.47	0.00 1.66 0.05 1.89 0.08 1.69 0.08 1.69 0.11 1.72 0.08 1.66 0.11 1.66 0.12 1.69 0.12 1.69	4 - 3 - 4 - 3	a ⁶ D_a ⁴ P (1 F)	3124.18 3181.05 3162.21 3209.94 3190.76 3230.17 8616.96 8891.88 9033.45 9051.92 9226.60	0.00 3.95 0.05 3.93 0.05 3.93 0.08 3.95 0.11 3.93 	3	a ⁶ D_b ² F (12F) (12F) s ⁴ F-a ⁴ P (13F)	3376.20 3452.30 3504.51 3538.69 3387.10 3455.11 3504.02 3440.99 3501.62 3539.19 3489.98 3536.25 3524.38	0.23 3.89 0.30 3.87 0.35 3.87 0.38 3.87 0.30 3.87 0.30 3.87 0.35 3.87 0.35 3.87 0.35 3.87 0.35 3.87 0.35 3.87 0.38 3.87		a ⁴ F-b ⁴ D (26F)
5650.39 5546.59 5713.35 5582.01 5750.95 4965.78 4843.51	0.08 2.27 0.11 2.33 0.11 2.27 0.12 2.33 0.13 2.27 0.05 3.53 0.08 3.53 0.08 3.53	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	a ⁶ D_a ² P (2F) (2F) (3F)	9367.54 9399.02 9470.93 9652.70 7155.14 7171.98 6896.18 7452.50	0.38 1.72 0.35 1.66 0.38 1.69 0.38 1.66 0.23 1.96 0.30 2.02 0.23 3.02 0.30 1.96	11- 21- 11- 21- 11- 21- 21- 21- 21- 21-	a ⁴ F-a ² G (14F)	3318.38 3402.50 3339.14 3380.95 3450.39 3428.24 3484.01 3461.42	0.23 3.95 0.30 3.93 0.23 3.93 0.30 3.95 0.35 3.93 0.35 3.93 0.38 3.93 0.38 3.95	42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	a ⁴ F-b ³ F (27F)
5036.55 4889.70 5086.52 4917.22 4799.31 4665.65	0.11	15-15 15-25 2-15	a ⁶ D-b ⁴ P (4F)	7388.16 7686.19 7544.00 6440.40 6339.70	0.35 2.03 0.35 1.96 0.38 2.02 0.35 2.27 0.38 2.33	21-31 21-32 11-32 21-11 11-12	a ⁴ F-a ² P (15F)	10028.62 9795.21 10327.56 9957.44	1.04 2.27 1.07 2.33 1.07 2.27 1.09 2.33	31-11 11-11 11-11 11-11	a ⁴ D-a ² P (28F)
4598.07 4889.63 4728.07 4639.68 4958.23	0.08 2.77 0.05 2.57 0.08 2.69 0.11 2.77 0.08 2.57	41-31 31-15 23-31 31-15 21-25 21-25		6558.51 5413.34 5440.45 5280.25	0.38 2.27 0.23 2.51 0.30 2.57 0.23 2.57	12-12 43-53 33-43 42-42	a ⁴ F-a ² H (16F)	10508.07 7958.50 7740.11 8245.12 7916.98	1.09 3.37 0.98 3.53 1.04 3.63 1.04 3.53 1.07 3.63	31-21 31-21 21-11 21-21	a ⁴ D-a ² D (29 F)
4772.07 4664.45 5006.65 4798.28 5035.50	0.11 2.69 0.12 2.77 0.11 2.57 0.12 3.69 0.13 3.57	13-13- 13-23- 13-23- 2-23- 2-23-		5362.06 5295.70 5527.33 5412.64 5654.85	0.23 2.53 0.30 2.63 0.30 2.53 0.35 2.63 0.35 2.53	41-31 31-11 31-21 21-11 21-21	a ⁴ F-a ³ D (17F)	8446.11 8022.63 7764.69 7449.45	1.07 3.53 1.09 3.63 0.98 3.57 1.04 3.69	11-21 2-12 31-21 21-11 11-2	a ⁴ D-b ⁴ P (30F)
4664.97 4716.36 4750.57 4633.27 4687.56 4604.48	0.00 2.65 0.05 2.66 0.08 2.68 0.00 2.66 0.05 2.68 0.00 2.68	42-52 34-43 23-32 44-43 34-32 42-32	_е ⁶ D-а ⁴ Н (5F)	5495.82 5745.70 5273.38 5158.00 5107.95	0.38 2.63 0.38 2.53 0.23 2.57 0.30 2.69 0.35 2.77	12-12 12-22 42-22 32-12 32-12 32-22	a ⁴ F-b ⁴ P (18F)	7281.67 7214.69 7131.77 8037.29 7613.15 7370.94	1.07 2.77 0.98 3.69 1.04 2.77 1.04 3.57 1.07 2.69 1.09 3.77	12-2 32-1 22-2 12-1 12-1	
4416.27 4457.95 4488.75 4509.61 4382.75	0.00 2.79 0.05 2.82 0.08 2.83 0.11 2.84 0.00 2.83	41-41 34-31 34-31 14-15 44-32	a ⁶ D-b ⁴ F (6F)	5433.15 5268.88 5181.97 5556.31 5347.67 5644.00	0.30 2.57 0.35 2.69 0.38 2.77 0.35 2.57 0.38 2.69 0.38 2.57	34-34 34-14 14-34 14-14 14-32		8228.16 7710.79 8342.34 6809.21 6933.67	1.07 2.57 1.09 2.69 1.09 2.57 0.98 2.79 1.04 2.82	3-41 3-3-1 1-3-1 1-3-3-1	a ⁴ D-b ⁴ F (31F)
4432.45 4470.29 4492.64 4514.90 4528.39 4533.00 4358.10 4414.45 4550.48 4555.01 4551.98	0.05 a.83 0.06 a.84 0.05 a.79 0.08 a.83 0.11 a.83 0.12 a.84 0.00 a.84 0.05 a.84 0.08 a.79 0.11 a.83	34 4 3 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 4 4 3 4		5158.81 5261.61 5333.65 5376.47 5111.63 5230.06 5296.84 5072.40 5184.80 5039.10	0.23 2.62 0.30 2.65 0.35 2.68 0.38 2.68 0.23 2.65 0.30 2.66 0.35 2.68 0.33 2.66 0.30 2.68 0.33 2.68	44-35-43-43-43-34-33-43-53-53-53-53-53-53-53-53-53-53-53-53-53	a ⁴ F-a ⁴ H (19 F)	7011.24 7047.99 6739.85 6872.17 6966.32 6671.90 6839.01 7017.94 7075.26 7093.98 6631.20	1.07 3.83 1.09 3.84 0.98 2.82 1.04 2.83 1.07 2.83 1.04 2.83 1.04 2.79 1.07 3.82 1.09 2.83	32-32-32-32-32-32-32-32-32-32-32-32-32-3	
4387.40 4359.34 4413.78 4452.11 4474.91	0.00 2.88 0.05 2.88 0.08 2.88 0.11 2.88 0.12 2.88	41-21 31-21 21-21 11-21 1-21	a ⁶ D-a ⁶ S (7F)	4814.55 4905.35 49073.39 5020.24 4774.74 4874.49	0.23 2.79 0.30 2.82 0.35 2.83 0.38 2.84 0.23 2.82 0.30 2.83	41-41 31-31 21-21 11-11 41-31	a ⁴ F-b ⁴ F (30F)	6507.63 6698.02 6830.06 5721.35 5741.11	0.98 2.88 1.04 2.88 1.07 2.88 0.98 3.14 1.04 3.19	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	a ⁴ D-a ⁶ S (32F) a ⁴ D-a ⁴ G (33F)
3931.44 3932.72 3949.27 3968.27 3874.07 3905.62 3937.80 3847.78 3894.40	0.00 3.14 0.05 3.19 0.08 3.21 0.11 3.22 0.00 3.19 0.05 3.21 0.08 3.22 0.00 3.31	42-51 31-41 21-31 11-21 41-41 31-31 21-31	a ⁶ D-a ⁴ G (8F)	4950.74 4947.38 5005.52 5043.53 4745.49 4852.73 5049.29 5076.57	0.35 2.84 0.30 2.79 0.35 2.83 0.38 2.83 0.23 2.83 0.30 2.84 0.35 2.79 0.38 2.82			5778.35 5809.43 5600.66 5683.56 5753.83 5545.88 5659.83 5523.28	1.07 3.21 1.09 3.22 0.98 3.19 1.04 3.21 1.07 3.22 0.98 3.21 1.04 3.22 0.98 3.23	1 - 3 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3	(302)
3836.89 3991.84 3976.97 3979.93 3986.38	0.00 3.22 0.05 3.14 0.08 3.19 0.11 3.21 0.12 3.23	34-34-34-34-34-34-34-34-34-34-34-34-34-3		4243.98 4276.83 4319.62 4358.37 4177.21	0.23 3.14 0.30 3.19 0.35 3.21 0.38 3.22 0.23 3.19	41-51 31-41 21-31 11-21 41-41	a ⁴ F-a ⁴ G (21F)	5746.96 5477.25 5843.90 5527.61 5901.26	1.04 3.18 1.07 3.32 1.07 3.18 1.09 3.32 1.09 3.18	23-13 13-3 13-13 13-13 3-13	a ⁴ D_b ³ P (34F)
3979.78 3834.73 4010.91 3851.63 4029.41	0.08 3.18 0.11 3.32 0.11 3.18 0.12 3.32 0.12 3.18	31-11 11-11 11-11 1-11 1-11	a ⁶ D-b ² P (9F)	4344.81 4305.90 4146.65 4331.56 4134.01 4346.85 4352.78	0.30 3.21 0.35 3.22 0.23 3.21 0.30 3.22 0.23 3.22 0.30 3.14 0.35 3.19			5163.94 5199.18 5083.72 5283.11 5278.39	0.98 3.37 1.04 3.41 0.98 3.41 1.04 3.37 1.07 3.41	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ⁴ D-a ² F (35F)
3659.96 3670.62 3712.26 3709.14 3751.66 3736.17	0.00 3.37 0.05 3.41 0.05 3.37 0.08 3.41 0.08 3.37 0.11 -3.41	42-32 31-32 31-32 21-32 12-32	a ⁶ D_a ² F (10F)	4372.43 4356.14 4197.81 4409.86	0.38 3.21 0.35 3.18 0.38 3.32 0.38 3.18	$ \begin{array}{c} 1\frac{1}{2} - 3\frac{1}{2} \\ 3\frac{1}{2} - 1\frac{1}{2} \\ 1\frac{1}{2} - 1\frac{1}{2} \end{array} $	a ⁴ F-b ³ P (33F)	4249.07 4347.35 4407.16 4438.92 4266.34 4351.80	0.98 3.89 1.04 3.87 1.07 3.87 1.09 3.87 0.98 3.87 1.04 3.87	31-31 21-31 11-11 31-21	a ⁴ D-b ⁴ D (36F)
3175.38 3224.54 3256.73 3277.12 3185.01	0.00 3.89 0.05 3.87 0.08 3.87 0.11 3.87 0.00 3.87		a ⁶ D-b ⁴ D (11F)	4114.48 4178.95 4083.78 3929.35 3968.66	0.23 3.25 0.30 3.25 0.23 3.25 0.23 3.37 0.30 3.41	41-51 31-41 41-41 41-31 31-21	a ⁴ F-b ³ H (23F) a ⁴ F-a ³ F (24F)	4406.39 4329.43 4402.60 4439.73 4270.62 4351.05	1.04 3.87 1.07 3.87 1.04 3.89 1.07 3.87 1.09 3.87 0.98 3.87 1.04 3.87	34-14-14-14-14-14-14-14-14-14-14-14-14-14	
3226.99 3256.31 3214.67 3254.24 3277.55 3289.46	0.05 3.87 0.08 3.87 0.05 3.89 0.08 3.87 0.11 3.87 0.12 3.87			3882.73 4017.38 4033.98 4084.32 4080.00	0.23 3.41 0.30 3.37 0.35 3.41 0.35 3.37 0.38 3.41	41-31 31-31 41-31 31-31 21-31 11-31	, - m /.	4384.21 4435.08 4157.89 4268.67	1.07 3.89 1.09 3.87 0.98 3.95 1.04 3.93	31-31-31-31-31-31-31-31-31-31-31-31-31-3	a ⁴ D-b ² F (37F)
3289.46 3244.18 3275.02 3289.89 3264.84 3287.35	0.12 3.87 0.08 3.89 0.11 3.87 0.12 3.87 0.11 3.89 0.12 3.87	23-34 13-34 13-34 13-34 13-34		4131.51 3505.81 3528.28 3460.20 3575.72	0.38 3.37 0.23 3.75 0.30 3.80 0.23 3.80 0.30 3.75		a ⁴ F-b ² G (35F)	4190.53 4234.81 4321.92	0.98 3.93 1.04 3.95 1.07 3.93	3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
5557750	Craw Godf	2-49		3579.81 3628.65 3616.00	0.30 3.75 0.35 3.80 0.35 3.75 0.38 3.80	41-41 31-31 41-31 31-41 21-31 11-31		8119.16 7539.67 8252.38 7673.74 8413. 26	1.66 3.18 1.69 3.32 1.69 3.18 1.72 3.32 1.73 3.18	24-14 12-14 14-14 1-14 2-12	a ⁴ P-b ² P (38F)

108 REVISED MUL

					FORBI	DDEN LINE	2S				
I A	E P Low High		Multiplet (No)	IA	E P Low High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)
<u>Fe II</u> con	tinued			Fe III c	ontinued			<u>Fe VI</u> I	P 1		
5551.31 5643.44 5725.92 5580.82 5650.94 5724.62	1.66 3.89 1.69 3.87 1.72 3.87 1.66 3.87 1.69 3.87 1.72 3.87	1 2 - 2 3 3 4 - 2 3 3 4 5 1 5 - 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	a ⁴ P-b ⁴ D (39F)	3976.2 4144.3 4130.7 4129.4 3322.54	0.00 3.10 0.05 3.00 0.09 3.00 0.12 3.10	3 3-5 3 2-4 0 1-3	a ⁵ D-a ³ G (4F) cont a ⁵ D-a ⁷ S	5678.0 5631.6 5485.7 5428.6 5425.3 5336.4	0.35	42-13-13-13-13-13-13-13-13-13-13-13-13-13-	3d ³ ⁴ F-3d ³ ⁴ P (1F)
5588.15 5649.67	1.66 3.87 1.69 3.87	2] -1]		3371.4 3406.2 3428.8	0.05 3.7 0.09 3.7 0.13 3.7	3-3 3-3	(5F)	5236.6 5279.2 5100.4	0.06 2.42 0.00 2.34 0.00 2.42	31-31 11-11 11-31	
.0431.10 .0594.89 .0036.79	1.96 3.14 2.02 3.19 1.96 3.19	33-43	a ² G-a ⁴ G (40F)	3239.7 3301.6	0.00 3.8 0.05 3.7 0.09 3.7	3-2	a ⁵ D-a ³ D (6F)	5177.0 5146.8	0.25 2.63 0.15 2.54	41-41 31-31 41-31	3d ^{3 4} F-3d ^{3 2} G (2F)
0400.53 9862.21 0321.34	2.02 3.21 1.96 3.21 2.02 3.22	3 2-3 2 4 2-3 2		3333.8 3254.7 3300.5 3286.2	0.00 3.79 0.05 3.79 0.05 3.8	4-2 3-1 3-3		5370.5 4968.8 4974.0 4807.5	0.25 2.54 0.15 2.63 0.06 2.54 0.06 2.63	44-34 34-44 34-34 34-44 12-32	
9682.13 .0013.88 9513.87	1.96 3.23 2.02 3.25 1.96 3.25	41-51 31-41	a ² G_b ² H (41F)	3334.9 3355.5 3319.2 3356.6	0.09 3.79 0.12 3.79 0.09 3.89 0.12 3.79	1-1 3-3		4850.9 3995.8	0.00 2.54 0.15 3.23		3d ³ 4p-3d ³ 2p
8715.84 8885.66	1.96 3.37 2.03 3.41	43-33	a ² G—a ² F (42F)	3366.2 3340.7 3367.3	0.13 3.79 0.13 3.89 0.13 3.79	0-1		3849.1 3890.9 3774.9 3815.1	0.06 3.27 0.06 3.23 0.00 3.27 0.00 3.23	3 - 1 - 2 2 - 2 3 - 1 - 2 1 - 1 - 2 1 - 1 - 2	(3F)
9133.63 6873.87 6944.91	2.02 3.37 1.96 3.75 2.02 3.80		a ² G-b ² G (43F)	3236.7 3283.1 3316.1	0.00 3.81 0.05 3.81 0.09 3.81	. 3-4	a ⁵ D-a ¹ G (7F)	3776.1 3645.7 3664.1	0.25 3.51 0.15 3.53 0.15 3.51		3d ³ 4 _{F-3d} 3 2 _D (4F)
6700.68 7131.13	1.96 3.80 2.02 3.75	43-33 33-43		8728.9	2.40 3.81	2-3	a ³ P-a ³ D	3558.1 3575.6 3494.7	0.06 3.53 0.06 3.51 0.00 3.53	41-21 31-1 31-21 21-21 11-1 11-21	
6188.55 6473.86 6396.30	1.96 3.95 2.02 3.93 2.03 3.95	3] _2]	a ³ G-b ³ F (44F)	9969.6 10504.3 8838.2 9960.0	2.55 3.79 2.62 3.79 2.40 3.79 2.55 3.79	0-1 3-3	(8F)	3511.6 3675.2	0.00 3.51 0.25 3.60		3d ³ 4F-3d ³ 2H
0796.48	2.27 3.41	11-31	a ³ p_a ³ F (45F) a ³ P_b ⁴ D	8830.7 7078.2	2.40 3.79 2.55 4.30	2-1	a ³ P-a ¹ S	3630.3 3740.2 3569.0 3543.5	0.15 3.55 0.25 3.55 0.15 3.60 0.06 3.55	41-51 31-41 41-41 31-51 21-41	(5F)
7674.06 8012.08 7687.94 8009.53	2.27 3.87 2.33 3.87 2.27 3.87 2.33 3.87	13-33 3-13 13-13	a ³ P-b ⁴ D (46F)	6096.3 6614.0	2.40 4.42 2.55 4.42		(9F) a ^{3P} -a ¹ D (10F)			-2 -2	
7685.58 7432.23	2.27 3.93 2.27 3.93	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ² P_b ² F	9701.3 9942.2	3.48 3.75 2.51 3.75		a ³ H-a ¹ I (11F)	<u>Fe VII</u> I 6599.7	P 7 0.29 2.16	4-3	3d ² 3 _{F-3d} 2 1 _D
9949.32 0038.79	2.51 3.75 2.57 3.80		(47F) a ² H-b ² G	9444.2 9608.6	2.51 3.81 2.53 3.81	5-4	a ³ H-a ¹ G (12F)	6085.5 5730.9	0.13 2.16 0.00 2.16	3-2 3-2	(1F)
0432.60 8931.47	2.57 3.80 2.57 3.75 2.57 3.95	5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	(48F) a ² H-b ² F	10640.4 11088.0	2.65 3.81 2.68 3.79	4-3 3-3	a ³ F-a ³ D	5276.1 5158.3 4989.4	0.29 2.63 0.13 2.52 0.00 2.47	4-2 3-1 2-0	3d ² 3 _{F-3d} 2 3 _F (2F)
9755.81	2.53 3.80	2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	(49F) a ² D-b ² G	11272.6 10916.5 11284.9	2.70 3.79 2.68 3.81 2.70 3.79		(13F)	4942.3 4893.9 4699.0	0.13 2.63 0.00 2.52 0.00 2.63	3-3 3-1 3-3	
9116.41 9918.01 9196.26	2.53 3.89 2.63 3.87 2.53 3.87	21-31 11-21 21-21	(50F) a ³ D-b ⁴ D (51F)	11107.3	2.70 3.81 2.65 3.81	2-3 4-4	a ³ F-a ¹ G	3759.9 3587.2 3457.3	0.29 3.57 0.13 3.57 0.00 3.57	4-4 3-4 3-4	3d ^{2 3} F-3d ^{2 1} G (3F)
9941.20 9216.20 9937.27	2.63 3.87 2.53 3.87 2.63 3.87	13-13 23-13 13-13 13-13		10882.6 7088.3 7220.0	3.68 3.81 3.68 4.42 2.70 4.42	3-4 3-2 2-3	(14F) a ³ F-a ¹ D (15F)	8738.1	2.16 3.57	3-4	3d ² 1D-3d ² 1G
8706.79 9517.76 8851.13	2.53 3.95 2.63 3.93 2.53 3.93	21-31 11-21 21-21	a ² D-b ² F (52F)								(42)
				<u>Fe V</u> I P 3970.1	0.16 3.27	4-3	3d4 5p_3d4 3p	<u>Fe X</u> I P 6372.9		1글- 글	_{3p} 5
5151.9 49 36.4	P 30.48 0.00 2.40 0.05 2.55	4-3 3-1	a ⁵ D-a ³ P (1F)	4136.4 4239.8 3895.7 4071.5 4181.3	0.10 3.08 0.05 2.97 0.10 3.27 0.05 3.08 0.02 2.97	3-1 2-0 3-2 2-1 1-0	(1F)	6374.51 C)	0.00 1.34	-2- 2	(1F)
4883.9 5270.4 5011.3 4930.5	0.09 2.62 0.05 2.40 0.09 2.55 0.12 2.63	2-0 3-3 2-1 1-0		3838.1 4026.6 3798.2	0.05 3.27 0.02 3.08 0.02 3.27	2-3 1-1 1-3		7888.6	0.00 1.56	2–1	3p4 3p_3p4 3p+
5355.9 5060.3 5412.0	0.09 2.40 0.12 2.55 0.13 2.40	3-3 1-1 1-3		4003.2 3777.4 4123.9	0.00 3.08 0.00 3.27 0.16 3.15	0-1 0-3 4-6	3d4 5D-3d4 3H	7891.94 C' 3986.1	1.56 4.66	1-2	(1F) 3p ⁴ 3p-3p ⁴ 1p†
5084.8 5439.9	0.13 2.55 0.13 2.40	0-1 0-2		4093.0 4077.5 4175.2	0.10 3.11 0.05 3.08 0.16 3.11	3-5 2-4 4-5	(2F)				(aF)
4985.9 5032.7 5063.7	0.00 2.48 0.05 3.51 0.09 2.53	4-6 3-5 2-4	a ⁵ D-a ³ H (2F)	4142.5 4236.8	0.10 3.08 0.16 3.08	3-4 4-4		Fe XIII I	P 3557		
4924.5 4987.2 4881.0	0.00 2.51 0.05 2.53 0.00 2.53	4-5 3-4 4-4		3891.8 3838.9 3794.6 3911.1	0.16 3.33 0.10 3.31 0.05 3.30	4-4 3-3 2-2	3d ^{4 5} D-3d ^{4 3} F (3F)	10796.2 10797.95 C) 10749.7	1.15 2.29 0.00 1.15	1-3 0-1	3p ² 3p _{-3p} 2 3p (1F)
1658.1 1701.5 1733.9	0.00 2.65 0.05 2.68 0.09 2.70	4-4 3-3 3-2	a ⁵ D-a ³ F (3F)	3850.8 3820.2 3782.9	0.16 3.31 0.10 3.30 0.10 3.33 0.05 3.31	4-3 3-2 3-4 2-3		10746.80 C) 3387.7	2.29 5.93	3-3	3p ² 3p _{-3p} 2 1p (2F)
1607.0 1667.0 1754.7 1769.4	0.00 2.68 0.05 2.70 0.05 2.65 0.09 2.68	4-3 3-2 3-4 2-3		3755.5 3923.5 3764.8	0.02 3.30 0.16 3.30 0.05 3.33	1-3 4-3 3-4					(52)
777.7 573.9 824.1	0.12 2.70 0.00 2.70 0.09 2.65	1-2 4-2 2-4		3744.1 3735.2 3430.3	0.02 3.31 0.00 3.30 0.16 3.76	1-3 0-2 4-5	3d ^{4 5} D-3d ^{4 3} G		P 3901	1 41	2_3pe =_3pe
813.9 799.5	0.12 2.68 0.13 2.70	1-3 0-2	.5 _m 3-	3406.6 3400.3 3463.4	0.10 3.72 0.05 3.68 0.16 3.72	3-4 2-3 4-4	(4F)	5303.6 5302.86 c)	0.00 2.33	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3p ³ p•_3p ³ p• (1F)
070.7 079.7 096.6 008.3	0.00 3.03 0.05 3.08 0.09 3.10 0.00 3.08	4-5 3-4 2-3 4-4	a ⁵ D-a ³ G (4F)	3445.4 3374.6 3362.5	0.10 3.68 0.10 3.76 0.05 3.72	3-3 3-5 2-4		<u>Pe XV</u> I P	454?		
046.4	0.05 3.10	3-3		3368.9 3503.5	0.03 3.68 0.16 3.68	1-3 4-3		7080.2	(29.8 31.6)	1-2	3p3pe_3p3pe

					F	ORBIDDE	N LINES				_	
IA	E P Low High	J h	Multiplet (No)	IA	Low E	P High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)
Co II	I P 17.1			Co VIII	continued			3d2 3 _{F-3d} 2 3 _P	N1 II co	ontinued 1.04 4.01	41 41	a ⁴ F-a ² G
10188.1 10245.4	0.00 1.23 0.12 1.33	3 3 3 3	3d ⁸ ³ F-48 ³ F (1F)	4564.7 4492.3 4422.4	0.43 0.19 0.09	3.13 2.94 2.79	4-2 3-1 2-0	(ar)	4147.30 4310.46 4143.17	1.15 4.01 1.04 4.01	4 - 4 - 3 - 3 - 4 - 3 - 3 - 4 - 3 - 3 -	(10F)
10280.7 9336.2 9639.4	0.20 1.40 0.00 1.33 0.12 1.40	2 4-3		4198.0 4204.9	0.19	3.13 3.94	3-2 3-1		4314.92 4461.54	1.15 4.01 1.25 4.01	$3\frac{1}{2}-4\frac{1}{2}$ $3\frac{1}{2}-3\frac{1}{2}$	
11280.5 10972.9	0.12 1.2 0.20 1.3	1 3-4 2 2-3		3946.0		3.13	3-3		4466.33 4573.45	1.25 4.01 1.32 4.01	2 1 2 - 4 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
8830.3 12168.8	0.00 1.40 0.20 1.2								10459.79	1.67 2.85		a ² F-b ² D
5625.4 5852.8	0.00 2.19		3d ^{8 3} F-4s ⁵ P (2F)	Co XI	I P 304?				11359.87 12323.27	1.85 2.94 1.85 2.85	31-21 21-11 21-21	(11F)
5971.6 5943.2	0.20 2.20 0.12 2.10	6 2-1	\ /	5185	0.00	2.38	1출- 호	3p5 2pe_3p5 2pe (1F)	8704.34	1.67 3.09		a ² F-a ⁴ P
6083.2 6180.9	0.20 2.2								10209.10 9957.23	1.85 3.06 1.85 3.09	31-21 21-11 21-21	(12F)
7274.6	0.50 2-1	9 4-3	4 ₈ 5 _{F-48} 5 _P	N1 I I	P 7.61				7102.84	1.85 3.59	2 1 1 2	a ² F-a ² P (13F) a ² F-a ² G
7421.5 7467.0	0.56 2.2 0.61 2.2	6 2-1	(3F)	7393.71		1.67	4-2	a ³ F-b ¹ D	5275.83 5703.64	1.67 4.01 1.85 4.01 1.67 4.01	31-41 21-31 31-31	a ^o F_a ^o G (14F)
7567.6 7642.3 7611.7	0.56 2.19 0.61 2.29 0.64 2.29	3 2-2		8201.77 8843.42	0.16 0.27	1.67	3-2 3-3	(1F)	5269.16 5711.46	1.85 4.01	$3\frac{1}{2} - 4\frac{1}{2}$	
7797.2 7793.9	0.61 2.19 0.64 2.2	9 2-3		6404.46 6941.63	0.00 0.16	1.93	4-2 3-1	a ³ F-a ³ P (2F)				
				7243.99 7002.02 7395.79	0.27 0.16 0.27	1.98 1.93 1.94	2-0 3-2 2-1		<u>N1 VII</u> 3191.2	IP? 0.29 4.16	4-3	3d ⁴ ⁵ D-3d ⁴ ³ P
Co VI	I P †			7464.39	0.27	1.93	3-3	7 4	3379.7 3503.8	0.19 3.84 0.10 3.62	3-1 2-0	(1F)
3481.5	0.22 3.7		3d4 5p-3d4 3p	4523.16 4813.27	0.00	2.73 2.73	4-4 3-4	a ³ F-a ¹ G (3F)	3106.0 3299.6	0.19 4.16 0.10 3.84 0.03 3.62	3-2 2-1 1-0	
3658.1 3761.0 3403.3	0.14 3.5 0.07 3.3 0.14 3.7	5 2-0	(1F)	5027.34	0.27	2.73	2-4		3440.3 3038.3 3243.2	0.10 4.16 0.03 3.84	2-2 1-1	
3586.8 3708.3	0.07 3.5 0.03 3.3	1 2-1		7507.44 7908.30		1.67	3-2 2-2	a ³ D-b ¹ D (4F)	2990.4 3214.5	0.03 4.16 0.00 3.84	1-2 0-1	
3341.5 3538.8	0.07 3.7 0.03 3.5	1 1-1		8466.38 6489.61	0.21	1.67	1-2	a ³ D-a ³ P	3413.3 3396.7	0.29 3.91 0.19 3.83	4-5 3-4	3d ^{4 5} D-3d ^{4 3} H (2F)
3299.8 3512.9 3277.3	0.03 3.7 0.00 3.5 0.00 3.7	1 0-1		6730.25 6989.04	0.11	1.93 1.94 1.98	3-3 3-1 1-0	(5F)	3486.6	0.29 3.83	4-4	
3444.1	0.22 3.8		3d4 5D-3d4 3F	6437.70 6604.30	0.03 0.11	1.94	3-1 3-0		3165.4 3106.1	0.29 4.19 0.19 4.16	4-4 3-3	3d ^{4 5} D-3d ^{4 3} F (3F)
3388.2 3336.9	0.14 3.7 0.07 3.7	7 2-3	(2F)	6787.00 7130.24	0.21	1.93 1.94 1.93	2-3 1-1 1-3		3048.8 3191.3 3117.1	0.10 4.15 0.29 4.16 0.19 4.15	2-2 4-3 3-3	
3465.7 3398.5 3367.5	0.22 3.7 0.14 3.7 0.14 3.8	7 3-2		7193.97	0.21	1.55			3081.6 3038.4	0.19 4.19 0.10 4.16	3-4 2-3	
3326.9 3295.4	0.07 3.7 0.03 3.7	8 2-3 7 1-3		9887.18	0.43	1.67	2-2	a ¹ D-b ¹ D (6F)	3000.6	0.03 4.15	1-3	
3476.5 3307.0 3285.6	0.22 3.7 0.07 3.8 0.03 3.7	0 2-4		8832.31 8194.57	0.42	1.82	2-3 2-3	a ¹ D-a ¹ S (7F) a ¹ D-a ³ P	N1 VIII	I P 1		
3272.9	0.00 3.7			8111.97 7929.70	0.43	1.94	3-1 3-0	(8F)	4773.4	0.46 3.05	41-21	3d ³ 4F-3d ³ 4P
		,							4644.2 4493.3 4446.2	0.27 2.93 0.13 2.87 0.27 3.05	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(1F)
Co VII	I P †			N1 II	I P 18.4				4404.4 4297.8	0.13 2.93 0.00 2.87	23-13 13-3 23-23	
5136.3 5076.3	0.34 2.7 0.30 3.6		3d ³ 4r-3d ³ 4p	10718.16	0.00	1.15	3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	a ² D-a ⁴ F	4225.9 4216.4	0.13 3.05 0.00 2.93	15-15	
4901.1 4858.4 4851.6	0.09 2.6 0.20 2.7 0.09 2.6	4 3 - 2		11616.88 9885.74 10921.07	0.19 0.00 0.19	1.25 1.25 1.32	11-31 31-31 11-12 31-12	(1F)	4052.5 4106.1	0.00 3.05 0.46 3.46	1½-3½ 4½-4½	3d3 4F-3d3 2G
4738.9 4652.2	0.00 2.6 0.09 2.7	0 1 - 4 3 - 3		9377.33	0.00	1.32		3 3	4032.3 4298.8	0.27 3.33 0.46 3.33	42-42-43-43-43-43-43-43-43-43-43-43-43-43-43-	(2F)
4692.6 4505.9	0.00 2.6 0.00 2.7	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7379.57 7413.3 3 6668.16	0.00 0.19 0.00	1.87 1.85 1.85	$ \begin{array}{c} 2\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \\ 1\frac{1}{2} - 3\frac{1}{2} \end{array} $	a ² D-a ² F (2F)	3862.3 3850.3 3695.0	0.27 3.46 0.13 3.33 0.13 3.46	3 2 4 2 2 4 1 2 4 1	
4475.0 4435.1	0.34 3.0 0.20 2.9	9 41-4	3d ^{3 4} F-3d ^{3 2} G (2F)	8303.23	0.19	1.67			3705.8	0.00 3.33	15-05	
4665.5 *4262.7	0.34 2.9 ,0.20 3.0	8 4 3 3 9 3 3 4		4326.85 4485.87	0.00 0.19	2.85 2.94	32-32 12-12 32-12 12-32	a ² D-b ² D (3F)	3228.2 3035.3	0.46 4.28 0.27 4.34	41-21 31-11 31-21	3d ³ ⁴ F-3d ^{3 2} D (3F)
4103.1 4139.5	0.09 2.9 0.09 3.0 0.00 2.9)9 2 } _4		4201.74 4628.77	0.00 0.19	2.94 2.85	12-32		3075.6 3026.4	0.27 4.28 0.46 4.54	4] -4]	3d ³ 4F-3d ³ 2H
3492.5	0.34 3.8			3993.65 4294.70	0. 00 0.19	3.09 3.06	21-21 12-12	a ² D-a ⁴ P (4F)				(4F)
3338.5 3361.7 3239.8	0.20 3.9 0.20 3.8 0.09 3.9	30 3 1 -1 37 3 1 -2	(3F)	4033.56 4285.90 4249.48	0. 00 0. 19 0. 19	3.06 3.07 3.09	33-13 13-3 13-3 13-3 32-3		9977.1 8761.8 9565.8	3.05 4.28 2.93 4.34 3.05 4.34	25-25 15-15 21-11	3d ³ 4p _{-3d} 3 2 _D (5F)
3261.7 3168.2	0.09 3.8 0.00 3.9	37 31-3 90 13-1		4025.80	0.00	3.07			9105.8 8430.1	3.93 4.28 2.87 4.34	21-21 12-12 22-12 12-22 12-22	
3189.1 3209.3	0.00 3.8 0.34 4.1			3439.29 3559.86 3378.55	0.00 0.19 0.00	3.59 3.65 3.65	23-13 13-3 23-3	a ² D-a ² P (5F)	10627.5	3.46 4.63		3d ^{3 2} G-3d ^{3 2} H
3159.5 3274.7	0.20 4.1 0.34 4.1	10 3 4 10 4 4	(4F)	3627.35	0.19	3.59	$1\frac{3}{2}-1\frac{3}{2}$		10225.3 11509.6	3.33 4.54 3.46 4.54	41-51 31-41 41-41	(6F)
3098.6 3071.0	0.20 4.1 0.09 4.1			3074.11	0.00	4.01	2 }- 3 }	a ² D-a ² G (6F)				
10912.8	2.74 3.8	- 87 2 1 -2	- 1 3d ³ 4p-3d ³ 2p	6794.37 6911.05	1.04 1.15	2.85 2.94	41-21 31-11	a ⁴ F-b ² D (7F)	N1 IX	I P ?		
9752.5 10671.7	2.63 3.9 2.74 3.9	90 1] -1 90 3] -1	(5F)·	7256.16 7307.82	1.15 1.25	2.85 2.94	31-11 31-21 21-11 21-21	****	5056.5 4331.7	0.61 3.05 0.20 3.05	4-2 3-2	3d ² 3 _{F-3d} 2 1 _p (1F)
9953.5 9558.5	2.63 3.8 2.60 3.9	87 1 1- 3 90 1 -1	2	7694.82 7612.96 8033.86		2.94	21-21 12-13 12-23		4043.4 4190.6	0.00 3.05 0.61 3.56	2–3 4–3	3d2 3 _{F-3d} 2 3p
11347.6	3.09 4.1		- } 3d ^{3 2} G-3d ³ 2H	6007.34	1.04	3.09		a ⁴ F-a ⁴ P	4065.7 4112.7	0.20 3.24 0.00 3.00	3-1 2-0	(aF)
10986.0 12209.6	2.98 4.1 3.09 4.1	10 3 } ⊸4	(6F)	6467.52 67 9 1.61	1.15 1.25	3.06	41-31 31-11 31-31 31-31 31-31	(8F)	3680.3 3810.6	0.20 3.56 0.00 3.24	3-2 2-1	
				6365.52 6813.73 7054.37	1.15 1.25 1.32	3.06	23-13 13-13		3470.0	0.00 3.56	2-2	
Co VII	<u>I</u> IP†			6700.61 7078.25	1.25 1.32	3.09 3.06	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		N1 XII	I P T		
5268.4 4785.9	0.42 2.1 0.19 2.1			6956.25 5274.27		•		a ⁴ F-a ² P	4231.4	0.00 (2.93)	12- 2	3p ⁵ 2pe_3p ⁵ 2pe (1F)
4461.0	0.00 2.1			5281.46 5431.39	1.32	3.65	23-13 13-3 12-12	(9F)				· · · /

I A	E Low	P High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)	IA	E P Low High	J	Multiplet (No)
N1 XIII 5116.3 5116.03 C) 3643.3		(2.41) 5.80)		3p4 3p_3p4 3p (1F) 3p4 3p_3p4 1p (2F)	Zr II con 7454.82 7386.11 7156.26 7149.08 6933.53	0.16 1.82 0.09 1.77 0.09 1.82 0.04 1.77 0.04 1.82	41-21-31-31-31-31-31-31-31-31-31-31-31-31-31	a ⁴ F-c ² D (5F)	<u>Zr II</u> cont 7710.56 7264.43 7662.36 7307.76	0.80 2.40 0.71 2.41 0.80 2.41 0.71 2.40	31-31 21-21 31-21 22-32	a ² F-b ² F (23F)
N1 XV I I 8024 8024.21 C) 6700.6 6701.83 C)	•	3.38) (1.84)		3p ² 3p _{-3p} ² 3p	6991.75 6785.44 5855.37 5932.88 5669.58 5778.97 5528.87 5675.73 5434.30	0.00 1.77 0.00 1.83 0.16 2.27 0.09 2.17 0.09 2.27 0.04 2.17 0.04 2.27 0.00 3.17 0.00 3.27	100 100 100 100 100 100 100 100 100 100	a ⁴ F-d ² D (6F)	9670.04 10120.75 10461.95 9377.83 8315.71 8416.96 8098.70 8261.59	0.99 2.27 0.96 2.17 0.99 2.17 0.96 2.27 0.99 2.48 0.96 2.42 0.96 2.42 0.93 2.42	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a ⁴ P-d ² D (24F) a ⁴ P-b ² P (25F)
<u>N1 XVI</u> I 3601.3	P 7	3.43	1/2-11/2	3p2pe_3p2pe (1F)	5520.18 5331.46 5495.42 5354.76 5206.84 5229.06 5122.88 5144.39	0.16 3.40 0.09 2.41 0.16 2.41 0.09 2.40 0.04 3.41 0.04 2.40 0.00 2.41 0.00 3.40	42-32-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	a ⁴ F-b ² F (7F)	7954.76 8862.47 8561.42 8798.83 8621.67	1.01 2.40 0.97 2.41 1.01 3.41 0.97 3.40	\$-1\$ 4\$-3\$ 3\$-2\$ 4\$-2\$ 3\$-3\$	a ² G-b ² F (26F)
Cu II I F 4375.71 4165.79 3806.34	P 20.18 0.00 0.00	2.82 2.96 3.24	0-2 0-1 0-2	3d ¹⁰ 1 _{5-4s} 3 _D (1F) 3d ¹⁰ 1 _{5-4s} 1 _D	9607.90 9870.08 9202.81 9490.96 8872.37 9208.72 8625.25	0.46 1.75 0.41 1.66 0.41 1.75 0.36 1.66 0.36 1.75 0.32 1.66 0.32 1.75	42-24-34-34-34-34-34-34-34-34-34-34-34-34-34	b ⁴ F-b ³ D (SF)	9886.87 10128.19 9670.87 9937.20 9496.60	1.23 2.48 1.20 2.42 1.20 2.48 1.18 2.42 1.18 2.48	22-12-12-12-12-12-12-12-12-12-12-12-12-1	b ⁴ P-b ² P (27F)
	P 36.8	1.81	2-2 1-2	(2F) 4p4 3p_4p4 1p (1F)	9582.55 9291.03 9704.10 9179.54 8954.34 8850.73 8702.70	0.46 1.75 0.41 1.74 0.46 1.74 0.41 1.75 0.36 1.74 0.36 1.75 0.32 1.74	44-44-34-34-34-34-44-14-34-34-34-34-34-34-34-34-34-34-34-34-34	b ⁴ F-b ² G (9F)	5539.74 5517.24 5433.69 5773.51 5643.02 5303.37 5316.97 5118.07	0.18 2.41 0.08 2.32 0.00 2.27 0.18 2.32 0.08 2.27 0.08 2.41 0.00 2.33	4-3 3-2 2-1 4-2 3-1 3-3 2-2 2-3	4d ² ³ F-5e ³ D
	P 10.98	1.83	1-21 1-11	5 ² S-4 ² D (1F)	9108.53 9089.24 8743.65 8766.76 8444.83 8525.41 8220.64	0.46 1.82 0.41 1.77 0.41 1.82 0.36 1.77 0.36 1.82 0.32 1.77 0.32 1.82	43-13-33-13-33-13-13-13-13-13-13-13-13-13	b ⁴ F-c ³ D (10F)	7853.3 6193.7 6487.5 6661.7	0.00 2.41 0.42 1.99 0.42 2.41 0.42 3.32 0.42 3.27	2-3 2-3 2-3 2-2 2-1	4d ² ¹ D-5s ¹ D (2F) 4d ² ¹ D-5s ³ D (3F)
<u>Y II</u> I P 7091.17 7131.55 6739.91	0.00	1.73	0-2 0-1 0-3	a ¹ S-a ³ P (1F) ¹ a ¹ S-b ¹ D (3F)	6839.24 6984.07 6622.05 6793.01 6449.21 6646.31 6317.64	0.46 3.27 0.41 2.17 0.41 3.17 0.36 2.17 0.36 2.27 0.32 2.17 0.32 2.27 0.46 2.40	41-31 31-15 31-35 31-15 31-15 11-15 12-32	b ⁴ F-d ² D (11F) b ⁴ F-b ² F	6864.4 9349.2 9543.3 9671.2 10034.9 9926.0	0.47 2.27 1.09 2.41 1.03 2.32 1.00 2.27 1.09 2.33 1.03 2.32	0-1 2-3 1-2 0-1 2-3 1-1	4d ² 1 _S -5e ³ D (4F) 4d ² 3P-5e ³ D (5F)
7904.04 7706.06 7664.67 7954.24 7787.00 7658.92 7586.23	0.18 0.13 0.10 0.18 0.13 0.13	1.73 1.71 1.73 1.71 1.74	3-2 3-1 1-0 3-1 2-0 2-2 1-1	a ³ D-a ³ P (3F)	6165.35 6344.56 6196.53 6015.26 6044.94 5900.64 5929.20	0.41 3.41 0.46 3.41 0.41 3.40 0.36 3.41 0.36 3.40 0.32 3.41 0.33 3.40	41-31-32-32-32-32-32-32-32-32-32-32-32-32-32-	(12F)	8921.0 9307.5 10458.9 	1.03 2.41 1.00 2.32 1.09 2.27	1-1 1-3 0-2 2-1	
7540.54 7470.10 7250.78 7144.60		1.74 1.83 1.83	1-3 3-2 2-3 1-3	a ³ D-b ¹ D (4F)	10351.92 10890.02 11203.92 10083.37	0.56 1.75 0.52 1.66 0.56 1.66 0.52 1.75	21-21 15-15 23-15 15-25	a ² D-b ² D (13F)	6408.5	0.00 1.93	11/2- 1/2	4p ⁵ 2 pe_4 p ⁵ 2 pe (1F)
9255.10 9324.01 9442.77	0.41 0.41 0.41	1.73	3-3 3-1 3-0	a ¹ D-a ³ P (5F)	9774.53 9947.19 10208.43 9534.75	0.56 1.82 0.52 1.77 0.56 1.77 0.52 1.82	31-31 11-11 23-11 11-31	$\mathbf{a^2D-c^2D}$ (14F)	<u>Xe II</u> I P 9487.5	0.00 1.30	1분~ 분	5p ^{5 2} p•_5p ^{5 2} p• (1F)
8665.66	0.41		2-2	a ¹ D-b ¹ D (6F)	7196.91 7479.79 7626.54 7066.07	0.56 2.27 0.52 3.17 0.56 3.17 0.52 3.27	21-21 12-12 12-12 23-13 12-32	a ² D-d ² D (15F)		33.0		- 4 3p - 4 3p
<u>Y V</u> I P 7	0.00	1.49	11/2- 1/2	4p ⁵ 3po_4p ⁵ 3po (1F)	6697.09 6548.47 6660.68 6583.66	0.56 2.40 0.52 3.41 0.56 3.41 0.52 3.40	21-31 12-32 12-32 12-32 12-32	a ² D-b ² F (16F)	10206.5 5846.3	0.00 1.21	2-1 2-3	5p ⁴ ³ p-5p ⁴ ³ p 5p ⁴ ³ p-5p ⁴ ¹ p (2F)
<u>Zr II</u> I P 0860.44 0603.65 0464.94	0.09 0.04 0.00	1.20	3 1 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a ⁴ F-b ⁴ P (1F)	6418.86 6506.40 6617.17 6314.58	0.56	31-12 12-12 12-12	a ² D-b ² P (17F)	<u>La II</u> I P 11011.70 9903.31 11490.57	11.38 0.13 1.25 0.00 1.25 0.17 1.25	3-2 3-3 3-3	a ³ F-b ¹ D (1F) a ¹ D-b ¹ D
0355.58 0261.18 0028.71	0.0 <u>4</u> 0.00	1.23 1.20 1.23	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	a ⁴ F-a ³ H	11595.50 11659.62 12211.22 11096.98	0.75 1.82 0.71 1.77 0.75 1.77 0.71 1.82	12-22 1-12 12-12 2-22	a ² P-c ² D (18F)	La III I P	19.1		(3F)
9909.40 9376.93 7786.03 7893.57		1.48 1.48 1.75	41-51 31-41 41-41 41-21 31-11	(3F) a ⁴ F-b ² D	8137.88 8408.39 8691.53 7889.15	0.75 2.27 0.71 2.17 0.75 2.17 0.71 2.27	12-32 2-12 12-12 2-32	a ² P-d ² D (19F)	8339.72 7355.92	0.20 1.68 0.00 1.68	21- 1 11- 1	5 ² D-6 ² S (1F)
7460.93 7623.44 7319.15 7444.80 7058.76	0.09 0.04 0.04 0.00	1.75 1.66	42-14-33-33-14-33-	(3F)	7156.94 7197.88 7404.36 6963.85	0.75 2.48 0.71 2.43 0.75 2.43 0.71 2.48	12-12 2-12 12-12 12-12	a ³ P_b ³ P (30F)	8983.71 9392.85	0.00 1.37 0.00 1.31	4-6 4-5	a ⁹ S-a ⁹ D° (1F)
7769.35 7518.81 7849.08 7445.63 7873.33	0.16 0.09 0.16 0.09 0.04	1.75 1.74 1.74 1.75 1.75	41-41 31-31 41-31 31-41 21-31	a ⁴ F-b ² G (4F)	12094.78 11698.62 11132.24 8380.68 8428.62	0.80 1.82 0.71 1.77 0.71 1.82 0.80 2.27 0.71 2.17	300000 0000000000000000000000000000000	a ² F-c ² D (21F) a ² F-d ² D (22F)	9694.01 9916.30 10074.84 5929.31 5879.32 5832.40	0.00 1.27 0.00 1.24 0.00 1.23 0.00 2.08 0.00 2.10 0.00 2.13	4-4 4-3 4-2 4-5 4-4 4-3	a ⁹ S-a ⁷ D° (2F)
7304.82 7110.54	0.04 0.00		2 - 4 - 4 - 5 - 1 - 2 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		8969.06 7906.95	0.80 2.17 0.71 2.27	3 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2	• •	5796.28	0.00 2.13	4-2	

Part II—Finding List of All Lines in the Table of Multiplets

TABLE OF CONTENTS

PART II. FINDING LIST

		PAGI
1. Introduction		
2. Part A—Observed and Permitted Predicted Lines		
3. Blends	• • • •	1
5. Part B—Forbidden Lines	• • • •	•
6. Contents of Section on Forbidden Lines	• • • •	1
4. Scope	• • • •	1
8. Errata	• • • •	1
Body of Multiplet Table		1-0
Forbidden I in as		る/一プ

A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST

PART II

Finding List of All Lines in the Table of Multiplets

1. Introduction

Any arrangement of the wave-lengths in a given spectrum, by multiplets makes it inconvenient to locate a given line. The difficulty is greatly increased when many spectra are involved. Consequently a "Finding List" containing all lines in the Revised Multiplet Table has been included as Part II of this Contribution. As in the RMT the Finding List is in two parts. The first contains permitted lines observed in the laboratory, permitted predicted lines, and a few forbidden lines observed in the laboratory when a strong electric field is present. The second contains only forbidden lines of the nebular, auroral and coronal type. See §5.

2. Part A—Observed and Permitted Predicted Lines

The lines are listed in order of increasing wave-length and cover the range $\lambda\lambda 2951-13164$. At the violet end of this long range, the proportion of known lines included is smaller than in the main body of the list, due to the masking by the ozone in our atmosphere of all but the strongest lines. The number of lines in the same wave-length interval decreases from the violet to the red. The incompleteness of laboratory material accentuates this in the infra-red. The total number of lines in this section is approximately 23,200.

Three entries are given for each line and a fourth if the line is predicted or forbidden. All entries are copied directly from Part I of this Contribution. The first is the laboratory wavelength. The source from which the wave-length is taken can be found from the references A, B, C etc. in the R M T and Table 7.

The second entry headed "Type" is blank for all lines observed in the laboratory, except the selected forbidden ones that appear under special conditions, (due to Stark effect). These are marked "Forb" and include 11 lines of He 1, 6 of Na 1, 11 of Al 11, 2 of Al 111 and 2 of K 1.

Predicted Lines. These fall into three classes. (a) For some faint lines observed in the laboratory but not well-measured, a predicted wave-length obtained from the spectroscopic term values is preferable to the observed value. (b) It is well-known that many predicted lines not yet observed in the laboratory are important astrophysically, and an attempt has been made to include these in the R M T. (c) If a line that would otherwise be included is masked by a strong line in the laboratory, the predicted position of the masked line is entered. Such cases are carefully noted and explained in the R M T. In every case where a predicted wave-length is used, the entry "P" occurs in the column headed "Type" in the Finding List. This column contains only the two entries "Forb" and "P". All other lines are observed laboratory wave-lengths in the usual sense of the word "observed".

The third entry for each line is the spectrum to which the line belongs. Here the chemical symbols of the elements are used and Roman numerals denote arc spectra (1) and spark spectra in successive stages of ionization, i.e. first spark spectrum (11), second spark spectrum (111) etc.

Finally the number of the multiplet to which the line of a given spectrum belongs, is given under the heading "Multiplet No." This number appears under the "Multiplet Designation" of each multiplet in the R M T and the numbers start with 1 for each spectrum. All lines of a given multiplet have the same multiplet number. A blank in this column indicates that the line is unclassified. In the R M T, under a given spectrum, unclassified lines follow the multiplets.

When two or more numbers appear in this column, the line is a blend and occurs in each of the multiplets indicated.

Examples: $\lambda 2957.56$ is due to Cr II and appears in Multiplets 104 and 141 of Cr II (See pp. 44 and 45 of the R M T).

 λ 2984.89 is a predicted wave-length. The line is in Multiplet No. 60 of Fe II (See p. 67 of the R M T).

λ2991.632 is an unclassified line of Fe I (See p. 65 of the R M T).

3. Blends

Reference has been made above to a line appearing in two multiplets of a given spectrum, for example $\lambda 2957.56$. Such blends can be readily detected in the Finding List by the presence of more than one multiplet number. In the R M T they are noted by an asterisk. This applies to blended lines in the same spectrum.

If, however, an arc and spark line of an element are blended the wave-length is repeated in the Finding List; or nearly identical wave-lengths are entered, if different measures were used in the two instances. For example $\lambda 2988.952$ appears in Multiplet No. 11 of Sc 11 and in Multiplet No. 34 of Sc 11. In the R M T such lines have an asterisk preceding the wave-length and the symbol "§" following it.

A careful examination of close pairs of lines of a given element in the Finding List will doubtless reveal more blends than have been noted in the RMT. Similarly, it is probable that erroneous identifications of lines due to impurities that have not heretofore been suspected, can be detected.

The predicted wave-lengths of masked lines (§2) fall close to observed lines. For example $\lambda 2965.25$ is the predicted position of the line of Fe 1 in Multiplet No. 316, masked by the strong Fe 1 line at $\lambda 2965.255$, which occurs in Multiplet No. 10.

All predicted lines have separate entries in the Finding List, regardless of how close the pairs in a given spectrum may be—for example, $\lambda\lambda 2990.33$ and 2990.34 are both predicted lines of Fe 1. If observed in the laboratory these lines would undoubtedly be blended.

When identical wave-lengths appear in spectra of different elements, the lines are arranged in the alphabetical order of the chemical symbol. When similar wave-lengths occur in spectra of different stages of ionization of a given element, the arc spectrum comes first, then the spark spectra, in order of increasing ionization.

4. Scope of the Finding List

The users of this Finding List are emphatically warned that the list is not complete. The range is that useful to the astrophysicist, having the violet limit $\lambda 2951$. Within the range covered, the elements to be included have been selected according to their astrophysical importance. For a given element, the spectra for different degrees of ionization and the lines of each have been similarly selected. It is fairly complete for the first spark spectra through the first long period. It lists only the leading arc lines for many elements, but includes all observed classified lines of Fe 1. For any element, the List grading in the R M T can be used as a guide to the completeness of selection. On account of these restrictions this book is not a list of "Hauptlinien" or a compendium of wave-lengths of elements in general. On the other hand it does contain a large number of predicted lines which invite the attention of the laboratory worker in spectroscopy.

5. Part B. Forbidden Lines—Nebular, Auroral, Coronal etc.

The second part of the Finding List contains only forbidden lines. Here the word "forbidden" applies in the general sense—i.e. lines due to downward transitions from metastable states in the atoms. The number of lines listed is roughly 2550.

The arrangement is similar to Part A of the Finding List, with the exception that in Part B the great majority of lines are predicted. Consequently no column headed "Type" is given. The wave-lengths that are *not* predicted are noted by the following letters:

N Nebular Wave-length

L Laboratory Wave-length

A Auroral Wave-length

C Coronal Wave-length

Column two contains the chemical symbol and stage of ionization of the spectrum as in Part A, and column three the Multiplet Number. In order to avoid confusion with Multiplet Numbers in Part A, all Multiplets of forbidden lines have the letter "F" accompanying the Multiplet Number.

6. Contents

A complete list of all possible forbidden lines in the region useful to the astrophysicist would be prohibitively long. For simple spectra the lines are few, but for the complex spectra, particularly in the first long period, fairly rigid selection has been made. Anyone desiring to construct complete lists is advised to consult the references to the analysis of the various spectra.

7. Index of The Finding Lists

In order to facilitate the work of transferring from the Multiplet Number of the Finding List to the Multiplet in the R M T, a separate card is enclosed in the Finding List, containing an index of the R M T. The elements are in order of increasing atomic number. This index gives the multiplets of each element contained on each page of the R M T.

For example, $\lambda 2980.296$ is in Multiplet No. 94 of Ti 1. On the index card hunt Ti 1 and then this Multiplet Number. It is to be found on page 27 of the R M T, which contains Multiplets of Ti 1 from No. 55 through No. 140.

8. Errata

After the tabular material in the Finding List had been completed for publication, four errors were detected, as follows:

IA E	lement Mı	ıltiplet No.		I A	Element M	lultiplet No.	
3497.137	Fe 1	78	should read	3497.15	P	Fe 1	78
4618.568	Fe 1	1151	Reject-Way	ve-length	erron	neous	
4061.3 4068.7	Sc III Sc III		should read should read			Sc III Sc III	1 1

The writer will be grateful to those who use this Table if they will call to her attention any errors they detect, so that a list of errata may be published. In the compilation of a list containing about 25,750 lines, doubtless there are a number of mistakes in spite of the care that has been taken to avoid errors.

·		

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
2951.40		Cr II	59	2972.277		Fe I	104	2985.849		Cr I	28
2951.95		Cr II V II	59 2	2972.64		Cr II Gd II	28 25	2985.98 2985.995		S III Cr I	14 28
2952.07 2953.358		Cr II	27	2972.742 2972.769		Fe II	159	2986.137		Cr I	28
2953.706		Cr II	66	2973.137		Fe I	10	2986.456		Fe I	. 11
2953.774		Fe II Fe I	2 10	2973.236		Fe I V II	10 218	2986.473 2986.617		Cr I Fe II	28 62
2953.940 2954.050		re 1 Fe II	61	2973.975 2974.006		Sc I	11	2986.655		Fe I	200
2954.332		v I	18	2974.59		YI	10	2986.91	P	Fe II	86
2954.67		Cr II	104	2974.78		Fe I	335	2987.074		Gd II	57
2955.12		Cr II	59	2974.934		Ti I	94	2987.166		Co I	11
2955.71		Cr II	58	2975.110		Gd II	77	2987.27	P	Fe II	86
2956.133		Ti I	30	2975.16		Zr II	64	2987.292		Fe I Ti II	30 28
2956.60 2956.797		Cr II Ti I	58 30	2975.483 2975.650		Cr I V II	28 28	2987.40 2987.542		Fe II	28 223
2957.28		Cr I	•••	2975.89		Hf II	10	2987.65		Si I	1
2957.33		V I	18	2975.938		Fe II	2	2987.72		Ca II	11
2957.365 2957.520		Fe I V II	10 2	2976.126 2976.197		Fe I V II	146 28	2987.80 2988.027		Zr II V II	86 27
2957.56		Cr II	104,141	2976.50	P	Fe I	56	2988.05		N1 II	6
		A				** **		2222 252		C- TT	00
2958.20 2958.528		Cr II Fe II	49 160	2976.517 2976.593		V II Ru II	28 4	2988.056 2988.367		Cr II Rh II	28 3
2958.54		Cr II	97	2976.61		Zr II	77	2988.468		Fe I	56
2959.601		Fe II	62	2976.718		Cr II	27	2988.61		Ca III	2
2959.841 2959.97		Fe II Cr II	180 59	2976.905 2976.922		Ce II Fe I	168 334	2988.649 2988.74		Cr I Zr II	14 148
2959.992		Fe I	316	2977.226		Ru II	4	2988.942		Fe I	316
2960.303		Fe I	148	2977.539		V I	18	2988.952		Sc I	11
2960.926 2961.119		Gd II · Fe II	25 180	2978.07 2978.18		Zr II Y II	14 45	2988.952 2989.01	P	Sc II Fe II	3 <u>4</u> 86
~601.119		_	100	2010110			20	2000.01	•		
2961.272		Fe ÍI	2	2978.226		V II	87	2989.079		Fe II	159
2961.732 2962.11		Cr II Fe I	27,59 57	2978.850 2979.05		Fe II A II	69 19	2989.194 2989.30		Cr II Ca III	28 4
2962.167		Rh II	4	2979.096		Fe II	100,180	2989.306		V II	87
2962.772		V I	18	2979.102		V II	44	2989.367		Fe II	86
2962.936 2963.249		Fe II V II	160 154	2979.18 2979.199		Zr II Ti II	14 123	2989.42 2989.590		Ca II Co I	11 13
2963.46		Cr II	58	2979.349		Fe II	2	2989.594		V II	28
2963.605		Gd II		2979.362		Rh II	4	2989.731		Fe II	86
2963.73		Cr I		2979.683		Sc II	44	2989.74		V II	87
2963.897		Fe II		2979.726		Ru II	5	2990.10		Zr II	27
2964-131		Fe II	60	2979.741		Cr II	28	2990.16	_	Ti II	123
2964.629 2964.88		Fe II Hf I	8 4	2979.957 2980.154		Ru II Gd II	4 12	2990.33 2990.34	P P	Fe I Fe I	334 460
2964.96		ΥÏ	11	2980.296		Ti I	94	2990.392	•	Fe I	316
2965.036		Fe II	8	2980.532	_	Fe I	317	2990.873		Ce II	72
2965.19 2965.231		Cr II Ti I	58,160 94	2980.60 2980.69	P	Fe I Y II	201 54	2990.948 2991.095		V I N1 I	58 14,80
2965.25	P	Fe I	316	2980.752		Sc I	11	2991.244		Fe II	60
2965.255		Fe I	10	2980.791		Cr I	28	2991.33		Eu II	3
2965.395		Fe II	59	2980.82		Hf I	2	2991.40		Zr II	6
2965.428		Gd II	29	2980.963		Fe II	61	2991.520		Gd II	25
2965.54 2965.564		Ta I Ru II	2 4	2981.02 2981.200		Zr II V II	24 87	2991.626		Ru II Fe I	5
2965.68		Ti I	94	2981.446		Fe I	11	2991.632 2991.817		Fe II	160
2965.707		Ti I	94	2981.448		Ti I	29	2991.886		Cr I	28
2965.86 2966.051		Sc I Cr II	11 33	2981.651 2981.852		Ni I Fe I	26 104	2992.11 2992.2 4		O III K III	10 2
2966.26		Fe I	104	2981.924		V II	114	2992.378		V II	114
2966. 27		Zr II	148	2982.059		Fe II	139	2992.40		Cr II	28
2966.901		Fe I	10	2982.100		Сь ІІ	2	2992.595		N1 I	25
2967.225		Ti I	30	2982.234		Fe I	460	2992.63		CII	8
2967.642 2968.119		Cr I Fe II	28 160	2982.239		Fe II	70 20	2993.038		Gd II	42
2968.119 2968.21		Cr II	160 96	2982.75 2982.78		V II C1 II	28 53	2993.366 2994.05		Fe II Zr II	139
2968.231		T1 I	29	2983.009		V II	22,28	2994.069		Cr I	14
2968.373 2968.67		V II Cr II	28 58	2983.060 2983.306		Gd II T1 I	77 29	2994.259	P	Al II Fe I	14
2968.738		Fe II	6 1	2983.558		V II	29 28	2994.427 2994.460		re I Ni I	9 27
2968.82		Hf II	12	2983.574		Fe I	9	2994.50		Fe I	11
296 8.906		Fe II		2983.66		0 111	7	2994.540		V. II	218
2968.95		Zr II	14	2983.78		0 111	6	2994.725		Cb II	218
2969.267		Gd II	28	2984.131		N1 I	12	2994.737		Cr II	28
2969.364 2969.474		Fe I Fe I	11 30	2984.183 2984.25		Na II Y I	2 10	2994.958 2995.10		Ca I Cr I	17 15
2969.67		Cr II	66	2984.35	P	Ti II	28	2995.10 2995.26		YI	15 11
2969.934		Fe II	70	2984.69		Cr II	27	2995.530	P	Al II	14
2970.106 2970.35		Fe I Si I	10,11 1	2984.785 2984.82		Fe I Cr I	29 15	2995.546 2995.644	P	Al II Ce II	14 183
2970.384		Ti I	29	2984.831		Fe II	8	2995.838		Fe I	460
0000		D	•								
2970.510 2970.556		Fe II Ti I	2 94	2984.89 2985.02	P	Fe II Cr II	60 56	2995.999 2996. 3 86		V II Fe I	27 148
2970.66		Cr II	57	2985.184		V II	218	2996.51		0 111	10
2970.682		Fe II	69	2985.29	P	Fe II	69	2996.549		Co I	77
2971.112 2971.616		Cr I Fe II	28 60	2985.325 2985.36		Cr II Zr I	28 22	2996.580 2996.63		Cr I Cl II	28 22
2971.906		Cr II	28	2985.43		La II	145	2996.70		VII	28
2972.016		Fe II	160	2985.477		T1 I	29	2996.88	P	Ti II	28
2972.17		Gd II V II	77 97	2985.521		Gd II	77	2996.94		Y I V I	9

2				•	TNDI	NO LIGI					
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Typė	Element	Multiplet No.
2997.298		Fe II	139	3006.82		0 11		3015.67		Zr II	86
2997.309		Ca I	17	3006.858		Ca I	17 18	3015.686 3015.86		Co I Zr II	76 127
2997.364		Cu I	5 85	3006.86 3006.90		N II V I	116	3015.80		Fe I	198
2997.749 2997.71		Fe II O III	10	3006.95	P	Fe III	21	3015.98		VII	42
2997.87		V I	116	3006.98		C1 11	53	3016.14		V II	26
2997.945		V II	141	3007.035		V II	141	3016.15		A IV	1
2997.97	_	Pt I	3	3007.071		Na II	12 74	3016.16		V I Fe I	58 30
2998.158 2998.163	P P	Al II	14 14	3007.08 3007.146		O II Fe I	7 4 55	3016.186 3016.454		Mn I	35
2998.34		Zr II	13	3007.2		Fe III	116	3016.775		V II	27
2998.49		Zr II	86	3007.284		Fe I	11	3016.94		Hf II	3
2998.787		Cr I Fe II	-14 60	3007.296 3007.32		V II La II	27 102	3017.187 3017.195		Ti II. Ce II	85 107
2998.855 2998.896		Ru II	5	3007.442		Na II	1	3017.254		Co I	78
2999.045		Gd II	12	3007.487		Ti I		3017.34		Ne II	8
2999.238		V I	58	3007.655		Mn I	35	3017.447		WI	9
2999.30		Cr II	33	3007.74	P	O II Fe I	74 262	3017.548 3017.569		Co I Cr I	11 27
2999.512 2999.641		Fe I Ca I	30 17	3007.75 3007.802	1	Fe III	10	3017.628		Fe I	9
2999.92	P	Ti II	28	3007.975		Nd II		3017.63		0 111	10
2999.96		Cr II	42	3008.13		Zr II Fe I	86 9	3017.80 3018.08		Cr II Zr II	95
3000.059		Fe II Hf II	69 3	3008.139 3008.265		re 1 Mn I	9 35	3018.08 3018.134		Fe I	199
3000.09 3000.14		A II	J	3008.28		0 11	74	3018.25	P	Fe I	263
3000.45		AII	72	3008.322		Ti II	85	3018.32		Hf I	2
3000.452		Fe I	56	3008.506		Fe III	9	3018.352		Zn I Cr I	5 26
3000.545		Co I	13 147	3008.508		V 11 V 11	141 26	3018.496 3018.53		Cr I Zr II	26 147
3000.59 3000.836		Zr II Fe III	147 10	3008.610 3008.67		Cr II	75	3018.744		Fe III	10
3000.863		Ca I	17	3008.789		Ce II	122	3018.82		C1 II	22
3000.868		Ti I	29	3008.79		O III	10	3018.821		Cr I La II	26
3000.890		Cr I Fe I	28 9	3008.996		Rh II Fe I	4 198	3018.95 3018.983		Fe I	30
3000.950 3001.203		V II	9 27	3009.098 3009.136		Sn I	1	3019.09		V II	86
3001.42		YII	53	3009.138		Na II	13	3019.143		Ni I	11
3001.589		Fe III	9	3009.205		Ca I	17	3019.291		Fe I	199
3001.65		Ne II	4	3009.366		Gd II Fe I	25	3019.350 3019.819		Sc I Rh II	10 3
3001.66 3001.754	P	Fe I V II	506 141	3009.570 3009.650		Gd II	30 27	3019.84		Zr II	6
3001.90		v i	116	3009.85		Zr II	64	3020.001		Fe II	110
3001.93		V II	43	3009.998		Fe III	41	3020.45		Zr II	26 9
3002.09	P	Fe II	138	3010.129		Gd II Fe II	12 181	3020.495 3020.54		Fe I Hf I	4
3002.197 3002.330		Gd II Fe II	77 98	3010.220 3010.28		Zr II	39	3020.643		Fe I	9
3002.442		V I	00	3010.42	P	Ti I	170	3020.65		V II	26
3002.491		N1 I	26	3010.76		WII	14	3020.673		Cr I	27
3002.65		V I	47	3010.838		Cu I Gd II	3 42	3021.074 3021.407		Fe I Fe II	9 59
3002.650 3002.66		Fe II Pd I	8 4	3010.899 3011.060		Fe III	31	3021.558		Cr I	27
3002.710		Gd II	77	3011.162		Mn I	35	3021.74		Pd I	6
3002.728		Ti I	29	3011.24		Hf II Mn I	6 4 35	3021.74 3021.78		Y I V I	9 75
3002.860 3002.99		Gd II Fe III	9	3011.376 3011.42		Cr II	35 27	3021.78		Zr II	39
3002.99		A II	J	3011.482		Fe I	316	3021.98		W II	6
3003.031		Fe I	30	3011.73		Zr I	22	3022.00		Fe III	76
3003.282	_	Fe III	89	3012.004		Ni I	41	3022.146		V II La II	86 116
3003.37	P	Ti II V II	28 27	3012.01 3012.020		Cr II V II	87 43	3022.26 3022.28		Y I	10
3003.461 3003.583		Gd II	25	3012.020		Gd II	29	3022.57		VII	26
3003.629		N1 I	26	3012.34		Cr II	42	3022.736		Ce III	5
3003.73		Zr II	26	3012.59	P	Fe II Fe III	69 10	3022.749 3022.804	P	Mn I Al II	35 13
3003.924 3004.109		Cr II Fe III	33 21,41	3012.847 3012.90		Hf II	10 4	3022.804	F	Ti II	13 126
3004.109		Fe I	199	3013.030		Cr I	26	3022.93		C1 II	57
3004.249		Fe II	69	3013.102		V II	26	3023.45		0 111	4
3004.35		0 III	10	3013.125		Fe III	9	3023.50		Y II Fe I	79 103
3004.39 3004.47		C1 II Cr II	22 88	3013.32 3013.37		Zr II O II	27 56	3023.583 3023.80		re I N II	103 35
3004.47	P	Fe I	105	3013.38	P	Fe II	138	3023.85		Fe III	10
3004.490		Fe III	41	3013.592		Co I	10	3023.859		Fe II	84
3004.62		Fe I	57	3013.66		Zr II	52	3023.86		Ti II	126
3004.68		La II V I	47	3013.713		Cr I Fe II	26 124	3023.882 3024.033		V II Fe I	41 11
3004.824 3005.057		V I Cr I	47 28	3013.802 3014.120		Fe I	458	3024.033		A III	4
3005.092		Gd II		3014.165		Nd II		3024.098	P	Al II	13
3005.26		Y I	9	3014.176		Fe I	31	3024.114	P	Al II	13
3005.302 3005.36		Fe I Zr I	199 38	3014.37 3014.44		V I Zr I	116 21	3024.350 3024.36		Cr I O III	26 10
3005.50		Zr I	60	3014.49		A II	72	3024.400		Co I	52
3005.62 3005.766		O II Co I	77	3014.668 3014.760		Mn I Cr I	35 27	3024.51 3024.57		W II	4
3005.760		V II	86	3014.760		V II	27	3024.681		Cr I	117
3006.0		Y II	54	3014.915		Cr I	27	3024.72		Zr II	147
3006.04		0 11		3015.194		Cr I	27	3024.78		Hf II	47
3006.05		Cl II Fe III	22 21	3015.230 3015.296		Fe III Tm II	9 8	3024.92 3024.981	P	Fe II V II	138 85
							U	JUNE 1001			
3006.122 3006.24		V I	116	3015.364		Sc I	10	3025.16		Zr II	86

I A	Туре	El ement	Multiplet No.	I A	Туре	El ement	Multiplet No.	I A	Туре	El ement	Multiplet No.
3025.40	P	Cr I	27	3034.95		Cb II		3044, 567		Mn I	15
30 25, 638		Fe I	198	3034.99		Cr II	42	3044.843		Fe II	98
30 25 . 68 30 25 . 70		V II Zr I·I	75 76	3035.013		Rh II	4	3044.936		V I	17
30 25. 75		0 II	84	3035.14 3035.25	P	V II Fe I	245 506	3045.00 3045.006		Cl II	21
3 0 25 , 843		Fe I	9	3035.43	•	0 111	4	3045.077		Ni I Fe I	12 29
30 25. 99	P	Fe II	84	3035.781		Zn I	5	3045.085		Ti II	23
3026.18 3026.373		Zr II	147	3035.802		Fe III	30	3045.313		Fe II	179
3026.462		Co I Fe I	77 30	3035.98 3036.07		Ne II V II	17	3045.36		Y I	9
00 201 202		16.1	30	3030.07		V 11	40	3045.53		Cr II	48
30 26 . 47		Y II	44	3036.101		Cu I	5	3045.58		Ne II	8
30 26 . 647		Cr II	95	3036.33	P	Zr II	86	3045.593		Mn I	34
30 26.75 30 26.776	P	A II	120	30 36 . 39		Zr II	25	3045.593		Na II	11
30 26. 78 1	P	Al II	13 13	30 36 . 50 30 36 . 59		Zr II Y II	24 68	3045.594 3045.714		Fe I Sc II	198
3026.85		Cr II	41	3036.68		WII	7	3045.808		Mn I	37 34
3026.985		Fe III	21	3036.784		T1 II	78	3045.82		Zr I	36
3027.04	P	Ne II	8	3036.986		Fe II	181	3045.877		Fe III	76
30 27 . 38 30 27 . 46	r	Fe II Fe III	99 10	3037.044 3037.26		Cr I Si III	27 10	3046.03 3046.10		Hf II A II	32
			20	0001.20		51 111	10	3040.10		K 11	
3027.600		VII	85	3037.388		Fe I	9	3046.266		Mn II	10
30 27 . 60 2 30 27 . 75		Gd II Y II	12	3037.73		Ne II	8	3046.399		Fe III	78
3027.73		Pd I	60 5	3037.731 3037.782		Ce II Fe I	18 1 31	3046.452		W I Fe II	5
3028.04		O IV	5	3037.935		N1 I	25	3046.675 3046.685		Ti II	179 4 7
3028.042		V II	85	3037.98		A IV	2	3046.714		Fe III	92
30 28 . 05		Zr II	76	3037.98		C1 11	53	3046.819		Fe I	315
30 28 . 125 30 28 . 436		Cr II Cb II	87 2	3038.00		V II	246	.3046.929		Fe I	198
3028.608		Rh II	1	3038.04 3038.52		Cr II Cr II	154 41	3047.035 3047.047		Mn I Fe I	34 457
			-	0000102		o. 11	**	00411041			407
3028.66		Ca III	3	3038.520		V II	96	3047.119		Fe III	80
30 28 . 82		0 II	73	3038.59		Zr II		3047.13		0 111	4
3028.84 3028.93		Ne II A II	4 84	3038.706 3038.777		Ti II Fe II	85 84	3047.160 3047.201		Rh II Fe I	4
30 28 . 98 1		Gd II	26	3039.064		Ge I	2	3047.455		Cr I	382∉ 164
3029.041		Mn II	10	3039.254		F III	3	3047.57		Ne II	8
30 29 . 164		Cr I	26	3039.322		Fe I	199	3047.60	P	Fe II	84
30 29 . 237 30 29 . 297		Fe I N1 I	56 56	3039.51		O II Mn II	72 10	3047.605		Fe I	9
3029.52		Zr I	22	3039.551 3039.563		Co I	10 52	3047.63 3047.76		Cr II Cr II	15 15
								33 2			20
30 29 . 56		V II	26	3039.65		Ne II	17	3047.9		0 11	82
3029.681 3029.730		Fe II Ti II	124 85	3039.67 3039.74	P	C II Cr I	29 117	3048.108		Co I V II	77
3029.83		Sb I	2	3039.746	r	F III	3	3048.214 3048.28		Zr II	123 1 44
3030.149		Fe I	198	3039.76		0 11	72	3048.42		Zr II	65
3030.214		YII	79	30,39.767		V II	153	3048.65		V II	67
30 30 . 245	n	Cr I	27	3039.780		Cr I	26	3048.766		Ti II	78
3030.61 3030.757	P	Fe I Fe I	145 459	3039.92 3040.34		Sc II Gd II	47 55	3048.864 3048.888		Mn I Co I	34 11
30 30 . 769		Sc I	10	3040.428		Fe I	30	3048.891		VII	40
3030.85		Ne II Zr II	17 6	3040.603		Mn I	34	3049.011		Fe II	181
3030.91 3031.007		V I	7 4	3040.812 3040.829		Co I Fe II	50 123	3049.027 3049.18	P	Mn II Fe II	21 109
3031.16		Hf II	11	3040.846		Cr I	27	3049.39	•	La II	115
3031.213		Fe I	198	3040.92		Cr II	65	3049.44		CII	43
30 31. 353		Cr I	27	3040.93		Si III	10	3049.694		WI	9
3031.486 3031.559		Cr I Ce III	117 1	3041.224 3041.278		Mn I Al II	34 28	.3049.883 3050.073		Cr I Al I	27 7
3031.63		Cr II	87	3041.42		V II	40	3050.137		Cr II	65
3 0 31. 63	P	Fe II	138	3041.639		Fe I	56	30 50.400		V I	74
20.01 400		Fo T	90	9041 74		C= 11	0.5	9050 469		Fo III	10
30 31, 638 30 31, 870		Fe I Ni I	30 11	3041.74 3041.745		Cr II Fe I	95 30	3050.463 3050.496		Fe III Co I	10 77
30 32.00		Zr II	144	3041.86		V I	-	3050.5		Y II	69
3032.08		0 II	83	3041.876		WI	5	3050.57		Ne II	48
3032, 187 3032, 44		V II N1 II	75 3	3042.020 3042.27		Fe I V II	30 40	3050.661 3050.735		Mn II V II	21 66
30 32. 50		0 II	83	3042.481		Co I	10	3050.75		Cr II	95
3032.767		CP II		3042.65		Pt I	5	3050.819		N1 I	25
3032.845		Gd II	12	3042.666		Fe I	30	3050.890		V I	16
3032.85		As I	1	3042.733		Mn I	34	3050.932		Co I	51
30 32. 927		Cr II	15	3042.79		Cr II	47	3051.30		WII	6
3033.104		Fe I	146	3043.02		0 111	4	3051.308		V II	228
3033.445		Fe II	181	3043.067		Fe III	91	3051.924		Ce II	184
30 33. 445		V II A II	123	3043.124		V I	17 21	3051.975		Ce II K III	180
3033,52 30J3,591		A II Mn II	19 21	3043. 132 3043. 143		Mn II Mn I	21 34	3052.07 3052.194		K III	2 15
30 33.821		V II	34	3043.31	P	Fe II	138	3052.229		Cr I	164
3034.05		Cr II	74	3043.356		Mn I	34	3052.511		Gd II	9
3034.051		Gd II	12	3043.439		Fe III	91	3052.54	P	O IV	5
30 34. 120		Sn I	1	3043.54		V II	40	3052.78	P	Fe I	262
30 34 . 190		Cr I	26	3043.555		V I	17	3052.929		Sc II	37
3034.32		0 111	20	3043.770		Mn I	34	3053.065		Fe I	146
3034.432		Co I	12	3043.851		Ti II	78	3053.20		A II	60
3034.48 3034.51		Ne II Fe I	8 57	3043.90 3044.004		Cr II Co I	48 11	3053.27 3053.39		Y II V II	68 34
3034.51		Cr II	33	3044.04	P	Co I	78	3053.443		Fe I	31,398
30 34. 54		F III	3	3044.12		Zr II	26	3053.570		Gd II	25
3034.712		Fe II	84	3044.16		Ne II	17	3053.65		Cr II	64
(3034.74 3034.810		Si III Mn II	10 21	3044.24 3044.438		Cr II Fe III	154	3053.65 3053.664		V I Na II	17 15
			£.1					W. CO. CO.			AU

4					נעמוי	NO LIST					
I A	Туре	El ement	Multiplet No.	I A	Туре	El emen t	Multiplet No.	I A	Туре	El emen à	Multiplet No.
3053.74		C1 II	14	3063.25		Co I	50	3072,664		Co I	125
3053.74 3053.880		Cr I	26	3063.280		T1 II	119	3072.68		Ne II	17,48
3053.894		V II	40	3063.411		Cu I	4	3072.88		Hf I	2
3054.02		La II	115	3063.46		O IV	1	3072.971 3073.126		Ti II Mn I	5 15
3054.134		Fe III V II	10 67	3063.502 3063.56		Ti II Ta I	47 4	3073. 244		Fe I	549
3054.24 3054.316		N1 I	25	3063.58		Zr I	36	3073.25		Cr II	47
3054.362		Mn I	15	3063.63		Zr II		3 073.5 2 0		Co I	51
3054.39		Zr II	51	3063.734		V I	16	3073.679		Cr I	184
3054.52		Hf II	8	3063.814		Fe II		3073.823		V I	15, 17
3054.69		Ne II	8 7	3063.84		Cr II	32	3073.982 3074.061		Fe I Rh II	313 1
3054.694 3054.724		Al I Co I	7 13	3063.93 3063.939		N1 II Fe I	3 147	3074.15		0 111	26
3054.82		A III	4	3064.302		Al I	7	3074.157		Fe I	457
3054.84		Zr II	76	3064.370		Co I	13	3074.334		Na II	9
3054.89		V I	16	3064.372		Na II	6	3074.47		Cr I	55
3054.94		Eu II	7	3064.530		Cb II	00	3074.55 3074.66		Zr II V II	105 112
3054,949 3055,243		Fe I Ce II	263 201	3064.623 3064.64		N1 I Zr II	26 25	3074.665		Al II	27
3055.263		Fe I	55	3064.68		Hf II	31	3074.67		Cr II	73
3055.3		Y II	68	3064.71		Pt I	2	3074.68		0 111	26
3055.368		Fe II	181	3064.77		A III	4	3074.91		Cr II	73
3055.43		Hf II	5 6	3065.01		0 111	26	3075.043 3075.19		V II O III	228 26
30 55, 44 30 55, 55		Cr II Fe III	33 10	3065.067 3065.106		Cr I Sc II	184 37	3075. 225		T1 II	20 5
3055.585		Ce III	1	3065.20		Zr II	5	3075.228		Fe II	68
3055.942		V II	123	3065.30		Pđ I	3	3075. 269		V I	105
3056.157		Na II	1	3065.315		Fe II	97	3075.32		As I	1
3056, 334 3056, 556		V I Ce III	17 9	3065.61 3066.019		V II Mri I	112 15	3075.336 3075.38		Ru II Sc II	7 37
3056.68		Cr II	48	3066.02		Y II	68	3075.380 3075.422		Nd II Gd II	56
3056.740 3056.775		Ti II Ce II	47 121	3066. 158 3066. 220		Al I Ti II	·7 5	3075.474		V II	67
3056.802		Fe II	109	3066.354		Ti II	5	3075.55		Zr II	144
3056.84		K III	2	3066.375		v i	17	3075.58		V II	22 8
3057.08		VII	95	3066.487		Fe I	313	3075.721		Fe I	28
3057.155		Al I	7	3066.51		V Į	17	3075.901 3075.933		Zn I V I	1 57
3057.214 3057.22		Ce III Zr II	8 76	3066.514 3066.536		Ti II Na II	47 18	3075.95		0 111	26
3057.395		Ti II	5	3066.69	P	Fe I	456	3076.016		V II	34
3057.446		Fe I	28	3066.80		V II	123	3076.455		Fe II	181
3057.575		Ce III	4	3066.92		A II		3076.58		Cr I	55
3057.638		N1 I	26	3067.104		V II	34	3076.864		CP II	2
3057.80	P	Fe I	29	3067. 123		Fe I	56	3076.925 3077.077		Gd II Gd II	10 25
3057.86 3058.00		Cr II Cl II	65 14	3067.132 3067.18		Ge I Cr II	5 15	3077.14		Y II	52
3058.090		Ti II	47	3067. 22	P	Cr I	55	3077.168		Fe II	108
3058.119		Gd II	57	3067.23	P	Cr II	15	3077.24		Cr II	103
3058.17		Cr I	164	3067.244		Fe I	28	3077.24 3077.358		Ta I Eu II	1 3
3058.38		Cr II	4 8	3067.41		Hf I	4				
3058.66		Os I	1	3067.712		B1 I	1	3077.40 3077.50		A IV	1
3058.68		0 V	6	3067.952	_	Fe I	315a	3077.59 3077.79		Lu II Cr II	4 103
3059.047 3059.064		Al I Min II	7 21	3068 3068.02	P	O VI Zr II	2 5	3077.831		Cr I	184
3059.086		Fe I	9	3068.06		0 11	26	3078.014		Fe I	29
3059.16		Ne II	17	3068.175		Fe I	55	3078.15		A III	4
3059.24		CII	47	3068.32		Zr II		3078.315 3078.436		Na II Fe I	2,8
3059.30 3059.41		0 111	4	3068.643		Gd II O III	12	3078.44	P	Fe II	1 46 97
3059.521		Cr II Cr II	15 15	3068.68 3068.757		Fe II	26 122	3078.64		Y II	78
3059.741		m4 ***		80.60 808		Îr I	6	3078.645		Ti II	5
3059.741		Ti II Le II	5,47 147	3068.897 3068.927		Fe I	53	3078.698		Fe II	181
3060.023		Fe II	109	3069.26		YII	43	3078.948		V II	66
3060.048		Co I	77	3069.335		Fe III	1	3079.34		Cr II	102
3060.11		Zr II	6	3069.645		V I	15	3079.356		Fe II	122
3060.162		Fe III	92	3070.072		Fe III	30	3079.394 3079.627		Co I Man I	10,49 15
3060.252 3060.460		Ru II V I	6 17	3070.12 3070.266		V II Mn I	228 15	3079.75		V II	113
3060.531		Sc II	37	3070.591		Fe II	83	3079.84	P	Fe I	102
3060.545		Fe I	457	3070.692		Fe II	68	3080.146		V I	15
3060.63		Cr I	164	3071.03		Cr II	41	3080.333		V I	57
3060.93		V I	15	3071.08		Ne II	17	3080,405		Fe II	108
3060.94		A II		3071.141		Fe II	181	3080.64 3080.72		Hf II Cr I	63 184
3060.984		Fe I	55	3071. 238		Fe III	1	3080.755		N1 I	26
3061.14 3061.33	P	Cr II Zr II	103 6	3071.242 3071.270		Ti II Fe II	47	3080.84		Hf I	4
3061.59		Cr II	41	3071.35		C1 II	14	3081.01		V II	112
3061.652		Cr I	55	3071.58		Cr II	47	3081.254		V II	66
3061.822 3061.983		Co I Co I	11 52	3071.583 3071.653		Ba I Fe II	4 123	308 1. 30 308 1. 330		V II Mn I	164 15
3062, 119 3062, 178		Mn I V II	15 113	3071.66 3071.69	P	O IV Cr I	1 55	3081.42 3081.46		La II O II	115
3062. 178		Co I	113 12	3071.09 3071.77		√ II	250	3081.575		Ti II	119
3062. 201		Rh II	4	3071.957		Co I	12	3081.585		Rh II	5
3062, 234		Fe II	108	3072.062		Zn I	5	3081.600	_	Y II	50
3062.702		V II	34	3072. 107		Ti II	5	3081.83 3081.993	P	Fe I Gd II	53 12
3062.872 3063.010		Fe I Ce II	456	3072.341 3072.47		Co I Cr II	11 32 118	3082.010		V I	105
OC CO. O IN		AR II	185	JU 1 6. 41		V. 11	32, 116			-	

LINDING DISI

											•
I A	Туре	El ement	Multiplet No.	I A	Туре	El ement	Multiplet No.	I A	Type	Element	Multiplet No.
3082.159		Al I	3	3092.915		Nd II		3101.557		Mn I	
3082.16		YII	68	3092.997		Mg I	. 5	3101.77		Ti I	181
3082.304		Ce II	105	3093.108		V II	1	3101.879		Ni I	40
3082.524		V II	39	3093.16	P	V II	39	3101.911		Gd II	10
3082, 56 3082, 614		Sc II Co I	36 10	3093, 24 3093, 41		V I A II	15 84	3 10 2. 29 5 3 10 2. 36		V II Ca I	1 16
3082.844		Co I	73	3093.423		Si III	1	3102.405		Co I	49
3082.99		AII	120	3093.48		Cr II	125	3102.517		Ti I	181
3083.024		Fe II	97	3093.481		Rh II	4	3102.55	P	Fe III	29
3083.07	P	Sc II	37	3093.53	P	Fe I	102	3102.551		Gd II	76
3083. 152		Fe I	197	3093.613		Si III	1	3102.58		Cr II	116
3083. 208		V II	112	3093.76		Y II	78	3102.63		A II	110
3083.350		Gd II	10	3093.792		V I	57	3102.64	P	Fe I	29
3083.539		V I	57	3093.806		Fe I	55	3102.71		Fe I	
3083.62		Cr II	47	3093.846		Gd II	10	3102.975		Ti II	58
3083.65 3083.670		O III Ce II	26 237	3093.888 3093.97		Fe I Cr II	261 47	3 10 3 . 3 3 10 3 . 37 7		Y II Ce II	78 151
3083.68	P	Fe III	39	3093.989		Cu I	3	3103.48		Cr II	71
3083.742		Fe I	28	3094.08	P	Fe I	165	3103.60		V I	56
3084.007		Gd II		3094.08		Ne II	24	3103.735		Co I	73
3084.09		Fe III	40	3094. 156		Fe III	78	3103.804		Ti II	90
3084.46		Cr II	71	3094. 172		Cb II	1	3103.983		Co I	48
3084.59		Cr I	184	3094. 196		V II	39	3103.994		V I	56
3084,63		0 111	26	3094.555		Ru II	3	3104.29		Cr II	102
3084.819		Ti I	93	3094.692		V I	56	3104.38		A II	118
3085.05 3085.089		A II Ce III	4	3094.79 3094.870		Zr I Fe I	36 315a	3 104. 396 3 104. 46		Na II Cl III	17 3
3085.34		Zr I	20	3094.94		Cr II	47,86	3104.58		La II	17
3085.36		Cr II	47	3094.98		A II	118	3104.593		Ti II	90
3085.47		V II	34	3095.07		Zr II	5	3104.70		Cr I	163
20) O.E. 601		Gd II	10	3095. 22		Cr II	86	9104 719		We II	6
3085.621 3086.210		V II	66	3095. 270		Fe I	314	3104.713 3104.805		Mg II Mg II	6
3086.225		S1 III	1	3095.716		Co I	49	3104.82		YII	59
3086.311		Fe III	_	3095.81		0 111	26	3104.906		V II	39
3086.393		Co I	50	3095.82		Zr I	36	3105.084		Ti II	67
3086.429		S1 III	, 1	3095.859		Cr I		3105. 166		Fe II	82, 122
3086,44		Zr II	24	3095.88		Y II V I	11	3105.220		Ti I Ni I	181
3086.507 3086.620		V II Si III	39 1	3095.902 3096.11		Cr II	57 126	3105.469 3105.548		Fe II	12 82
3086.777		Co I	11	3096. 296		Fe II	97	3105.57		Cr I	163
											~
3086.83 3086.858		Co I Y II	76 4 2	3096.402 3096.424		Co I Ti II	52 77	3105.929 3105.973		Ce I V II	2) 140
3086.880		Fe III	81	3096.531		Cr I	• •	3106.11		VI	56
3087.02		Al I	19	3096.72		C1 11	31	3106. 234		Ti II	67
3087.065		V I	57	3096.740		Rh II	4	3106.542		Fe I	196
3087.07		Ni II	7	3096.77	P	Sc II	6	3106.559		Fe II	68
3087.659 3087.806		Fe III Co I	77 77	3096.786 3096.86		S1 III Fe III	1 65	3106.58 3106.806		Zr II Ti I	63 92
3087.90		Cr II	102	3096.902		Mg I	5	3106.829		V II	139
3088.027		Ti II	5	3097.063		Mn I		3106.974		Ce III	4
30 88.04		0 111	26	3097. 118		Ni I	11	3107.044		Co I	49
3088.114		VI	56	3097.15		Ne II	44	3107.142		V I	57
3088.23		Ne II	24	3097. 186		Ti II	67	3107.387		Sc II	6
3088.24		A II	119	3097.415		Fe II	96	3107.388		Ca I	16
3088.28		Zr II	38	3097.45		Eu II	6	3107.468		Ti I	181
3088.523		Al II	20 05	3097.46	P	S IV	1	3107.529		Sc II Co I	33
3089.00 3089.130		Zr II V I	25 37	3097.49 3097.626	r	Fe I Ti II	165 77	3107.540 3107.58		Cr II	125 125
3089.204		Gd II	5 4	3098.16		Cr II	86	3107.586		Ru II	3
3 089.388		Fe II	158	3098.191		Fe I	313	3107.714		N1 I	12
3089.401		Ti II	90	3098. 194		Co I	10	3107.774		Mn I	38
3089.596		Co I	10	3098.476		Nd II	20	3107.950		Fe III	29
3089.633		V II	112	3098.597		Tm II	8	3108.230		Gd II	54
3089.649		Fe III	40	3098.644		Gd II	11	3108.36		Zr I	38
3089.75		Cr II	195	3098.88		Cr II	86	3108.360		Gd II	93
3089.954 3090.051		Gd II Ti II	93 119	3098.899 3098.93	P	Gd II Fe III	10 51	3108.46 3108.511		La II Se II	16 36
3090.031		Ti I	93	3099.05	r	Fe III	65	3108.635		Man I	38
3090.209		Fe I	313	3099.115		Ni I	13	3108.66		Cr II	55
3090.251		Co I	77	3099.180		CP II	2	3108.704		V II	39
3090.40		v i	15	3099.22		Zr II	5	3108.78	P	Fe III	29
3090.44		Zr I	5 4	3099.667		Co I	75	3108.82	•	A II	18
3090.772		Fe III	20	3099.898		Fe I	28	3108.85		Fe III	12
3090.94		Cr II	126	3099.968		Fe I	28	3108.927		Ti II	77
3091.076		Mg I	5	3099.97		A II	00	3109.05		Fe I	165
3091.30 3091.437		Zr II V I	38 15	3100.304 3100.31	P	Fe I Fe III	28 51	3109.11 3109.3		Hf II Y II	10 57
3091.437		VI	15	3100.31	P	Fe III	29	3109.32		Fe III	8
3091.578		Fe I	28	3100.504	-	Gd II	12	3109.336		Cr I	163
309 1. 70		Y I		3100.666		Fe I	28	3109.375		A II	186
3092.058		Gd II	93	3100.666		Ti I	92,93	3109.506		Co I	50
3092.22		C1 11	14	3100.838		Fe I	196a	3109.59		Fe III	1
3092.26		Hf II	30	3100.938		V II	39	3109.75		A II	
3092.519		Sc II	36	3101.003		Fe I	313	3109.92	P	Ti II	58 100
3092.716		Al I V I	3	3101.185 3101.39		Gd II Hf II	93 12	3110.021 3110.052		Co I Fe III	109 39
30 92.72 3092.729		Na II	1	3101.39 3101.407		Gd II	76	3110.032		V II	139
3092.785		Fe I	29	3101.52	P	Ti II	58	3110.095		Ti II	77
200.0 040		A3 T	•	9101 806		T4 T	101	9110 278		Co II	159

I A

Multiplet No.

Type Element

1 A

Type Element

Multiplet No.

I A

Type Element

1 A	туре	El emen t	Multiplet No.	I A	Type	r.i ement			••		•	
3110.52		Zr II	105	3119.60		As I	1	3128.640		Ti II	121	
3110.620		Ti II	67	3119.66		Ca III	4	3128.686		V II Cr II	83 5	
3110.65		Y 11 V 11	50,78 1	3119.660 3119.706		Fe II Cr I	183	3128.699 3128.789		YII	51	
3110.708 3110.821		Co I	11	3119.725		Ti I	137	3128.79		Zr II	38	
3110.85		Fe III	29	3119.800		Ti II	67	3128.901		Fe I	54	
3110.860		Cr I	163	3119.82		C1 11	20	3129.013		Fe II	96	
3110.87		Hf II	46	3119.837		Rh II Gd II	8 11	3129.04 3129.075		Fe III Ti I	8 192	
3110.87 3111.15		Zr II Zr II	5 24	3119.941 3120.02 3		Fe II	96	3129.16		Zr II	23	
0111.10		2. 11	~*	0100.010								
3111.283		T1 I	181	3120.03	P	Fe I	161	3129.18	P	Fe I	161	
3111.339		Co I	73	3120.03		Fe III Co I	29 74	3129.314 3129.334		Ni I Fe I	12 52	
3111.609 3111.686		Fe III Fe I	8 260	3120.10 3120.181		Gd II	76	3129.368		Na II	2	
3111.95		Cr II	55	3120.24		Fe III	1	3129.44		0 11	14	
3112.05		Y II	4	3120.371		Cr II	5	3129.481		Co I	74	
3112.050		Ti II	67	3120.435	D	Fe I	194 50	3129.696 3129.76		Gd II Zr II	9 3 5	
3112.079 3112.125		Fe I Mo I	455 2	3120.72 3120.726	P	Zr II V II	138	3129.933		YII	51	
3112.202		Ce II	138	3120.74		Zr I	37	3129.955		Gd II	76	
								0.100 0.5		7- T	37	
3112.482		Ti I	92	3120.84 3121.05		Fe III Cr II	29 72	3130.05 3130.175		Zr I Ti I	180	
3112.63 3112.81	P	La II Cr II	156 125	3121.08		Fe III	. ~	3130, 262		V II	1	
3112.925	•	V I	56	3121. 138		V II	1	3130.416		Be II	1	
3113.172		Gd II	93	3121.415		Co I	9	3130,561		Fe II	66	
3113, 31	P	Fe I	161	3121.515		F III Ce III	1 2	3130.73 3130.780		Eu II Cb II	1	
3113.473 3113.50		Co I Zr I	48 37	3121.548 3121.566		Co I	11	3130.804		Ti I	-	
3113.560		V II	174	3121.599		T1 II	4	3130.804		T1 II	4	
3113, 579		F III	1	3121.62		C1 II	20	3130.812		Gd II	76	
3113, 59		Cr 11	186	3121.71		0 111	12	3131.064		Be II	1	
3113.59	P	Fe I	165	3121.71		V I	56	3131. 11		Zr I	37	
3113.71	•	0 11	14	3121.76		Fe I	102	3131.211		Cr I	183	
3114.05		Pd I	4	3121.760		Gd II	76	3131. 257		Tm II Cr II	53,55	
3114.092		Ti I	181 49	3121.84 3121.97		Cr II Cr II	72 55	3131.54 3131.719		Fe II	107	
3114.118 3114.124		Co I N1 I	49 24	3122.065		Ti II	58	3131.81		Hf I	3	
3114. 295		Fe II	82	3122, 542		Sc II	46	3131.829		Co I	48	
3114.45		Y II	49,58	3122.596		Cr II	54 81	3131.845		Hg I Cr II	2 5	
3114.680		Fe II	82	3122.61		Zr II	51	3132.058		01 11	· ·	
3115.088		II tT	58	3122.62		0 11	14	3132.06		Zr I	37	
3115.16		V II	111	3122.665		Fe I	314	3 132. 12	P	Cr II	125	
3115. 172		Nd II	E 4	3122.782		Au I V II	1 173	3132. 218 3132. 22		Co I Ne II	7 13	
3115.28 3115.352		Cr II Fe II	54	3122, 887 3122, 954		V II Sc II	173 39	3132.514		Fe I	578	
3115, 352		Nn I	38	3123.074		Ti I	67	3132.591		Mo I	3	
3115.492		Fe II	96	3123. 18		Fe III		3132.793		V II	122	
3115.51		Cr I	163	3123. 29		Ca II Fe I	10 164	3132.820 3132.86		Cr I O III	183 12	
3115.65 3115.669		Cr II F III	46 1	3123.353 3123.715		Fe II	70-2	3133.048		Fe II	82	
							~~	8188 004		Gd II	9	
3115.73		0 111	12	3123.72		Cl II	20 19.1	3133.094 3133.096		Sc II	39	
3115.73 3116.02		Zr II V II	75 139	3123.769 3123.989		Ti I Gd II	181 11	3133.329		V II	1	
3116.02		V II	139	3124.02		0 11	14	3133.49		Zr II	63	
3116, 141		Nd II		3124.08		Fe I	165	3133.603		Nd II Gd II	76	
3116, 250	Б	Fe I	165 261	3124, 250 3124, 762		Gd II F III	10 1	3133.852 3133.886		Tm II	76 4	
3116.39 3116.590	P	Fe I Fe II	261 82	3124.762		Ge I	i	3133.96	P	Fe I	161	
3116.633		Fe I	28	3124.978		Cr II	5	3134.08	P	Fe I	160	
3116.714		Ni I	95	3125.01		V II	84	3134. 108		N1 I	`25	
2116 76		Cr II	126	3125,02		Cr II	70	3134.111		Fe I	28	
3116.76 3116.78		V II	237	3125.02	P	Fe I	53	3134.15	P	Fe I	29	
3116.95		Hf II	33	3125.15		Ca II	10	3134.17	P	Fe II	121	
3117.28		Cr II	46	3125.21		Zr II V II	24 1	3134.208 3134.32		F III O II	1 14	
3117.455 3117.505		Ti I Fe II	92 22 6	3125.282 3125.46		Cr II	55	3134.33		Cr II	94	
3117.505		Fe I	29	3125,553		Ti I	192	3134.654		Ti I	91	
3117.656		Ca I	16	3125.653		Fe I	28,160	3134.72		Hf II	5 15	
3117.669		Ti II	67	3125.656		Ti I	192 3	3134.819 3134.82		Mn II O II	15 14	
3117.75		S IV	1	3125.668		Hg I	J	2104.05			-•	
3117.899		Ti I	92	3125.68	P	Fe I	194	3134.897		Nd II	•	
3117.974		Gd II	76	3125.79		Cr II	186	3134.90		A IV V II	1 122	
3118.02		Ne II Ti I	16 181	3125.92 3126.02		Zr II Sc II	5 39	3134.928 3135.034		Gd II	122	
3118.130 3118.14		Cr II	181 55	3126.02		Y II	78	3135.069		Ti I	180	
3118.249		Co T	11	3126.175		Fe I		3135.17		Y II	11	
3118.376	~	VII	1	3126.215		V II	1	3135.35 3135.360		Cr II Fe II	124 82	
3118.56 3118.600	P	Ni I Gd II	94 93	3126. 25 3126. 27		Si III Hf II	11 7	3135.360 3135.483		re II Na II	82 3	
3118.600 3118.636		Co I	93 12	3126.27 3126.79		V II	122	3135.507		Mn II	15	
					_					C- **	0.4	
3118.652	70	Cr II	5	3126.84	P	Fe I Co I	260 26	3135.74 3135.80		Cr II Fe III	94 77	
3118.74 3118.75	P	Fe II Fe III	121 51	3127.252 3127.526		Co I	20	3135.80 3135.82		Ne II	3	
3118.73		Ti II	27	3127.530		Ce II	150	3135.863		Fe I	194	
3119.04	P	Fe I	315a	3127.684		Ti I	180	3135.875		Al II	. 19	
3119.08		Gd II Cr I	10 163	3127.883		Ti II	121 30	3135.91 3136.00		Cr I 8 III	183 13	
3119.246 3119.32		Cr I V II	163 110	3128.286 3128.288		Sc II V II	39 84	3136.00 3136.003		S III Ca I	13 15	
3119.32 3119.336		Gd II	10	3128.560		Gd II	76	3136.028		Ti I	91	

Multiplet No.

1 A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3136.17		Fe I		3144.488		Fe I	161	3154.195		M4 **	40 :
3136.315		Mn II	15	3144.68		0 V	2	3154.201		Ti II Fe II	10 66
3136.43		Fe III	39	3144.700		V II	122	3154.387		F III	4
3136.465 3136.503		Mo II V II	2	3144.730	_	Ti II	111	3154.41	P	Fe I	100
3136.55		A II	122	3144.74 3144.751	P	Ti II Fe II	10 82	3154.510 3154.585		Fe I Ni I	161
3136.680		Cr II	5	3144.92	P	Fe I	195	3154.66	P	Cr II	78 54
3136.726		Co I	8	3145.00		Gd II	10	3154.678		Co I	108
3136.77 3136.95		Ti II Zr I	27 54	3145.022 3145.057		Co I Fe I	50	3154.794		Co I	73
0200100		. .	04	9140.091		re 1	455	3154.80		V II	249
3136.999		Co I	48	3145.10		Cr II	5	3154.82		Ne II	14
3137.3 28 3137.35 2		Co I Ti I	10 91	3145.121 3145.283		Ni I	7	3155.12	P	Fe I	161
3137.454		Co I	108	3145.263 3145.32		Ce II Hf II	120 2	3155.149 3155.293		Cr I Fe I	115 193
3137.55		Cr 11	54	3145.337		V II	ī	3155.409		V II	51
3137.66		A II	71	3145.402		Ti II	10,111	3155.50	P	T1 II	27
3137.755 3137.940		Co I Gd II	49 54	3145.405 3145.46	P	Cb II Fe I	5	3155.63	P	Ti II	37
3138.05		V II	205	3145.515	r	Ti I	160 91	3155.670 3155.68		Ti II Zr II	10 63
3138.094		Gd II	10	3145.516		Gd II	76	3155.704		Ce II	217
3138.203		Cr I	183	0145 506		F III	4		_		
3138.207		Fe II	227	3145.536 3145.719		Ni I	1 11	3155.80 3155.91	P P	Fe I Ti II	192a 121
3138.40	P	Fe I	53	3145.77		Cr II	85	3155.95	•	Zr II	49
3138.44		O II	14	3145.971		V II	1	3155.950		Fe II	67
3138.46 3138.66		8c II Zr II	39 5	3146.226 3146.407		V II Ce II	138 70	3156.11		F III V I	4
3139.02		AII	47	3146.47		A II	49	3156.222 3156.248		V I Os I	4
3139.10	P	Fe I	161	3146.475		Fe I	160	3156.275		Fe I	578
3139.34 3139.39		Cl III Pt I	3 2	3146.748		Fe II V II	67	3156.464		Fe I	454
- 100 • 00		1	~	3146.818		• 11	138	3156.532		Gd II	11
3139.60	P	Fe I	161	3146.878		Gd II	76	3156.59		Pt I	2
3139.661 3139.67		Fe I Hf II	155	3146.91		Sc II	39	3156.68		Hf I	5
3139.729		Sc II	6 39	3146.962 3147.05		F III Ce III	1 7	3157.00		Zr II Fe I	23
3139.733		V II	122	3147.060		Co I	10	3157.040 3157.15	P	Fe I	160 144
3139.77		Ò II	14	3147 - 19	P	Cr II	54	3157.344		Tm II	8
3139.79 3139.87		Zr I Ti I	56 180	3147.227		Cr II Si III	5	3157.397	P	Ti II	4
3139.908		Fe I	100	3147.38 3147.792		Fe I	11 455	3157.44 3157.52	,	Sc II Cr II	32 93
3139.91		Cr II	54	3147.84		Cr II	93	3157.82		Zr I	36,55
3139.947		Co I	9	3147.86		C1 II	10	0157 00		Fe I	104
3139.98	P	Co I	73	3147.931		Rh II	8	3157.88 3157.900		V II	164 50
3140.04	P	Ti II	27	3148.033		Ti II	4	3157.992		.Fe I	159
3140.08 3140.21		Fe III Cr II	94	3148.179		Mn I	19	3158.03		Cr II	70
3140.272		Rh II	124 8	3148.24 3148.420		A II Fe I	194	3158.156 3158.21	P	Mo I Fe I	2 160
3140.385		Fe I	578	3148.445		Cr I	115	3158.293	-	Co I	12
3140.67		Cr II	124	3148.46	P	Fe I	161	3158.32	P	Fe II	95
3140.692 3140.715		Fe II Co I	227 75	3148.738 3148.81		V II Zr I	249 37	3158.772 3158.869		Co I Ca II	10 4
							•	22001000		vu 11	•
3140.77 3140.782		Hf II Ca I	31 15	3149.12		Cr II	84	3158.99		Fe I	452
3141.07		V II	205	3149.267 3149.310		Na II Co I	4 9	3159.10 3159.12		Cr II Zr II	5 126
3141.164		Ca I	15	3149.50	P	Fe I	453	3159.25	P	Fe I	259
3141.247		Ce III	2	3149.56		Si IV	2	3159.254	_	Rh II	2
3141.35 3141.486		Ne II V II	47 152	3149.83 3149.87		Cr II W II	5 <u>4</u> 5	3159.32 3159.365	P	Fe II V II	120 83
3141.537		Ti I	66	3150.11		Cr II	54	3159.521		Ni I	11
3141.670		Ti I	192	3150.20	P	Fe I	161	3159.59		Cr I	92
3141.80		Cr II	175	3150.301		Fe I	578a	3159.662		Co I	9,26
3141.891		Cr I	116	3150.568		V I		3159.86		Cr II	54
3142. 183		V II	172	3150.738		Ca I	15	3160.03		WII	8
3142.22 3142.220		Fe III Fe II	1 7	3151.036 3151.11		Tm II Ti I	28	3160.09 3160.11		T1 I Cr II	28 54
3142.312		Ce II	46	3151.16		Ne II	16	3160.200		Fe I	578
3142.445		Fe I	164	3151.259		N1 I	4-	3160.342		Fe I	192a
3142.484 3142.670		V II Mn I	52	3151.280 3151.31		Ca I W II	15 16	3160.52 3160.60		C1 II Y II	57
3142.74		Cr II	85	3151.319		V II	138	3160.61		Cr I	115
3142.76		La II	31	3151.353		Fe I	311	3160.658		Fe I	155
3142.777		F III	4	3151.500		Rh II	2	3160.69		Gd II	11
3142.888		Fe I	144	3151.86		Fe III		3160.77	P	Fe I	159
3142.900		Gd II	76	3151.867	_	Fe I	7	3160.781		V II	65,136
3142.97 3143.131		Cr II Gd II	125 25	3152. 14 3152. 21	P	Ti II Cr II	27 71	3160.92 3161	P P	Fe I N V	160 2
3143.16	P	Ti I	28 28	3152.21 3152.251		Ti II	10	3161.01	£	Zr II	2 104
3143.242		Fe I	7	3152.525		Sm II		3161.039		Mn I	19
3143.350 3143.36		Ti I	180	3152.707		Co I	73	3161.205		Ti II	10
3143.477		Fe III V II	13 122	3152.881 3153.064		Cr I Fe I	116 99,452	3161.313 3161.369		V II Gd II	151 10
				-2		-	,- 				
3143.657 3143.68		Ru II Cr II	2 53	3153.200		Fe I	161	3161.370 3161.38		Fe I A II	52 97
3143.68	P	Ti II	37	3153.322		Fe I	160	3161.38		C1 II	97 11
3143.74		Ne II	24	3153.54		Cr I	200	3161.45		A II	
3143.756 3143.91		Ti II Cr II	4 94	3153.549 3153.692		V I Co I	7	3161.55	P	Fe I	195
3143.956		Ce III	2	3153. 692 3153. 80		A II	118	3161.638 3161.652		Gd II Co I	25 73
3143.990		Fe I	578	3154.04		Cr II	53	3161.66	P	T1 II	27
3144.37		Y II	49	3154.10		Cr II	69	3161.755		Ti II	10

8			÷.		TNDT	IU LISI					
1 A	Туре	Element	Multiplet No.	I, A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
		D- T	160	3170.337		Fe II	6	3179.44		w II	7
3161.949		Fe I Rh II	160 1	3170.40		Sc II	32	3179.45		Cr II	8 2
3162.284 3162.335		Fe I	159,310	3170.715		Ni I	78	3179.479		Fe I	52
3162.46		Cr II	46	3171.016		Fe II		3179.504		Fe II	157
3162.57		Hf I	2	3171.09		Gd II	10	3179.538		Fe I	
3162.570		Ti II	10	3171.14		N III	EO 540	3180.164	_	Fe II	157
3162.61		Hf II	30	3171.353		Fe I Ce II	52,548 99	3180.17	P	Fe III Th II	38 4
3162.714		VII	83	3171.615		Fe I	160	3180.199		Fe I	155
3162.764		Gd II	54 100	3171.659 3171.68		La III	1	3180.223 3180.225		Ti II	120
3162.799		Fe II	120	3111.00			_	01001220			
3163.024		V II	84	3171.739		V II	217	3180.290		СР ІІ	5
3163.091		Fe II	7	3172.067		Fe I	99,193	3180.290		Co I	106
3163.403		СРІІ	1	3172.08	_	Cr II	71	3180.521		Ca I	14
3163.61		A II	118	3172.11	P	Fe I Gd II	100 129	3180.701		Cr I	7
3163.731		Na II	7	3172.169 3172.230		V II	249	3180.72		O IV Cr II	9
3163.756		Cr I V II	115 249	3172.30	P	Fe I	312	3180.73 3180.756		Fe I	7
3163.76 3163.77	P	Cr II	123	3172.731		Ti I	65	3180.98	P	o IV	7
3163.86	P	Fe II	79	3172.79		Mg II	13	3181.05		A II	47
3163.93	-	Cr II	69	3172.828		Tm II	8	3181.275		Ca II	4
						116 7	5				•
3164.06		Cr I	200	3172.94		Hf I N III	3	3181.428		Cr II Fe I	9 258
3164.154		Ce II	69	3172.97 3173.07		Y II	51	3181.522		Zr II	63
3164.166		N1 I	79 79	3173.140		Co I	48	3181.58 3181.740		N1 I	78
3164.26		Fe II Cr II	46	3173.40		Fe I	333	3181.84		Ti II	122
3164.28 3164.308		Fe I	163	3173.56		Co I	72	3181.85		.Fe I	333
3164.32		Zr II	50	3173.58		Cr II	83	3181.922		Fe I	155,505
3164.46		Ne II	13	3173.58		Ne II	13	3181.94		Zr II	48
3164.48		Cr II	115	3173.607		Bu II	3	3182.076		Fe I	159,333
3164.618		Ca I	14	3173.608		Fe I	333	3182.118		Co I	73
		m	•	3173.66		C1 II		3182.42		Y II	49
3164.67		Fe III	8 8	3173.663		Fe I	101	3182.57		Ti II	122
3164.82		V II Ti II	0	3173.678		Rh II	5	3182.59		V II	217
3164.91 3165.005		Fe I	155	3174.077		V 11	84	3182.674		V II	150
3165.00	P	Fe I	194	3174.09		Fe III	38	3182.86		Zr II	23
3165.16	P	Fe I	100	3174.125		F III	2	3182.970		Fe I	100
3165.24	P	T1 II	37	3174.140		CoI	138	3183.038		N1 I	78
3165.31		A II		3174.22	P	Fe I	578	3183.115		Fe II Ni I	7 78
3165.45		Zr II	63	3174.531		V II F III	217 2	3183.251 3183.26	P	Zr II	105
3165.508		N1 I	21	3174.725		F 111	•	3163.20		D. 11	200
3165.51		C 11	9	3174.80		T1 II		3183.325		Cr II	82
3165.70		Né II	13	3174.88		La II	157	3183.406		ÝΙ	14
3165.72		S1 IV	2	3174.905		Co I	71	3183.523		Ce II	216
3165.86	P	F III	1	3175.046		Sn I	1	3183.58	P	Fe I	192a
3165.860		Fe I	160	3175.077		Fe II	157	3183.916		Sm II V I	14
3165.89		V II	84	3175.16		P V	1 2	3183.96		V I	14
3165.94		Mg II	14	3175.317		Ru II Fe I	155	3183.982 3184.09		Ti II	3
3165.957		Fe II	R	3 175.447 3175.66		Ti II	120	3184.36		Cr II	123
3165.98 3165.99		Zr II C II	9	3175.84		Mg II	13	3184.367		N1 I	11
3100.88			-			_					
3166.22	P	Fe II	79	3175.97		Fe I	333	3184.43	P	Fe II	67
3166.24	P	Fe I	155	3175.97		W II	7	3184.631		Fe I	155,162
3166.29		Zr II	48	3176.00		Fe III	38	3184.896		Fe I Fe II	7 67
3166.39		V II	84	3176.16		Ne II Ni I	16 77	3185.095 3185.16		8 III	13
3166.435		Fe I	259 100	3176.292 3176.366		Fe I	258	3185.16		81 III	8
3166.59	P	Fe I Fe II	6	3176.602		WI	5	3185.315		.Fe II	7
3166.670 3166.948		Rh II	5	3176.70	P	Sc II	32	3185.396		V I	14
3166.98	P	Fe I	455	3176.85		Hf II	8	3185.72		O IV	7
3167.420		V II	217	3176.86		Fe III	38	3186.01		81 III	
				A.R		D., TT	9	0102 40		V II	64
3167.49		V II	236	3177.060		Ru II Ce II	2 103	3186.10 3186.126		Ce II	167
3167.54	7 0	Fe III Fe I	28 99	3177.137 3177.22		WII	6	3186.120		A II	48
3167.78 3167.853	P	Fe II	66	3177.260		Fe II	79	3186.350		Co I	8
3167.853 3167.907		Fe I	578	3177.266		Co I		3186.451		Ti I	27
3167.94	P	Fe II	82	3177.490		Gd II	129	3186.740		Fe II	6
3167.95	-	CII	9	3177.52	P	Fe I	159	3186.75	_	Cr II	69
3168.060)	Co I	108	3177.531	_	Fe II	82	3186.82	P	Fe I	100
3168.127	,	V II	8	3177.61	P P	Fe II Fe II	95 79	3186.86 3187.006		V II Sm II	63 21
3168.21		Fe III	94	3177.65	F	10 11		2101.000			
9180 840		Ti II	10	3177.696		V II	217	3187.16	P	Fe I	333
3168.519 3168.86	•	Fe I	160	3177.80		O IV	7	3187.216		Sm II	13,40
3168.94	P	Fe I	160	3177.90		Cr II	40	3187.294		Fe II	120
3168.98		Mg II	14	3177.96	P	Fe I	159	3187.592		Mo II	2
3169.09	P	Fe I	813	3178.015		Fe I	156	3187.60	~	Ne II Re I	3 52
3169.183	3	Ce II	74	3178.03		Fe III	38 63	3187.68	P	Fe I V II	52 8
3169.20		Cr II	12 3 65	3178.10 3178.135		Zr II Sm II	63 21	3187.717 3187.743		He I	3
3169.21		V II Ne II	16	3178.125 3178.495		Mn I	19	3187.787		Sm II	31
3169.30 3169.58		Cr I	115	3178.545		Fe I	454	3187.889		Rh II	5
0108.00											
3169.58	P	Fe I	161	3178.630		T1 II	120	3188.011		Cr I	92
3169.68		A: II	47	3178.79		Cr II	173	3188.10	_	V II	49
3169.766		Co I	109	3178.970		Fe I	192a	3188.17	P	O IV	7 7 4
3169.85		Cr II	173	3179.055		Na II Fe III	7 38	3188.377		Co I V II	8
3169.854		Ca I Sm IÍ	14 31	3179.08 3179.283		Cr I	92	3188.522 3188.567		Fe I	159
3169. 878 3170. 16		Sm II C III	31 8	3179.203		Ti I	65	3188.603		Rh II	8
0110.10		V 11	017	9170 999		Co II	4	9100 AK	P	O TV	7

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	ΙÁ	Туре	Element	Multiplet No.
3188.95		Si II		3196.532		Gd II	9	3206.16		V II	
3189.04		C1 II	65	3196.574		V II	62	3206.344		Ti I	179
3189.24 3189.52		W II Ti II	6,10 120	3196.63 3196.930	P	Fe II Fe I	95 155	3206.350 3206.466		Cb II Gd II	5 129
3189.638		Ce II	97	3196.96		Cr II	9	3206.77		Hf II	56
3189.74		Fe III	55	3197.00		Fe I	8	3206.825		Ti I	179
3189.752 3189.76		Co I V II	9 83	3197.08 3197.113		Zr II Ni I	126 24	3206.908 3206.952		Mn I Ni I	14 94
3189.783		Na II	4	3197.12		Cr II	9	3206.98		Fe III	94. 6
3189.85		Cr II	123	3197.518		Ti II	3	3207.092		Fe I	159
9100 02		Fe I	050	3197.53		Fe I	711	9907 19	P	0 777	24
3190.02 3190.403		Sc II	259 42	3197.574		V II	150	3207.12 3207.185	P	O III Sm II	31 2
3190.651		Fe I	548	3198.00		Cr II		3207.248		WI	9
3190.686		V II	8	3198.012		V I	14	3207.297		Rh II	1
3190.69 3190.81		Cr II Fe III	174	3198.112 3198.266		Cr I Fe I	91 258	3207.337 3207.410		T1 I V I	90
3190.825		Fe I	548	3198.42		YII	39	3207.61		A II	14 132
3190.84	P.	Fe II	120	3198.62		Ne II	13	3207.649		Fe I	382
3190.86 3190.874		Ne II Ti II	13 26	3198.660 3198.726		Co I Ti I	26 191	3207.897		Ti I	179
3190.674		11 11	20	01001120		•• •	101	3208.02		Cr II	114
3191.005		Sc II	42	3198.81	_	Fe III	6	3208.13		La II	
3191.044		Gd II Cb II	129	3198.88 3198.917	P	Ne II Ir I	13 7	3208.231		Cu I	3
3191.096 3191.11		Fe I	1 258	3199.279		Ce II	106	3208.32 3208.345		Zr II V II	4 8
3191.180		Fe I	452	3199.322		Co I	9	3208.470		Fe I	711
3191.23		Zr I	19	3199.34		Ti I	191	3208.607		T1 II	120
3191.297 3191.374		Co I Fe II	7 79	3199.342 3199.37		N1 I Sc II	42	3208.62 3208.838		Cr II Mo I	9 2
3191.39		La II	157	3199.43		Ti I	191	3208.91		MO I Ni II	2
3191.41	P	Fe I	682	3199.50	P	Fe I	7	3208.99		Ne II	14
3191.45		C1 III	3	3199.53		o iv	7	3209.030		Ti I	180
3191.577		WI	5	3199.530		Fe I	156	3209.030		Fe I	179 97
3191.659		Fe I	8	3199.54		81 II		3209.13		La II	114
3191.875		Ni I	125	3199.87		Cr II	101	3209.21		Cr II	9
3191.93 3191.994		Zr II Ti I	50 27	3199.915 3199.93	P	Ti I Fe I	27 156	3209.297 3209.34		Fe I K III	333,711
3192.059		Fe II	66	3199.99	-	Hf II	55	3209.38		Ne II	5 16
3192.12		Cr I	13	3200.28		Y II	10	3209.603		Fe II	137
3192.220 3192.26		Co I Ti II	72 25	3200.423 3200.45		N1 I Cr II	23 114	3209.64		O IV	7
3192.20		11 11	28	0200.40		v. 11	114	3209.80		Co I	70
3192.417		Fe I	100,711	3200.454		Gd II	129	3209.912		Ni I	94
3192.68 3192.699		T1 II V II	120 83	3200.475 3200.67		Fe I Zr II	155, 162 37	3209.930		Ca I	13
3192.799		Fe I	155	3200.790		Fe I	8	3210.04 3210.219		S1 II Co I	7 106
3192.84	P	Fe I	452	3200.95	_	0 111	31	3210.230		Fe I	159
3192.917		Fe II	6	3201.24 3201.26	P	Cr I Cr II	79	3210.449		Fe II	6
3193.014 3193.02		Sm II La II	45	3201.20		V II	114	3210.52 3210.62		Si III Cr I	13
3193.10		81 II		3201.594		Ti I	90	3210.825		Tm II	4
3193.16 4		Co I	26	3201.714		Ce II	76	3210.830		Fe I	156
3193.174		Gd II	54	3201.891		Fe I	159	3210.98		Zr II	63
3193.200		V II	83	3201.90		Fe III	6	3211.01		Co I	154
3193.214		Fe I	7	3201.95	P	K III	5 *0	3211.07		T1 I	191
3193.314 3193.41		Fe I Cr II	159 52	3201.97 3202.142	F	Cr I N1 I	79 94	3211.072 3211.309		Fe II Cr I	95
3193.48		YII	48	3202.381		V I	14	3211.494		Fe I	220 162
3193.53	_	Hf II	2	3202.52		Cr II	173	3211.693		Fe I	711
3193.74 3193.75	P P	Fe I Ni I	682 92	3202.535 3202.562		Ti II Fe I	26 547	3211.734		Sm II	
3193.76	P	Fe II	79	3202.66	P	Fe I	52	3211.872 3211.947		Fe I Rh II	98,711 6
0400 000		m		2000 244		W	00				
3193.809 3193.85	P	Fe II Fe II	6 67	3202.711 3202.740		V II F II	62 8	3211.989		Fe I	158
3193.969	-	Mo I	3	3203.026		Co I	9	3212.02 3212.121		Zr I Ir I	19 8
3193.97	_	V II	49	3203.05		C1 II	_	3212.186		Na II	4
3194.03 3194.099	P	Fe I Cu I	156	3203.104 3203.33		He II Y II	1 10	3212.274		Gd II	54
3194.099		Hf II	3 10	3203.39		Al I	20	3212.40 3212.434		Y II V I	67 73
3194.25		A II	46	3203.435		Ti II	3	3212.53		Cr II	81
3194.26 3194.422		Ti II Fe I	120 155	3203.509 3203.53		Fe II Cr II	79 46	3212.54		A II	47
01010122			100				20	3212.56		La II	122
3194.56		T1 II	120	3203.58		Ti I	26	3212.70	P	T1 II	9
3194.61 3194.63		Ne II Cr II	16 70	3203.67 3203.741		Hf II Fe II	21 196	3212.85		Zr II	49
3194.75		0 IV	7	3203.828		Ti I	27	3212.884 3212.91		Mn I Cr II	14 114
3194.76	P	N1 I	108	3203.89		Si II	7	3213.145		Ti I	90,191
3194.76		Ti II	04*	3204.06 3204.196		P V V I	1	3213.145		T1 II	3
3194.825 3194.983		Ce II Cb II	217 1	3204.196		A II	13 71	3213.311 3213.423		Fe II N1 I	6
3195.50		V II	1	3204.36		Zr II	63	3213.423 3213.46		N1 1 Cr II	91 153
3195.573		N1 I	12	3204.55	P	Cr I	79	3213.59		Ti II	120
3195.62		Y II	10	3204.76		Fe III	6	3213.70		Ne II	
3195.63		Hf II	10 45	3204.870		Ti I	90	3213.70 3213.771		Ne II Fe I	13 452
3195.717		Ti II	25	3205.03		A II	133	3213.972		F III	2
3195.994		Ti II	46	3205.11 3205.168		Cr II Ti I	114 26	3214.044		Fe I	156,711
3196.070 3196.147		Fe II Fe I	7 333	3205.400		Fe I	26 155	3214.059 3214.07	P	Ni I Fe I	93 158
3196.182		Sm II	40	3205.582	_	V I	73	3214.125		Sm II	25
3196.37	P	Cr I	79	3205.64 3205.848	P	Ti II Ti I	46 26	3214.14		Ti II	84
3196.40		Cr II	9,115	3205.646		Ti II	20 98	3214.19		Zr II	3

10											
IA	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3214.38		Ne II	14	3223.332		CP II	5	3231.528		Sm II	13
3214.396		Fe I	7	3223.444		Fe II	170	3231.599		Fe I Cr II	50 122
3214.624		Fe I	143	3223.519 3223.534		Ti I Ni I	179 92,94	3231.64 3231.69		Zr II	3
3214.750 3214.750		Ti II V II	3 8	3223.740		Gd II	10	3231.702		Fe II	80
3215.145		Ca I	13	3223.853		Fe I	27	3231.71	P	T1 II	46
3215.262		Sm II	40	3224.05	P	Fe I	920	3231.75		C1 II V II	73 61
3215.334		Ca I	13	3224.241		Ti II Gd II	84 92	3231.952 3231.97		V II Ne II	61 11
3215.375 3215.578		W I	13 5	3224.297 3224.632		Co I	71	3232.00		YII	49
		Сь ІІ	1	3224.761		Mn I	3	3232.055		0s I	3
3215.595 3215.60		Fe III	6	3224.82		Ne II	43	3232.16	P	Fe I	258
3215.637		Fe I	332	3224.86	P	Fe II	178	3232.280		Ti II Ne II	36 11
3215.940		Fe I	156	3225.020		N1 I Y II	39 39	3232.38 3232.52		Sb I	2
3215.97	P	O III Fe I	31 682	3225.17 3225.39		Cr II	140	3232.61		Li I	2
3216.06 3216.08		0 11	107	3225.44		Cr II	45	3232.791		Fe II	119
3216.203		Ti I	90	3225.460		Gd TI	ā	3232.791		Ti I	179
3216.31	P	O IV Cr II	7 82	3225.478 3225.607		Cb II Fe I	1 192,920	3232.874 3232.963		Co I Ni I	106 7
3216.55										Ca III	4
3216.70		YII	10	3225.789 3225.896		Fe I Ca I	155 13	3233.02 3233.053		Fe I	620
3216.75 3216.76		A II O II	107	3225.976		Na II	17	3233.174		Ni I	91,184
3216.821		Ni I	93	3226.00		A II	46	3233.190		V I	72
3216.850		Sm II	13	3226.034		Mn I	14	3233.234		Cr I S III	25 3
3216.88	P	Ti II	36	3226.106		V I Ti I	14 179	3233.24 3233.304		Fe I	142
3216.946		Mn I Co I	3 70	3226.128 32 26. 129		Ca I	13	3233.324		Rh II	2
3216.996 3217.056		Ti II	2	3226.240		Ti I	27	3233.546		V II	61
3217.12		La Il	156	3226.318		GG II	75	3233.62		P III	4
3217.121		V I	14	3226.36		Cr II	114	3233.772		V II	61
3217.121		N II	38	3226.378		Fe II	178	3233.88		Ni I	150
3217.30		HrII	4	3226.55		Cr I Fe I	25 8	3233.967 3233.968		Fe I Mn I	158
3217.380		Fe I Cr II	157 9	3226.727 3226.771		Ti II	3	3234.00		Si III	6
3217.44 3217.53	P	Fe I	254	3226.924		V II	185	3234.06		Cr II	63
3217.70	_	A II	132	3226,984		N1 I	7	3234.119		Co I	72
3217.830		N1 T	91	3226.986		Co I Fe I	124 156	3234.12 3234.165		Zr I Ce II	19 119
3217.942 3218.10		Ti I O II	179 107	3227.067 3227.114		Ce II	95	3234.17		s III	3
		WA TT	70	3227.17	P	Fe I	247	3234.274		Ce II	80
3218.20 3218.21		Hf II Ne II	78 13	3227.23	•	Cr I	162	3234.50	P	T1 II	46
3218.26	P	Ti II	46	3227.409		V I	134	3234.504		VII	61
3218.270		Ti II	84	3227.48		Cr II	153	3234.517		Ti II	2 8
3218.34	_	Fe III	87	3227.732 3227.752		Fe II Co I	6 8	3234.614 3234.649		Fe I Ni I	21
3218.44 3218.614	P	Ti II Sm II	46	3227.798		Fe I	157	3234.923		Fe II	1
3218.68		Zr II	35	3228.003		Fe I	379	3234.926		Na II	10
3218.683		Ti I	90	3228.090		Mn I Ti I	14 179	3235.003 3235.26		Mn I Cr II	139
3218.70		Cr I	92	3228.183							
3218.869		V I	72	3228.262		Fe I	157	3235.33	P	Fe I Tm II	309 8
3218.944		Ce II	75	3228.36 3228.564	P	Ti II Ce III	46 1	3235.448 3235.532		Co I	71,138
3218.98 3219.13		Pd I Cr II	2 140	3228.600		Fe II	-	3235.592		Fe I	308
3219.150		Co I	8	3228.605		Ti II	24	3235.753		N1 I	11
3219.212		T1 I	179	3228.784		Sm II	52	3235.783	_	Co I	72
3219.32	_	P III	4	3228.81		Zr II Fe I	49 157	3235.95 3236.106	P	Ti I Gd II	47 75
3219.37 3219.58	P	Fe I Fe I	308 156	3228.900 3229.123		Fe I	8	3236.122		Ti II	24
3219.60	P	Fe I	254	3229.193		Ti II	2	3236.17		Zr II	104
3219.616		Cr I	220	3229.204		Cr I	220	3236.223		Fe I	7
3219.77	P	Fe I	8	3229.36		Co I	152	3236.403		Cb II	1
3219.79		Cr II Fe I	63 158	3229.363 3229.38		Ce II Cr II	94 46	3236.573 3236.61		Ti II Zr II	2 1 25
3219.806 3219.811		N1 I	94	3229.397		Ti II	36	3236.638		Sm II	
3220.467		Ti II	9	3229.50		Ne II	43	3236.735		Ce II	101
3220.62		Co I	152	3229.604		V I	134	3236.778		Mn I	14
3220.66		Hf II	30	3229.73 3229.78		Zr II Fe I	149 247	3236.806 3236.82		Tm II A II	13 83
3220.772 3220.835		Ir I Fe II	5 106	3229.89		Cr II	114	3237.028		Co I	7
3221.151		Ti I	26	3229.994		Fe I	546	3237.234		Fe I	256
3221.101		Ce II	215	3230	P	o v	9	3237.402		Fe II	81
3221.273		N1 I	185	3230.09	P	Fe I	27	3237.414		Mn I	F 0
3221.378		Ru II	3	3230.16	P	Fe I Ne II	156 11	3237.54 3237.729		Zr II Cr I	50 114
3221.380 3221.381		V II Ti I	109 179	3230.16 3230.210		Fe I	158	3237.729		Fe II	81
3221.361		A II	46	3230.496		Fe II	95	3237.876		V II	38
3221.652		N1 I	8	3230.55		Si III	6	3238.087		Cr I	114
3221.76 3221.936	P	Ti II Fe I	46 156	3230.559 3230.646		Sm II V I	21 13	3238.224 3238.31		Ti I Fe III	179 79
		Ru II	7	3230.719		Mn I	14	3238.32	P	Fe I	545
3221.978 3222	P	0 V	7 5,9	3230.719		V II	48	3238.32 3238.50		Cr I	162
3222.05	P	Fe I	451	3230.963		Fe I	157	3238.535		Fe I	397
3222.069		Fe I	156	3231.09	P	Ni I	106	3238.57		0 111	9
3222.42 3222.48		A II Zr II	1 3 2 104	3231.10 3231.20		S III Y II	3 65	3238.621 3238.74		Gd II Fe III	92 64
3222.46 3222.741		Ti I	26	3231.236		Ce II	149	3238.77		Cr II	63
3222.843	_	T1 II	2	3231.315		Ti II	9	3239	P	0 V	5
BAAA AA		- T	700	9991 940		west I I	41)	9090 000		Wa T	744 740

							_				
Y A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	A I.	Type	Element	Multiplet No.
				2040 740		14- T	4.4	3256.779		V I	138
3239.04 3239.101		Fe III Rh II	63 2	3248.516 3248.602		Mn I Ti I	14 89	3257.072		Gd II	92
3239.14		Cr I	92	3248.602		Ti II	66	3257.244	•	Fe I	27,451
3239.256		Co I	47	3248.70		Ti II	9	3257.358		Fe II	94
3239.35	P	Fe I	379	3249	P	0 V	9	3257.594		Fe I Cr I	90
3239.436	_	Fe I	157	3249.037	P	Fe I Fe II	308 65	3257.822 3257.83		8 II	113 17
3239.46 3239.657	P	Fe I Smr II	157 48	3249.16 3249.204	P	Fe I	253	3257.893		v II	108
3239.664		Ti II	24	3249.35		La II	31	3257.894		Fe II	178
3239.833		V II	61	3249.370		Ti II	23	3257.90		C III	6
3239.87	P	Fe II	81	3249.440		N1 I	10	3257.965		Na II	14
3240.013		Fe I	545	3249.464		A II	82	3258.01		Cr II	152
3240.07	_	Cr II	140	3249.566		V I	13	3258.035		Co I Tm II	47
3240.11	P	Fe I Tm II	158	3249.617 3249.657		V II Fe II	38 81	3258.048 3258.413		Mn I	4 14
3240.230 3240.399		Ma I	13	3249.742		Gd II	75	3258.62	P	Fe I	157
3240.516		Rh II	6	3249.82		AII	47	3258.67		Si III	12
3240.616		Mn I	14	3249.911		Fe II	78	3258.77		Cr II	159
3240.71		T1 II	9	3249.995		Co I	26	3258.773		Fe II Pd I	81
3240.785		V II	61	3250.187		Gd II	92	3258.80		Pu 1	-5
3240.84	P	Ti I	47	3250.27		Fe III	37	3259.007		Ru II	6
3240.85	P	Zr II	12	3250.34	P	Fe II	78	3259.04		Ti I	123
3240.951		Cr I	25	3250.372 3250.400		Sm II Fe I	2 142,379	3259.048 3259.20		Fe II Co I	81 153
3241.01 3241.05		Zr II Co I	4 9	3250.42		Zr I	19	3259.250		Gd II	92
3241.161		Sm II	6	3250.44		Zr II	125	3259.32		Cl III	6
3241.38		Cr II	153	3250.51		CoI	154	3259.42		T1 I	123
3241.43	P	Fe I	158	3250.58		Cr I	114	3259.44	_	CIII	6
3241.50	P	Fe I	27	3250.63 <u>4</u> 3250.743		Fe I Ni I	95 39	3259.44 3259.60	P	Fe II Cr I	178 25
3241.530		Tm II	4								
3241.586		Sm II	22	3250.747		Mo II	2 .	3259.684		V II	48
3241.67		Si III	6	3250.775		V II Cr II	171	3259.71 3259.75	P	A II Fe II	04
3241.685 3241.835		Fe II Be II	80 5	3250.79 3251.135		Mn I	61 14	3259.975	r	Cr I	81 114
3241.984		Ti II	2	3251.236		Fe I	93	3259.991		Fe I	157
3242.18		Zr II	126	3251.32		Sc II	5	3260.11		Zr I	35
3242.268		Fe I⁴	255	3251.34	P	Fe II	137	3260.231		Mn I	14
3242.30		Y 11	10	3251.46	P	Zr II Co I	62	3260.259		Ti I Ti II	89
3242.304 3242.72		Gd II Pd I	92 3	3251.656 3251.66		Pd I	152 6	3260.259 3260.276		Fe Í	45 250
3242.834		Gd II	75	3251.836		Cr I	113	3260.286		Co I	154
3243.058		Ni I	22	3251.869		V II	108	3260.564		CP II	101
3243.118		Fe I	192	3251.911		Ti II	2	3260.814		Co I	107
3243.34		Ne II	15	3252.12	P	Fe I	247	3260.975		Ce II	258
3243.36		W II	13, 15	3252.40 3252.483	P	Fe II Ce II	78 182	3260.98 3261.050		CG I	8
3243.370 3243.406		Ce II Fe I	214 381,710	3252.743		Gd II	136	3261.081		V I	1
3243.513		Ti I	179	3252.914		Ti II	2	3261.332		Fe I	712
3243.579		Co I	47	3252.928		Fe I	252	3261.509		Fe II	195
3243.70		A II	47	3252.94		0 111	9	3261.56		Cr II	159
3243.723		Fe II	119	3252.94	P	Ti II	23	3261.596		Ti II	66,89
3243.74	P	VII	48	3252.948		Mn I	14	3261.80		V II	109
3243.780		Mn I	14	3253.26 3253.401		Cr I Sm II	114	3262.009		Fe I	710
3243.803 3243.840		Ti I Co I	26 69	3253.41		La II	114	3262 . 23 3262 . 284		C III Fe I	6
3244.115		Cr I	25	3253.416		Co I	70	3262.290		Os I	3
3244.15		Ne II	14	3253.44		81 III	12	3262.340		8n I	3
3244.17	P	Sc II	-5	3253.610		Fe I	681	3262.44		Fe III	74
3244.190 3244.44		Fe I Cl III	156 6	3253.70 3253.839		Hf II Fe I	1 250	3262.515 3262.63		Gd II Ti I	75 88
3244.53 3244.69	P	Ti I Cr I	47 114	3253.943 3253.954		Sm II Fe I	40 257	3263.04 3263.213		Fe III Co I	64 124
3245	P	0 V	11 4 9	3254.03		A II	46	3263.238		VI	124 12
3245.13	-	La II	32	3254.039		Mn I	12	3263.25	P	Cr I	25
3245.31		Cr II	62	3254.070		CP II	1	3263.33		V II	38
3245.370		N1 I	108	3254.202		Co I	69	3263.365		CP II	
3245.485 3245.542		Cr I Cr I	25 113	3254.250 3254.261		Ti II Fe I	2 249	3263.373 3263.378		Gd II Fe I	75
3245.750		Co I	138	3254.32		Lu II	4	3263.43		Ne II	144 15
3245.80	P	Fe I	920	3254.363		Fe I	620	3263.45	P	Fe I	680
3245.984		Fe I	27	3254.377		Sm II	6	3263.60		A ,II.	46
3246.005		Fe I	8	3254.46	P	Fe I	158	3263.686		Ti II	45
3246.05	P	Fe I	309	3254.63		Co I	154	3263.98		La II	114
3246.492		Fe I	252	3254.734		Fe I V I	308	3264	P	0 V	9
324 6.674 3246.973		Ce II Fe I	130 95	3254.773 3254.77 3		A II	13 38	3264.137 3264.22		Gd II Fe III	92 64
3247.01		Cr II	95 62	3254.95		Cr I		3264.26		Cr II	61
3247.170		Co. I	70	3255.28		Hf II	7	3264.291		Rh II	5
3247.171		Fe Il	81	3255.30 3255.39		Cr II	138	3284.44 3284 522		N1 I	00
3247.274		Cr I	25			Ne II	23	3264.522		.Fe I	90
3247.297 3247.33		Fe I Cr II	157 81	3255.49 3255.62		Fe III Cr II	96 153	3264.711 3264.716		Mn I Fe I	13 157
3247.33 3247.392		Fe II	81 119	3255.678		Sc I	9	3264.718		Co I	157 47
3247.478		Cb II	5	3255.819		GG II	92	3264.76	P	Fe II	.1
3247.540		Cu I	1	3255.884		Fe II	1	3264.81		Zr II	62
3247.55		A II		3256.137		Mn I	14	3264.82	P	Co I	153
3247.908 3248 15		V II	109	3256.52 3256.52	P	Fe I Fe I	158 307	3264.83 3264.842	P	Co I	9
3248.15 3248.206		Ne II Fe I	15 157	3256.53	•	Zr II	397 49	3264.842 3265.046		Co I Fe I	105 8
			A								<u> </u>

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Elem ent	Multiplet No.
3265.46		0 111	8	3273.50		N1 I	108	3280.91		Y II	29
3265.4 80		Ti I	123	3273.52		O II Fe III	39 7	3281.120 3281.293		V II Fe II	136 1
3265.55 3265.616	P	Fe I Fe I	308 91	3273.53 3273.619		Sc I	9	3281.585		Co I	8
3265. 67		La II	45	3273.66		Hf II	2	3281.607		Gd II	92
3265.893		V II	74	3273.957		Cu I	1	3281.72 3281.755		A II V II	47 136
3265.899 3266.25		V I Cr II	138 121	3274.047 3274.183		T1 I Gd II	123 92	3281.83	P	Fe I	50
32 66.39		Eu II	24	3274.220		Na II	14	3281.880		N1 I	106
3266.43		Ti II	57	3274.24	P	Fe I	95	3281.94		0 111	8
3266.446		Ir I	2	3274.452		Fe I	710	3282.232		Co I	47
3266.633		Tm II	8	3274.50		v ii	163	3282.305		Gd II	92
3266.634		Cr I	25	3274.640		Be II	2	3282.329		Ti II Zn I	66 4
3266. 88		Fe III	7	3274.65		Fe III Ca I	96 12	3282.333 3282.51		Y II	65
3266.91 3266.938		V II Fe II	137 65	3274.661 3274.864		Ce II	104	3282.534		V II	72
3267.035		Fe II	80	3274.90		Ni II	1	3282.696		N1 I	7
3267.31		O III	8	3274.95		Fe III	96	3282.725 3282.73		Fe I Zr I	44 9 19
3267.401 3267.41		Tm II Ti I	13 64	3275.15 3275.20		Zr II Ne II	12 29	3282.777		Nd II	41
3207.41		** 1	01	02.0.20							
3267.480		Rh II	6	3275.218	_	Nd II		3282.827 3282.84		Ni I Zr II	106 125
3267.51		Sb I Mo II	2 6	3275.24	P	Fe I Ti II	27 23	3282.891		Fe I	680
3267.639 3267.709		V II	7	3275.293 3275.60	P	N1 I	107	3283.04		Cr II	159
3267.794		Mn I		3275.65		Zr II	92	3283.11	-	Al III	10
3267.945		Os I	1	3275.66		Co I	43	3283.14 3283.21	P	Ti II 8n II	57 2
3268.064 3268.234		Ni I Fe I	95	3275.67 3275.685		O V Fe I	5 308	3283.22		P III	2
3268.234 3268.335		Gd II	4	3275.776		Al II	5	3283.30		Fe III	14
3268.48		Cr II	62	3275 948		Fe I	450 a	3283.311		V I	12
9000 710		Fe II	118	3275.92		Cr II	151	3283.39		Hf II	30
3268.512 3268.61		re II Ti I	88	3276.08		Fe III	7	3283.40	P	Fe II	118
3268.722		Mn I		3276.12		V II	7	3283.400		Tm II Cl III	7 2
3268.92	P	Fe II	81	3276.25		81 III Ce II	12 93	3283.41 3283.430		Fe I	27
3268.971		N1 I A II	91. 46	3276.251 3276.28		Cr II	172	3283.463		CP II	
3269.05 3269.090		Ca I	12	3276.37		Zr II	35	3283.466		Co I	107
3269.240		Fé I	710	3276.477		Fe I	90	3283.573		Rh I Fe III	4 7
3269.42	P	Fe I	95	3276.483		Co I Fe II	15 4 92	3283.75 3283.777		Co I	47
3269.494		Ge I	1	3276.606		10 11	02				
3269.60	P	Rh II	8	3276.747		Sm II	48	3283.95 3284.360		La II V I	1 20 71
3269.66	_	Zr I	34	3276.774		Ti II Cl II	45 30	3284.432		N1 I	96
3269.75 3269.77	P	Cr II Cr II	152 138	3276.81 3276.811		Tm II	4	3284.57		OIII	8
3269.77		Ti II	57	3276.998		Ti II	8	3284.588		Fe I	91
3269.772		Fe II	118	3277.082		V II	137	3284.72 3284.996		Zr II Fe II	4 93
3269.86		Ne II	15	3277 . 23		N1 I Fe II	90 1	3285.022		V II	108
3269.904 3269.964		Sc I Fe I	9 90	3277.347 3277.448		V II	194	3285.093		Nd II	
3270.115		VII	94	3277.662		Co I	152	3285.20		Fe I	396
0000 14		Cr II	61	3277.69		0 11	23	3285.224		Ce II	148
3270.14 3270.198		Co I	152	3277.71		V II	137	3285.425	_	Fe II	1
3270.23		Fe III	63	3277.78		Bu II	24	3285.54 3285.60 3	P	Fe I Na II	248 4
3270.351		Mn I	00	3277.82		P III Fe II	2 65	3285.609		Tm II	10
3270.515 3270.562		Gd II Ti I	92 123	3277.853 3277.86		Cr I	219	3285.664		Sm II	21
3270.69	P	Fe I	954	3277.939		V I	12	3285.672		V II	162
3270.70		Cr I	219	3278.04		Fe III	7	3285.77 3285.85		Zr II A III	91 1
3270.79 3270.98		Ne II O II	2 39	3278.105 3278.290		Co I Ti II	153 66	3285.89		Zr II	62
3210.50		0 11	••	02.01200						Cr II	137
3271.002		Fe I	91	3278.43		Y I	12	3285.96 3286.026		Fe I	90
3271.118 3271.124		N1 I V II	23 7	3278.553 3278.741		Mn I Fe I	144,250	3286.029		Ce II	199
3271.124		Zr II	22	3278.79		Cr II	113	3286.067		Ca I Sm II	12 48
3271.151		Ce II	146	3278.79		K III	1 70	3286.229 3286.34		Cr II	172
3271.17 3271.498	P	Ni I Fe I	108 680	3278.842 3278.89		Co I Zr II	72 1 49	3286.463		Fe I	710
3271.436		Rh II	2	3278.922		Ti Í	63	3286.545		Co I	46
3271.612		Rh I	6	3278.922		Ti II	23	3286.57 3286.71		W II Y II	1 65
3271.637		V I	12	3279.25		Si III	12	0200111			
3271.652		Ti II	66	3279.254		Co I	70	3286.755		Fe I	91 90
3271.666		Mo II	6	3279.26		Zr II	3	3286.756 3286.946		Ti II Ni I	89 19
3271.693		Fe I	49	3279.529		Gd II Cr II	92 121	3286.98	P	N1 I	107
3271.778 3272.080		Co I Ti II	70 66	3279.54 3279.649		Fe II	118	3287.117		Fe I	396
3272.21		Zr II	3	3279.743		.Fe I	449	3287.192		CoI	71
3272.25		8 II	17	3279.842		Ce II	68 7 9	3287.192 3287.221		Gd II N1 I	136 55
3272. 253	ъ	Ce II	73 62	3279.844 3279.97		0 III	73 29	3287.26		Pd I	3
3272.30 3272.405	P	Zr II Co I	62 152	3279.97	P	Ti II	57	3287.31		Zr II	12
						11.0 T-	•	3287.37		Al III	10
3272.60 3272.71		Fe I Fe I	51 712	3279.98 3279.995		Hf II Ti II	9 35	3287.468		Fe II	118
3272.71 3272.76		Co I	151	3280.22		P III	6	3287.575		Co I	154
3272.77		Eu II	24	3280.261		Fe I	620	3287.59		O II Ti II	23 89
3272.807		Sm II	40 71	3280.391 3280.58		Ti I Fe III	88 7	3287.657 3287.70		Cr I	•
3273.027 3273.04		V I Zr Il	71 3	3280.58 3280.682		Ag I	í	3287.827		Co I	43
3273.36		AII	71	3280.75		Zr II	34	3288.04		Cr II	62 8
3273.483		Sm II		3280.756		Mn I	10	3288.142 3288.32 4		Ti II V II	89
3273.499		Fe II	118	3280.763		Fe I	451	9690.06%			

											10
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3288.428		Ti II	66	3299.11		Co I	151	3307.717		Ti II	8
3288.575		Ti II	66	3299.36		0 111	3	3307.755		Cr I	78
3288.59	P	Ti I	63	3299.41	P	Sc II	35	3307.90		Cl II	37
3288.660		Fe I	144	3299.413		Ti I	61	3308.02		Eu II	25
3288.81		Fe III	7	3299.44	P	Ti II	8	3308.15		Cr II	137
3288.81		Zr II Fe I	4,62 90	3299.511 3299.77		Fe I Fe III	49 96	3308.246 3308.391		V I Tî I	12 87
3288.972 3288.985		V II	109	3299.771		Fe II	30	3308.4		Ϋ́II	64
3289.016		Mo I	11	3300.056		Fe II	228	3308.480		V II	137
3289.06		K III	4	3300.148		Nd II		3308.482		Co I	155
										0.3 77	
3289.150		Gd II Fe II	75 65	3300.152 3300.20		Ce II Fe III	166 96	3308.517 3308.688		Gd II Co I	4 105
3289.347 3289.36		Yb II	1	3300.20		WI	5	3308.75	P	Fe I	190
3289.391		V II	7	3300.905		V II	60	3308.785	-	Mn I	11
3289.442		Fe I	380	3300.976		Gd II	74	3308.806		Ti II	7
3289.80		C1 III	2	3301.09		Fe III	50	3308.814		Co I	153
3290.13		0 11	23	3301.21		Cr II	137	3308.86	_	PII	4
3290.23		Pt I	1	3301.227		Fe I	380	3308.91	P	Ni I	107
3290.240		V II Ni II	108 5	3301.559 3301.56		Os I O II	1 23	3309.176 3309.32	P	V I Ni I	55 105
3290.54		N1 11	•	0001.00		0 11	20	0000102	-		200
3290.69		N1 II	1	3301.587		Ru I	4	3309.32	P	Ti I	122
3290.722		Fe I	90	3301.66		V II		3309.40		Fe III	
3290.988		Æe I	95	3301.678		Sm II	21,48	3309.428		N1 I	
3291.001		Tm II	3	3301.71		Ti II	44 ~	3309.501	ъ	Ti I Ti II	87 44
3291.04 3291.44	P	V II Fe I	60 954	3301.734 3301.87		8r I Pt I	7 7	3309.53 3309.582	P	Gd II	44 24
3291.47	•	A II	554	3301.88		A III	1	3309.730		Ti I	190
3291.676		V I	12	3301.927		Fe I	617	3309.78		Ne II	7
3291.75		Cr II	68	3301.95		Bu II	24	3309.804		Tm II	
3292.022		Fe I	680	3302.096		Ti II	8	3309.82		Cr I	161
9900 04		Fe III	7	9900 45		Pd I	3	3309.90		Zr II	72
3292.04 3292.078		re III Ti I	7 62	3302.15 3302.19		Pa I Fe III	3 37	3310.202		27 II N1 I	72 38
3292.210		Gd II	74	3302.34		Na I	2	3310.347		Fe I	449
3292.22		Co I	153	3302.454		Tm II	7	3310.496		Fe I	679
32 92.312		Mo II	6	3302.588		Zn I	4	3310.55		Ne II	23
3292.590	_	Fe I	91	3302.66		Zr II	85	3310.65		Cr II	120,158
3292.89	P	Fe II	136	3302.86		Cr I	161	3310.661		Sm II	31
3293.146 3293.146		Fe I V II	51 235	3302.861 3302.94		Fe II Na I	1 2	3311.25 3311.30		A III Ne II	1 2
3293.210		Co I	154	3302.941		Zn I	4	3311.34		Zr II	34
3293.48	P	T1 II	57	3303.11		La II	45	3311.451		Fe I	27
3293.66		A II Ni I	83 90	3303.278		Mn I		3311.708		Sc II	41
3293.674 3293.81		Cr I	219	3303.466 3303.574		Fe II Fe I	1 449	3311.905 3311.929		Mn I Cr II	10 51
3293.861		Co I	107	3303.881		CoI	47	3312.06		Cr I	78
3293.9		Y II	64	3304.01		A II	66	3312.148		Co I	69
3293.95		AII		3304.119		Cọ I	154	3312.18		Cr II	51
3294.098		Co I	154	3304.31	_	Fe III	***	3312.215		Ce II	25
3294.220 3294.44		Ru II La II	2 155	3304.36 3304.433	P	Fe I Fe II	710 93	3312.232 3312.30		Fe I O III	450a 3
0231.11		Du 11	100	00071400		10 11	30	0012.00		0 111	.•
3294.50		Fe III	14	3304.474		V II	136	3312.320		N1 I	106
3294.536		Co I	152	3304.523		Sm II	2	3312.39		Y II	65
3294.85		Fe III	37	3304.73		Cr II	120	3312.415		Sm II	21
3295.03 3295.06	P	Zr II Fe II	36 93	3304.836 3304.950		Ce II N1 I	103 108	3312.690 3312.707		T1 I Fe II	190 1
3295.13		0 11	23	3305.15		0 11	23	3312.736		Sc. II	41
3295.24		Fe III		3305.15		Zr II	2	3312.78		C1 II	8
3295.240		Fe II	79	8305.185		Sm II	35	3312.87		Hf I	3
3295.289		Ce II	147	3305.22		Fe III	7	3312.90	P	Ti II	56
3295.427		Cr II	51	3305.634		Fe II	79	3312.992		N1 I	106
3295.813		Sm II	13	3305.730		Co I	152	3313.08		Cr II	119
3295.814		Fe II	1	3305.75	P	Fe I	618	3313.116		Co I	153
3296.027		Mn I	11	3305.77		0 111	8	3313.33		Bu II	24
3296.052		V II	162	3305.971		Fe I	91	3313.344		Al II	8
3296.41 3296.467		Zr II Fe I	62 250	3306.053 3306.27		Ti II Zr II	44 3	3313.470 3313.524		Al II Mn I	8 30
3296.668		Gd II	21	3306.35	P	Fe I	544 544	3313.539		Sc II	35
3296.786		He I	9	3306.356	-	Fe I	91	3313.70		Zr II	61
3296.806		Fe I	619	3306.388		Sm II	48	3313.721		Cr I	161
3296.826		Fe II	92	3306.45		C1 II	37	3313.723		Fe I	50
3296.882		Mn I	12	3306.495		Fe I	680	2212 721		CA TT	04
3296.883		Ce II	12 247	3306.50		A II	000	3313.731 3313.996		Gd II Fe II	24 1
3297.528		V II	108	3306.60		0 11	23	3314	P	O VI	4
3297.68	P	T1 I	122	3306.703		Fe I	396	3314.06		Cr II	158
3297.684		Mo II	6	3306.879		Ti I	190	3314.070		Fe I	736
3297.74 3297.888		Ne II Fe II	2 91	3306.94		Fe III Cr II	73 150	3314.073 3314 345		Co I	43,149
3298	P	0 V	91	3306.95 3306.98		La II	150 17	3314.345 3314.393		Co I Mn I	152 30
3298.02	P	Ni I	91	3307.013		N1 I	107	3314.422		Ti I	87
3298.104		Sm II		3307.015		Fe I	450	3314.450		Fe I	250
0000 100		p. •	00			o					
3298.133 3298.139		Fe I V I	90 12	3307.017 3307.044		Sm II Cr II	51	3314.49 3314.50		Zr II S II	47 17
3298.139		Ti II	12 44	3307.044		Co I	69	3314.50 3314.523		Ti I	17 87
3298.224		Mn I		3307.234		Fe I	617	3314.56	P	Cr I	182
3298.318		Cr I	161	3307.24		A II	83	3314.57		Cr II	150
3298.680		Co I	70	3307.362		Rh II	5	3314.60		Ne II	22
3298.72		La II	_	3307.445		V II	60	3314.721		Ce II	146
3298.738		V II	7	3307.53		Fe III	7	3314.742		Fe I	680

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3314.862		v II	136	3322.310		Ni I	39	3330.40		0 111	22,28
3314.876		Mn I	30	3322.40		K III	1	3330.620		Sn I	2
3314.883		Al II	8	3322.474		Fe I	396	3330.668		Mn I	9.
3314.981		Al II Co I	8 154	3322.69 3322.936		Cr II Ti II	51 7	3330.78 3330.880		Ne II Y II	19 85
3315.035 3315.05		Pt I	1	3322.98	P	Ti II	44	3331.07		Sc II	35
3315.17	P	Fe I	618	3322.99		Zr II	34	3331.26	P	N1 I	107
3315.176		V II	71	3323.066		Fe II	92	3331.32		N II	22
3315.19		Cr I	78	3323.092		Rh I Hf II	4 79	3331.382		Gd II Fe I	8 191
3315.237		Ti I	190	3323.35		M1 11	10	3331.616		re 1	191
3315.29		Cr II	51	3323.39	P	T1 II	43	3331.62		Fe III	73
3315.324		Ti II	65	3323.53		Cr II	51	3331.778		Fe I	144
3315.44		C1 II	8,37	3323.660		Ti I	255	3331.90		Zr II	11
3315.516	Forb	Al II	8 93	3323.731 3323.737		V II Fe I	81 379	3332.111 3332.133		Ti II Gd II	65 73
3315.53 3315.53	P	Fe II V II	136	3323.75		Ne II	7	3332.17		Mg I	4
3315.590		Gd II	41	3323.896		Ti I	255	3332.180		Ni I	
3315.608		Al II	8	3324.01		S III	2	3332.42		C1 11	8
3315.663		Ni I	22	3324.03	P	Zr II	62	3332.49		Hr I O III	28 2
3315.80		Fe III	73	3324.060		Cr II	4	3332.73		піі	2
3316.18	P	Fe II	5	3324.10		Cr II	120	3332.879		Cr I	182
3316.324	-	Mn I	11	3324.346		Cr II	80	3333.00		0 111	22
3316.440		Mn I	30	3324.372		Fe I	617	3333.16		S1 II	6
3316.503		Cr I	255	3324.541		Fe I N II	191 22	3333.27		Fe III Co I	18,73 25
3316.579		Sm II Sc II	35	3324.58 3324.61		Ti I	60	3333.388 3333.41	P	Co I	71
3316.79 3316.86		C1 II	37	3324.67	P	Cr II	92	3333.605	-	Cr I	· · -
3316.873		v II	137	3324.72		Fe III	96	3333.606		Y II	64
3316.875		Tm II	7	3324.754		Ti I	190	3333.608		V II	59 50
3317.038		Sc II	41	3324.838		Fe II	194	3333.635		Sm II	52
9917 101		Fe I	139	3324.87		s III	2	3333.64		C1 II	8
3317.121 3317.295		re i V II	7	3325.012		Fe II	93	3333.912		Ti I	25
3317.305		Mn I	30	3325.155		Ti I	190	3334.12	P	Co I	101
3317.693		Sc II	41	3325.229		Ti I	190	3334.146		Co I	23
3317.70		SII	42	3325.240		Co I Sm II	70	3334.223		Fe I Zr II	190 58
3317.797		Ce II V II	102 108	3325.258 3325.329		Ce II	25	3334.25 3334.278		Fe I	617
3317.912 3317.93		Co I	69	3325.365		Ti I	255	3334.35		T1 I	190
3317.99		Hf II	4	3325.468		Fe I	191	3334.455		Ce II	25
3318.024		Ti II	7	3326.16		0 111	28	3334.471		Nd II	42
			40	3326.194		wI	5	3334.62		Zr II	21
3318.032		Na II Gd II	16 24	3326.21		La II	121	3334.690		Cr I	
3318.055 3318.14		N II	22	3326.27		Co I	46	3334.87		Ne II	2
3318.362		Ti I	190	3326.564		Co I	43	3334.925		Cr I	160
3318.398		Co I	45	3326.590		Cr I	182	3335.192		Ti II	7
3318.52		Zr II	35	3326.639 3326.670		Ti I Ni I	87 108	3335.28 3335.403		Cr II Fe I	80 24 6
3318.6 3318.60		Y II Co I	64 151	3326.68	P	Ti II	56	3335.46		Cr II	92
3318.62	P	Fe II	136	3326.74	P	Sc II	41	3335.482		V II	161
3318.862	-	Fe II	135	3326.762		T1 II	7	3335.513		Fe I	49
				0006 01		Zr II	91	3335.59		N1 I	
3318.907		V II Zr II	137 4	3326.81 3326.991		Co I	152	3335.72	P	Fe I	307
3319.03 3319.083		Ti II	8	3327.16		Ne II	2	3335.776	_	Fe I	379
3319.156		Co I	155	3327.308		Mo I	9	3335.90	P	Fe II	76
3319.258		Fe I	449	3327.392		N1 I	90	3335.93		Cr II	119
3319.478		Co I	154	3327.498 3327.578		Fe I Tm II	190 12	3336.12 3336.124		Ne II Sm. II	46 31
3319.561		Co I Ne II	45 10	3327.63		Fe II	64	3336.13		A III	3
3319.75 3319.78		YII	64	3327.67		Zr II	11	3336.150		Os I	3
3319.822		Co I	153	3327.685		Na II	16	3336.16		C1 111	6
				9907 00		Y II	18	0006 16		Cr II	14
3319.89		Eu II Cl II	24 8	3327.89 3 3 27.961		Fe I	86	3336.16 3336.180		Gd II	14 8
3320.14 3320.155		Sm II	8 20	3328.21		Hf II	10	3336.25		Y II	66
3320.257		Ni I	9	3328.270		Nd II	40	3336.262		Fe I	618
3320.29		Ne II	12	3328.326		Ti I	255	3336.330	_	Cr II	4
3320.422		Sc II	35	3328.351		Cr II Ni I	4 20·	3336.34	P P	Fe II Fe I	76 45 0a
3320.438		Gd II	7 4 6	3328.714 3328.79		N ÍI	22	3336.54 3336.69	r	Mg I	4
3320.57 3320.650		C1 III Fe I	190	3328.80		Cr I	160	3336.78		0 111	22,28
3320.693		Mn I	100	3328.867		Fe I	617	3336.97		Cr I	255
				8000 010		Co T	152	0000 004		Gd II	70
3320.709		Sc II	41	3329.013		Co I Cr I	152 182	3336.984		Ti II	72 4 3
3320.779		Ni I V II	108 149	3329.053 3329.06		C1 III	2	3336.998 3337.014		Ni I	43 17
3320.780 3320.800		Fe I	396	3329.07		La II	120	3337.171		Co I	25
3320.800		Mo II	6	3329.070		Fe II		3337.36	P	Ni I	122
3321.013		Be I	1	3329.12		C1 II	37	3337.40		Ti I	190
3321.086		Be I	1	3329.20 3329.215		Ne II Mo II	12 6	3337.49		La II Fe I	45 304
3321.179		Sm II Cr I	40 182	3329.215 3329.3		S II	17	3337.666 3337.76	P	re I V II	304 136
3321.19 3321.242		Cr I Ni I	182 92	3329.345		Gd II	74	3337.845	-	V II	184
*******			-								
3321.347		Be I	1	3329.45		Cr II	150	3337.85		Ti II	55
3321.348		Gd II	21	3329.455 3329.466		Ti II Co I	7 153	3337.93	P	Zr II Fe II	74 5
3321.491		Fe II V II	194 71	3329.532		Fe I	542a	3338.19 3338.41	r	Zr II	61
3321.539 3321.588		Ti I	87	3329.855		V I	55	3338.519		Co I	123
3321.700		Ti II	65	3329.89		Fe III	18	3338.522		Fe II	76
3321.857		Eu II	21	3329.93		Mg I	4	3338.643		Fe I	396
3321.912		Co I	106	3329.988 3330.30		Sr I N II	7 22	3338.72 3338.758		Fe III Ni I	54
3322.198		Co I	104,149	2220 240		Cd II	~~	0000.100		NA T	404

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3339.063		Nd II	41	3347.298		Sm II	48	3356.407		Fe I	137
3339.15		Co I	148	3347.507		Fe I	449	3356.464		Co I Gd II	104 24
3339.202 3339.36		Fe I Fe III	190,446 7	3347.70		Fe III P IV	18 1	3356.513 3356.842		Co I	151
3339.54		Ti I	178	3347.72 3347.837		Cr II	4	3357.07		Fe III	19
3339.588		Fe I	502	3347.927		.Fe I	138	3357.215		Ce II	164
3339.780		Co I	155 4	3348.05		0 111	28 4	3357.26 3357.40		Zr II Cr II	3 79
3339.804 3339.810		Cr II Ru II	2	3348.08 3348.112		O IV Co I	103	3357.40		Fe III	63,72
3339.84		Si II	6	3348.372		V II	136	3357.72		Cr II	91
		a. **	00			m	25	3357.82	P	Fe I	448
3339.90 3340.344		Cr II Ti II	92 7	3348.535 3348.683		Ti I Sm II	20	3357.82	r	Ne II	12
3340.42		C1 III	2	3348.844		Ti II	7	3357.965		Fe II	117
3340.55		Zr II	3	3349.035		Ti II	16	3358.003		Co I Mo I	123 9
3340.566		Fe I Sm II	139 6	3349.072 3349.11		Cr I O IV	4	3358.130 3358.252		Fe II	77
3340.579 3340.74		0 111	3	3349.17		Hf II	20	3358.271		Ti I	23
3340.77		Ti I	190	3349.322		Cr I	159	3358.30		Hf II	63
3341.341		Co I Ti I	148	3349.34		Cr II Ti II	4 1	3358.434 3358.49		Gd II A III	41 3
3341.554		11 1	60,178	3349.399		11 11	•	3000.40			ŭ
3341.77		A II	59	3349.68	P	Cr II	14	3358.501	_	Cr II	4
3341.868		Ce II	198 24	3349.739		Fe I	377 200	3358.56 3358.59	P	Ti I Co II	169 2
3341.875 3341.875		Ti I Ti II	16	3349.967 3350.097		Ce II Gd II	200 74	3358.62		WII	13
3341.906		Fe I	303	3350.209		Ca I	11	3358.620		Gd II	8
3341.98		Cr II	119	3350.284		Fe I	191	3358.72		N III	5 72
3342.151		Ti I Fe I	23 137	3350.361 3350.42		Ca I Ni II	11 1	3358.74 3358.78	P	Fe III Fe II	5
3342.225 3342.298		Fe I	378	3350.42		Gd II	7	3359.066	-	Co I	69
3342.46		WII	9	3350.548		Ti I	178	3359.106		N1 I	108
5040 54		Cr II	4	3 35 0.548		Ti II	43	3359.18		Fe III	72
3342.51 3342.707		Ti I	25	3350.68		0 111	22	3359.284		Co I	44
3342.734		Co I	105	3350.875		Sm II		3359.496		Fe I	25
3342.76	P	Fe I	396	3350.94		A II	109	3359.50		V II Sc II	148 4
3342.77 3343.09		N III W II	7 13	3350.99 3351.06	P	O III N1 I	22 3	3359.679 3359.814		Fe I	617
3343.227		Cr I	159	3351.138	•	Co I	151	3359.96		Zr II	91
3343.243		Fe I	88	3351.246		Sr I	7	3360.103		Fe II	105
3343.27		Sc II V II	35 234	3351.424		Mn I Al II	9 26	3360.15 3360.16	P	O II Ti II	52 54
3343.312		,	201	3351.456		n	20	0000.10	-		
3343.342		Cr I	159	3351.529		Fe I	89	3360.295		Cr II Zr I	21 53
3343.379 3343.40		Ti I W II	178 8	3351.53 3351.596		V II Cr I	234 160	3360.45 3360.541		Ce II	25
3343.494		Sm II	Ü	3351.67		Ti II	124	3360.63		Ne II	2
3343.530		Co I	151	3351.750		Fe I	304	3360.711		Gd II	8
3343.678		Fe I	44 9 9	3351.966		Cr I Sn II	5 2	3360.84		Fe III Fe I	72 142
3343.731 3343.770		Mn I Ti II	7	3351.97 3352.048		Sc II	4	3360.935 3360.990		Ti I	24
3343.81		Zr II	85	3352.06		Hf II	6	3361.07	P	Ti II	64
3343.861		Ce II	159	3352.071		Ti II	54	3361.09		CII	7
3344.09	P	Fe I	450	3352.43	P	Ti I	169	3361.11		WII	2
3344.26		0 111	22,28	3352.80		Co II	2	3361.213		Ti II	1
3344.353 3344.43		Sm II Ne II	39 2	3352.929 3352.937		Fe I Ti I	190 25	3361.241 3361.263		N1 I T1 I	107 23
3344.50		Cr I	160	3353.026		Cr I	255	3361.270		Sc II	4
3344.513		Ca I	11	3353.12		Cr II	4	3361.371		Mo I	10
3344.56		La II Ti I	45 25	3353.262 3353.268		Ce III Fe I	2 190	3361.50 3361.506		T1 I V II	178 70
3344.62 3344.630	P	Ti I	178	3353.39		C1 II	4	3361.553		Co I	157
3344.72		A III	3	3353.63		Ne II	23	3361.556		Ni I	19
3344.750		Mo I	9	3353.65		Zr I	18	3361.73		A II	109
3344.750		Ce II	165	3353.734		Sc II	12	3361.75		CII	7
3344.80		Zr II	72	3353.776		V II	107	3361.770		Cr II	21
3344.931		Ti I Zn I	178 4	3353.78		N III Fe I	5 378	3361.835 3361.90		Ti I N III	25 5
3345.020 3345.14		Cr I	218	3354.068 3354.185		Sm II	39	3361.918		Ca I	11
3345.146		Co I	45	3354.213		Co I	152	3361.935		Sc II	4
3345.352		Mn I	010	3354.29		N III	5	3361.959		Fe I	377
3345.36 3345.49		Cr I Ne II	218 10	3354.31 3354.374		O IV Co I	8 23	3362.00 3362.1 3 1		Y II Ca I	36 11
			_								
3345.572 3345.679		Zn I Fe I	4 141	3354.39 3354.54	P	Zr II Ti II	34 64	3362.213 3362.233		Cr I Gd II	54 8
3345.86		WII	17	3354.550	r	He I	8	3362.28		Ca I	11
3345.88		Ne II	10,12	3354.621		Nd II	71	3362.38		0 111	22
3345.899		V II	244	3354.634		Ti I	24	3362.619		Tm II	
3345.934 3345.985		Zn I Gd II	4 8	3355.05 3355.228		Ne II Fe I	2 617	3362.63 3362.653	P	O IV Ti II	8 64
3345.965		Cr I	112	3355.366		V II	149	3362.70		Cr I	54
3346.09		Cr I		3355.47		N III	7	3362.70		Zr II	60
3346.310		Co I	45	3355.517		Fe I	25	3362.764		Fe II	78
3346.403		Mo II	6	3355.92		0 111	28	3362.806		N1 I	23
3346.71		Cr I Ti II	112 7	3355.940		Co I Zr II	103 3	3362.89		Ne II Sc II	12 38
3346.724 3346.78		Cr I	112	3356.08 3356.196		Zr II Ti I	178	3363.501 3363.613		N1 I	105
3346.91	P	Ti II	43	3356.24	P	Fe II	105	3363.71		Cr II	3
3346.932		Co I	153 87	3356.265		Fe II	O.E.	3363.81		Zr II	11 307
3346.942 3346.99	i	Fe I Ca II	87 9	3356.332 3356.35	P	Fe I Ce III	25 2	3363.815 3363.83		Fe I O III	307 11
3347.1 0		Sb I	1	3356.35	-	Ne II	20	3363.974		Gd II	107
3347, 269		Mo II	6	3356.352		V I	54	3364.1 0	P	Ti I	169

16					FIND	INU LIS	1				
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Wultimlet Ne
1.7	1) pe	ыенено	muzuipieu no.	1 A	Type	Біешенс	multiplet No.		Type	Plement	Multiplet No.
3364.22	P	Fe II	5	3371.209		Sm II	52	3379.762		Mo II	6
3364.22		K III	5	3371.447		Ti I	24	3379.825		Cr I	54
3364.241		Gd II		3371.85		0 11	52	3379.825		Cr II	21
3364.30	P	T1 II	43	3371.87		Ne II	22	3379.930		Ti II	64
3364.44		P IV Ni I	1 107	3371.90		S II	7	3380.004		Fe I	709
3364.591 3364.639		Fe I	245	3371.993 3372.070		N1 I Fe I	83	3380.111 3380.114		Fe I Y II	304 41
3364.9		Ti II	124	3372.070		Cr II	91	3380.215		Mo II	6
3364.950		Nd II		3372.151		Sc II	4	3380.25		Eu II	23
3365.014		Co I	69	3372.208		Ti II	16	3380.278		T1 II	1
3365.413		Fe II	78	3372.359		Fe I	447	3380.515		Gd II	74
3365.54 3365.553		A II V I	109 54	3372.666		V II	106	3380.574		N1 I	37
3365.591		Gd II	8	3372.68 3372.70		Ca III P II	1 34	3380.711 3380.885		Sr II Ni I	4 7
3365.640		Fe II	194	3372.800		Ti II	1	3380.91		La II	45
3365.766		N1 I	38	3373.02		Pd I	3	3381.003		Fe II	177
3365.79		N III	5	3373.226		Co I	122	3381.28		O IV	3
3365.863		Sm II		3373.42		Zr II	74	3381.33	P	O IV	3
3366.168		Ni I	8	3373.455		Ce II	244	3381.340	_	Fe I	376,677
3366.176		Ti I	178	3373.51		Fe III	18	3381.36	P	Fe II	5
3366.176		Ti II	54	3373.57		Sc II	38	3381.49		Co I	88
3366.333		Sr I	7	3373.729		Ce II	212	3382.07		Cr I	181
3366.46		Sc II	38	3373.87		A II	108	3382.071		Co I	123
3366.532		Gd II	74	3373.874		Fe I	303	3382.19		Fe III	72
3366.554		Ce II	99	3373.96		Cr I	181	3382.312		T1 I	86
3366.59		A II Fe I	83 302	3373.969		Co I	44	3382.399		Sm II	20
3366.790 3366.807		re I Ni I	302 108	3373.98 3374.06		N1 II N III	1 5	3382.403 3382.529		Fe I V II	84 107
3366.870		Fe I	87	3374.10		Ne II	12	3382.683		Cr II	3
3366.880		V I	54	3374.221		Fe I	89	3382.69		0 111	27
3366.960		Fe II	177	3374.221		N1 I	17	3382.79	P	Cr II	112
3367.00		0 11	52	3374.352		Ti II	54	3382.890		Ag I	1
3367.02		Fe III	10	3374.512		Tm II	12	3383.15		8b I	1
3367.05	P	Ne II Gd II	12 4	3374.584		Gd II Ni I	72 106	3383.387	P	Fe I Ti II	245
3367.093 3367.111		Co I	22	3374.642 3374.688		Gd II	24	3383.57 3383.692	P	Fe I	63 85, 444
3367.161		Fe I	142	3374.71		Zr II	61	3383.761		Ti II	1
3367.18		S III	2	3374.77		0 11	96	3383.85		0 111	27
3367.20		Ne II	19	3374.93		Cr I	181	3383.94		A II	92
3367.29	P	Ni I	96	3374.95		Cr II	4	3383.981		Fe I	83
		W TTT	-					0004.44			
3367.36 3367.42		N III Cr II	5 79	3374.99		Cr II Co I	149 153	3384.14 3384.24		Hf II Cr I	44 54
3367.53		Cr I	54	3375.238 3375.50		0 IV	8	3384.617		Mo I	9
3367.54		Fe III	17	3375.561		Ni I	108	3384.65		Cr I	54
3367.661		Gd II	91	3375.77		O II	52	3384.658		Sm II	30,39
3367.666		VII	170	3376.057		V I	54	3384.70		Hr II	9
33 67.81		Ca III	4	3376.17		WII	10	3384.80	P	Fe I	25
3367.81		Zr II	11	3376.18	_	Cr I		3384.95		0 111	27
3367.892		N1 I Cr II	20 4	3376.24	P	Fe II Zr II	78 80	3385.219 3385.31		Co I Cr I	22 236
3368.054		OF II	4	3376.25		ZF 11	60	3980.31		OF I	230
3368.09		s II		3376.27		Cr II	78	3385.55		O IV	3
3368.25	P	Fe I	678	3376.33		La II	46	3385.664		Ti I	24
3368.447		Fe II	134	3376.331		N1 I	104	3385.790		V II	183
3368.472		Ir I	5	3376.397		Cr I	254	3385.81		SII	
3368.568 3368.626		Sm II Fe II	30 177	3376.46		A II Hf II	109 31	3385.944 3386.129		Ti I Rh II	23 2
3368.63		Zr I	17	3376.68 3376.72		Cr II	112,148	3386.22		C1 III	11
3368.67		Co I	101	3376.82		0 111	27	3386.24		Ne II	12
3368.73		Cr II	91	3377.060		Co I	42	3386.452		Fe II	88
3368.946		Sc II	4	3377.127		Ce II	213	3386.50		Cr I	236
		5 . •	•••				_				
3368.983		Fe I	376	3377.20		0 II	9	3386.724		Fe II	110
3369.05 3369.054		Cr II Ti I	68 25	3377.23 3377.36		Ne II Cr II	42 149	3387.061 3387.13		Co I 8 III	119 2
3369.055		Eu II	20	3377.394		V I	54	3387.410		Fe I	306
3369.14	P	Fe I	191	3377.45		Zr II	11	3387.466		N1 I	17
3369.212		Ti II	64	3377.485		Ti I	25	3387.47		Co I	45
3369.27		Zr II	85	3377.52		PII	12	3387.60		Cl III	2
3369.295		Ru II	2	3377.577		Ti I	23	3387.72		Co II	2
3369.349 3369.40		Fe II O III	76 11	3377.625 3377.77		V I Fe III	54 97	3387.73 3387.834		Cr II Ti II	90 1
3308.40		0 111	**	3311.11		16 111	<i>6</i> 1	00011001		** **	*
3369.455		Sm II	35	3378.09		O IV	4	3387.87		Zr II	74
3369.49		S III	2	3378.209		Sc II	38	3387.96		Cr II	112
3369.549		Fe I	304	3378.28		Ne II	7	3388.065		Gd II	71
3369.573		Ni I	6	3378.30		Zr II	73	3388.134		Fe II	77
3369.618		Gd II Ti II	21,73	3378.337		Cr II	21	3388.163		Co I	23
3369.67 3369.80	P	Fe II	124 76	3378.676 3378.73	P	Fe I Fe I	301 137	3388.18 3368.29		Co II Zr II	2 2
3369.8086	-	Ne I	2	3378.736	•	Co I	121	3388.46		Ne II	19
3369.9081		Ne I	2	3379.017		Fe I	85	3388.54		A II	96
3370.23		0 II	52	3379.171		Cr I	5	3388.71		Cr I	54
		. -				_		 :		_	_
3370.322		Co I	24	3379.172		Ce II	98	3388.755	ъ	Ti II	53
3370.38 3370.40		S III V II	2 88	3379.18 3379.216		Sc II Ti I	43 24	3388.81 3388.88	P	Fe I Cr I	140 90
3370.40		Ti I	23	3379.216 3379.371		Cr II	24 21	3388.912		Gd II	90 73
3370.588		Os I	4	3379.39		Ne II	12	3388.966		Fe I	502
3370.786		Fe I	304	3379.397		Sc II	38	3389.325		Sm II	52
3370.94		Co II	2	3379.48		AII	59	3389.748		Fe I	87
3370.97		AII	57	3379.564		Cr I	54	3389.83		Hf II	8
3371.015		Co I	151	3379.58		A II	_	3390.082	_	Fe II	207
3371 10		D IV	7	2270 750		CAII	0.1	9900 OK		Vo I	100

										Plement	Multiplat No.
IA	Type	Kl ement	Multiplet No.	I A	Туре	Element	Multiplet No.	I A 3409.177	Type	Element Co I	Multiplet No.
3390.25	P	0 IV	9 3	3399.54 3399.80		Cr II Hf II	1	3409.191		CP II	3
3390.37 3390.396	r	Co I	102	3399.951		Tm II	12	3409.20		Fe I	614
3390.498		Gd II	73	3399.991		Gd II	22	3409.297		Gd II	21
3390.515		Ce II	145	3400.08		Cr II	67	3409.36 3409.40	P	Cr I Fe I	445
3390.56		Ne II	12	3400.110		Na II V I	4 46	3409.578	•	Ni I	5
3390.682 3390.77		Ti I Cr I	86 236	3400.395 3400.471		Co I	42	3409.60	P	Cr II	8
3390.783		Eu II	200	3401.067		Gd II	8	3409.646		Co I	24
3390.878		Ģđ II	73	3401.166		N1 I	107	3409.75		O IV	3
							••	3409.79	P	Cr II	8
3391.01		V II N1 I	121 5	3401.521 3401.617		Fe I Co I	26 44	3409.809	_	Ti II	1
3391.Q50 3391.11		Cr I	236	3401.740		V II	106	3409.84		0 11	44
3391.294		Gd II	73	3401.76		Ni II	4	3409.87		Y II	63
3391.303		Fe II	117	3401.90		WII	9	3410.031 3410.171		Fe I Fe I	542 735
3391.372		Cr I	254	3401.913		Co I V II	157 47	3410.171		Hf II	30
3391.434	P	Cr II Fe I	3 678	3401.997 3402.064		Co I	123	3410.26		Zr II	11
3391.84 3391.85	-	A III	6	3402.072		Gđ II	91,149	3410.46	_	V II	119
3391.96		Zr II	1	3402.256		Fe I	614	3410.56	P	Fe I	244
		m. 77	40	2400 80		Po II	105	3410.74		Fe III	61,62
3391.989 3392.018		Eu II Fe I	17 499	3402.32 3402.422	P	Fe II Ti II	53	3410.905		Fe I	25
3392.040		Th II	5	3402.43		Cr II	21	3411.01		Cr I	
3392.304		Fe I	83	3402.464		Sm II	39	3411.134		Fe I	299
3392.530		Gd II	7	3402.52		Zr II	85	3411.353 3411.38		Fe I Ne II	301 45
3392,652		Fe I	.85 70	3402.571		V I Zr II	46 91	3411.68	P	Ti II	63
3392.659 3392.713		V II Ti I	70 136	3402.87 3403.081		Gd II	73	3411.76		La II	155
3392.78		Ne II	7	3403.159		V II	135	3411.76		O IV	2
3392.89		C1 II	11	3403.29	P	Cr II	21	3411.88	P	Fe I	298
		*** -			_	ta. •	000	3412.020		Gd II	73
3392.992		Ni∗I Cr II	20 21	3403.29	P	Fe I Fe I	377 304	3412.339		Co I	25
3393.00 3393.12		Zr II	3	3403.299 3403.322		Cr II	3	3412.47	P	N1 I	90
3393.382		Fe I	376	3403.369		Ti I	86	3412.583		Gd II	70
3393.45		C1 III	11	3403.432		N1 I	108	3412.633		Co I	6
3393.609		Fe I	305,376	3403.51		Fe III	61	3412.753 3412.934		Gd II Cb II	23 3
3393.630 3393.641		Gd II Nd II	91	3403.58 3403.59		O IV Cr. I	2 254	3413.13		Ne II	45
3393.86		Cr II	21	3403.69		Zr II	59	3413.135		Fe I	85
3393.915		Fe I	136	3404.301		Fe I	25,301	3413.273		Gd II	91
								3413.39		Zr II	60
3393.920 3394.085		Ce II Fe I	48 188	3404.34 3404.357		P II Fe I	12,21 83	3413.46	P	N1 I	124
3394.26		0 111	27	3404.43		V II	243	3413.478		Ni I	5
3394.29		8c II	38	3404.60		Pd I	2	3413.71		O IV	2
3394.32		Cr II	21	3404.755		Fe I	300	3413.74		Hf II Ni I	20 17
3394.37	P	Ti II	63	3404.77		Ne II Zr II	51 11	3413.939 3414.02		Ti II	127
3394.574 3394.58		Ti II Hf II	1 7	3404.84 3404.923		Fe I	300	3414.144		Fe II	91
3394.583		Fe I	81	3404.97		Ti II	63	3414.192		V II	135
3394.63		Zr II	85	3405.038		Gd II	91	3414.207		Gd II	107
****		0- 7	40	0407 064		M4 T	00	3414.46		AII	107
3394.916 3394.92		Co I	42 80	3405.094 3405.120		Ti I Co I	86 23	3414.65		Zr II	73
3394.99		Hr II	63	3405.160		V I	46	3414.66		Zr I	17
3395.120		Gd II	91	3405.50	P	N1 I	122	3414.765		N1 I	19
3395.336		Fe II	117	3405.74		0 111	15	3414.82 3414.879		Ne II V II	20 135
3395.370 3395.62		Co I Cr II	25 100	3405.83 3405.934		Fe I Mo I	299 9	3415.29		0 111	15
3395.87	P	Fe I	543	3405.97	P	O IV	3	3415.47		Cr II	100
3395.90	P	Fe I	189	3405.977		Ce II	96	3415.519		Co I	5
33 96.184		N1 I	122	3406.06		V II	119	3415.530		Fe I	83
3396.187		Sm II	44	3406.17	P	Fe I	376	3415.67	P	N1 I	123
3396.34		Zr II	58	3406.18	•	Fe III	61	3415.78		Co II	2
3396.386		Fe I	25	3406.442		Fe I	676	3415.91		V II	169
3396.457	_	Co I	102	3406.76	P	Fe II	90	3416.021	P	Fe II Fe I	16 708
3396.50 3396.58	P	Ni I Bu II	118 30	3406.803 3406.837		Fe I V I	85 46	3416.52 3416.674		Sc I	708 21
3396.66		Zr II	103	3406.88		Ne II	51	3416.688		Fe I	142
3396.71		Fe III	18	3407.00		La II	155	3416.87		Ne II	21
3396.83		0 I.A	3	3407.06	P	Fe I	377	3416.948		Gd II	22
3396.85		Rh I	3	3407.205		Ti II	1	3416.957		Ti II	53
3396.978		Fe I	26	3407.22		Cr I		3417.154		Co I	23
3397.07		Lu II	4	3407.30		N1 II	4	3417.273		Fe I	26
3397.221		Fe I	503	3407.38		0 11	44	3417.330		Gd II	91
3397.499		Tm II Fe I	3 447	3407.461	-	Fe I	83	3417.353 3417.353		Co I Ru I	135 3
3397.560 3397.580		V I	54	3407.53 3407.56	P	Fe I Gd II	81 91	3417.450		Ce II	100
3397.642		Fe I	26	3407.61		Gd II	24	3417.673		Co I	122
3397.77		La II	128	3407.7		Y II		3417.71		Ne II	20
3397.82		Ni II	8 50	3407.76		Hf II	29	3417.795 3417.842		Co I Fe I	19 81
3397.89		A II	59	3407.960		Mn I	26	0 # 1 1 1 0 4 5		1	01
3397.90		Ne II	36	3408.01		Cr I		3417.88	P	Ti I	86
3398.12	P	Fe I	615	3408.09		Zr II	72	3417.9036		Ne I	4.
3398.226		Fe I	304	3408.13		0 111	15	3418.02 3418.151	P	Fe II Sm II	104
3398.355 3398.634		Fe II Ti I	105 86	3408.136 34 08.14		N II Pt I	7 4	3418.176		Fe I	577
3398.811		Co I	157	3408.676		Sm II	*	3418.507		Fe I	81
3399.230		Fe I	302	3408.678		СР 11	3	3418.514		Sm II	47
3399.336		Fe I	85	3408.765		Cr II	3	3418.528 3418.733		Sc I Gd II	21 7
3399. 3 6		Zr I.I	11	3408.955		V II	120	3418.733		34 II	•

Mail-107	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
200.00						Þ			3438.24		Hf II	77
Main												
Main												
Section Per 1												
Section Sect					3428.94			99				
Section Sect												
Section Sect									3439.208			23
340.00 0 11												
340.0.10	3420.54		La II	126	3429.64		A II	107			Sc I	21
Section Sect				105					3439.784		Gd II	22
Section Sect												
Mail							Gd II			P		
Mail												
Mail												
Mail												
9421.042		P								P		
9421.08	3421.24		Pd I	3	3430.772				3440.80		Ne II	45
1942-1968 Co 1 101						_			3440.989		Fe I	6
9421.64 A III 57 9431.186 75 II 12 9441.120 P C II 68 1421.64 A III 6 7 9431.286												
341.85					· ·	r				ъ		
9321.97 FP III 11 3431.069 SC I 21 3441.00 TP II 10 2422.069 M1 I 10 3021.46 P CF II 8 3441.00 TP II 8 3441.00										P		
5422-352 NI I 100 3931-45 P Fr II 8 3441-399 Cr I 50 5422-468 Fo I 444 3431-652 Fr II 50 3441-050 Tn II 50 5422-666 Fo I 454 3431-69 Cr I 53 3441-080 Mn II 3 3422-661 71 III 63 3431-69 Cr I 53 3441-081 Mn II 1 3442-044 Mn II 14 3422-761 64 II 8 3431-09 Cr I 73 3444-044 Mn II 14 3422-761 64 II 8 3432-039 Pr I 377 3444-044 Mn II 14 3422-761 64 II 8 3432-039 Pr I 377 3444-046 Pr I 136 3422-761 64 II 3 3432-039 Cr II 36 3442-049 Mn II 14 3422-761 341 342 3432-11 27 II 36 3442-					3431.358		Sc I	21				
\$42,049 Fe I						P						
Section												30
3422.061												
3422.706												-
3422-799												
3422.751	3422.739		Cr II	3	3431.995				•			
3422.900						_					Fe I	
3432, 172						P						
3432.35												
3423.711 Mi I 20 3432.41 Zr II 56 3442.72 P Fe II 76 3423.82 Zr II 2 3432.704 A II 107 3442.018 Co I 6 3423.83 Co II 2 3432.703 LI II 107 3442.070 Fe II 409,776 3423.82 La II 144 3432.07 Fe III 107 3442.070 Fe I 409,776 3422.9 La II 144 3432.07 Fe III 107 3442.07												
3423.85					3432.41		Zr II	58		P		
3423.855 Ce II 131								107	3442.918		Co I	6
3423.9 La II 144 3432.97 Fe III 67 3421.02 Od II 7 3432.984 GG II 22 3433.203 CG I 3424.16 Y I 3428.094 Fe II 116 3432.095 CG I 3424.216 Y I 3428.096 Fe II 116 3432.096 CG II 3428.096 CG II 3428.097 Fe III 116 3432.096 CG II 3428.097 Fe III 116 3432.097 Fe III 117 3424.298 Fe II 118 3424.390 Fe III 118 3424.390 Fe III 118 3424.890 Fe II 188							440					
3432.92												
3424.16										P		7
3424.17 P Fe II 116 3453.045 Co I 23 3445.57 Zr II 73 3424.284 Fe I 81 3435.091 Co II 249 3445.600 Co III 1 1 3424.43 P Cr II 8 3453.50 Cr II 33 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.44 Pd I 11 3445.644 Co I 22 3424.500 Co I 103 3453.64 Pd I 11 3445.651 Al I 2 3424.600 Co I 102 3425.600 P III 8 8 3435.600 Co I 1 52 3445.70 Me II 42 3424.62 Zr II 8 8 3435.600 Cr II 52 3445.70 Me II 42 3424.62 Zr II 2 3435.707 V II 134 3445.700 P II 10 3425.000 P Fe I 541 3434 P O VI 9 3445.70 P Fe II 10 3425.000 P Fe I 541 3434 P O VI 9 3445.80 P Fe II 10 3425.000 P Fe I 3434.020 P Fe I 3434.020 P Fe I 3444.020 P Fe I 3444.020 P Fe I 3425.000 P Cr II 8 3434.12 Cr I 52 3444.10 Me II 12 3425.000 P Cr II 8 3434.40 V II 134 3444.300 P II I 10 3444.300 P Fe II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 V II 134 3444.30 Cr II II 10 3425.000 P Cr II 8 3434.40 P V II 134 3444.30 T II I 10 3425.000 P Cr II 8 3434.60 P Fe II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						P						99
3424.43 P Cr II 8 3453.90 Cr II 3 3444.044 Cr I 22 3453.44 Pd I 11 3444.044 Cr I 22 3453.44 Pd I 11 3444.044 Tr I 120 3424.592		P										
3424.590 Co I 103 3433.44 Pd I 11 3443.644 Ti I 120 3424.592												
3424.592		P							0440 044			
3424.64	3424.592		Ga II	22	3433.558		Ni I	19				
3424.82												
3425.099	and the second s											
3425.022						_			3443. 83	P		
3425.070 V I 3434.029 Pe I 300 3444.10 0 III 15 3425.09 P Cr II 8 3434.46 V II 134 3444.30 TI I 122 3425.09 P Cr II 8 3434.46 V II 134 3444.30 TI II 6 3425.432 Cb II 7 3434.87 P Rh II 1 3444.30 TI II 120 3425.57 O IV 3 3434.89 P TI I 121 3444.40 TI I 120 3425.52 Fe II 5 3434.89 Rh I 2 3444.76 P Fe II 145 3425.624 Od II 91 3434.85 P Fe I 776 3444.871 Al I 2 3425.630 Th II 3 3435.89 P II 1 98 344.89 TI I 46 3425.930 Od II 23 3435.408 TI II 98 344.89 TI I 46 3425.930 Od II 23 3435.408 TI II 98 344.99 TI I 46 3426.99 P Fe I 502 3435.489 Rh I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 Rh I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.89 Rh I 53 3445.10 Cr I 51 3426.20 P II 3 3435.85 Fe II 1 3435.85 P Fe II 1 53 3445.00 P Cr II 140 3426.332 Fe II 1 111 3435.85 P Fe I 1 53 3445.50 P Cr II 146 3426.337 Fe I 135 3435.079 Cr I 53 3445.60 P Rh II 9 3426.342 Od II 73 3435.04 Fe I 191 3445.60 P Rh II 9 3426.342 Od II 73 3435.079 Cr I 52 3445.66 TI I 46 3426.337 Fe I 135 3436.04 Fe I 191 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 53 3445.66 TI 1 46 3426.342 Od II 73 3436.04 Fe I 51 3446.08 P Rh II 9 3426.342 Od II 73 3436.04 Fe I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 Cr I 51 3426.342 Od II 73 3436.09 V II 79 3446.08 Cr I 51 3426.342 Od II 73 3436.09 P Rh II 9 3426.342 Od II 73 3436.07 Cr I 52 3446.08 P Rh II 9 3426.342 Od II 73 3436.09 P Rh II 9 3426.342 Od II 91 3437.94 Fe II 91 3446.08 Cr I 56 3427.57 Fe I 616 3437.04 Fe I 197 3446.07 Fe II 64 3428.81 P Fe II 616 3437.95 Cr II 11 11 11 11 11 11 11 11 11 11 11 11						P						
3425.082 Tm II 7 3434.112 Cr I 52 3444.281 N1 1 122 3425.082 Cb II 7 3434.46 V II 134 3444.306 T1 II 6 3425.432 Cb II 7 3434.57 P Rh II 1 121 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.582 Pe II 5 3434.893 Rh I 2 3444.403 T1 I 120 3425.630 Tm II 3 3435.38 V II 133 3444.891 T1 I 46 3425.630 Gd II 91 3434.60 T1 II 198 3445.99 T1 I 46 3425.90 Gd II 23 3435.492 T1 I 3445.492 T1 I 3445.04 Cr II 110 3425.96 Cr I 158 3435.492 T1 I 3445.04 Cr II 110 3425.96 P F II 134 545.492 T1 I 3445.04 Cr II 110 3425.99 P F I 502 3455.498 Rh II 53 3445.10 Cr I 51 3426.10 P F II 3 3435.55 S Cr I 5 3 3445.15 F I 81 3426.20 P II 3 3435.679 Cr I 52 3445.66 T1 I 46 3426.20 P II 3 3435.679 Cr I 52 3445.66 T1 I 46 3426.397 F I I 3426.392 Cr I 352 3435.498 Rh II 53 3445.56 Rh II I 9 3426.392 P Cr II 110 3435.55 S Cr I 52 3445.66 Rh II I 9 3426.208 Cr II 11 3 3435.679 Cr I 52 3445.66 Rh II I 46 3426.397 F I I 3 3435.679 Cr I 52 3445.66 Rh II I 9 3426.397 F I I 1 10 3435.679 Cr I 52 3446.08 Rh II 9 3426.392 P Cr II 11 10 3426.392 P Cr II 11 10 3426.692 P F II 1 11 11 11 11 11 11 11 11 11 11 11 1				20								
3425.09 P Cr II 8 3434.46 V II 134 3444.306 T1 II 6 3425.09 Cr II 11 11 3425.57	3425.082		Tm II	7	3434.112		Cr I					
3425.57		P				_					Ti II	
3425.582 Fe II 5 3434.883 Rh I 2 3444.76 P Fe II 145 3425.624 Od II 91 3434.895 P Fe II 776 3444.871 Al I 2 3425.630 Tm II 3 3435.498 P II 133 3444.871 Al I 2 3425.930 Od II 23 3435.408 TI II 98 3445 P N IV 7 3425.96 Cr I 158 3435.482 TI I 98 3445.04 Cr II 110 3426.99 P Fe I 502 3435.489 Cr I 53 3445.10 Cr II 51 3426.13 Cr II 311 3435.679 Cr I 52 3445.566 TI I 46 3426.20 P II 3 3435.679 Cr I 52 3445.566 TI I 46 3426.337 Fe I 135 3435.619 Cr I 53 3445.58 P Fe II 76 3426.3	3425.432			7	3434,57	P	Kn II	1	3444.34		Cr II	111
3425.624 0d II 91 3434.95 P Fe I 776 3444.871 Al I 2 3425.630 Tm II 3 3435.89 V III 133 3444.891 Al I 2 3425.930 Gd II 23 3435.406 Ti II 98 3445 P N IV 7 3425.96 Cr I 158 3435.432 Ti I 3445.04 Cr II 110 3426.96 P O VI 6 3435.489 Ni I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 Ni I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.679 Cr I 52 3445.20 P Cr II 146 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 136 3436.187 Cr I 53 3445.58 P Fe II 76 3426.3						P				_		
3425.630 Th II 3 3435.88 V II 133 3444.899 Ti I 46 3425.930 Gd II 23 3435.408 Ti II 98 3445.999 Ti I 46 3425.930 Gd II 23 3435.408 Ti II 98 3445.01 Cr II 110 3426 P O VI 6 3435.432 Ti I 3445.01 Cr II 110 3426.99 P Fe I 502 3435.489 Ni I 53 3445.10 Cr I 51 3426.13 Cr II 111 3435.555 Sc I 21 3445.20 P Cr II 148 3426.20 P II 3 3435.679 Cr I 52 3445.20 P Cr II 148 3426.20 P II 3 3435.679 Cr I 52 3445.666 Ti I 46 3426.20 Cc II 44 3435.619 Cr I 53 3445.666 Ti I 46 3426.208 Cc II 44 3435.819 Cr I 53 3445.666 Ti I 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.337 Fe I 135 3436.112 Fe II 91 3446.08 Cr I 51 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.00 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 3426.383 Fe I 25,82 3436.393 V II 79 3446.08 Cr I 62 3426.583 Cc II 51 3436.393 V II 79 3446.283 Ni I 20 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Cr II 2 3426.81 P Fe II 103 3437.006 Ir I 3 3446.40 Cr II 2 3426.81 P Fe II 103 3437.006 Fe I 539 3446.40 Cr II 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.280 Ni I 3 3446.73 O III 2 3427.332 Cc III 2 3437.80 Cr II 11 11 33 3446.71 Fe II 26 3427.332 Cc III 2 3437.80 Cr II 11 11 3446.73 O III 25 3427.332 Cc III 2 3437.80 Cr II 11 11 3446.71 Fe I 244 3428.01 P Fe II 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.01 P Fe II 616 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3437.93 Cr II 11 11 3447.015 Cr I 52 3428.37 Hf II 2 3438.8 P O VI 7 34447.278 Fe I 82						P				Р		
3425.930	3425.630		Tm II									
3426 P O VI 6 3435.488 Cr I 53 3445.10 Cr I 51 3426.09 P Fe I 502 3435.489 NI I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.555 8c I 21 3445.20 P Cr II 146 3426.20 P II 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.382 Gd II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.583 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.593 Fe I 25,82 3436.304 Ce II 94 3446.085 Mo II								98		P		
3426.09 P Fe I 502 3435.489 Ni I 53 3445.151 Fe I 81 3426.13 Cr II 111 3435.555 8c I 21 3445.20 P Cr II 146 3426.20 P III 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.382 9d III 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb III 7 3436.394 V II 79 3446.088 Co I 162		ъ						50				
3426.13												
3426.20 P II 3 3435.679 Cr I 52 3445.566 Ti I 46 3426.208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.363 Fe I 25,82 3436.187 Cr I 52 3426.562 Cb II 7 3436.304 Ce II 94 3446.085 Co I 162 3426.637 Fe I 82 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.393 V II 79 3446.38 K I 4 3426.61 P Fe I 615 3437.006 Ir I 3 3446.38 K I 4 3426.81 P Fe II 103 3437.046 Fe I 539 3446.40 Co II 2 3426.81 P Fe II 103 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.16 Zr II 33 3446.721 Ce II 56 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.57 La II 132 3437.631 Fe I 187 3446.947 Fe I 26 3427.57 La II 132 3437.680 Co I 162 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 3428.37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82		-								D		
3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.283 Mi I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.61 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.61 P Fe II 615 3437.046 Fe I 539 3446.40 Co II 2 3426.61 P Fe II 103 3437.046 Fe I 539 3446.603 T1 I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.71 Ce II 56 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.77 Fe III 88 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.91 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.97 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.97 Fe I 81 3437.958 Fe I 614 3447.278 Fe I 82 3438.97 Fe I FE I 81 8438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe I 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe I 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 81 8437.958 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 81 82 3438 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 614 3447.278 Fe II 82 3438.97 Fe II 614 3447.278 Fe II 62 3448.94 Fe II 614 3447.278 Fe II 62 3448.	3426.20		P II		3435.679		Cr I			•		
3426.337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 3426.342 0d II 73 3436.112 Fe II 91 3446.0 P Mn II 9 3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.697 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.81 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332<									3445.58	P	Fe II	76
3426.383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.283 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.322 Ce III 2 3437.280 Ni I 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.352 Gd II 91 3437.680 Co I 162 3446										-		
3426.562 Cb II 7 3436.304 Ce II 94 3446.088 Co I 162 3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3428.01										P		
3426.583 Ce II 51 3436.393 V II 79 3446.263 Ni I 20 3426.637 Fe I 82 3436.737 Ru I 4 3446.283 Ni I 20 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Od II 91 3437.631 Fe I 187 3446.791 Fe I 244 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.222 O III <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				•								
3426.637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 3426.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 0d II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.95 Fe I 614 3447.015 Cr I 52 3428.1	3426.583		Ce II									
3428.67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 3426.81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 O III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 0d II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.222		_										
3427.002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 NI I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 24 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 62									3446.40		Co II	2
3427.121 Fe I 81 3437.162 N II 13 3446.73 0 III 25 3427.332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 2b 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 62 3428.11 P Fe I 82 8447.278 Fe I 62		£°										
3427.332	3427.121		Fe I	81	3437.162		N II	13				
3427.362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 3429.41 P Fe I 82			Ce III	2	3437.280		N1 I	3				
3427.57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 3428.01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 3439.41 P Fe I 82											Fe I	
3428.192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 3438 P 0 VI 7 3447.278 Fe I 82		P										
3428.37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82		-										
9499 41 B Po T 900 9499 10 B Po T 900	3428.37		Hf II		3438		O VI					
WYTIANI W. I	3428.41	P	Fe I		3438.10	P	Fe I	300	3447.281		Co I	181

II...DING DIGI

19

											10
IA	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
0447 400		Cr I	E0.	0458 048		0.1 77		0.40# 0#			
344 7.430 344 7.594		He I	52 7	3457.047 3457.088		Gd II Y II	77	3465.25 3465.562		V II Ti II	160 99
3447.760		Cr I	52	3457.090		Fe I	374,835	3465.57		Cr I	51
3447.98		0 11	27	3457.153		V II	147	3465.62		N1 II	4
3448.05	P	0 III	25	3457.16	P	Ne II	51	3465.63		Zr I	17
344 8.19 344 8.255	P	Fe I Tì I	186 46	3457.298 3457.494		Ti I Ti I	46 46	3465.792		Co I	5
3448.358		Co I	163	3457.494		Fe I	187	3465.80 3465.863		A II Fe I	96 6
3448.433		Fe II	90	3457.56		Zr II	20	3466.15		0 111	25
3 44 8.478		Fe I	444	3457.62		Cr II	135	3466.25		Cr II	77,148
							_				
3448.503 3448.542		Sc I Mo II	21 1	3457.809		Mn II O II	9 81	3466.279		Fe I Mn II	185
3448.63	P	Fe III	27	3457.99 3458.020		Ti I	46	3466.336 3466.34		A II	12 44,56
3448.69	_	VII	118	3458.028		Co I	101	3466.498		Gd II	53
3448.786		Fe I	372	3458.090		Cr I	253	3466.501		Fe I	24
3448.82		Y II	17	3458.13	P	Fe II	10	3466.59	_	V II	58
3448.869		Fe I Ir I	242 1	3458.18		Fe III Al I	100 2	3466.85 3466.90	P	Fe II O III	156 25
3448.967 3449.06	P	Fe I	442	3458.230 3458.304		Fe I	139	3466.952		Gd II	23
3449.170	-	Co I	22	3458.474		Ni I	19	3467.022		Cr I	141,253
3449.28		Cr II	111	3458.91		Fe III	27	3467.09	P	Cr II	2
3449.441 3449.5	P	Co I Mn II	22 9	3458.93 3459.03		Zr II Ti II	58 125	3467.12 3467.260		Ni I Ti I	123 84
3449.616	•	Gd II	7	3459.07		0 11	81	3467.267		Gd II	22
3449.874		Ti I	46	3459.29		Cr II	136	3467.33		V II	58
3450.00	P	Cr I	90	3459.29	P	Fe I	576	3467.502		N1 I	3
3450.14	P	Fe I	242	3459.374		Ce III	3	3467.715		Cr I	110
3450.328		Fe I Gd II	82 22	3459.38		Ne II Fe I	51	3467.732		N1 I Sm II	123 54
3450.376 3450.735		Ti I	46	3459.429 3459.431		re 1 Ti I	297	3467.874 3467.88		Y II	54 17
2200.100			20	0.1001.101				2401400		*	4.
3450.84		Cr II	60	3459.52		0 111	25	3468.083		Gd II	21
3450.94		0 111	25	3459.61	P	Fe I	577	3468.113		Ce II	178
3451.046		V II	118	3459.911		Fe I	501	3468.32		K II	1
3451.228 3451.233		Fe II Gd II	208 22	3459.95 3459.95	P	Fe I Zr II	133 90	3468.476 3468.680		Ca I Fe II	10 114
3451.318		Fe II		3459.98		0 11	25	3468.849		Fe I	242
3451.33		0 111	25	3460.03		Cr II	60	3468.973		Co I	159
3451.41		В ІІ	1	3460.039		Mn II	1	3468.989		Gd II	40
3451.614		Fe II Fe I	207 139	3460.31		La II Mn II	119 3	3469.012		Fe I Gd II	614 39
3451.628		re 1	109	3460.312		MII II		3469.307		0u 11	38
3451.66	P	Fe I	241	3460.430		Cr I	141	3469.390		Fe I	375
3451.88		Re I	2	3460.47		Re I	2	3469.486		N1 I	8
3451.914		Gd II	70	3460.719		Co I	35	3469.528		V II	58
3451.915 3452.18		Fe I Co I	81 160	3460.76 3460.776		Pd I Gd II	2 73	3469.590 3469.683		Cr I Co I	141 137
3452.18		La II	30	3461.0		Y II	40	3469.834		Fe I	242
3452.273		Fe I	25	3461.173		Co I	162	3469.94		Zr II	59
3452.31	P	Fe III	49	3461.28		Cr II	148	3470.18		YII	40
3452.33	P	Fe II	89	3461.34		N IV	7	3470.242		Fe II V II	89
3452.470		Ti II	99	3461.38		Eu II	13	3470.263		V 11	58
3452.55		Fe III	88	3461.496		T1 II	6	3470.27		A II	
3452.670		Al I	2	3461.580		Ņ II	6	3470.401		Cr I	77
3452.890		Ni I	17	3461.652		Ni I	17	3470.42		0 11	27
3453.022 3453.087		Fe I V II	301 132	3461.952		Gd II Rh I	23 3	3470.529 3470.657		Cr I Rh I	77 3
3453.10		Ne II	21	3462.040 3462.108		Tm II	J	3470.72		Cr I	77
3453.17		La II	46	3462.353		Fe I	79	3470.81		0 11	27
3453.23		Cr I	253	3462.494		Na II	4	3470.83		P II	12
3453.31		O II Cr I	71 52	3462.65		Hf II	6	3470.866		Nd II	70
3453.328		OF I	32	3462.73		Cr II	2	3470.894		Ce III	1
3453.514		Co I	22	3462.748		Mn I	41	3471.14		Zr II	114
345 3.595		Fe II		3462.804		Co I	23	3471.18		Zr I	15
3453.654		Ti I	46	3462.808		Fe I	373	3471.27		Fe I Ni II	82
3453. 665 3453.74 3		Tm II Cr I	7 52	3462.878 3462.997		Mn II Gd II	12 8	3471.35 3471.350		N1 II Fe I	4 130
3453.78		v II	132	3463.02		Zr II	90	3471.382		Co I	161
3453.84	P	Cr I	90	3463.079		V II	104	3471.49		Cr I	77
3454	P	N IV	7	3463.205		T1 I	85	3471.59	_	AII	57
3454.10		A II Gd II	44 7	3463.305		Fe I	48	3471.63	P	Ni I He I	124 44
3454.14 5		90 II	•	3463.330		Mn II	12	3471.80		пе 1	44
3454.16		N1 II	1	3463.36		N IV	7	3472.07		Cr II	135
3454.165		Ti I	168	3463.499		Co I	42	3472.196		Co I	161
3454.35		Fe III	86	3463.52		W II	7	3472.38		Hf I	1
3454.368		Ce III Zr II	2 59	3463.63		Al II V II	55 168	3472.48		Lu II Ni I	4 20
3454.5 7 3454. 90		0 III	25	3463.831 3463.974		V II Fe II	168 4	3472.545 3472.5711		N1 I Ne I	20 2
3454.904		Gd II	7	3463.984		Gd II	40	3472.707		Co I	160
3454.98		Cr II	136	3464.02		Cr II	2	3472.764		Cr I	77
3455.04		Mn I	41	3464.043		Mn II	12	3472.793		Ti I	271
34 55.12		0 111	25	3464.132		Gd II	90	3472.88		PII	2
3455.237		Co I	6	3464.14		A II	70	3472.886		Fe II	156
3455.281		Cr I	51	3464.17		V II	104	3472.906		Cr I	111
3455.602		Cr I	51	3464.27		Fe III	16	3473.01	P	Fe !	576
3455.755	_	Ti I	46	3464.457		Sr II	4	3473.219	ъ	Gd II	7 576
3456.00 3456.390	P	Fe II Ti II	4 99	3464.497 3464.72		Fe II Re I	114 2	3473.23 3473.497	P	Fe I Fe I	576 26
3456.390 3456.661		Ti I	134	3464.72 3464.82		Cr I	51	3473.437		Cr I	77
3456.68		Ne II	28	3464.914		Fe I	241	3473.82		Fe III	27
2456 024		Co. I	5	2465 027		Mn II	19	3473.825		Fe II	

20											
Î A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3474.037		Mn II	3	3481.536		Cr I	110	3490.765		Ti I	22
3474.124		Mn II	3	3481.558		Fe I	132	3490.89		A II	30
3474.379		Cr I		3481.675		Ti I	271	3491.053		T1 II	6
3474.41	P	Fe II1	27	3481.750		Tm II	10	3491.16 3491.19	P	Fe III Ti II	103 118
3474.530 3474.56		Co I N IV	24 7	3481.797	P	Gd II Fe II	22 102	3491.19 3491.24	F	A II	44
3474.763		Ca I	10	3481.92 3481.96	F	Ne II	6	3491.316		Co I	6
3474.780		Rh I	2	3482.05	P	Fe II	10	3491.54		A II	44
3474.84		La II	143	3482.06		Mn II	9	3491.954		Gd II	6
3474.87		Cr I	141	3482.36		Fe 1H	103	3491.987		Co I	159
3474.887		Sr II	4	3482.39	P	Fe II	133	3492.24		O IV	14
3474.94		Fe III	90	3482.426	F	Fe II	100	3492.39		Ti II	125
3474.94		OII	8	3482.56	P	Cr II	148	3492.956		N1 I	18
3475.13		Cr II	2	3482.58		Al I	17	3493.163		V II	6
3475.25	P	Fe II	4	3482.58		Cr II	67	3493.280 3493.29		Ti I Fe I	22 48
3475.25 3475.36	P	Ne II Cr I	35 141	3482.602 3482.70		Gd II Si III	40	3493.34	P	Fe II	102
3475.450	•	Fe I	6	3482.73		Ni I	120	3493.468		Fe II	114
3475.651		Fe I	78	3482.905		Mn II	3	3493.57	P	Fe I	327
3475.74	P	Fe II	4	3482.98		N IV	1	3493.69		Fe I	297
2475 067		Fe I	106 979	9469 006		Fe I	24	3494.15		Fe I	137
3475.867 3476.252		V II	186,373 58	3483.006 3483.010		Ti I	22	3494.25	P	Fe I	185
3476.336		Fe I	133,835	3483.410		Co I	23	3494.404		Gd II	7
3476.360		Co I	161	3483.54		Zr II	33	3494.52		Cr II	2
3476.452		T1 I	85	3483.59	P	Zr II	103	3494.66		O II Fe II	70 16
3476.63		Ni I	123 6	3483.62	P	N1 I N1 I	120 6	3494.672 3494.703		Ni I	154
3476.704 3476.74		Fe I	44	3483.774 3483.80		Co I	5	3494.967		Cr I	109
3476.842		Ce II	132	3483.80		Ti II	125	3495.16	P	Fe I	102
3476.853		Fe I	242	3484.15		Cr II	2	3495.285		Fe I	238
			_		_	A	400	3495.37		Cr II	2
3476.982		Ti II	6	3484.16	P	Cr II Fe III	185	3495.37 3495.44		0 11	70
3477.007 3477.161		Fe I Cr I	139 141	3484.18 3484.32		V II	100 168	3495.56		Cr II	•••
3477.181		Ti II	6	3484.348		Fe II	115	3495.6	P	N1 II	4
3477.514		V II	58	3484.39		La II	113	3495.616		Fe II	115
3477.69		Ne II	21	3484.65		V II	6	3495.682		Co I Hf II	22 10
3477.828		Rh II	4	3484.84		Fe I	185	3495.75 3495.754		Ti I	84
3477.836		Co I Fe I	161 82	3484.90		N IV Fe I	1 138	3495.831		Mn II	3
3477.850 3477.864		Ni I	124	3484.97 3485.054		Ce II	44	3495.94		Hf II	30
01111001				01001001							
3477.98	P	Fe I	836	3485.110		N1 I	118	3495.960		Ti I Co I	22 136
3478.17		Cr II	109	3485.16		Hf II	43 57	3496.070 3496.08		YII	3
34 78.24 34 78.29		A II Zr II	45 2	3485.31 3485.342		Zr II Fe I	57 78	3496.18		Zr II	1
3478.292		N1 I	173	3485.368		Co I	162	3496.19		Fe I	186
3478.382		Fe I	185	3485.689		T1 I	84	3496.27	_	0 11	7
3478.50		Zr II	84	3485.700		Co I	68	3496.27	P	V II Fe III	131 103
3478.55	P	Fe II	16	3485.728		Fe II	133	3496.29 3496.29	P	Ti II	118
3478.555		Co I N IV	120 1	3485.82 3485.867	P	V II V I	131 81	3496.350	-	N1 I	118
3478.69			•	04001001							
3478.74		PII	2,18	3485.888		N1 I	17	3496.60	P	Fe I	572
3478.744		Co I	67	3485.916		V II	6	3496.67	P	Fe II Co I	88 19
3478.77		Cr I	141	3486.08	P	Fe II	102	3496.681 3496.794		Co I	161
3478. 788 3478. 79		Fe I Cb II	137 7	3486.14 3486.556		W II Fe I	11 79	3496.814		Mn II	3
3478.906		Rh I	6	3486.93		Si III	,,,	3497.00	P	V II	131
3478.918		Ti I	84	3487.008		V I	81	3497.00		Zr II	10
3478.9 61		V II	182	3487.11		Fe III	90	3497.031	P	V II Fe I	146 78
3478.97		He I	43	3487.33		A II	56 55	3497.115 3497.137	F	Fe I	78
3478.98		Hf II	61	3487.57		Hf II	JJ	5.0101			· -
3479.02		Zr II	20	3487.598		Ca I	10	3497.340		S III	
3479.14		Cr I	141	3487.712		Co I	65	3497.39		V II Hf I	131
3479.264		N1 I	105	3487.721	_	He I	42	3497.49 3497.536		Mn II	1 3
3479.27		Al I	17	3487.80 3487.990	P	Ti I Fe II	119 4	3497.536	P	Fe II	114
34 79.29 34 79.39		Hf II Zr II	2 46	3487.990 3488.18		0 II	7	3497.81	P	Fe II	133
3479.53		Ne II	49	3488.293		Ni I	121	3497.843	_	Fe I	6
3479.567		Cb II	6	3488.453		Cr I	109	3497.89	P	Fe I	499
3479.683		Fe I	443,812	3488.553		Ce II	187	3497.90 3498.12	P	Zr II V II	58,84 131
3479.78		Al I	17	3488.676		Mn II	3	3400 • 16	•		
3479.82		C1 II		3488.92		Fe III	60	3498.18	P	Fe I	326
3479.837		V II	6	3489.07		Cr II	135	3498.19	P	N1 I	2
3479.914		Fe II	4	3489.07	P	Fe III	26	3498.641	-	He I	40
3480.012		Co I	67	3489.17	P	Fe II	102	3498.83 3498.942	P	V II Ru I	117 4
3480.183		N1 I	123,124	3489.281		Gd II Co I	106 36	3499.099		Ti I	84
348 0.28 348 0.40		Cr I Zr II	141 58	34 89.399 3489.4 5		Cr II	109, 185	3499.49		A II	5
3480.52		A II	56 57	3489.48	P	Fe III	27	3499.57		Fe III	26
3480.525		Ti I	84	3489.670		Fe I	442	3499.58		Zr II	9
3480.547		Gd II	23	3489.739		Ti II	6	3499.67		A III	2
9400			•	6400		7 40	0	3499.823		V II	5
348 0.55 348 0.75		A III Ne II	2	3489.79 3489.84		Pd I O IV	8 14	3499.877		Fe II	115
3480.75 3480.897		Ne II Ti II	49 22	3489.84 3489.947		V II	131	3500.15		Zr II	123
3481.11		K III	3	3490.04	P	Fe I	331	3500.29		Fe III	48
3481.12 6		Ti I	271	3490.45		P II	19	3500.340		Ti II	6
3481.14		Zr II	46	3490.47	P	Fe I	835	3500.5 3500.564		O II Fe I	80 238
3481.17 3481.275		Pd I Gd II	2 22	3490.575		Fe I	6 41	3500.564 3500.852		re I Ni I	23 6 6
v-101.2/0		un (I	22.	3400.62		He T	41	30001002		•	-

ΙA	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3501.33		Zr I	14	3509.843		Co I	22	3518.632		Gd II	7
3501.416		F II	3	3509.844		Ti II	88	3518.634		N1 I	124
35 01.453		Ce II O II	87 70	3509.870 3509.971		Fe I Mn II	78 9	3518.68 3518.75		Fe I Hf II	327 43
3501.67 3501.73		Co II	2	3510.00		La II	15	3518.86		Fe I	78
3501.75		Fe III	26,48	3510.133		Gd II	21	3519.077		Ce II	92
3502.2	P	o iv	13	3510.18	P	Fe I	836	3519.24		Tl I	2
3502.278		Co I	21	3510.262		СРІІ	10	3519.25		Fe III Zr I	54 13
3502.381 3502.46	P	He I Fe I	39 576	3510.338 3510.40		Ni I Cr I	18 263	3519.60 3519.67	P	Ti II	118
3502.40	r	re 1	010	3310.40		0. 1	200	0010101	-		
3502.524		Rh I	2	3510.426		Co I	6	3519.72	P	Fe II	88
3502.595		N1 I	3	3510.443		Fe I	139	3519.766		N1 I	5
3502.63	_	Co I	6	3510.46		Zr II Cr I	20 109	3519.85 3519.939		Fe III Ti I	59 22
3502.85	P	Fe I F II	577 3	3510.538 3510.840		Ti II	88	3520.00		A II	56
3502.954 3502.998		Co I	135	3511.227		Sm II	12	3520.022		V II	5
3503.00		PII	2	3511.25	P	Fe II	102	3520.075		Co I	4
3503.095		FII	3	3511.42		A. 11	57	3520.253		Ti II	98
3503.206		Gd II	90	3511.55		Zr II N1 I	124 152	3520.4717 3520.522		Ne I Ce II	7 55
3503.36		Cr II	157	3511.613		NI I	102	3020.022		00 11	00
3503.38		Cr I	109	3511.626		Ti I	22	3520.547		V II	57
3503.474		Fe II	4	3511.748		Fe I	238	3520.55		Cr I	235
3503.58		A III	2	3511.84		Cr II	2 26	3520.72		La II Fe I	127 238
3503.61		Ne II Co I	28 88	3511.93 3511.94		Fe III Ni I	124	3520.85 3520.87		Zr II	19
3503.717 3503.760		Ti I	22	3512.08		Fe I	327	3520.9	P	O IV	13
3503.96	F	Fe III	48	3512.13		VII	193	3520.91	P	Zr II	59
3504.40		Fe III	48	3512.219		Gd II	38	3521.09		Eu II	24
3504.432		V II	6 371	3512.239 3512.34	P	Fe I Fe III	326 26	3521.264 3521.27		Fe I A II	24 56
3504.455		Fe I	9/1	3012.34	r	F6 111	20	5021.21			00
3504.48		Sb I	2	3512.496		Gd II	89	3521.28	P	Zr II	84
3504.596		Ce III	6	3512.511		He I	38	3521.53		Cr I	263
3504.728		Co I	135	3512.640		Co I	21	3521.567		Co I	20
3504.773		Ti I	167 131	3512.67 3512.68	P	Zr II Fe I	57 327	3521.64 3521.731	P	Fe II Co I	10 24,100
3504.866 3504.890		Fe I Ti II	88	3512.70	-	Cr I	109	3521.833		Fe I	78
3505.065		Fe I	498	3512.74	P	Fe I	613	3521.836		V II	57
3505.133		Co I	160	3512.80	P	Fe I	330	3521.880		Ce II	211
3505.22		Hf II	7	3512.93		La II	44 501	3521.98		A II Nd II	45 71
35 05.44		C1 II	64	3512.95		Fe I	901	3522.044		NG II	11
3505.45	P	Ti II	6	3513.0 3		Cr II	107	3522.05	P	Fe II	10
3505.47		Zr II	90	3513.065		Fe I	48	3522.063		Mo II	1
3505.512		Gd II	22	3513.09		Ti II	6	3522.13		Cr II Cl II	184. 64
3505.614		F I! Zr II	3 1	3513.22 3513.478		C1 II Co I	64 5	3522.14 3522.268		Fe I	326
3505.67 3505.690		VI	81	3513.59	P	Fe I	327	3522.72		Ne II	35
3505.901		Ti II	88	3513.638		Ir I	2	3522.73	P	Fe I	538
3506.02		0 11	70	3513.69		C1 II	6 <u>4</u>	3522.856		Co I	159
3506.04		Zr II	84	3513.820		Fe I V II	24 117	3522.896 3523.02		Fe I Hf I	330 3
3506.23		Fe I	327	3513.877		V 11	11.	3020.02			· ·
3506.310		Co I	21	3513.88		K III	1	3523.074		N1 I	34
3506.40		Fe I		3513.933		N1 I	17	3523.18	P	Fe I	673
3506.48		Zr II	84	3513.933		N1 II Co II	1 1	3523.30 3523.423		Fe I Co I	326 21
3506.498 3506.57		Fe I V. II	130 193	3514.21 3514.29	P	Fe III	27	3523.444		N1 I	16
3506.58	P	Fe I	327	3514.39	-	AII	44	3523.47	P	N1 I	154
3506.61		Cr II	108,157	3514.422		V II	57	3523.701	_	Co I	66
3506.643		Ti I	22	3514.48	P	Fe I	47	3524.04	P	Fe I Fe I	238 239
3506.843		V I Fe III	81 48	3514.62 3514.64		Fe I Zr II	183 114	3524.075 3524.196		Gd II	239 6
\$306.93		14 111	40	2012.04		2. 11		0022.200			
3507.14	P	Fe I	835	3514.87		Fe III	26	3524.236	_	Fe I	130
3507.316		Rh I	2	3515.054	_	N1 I	19	3524.54	P	Cr II	107
3507.37		P II Fe II	18 16	3515.41 3515.421	P	Fe I Cb II	243 6	3524.541 3524.646		N1 I Mo II	18 1
3507.387 3507.39		Fe I	500	3515.538		Be I	7	3524.713		VII	5
3507.39		Lu II	1	3515.57		Fe III	54	3524.87		Ţ1 II	118
3507.426		T1 I		3515.818		Fe II	208	3525.161		Ťi I	167
3507.534		V II	159	3516.00		V II	6 54	3525.17 3525.44		Fe III Cr I	60
3507.66 3507.694		Zr II Ni I	58 3	3516.05 3516.234		Ni I	123	3525.81		Zr II	9
00011001			•	00101101							
3507.945		Ce II	51	3516.403		Fe I	442	3525.856		Fe I	329
3507.964		Y II	47	3516.55	_	Fe I	326	3525.872		Co I Fe I	63 24 0
3508.09		Cr I Fe II	4	3516.58 9516.675	P	Fe III Co I	5 <u>4</u> 65	3526.016 3526.039		Fe I	6
3508.213 3508.470		Ce II	114	3516.675 3516.838		Ti I	167	3526.13		C1 II	64
3508.494		Fe I	442	3516.92		O H	69	3526.167		Fe I	24
3508.52		Fe I	239	3516.95	_	Pd I	1	3526.23		Fe I	327 328
3508.67	P	Cr II	77 12	3517.03 3517.14	P	Ni I La III	123 1	3526.377 3526.465		Fe I Fe I	326 131
3508.731 3508.81		Eu II Cr I	13	3517.14 3517.298		V II	. <u>.</u>	3526.540		Ni I	155
3508.81		Of I		-JI. 1 250							
3508.852		Ku II	13	3517.327		He I	37	3526.673	_	Fe I	326
3508.94		C1 II	64	3517.380		Ce II	230 1	3526.69	P P	Fe I Fe I	497 321
3509 3500 034	P	O VI	5 117	3517.48 3517.53	P	Co II V II	57	3526.78 3526.847	r	Co I	4
3509.024 3509.12		Fe I	326	3517.890		Gd II	88	3526.96	P	Fe I	835
3509.20	P	V II	117	3517.90		A II	5	3527.08		Cr I	274
3509.32		Zr I	15	3518.23	P	Fe I	575	3527.11		P II	21 103
3509.39	~	C1 II	64	3518.340		Co I P II	36 2	3527.42 3527.792		Zr II Fe I	103 326
3509.73 3509.78	P	Fe I A II	327 44	3518.61 3518.62		Cr II	107	3527.867		A 11	117
9009.10		**									

22					FIND	ING LIST					
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	IA	Туре	Element	Multiplet No.
			-		-300	22 00	mururpico no.		-, p		
3527.90	P	Fe I	296	3538.142		Rh I	8	3550.82		La II	15
3527.982 3528.024		Ni I Rh I	6 3	3538.238		V II	4	3551.11	P	Fe I	321
3528.23		Cr II	109	3538.31		Fe I Fe I	775	3551.16		P II Ne II	12,21
3528.24	P	Fe I	182	3538.55 3538.77		Fe I	137 811	3551.52 3551.534		Ne II Ni I	25 5
3 528.54 5		Gd II	23	3538.86		Mg II	12	3551.666		Co I	67
3 528. 602		Os I	1	3539.00		Cr II	157	3551.94		Zr II	1
3528.891		N1 I	154	3539.05		Zr II	102	3552.00		Al II	53
3528.94	P	Fe I	23	3539.086		Ce II	118	3552.112		Fe I	499
3529.032		Co I	-5	3539.589		Th II	1	3552.42	P	Fe I	182
3529.38		Tl I	2						_		
3529.531		Fe I	537	3539.94 3540.121		Ne II Fe I	50	3552.50	P	Cr II Eu II	89
3529.57		WII	12	3540.28	P	Cr II	329 89	3552.516 3552.70		Hf II	19 7
3529.625		N1 I	76	3540.530	•	V I	45	3552.70		ΥI	8
3529.73		Cr II	89	3540.709		Fe I	23	3552.720		Co I	6
3529. 735		V I	53	3540.961		Cb II	4	3552.828		Fe I	321
3529.816		Co I	22	3541.083		Fe I	326	3552.85	P	Ti II	15
3529.818		Fe I Zr II	326	3541.22	P	Fe I	47	3552.953		Cr I	
3529.99 3530.03		Cl III	84 10	3541.341		V II	145	3552.989		Co I	67
0000.00		01 111	10	3541.44		Ti IV		3553.10		Pd I	9
3530.22		Zr I	52	3541.765		F II	6	3553.161		Co I	137
3530.25		P II	21	3542.00		Ni I	119	3553.271		V I	53
3530.385		Fe I	32 6	3542.076		Fe I	326	3553.483		Ni I	16
3530.45		V II	57	3542.152		Eu II	17	3553.51		Mg II	11
3530.487 3530.580		He I Ti I	36 22	3542.243		Fe I	128	3553.716		Gd II	89
3530.595		Ni I	22 121	3542.28		Ne II	50	3553.741		Fe I	810
3530.600		Sm II	20	3542.480 3542.56	P	V II Fe I	145 321	3553.968 3554.09		Cr I Zr II	157 83
3530.67		La II	12	3542.65	•	Zr II	113	3554.122		Fe I	23
3530.75		K II	7	3542.657		VI	45	3554.39		Ne II	18
						-	· -			_	
3530.765		V II	5	3542.768		Gd II	51	3554.394		He I	34
3530.85		Zr II	114	3542.90		Ne II	34	3554.43		Lu II	7
3531.151		Eu II A II	24	3542.976	_	Co I	19	3554.44	P	Fe I	395
3531. 22 3531.4 3		Fe I	5 182	3543.09	P	Fe I	182	3554.50		Fe I	325
3531.44		Cr I	263	3543.16 3543.256		A II Co I	64	3554.50 3554.524	P	Fe II He l	176 34
3531.48		V II	4	3543.352		Nd II	04	3554.65	P	Fe I	154
3531.848		Mn I	18	3543.39		Fe I	183	3554.802	_	Gd. II	52
3531.998		Mn I	18	3543.500		v i	53	3554.922		Fe I	326
3532.121		Mn I	18	3543.669		Fe I	734	3554.993		Ce II	117
9599 10		A II	E~			n	_		_		440
3532.19 3532.285		V II	57 192	3543.948		Rh I	6	3555.08	P	Fe II V I	113 53
3532.647		Fe II	132	3544.001 3544.631		Y II Fe I	56 239	3555.142 3555.18		WII	11
3532.65		N I		3544.88	P	Fe I	154	3555.93		Co II	1
3532.69	P	Fe II	75	3544.985	-	Gd II	51	3556.083		YII	46
3532.8 88		Cr I		3545.03		Co II	1	3556.120		Co I	117
3533.008		Fe I	326	3545.16		Ni I	76	3556.130		Cr II	7
3533.043	_	Na II	1	3545.190		V II	5	3556.184		Ti I	
3533.19 3533.201	P	Fe II Fe I	75 326	3545.339		V I	53	3556.49		PII	21
0000.201			020	3545.58		A II	70	3556.54	P	Zr 11	19
3533.22		Zr I	14	3545.603		Ce II	44	3556.61		Zr II	9
3533.356		Co I	5	3545.639		Fe I	321	3556.68		Fe I	325
3533.67		P II	21	3545.797		Gd II	2	3556.800		V II	5
3533.676		V I	53	3545.832		Fe I	536	3556.877		Fe I	327
3533.757		V I Ti II	53	3545.84		A II	106	3556.91		A II	29
3533.868 3533.97		0 II	98 69	3546.15	P	Cr II	134	3556.92		O III Gd II	24
3534.051		Ce II	44	3546.190 3546.21		Ce II Fe I	131 183	3557.053 3557.26		La II	22 29
3534.14		V II	12	3546.22		Ne II	27	3557.548		Fe II	176
3534.52		Fe I	811	3546.707		Co I	41	3557.796		Tm II	10
3534.688		Mo II	1	3547.029		Ti I	133	3557.84		Ne II	6
3534.769 3534.014		Co I	118	3547.07		V II	69	3557.85	P	Cr II	76 570
3534.914 3535.04		Fe I Mg II	48 12	3547.10		Cr II	134	3558.08 3559 190	P	Fe I Gd II	572 69
3535.04		Zr I	59	3547.203 3547.69		Fe I Zr I	321,613 13	3558.189 3558.21	P	Fe I	239
3535.18	P	VII	4	3547.802		Mn I	18	3558.22	P	Cr II	89
3535.304		CP I	4	3547.98		Cr I		3558.468		Gd II	51
3535.33		A II	44	3548.029		Mn I	18	3558.518		Fe I	24
3535.408		Ti II	98	3548.037		Fe I	496	3558.538		Sc II	3
3535.522		Tm II		3548.185		N1 I	3,20	3558.60		Cr I	
3535.54		Hf II	9	3548.202		Mn I	18	3558.772		Co I	20
3535.628		Fe II	75	3548.202 3548.438		Co I	41	3559.101		Sm II	20
3535.653		Sm II	44	3548.51		A II	56	3559.21		Cr I	
3535.729		Sc II	11	3548.55	P	Fe II	132	3559.328		Ce II	243
3536.30		PII	20	3548.731		Cr I	76	3559.45	P	Fe I	321
3536.556		Fe I	326	3549.02		YII	9	3559.506		Fe I	498
3536.576		Tm II	3	3549.030		V II	103	3559.53		A II	70 07
3536.820 3536.838		He I F II	35 6	3549.08	_	WII	13	3559.597		Co I	97
3536.89		r II Cr I	6 50	3549.27 3549.365	P	Ti II Ga II	117	3559.781 3559 93		Cr I P II	89 21
2200.38		~- ·	50	3549.365		Gd II	7	3559.93		r 11	21
3536.94		Zr II	10	3549.51		Zr II	84	3559.930		N1 I	1 18
3537.243		N1 I	153	3549.61		Mg II	11	3560.07	P	Fe I	321
3537.25		Cr I	50	3549.72		SIII		35 60. 3 06		Co I	64
3537.491		Fe I	239	3549.868		Fe I	48	3560.42		O IV	12
3537.634 3537.707		Ni I Co I	120 68	3550.03	_	AII	68	3560.594		V II	4
3537.707 3537.729		Fe I	68 239	3550.11	P	Zr II	124	3560.68		Cl III	10 675
3537.729		Ca III	239	3550.19 3550.46	P	Ti II Zr I	117	3560.705 3560.798		Fe I Ce II	675 51
3537.896		Fe I	327	3550.592		Co I	12 4	3560.798 3560.855		Os I	6
0500 00		N . YY					-	2200.000			

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	IA	Туре	Element	Multiplet No.
3561.04		A II	106	3570.77		A II	69	3581.91		Gd II	69 497
3561.11		Zr II	82	3571.037		V I Pd I	122 1	3581.916 3582.08		Fe I Zr II	101
3561.23		Ne II Ti II	31 15	3571.16 3571.228		Fe I	46	3582.201		Fe I	612
3561.575 3561.65		Hr II	1	3571.26		Ne II	31	3582.34	P	Fe I	568
3561.751		Ni I	2	3571.37	_	Cr II	107	3582.35		A II Fe I	56 181
3561.910		Ti II	42	3571.64	P	Cr II V I	89 122	3582.56 3582.69		Fe I	328
3562.091		Ce II Co I	36 115	3571.653 3571.869		N1 I	5	3583.098		Rh I	3
3562.097 3562.19		A II	106	3571.933		Gd II	4	3583.337		Fe I	574
3562.29		Cr I	308	3571.97	P	Cr I	157	3583.394	_	Sm II	20
3562.48		Cr I	281	3571.995	_	Fe I	321 182	3583.54 3583.676	P	Fe II. Mn I	101 25
3562.4 8	_	P II	22 237	3572.32 3572.46	P	Fe I Fe III	105	3583.704		v I	45
3562.60 3562.912	P	Fe I Co I	64	3572.47		Zr II	1	3584.01	P	Cr II	107
3562.950		He I	33	3572.48		WII	3	3584.259		Sm II Cr I	12
3563.36		O IV	12	3572.523		Sc II Fe I	3 325	3584.366 3584.53		Y II	9
3563.61	P	Fe I V II	325 4	3572.60 3572.734		Pb I	3	3584.663		Fe I	294
3563.71 3563.92		Cr II	134	3572.748		Cr I	75	3584.790		Fe I	322
3564.046		Gd II	52	3573.09		Zr II	9	3584.801		Co I	6
3564.11		Fe I	48	3573.27	P	N1 I	123	3584.960		Fe I Gd II	395,611 7
3564.115		Co I	159	3573.403		Fe I V I	673 122	3584.962 3584.98		C II	23
3564.30		Cr I A II	281 43	3573.516 3573.557		v ii	78	3585.154		Co I	21
3564.34 3564.51	P	Fe I	183	3573.643		Cr I	75	3585.193		Fe I	438 13
3564.54	P	Fe II	113	3573.737		Ti II Fe I	15 181	3585.31 3585.320		Cr II Fe I	23
3564.56	P P	Fe I Ni I	183 73	3573.842 3573.896		Fe I	611	3585.54		Cr II	13
3564.67 3564.947	P	Co I	19	3574.039		Cr I	74,308	3585.708		Fe I	23
3564.953		Cr I	308	3574.23		Ne II	9	3585.808		Co I	100
3565.02		A II	57	3574.245		T1 I	247	3585.83		C II Ti I	23
35 65.15		Cr I	50	3574.340	P	V II Fe I	78 181	3585.852 3585.91		Mo IJ	1
3565.31		Cr II Ti II	107 76	3574.37 3574.38	•	Cr I	202	3586.082		Co I	87
3565.326 3565.381		Fe I	24	3574.64		Ne II	9	3586.10	P	Fe I	497
3565.41		Zr II	102	3574.805		Cr I Cr I	75 74	3586.114 3586.12		Fe I Fe III	611 36
3565.55		Cr I Fe I	50,281 321,328	3574.935 3574.967		Co I	21	3586.23		Cr I	157
3565.583 3565.83	P	Fe I	571	3575.11		Fe I	321	3586.28		Zr I	12
3565.84		Ne II	34	3575.249		Fe I	322	3586.543		Mn I Al II	8 7
3566.00		Ti II	42	3575.361 3575.374		Co I Fe I	4 496	3586.557 3586.708	Forb	Al II	7
3566.052 3566.10		Fe II Cr I	155 284	3575.69	P	Cr II	107	3586.75	P	Fe I	325
3566.10		Zr I	15	3575.79		Zr I	12	3586.811	Forb P	Al II Sc II	7 40
3566.148		Fe II	132	3575.850 3575.952		Cb I Ni I	4 120	3586.83 3586.912	•	Al II	7
3566.177 3566.177		V II	45 4	3575.976		Fe I	321,328	3586.936		Al II	7
3566.31	P	Fe I	127	3576.00	P	Cl II Cr II	78 171	3586.985 3587.068		Fe I Al II	23 7
3566.37		Cr II	76	3576.23	•					T1 II	15
3566.372		Ni I P II	36 22	3576.340 3576.38		Sc II Ti II	3 76	3587.130 3587.16	P Forb	i He I	32
3566.43 3566.472		Tm II	6	3576.44		Ti IV		3587.165		Al II	7
3566.59		Fe I	181	3576.62		A II	56	3587.186		Co I	35 1
3566.836		Sm II	0.08	3576.760 3576.762		Fe I Ni II	613a 4	3587.186 3587.195	Forb	Al II	7
3567.045 3567.116		Fe I Gd II	325 89	3576.772		Gd II	51	3587.252		He I	31
3567.171		SII	56	3576.88		Zr II	9	3587.253		Fe I Al II	325 7
3567.36		Fe I	183	3577.220		V II Ni I	78 3	3587.309 3587.342		Al II	ż
3567.654		Gd II	51	3577.240						He I	31
3567.701		Sc II	3 3	3577.260 3577.458		Co I Ce II	41 51	3587.396 3587.424		re I	134
3567.84 3568.04		Lu I Cl II	3 78	3577.438		V II	69	3587.450		Al II	7
3568.14		Zr II	46	3577.857		V II	78	3587.504		Nd II Fe III	36
3568.271		Sm II	47	3577.880 3578.03		Mn I Co II	8 1	3587.53 3587.68		C II	23
3568.36 3568.423		Cr I Fe I	284 321	3578.076		Co I	117	3587.69	P	Fe I	322
3568.426		Co I	61	3578.22		Zr II	83	3587.75		Y I Fe I	
3568.53		Ne II Fe I	9 673	3578.380 3578.596		Fe I Gd II	321 21	3587.752 3587.78		C1 II	78
3568.828				3578.636		V II	78	3587.931		N1 I	16
3568.940 3568.97	P	V I Fe II	122 113	3578.67	P	Fe I	127	3587.95	P	Fe II	10
3568.977	•	Fe I	294	3578.687		Cr I	4	3587.98		Zr II V II	10 78
3569.03		Hf II	7	3578.687		Ti II La II	117 155	3588.13 3588.23	P	Fe I	47
3569.083		V I Cr I	53 281	3578.89 3578.903	1	Co I	41	3588.30	_	Cr II	107
3569.14 3569.370	1	Co I	35	3579.029		Co I	41	3588.32		Zr II	10 56
3569.493		Mn I	18	3579.549)	Gd II	89 573	3588.44 3588.52	P	A II Fe I	394
3569.566 3569.804	i	Gd II Mn I	51 18	3579.83 3580.10	P	Fe I La II	155	3588.615		Fe I	325
3569.94		A II	57	3580.277	,	СР І	4	3588.80		Zr II	57
3569.99		Fe I	135	3580.618	3	Gd II	89	3588.918 3588.92		Fe I C II	322 23
3570.041	1	Mn I	18	3580.71 3580.927	, P	Sc II Sc II	4 0 3	3589.107	,	Fe I	23
3570 10		La II Fe I	142 24	3580.927		Sm II		3589.215	,	Ru I	4
3570.100 3570.245		Fe I	326	3581.195		Fe I	23 56	3589.456		Fe I Sc II	295 3
3570.34		P II	18	3581.62 3581.645		A II Fe I	56 295	3589.635 3589.67	•	CII	23
3570.57	P P	Cr II Fe I	89 154	3581.68	•	La II	136	3589.745	i	V II	4
3570.60 3570.662		w I	3,5	3581.80		C II	23	3589.77		Fe III	

24					111	ING DIS					
I A	Туре	Element	Multiplet No.	IA	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3589.973		Mn I	25	3601.666		Cr I	74	3609.687		Ce II	179
3590.08		Fe I	440	3601.692		Sm II	20	3609.752		Co I	147
3590.29	P	Fe I	497	3601.782		Mn I	25	3609.788		Nd II	141
3590.46		Si III	7	3601.916		Al III	1	3610.052		Cr I	49
3590.468		Gd II	22	3601.93		YII	9	3610.07		C1 II	20
3590.47		Ne II	32	3602.079		Co I	4	3610.154		Ti I	58
3590.475		Sc II	3	3602.10		Cl III	i	3610.159		Fe I	321
3590.598		Ce II	232	3602.10		Fe I	322	3610.25		La II	
3590.66		Fe I	953	3602.281		N1 I	3	3610.299		Wn I	8
3590.87		C II	23	3602.46		Fe I	322	3610.33	P	Fe II	112
3590.99		Fe I	573	3602.534		Fe I	324,391	3610.38	P	Fe II	175
3591.345		Fe I	321	3602.574		Cr I	74	3610.462		N1 I	18
3591.485		Fe I	568	3602.60	P	Fe II	101	3610.703		Fe I	323
3591.746 3591.912		Co I Gd II	134	3602.61	P	Cr I	140	3610.76		Gd II	89
3592.012		V II	51 4	3602.70	P P	Fe I Fe I	390	3610.794		Th II	3
3592.486		Fe I	237	3602.77 3603.20	P	re I Eu II	370	3610.85	P	Cr II	171
3592.595		Nd II	20.	3603.205		Fe I	16 295	3611.06 3611.418		Y II Ni I	9 119
3592.603		Sm II	39	3603.46		A II	57	3611.54	P	N1 I	2
3592.68		Fe I	569	3603.572		Fe I	181	3611.57	-	Eu II	15
3592.709		Gd II	69,89	3603.61		Cr II	13	3611.58		V II	
3592.881		Fe I	77	3603.72		Cl II	78	3611.701		Co I	115
3592.92		Y I	8	3603.745		Cr I	74	3611.72		Fe III	36
3593.02	P	Cr II	13	3603.80		Cr II	13	3611.84		A II	30
3593.022		Ru I	4	3603.828		Fe I	496	3611.90		Zr II	113
3593.093		Ti II	76	3603.845		Ti I	20	3612.068		Fe I	325
3593.15		Fe III	36	3603.86		Cr II	13	3612.34		La II	125
3593.32 3		V II	4	3603.88		Fe III	36	3612.34		Zr II	146
3593.33		Fe I	571	3603.91		A II	43,68	3612.35		Ne II	26
3593.445		Gd "II	52	3604.21	P.	Fe II	175	3612.352		Al III	1
3593.488 3593.5259		Cr I Ne I	4 7	3604.284		Ti I	21	3612.470	_	Rh I	1
3593.60		N II	7 26	3604.285		Sm II	47	3612.51	P	Fe I	613a
3593.76		A II	117	3604.375 3604.383		V II Fe I	130	3612.609		Cr I	252
3593.80	P	Fe I	182	3604.469		Co I	323	3612.741		NT I	6
3594.10	P	Fe I	154	3604.51		C1 II	136 78	3612.85		Cl III Fe I	1
3594.13	P	Sc II	40	3604.54		Cr I	49,89	3612.940 3613.03		8 II	46,77
3594.18		Ne II	34	3604.95	P	Cr I	74	3613.08	P	Fe I	4 322
3594.41		A II	23	3604.96	P	Fe I	77	3613.08	•	Zr II	1
3594.462		8 11	16	3605.015		Co I	97	3613.15		Fe I	324
3594.632		Fe I	322	3605.05	P	Cr I	49	3613.21		Cr II	13
3594.87	P	Co I	135	3605.333		Cr I	4	3613.26		Cr II	13
3594.870	_	Co I	4	3605.370		Co I	20	3613.3 0	P	T1 II	76
3594.89	P	Sc II	40	3605.41	P	Cr I	49	3613.392		Gd II	69
3595.119		Mn I	8	3605.450		Fe I	294	3613.43		Zr II	8,45
3595.294 3595.66		Fe I Fe I	322	3605.46	_	Y II	46	3613.45	P	Fe I	672
3595.87		Fe I	322	3605.50	P P	Fe I	322	3613.490		Gd II	87
3595.991		8 11	181 4	3605.50 3605.52	P	Sc II	40	3613.641		He I	6
3596.048		Ti II	15	3605.665	r	Cr I Gd II	252 4	3613.669 3613.70		Cr I Zr I	89 33
3596.179		Ru I	4	3605.691		Mn I	25	3613.701		Ce II	110
3596.194		Rh I	ī	3605.89		A II	30	3613.80		Mg II	110 2
3596.20		Fe I	181	3606.062		Ti I	303	3613.836		Sc II	2
3596.351		Mo II	1	3606.18	P	Fe II	175	3613.95	P	Fe I	612
3596.510		Co I	118	3606.38	P	Fe I	233	3614.10		Co I	64
3596.55		T1 II	76	3606.5224		A I	5	3614.21		Gd II	51
3597.05		Fe I	569	3606.53	P	Fe I	133	3614.26		Cr II	132
3597.147		Rh I	5	3606.679		Fe I	294	3614.34		Co I	134
3597.24	P	Fe I	856	36 06.786		Ti I	20	3614.550		Fe I	
3597.39	P	8c II	40	3606.852		N1 I	120,173	3614.673		Nd II	38
3597.42		Hf II	54	3607.04	_	Co I	67	3614.77	P	Fe I	395
3597.50 3597.705		Al II Ni I	52 10	3607.05	P	Fe II	101	3614.79		Zr II	9
3598.196		Ce II	18 116	3607.25 3607.30	P	Cr I V II	140	3614.873	-	Fe II	112
3598.22		Fe III	105	3607.39		Zr II	77	3615.01	P	Fe I	154
3598.71		Fe I	674	3607.537		Mn I	83	3615.09		C1 II	70
3598.714		Ti I	59	3607.625		Ce II	8 178	3615.19		Fe I Co I	569
3598.93		Fe I	568	3607.92	P	Cr I	140	3615.387 3615.45	P	Cr II	66
3598.98		Fe I	322	3608.146	_	Fe I	325,438	3615.64	•	Mg II	147 2
3599.304		He I	30	3608.307		Co I	20	3615.645		Cr I	3
3599.395		Cr I	89	3608.32		V II	242	3615.66		Fe I	46
3599.442		He I	30	3608.401		Cr I	252	3615.817		Nd II	69
3599.49		Fe III	36	3608.49	P	Fe II	175	3615.88		N II	26
3599.530		N1 I	121	3608.494		Mn I	8	3616.15	P	Fe I	569
3599.624		Fe I	809	3608.58	P	Cr I	140	3616.152		Bu II	28
3599.91		Zr II	123	3608.66		Cr II	133	3616.29	P	Cr II	147
3599.974		Ce II	219	3608.7	P	N1 II	. 4	3616.326		Fe I	132
3600.22	ъ	A II	115	3608.753		Gd II	69	3616.572		Fė I	
3600.48 3600.583	P	Fe I Ce II	498 236	3608.766 3608.861		Tm II Fe I	3. 23	3616.916 3617.09		8 II Fe I	56 535
3600.74											
3600.803		Y II Co I	9 63	3608.89 3608.96	P	Ti II C III	76 10	3617.164 3617.317		Gd II Fe I	89
3600.93		Fe III	36	3609.04		Cr I	49	3617.32		Cr II	147
3600.963		Gd II	69	36 09.09		N II	26	3617.522		WI	8
3601.07		La II	44	3609.314		N1 I	16	3617.53	P	Fe I	323
3601.16 3601.19		Ti I	172	3609.46	P	Fe I	322	3617.788		Fe I	496
3601.18 3601.42	P	Zr I Fe I	13	3609.479		Cr I	49	3617.97	P	Fe I	181
3601.42 3601.51	•	A II	127 4	3609.491		Sm II	30	3618.010	_	Co I	36
3601.623		A) TIT	<u> </u>	3609.56		Pd I	2	3618.30	P	Fe I	324

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
1 A	13 po		•	0000 10	P	Sc II	18	3637.15		La II	55
3618.49	_	K II Fe I	1 569	3629.10 3629.12	P	Zr II	113	3637.251		Fe I	180
3618.62 3618.769	P	Fe I	23	3629.51		Gd II	69	3637.319		Co I Fe I	117 229
3618.88		Ċ1 II	77	3629.741		Mn I Ni I	8 182	3637.73 3637.83		Sb I	1
3618.91	P	Fe I V II	130 158	3629.906 3629.99	P	Fe II	111	3637.862		Fe I	385
3618.924 3618.96	P	Fe I	77	3630.03		Zr II	10	3637.89		A II Ti I	18
3619.284	•	Mn I	8	3630.26	P	Ni I Fe I	180 323	3637.966 3638.15		S III	10
3619.392		N1 I	35	3630.353 3630.67	P	re I Fe I	126	3638.16	P	Fe I	324
3619.460		Cr I	48	0000101	_					Fe I	294
3619.514		CP II	4	3630.740		Sc II	2 9	3638.296 3638.49	P	re 1 Ti I	118
3619.66	P	Fe I	130	3630.748 3630.974		Ca I Ca I	9	3638.70	-	0 111	35
3619.76	P	Fe I Fe I	180 324	3631.103		Fe I	322	3638.767		Sm II	•
3620.00 3620.23	r	Fe I	324	3631.126		Sm II		3638.80		Pt I V I	6 83
3620.27		Fe III	25	3631.194		Ce II Na II	88 2	3639.024 3639.14	P	Mn I	7
3620.422		Co I V II	116 181	3631.266 3631.390		Co I	4	3639.19		C1 II	77
3620.496 3620.82		A II	67	3631.41		PII	22	3639.443		Co I Pb I	64 1
3620.87	P	Fe I	611	3631.464		Fe I	23	3639.568		FU I	•
0000 00	P	Fe I	323	3631.48	P	Cr II	170	3639.76	P	Sc II	18
3620.88 3620.95	r	Y I	8	3631.482		VII	76	3639.802		Cr I A II	47 116
3621.06		A II	4	3631.49		Cr II Cr II	12 12	3639.85 3640.18		Gd II	23
3621.19	P	Fe I V II	574 76	3631.72 36 3 1.9 48		Co I	133	3640.388		Fe I	295
3621.203 3621.22		Co II	1	3631.959		WI	3	3640.39		Cr I F II	47 11
3621.229		Sm II	12	3631.999		Ti I S III	1	3640.891 3641.01		Cr I	47
3621.273		Fe II	144 294	3632.022 3632.042		Fe I	496	3641.096		v I	115
3621.463 3621.51		Fe I Cr II	98	3632.106		Ce II	114	3641.22	P	Fe II	111
0021.01						V II	76	3641.330		Ti II	52
3621.718	_	Fe I O VI	808 3	3632.126 3632.292		Fe II	112	3641.39		Gd II	86
3622 3622.00	P F	Fe I	233	3632.46		Cr I	49	3641.42	_	W II	1 323
3622.001	-	Fe I	295	3632.558		Fe I	437 33	3641.45 3641.470	P	Fe I Cr I	47
3 622.145		Ce II	71 42	36 32. 75 3632.839		Ne II Co I	147	3641.641		Ni I	6
3622.15 3622.289		A II V II	144	3632.839		Cr I	49	3641.66		La II	136
3622.45		Cr II	171	3632.979	_	Fe I	135 390	3641.784 3641.830		Co I Cr I	99 47
3622.504		Sm II	6	363 3. 07 3633.13	P	Fe I Y II	2	3641.985		F II	11
3 622.54		Bu II	18	5050110							
3622.69		Cl III	1	3633.16	P	Cr II	147 116	3642.387 3642.675		N1 I T1 I	75 19
3622.81	P	Fe II	175	3633.340 3633.458		Co I Ti I	110	3642.785		Sc II	2
3622. 850 3623. 03		Mo II V II	1 77	3633.49		Zr II	102	3642.798		FII	11
3623. 03		Fe I	180	3633.64	P	Fe I	395	3643.181 3643.22		Co I Cr II	99 1
3623.316		Sm II	12	3633.837 3633.99	P	Fe I Ti II	44 0 116	3643.4		Y II	55
3623.440 3623.51	P	Fe I Fe I	233,438 393	36 34.04	•	Cr II	147	3643. 4 7		Mo II	1
3623.772	•	Fe I	323		P Forb	He I	29	3643.627		Fe I Fe I	385 233
3623.792		Mn I	8	3634.13		V II	180	3643.716			200
3623.837		Ce II	235	3634.235		He I	28	3643.80	P	Fe I	670
3623.837		Ce II	•	3634.290		Sm II Fe I	19 369	3643.82 3643.864	P	Fe I V I	46 83
3623.87		Zr I	12 6	3634.326 3634.373		He I	28	3643.89		Ne II	5
3623.98 3624. 00		Lu II Hf II	18	3634.52	P	Fe I	323	3643.941		N1 I	174
3624.06	P	Fe I	570	3634.698		Fe I Pd I	1	3644.12 3644.19	P P	Cr II Fe II	98 131
3624.111		Ca I Fe III	9 93	3634.71 3634.713		Co I	146	3644.35	_	Hr II	6
3624.25 3624.30		Fe I	133	3634.757		Gd II	69	3644.410	1	Ca I	9 5
3624.337		Co I	41	3634.83		A II	29	3644.47		He II	J
3624.688		Fe II		3634.928		Sm II	6	3644.58	P	Fe I	235
3624.72	P	Ni I	121	3634.941	_	N1 I	33	3644.699)	Ti I Cr II	1
3624.733		Ni I	2	3635.08 3635.13	P	Fe I A II	919 4	3644.70 3644.765	3	Ca I	9
3624.826 3624.890		Ti II Fe II	52 1 44	3635.144		Mo II	5	3644.798		Fe I	570
3624.955		Co I	21	3635.19		Fe I	490	3644.86	P	Ne II Ťi II	41 116
3625.140		Fe I	323	3635, 202 3635, 28	P	Ti I Fe I	20 324	3644.87 3644.990		Ca I	9
3625.26 3625.30	P	Ga II Cr II	69 98	3635.281	-	Cr I	3	3645.090)	Fe I	323,495
3625.608		V II	76	3635.334		Y II	46	3645.190)	Co I	61
	_	C- 11	147	3635.36	P	Ti II	62	3645.20		0 111	35
3625.92 3626.020	P	Cr II Co I	147 41	3635.43	P	Cr II	98	3645.290		Sm II	19
3626.085		Ti I	20	3635.462		Ti I	19 116	3645.313 3645.383		Sc II Sm II	2 35
3626.32		Gd II	69	3635.64 3635.67	P	T1 II A II	68	3645.43		La II	14
3626.53 3627.014		8 III 8m II	30	3635.82	P	Fe F	321	3645.44		Co I	97
3627.05	-	Fe I	808	3636.186	i	Fe I	77,568 47	3645.49 3645.59	4	Fe I Cr I	323,391,441 48
3627.168		Fe II	193 905	3636.21 3636.23		Cr I Fe I	47 774	3645.59	6	v I	137
3627.35 3627.63	E,	Fe I Mg I	395 45	3636.23		Zr II	9	3645.62		Gd II	17
3027.03					_		200	3645.78	P	Fe II	112
3627.71		Ti II	62 76	3636.49 3636.50	P P	Fe I Fe I	568 4 7	3645.82		Fe I	496
3627.71 3627.80		V II Co I	76 19	3636.590		Cr I	47	3645.90	5	V II	76 7
3627.80		Sm II	12	3636.61	P	Fe II	111 403	3645.98 3646.10		H Fe I	7 324
3628.06		Ne II	41	3636.650 3636.713		Fe I Co I	493 64	3646.10 3646.16		Cr I	48
3628.09		Fe I Ce II	77 113	3636.90	P	Fe II	112	3646.19	1	Gd II	2
3628.24 3628.71		Y II	9	3636.995	5	Fe I	233	3646.19		Ti I Eu II	18 13
9600 92		Fe T	438	3637.05		A II		3646.75	•	24 11	05

2	26					FIND.	ING LIS.	1				
	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3	646.848		V II	180	3656.261		Cr I	46	3664.69		Fe I	390
	646.965		Ce II	66	3656.319		Al II	51	3664.86	P	Ti II	116
	647.081		Co I	118	3656.35	P	Fe I	323	3664.95		Cr II	156
	647.40		Cr II	1	3656.50	P	Fe II	111	3664.98		Fe III	24
	647.427 647.43	P	Fe I Fe I	46 497	3656.61 3656.666		S III H	6 7	3665.142		V I	115
	647.56	P	Fe I	497 574	3656.706		v i	115	3665.180 3665.22		Nd II La II	
	647.658		Co I	4	3656.73	P	Ti I	118	3665.35		Hf II	18
3	647.71		Ni I		3656.77	P	Fe II	131	3665.43		Cr I	48
3	647.77		Lu I		3656.95		CI III	1	3665.48	P	Cr II	1
3	647.84	P	Fe I	569	3656.962		Co I	21				
	647.844	r	Fe I	23	3657.143		Fe I	130	3665.812		Tm II Ni I	10
	648.07		C1 II	77	3657.269		H	7	3665.924 3665.980		Cr I	48
3	648.22	P	Fe I	978	3657.574		Ru II	1	3666.02	P	Cr II	145
	648.35		Hf II	39	3657.59		WII	2	3666.097		Н	5
	648.534		Cr I	47	3657.698		N1 I	183	3666.11	P	Ti II	74
	648.80 648.86	P	T1 II T1 II	7 <u>4</u> 83	3657.89 3657.926		Fe I H	395	3666.19		Cr I	46
	648.966		V I	115	3657.94		Cr II	7 170	3666.215		Rh I Fe I	3
	648.997		Cr I	47	3657.987		Rh I	1	3666.24 3666.29	P	Fe I	179,389 672
												5, 2
	649.01	Р.	Ti II	14	3658.02	P	Fe I	438	3666.537		Sc II	2
	649.184 649.20	Forb	Al II O III	12	3658.097		Ti I	19	3666.592		Ti II	116
	849.232	Forb	Al II	35 12	3658.19 3658.266		Cr II V II	98,146 116	3666.642	_	Cr I	46
	649.304	10.0	Fe I	5	3658.3		Al III	20	3666.85 3666.944	P	Fe I Fe I	393 46
	649.329		Co I	146	3658.38		C1 II	7	3667.06		Zr II	8
36	649.44		Gd II	69	3658.55		Fe I	231	3667.252		Fe I	570
	549.508		Fe I	291	3658.641		Н	7	3667.40		Zr II	32
	349.527	_	Sm II	47	3659.02		Hf II	44	3667.684		Н	5
30	549.70	P	Fe I	391	3659.227		Ce II	54	3667.741		V I	114
31	350.031		Fe I	394	3659.423		Н	6	3667.932		Sm II	30
	350.13		C1 II	7	3659.516		Fe I	180	3667.981		Ce II	40
36	550.144		Hg I	3	3659.602		Cb II		3667.999		Fe I	438,569
	350.188		Sm II	25	3659.765		Ti II	75	3668.029		Cr I	46
	350.19		La II	12	3659.84		Cl II	7	3668.03		C1 II	7
	350.19 350.280		N I Fe I	180	3659.93 3660.279		Ne II H	33 6	3668.088		Tm II	2
	350.37		Cr II	156	3660.33		Fe I	323	3668.214 3668.216		Fe I Ni I	568 182
	650.45		Y II	75	3660.404		Mn I		3668.46		Zr II	9
36	50.70		0 111	35	3660.41	P	Fe I	229	3668.489		YII	46
	. Fo 80		g., yy	440	0000 44		A TT	140				
	50.73 50.90		Zr II A II	146 43	3660.44 3660.631		A II Ti I	116 18	3668.58	P	Fe I Ce II	231
	50.95		Gd II	69	3660.641		Ce II	42	3668.719 3668.830		Pr II	38
	50.998		Sm II	51	3660.85		Fe III	93	3668.893		Fe I	229
3€	51.03	P	Fe I	571	3660.92		Zr II	32	3668.965		Ti I	18
	51.065	Forb	Al II	12	3661.05		Hf II	26	3669.049		S II	16
	51.096		Al II	12	3661.17	P	Fe II	111	3669.151		Fe I	437
	51.10 51.182		Fe I Cb II	322,674 4	3661.20 3661.221		Zr I H	12 6	3669.241		N1 I	2
	51.254		Co I	85	3661.25	P	Fe I	952	3669.399 3669.410		Mn I V II	116
									33337120			110
	51.469		Fe I	295	3661.33		Zr II	102	3669.466		H	5
	51.50	ъ	Zr II	122	3661.353 3661.36		Ru I	2	3669.523		Fe I	29.1
	51.67 51.68	P	Ni I Cr II	153 1	3661.365		Fe I Sm II	179 6	3669.62	P	A II	42
	51.798		Sc II	2	3661.383		V II	191	3669.68 3669.69	P	Fe I Cr II	436 1
	51.90	P	Ti I	118	3661.44		Cr II	156	3669.838	•	Mn I	7
	51.971		He I	27	3661.73		Hf II	62	3670.035		Fe I	369
	52. 119	_	He I	27	3661.951		Ni I	16	3670.041		Co I	64
	52.26 52.541	P	Fe'I Co I	494 4	3662.005 3662.08		S III La II	6 12	3670.071		Fe I	435
•	02.041		00 1	*	0002.00		24 11		3670.16	P	Cr II	6
36	52.65		Fe III		3662.14		Zr II	101	3670.23	P	Fe I	47
	52.748	_	Fe II		3662.158		Co I	115	3670.28		Cl III	1
	52.81	P	Ti II	116	3662.237		Ti II	75 6	3670.427		N1 I	4
	53.00 53.108		O III Ce II	35 38	3662.258 3662.26		H Gd ÍI	6 4	3670.517		Mn I Mo II	7
	53.35	P	Fe I	229,324	3662.39		Cr I	46	3670.668 3670.677		Sm II	1
	53.497		Ti I	19	3662.62	P	Cr II	1	3670.810		Fe I	133
36	53.614		Tm II	10	3662.693		Sm II		3670.840		Sm II	11
	53.62	P	Sc II	18	3662.73	P	Fe I	490	3671.01		A II	115
36	53.670		Ce II	50	3662.840		Cr I	46	3671.12	P	Cr II	6
36	53.763		Fe I	180	3662.90	P	Fe I	436	3671 00		GA II	9
	53.85	P	Cr II	156	3662.905	-	Sm II	39	3671.20 3671.205		Gd II V I	2 70
	53.912		Cr I	47	3663.206		Cr I	46	3671.28		Zr II	45
36	54.441		Co I	63	3663.25		Fe I	439	3671.478		H	5
	54.51		S II	4	3663.274		Hg I	2	3671.51		Fe I	570
	54.592		Ti I	18	3663.406		H Fo I	6	3671.672		Ti I	19
	54.62 54.66		Gd II Fe I	4 77	3663.458 3663.47		Fe I S II	229,231 16	3671.94		Cr I	217
	54.995		Al II	77 12	3663.594		V I	114	3672.14 3672.166		S II Ce II	4 49
	55.29		A II	82	3663.64		Zr I	12	3672.166		Nd II	70
		_							23.2.000			
	55.35	P	Fe I	131	3663.95		Fe I	435	3672.403		V I	115
	55.465 55.56		Fe I Zr II	369 71	3663.98 3664.09		Fe III	24	3672.65		Zr II	1
	55.56 55.851		Zr II Ce II	71 51	3664.09 3664.095		Ne II Ni I	1 4	3672.69		Fe I	180
	55.92	P	Cr I	46	3664.20		PII	18	3672.789 3673.19		Ce II Eu II	233 28
	56.05		A II	67	3664.254		Sc II	10	3673.19		A II	117
268	56.135		H	7	3664.537		Fe I	391	3673.35	P	Fe II	174
36/	56.152		Gd II	1	3664.60		Gd II		3673 404		V T	114

I A	Туре	Element	Multiplet No.	IA	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.
3673.59		Cr I	217	3683.67		Cr I	216	3693.364		Co I	64
3673.68	P	Fe I	978	3683.71	n	Ca II Fe I	18	3693.476		Co I Cr I	95 45
3673.761	P	H Fe II	5 131	3683.77 3684.1	P	Li II	996 2	3693.56 3693.667		Mn I	40
3673.77 3673.83	P	Cl II	7	3684.108		Fe I	292	3693.78	P	Fe I	46
3674.06	P	N1 I	15	3684.25		Cr II	145	3693.79	P	Fe I	490
3674.15	P	N1 I	32	3684.332		V I	114	3693.932		N1 I	15
3674.634		Eu II	11	3684.479 3684.903		Co I Y II	99 62	3693.989 3694.005		Sm II Fe I	2 394
3674.691		V II Zr II	9 3 9	3684.960		Co I	116	3694.005	P	Ti I	177
3674.74		21 11	•	00011010				00011120	_		
3674.766		Fe I	369	3685.049		Mn II	8	3694.11		Ca II	18
3674.92	P	Ti I	177	3685.192		Ti II	14	3694.115		Mn I Cr I	24 45
3675.00	P	Cr II	1 10	3685.212 3685.47	P	Mn I Ti I	7 177	3694.12 3694.19		Yb II	45 1
3675.265 3675.307		Sc II Ca I	28	3685.548	•	Cr I	44	3694.22		Ne II	î
3675.44	P	Fe I	229	3685.66	P	Fe I	231	3694.27		La II	124
3675.497		V I	114	3685.804		Nd II		3694.31		Ca II	18
3675.64		Y II	84	3685.964		Ti I	117	3694.445		Ti I	117
3675.700	_	V I	29	3685.998		Fe I Cr I	385 44	3694.622 3694.911		V I Ce II	114 63
3675.76	P	Fe I	996	3686.18		OF 1	77	2094-911		06 11	00
3676.27		P II	19	3686.20		Mn II	8	3694.98		Cr II	169
3676.314		Fe I	228	3686.260		Fe I	131	3695.054		Fe I	229,5340
3676.33		Cr I	89	3686.262		V I	70	3695.158		V II V I	116,179
3676.365	_	H C- TT	4	3686.477 3686.555		Co I Cu II	134 2	3695.335 3695.37		0 111	114 21
3676.50	P	Cr II Co I	1 145	3686.67		Cr II	118	3695.507		Fe I	225,707
3676.552 3676.684		V I	115	3686.71		T1 I	222	3695.86		Cr I	217
3676.879		Fe I	389	3686.803		Cr I	44	3695.865	_	V I	29
3676.959		Mn I		3686.833		H	4	3696	P	N IV	12 128
3677. 309		Fe I	773	3687.039		Pr II		3696.03		Fe I	126
3677.477		Fe I	125	3687 . 100		Fe I	75	3696.29	P	N1 I	74
3677.630		Fe I	291	3687.252		Cr I	44	3696.39		Ti II	73
3677.69		Cr II	12	3687.354		Ti I	19	3696.568		Mn I	24
3677.793		Sm II		3687.458		Fe I	21	3696.6	n	Y II Ni I	74 74
3677.835		Co I	116	3687.473 3687.545		V I Cr I	114 45	3696.65 3696.78	P	Cr II	131
3677.86 3677.93		Cr II Cr II	12 12	3687.656		Fe I	291	3696.81	P	Fe I	434
3677.980		Co I	20	3687.74		Gd II	20	3696.885		Ti I	177
3678.13		S II		3687.78		Eu II		3696.913		N1 I	172
3678.240		Ca I	28	3687.802		Ce II	143	3697.09		Ne II	41
		D. 11	29	3688.01	P	Cr II	1	3697.154		H	3
3678.259 3678.27		Eu II A II	42	3688.069	•	V I	29	3697.426		Fe I	389
3678.342		Sc II	45	3688.11		Cr I	45	3697.45		Fe III	35
3678.46	P	Mn I	7	3688.27	P	Ti I	177	3697.49		Zr II	7
3678.862		Tm II	12	3688.307		Mo II	5 5	3697.510		Fe I V II	670 204
3678.863		Fe I	131 101	3688.415 3688.418		Ni 1 Smr II	11	3697.72 3697.73		Gd II	4
3678.91 3678.98		Zr II Fe I	101 124	3688.42		Eu II	2	3697.850		СРІ	3
3679.070		Cr I	45	3688.44		Cl II	56	3697.88		s III	
3679.14	P	Ti I	177	3688.457		Cr I	48	3698.00		Cr II	118
		va. 7	000	9600 476		Fe I	669	3698.03	P	Fe I	75
3679.33	P	Fe I Cr II	228 118	3688.476 3688.71		Fe III	93	3698.17	•	Zr II	71
3679.34 3679.355	r	Н	4	3688.877		Fe I	179	3698.183		Ti I	222
3679.424		Ce II	257	3689	P	N IV	12	3698.39		Hr II	42
3679.500		Eu II		3689.02	P	Fe I Y II	178 75	3698.611		Fe I Ce II	491 51
3679.53		Fe I Zr II	393,490 122	3689.2 3689.302		Cr I	48	3698.650 3698.70		0 111	21
3679.64 3679.673		Ti II	75	3689.305		N1 I	173	3699.017		Co I	145
3679.80		Ne II	41	3689.37	P	Fe I	391	3699.147		Fe I	490
3679.819		Cr I	48	3689.457		Fe I	369,386	3699.37		8 111	
0000 015		Fe I	5	3689.63		Cr I	216	3699.41	P	Fe I	996
3679.915 3680.06		A II	115	3689.671		Ti I	222	3699.476	-	v I	70
3680.113		V I	114	3689.897		Fe I	533	3699.55	P	Fe I	436
3680.19		Cr I	48	3689.916		Ti I	18	3699.72		Hf II	18
3680.675		Fe I	568	3690.032 3690.095		Ru II Fe I	1 231	3699.73 3699.9 0	P	Gd II Fe II	20 131
3680.801 3680.98	P	Fe I Fe II	111	3690.281		V I	29	3699.920	•	Ce II	223
3681.272	•	Ti I	177	3690.35		Pd I	7	3699.952		Pr II	11
3681.54		K II	1	3690 . 450		Fe I	497,570	3700.055		Ti I	400
3681.64		Fe I	390	3690.60		Fe III	85	3700.126		V II	102
0001 001		Cr I	89	3690.70		v II	190	3700.14		Fe III	84
3681.691 3681.774		Fe I	OB	3690.715		Co I	86	3700.256		Tm II	6
3681.87		Fe I	951	3690.730		Fe I	807	3700.337	_	V II	116
3682.05		C1 III	1	3690.98	P	Zr II	82	3700.42	P	Cr II	1
3682.101	_	W I	4	3691.18 3691.53	P P	Fe I Fe I	229 707	3700.61 3700.909	P	Fe I Rh I	569 2
3682.15	P P	Fe I Fe I	386 385	3691.557	•	H	4	3700.922		Sm II	-
3682.17 3682.2 2 6	۲	Fe I	772	3692	P	o v	8	3700.96		V II	102
3682.25		Hf I	1	3692.17		A II	68	3701	P	0 V	8
3682.56		A II	29	3692.221		Sm II	29	3701.086		Fe I	385
	**	p. **	101	3692.225		v I	29	3701.15		Hf II	61
3682.66 3682.67	P	Fe II Zr II	131 44	3692.33		ÀII	4	3701.364		Tm II	2
3682.810		Н 11	4	3692.357		Rh I	1	3701.63	P	N1 I	138
3683.047		Co I	99	3692.44		0 I	6	3701.730		Mn I	7 136
3683.054		Fe I	5	3692.60		Zr II Mo II	56 5	3701.81 3701.81		La II Ne II	136 40
3683.126		V I	29 11	3692.645 3692.812		Mo II	7	3701.81		Cr II	168
3683.267 3683.39		Eu II Cl III	11 12	3693.008		Fe I	439	3702	P	0 V	16
3683.39 3683.469		Pb I	1	3693.09		Cr I	216	3702.033		Fe I	369

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3702.237		Co I	145	3710.46		P II	37	3718.21		A II	131
3702.291		Ti I	83	3710.47		Zr II	122	3718.380		Ce II	37
3702.500		Fe I	46,75	3710.60		Cr I	88	3718.407		Fe I	292
3702.553		Mo II	5	3710.869		Sm II	19	3718.86		Zr II	9
3702.75 3702.942		O III Ti I	14 132	3710.870 3711.074		Eu II Na II	1 4 3	3718.877 3718.92		Sm II Pd I	38 3
3703	P	o v	8	3711.074		Pr II	18	3718.930		Mn I	· ·
3703.217		Al II	18	3711.118		V II	102	3719.27		Hf II	7
3703.323		YII	62	3711.225		Fe I	228	3719.45		Gd II	
3703.37		0 111	21	3711.29		Cr II		3719.53		Gd II	17
3703,43	P	Fe I	704	3711.30	P	Fe I	75	3719.74		Mo II	5 .
3703.52	r	CIII	12	3711.30	r	Fe III	99	3719.797		Ce II	52
3703.556		Fe I	291,292	3711.411		Fe I	494	3719.935		Fe I	5
3703.584		V I	29	3711.543		Sm II	25	3720.17	P	Fe II	23
3703.697		Fe I	389	3711.646		Co I	63	3720.29	P	Zr II	32
3703.824		Fe I	369	3711.751	_	V II	116	3720.384		Ti I	177
3703.832		V II	15 3	3711.92	P	Fe I Zr II	178 8	3720.43		A II Cl III	42 5
3703.855 3704.010		Fe I	495	3711.95 3711.973		н	3	3720.45 3720.69	P	Rh II	7
3704.060		Co I	35	3711.974		Fe II	192	3720.86	•	0 111	21
3704.295		Ti I	117	3712.109		Sm II		3720.93	_	V I	98
3704.336		Fe I	609	3712.177	_	Co I	84	3721.03	P	N1 I	181
3704.463 3704.699		Fe I V I	290 29	3712.39 3712.48	P	Fe II O III	15 21	3721.189 3721.278		Fe I Fe I	491 75,705
3704.73		0 111	21	3712.50		Cr I	269	3721.358		VI	11
3704.79 I	Porb	He I	26	3712.533		V II	157	3721.396		Fe I	131
3704.80	P	Fe I	950	3712.70		Gd II	20	3721.398		Y II	75
3704.848		Tm II	9	3712.75		O II	3	3721.512		Fe I	389
3705.003		He I	25	3712.764		Sm II	25	3721,606		Fe I	437
3705.035		A, I	29	3712.97		Cr II	12	3721.632		Ti II	13
3705.12	P	Ni I	30	3713.018		Cb I	3	3721.69		Źr II	44
3705.140	_	He I	25	3713,03		A II	114	3721.847		Sm II	
3705.26	P	Fe I	704	3713.04		Cr II	12	3721.86		Ne II	37
3705.40	P	Cr II	118	3713.09		Ne II	5	3721.940		H	3
3705.40		Hf II	62	3713.103		Al III	4	3721.95		0 111	21
3705.45		Cl III Ti I	1 222	3713.336		N1 I Bu II	74 12	3721.998		V I Fe I	91 291
3705.53 3705.567		Fe I	5	3713.45 3713.54		La II	26	3722.028 3722.068		Gd II	291 119
3705.70	P	Fe I	610	3713.56		VI	98	3722.16		V II	15
3705.71	P	Fe I	293	3713.696		N1 I	74	3722.23	P	Fe I	490
4							1.12		_		
3705.81		La II V I	55	3713.734		Ti I V I	116	3722.24	P	Fe I N1 I	127
3705.83 3706.026		Ca II	11 4 3	3713.957 3714	P	N IV	11 12	3722.484 3722.564		Fe I	18 5
3706.035		V I	104	3714.03	•	0 111	14	3722.568		Ti I	17
3706.06		P II	20	3714.13		Zr I	12	3722.601		V I	91
3706.219		T1 II	73	3714.3		YII	61	3722.759		Ce II	90
3706.752		Sm II	47	3714.39		Cr I	269	3722.77	P	Fe I	707
3706.91		Mn II A II	8 4	3714.74 3714.77		A II Zr II	3 18	3722.79 3723.324		Sb I V I	1 98
3706.94 3706.979		Sm II	*	3714.808		NA II	35	3723.38	P	N1 I	183
3707.01		Co I	85	3714.87		La II	55	3723.40		Cr II	144
3707.048		Fe I	385,392	3714.904		Eu II	11	3723.506		Nd II	
3707.13 3707.167		Cr II Sm II	169 35	3715.08 3715.19		O III Cr II	14 20	3723.63 3723.631		P II Ti II	22 72
3707.24		0 111	14	3715.371		Ti I	••	3723.92	P	Fe II	14
3707.34		Cl III	9	3715.45		Cr II	145	3724.106		Ti II	73
3707.465		Co I	96	3715.476		V II	15	3724.26	P	N1 I	183
3707.549		Ti I	177	3715.499		N1 I	183	3724.380		Fe I	124
3707.828		Fe I	.5 76	3715.53		La II Ti I	43	3724.51		A II Ti I	131
3707.918		Fe I	76	3715.795		-1 1	116	3724.570		** 1	131
3708.06		Mn II	8	3715.86		P II	1	3724.81		Mn II	8
3708.18	P	Fe I	228	3715.911		Fe I	124	3724.827		N1 I	182
3708.410	_	Sm II	-5	3716.36		Gd II	2	3724.902		Sm II	5
3708.45	P	Fe I	436	3716.365		Ce II	40	3724.94		Eu II	2
3708.602 3708.625		Fe I Ti I	178,225 268	3716.442 3716.531		Fe I Cr I	388,705 269	3724.984 3725.05		V II La II	102 13
3708.654		Sm II	19	3716.60		K II	2	3725.061		Tm II	417
3708.721		V I	104	3716.71	P	Fe I	434	3725.155		Ti I	83
3708.823		Co I	98	3716.91		YII	76.	3725.29		Mn II	8
3709.03	P	Fe I	390	3716.930		Ce II	242	3725.30		0 111	14
3709.13		Gd II	51	3717	P	0 V	8	3725.304		Fe II	130
3709.13 3709.246		Fe I	21	3717.02	-	Zr II	82	3725.498		Fe I	534
3709.25	P	Cr II	6	3717.03		P IV	3	3725.65	P	Fe I	75
3709.27		Zr II	45	3717.06		CP II		3725.675		Ce II	231
3709.286		Ce II	40	3717.17	_	AII	67	3725.81		O IV	6
3709-335		V II 8 III	102	3717.19 3717.250	P	Fe I Ti I	704 116	3725.901	P	Fe II O V	6
3709.371 3709.52		0 111	1 21	3717.259 3717.393		Ti I	116 17	3726 3726.06	P P	Fe I	8 433
3709.535		Fe I	435	3717.53		Mn II	8	3726.235	-	Cb I	3
3709.64		Ne II	1	3717.55		VI	114	3726.653		Co I	40
		. -		*****			. -				
3709.665		Fe I	225	3717.63		P III P IV	10	3726.805		Sm II	19
3709.88 3709.90		Mn II A II	. 8 67	3717.63 3717.69		Fu II	3	3726.85 3726.89	P	Cr I Fe I	73 75
3709.933		Ce II	40	3717.79	P	Fe I	997	3726.926		Ru I	76 2
3709.963		Ti I	83	3717.775		8 111	6	3726.927		Fe I	385
3710.01	P	Cr II	6	3717.84	P	Fe I	706	3726.931		Mn I	24
3710.186	_	Ti I	222	3717.915		Tm I		3727.03	P	Fe I	668
3710.22	P	Cr II	6	3717.94		C1 II	63	3727.04	P	Fe II	192

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3727.09	В	Fe I	387	3736.017		V II	102	3746.931		Fe I	386
3727.33		0 11	3	3736.280		Be I	6	3747	P	0 V	8
3727.35		V II	21	3736.41 3736.45		La II Cr I	142 215	3747.00	P	Fe I	388
3727.37 3727.53		Cr II Fe I	117 705	3736.56		Cr II	20	3747.264 3747.40	P	Cr I Fe III	289 71
3727.62		Fe I	21	3736.78		Ó IV	6	3747.48	-	Hf II	27
3727.67		Fe I	225	3736.813		N1 I	30	3747.55		YII	8
3727.72		Zr II	112	3736.901 3737.133		Ca II Fe I	3 5	3747.66		N IV S III	8
3727.80 3728.03		Fe I Ru I	386 2	3737.141		Sm II	•	3747.90 3747.96		La II	1
0120.00	U	1	~								
3728.13		Nd II		3737.55		Cr II Hf II	117 75	3747.982		V I	97,98
3728.33		V II Ce II	116 47	3737.88 3737.89		A II	131	3748.010 3748.056		Ti II Ce II	107 1 60
3728.42 3728.46		Sm II	54	3737.992		V I	91	3748 . 101		Ti I	166
3728.49		0 111	30	3738.003		Al II	11	3748.18		Cr I	88
3728.66		Fe I	227	3738.08 3738.13		Eu II Zr II	17	3748.264		Fe I Ca I	5
3728.67 3728.67		P II P IV	22 3	3738.308		Fe I	609	3748.374 3748.46		C1 II	27 6
3728.67		Ti I	116	3738.38		Cr II	20	3748.489		Fe II	154
3728.82		0 111	30	3738.51	P	Fe I	918	3748.492		Fe I	805
3728.84	n	Co I	133	3738.757		v I	97	3748.614		Cr I	43
3728.88		Mn I	24	3738.901		Ti I	166	3748.68		Cr II	11
3728.93	3	N1 I	181	3739.117		Sm II	~=	3748.73		8 111	_
3729.03		O IV	6	3739.120 3739.13		Fe I K II	75 1	3748.81 3748.88		C1 III	5 105
3729.03 3729.29		V I A II	91 10	3739.193		Pr II	_	3748.91	P	Fe I	289
3729.34		Fe I	530	3739.197		Sm II	5	3748.969		Fe I	386
3729.34		0 11	62	3739.229 3739.317		Ni I Fe I	2 74	3748.998		Cr I	43
3729.49 3729.70		Mn II O III	8 30	3739.527		Fe I	1-2	3749.045 3749.487		Ni I Fe I	1 21
0.200											
3729.74		Zr II Ti I	8	3739.6 3739.782		T1 II N1 I	107 180	3749.49 3749.55	P	O II Zr II	3 112
3729.80 3730.38		Fe I	17 533	3739.80		CP I	3	3749.930	r	Co I	95
3730.43		Ru I	2	3739.92		0 11	31	3750.00		C1 II	6
3730.46		Fe I	389	3739.940 3740.061		Pb I Fe I	2 532a, 707	3750.154		H	2
3730.47 3730.64		Co I 8 II	62	3740.241		V I	98	3750.349 3750.50		Ca I A II	27 3
3730.75		N1 I	2	3740.247		Fe I	667	3750.56		Cr II	· ·
373 0.80	7	Cr I	2	3741.059		Ti I Sm II	17	3750.65		2r II	18
3730.81	.0	Tm II	11	3741.288		9m 11		3750.677		Fe I	225
3730.84	ŀ	Gd II	20	3741.31		Eu II	11	3750.74		8 III	1
3730.94		Fe I	228	3741.427 3741.504		Nd II V I	124	3750.763		Mrn I V II	24
3731.15 3731.25		Fe I Sm II	950 11	3741.56	P	Fe II	15	3750.88 3751.059		Fe I	21 667
3731.26		Zr II	112	3741.633		Ti II	72	3751.06		A II	81
3731.26	8	Co I	96	3741.69		0 II	38	3751.09	P	Fe I	74
3731.37		Fe I La II	225	3741.727 3742.07		Ce II Fe I	241 225	3751.222 3751.26		V II Ne II	100 1
3731.42 3731.64		V II	137 101	3742.14	P	Fe I	978	3751.60		Cr II	117
3731.93		Mn I		3742.20	P	Cr II	6	3751.60		Zr II	71
3731.95	'n	Al II	11	3742.280		Ru I	2	3751.625		Co I	98
3731.98		V II	92	3742.34		No II	5	3751.812		Tm I	••
3732.03		Cr I	2	3742.393		Cb I Fe I	3	3751.820		Fe I	287
3732.13		Fe I O III	532 14	3742.56 3742.621	P	Fe I	389 387	3752.420 3752.524		Fe I Os I	385, 39 2 2
3732.13 3732.39		Co I	62	3742.937		Fe I	704	3752.65	P	N III	11
3732.39		Fe I	76	3742.968	_	Cr I	43	3752.679		Nd II	33
3732.45		0d II V 1I	5	37 42.99 3743.20	P P	Cr II Cr II	6 6	3752.860 3753.10		Ti I Al II	17 39
3732.76 3732.86		He I	15 24	3743.364	-	Fe I	21	3753.154		Fe I	177
				0740 40		D- 111					
3732.99		Re I	24	3743.40 3743.468		Fe III Fe I	806	3753.18 3753.26	P	Fe III Cr II	83 20
3733.08 8733.20		Gd II Fe I	225	3743.47		Gd II	2	3753.367	•	Ca I	20 27
3733.31	.9	Fe I	5	3743.556		Eu II	11	3753.53		A II	80,128
3733.36		A II	68	3743.578 3743.610		Cr I V II	43 21	3753.610		Fe I Ţi I	73 17
3733.4 8 3733. 60		Co I V II	98 116	3743.78	P	Fe I	290	3753.623 3753.83		Ne II	17 38
3733.73		C1 II	63	3743.868		Sm II	18,34	3754.06		A II	115
3733.76		Ti I	166	3743.884 3744.066		Cr I Tm I	43	3754.12 3754.346	P	Rh II Co I	7 132
3 733.91	.U	Al II	11	0.11.000				0102.020		00 1	132
8734.12		Tm II	6	3744 . 105		Fe I P III	3 85 1 0	3754.506		Fe I	386
3734.13		Co I H	96 3	37 44. 22 37 44. 42		K II	3	3754.59 3754.62		Cr II N III	20 4
3734. 37 3734. 42		v i	97	3744.490		Cr I	43	3754.67		0 111	2
3734.45		Ru II	1	3744.562		N1 I	180	3754.89	P	Fe I	949
3734.56		Al II	50	3744.66 3744.73		Ne II O IV	40 6	3755.13 9755.276		Cr II Sm II	20 34
3734.71 3734.80		Al II O III	50 21	3744.73 3744.98		Hf II	76	3755.276 3755.425		Ce II	34 128
3734. 80		Al II	50	3745.36	P	Fe II	131	3755.447		to I	96
3734.86		Fe I	21	3745. 49 1		Co I	34	3755.54		Mo II	5
3734.94	ļ.	Ne II	1	3745.561		Fe I	5	3755.56		Gd II	85
3735.15	8	V II	102	3745.605		Sm II V II	2 15	3755.563		Fe II	154
\$735.32 \$735.40		Fe I A JI	388 3	3745.806 3745.83		N III	4	3755.61 3755.701		Ca II V I	8 124
3 735.49 3 735.66		Ti I	J	3745.901		Fe I	5	3755.81		Cr I	72
3735.71	P	Fe I	127	3745.97		Zr II	112	3755.82	P	O IV	6
3735.85		La II	29 95	3746.46 3746.486		A II Fe I	1 3 0 73	3756.069 3756.10		Fe I He I	74 66
373 5.92 3 7 3 5.94		Co I O II	95 62	3746.56	P	Fe II	14	3756.411		Sm I	2
3735.98		Sm II	29	3746.92		A II	67	3756.411		Sm II	44

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3756.55		Cr II	144	3765.542		Fe I	608	3775.860		Fe I	287
3756.83		Cr I	72	3765.62		Cr II	20	3776.062		Ti II	72
3756.860 3756.939		Tm II Fe I	9 805	3765.70 3765.93		Fe I Eu II	608 11	3776.454 3776.527		Fe I Mn I	7 4 6
3756.96		Zr II	8	3766.092		Fe I	226	3776.56		Y II	8
3757.093		WI	3	3766.13		AII	29	3776.80		SII	51
3757.174 3757.21		Cr I O III	43 2	3766.29 3766.445		Ne II Ti I	1 82	3777.061		Fe I Ne II	432
3757.459		Fe I	668	3766.514		Ce II	124	3777.16 3777.32		Cr I	1 41
3757.529		Sm II		3766.65		Cr II	20	3777.43		Fe III	95
3757.60	P	N III	11	3766.665		Fe I	386	3777.448		Fe I	223
3757.66	P	N III	11	3766.71		Zr I	10	3777.543		Co I	96
3757.662 3757.684		Cr I Ti II	43 72	3766.83		Zr II	7	3777.55		A II	81
3757.80		Zr II	120	3766.92 3767.04		Hf II Gd II	75 20	3777.60 3777.64		Hf I	31 1
3757.862		Ce II	48	3767.05		La II	151	3777.919		Ru II	î
3757.929		WI	4	3767.18	P	Cr II	20	3777.93		Cr I	41
3758.044 3758.11	P	Cr I Fe I	43 704	3767.194 3767.358		Fe I Sm II	21 46	3778.063		N1 I Sm II	15
3758.22	-	V II	100	3767.36		K 11	2	3778.136 3778.320		Fe I	367
3758.235		Fe I	21	3767.431		Cr I	42	0770 057		V II	0.1
3758.31		Gd II	20	3767.57		C1 II	6	3778.357 3778.37	P	Fe II	21 192
3758.36		Ca II	8	3767.720		A 11	100	3778.509		Fe I	664
3758.45 3758.72		O IV Cr I	6 12	3767.73 3767.755	P	Fe I Sm II	918	3778.684		V I	28
3758.9		Y II	74	3767.89		Zr II	31	3778.69 3778.697		Cr II Fe I	73
3758.944		Nd II		3768.030		Fe I	73	3778.90		SIII	5
3758.9 68 3759. 00		Sm II Gd II	2	3768.08 3768.13		Cr I	42	3779.213	_	Fe I	290
3759.08		La II	13	3768.23		Cl II Fe I	6 368	3779.23 3779.35	P	N III Cl III	11 8
3759. 155		Fe I	855	0700 040		O 7					
3759.291		Ti II	13	3768.240 3768.39		Cr I Gd II	43 2	3779.424 3779.444		Fe I Fe I	222 665
3759.460		Fe II	154	3768.57	P	Cr II	6	3779.486		Fe I	74
3759.556 3759.684		Cb I Co I	3 131	3768.62		Cr I	42	3779.58	P	Fe II	23
3759.87		0 111	2	3768.71 3768.734		P II Cr I	1 43	3779.648 3780.09		V I Hf II	69 18
3760.031		Ru I	2	3768.81		He I	65	3780.391		Nd II	19
3760.052 3760.133		Fe I W I	177 3	3769.00		Cr I Ce II	42	3780.53		La II	141
3760.24		v II	21	3769.046 3769.13		Cl II	50 6	3780.53 3780.6 7		Zr I La II	8 55
3760.401		Co I	40	3769.37	P	Cr II	6	3780.763		Sm II	
3760.404		Ce II	109	3769.45	-	Gd II	37	3780. 770		WI	8
3760.534		Fe I	76	3769.455		N1 II	4	3780.84		A II	54
376 0.694 3 760.694		Ce II Sm II	92 18,51	3769.644 3769.695		Nd II Pr II	67 16	3780.927		Sm II	38
3760.71		Gd II	37	3769.995		Fe I	387	3781.188 3781.23		Fe I Cl II	7 4 72
3760.92	_	Gd II	20	3770. 3 05		Fe I	287	3781.379		Cb II	9
3761.06 3761.12	P	Fe I Eu II	706	3770.37	P	N III	11	3781.393		V I	10,97
3761.12		V II	11 129	3770.405 3770.412		Fe I Ti II	177 107	3781.510 3781.597		Fe II Mo I	130 8
3761.320		Ti II	13	3770.517		Mo I	8	3781.620		Ce II	163
3761.331		Tm II	2	3770.54		AII	42	3781.68		He II	5
3761.416		Fe I	227	3770.632		H	2	3781.938		Fe I	917
3761.442 3761.62		V I Ca III	97 3	3770.69 3770.974		Gd II V II	21	3782.139		Ti I	82
3761.69		Cr II	11	3771.08		N III	4	3782.195 3782.24		0s I Zr II	3 44
3761.72	*	Ca I	8	3771.3 6		Hf II	29	3782.302		YII	61
3761.82 3761.866		P II Ti II	1 107	3771.45 3771.50	P P	N III Fe I	11	3782.34		Gd II	202
3761.867		Pr II	101	3771.652	r	Ti I	607 17	3782.450 3782.524		Fe I Ce II	388 142
3761.90		Cr II	11	3771.98		Zr II	4.4				
3761.913		Tm II	2	3772.06		Zr II	44 31	3782.6 3782.608		S II Fe I	23 491
3762	P	0 V	8	3772.530		Ni I	15	3782.72		Zr II	120
3762.205 3762.41		Fe I Si IV	705 3	3772.854 3772.962		Pr II V II	100	3782.78		Hf II S II	26 41
3762.51		Hf II	101	3773.12		La II	141	3783.16 3783.19		K II	41 2
3762.588		Sm II	25	3773.13		Si IV	3	3783.347		Fe II	14
3762.618 3762.62	P	N1 I N III	11	3773.364 3773.68		Fe I Cl II	531	3783.530		Ni I	30
3762.63	•	0 11	31	3773.699		Fe I	6 386	3783.561 3784.250		Tm II Nd II	. 11
3762.894		Fe II	192	3773.80		Fe III	34	3784.27	P	Fe I	607
3763.00		Gd II	1	3773.80		V II	129	3784.81	•	La II	13
3763.13		Cb II	10	3774.00		0 111	2	3784.886		He I	64
3763.141 3763.33		V I Gd II	98 37	3774.25 3774.294		C1 II Sm II	6 43	3785.01		0 II	95
3763.356		Mo I	8	3774.3		Al II	33	3785.421 3785.706		Mn I Fe I	45 608
3763.377		Mn I	24	3774.33		YII	7	3785.78	P	Fe I	704
3763.475 3763.52		Nd II A II	54	3774.331 3774.38	P	Ti I O IV	16 6	3785.950		Fe I	177
3763.57	P	Fe I	128	3774.38 3774.52	r	S III	6 10	3786.043 3786.176		Ti I Fe I	57 367
3763.790		Fe I	21	3774.54		A II		3786.22		Cr I	71
3764.09		Fe II	29	3774.599		Co I	96	3786.253		Ti I	165
3764.117 3764.21	P	Ce II Fe I	41 74	3774.645 3774.650		Mn I	45 10	3786.33	P	Ti II	12
3764.21	•	Sm II	34	3774.650 3774.678		Ti II V II	12 129	3786.37 3786.40	P	Fe II A II	15
3764.38		Zr I	10	3774.823		Fe I	73	3786.632		A II Ce II	3 51
3764.60 3764.911		Gá II	85	3775.03		PII	19	3786.678		Fe I	22
3764.811 3765.044		Pr II Ce II	208	3775.187 3775.572		V I Ni I	97 33	3786.70		P II	1
3765.27		A II	42	3775.724		Tl I	1	3786.94 3787.064		Fe III	71

31

I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
3787.164		Fe I	916	3796.90		Fe I	667	3807.505		v I	28
3787.203		Sm II	5	3796.99		Cr I	41	3807.534		Fe I	73
3787.235		VII	100	3797.126		Cr I	139	3807.65		Gd II	85
3787.56		Gd II	20	3797.283		Sm II	11	3807.926		Cr I	139
3787.883		Fe I	21	3797.517		Fe I	607	3808.102		Co I	17
3787.89	P	Cr II	6	3797.716		Cr I	139	3808.124		Ce II	59
3788.125		Sm II Rh I	25 6	3797.730		Sm II H	2	3808.286 3808.521		Fe I V I	489 9
3788.474 3788.70		YII	7	3797.900 3797.948		Fe I	222	3808.61		A II	3
3788.753		Ce II	47	3797.95		Hf II	29	3808.7		YII	73
3788.804		Ti I	16	3798.127		Cb I Mo I	3 1	3808.731 3808.772		Fe I Nd II	222
3788.864 3788.91		Cr I Fe III	139 102	3798.259 3798.276		mo I Ti I	115	3808.79		La II	43
3789.178		Fe I	289	3798.36	P	Fe II	14	3809.043		Fe I	367
3789.293		Ti I	115	3798.513		Fe I	21	3809.224		Ce II	204
3789.49		Cr I	41	3798.60	P	Fe II	23	3809.49		A II	42
3789.570		Fe I	226	3798.661		V I Tm II	80 11	3809.51 3809.592		Cl II Mn I	62 6
3789.723 3789.82	P	Cr I Fe I	24 702	3798.752 3798.80		Cl II	62	3809.597		v i	28
3790.095	•	Fe I	22	3798.901		Ru I	1	3809.67		S II	50
3790.138		Cb I	3	3799.009		Eu II	11	3810.10	n	C1 II	62
3790.215		Mn I	6	3799.038		Ce II Pd I	136 1	3810.21 3810.59	P	Fe II Hf II	143 96
3790.228 3790.24	P	Cr I Fe I	139 224	3799.17 3799.259		Mn I	6	3810.724		Tm II	9
3790.324	•	VI	28	3799.311		Rh I	8	3810.759		Fe I	665
3790.454		Cr I	139	3799.347		Ru I	1	3810.90	P	Fe I	224
3790.469		V I	69	3799.39		AII	54	3810.96		0 111	2
3790.656		Fe I	387	3799.542		Sm II	22	3811.05		Fe I	223, 287
3790.756 3790.83		Fe I La II	73,127 12	3799.549 3799.81		Fe I Ti II	21 13	3811.065 3811.073		Co I Nd II	31 69
3790.96		Ne II	30	3799.912		v i	28	3811.22		A II	81
3791.17		Gd II	85	3800.02		Ne II	39	3811.32		N1 I	15
3791.209		СР І	2	3800.122		Ir I	1	3811.35		0 VI	1
3791.26		0 111	2	3800.240		Mn II	14	3811.385		T1 I Nd II	165 31
3791.326 3791.376		V I Cr I	10 139	3800.303 3800.370		Pr II Sm II	43	3811.774 3811.80	P	Fe I	701
3791.370		Zr I	8	3800.39		Hf II	18	3811.80		SII	
3791.41		Si III	-5	3800.43		Fe III	47	3811.892		Fe I	287
3791.504		Fe I	223	3800.552		Mn I	45	3812.067		Sm II Y II	10 61
3791.72		Gd II	46	3 800.73		Zr II	17	3812.18			
3791.73 3792.025		Fe I Sm II	703 5	3800.883 3800.887		Y II Sm II	61 29	3812.250 3812.470		Cr I Co I	214 40
3792.023		Cr I	139	3801.022		Sn I	2	3812.964		Fe I	22
3792.156		Fe I	287	3801.093		Ti I	165	3813.059		Fe I	2 22
3792.32		Zr II	81	3801.21		Cr II		3813.07	P	Fe I	176
3792.326		Ce II	129	3801.29		Gd II	170	3813.12		V II Ti I	128 189
3792.337 3792.42		Ni I Cr I	2 71	3801.529 3801.633		Ce II Mn II	172 14	3813.261 3813.390		Ti II	12
3792.46		s II	50	3801.681		Fe I	367	3813.402		Be I	5
3792.524		Pr II		3801.804		Fe I	367	3813.45	P	V I	28
3792.56		Y II	61	3801.907		Mn I		3813.492		v I	9
3792.834		Fe I	74	3801.975		Fe I	704	3813.50		He II	4
3792.87		N III	11	3802.08		P III	10 666	3813.638		Fe I Y II	283 72
3793.217 3793.28	P	Rh I Fe I	9 386	3802.283 3802.65		Fe I S II	666 50	3813.8 3813.891		Fe I	85 4
3793.289	•	Cr I	139	3802.883		v i	67	3813.94	P	Fe I	176
3793.354		Fe I	388	3802.928		Сь І	3	3813.97		Gd II	2
3793.37		Hf II	1	3802.958		Mn II	14	3813.98		Zr II Cr II	100
3793.478 3793.52		Fe I Fe III	387 71	3803.097 3803.14		Ce II O II	37 34	3814.00 3814.121		Fe II	153
3793.608		Ni I	4	3803.19		A II	129	3814.42		Ra II	1
3793.61		P II	1	3803.24	P	Fe I	122	3814.457		Co I	62
3793.614		V I	9	3803.474		Nd II	66	3814.526		Fe I	22
3793.75		C1 II	067	3803.474		V I V I	28 68	3814.580 3814.622		Ti II Cr I	12 214
3793.872 3793.879		Fe I Cr I	367 139	3803.784 3803.881		Mn II	14	3814.725		Nd II	211
3793.971		Sm II	11	3803.902		V I	10	3814.855		T1 I	189
3794.340		Fe I	177	3804.013		Fe I	702	3814.97		Zr II	8
3794.366 3794.48		V II O II	100 34	3804.476 3804.589		Mn II V I	1 4 97	3815.012 3815.38		Rh II V II	7 166
											71
3794.608 3794.69		Cr I S III	139 10	3804.798 3805.24		Cr I Cl II	139 62	3815.433 3815.495		Cr I Eu II	11
3794.09		La II	10 12	3805.24		Fe I	608	3815.514		V I	28
3794.964		VI	9,28	3805.359		Nd II	19	3815.831		Ce II	37
3795.004		Fe I	21	3805.626		Sm II	10	3815.842		Fe I	45
3795.10		P II	1	3805.765		He I	63 75	3816.166 3816.173		Pr II Cr I	40
3795.169		Tm II Ce II	6 50	3806.07 3806.203		Hf II Fe I	75 731	3816.25		La II	134
3795.256 3795.37		A III	5	3806.30		Ne II	30	3816.318		Co I	62
3795.759		Tm II	6	3806.55		Cr I	24	3816.340		Fe I	73
3795.903		Ti I	115	3806.56		Si III	5	3816.458		Co I	62
3796.00		Fe I	176	3806.697		Fe I	607	3816.64		Gd II O III	1 18
3796.11		Si III	5 •	3806.719	ъ	Mn I Fe I	6 224	3816.75 3816.753		Mn I	18 6
3796.33 3796.37		He II Gd II	5 2	3806.76 3806.796	P	V I	68	3816.876		Co I	86
3796.37		Zr II	71	3806.82	P	Fe II	153	3816.92	P	Fe I	387
3796.48		V II	167	3806.829		Cr I	214	3817.20		Hf II	62 168
3796.55	P	Fe II	143	3807.144		Ni I	33	3817.24		La II	168

I A	Туре	Element	Multiplet No.	I A Ty	pe Element	Multiplet No.	I A	Type	Element	Multiplet
3817.59 3817.639		Zr II Ti I	18 189	3827.079 3827.27	Fe II Zr II	153	3836.10 3836.112		C II Ce II	13 60
3817.64		Fe I	701	3827.46	P II	26	3836.332		Fe I	664
3817.844		Cr I V I	40	3827.51	Zr II	121	3836.541		Nd II	16
3817.844 3817.940		Co I	10 131	3827.572 3827.62	Fe I Cl II	284 69	3836.76 3836.763		Zr II Ti I	16
3818.244		V I	9	3827.67 P	Fe II	128	3836.91		Gd II	20
3818.27 3818.281		N I Pr II	11	3827.825 3828.180	Fe I Ti I	45 189	3837.132 3837.210		Fe I Ce II	222 112
3818.34		Y II	7	3828.44	Fe III	70,95	3837.80		S III	5
3818.40		C1 II Ne II	62	3828.510	Fe I V I	287	3838.094		He I	61
3818.44 3818.481		Cr I	39 4 0	3828.559 3828.836	V I V I	9 67	3838.198 3838.28		Tm II Zr II	11 17
3818.78		Zr II	111	3828.883	Mo I	8	3838.2918		Mg I	3
3818.862 3819.04		Cb II A II	10 129	3829.125	Fe I W I	948	3838.2943		Mg I	3
	Forb	He I	23	3829.133 3829.27	C1 II	3 9	3838.316 3838.37		S III Cl II	5 69
3819.50	P	Fe I	703	3829.3549	Mg I	3	3838.39		N II	30
3819.564 3819.57	P	Cr I Cr I	70 88	3829.458 3829.47 P Fo	Fe I orb He I	366,663 21	3838.542 3838.941		Ce II Sm II	114 34
3819.606		He I	22	3829.53	v II	3	3838.981		Nd II	28
3819.62 3819.67	P	Fe I Eu II	122	3829.655	V II	3	3839.002		V I	44
3819.761		He I	1 22	3829.680 3829.77	Mn I Ne II	6 39	3839.259 3839.614		Fe I Fe I	529 995
3819.84		Zr II	81	3829.771	Fe I	221	3839.64		Gd II	20
3819.908		Co I	130	3829.80	N II	30	3839.777		Mn I	6
3819.963 3819.97		Cr I	28 40	3830.032 3830.293	Cr I Sm II	10	3840.140 3840.20	P	V I Fe I	66 1 2 0
3820.25		C1 II	69	3830.39	N I	11	3840.439	•	Fe I	20
3820.299		V I	44	3830.43	A II	3,128	3840.44	P	V I	44
3820.428		Fe I Hf I	20	3830.45	0 11	34	3840.70		Cr I	70
3820.74 3820.871		Ce II	5 208	3830.719 3830.757	Pr II Fe I	224	3840.72 3840.752		La II V I	28 9
3820.874		Cr I	40	3830.80	C1 II	69	3841.051		Fe I	45
3821.181		Fe I	608	3830.850	Fe I	284	3841.082		Mn I	6
3821.487 3821.582		V I Cr I	28 40	3831.017 3831.032	V II Cr I	3 24	3841.17 3841.277		Lu I Cr I	3 69
3821.68		0 11	34	3831.41	SII		3841.35	P	Fe II	128
3821.834 3821.92	P	Fe I Fe II	222 14	3831.501 3831.690	Sm II Ni I	43 31	3841.458 3841.54		Co I A II	32 54
3822.009		v i	9	9091 75	Fe III	109	2941 900		v i	
38 22.026		Ti I	189	3831.75 3831.80	Gd II	3	3841.890 3842.03		Cr I	8 70
3822.07		N I	11	3831.840	Ср ІІ	10	3842.037		Al II	49
3822.10 3822.17		Cr I Gd II	40 19	3831.85 3832.12	S III C II	5 13	3842.047 3842.20		Co I Gd II	33
3822.262		Rh I	8	3832.2996	Mg I	3	3842.20		N II	30
3822.41	_	Zr I	10	3832.3037	Mg I	3	3842.213		Al II	49
3822.63 3822.737	P	O I Fe II	36	3832.31 3832.32	Pd I Cr I	1 24	3842.317 3842.82		Al II O II	49 12
3822.888		VI	28	3832.745	Ce II	115	3842.90	P	Fe I	222
3822.987		Mo I	8	3832.835	v I	80	3842.975		Fe I	221
3823.213 3823.41		V I Zr II	28 44	3832.873 3832.89	N1 I Y II	1 7	3843.000		Sc II Zr II	1 7
3823.469		0 I	36	3832.94	Zr II	7	3843.03 3843.16	P	Sc II	17
3823.513		Mn I	6	3833.02 P	Fe II	23	3843.259		Fe I	528
3823.522 3823.571		Cr I Pr II	24 14	3833.059 3833.10	Sc II O II	1 13	3843.26 3843.500		Cl II Sm II	49
3823.72		Zr II	31	3833.186	Ti I	10	3843.58		0 11	43 13
3823.893		Mn I	6	3833.226	V I	67	3843.64		Cr I	87
3823.903		Ce II	115	3833.311	Fe I	221	3843.692		Co I	84
3823.990 3824	P	V I N IV	44 10	3833.40 3833.49	Cl II Cr I	69 11	3843.72 3843.80	P	Fe I Gd II	703 17
3824.074	-	Fe I	224	3833.574	He I	62	3843.983		Mn I	6
3824.175		Sm II	18	3833.674	T1 I		3844.276		N1 I	137
3824.306 3824.425		Fe I O I	607 36	3833.71 3833.757	Cr I Mo I	70 8	3844.438 3844.48	P	V I V II	7 20
3824.444		Fe I	4	3833.80	He II	4	3844.579	-	Gd II	20
3824.47	_	C1 111	9	3833.828	Sm II .	29	3844.58		N1 I	181
3824.73 3824.78	P	Fe I Y II	221 72	3833.862 3833.87	Mn I Zr II	6 100	3844.75 3844.892		A II V I	54 44
3824.882		Ср І	2	3833.889	Rh I	9	3845.170		Fe I	124
3824.913		Fe II	29	3834.22 P	V I	80	3845.18	P	Fe II	127
3825.090 3825.249		0 I 0 I	36 36	3834.225	Fe I N I	20	3845.21 3845.21	P	Fe I S II	701
3825.390		Cr I	70	3834.24 3834.24	O VI	11 1	3845.42		A II	22 9
3825.404		Fe I	123	3834.364	Mn I	6	3845.42		Cl II	25
3825.530 3825.70		O I A II	36 129	3834.46 P	Fe I Ce II	.663 49	3845.468 3845.68		Co I Fe III	34 35
3825.884		Fe I	20	3834.556 3834.735	Cr I	49 70	3845.69		C1 II	35 25
3826.05		Gd II	19	3834.81 P	Fe II	129	3845.692		Fe I	771
3826.202 3826.292		Sm II Pr II	51	3835.058	WI	2	3845.84		C1 II	25
3826.416		Nd II	33	3835.09 3835.386	La II H	55 2	3845.974 3846.00		V I La II	26
3826.425	_	Cr I	70	3835.497	Co I	114	3846.001		Fe I	703
3826.63 3826.701	P	Fe I Mo I	176 8	3835.560	V I	44	3846.29	P D	Fe I	947
3826.774		WO I	8 44	3835.725 3835.96	Sm II Zr I	18 8	3846.31 3846.412	P	Fe II Fe I	128 804
3826.83		A II	54	3836.054	v I	44	3846.438		Ti I	
3826.836		Fe I	283	3836.070	Cr I	70	3846.516		Y II	83

No.

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I, A	Туре	Eleme nt	Multiplet No.
3846.803	••	Fe I	664			0 11	12	3867.839		Ru I	9
3846.949		Fe I	176	3856.16 3856.281		Cr I	69	3867.925		Fe I	221
3847.01		Zr I	10	3856.373		Fe I	4	3867.986		WI	7
3847.086		F II	1	3856.515		Rh I	7	3868.243		Fe I	430
3847.252		Mo I	8	3856.796		Co I	60	3868.397		Ti I	175
3847.323		V I V II	7 156	3857.032		Ce II	158	3868.53		A II Cl 1I	90 84
3847.323 3847.38		N II	30	3857.18		O II Ce II	13 127	3868.62 3868.84		CII	18
3847.501		WI	4	3857.240 3857.26	P	Y II	16	3869.045		Nd II	34
3847.511		Sm II	34	3857.631	-	Cr I	69	3869.085		Mo I	8
3847.89		0 11	12	3857.912		Sm II	28	3869.10		N I	
3848.023		Tm II	2	3858.07		He II	4	3869.275		Ti I	175
3848.194		YII	72	3858.133		Ti I	176	3869.562		Fe I	284
3848.233		Nd II	19	3858.301		N1 I	32	3869.590		Fe I	284 80
3848.24 3848.29	P	Mg II Fe I	5 224	3858.32	P	A III Fe I	5 565	3869.61 3870.057		A II Al II	7 4
3848.524	•	Nd II		3858.48 3858.90	r	Cr I	138	3870.267		Cr I	11
3848.597		Ce II	36	3859.21		Fe I	175	3870.506		Ca I	26
3848.779		Sm II		3859.24		Mg I	21	3870.534		Co I	129
3848.983		Cr I	69	3859.26		8 11	30	3871.078		V I	66
3849.02		La II	12	3859.33		Al II	38	3871.54		Gd II	1
3849.26		Zr I	6	3859.341		V I	44	3871.60		N1 I	181
3849.324		V I Cr I	138	3859.36	P	Sc II	1	3871.62		C II La II	18 13
3849.365 3849.52		Hr II	61	3859.913		Fe I Fe II	4 128	3871.64 3871.750		Fe I	429
3849.534		Cr I	24	3860.12 3860.13	P	Cr I	39	3871.778		Sm II	18
3849.58		Ni II	11	3860.15		SII	41	3871.819		He I	60
3849.758		V II	33	3860.46		Fe III	109	3872.15		AII	54
3849.969		Fe I	20	3860.64		8 II	50	3872.308		Y II	61
3849.987		F II	1	3860.64		s III	5	3872.45		0 11	11
3850.042		Cr I	69	3860.74	P	Fe I	701	3872.504		Fe I	20
3850.40		Mg II	5	3860.80		C1 11	25	3872.55		Hf II	27
3856.409		V II A II	11 10	3860.915		Fe II	05	3872.552 3872.62		Ca I Gd II	26 19
3850.57 3850.69		Gd II	2	3860.98		Cl II Ti I	25	3872.748		V I	43
3850.81		0 11	12	3861.079 3861.164		Co. I	33	3872.76	P	Fe II	29
3850.820		Fe I	22	3861.18		Eu II		3872.835		WI	4
3850.825		Pr II		3861.341		Fe I	283,663	3872.923	_	Fe I	284
3850.93 3850.945		S II Co I	50. 17	3861.40		C1 II .Fe I	25 663	3872.98 3 873.120	P	Fe II Co I	128 18
				3861.60		.Fe 1	003	00101120			
3850.97		C1 II	25	3861.95		C1 II	84	3873.203		Ti I	176 3
3850.97 3851.04		Gd II O II	2 12	3862.054	-	Sm II	10	3873.74 3873.763		K II Fe I	175
3851.171		V I	44	3862.17	P	Cr II V I	129 8	3873.953		Co I	18
3851.38		C1 II	25	3862.223 3862.592		81 II	1	3874.053		Fe I	120
3851.47		O II	13	3862.823		Ti I	175	3874.10		O II	11
3851.58		Fe I		3863.056		CP II	9	3874.37	_	Zr II	89
3851.617		Pr II F II	1	3863.072		N1 I	181	3874.41 3874.570	P	Cr II Cr I	143 138
3 851.667 3 851.69		C1 II	25	3863.327 3863.409		Nd II Nd II	27 26	3874.76	P	Cr II	143
3851.748		Nd II	35			Fe II	152	3875.0 3 6		Ce II	162
3851.848		Co I	128	3863.413 3863.50		0 II	12	3875.075		V I	7
3851.880		Sm II	29	3863.607		Co I	131	3875.14		Cr I	138
3852.10		A II	3	3863.70	P	Fe I	565	3875.193		Sm II	_
3852.218		Cr I Gd II	24 2	3863.745		Fe I	280	3875.26 3875.262		A II Ti I	2 15,175
3852.45 3852.574		Fe I	73	3863.81		V II V I	33 66	3875.426		V I	43
3852.58		Cr I	11	3863.866 3863.88		Zr I	8	3875.46		Gd II	50
3852.805		Pr II		3863.953		Fe II	127,152	3875.545		Sm. II	17
3853.038		Ti I	176	3864.115		Mo I	1	3875.67		V II	20
3853.07		Zr II	81	3864.13		0 11	11	3875.807		Ca I	26
3853.09		8 11	30	3864.30	P	Fe I	565	3875.82		0 11	13
3853.164		Ce II Cr I	39 69	3864.300	_	y I	64	3875.902 3876.043		V I Fe I	7 22
3853.176 3853.462		Fe I	429	3864.31 3864.33	P	Fe I Zr I	221 10	3876.051		C II	33
3853.657		81 II	1	3864.335		wi	3	3876.086		VI	8
3853.719		Ti J	176	3864.45		0 11	12	3876.188		CII	33
3854.177		Gd II	50	3864.49		La II	141	3876.409		C II	33 3
3854.187 3854.209		Ce II Sm II	62	3864.60 3864.68		O II	84 12	3876.65 3876.670		Lu II C II	33
		Cr I	- 69					3876.671		Fe I	121
3854.220 3854.322		Ce II	61	3864.75 3864.862		RF II V I	98 7	3876.831		Co I	17,62
3854.375		Fe I	567	3865.458		Pr II	•	3876.974		Ce II	82
3854.75		C1 II	84	3865.526		Fe I	20	3877.11		Hf II	75
3854.905		Pr II		3865.59		Cr II	167	3877.225		Pr II	
3854.91		La II	55 30	3865.72		V II	20	3877.591		Ti I Zr I	175 58
3855.08 3855.18		N II A II	30 81	3866.01		Cr II	130 17	3877.60 3878.021		Zr I Fe. I	20
3 855.18 3 855.286		Cr I	69	3866.160 3866.446		Al II Ti I	17 176	3878.180		He I	59
3855.329		Fe I	283	3866.54		Cr II	130	3878.19	P	Fe I	565
3855.370		v i	7	3866.744		v II	11	3878.22		C II	33
3855.43		Zr II	18	3867.219		Fe I	488	3878.28		Y II	7
3855.56		GG II	2	3867.26		Gd II	50	3878.372		Ce II	48 4
3855.571	P	Cr I Cr I	69 138	3867.32	_	Hf II	53 221	3878.575 3878.58		Fe I Mg I	20
3855.65 3855.841		V I	9	3867.45 3867.477	P	Fe I He I	221 20	3878.582		NA II	
3855.846		Fe I	567	3867.56		8 I		3878.61	P	T1 I	164
3856.021		81 II	1	3867.602		V I	7	3878.663		Fe I	175 33
3656.07		N II	30	3867.631		He I	20	3878.715		V. II	U U

0·4						2.00 220	•				
1 A 3878.750	Гуре	Element Co I	Multiplet No.	I A	Type	Element Ti I	Multiplet No.	I A	Type	Element	Multiplet No.
3879.04		Zr I	6	3889.948 3889.990		Ce II	15 50	3900.546 3900.63		T1 II A II	34 54
3879.222		Cr I	138	3890.080		Sm II	17	3900.64		Hf II	103
3879.60		C II	33	3890.184		v i	8	3900.680		Al II	1
3880.34		A II	54	3890.241		Mg I	47	3900.790		Tm II	9
3880.466		Pr II		3890.32		Zr I	8	3900.958		Ti I	15
3880.59		C II	33	3890.39		Fe I	567	3901.03	P	Fe I	834
3880.766		Sm II Nd II	10 32	3890.528		Tm II	1	3901.152	_	V I	126
3880.779 3880.82		Hf II	32 6	3890.580 3890.82		Nd II Cr I	262	3901.33 3901.775	P	V II Mo I	20 8
3881.04		v II	143	3890.844		Fe I	280	3901.850		Nd II	
3881.214		Cr I	138	3890.940		Nd II		3902.09	P	Sc II	9
3881.383		Sm II	33	3891.119		V I		3902.108		Cr I	238
3881.399 3881.402		Ti I W I	15 2	3891.210		Sm II V I	22	3902.250		V I	7
3881.84		Gd II	36	3891.227 3891.25		V II	43 20	3902.398 3902.558		Gd II V I	19 43
3881.856		Cr I	138	3891.39		Zr I	11	3902.915		Cr I	23
3881.869		Co I	18	3891.40		A II	2	3902.948		Fe I	45
3881.92 3881.94		N1 II Gd II	13 50	3891.781 3891.928		Ba II Fe I	4 733	3902.968 3903.164		Mo I Cr I	1 23
3881.97		Zr II	134	3891.97		A II	2			V 11	
3882.147		Ti I	175	3891.976		MgI	47	3903.27 3903.417		Sm II	11
3882.197		0 11	12	3891.98	P	V II	11	3903.77		Zr II	7
3882.28	P	Ti II	34	3892.118		Co I	130	3903.902		Fe I	429
3882.313		T1 I	176	3892.14		Cr II	167	3904.02		Mg I	19
3882.446		Ce II	87	3892.321		8 11	50	3904.340		Ce II	91
3882.45		0 11	11	3892.859		V I	7	3904.64	P	N1 I	29
3882.892		Ti I Tm I	176	3892.898		Fe I	283	3904.785		Ti I	56
3883.132 3883.15		O II	12	3892.98 3893.067		Fe I Co I	567 11 4	3904.79 3904.790		P III Co I	9 171
3883.208		V II	11	3893.14		A II	91	3905.01	P	Fe I	703
3883: 282		Fe I	663	3893.316		Fe I	364	3905.18	P	Fe I	564
3883.292		Cr I	23	3893.376		Mg I	47	3905.527	_	Si I	3
3883.43		V II	20	3893.391		Fe I	430	3905.64		Cr II	167
3883.437		Tm II	5	3893.53		0 11	11	3905.66	P	Fe I	153
3883.660		Cr I	138	3893.924		Fe I	175	3905.88	P	Cr II	128
3883.77		C III	18 15	3894.005		Fe I Cr I	663	3905.886		Nd II	
3883.80 3883.80		C1 11	55	3894.035 3894.073		Co I	23 34	3906.037		Fe II Co I	173 17
3884.090		Ti I	175	3894.19		Pd I	8	3906.287 3906.482		Fe I	4
3884.359		Fe I	282	3894.49		Fe I	566	3906.748		Fe I	664
3884.465		V I	65	3894.627		Nd II	29	3906.748		v i	42,43
3884.601		Co I	32	3894.696		Gd II	1	3906.95		8 II	3
3884.66		Fe I	565	3894.976		Co I	18	3906.97	P	Fe I	567
3884.847 3885.07	P	V II Fe I	33 732	3895.03		P III	9	3907.10		Eu II	5
3885.084		Cr I	138	3895.114 3895.12		Ce II Cr II	210 1 4 3	3907.289		Ce II O II	253
3885.09		La II	151	3895.16		Cr II	106	3907.45 3907.464		O II Fe I	11 284
3885.154		Fe I	430	3895.230		Gd II	50	3907.476		Sc I	8
3885.190		Pr II	18	3895.243		Ti I	176	3907.52		V II	178
3885.218		Cr I	23	3895.26	_	A II	55	3907.65	P	Ti II	97
3885.275		Co I	31	3895.44	P	Fe I	565	3907.778		Cr I	262
3885.286		Sm II Zr I	46 7	3895.59	P	Ti I Fe I	164 4	3907.937		Fe I	280
3885.41 3885.512		Fe I	124	3895.658 3895.662		Mg I	47	3908.033		Pr II Ce II	11
3885.76	P	Fe I	567	3895.791		Gd II	••	3908.408 3908.431		Pr II	65 11
3885.770		V I	65	3896.11	P	Fe II	23	3908.54	P	Fe II	29
3885.87	P	N1 I	1	3896.155		VI	43	3908.543		Ce II	127
3885.93 3885.95	P P	Fe I Ti I	946 164	3896.155 3896.30		O II	10 11	3908.68 3908.755	P	Fe I Cr I	153 23
	_								_		
3885.99 3886.284		C III Fe I	15 4	3896.53 3896.63	P	Zr I Fe I	9 834	3908.90	P	Fe I	153
3886.37		La II	40	3896.804	•	Ce II	188	3908.931 3909.25	P	N1 I Cr II	117 129
3886.587		V I	64	3896.804		Y II	86	3909.313	r	Ce II	133
3886.789		Cr I	23	3896.977		Smr II	-5	3909.664		Fe I	565
3886.825		Mo I	8	3897.075		V I	126	3909.830		Fe I	364
3886.94	P	Cr I	86	3897, 290		Ti I	175	3909.894		VΙ	7,63
3887.051		Fe I Gd II	20 3	3897.449		Fe I	429	3909.910		Ba I	8
3887.157 3887.347		Tm I	1	3897.581 3897.896		Ti I Fe I	176 280	3909.93 3 3910.52	P	Co I Fe I	3 562
3887.365		Ti I	176	3897.92		K II	1			V I	
3887.44		Ke II	4	3898.012		Fe I	20	3910.790 3910.81		La II	42 43
3887.866		Nd II	31	3898.019		V I	126	3910.81		Fe I	284
3887.993		D	1	3898.120		Mg I	47	3911.00	P	Fe I	562
3888.020		T1 I	175	3898.143		A I	63	3911.169		Nd II	•
3888.42		Fe I	565	3898.273		Ce II	52	3911.18	P	Fe I	564
3888.517		Fe I	45	3898.278		V I	_	3911.185		T1 I	175
3888.646 3888.825		He I Fe I	2 488	3898.292 3898.485		Cb II Co I	9 58	3911.32		Cr II	129
3889.051		H Le 1	2	3898.485 3898.487		Ti I	13	3911.32 3911.362		8 II Ti I	176
3889.141		Ca I	42	3899.037		Fe I	175	3911.58		A II	54
3889.18		C III	15	3899.09	P	8 111	5	3911.699		Fe I	664
3889.33	P	Fe I	562	3899.140		V II	33	3911.810		Sc I	8
3889.330	_	Pr II	14	3899.27		8 III	12	3911.95		Cr I	
3889.38	P	Fe I	660	3899.668		Ti I	15, 175	3911.960		0 11	17
3889.65 3889.671	P	N1 I N1 I	180 15	3899.709		Fe I	4	3912.088		0 11	17
3889.671 3889.90	P	Cr II	15 129	3900 . 175		V I Nd II	126	3912.191		Ce II	192
	_	44	2	3900.226		11		9012 207		V T	49 49

Ì A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
3912.424		Ce II	60	3923.03	P	Fe I	661	3934.14		Zr II	7
3 912.589 39 12.886		Ti I V I	175 42	3923.109 3923.246		Ce II Gd II	191 50	3934.228		Ti I	15
3912.898		Pr II	17	3923.39	P	Ti II	97	3934.41 3934.46	P	N III Ce II	8 3
3912.979		Ni I	15	3923.48		He II	4	3934.80		Zr II	43
3 913.464 3913. 635		Ti II Fe I	34 120	3923.483 3923.50		3 II Ca I	55 7	3934.823		Nd II	•
3913.92		Cl II	68	3923.503		Sc II	9	3934.824 3935.141		Gd II V I	1 90
3914.273		Fe I	567	3923.91		Hf II	18	3935.18	P	Cr II	10
3914.333		A II	33	3923.92		Zr II	100	3935.31		Fe I	362
3914.334		Ti I	15	3924.05		8 11	3;	3935.64		Hf II	43
3914.36		Zr II	134	3924.075		Mn I		3935.717		Ba I	8
3914.42	P	Fe I	652	3924.18	P	Ni I	240	3935.764		Sm II	28
3914.480 3914.50	P	Fe II Fe I	3 660	3924.44 3924.527		81 III T1 I	13	3935.77		Al I Fe I	18
3914.73	-	Fe I	662	3924.644		Ce II	190	3935.815 3935.86	P	Fe I	362 564
3914.751		T1 I	14	3924.65	P	Cr II	129	3935.914		He I	57
3914.76 3914.949		A II Ce II	2 78	3924.658 3925.09		V I La II	90 135	3935.942		Fe II	173
3914.96		Cr I	137	3925.151		CoI	131	3935.964 3936	P	Co I C IV	32 2
	_										
3915.30 3915.384	P	Cr II Ir I	128 6	3925.201 3925.216		Fe I Smr I	567 2	3936.07		Zr II La II	42
3915.503		Co I	113	3925.240		V I	8	3936.22 3936.282		VI	13 42
3915.843		Cr I	136	3925.456		Pr II	11	3936.79	P	Fe I	564
3915.879 3915.94		Ti I Zr II	15 17	3925.55	P	Fe I Fe I	660	3936.95		Cr II	128
3916.05		La II	42	3925.646 3925.71		A II	364 105	3937.329 3937.575		Fe I Nd II	278 19
3916.243		Cr I	23	3925.87		C1 III	4	3937.870		Ba I	8
3916.418		V II Tm I	10	3925.946		Fe I	364	3938.005		Ti I	246
3916.476		1m 1	2	3926.001		Fe I	562	3938.086		Ce II	205
3916.508		Gd II	20	3926.319		Ti I	292	3938.289		Fe II	3
3916.61	P	GG II	50	3926.32		V II	165	3938.400		Mg I	18
3916.64 3916.70		Zr I Cl II	6 68	3926.467 3926.497		Mn I V II	44 11	3938.52 3938.621		N III Al II	8 73
3916.733		Fe I	806	3926.530		He I	58	3938.76	P	N1 I	240
3916.980		Cr I	137	3926.58	P	0 II	11	3938.856		Co I	171
3917.115 3917.185		Co I Fe I	113 20	3926.649 3927.383		Cr I Ce II	313 43	3938.969 3939.066		Fe II Al II	190 73
3917.29		Bu II	10	3927.61	P	Fe I	282	3939.49		8 11	45
3917.442		Sm II	9	3927.922		Fe I	4	3939.51	P	8c II	9
3917.47		Af II	76	3927.926		V I	90	3939.85		La II	134
3917.57		C1 II	68	3927.93	P	Fe I	361	3940.044		Fe I	731
3917.596		Cr I	137	3928.085		Fe I	565	3940.32	P	T1 II	97
3918.10 3918.19		Hf II 8 II	7 29	3928.279 3928.615		Smr II Sr III	17 8	3940.338 3940.882		Ce II Fe I	50
3918.236		Gd II	50	3928.62		A II	10	3940.887		Co I	20 18
3918.276		Ce II	12,248	3928.636		Cr I	23	3941.15		Cr I	213
3918.319 3918.418		Fe I Fe I	124	3928.87	D	Eu II	10	3941.283		Fe I	562
3918.51	P	Fe II	364 191	3928.97 3929.114	P	Ti I Fe I	175 280	3941.478 3941.490		Mo II Cr I	4 23
	_				_						
3918.54 3918.58	P P	Cr I Fe I	136 362	3929.15 3929.208	P	Ti II Fe I	97 659	3941. 512 3941. 728		Nd II Co I	27 17
3918.644	•	Fe I	430	3929.22		La II	27	3941.86		N1 I	171
3918.856		Pr II	11	3929.53		Zr I	7	3941.874		Sm II	1
3918.977 3919.005		C II N II	4 17	3929.54 3929.583		Tr II Tr II	142 11	3941.92 3942.006		Zr II V I	55 63
3919.069		Fe I	430	3929.734		V II	-10	3942.14		o iv	10
3919.15	P	Cr I	136	3929.875		T1 I	13	3942.151		Ce II	37
3919.159 3 919.287		Cr I O II	23 17	3030.023 3930.076		V I Co I	63 59	3942.443 3942.746		Fe I Ce II	364 57
00101201		·	- '	00001010		•••	00	00201740		00 11	37
3919.813		Ce II	60	3930.299		Fe I	4	3942.78		N III	8
3919.822 3920.260		Ti I Fe I	130 4	3930.31 3930.50	P	Fe II Eu II	3 5	3943.08 3943.141		Eu II Ce II	22 113
3920.37		8 111	8	3930.63	P	O IV	10	3943.21		Cr I	135
3920.487		V I Pr II	42	3930.66	P	Y II Cr II	16 120	3943. 239		Sm II	9
3920.524 3920.645		Fe I	12 153	3930.88 3931.088	P	Ce II	129 49	3943.3 39 3943.48	P	Fe I V II	72 11
3920.677		C II	4	3931.122		Fe I	565	3943.664	-	V I	42
3920.839 3920.965		Fe I Nd II	567	3931.24		A II V I	2	3943.888		Ce II	234
3920.900		NG 11		3931.340		V 1	90	3944.009		Al I	1
3921.02	P	Zr IJ	42	3931.369		Ce II	61	3944.126		Ni I	151
3921.022		Cr I	23	3931.938		8 II	29	3944.25		Cr I	135
3 921.27 3921.423		Fe I Ti I	220 14	3931.97 3932.007		Al I Ti II	18 34	3944.27 3944.748		A II Fe I	2 361
3921.54		La II	40	3932.30		8 11	30	3944.890		Fe I	430
3921.731		Ce II	195	3932.40		Hf II	୍ ନ 199	3945.048		0 II 8 II	6
3921.80 3921.905		Zr I V I	8 4 2	3932.53 3932.55		La II A II	123 90	3945.05 3945.08		S II Fe III	33 69
3922.005		Ce II	50	3932.59	P	Fe I	153	3945.10		CII	32
3922.08	P	Fe I	153	3932.629		Fe I	280,652	3945.11		Cr II	142
3922.09	P	Fe I	564	3933.19		A II	53	3945.119		Fe I	280
3922.09 3922.36	•	Zr II	143	3933.294		8 11	55	3945.21	P	Fe II	3
3922.397		Sm II	38	3933.38		P III	9	3945.27	P n	V II	165
3922.431 3922.54		V I A II	42 11,53	3933.38 3933.606		Sc I Fe I	8 488,562	3945.29 3945.326	P	O IV Co I	10 29
3922.63		S II	60	3933.65		Hf II	6	3945.3 6		Hf II	109
3922.68	P	Fe I	429	3933.664		Ca II	1	3945.495		Cr I	135
3 922.72 3 922.755		P III Co I	9 32	3933.731 3933.918		Ce II Co I	81 17	3945. 968 3946. 00		Cr I Hf II	134 115
				200.010				2010 10			

									_		W 744-7-4 Ma
A Í	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	IA	Туре	Element	Multiplet No.
3946.18	P	Ni I	1	3956.82	P	O IV	10 176	3968.36 3968.38	P	A II Fe I	2 219
3946.21		YII	24	3956.901 3957.027		Ce II Fe I	562	3968.43	•	He II	3
3946.35 3946.406		C II Al II	31,32 63	3957.053		Ca I	6	3968 • 470		Ca II	1
3946.511		Sm II	17	3957.62		Fe I	56 4	3968.63		CII	37
3946.633		Co I	60	3957.64	_	P III	9	3968.78		Fe III D	120 1
3946.681		Ce II	255	3957.66	P	Fe II Gd II	13 19	3968.995 3969.061		Cr I	38
3946.98		8 II	45	3957.672 3957.928		Co I	18	3969.116		Co I	128
3947.002 3947.10		Fe I Fe III	561 23,69	3958.001		NA II	25	3969.261		Fe I	43
3947.125		Co I	58	3958.08		Cr I	307	3969.293		Gd II	20
3947.301		o I	3	3958.101		Tm II	1	3969.38	_	C II	37
3947.393		Fe I	153	3958.206		Ti I	13 16	3969.38	P P	Fe II Fe II	3 3
3947.489		0 I	3	3958.24 3958.266		Zr II Ce II	160	3969.40 3969.43	P	Fe III	120
3947.5043 3947.533		A I Fe I	2 361,426	3958.39		AII	65	3969.628		Fe I	657
3947.594		0 I	3	3958.60	P	N1 I	150	3969.748		Cr I	38
3947.60		C II	31	3958.66		Pd I	8 7	3970.07		Cr I H	213 1
3947.633		Pr II	11	3958.865 3959.01	P	Rh I Sc II	49	3970.074 3970.10		Ta I	ī
3947.770		Ti I	14		•						202
3947.838		Sm II	33	3959.436	_	Gd II	49 556	3970.15		V II	203 38
3948.00	P	Fe I	652	3959.46 3959.523	P	Fe I Gd II	44	3970.20 3970.391		Fe I	488
3948.105		Fe I Sm II	562 9	3959.527		8m II		3970.503		N1 I	151
3948.113 3948.15		CII	32	3960.284		Fe I	913	3970.528		Sm II	1
3948.28	P	Fe I	561	3960.37		V II	189	3970.69	_	8 11	45,54
3948.48	P	Fe I	560	3960.763		Cr I	68	3970.99	P	Fe I Gd II	107 4 50
3948.670		Ti I	13	3960.895 3960.914		Fe II Ce II	212 84	3971.062 3971.164		Pr II	27
3948.779 3948.901		Fe I Ca I	604 6	3960.997		Co I	128	3971.255		Cr I	67
		4 7	2	3961.147		Fe I	361	3971.325		Fe I	277
3948.9788 3949.10	i	A I La II	41	3961.503		Mo II	4	3971.397		Sm II	43
3949.14		Fe I	730	3961.523		Al I	1	3971.684		Ce II	133
3949.23	P	Fe I	153	3961.55		8 111	8	3971.754		Gd II Fe I	49 281
3949.275		Tm I	2	3961.59		O III La II	17	3971.82 3971.98		Eu II	5
3949 438		Pr II C II	16 31	3962.03 3962.12		N1 I	199	3972.130		Ti I	81
3949.45 3949.64		Cr I	136	3962.19		Cr I	68	3972. 16 4		Pr II	13
3949.954		Fe I	72	3962.353	_	Fe I	566	3972.171		N1 I	29 37
3949.96		C1 II	36	3962.42	P	Fe I	560	3972.44		C II	31
3950.35		Y II	6	3962.445	_	Pr II	28	3972.506	_	Co I	171
3950.42		8 II	45	3962.65	P	Fe I Ti I	913 12	3972.53	P	Co I Ca I	173 41
3950.78	P	Fe I	153	3962.851 3962.995		Sma II	12	3972.570 3972.58		K II	4
3951.097 3951.154		Cr I Nd II	136 19	3963.04		La II		3972.688		Cr I	67
3951.164		Fe I	661	3963.108		Fe I	562	3972.920		Fe I	803
3951.51		P III	9	3963.114		Nd II	39	3973.144		Co I	58 6
3951.59		Y II	16	3963.13 3963.13		0 II 8 II	43 45	3973.263 3973.269		Nd II	19
3951.717 3951.765		Co I Cr I	171 1 36	3963.35 <u>4</u>		T1 I	81	3973.562		N1 I	31
				3963.43	P	Fe I	654	3973.642		V II	. 9
3951.968		O I	10 30	3963.626	•	VI		3973.650		Nd II	37
3951.987 3952.00		Gd II	1	3963.628		Os I	3	3973.655		Fe I	769
3952.08		C II	32	3963.690		Cr I	38	3973.707		Ca I	6
3952.195		Nd IÌ	23	3964.09	P	Fe II Fe III	29	3973.84		GQ II	37 50
3952.326		Co I	16 10	3964.11 3964.261		Pr II	33	3973.981 3974.160		Fe II	29
3952.367 3952.399		Cb II Cr I	136	3964.269		T1 I	12	3974.397		Fe I	564
3952.573		Ce II	113,177	3964.35	P	Cr II	10	3974.48	_	A II	9
3952.606		.Fe I	278	3964.522		Fe I	361	3974.65	P	Fe I	526
3952.704		Fe I	362	3964.57	P	Fe II	29	3974.650	_	Ni I	198
3952.74		A II	89	3964.64	P	Cr II He I	10 5	3974.66	P	O IV Co I	10 18
3952.917		Co I O I	28 30	3964.727 3964.825		Pr II	8	3974.726 3974.76		A II	8
3952.982 3953.056		0 I	30	3964.90		Eu II	10	3974.766		Fe I	72
3953.156		Fe I	430	3964.96		Hf II	54	3975.029		Fe II	191
3953.163		Cr I	136	3965.011		Co I	31	3975.21		Fe I Ti I	153 186
3953.50	P	Fe I	770	3965.236 3965.263		Co I Pr II	3 0 8	3975. 69 3975. 85	P	Fe I	977
3953.516 3953.525		Pr II Nd II	9	3965.446		Fe I	658	3976.01		Cr I	38
		Ce II	141	3965.511		Fe I	565	3976.270		Sm II	9
3953.660 3953.76	P	Fe III	69	3965.83	P	Fe I	122	3976.30		Cr I	280
3953.76 3953.863		Fe I	362	3966.045		Sm II	24	3976.392		Fe I	487
3954.21		Cl II	82	3966.066		Fe I	45	3976.430		Sm II	33
3954.372	}	0 II	6	3966.37	n	Pt I Fe II	4 3	3976.564		Fe I Fe I	655 729
3954.38		Fe III	120	3966.43 3966.532	P	Fe I	562,652,766	3976.615 3976.665		Cr I	38
3954.596 3954.687		0 I	ვს ვი	3966.573		Pr II	8	3976.836		Nd II	21
3954.715	i	Fe I	606	3966.630		Fe I Zr I	282,562 8	3976.865		Fe I Fe III	431,662 69
3955.22	P	Fe I	527	3966.65				3976.88			
3955.352		Fe I	562	3966.72		K II Fe I	5 65 9	3977.10 3977.184		O IV Co I	10 113
3955.77	P P	Fe I Zr II	219 17	3966.824 3967.048		Ce II	84	3977.184		Os I	4
3955.82 3955.851		N II	17 6	3967.423		Fe I	804	3977.30		C 11	38
3955.956		Fe I	488	3967.441		0 11	22	3977.3 2		Zr I	46
3956. 270)	Co I	2	3967.69		Y II	82 561	3977.732		V II	10
3956.284		Ce II	202	3967.964 3968.11		Fe I V II	561 9	39 77.743 39 78.28		Fe I P III	72 8
3956.3 36	,	Ti I	13	9500.11		V AA	v	95(0.40		4 . 444	•

I A	Туре	Element	Multiplet No.	I A	Туре	El ement	Multiplet No.	I A	Туре	Element	Multiplet No.
3978.650		Ce II	175	3987.98	-•	Yb I	2		-, 50		•
39 78.650		Co I	175	3987.98 3988.18		A II	2 65	3996.607 3996.79	P	Sc I Fe I	7
3978. 677		Cr I	67	3988.51		La II	40		P		1074
3978.864		Co I	173	3988.68		Zr I	46	3996.968 3997.054		Fe I Pr II	945
3978.87		CII	37	3988.833		v i	89	3997.126		V II	9 9
3979.08		La II	140	3989.06		Sc II	8	3997.17		PIII	9
3979.12	P	Fe I	426	3989.24	P	Fe I	561	3997.394		Fe I	278
3979.200		Sm II	51	3989.29		Zr I	6	3997.43		YII	24
3979.22		Cr I	307	3989.444		Ce II	240	3997.48	P	Fe I	563
39 79.324		Cr I	280	3989.581		Ti I	81	3997.49	P	Fe I	556
3979.36		A II	90	3989.60	P	Fe I	605	3997:764		Gd II	67
3979.40		Hf II	97	3989.718		Pr II	12	3997.901		Co I	32
3 979.42 3 979.479		Fe III Nd II	120	3989.758		Ti I	12	3997.97		8 111	
3979.51		Cr II	57 183	3989.803 3989.859		V II Fe I	32 768	3998.00		Si II	
3979.518		Co I	3	3989.958		Mn I	33	3998.054 3998.46	P	Fe I Fe I	276
3979.65		Fe I	561	3989.986		Cr I	268	3998.51	r	Hf II	606 59
3979.798		Cr I	67	3990.103		Nd II	19	3998.554		Co I	33
3979.86		8 II	59	3990.16		Cr I	280	3998.635		Ti I	12
3980.14		Fe III	120	3990.184		Ti I	186	3998.69		N III	16
3980.35		C II	37	3990.19		C1 II	76	3998.730		v i	8£
3980.56		Al III	12	3990.299		Co I	58	3998.79		SII	59
3980.65		Fe I	153	3990.379	_	Fe I	527	3998.85		Cr I	307
3980.821		Ti I	186	3990.55	P	Fe I	556	3998.98	_	Zr II	16
3980.895 3981.106		Ce II Fe I	194 22	3990.566 3990.81		V I Fe III	89 46	3999.00	P	Cr II	10
3981.233		Cr I	22 67	3990.81 3990.94		S II	46 45	3999.07	P	Cr II	10
3981.36		La II	139	3991.123		Cr I	4 5 38	3999.195 3999.242		V II Ce II	202
3981.466		Ti I	188	3991.14		Zr II	30	3999.242 3999.336		Ce II Ti I	57 188
3981.61	P	Fe II	3	3991.47		V 11	10	3999.679		Cr I	100
3981.62	P	Fe I	428	3991.50		Cl III	7	3999.92		C 111	
3981.761		Ti I	12	3991.528		Co I	173	3999.98		N I	
3981.775		Fe I	278	3991.67 3		Cr I	38	4000.02		Fe I	360
3981.94		C1 II		3991.684		Co I	17	4000.266		Fe I	556
3981.998		Ti II	11	3991.743		Nd II	19	4000.466		Fe I	426
3982.01		Zr II	142	3991.77		Si II		4000.493		Nd II	64
3982.063 3982.355		Pr II Nd II	28	3991.831		Co I	129	4000.59		Cr I	295
3982.478		na II Ti I	67 11	3991.965		V II Co I	202,227	4001.049		Ce II	193
3982.583		Mn I	33	3992.014 3992.06		A II	3 2	4001.17 4001.24		V II	202 6
****			•								Ü
39 82.59 39 82.719		O II	6 6	3992.11 3992.114		Cr I Ir I	38 5	4001.257 4001.444		Gd II	49
3982.901		Ce II	172	3992.386		Ce II	134	4001.444		Cr I C III	268
3983.008		6d II	49	3992.395		Fe I	604	4001.666		Fe I	72
3983.138		Sm II	38	3992.64	P	Fe I	219	4002.073		Fe II	29
3983.237		Cr I	213	3992.801		V I	89	4002.466		Ti I	188
3983.35		Fe I	485	3992.845		Cr I	67	4002.48		Cr II	166
3983.7		Al II	32,48	3992.913		Ce II	226	4002.549		Fe II	190
3983.77 3983.83	P	S III Fe I	8 42 6	3993.21 3 3993. 3 08		Gd II Sm II	1 4	4002.55		Zr I	46
	-							4002.665		Fe I	320,655
3983.907		Cr I	38	3993.401		Ba I	8	4002.940		V II	9
3983.960		Fe I	277	3993.526		S II	29	4002.95		Zr II	142
3984.03 3984.140		Hf II N1 I	19	3993.796		Ti I	186	4003.33		Cr II	194
3984.177		Mn I	171 33	3993.822 3993.952		Ce II N1 I	12 170	4003.41		Fe III	15
3984.313		Ti I	186	3993.968		Cr I	67	4003.596 4003.64		Co I N III	130
3984.335		VI	89	3994.00	P	Fe I	560	4003.764		Fe I	16 7 28
3984.338		Cr I	38	3994.117		Fe I	526	4003.771		Ce II	188
3984.46	P	Fe I	219	3994.165		Gd II	49	4003.789		Ti I	188
3984.600		V I	89	3994.27	P	Fe I	320	4003.850		Gd II	104
3984.675		Ce II	252	3994.50		La II	78	4003.89		8 II	45
3964.76		Zr II	7	3994.542		Co I	17	4003.921		Cr I	268
3984.858	_	Ru I	9	3994.56	P	Ti I	186	4004.010		Nd II	
3984.93	P	Fe I	561	3994.683		Ti I	188	4004.15	P	Fe II	127
3985.241 3985.246		Mn I Ti I	33	3994.684 3004.81		Nd II	90 404	4004.832		Fe I	601
3985.32	P	Fe I	219	3994.81 3994.834		Pr II	89,101 11	4004.976	D	Fe I	486,557
3985.393		Fe I	661	3994.996		N II	12	4005.04 4005.246	P	Fe III Fe !	45 43
3985.46		O II	22	3995.10		K II	1	4005.38	P	Fe I	123
39 85.580		Ti I	188	3995.17		O IV	10	4005.49	P	Fe I	219
3985.74	P	Cr II	10	3995.199		Fe I	604	4005.64	P	Fe III	45
3985.783	_	V II	202	3995.306		Co I	31	4005.7	-	Al II	89
3985.96	P	Cr II	10	3995.48	P	Sc II	49	4005.712		V II	32
39 85.97	_	8 111	8	3995.49	P	Sc II	16	4005.952		Ti I	187
3986. 03	P	Cr II	10	3995.586		Tm II	5	4006.136	_	N1 I	
3986. 176 3986. 18	P	Fe I Fe I	655 560	3995.656 3995.74		Ba I La II	8	4006.16	P	Fe I	564
3986.2 01	•	Mo II	4	3995.74 3995.83	P	Ni I	27 238	4006.314		Fe I Fe I	603
3986.30	P	Fe I	560	3995.860	-	Al II	47	4006.631 4006.768		re I Fe I	488 320
39 86 . 3 95		Mn I	33	3995.996		Fe I	279	4007.04	P	Cr II	194
3966.682		Sm II	17	3996.075		Al II	47	4007.195		Ti I	187
3986.7533		MgI	17	3996.159	_	Al II	47	4007.193		Fe I	119
3986.826		Mn I	33		Forb	Al II	47	4007.277		Fe I	277
3987.090		N1 I	137	3996.26	P	Fe I	561	4007.36		Hf II	88
3 987.098		Mn I	33	3996.28	P	Fe I	427	4007.435		Nd II	001
39 87.117		Co I	16 10	3996.320		Gd II	A 72	4007.589		Ce II	221
3987.214 3987.428		Gd II Sm II	19 28	3996.32 3 3996.36	P	Al II Fe II	47 190	4007.64		La II A II	65
3987.484		Mn I	28	3996.381		Al II	47	4007.66	<u> </u>	A II	65 189

38				FII	ADING LIS	•				
I A	Туре	Element	Multiplet No.	I A Тур	e Element	Multiplet No.	I A	Type	Element	Multiplet No.
4007.81	D Forb	He I	56	4020.06	C1 II	76	4031.456		Fe II	151
4007.81	P FOFD	пе I Ti I	187	4020.25	Hf II	40	4031.633		Al II	72
4008.17		V II	32	4020.399	Sc I	7	4031.68		La II	40
4008.41	P	Sc II	16	4020.490	Fe I	913	4031.73 4031.753	P	Fe I Ti I	427 185
4008.46	_	Hf II	54	4020.872	Nd II Co I	19 16	4031.703		Nd II	200
4008.60	P	Sc II Pr II	16 28	4020.898 4021.13	c II	27	4031.968		Fe I	655
4008.714 4008.769		WI	6	4021.330	Nd II	36	4032.46		Fe I	320
4008.81		Fe III		4021.622	Fe I	120,557	4032.628		Ti I	297
4008.913		Gd II		4021.75 P	Fe III	45	4032.636		Fe I	44
4008.926		Ti I	12	4021.812	Ti I Fe I	185 278	4032.812 4032.946		S II Fe II	59 126
4009.270		He I S II	55 55	4021.869 4021.925	v i	96	4032.975		Ga I	1
4009.39 4009.54	P	Fe I	556	4022.052	N1 I	238,241	4033.073		Mn I	2
4009.58		Al II	37	4022.263	Cr I	268	4033.18	P	0 II Fe I	50 21 8
4009.653		Ti I	11	4022.333	Gd II	100	4033.19 4033.263	P	Cr I	36
4009.714		Fe I	72 27	4022.36 4022.36	Cr II Fe III	183 4 5	4033.55		Sb I	1
4009.90 4009.984		C II Ni I	150	4022.45	Fe I	173	4033.68		P II	17
4010.18		Fe I	915	4022.744	Fe I	556,654	4033.83		AII	52
4010.77		Fe I	219,320	4023.002	Nd II	_	4033.857		Pr II Ti I	19 208
4011.089		Co I	2	4023.231	Sm II V II	4 32	4033.883 4033.95		Cr I	36
4011.23		A II Fe I	53 218	4023.388 4023.399	Co I	59	4034.012		Nd II	23
4011.416 4011.534		Ti I	10	4023.58	La II	79	4034.10		Zr II	42
4011.69		Eu II	22	4023.688	Sc I	7	4034.490		Mn I	2
4011.71		Fe I	153	4023.739	Cr I	268	4034.84		Zr II	70 208
4011.89	P	Fe I	424	4023.986	He I	54	4034.884 4035.087		Ti I N II	39
4012.10 4012.16		K II Fe I	2 601	4023.99 4023.99	Ni I Zr I	170 46	4035.09		0 11	51
					0 11	99	4035.110		Sm II	33
4012.250		Nd II Ti II	10 11	4024.04 4024.109	Fe I	277	4035.25	P	Fe I	831
4012.372 4012.389		Ce II	206	4024.45	Zr II	54	4035.47		AII	33
4012.467		Fe II	126	4024.491	Ce II	49	4035.54	P	Fe II	22
4012.49		Cr I	268	4024.552	Fe II	127	4035.54		Fe III Co I	119 173
4012.50		Cr II	183	4024.573	Ti I F II	12 2	4035.542 4035.631		v 11	32
4012.51 4012.704		Mo I Nd II	12	4024.727 4024.735	Fe I	560	4035.728		Mn I	5
4012.786		Ti I	186	4024.785	Nd II	24	4035,82	P	Fe III	45
4013.24	P	Ti I	186	4024.92	Zr I	46	4035.828		Ti I	208
4013.587		Ti I	187	4025.010	F II	2	4035.96	P	Ni I	150
4013.641		Fe I	557	4025.012	Cr I	37	4035.98	P	Fe I P II	426 16
4013.798		Fe I	485	4025.07	Fe III	53	4036.23 4036.37	P	Fe I	279
4013.798		Gd II	22	4025.07 P 4025.114	Ti I Ni I	208 240	4036.53	-	C1 II	76
4013.80 4013.822		Mg II Fe I	486	4025.114	Ti II	11	4036.59		La II	59
4013.82		AII	2	4025.44	Cr I	37	4036.779		VII	9
4013.89	P	Fe I	120	4025.44	Ni I	117	4036.80		Cr I	36 36
4013.942		Co I	58	4025.49 P For	rb He I F II	19 2	4037.294 4037.332		Cr I Gd II	49
4013.953		Gd II	17	4025.495						
4014.28		Fe I	426,427	4025.60	He II	3	4037.665		Ce II Fe I	218 118
4014.489		Sc II	8	4025.67 P	Fe III	45	4037.725 4037.897		Gd II	49
4014.534		Fe I Cr I	802 268	4025.87 4026.080	La II N II	42 40	4038.03		Cr II	194
4014.668 4014.899		Ce II	157	4026.166	Cr I	37	4038.124		Nd II	31
4015.20	P	Fe II	142	4026.189	He I	18	4038.27	P	Ni I	150
4015.377		T1 I	185	4026.362	He I	18	4038.545		V II Fe I	155 600,728
4015.389		Pr II	32	4026.40	0 II	51	4038.622 4038.82		A II	2
4015.50 4015.877		Ni II Ce II	12 256	4026.435 4026.5	Mn I Al II	24	4039.100		Cr I	251
4016.264		Ti I	186	4026.539	Ti I	185	4039.12		Fe III	45
4016.264		Fe I	560	4027.032	Co I	3	4039.30		Cr I	251
4016.54		Fe I	277	4027.103	Cr I	37	4039.302		Al II	62
4016.81	P	Fe I	428	4027.20	Zr I	46	4039.357		Pr II Al II	15 62
4016.82		V II	202	4027.30	V II	201	4039.397 4039.574		V II	32
4016.943		Ti I Fe I	208 279	4027.426 4028.332	Ti I Ti II	87	4039.83		ΥÏ	5
4017.096 4017.156		Fe I	527	4028.411	Ce II	47	4039.94		Fe I	276
4017.27		CII	27	4028.791	s II	45	4040.24		Zr II	54
4017.29		V II	216	4029.16	Hf II	23	4040.310		Ti I	185
4017.56		Ni I	171	4029.32 P		170	4040.650		Fe I	655
4017.58		Eu II	10	4029.64 P		87 556 562	4040.762 4040.796		Ce II Nd II	138 30
4017.596		Ce II	163	4029.640	Fe I Zr II	556,563 41	4041.288		Fe I	603,654
4017.771 4017.96		Ti I Cr II	185 166	4029.68 4030.03	Zr I Zr I	41 46	4041.31		0 11	50
4017.90		Mn I	5	4030.03	Fe I	72	4041.321		N II	39
4018.282		Fe I	560	4030.28 P	Cr II	19	4041.361	~	Mn I	5
4018.38		Zr II	54	4030.470	Nd II	32	4041.64	P	Fe II Sm II	172 22
4018.49 4018.50	P	Fe II Cl III	13 7	4030.499 4030.512	Fe I Ti I	560 185	4041.675 4041.79		Cr I	36
							4041.84	P	Fe II	13
4018.826		Nd II Fe I	´19 219	4030.755	Mn I Al II	2 72	4041.84	•	Fe I	602
4019.05 4019.05		re I V II	219 201	4030.867 4030.90 P		943	4042.135		Ce II	252
4019.055		Ni I	72	4031.130	Cr I	268	4042.20		A II	28
4019.137		Th II	3	4031.135	Al II	72	4042.246		Cr I	36
4019.288		Co I	16	4031.210	Al II	72	4042.584		Ce II	140
4019.30	P	Co I	18	4031.243	Fe I	186	4042,635		V I Sm II	96 4

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4042.91		A II	33	4053.28		Fe III	119	4062.90		0 11	50
4042.91		La II	66	4053.294		Gd II		4063.174		Co I	18
4043.502		Cu II	3	4053.45		Cr II	19	4063.286		Fe I Gd II	698
4043.537 4043.57		N II Zr I	39 32	4053.506 4053.56		Ce II A II	36 53	4063.390 4063.528		Mn I	5
4043.596		Nd II	34	4053.59		Fe III	98	4063.59		Gd II	48
4043.69	P	Fe I	122	4053.59		V II	215	4063.597		Fe I	43
4043.696 4043.775		Cr I Ti I	306 208	4053.642 4053.814		Gd I Ti II	5 87	4063.931 4063.94	P	V I Cr II	121 19
4043.901		Fe I	276,557	4053.82		Fe I	485	4064.07	P	Fe Ţ	423
	_									0- T	40
4043.98 4044. 01	P P	Fe I .Fe II	559 172	4054.10 4054.11		O II Cr II	50,98 19	4064.16 4064.2		Zr I C I	46 7
4044.145	•	KI	3	4054.11		Fe I	557	4064.203		Ti I	80
4044.4182		AI	4	4054.55		0 11	98	4064.22	P	T1 I	254
4044.49	P	Fe I P II	1073 30	4054.555		Sc I	6 2	4064.350 4064.374		T1 II N1 I	106 179
4044.49 4044.57		Zr I	46	4054.618 4054.833		Co I Fe I	698	4064.45		8 111	110
4044.614		Fe I	359	4054.845		Pr II	30	4064.46		Fe I	44
4044.64	P	Fe I	484	4054.883		Fe I	698	4064.576		Sm II P II	24,33
4044.75		N II	39	4054.991		Ce II	82	4064.64		P 11	16
4044.818		Pr II	8	4055.011		Ti I	80	4064.75	P	Fe II	39
4044.96		0 11	51	4055.03		Zr I	46	4064.99		Y II	24
4045.133 4045.139		Mn I Fe I	48 125	4055.046		Fe I Mn I	218 48	4065.070 4065.09		V II Au I	215 3
4045.139		Gd II	49	4055.214 4055.543		Mn I	5 5	4065.094		Ti I	80
4045.16	P Forb	He I	17	4055.98		Fe I	914	4065.1		CI	7
4045.206		Mn I Co I	31	4056.027		Mo I C III	12 24	4065.14 4065.402		A II Fe I	65 698
4045.386 4045.59	P	Fe I	31 559	4056.06 4056.07		Cr III	24 182	4065.595		Ti I	207
4045.63		Zr II	30	4056.212		Ti II	11	4065.716		Cr I	279
4045 045		.Fe I	40	40.80 080		V II	14	4066.02	P	Fe I	695
4045.815 4046.07	P	Fe I	43 557	4056.270 4056.53		V II Fe I	14 320	4066.16	P	Cr II	182
4046.15	-	0 11	50	4056.543		Pr II	26	4066.328		Fe II	214
4046.19		Cr I	36	4056.793		Cr I	306	4066.365		Co I	30
4046.269 4046.341		V II Ce II	177 81	4056.8 4057.00		Al II N II	88 39	4066.597 4066.737		Fe I Sm II	424 28
4046.46	P	Fe I	1075	4057.074		v i	121	4066.938		Cr I	66
4046.557		Hg I	1	4057.19		Cr I	156	4066.979		Fe I	358
4046.629 4046.760		Fe I Cr I	487 36	4057.195		Co I Ni I	3 89	4067.03 4067.05	P	V II Cr II	9 193
4040.700		Or 1	30	4057.347		NI I	99	4007.00	-	0. 11	100
4046.81	P	Fe II	126	4057.356		Fe I	277	4067.051		N1 II	11
4047.160		Smr II K I	16 3	4057.39		P III	1 212	4067.275 4067.279		Fe I Ce II	217 22
4047.214 4047.315		Fe I	117,853	4057,457 4057,5052		Fe II Mg I	16	4067.39		La II	26
4047.51		A II	66	4057.51		Fe III	33	4067.49	P	Fe I	422
4047.64		Y I	6	4057.612	_	Ti I	254	4067.60	P P	Fe I Fe I	655 1103
4047.792 4047.88	P	Sc I Y II	7 6	4057.66 4057.72	P	Fe I A II	729 9	4067.85 4067.87	r	CIII	16
4047.948	-	WI	4	4057.80		N IV	3	4067.984		Fe I	559
4047.96		Hf II	104	4057.81		Cr I	251	4068.003		Mn I	5
4048.02	P	Cr II	182	4057.812		Pb I	1	4068.144		Ti I	207
4048.22	_	0 11	50	4057.950		Mn I	29	4068.334		Sm II	42
4048.56	P	Cr I	251	4058.08		La II	54	4068.541 4068.661		Co I Ti I	58 254
4048.68 4048.755		Zr II Mn I	43 5	4058.139 4058.183		T1 I Co I	254 16	4068.7		Sc III	204
4048.780		Cr I	251	4058.219		Gd I	5	4068.836		Ce II	82
4048.831		Fe II	172	4058.227	_	Fe I	558	4068.97		C III	16
4048.999 4049.03		Mn I V II	48 215	4058.46 4058.600	P	Fe I Co I	91 4 58	4068.981 4069.08		Ti I Fe I	299 557
4049.14		Cr II	193	4058.7		SII	54	4069.267		Nd II	20
								4000 000		0 77	40
4049.336 4049.399		Fe I Ti I	218 185	4058.766 4058.77		Fe I S II	120 52	4069.636 4069.883		O II Fe II	10 188
4049.429		Gd II	50	4058.772		Cr I	251	4069.897		0 11	10
4049.44	_	Hf II	53	4058.912		Ca I	40	4070.03	P	Fe II	22
4049.71 4049.783	P	N1 I Cr I	169 251	4058.930 4058.933		Mn I Cb I	5 1	4070.094 4070.279		Ce II Mn I	5
4049.858		Gd II		4059.07		Cl III	7	4070.288		Gd II	49
4050.02		Cr I	36	4059.27		PIII	1	4070.30		C III	16
4050.08 4050.11		La II S II	85 4 5	4059.321 4059.370		Co I Gd II	2 118	4070.390 4070.45	P	Gd II Fe I	17 525
1000.11		0 11	••	2000.010			220				
4050.32		Zr II	43	4059.392		Mn I	29	4070.766		Fe I	558
4050.67 4050.963		Hf II V I	59 121	4059.726 4059.961		Fe I Nd II	767 63	4070.90 4071.0	P	Cr II Ni II	193 11
4051.06		V II	32	4060.09	P	Ti I	254	4071.000	•	Cr I	306
4051.08		Fe II	98	4060.263		Ti I	8C	4071.09		Zr II	54
4051.145	•	Nd II	66	4060.58		O II	97 156	4071.20 4071.211		O II Ti I	49 254
4051.18 4051.21	₽ P	N1 I Fe II	239 172	4060.62 4060.98		Cr I O II	156 97	4071.22		Hf II	74
4051.34	-	V II	215	4061.085		Nd II	10	4071.469		Ti I	254
4051.352		V I	121	4061.3		Sc III		4071.52		Fe I	218
4051.923		Fe I	700	4061.742		Mn I	29	4071.541		v 1	96
4051.97		Cr II	19	4061.77	P	Cr II	19	4071.740		Fe I	43
4052.22		Cl II	61	4061.787		Fe II	189	4071.814 4072.01		Ce II A II	81 33
4052.312 4052.466		Fe I Fe I	700,852 563	4062.08 4062.09		P II Mo I	17 12	4072.01		PII	16
4052.472		Mn I	48	4062.223		Ce II	34	4072.164		0 11	10
4052.664	_	Fe I	52 4	4062.446		Fe I	359	4072.40		A II Fe I	41, 52 698
4052.72 4052.930	P	Fe I Ti I	557 208	4062.590 4062.817		Gd II Pr II	26	4072.518 4072.56		re 1 Cr II	698 26
-100% 93U		** 1	₩ 0	4002.017		11	~~				

40					FIND	ING TIP	1				
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
			-	4000 40		A II	8	4095.975		Fe I	217
4072.913		Ni I Ce II	197 109	4082.40 4082.44		Fe I	906	4096.118		Fe I	911
4072.917 4073.195		Gd II	34	4082.456		Ti I	80	4096.18		O II	48
4073.055		N II	38	4082.593		Co I	16	4096.21	P	Fe I	18 65
4073.477		Ce II	4	4082.600		Sm II	54 38	4096.47 4096.543		A II O II	21
4073.759		Gd II	44	4082.85 4082.944		N II Mn I	5 5	4096.63		Zr II	15
4073.760 4073.90		Fe I O III	558 23	4083.233		Ce II	60	4096.822		Pr II	29
4074.356		Ti I	254	4083.554		Fe I	117	4096.96	P	Fe I	173
4074.374		WI	6	4083.584		Sm II	24	4097.02	P	Fe I	700
		_				Mrs. T	5	4097.099		Fe I	558
4074.53		C II Fe I	36 912	4083.628 4083.67	P	Mn I Mn II	2	4097.12		Ca II	17
4074.70 4074.794	P	Fe I	512 524	4083.71	P	Fe I	1103	4097.15		A II	100
4074.89		C II	36	4083.71		Y I	6	4097.21		Hf II	17
4074.897		N1 I	28	4083.780		Fe I	697	4097.260		O II N III	20,48 1
4075.116		Nd II	62	4083.907	P	O II Fe I	49 557	4097.31 4097.65		Cr I	97
4075.272 4075.45		Nd II Si II	19	4084.17 4084.391	r	Mo I	12	4097.791		Ru I	9
4075.63	P	Cr II	19 .	4084.498		Fe I	698	4097.96		Cr I	97
4075.66		V II	14	4084.58	P	Fe II	151	4098.18		Cr I	97
4075.714		Ce II	57	4084.66		0 11	21	4098.183		Fe I	558
4075.845		Sm II	51	4085.011		Fe I	358	4098.27		0 11	46
4075.853		Ce II	206	4085.124		0 11	10	4098.44		Cr II Ca I	165 25
4075.868		0 11	10	4085.232	P	Ce II Fe I	172 276	4098.533 4098.54		Fe III	101
4075.92 4075.95	P	Cr I Fe II	66 21	4085.26 4085.312	r	Fe I	559	4098.606		Gd II	49
4076.00	r	C II	36	4085.38		Eu II	10	4098.73		La II	138
4076.061		Cr I	279	4085.38	P	Fe I	486	4098.77		Ne II	53
4076.124		Co I	16	4085.564		Gd II	50	4098.900		Gd II	49 91
4076.232		Fe I	486	4085.67		V II	214	4098.981		Ce II	91
4076.370		T1 I	9	4085.68		Zr II	54	4099.016		Cr I	108
4076.498		Fe I	218	4085.815		Nd II	16	4099.08		Fe I	600,651
4076.636		Fe I	558	4085.98		Fe I Cr II	1073 26	4099.166 4099.25		Ti I S III	207 11
4076.64		A II La II	52 11	4086.14 4086.300		Co I	20 58	4099.44		8 111	
4076.71 4076.78		Si II	**	4086.69		Ne II	54	4099.47		A II	79
4076.810		Fe I	557	4086.72		La II	10	4099.54		La II	78
4076.83		N II	38	4087.099		Fe I	694	4099.77		Mg I V I	46 27
4076.87	_	Cr II	19	4087.16	n	O II Fe II	48 28	4099.796 4099.94		N I	10
4076.89	P	Fe I	559	4087.27	P	re II	20	4000.04			20
4076.96		A II	64	4087.297		Ce II	59	4099.99	P	Fe I	698
4077.05		Zr II	54	4087.35		N II	37	4100.04		He II Fe I	3
4077.089		Cr I	66	4087.60		Na II Cr II	4 19	4100.17 4100.240		Nd II	57
4077.148 4077.35		T1 I La II	207 41	4087.63 4087.79	P	Fe I	832	4100.30		Ne II	54
4077.38		Ϋ́I	7	4088 . 291	_	Co I	2	4100.35		Fe I	320
4077.470		Ce II	60	4088.567		Fe I	906	4100.35	P	Fe I	1103
4077.50		Cr II	19	4088.75	P	Fe II	39	4100.52		Fe III D	107 1
4077.677		Cr I 8r II	279 1	4088.863 4088.90		Si IV Cr II	1 19	4100.621 4100.745		Fe I	18
4077.714		91 II	•	4000.00							
4078.321		Ce II	19	4089.225		Fe I	422	4100.746	-	Pr II Fe I	4 173
4078.365		Fe I	217	4089.295		0 II	48	4100.91 4100.918	P	Cb I	1
4078.444 4078.471		Gd II Ti I	15 80	4089.49 4089.63		Cr II Cr I	1 64 260	4101.00		V II	176
4078.700		Gd I	5	4090.085		Fe I	700	4101.163		Cr I	108
4078.862		0 11	10	4090.305		Cr I	66	4101.272		Fe I	698
4079.18	P	Fe I	700	4090.34	P	Fe I	44	4101.684		Fe I H	120 1
4079.241		Mn I	5	4090.52		Zr II V I	29 41	4101.737 4101.764		In I	1
4079.422 4079.60		Mn I A II	5 33	4090.579 4090.75	P	Fe I	943	4101.772		Ce II	5
2018+UU					•						
4079.708		Ti I	207	4090.947		Ce II	174	4102.158		Mo I	12
4079.726		Cb I	1 250	4090.984		Fe I P II	695 17	4102.159 4102.38		V I Y I	41 7
4079.848 4079.88		Fe I Cl II	359 61	4091.53 4091.561		Fe I	357	4102.713		WI	2
4080.04		P III	1	4091.945		VI	52	4102.74	P	N1 I	255
4080.08	P	Fe I	944	4092.174		Cr I	180	4102.926		Si I	2
4080.221		Cr I	66	4092.266		Sm II	1	4103.017		0 II	20
4080.226		Fe I	558	4092.386		Co I V I	29 52	4103.085 4103.37		F II N III	4 1
4080.227 4080.435		Nd II Ce II	18 36	4092.407 4092.512		Fe I	18	4103.525		F II	4
						Co T	OR	4109 61	P	Fe I	831
4080.44 4080.44		Hf II V II	6 214	4092.633 4092.694		Ca I V I	25 27	4103.61 4103.62	P	Fe I	650
4080.48		Ne II	53	4092.848		Co I	59	4103.724	-	FII	4
4080.56		Cr I	156	4092.940		0 11	10	4103.85		Cr I	180
4080.600		Ru I	7	4093.06		Cr I	260	4103.871		F II	4
4080.67		A II		4093.16		Hf II	6	4103.91		A II	52,64
4080.886		Fe I	557	4093.497		V I	52	4104.132	P	Fe I Fe II	356 ,558 39
4081.018 4081.10		Pr II O III	14 23	4093.62 4093.90	P	N1 I Mg II	1 29	4104.18 4104.23	r	Cl III	7
4081.19		Fe III	119	4093.955		Ce II	160	4104.46	P	Fe I	422
										0 11	200
4081.21 4081.22		Cr II Zr I	165 46	4094.18		O II Tm I	10	4104.743 4104.77	P	O II Fe I	20 320
4081.22 4081.222		Zr I Ce II	40	4094.188 4094.478		Gd II	48	4104.77	•	V I	112
4081.42	P	Fe II	188	4094.930		Ca I	25	4104.867		Cr I	108
4081.737		Cr I	66	4095.17		S III		4104.97		Fe I	694
4081.74		Ca III	4	4095.27	P	Fe I	1075	4104.996		Ce II	156 20
4082.125		Fe I	698	4095.486		V I	41	4105.000	D	O II	20 700

İ A	Туре	Klement	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4105.843		Tm I		4115.376		Gd II	117	4124.072		v i	52
4106.03		0 11	10	4115.89	P	Fe I	910	4124.081		N II	65
4106.05		Cr I	180	4115.982		N1 I	255	4124.09		AII	41
4106.134 4106.266		Ce II Fe I	160 217	4116.104 4116.39		S1 IV A II	1 124	4124.73		Lu I Fe II	3
4106.437		Fe I	697	4116.39		V I	27	4124.793 4124.91		Y II	22 1 4
4106.582		Nd II	57	4116.547		F II	5	4125.10		Hf II	94
4106.71		Cr I	260	4116.60	P	V I	27	4125.23	P	Fe I	173
4106.83 4106.881		Cl III Ce II	7 139	4116.66		Cr II V I	181 27	4125.4		8 III	11
4100.001		06 11	100	4116.703		• •	21	4125.622		Fe I	1103
4107.07		0 11	47	4116.97		Fe I	558	4125.776		Ce II	126
4107.387		Sm II	50	4117.013		Ce II	35	4125.884		Fe I	35 4
4107.428 4107.477		Ce II Mo I	138 12	4117.09 4117.288		P II Ce II	17 77	4126.099		Cr I	65
4107.487		V I	52	4117.32		Fe I	484	4126.192 4126.521		Fe I Cr I	695 35
4107.492		Fe I	354	4117.71		Fe I	833	4126.88		Fe I	354
4107.75	P	Fe I	831	4117.872		Fe I	700,1103	4126.925		Cr I	
4108.13 4108.31	P P	Fe I Fe I	559 833	4118.10 4118.144		Ne II Ce II	54 11	4127.08		Cr II	181
4108.39	•	Zr I	32 ·	4118.182		V I	112	4127.09 4127.09	P	A II Ti I	41 114
4108.400		Cr I Gd II	65 117	4118.45	P	Cr I	85	4127.302		Cr I	35
4108.401 4108.488		CoI	2	4118.481 4118.549		Pr II Fe I	8 801	4127.367 4127.49		Ce II P II	4 16
4108.554		Ca I	39	4118.551		Sm II	54	4127.531		Ti I	296
4108.75		0 11	48	4118.643		V I	41	4127.54		8 111	
4109.070		Fe I Nd II	558 17	4118.774		Co I	28	4127.57		Y II	15
4109.073 4109.173		F II	5	4118.904 4119.015		Fe I Ce II	559 89	4127.612 4127.643		Fe I Cr I	357 65
4109.19		PII	30	4119.219		FII	5	4127.721		Gd II	117
4109.405		Sh II	28	4119.221		0 11	20	4127.80		Hf II	41
4109.455		Nd II	10	4119.44		Cr I	65	4127.807		Fe I	558,727
4109.54		Mg II	21	4119.457		A I	41	4128.053		81 II	3
4109.584		Cr I	65	4119.53	P	Fe II	21	4128.067		Ce II	136
4109.706		Co I	1	4119.66	P	Fe I	320	4128.071		V I	27
4109.786 4109.808		V I Fe I	27 357	4119.784 4119.877		Ce II Ce II	22 83	4128.14 4128.31		Mn II Y I	2 5
4109.81	P	v I	41	4120	P	0 V	4	4128.65		A II	3
4109.83		Ca II	17	4120.037		Ti I	253	4128.735		Fe II	27
4109.95 4109.98		Fe III Cr I	260	4120.211		Fe I	423	4128.858		V I	112
4100.00		0. 1	200	4120.279		0 11	20	4128.87	P	Mn II	2
4109.98		N I	10	4120.538		V I	41	4128.870		Rh I	8
4110.00 4110.05		N II Zr II	44 30	4120.554		O II	20	4129.166		Ti I	
4110.00		0 II	30 37	4120.613 4120.654		Cr I Nd II	65 57	4129.176 4129.21		Ce II Cr I	227 97
4110.33		Ca II	17	4120.78		PII	17	4129.22		Fe I	698
4110.381		Ce II	28	4120.812		He I	16	4129.231		Sm II	24
4110.472 4110.532		Nd II Co I	15 29	4120.829		Ce II	112	4129.34		O II	19
4110.795		0 11	20	4120.97 4120.993		Fe III He I	118 16	4129.46 4129.70	P	Fe I A II	695 77
4110.87		Cr I	97	4121.0		8 11	2	4129.73		Eu II	1
4110.903		Mn I	37,47	4121.31		Fe III		4129.96	P	Cr I	97
4111.01		Cr II	18,26	4121.318		Co I	28	4130.035	•	Fe I	44,486
4111.06	P	Fe I	689	4121.45		Zr I	32	4130.372		Gd II	19,49
4111.36		Cr I Ce II	97	4121.48		0 11	19	4130.47	P	Cr I	97
4111.394 4111.438		Gd II		4121.637 4121.682		Ti I Rh I	9	4130.538 4130.648		Co I Ba II	16 4
4111.56		8 111		4121.7	P	0 V	11	4130.706		Ce II	209
4111.67		Cr I	97	4121.806		Fe I	356	4130.77		PII	17
4111,785 4111.902		V I Fe II	27 188	4121.817 4121.95		Cr I B II	108 2	4130.86 4130.884		Cl II 81 II	60 3
				4121.00		-	-	4100.004		01 11	· ·
4112.018		Os I	5	4122.00	P	Fe I	765	4131.099		Ce II	112
4112.029 4112.04		0 II Eu II	21 10	4122.05 4122.06		C III Fe III	17 118	4131.17 4131.244	P	Fe II Ti I	188 253
4112.09	P	Fe I	766	4122.143		Ti I	296	4131.31		۷r II	54
4112.17	·P	Fe I	275	4122.162		Cr I	65	4131.360		Cr I	261
4112.35 4112.59		Fe I Cr II	695 18	4122.522 4122.638		Fe I Fe II	356 28	4131.430 4131.73		Mn I A II	37 32
4112.708		Ti I	9	4122.757		Mn I	47	4131.74		La II	167
4112.83		A II	8	4122.98		Fe III	118	4131.75	P	Fe I	1075
4112.972		Fe I	1103	4123	P	0 V	4	4131.94	P	Fe I	695
4113.210		Zn I	9	4123.069		Na II	19	4131.97	P	Fe I	558
4113.23		Fe III		4123.188		V I	112	4132.017		v I	27
4113.24		Cr II La II	18 166	4123.23		La II	41	4132.060		Fe I	43 20
4113.28 4113.45		Fe III	100	4123.230 4123.279		Ce II Mn I	162 47	4132.155 4132.275		Co I Gd II	3 0 4 9
4113.518		V I	52	4123.287		Ti I	302	4192.41		Cr II	26
4113.58		Hf II	24	4123.38		Zr II	54	4132.48		Cl II	29
4113.726 4113.82		Ce II O II	137 37	4123.387 4123.488		Cr I Ce II	108 22	4132.50 4132.54	P	La II Fe I	150 1 103
4113.82 4113.826		Nd II	37 25	4123.488 4123.54		Hf II	95	4132.806	•	O II	1103 19
4113.876		Mn I	47	4123.543		Mn I	37	4132.903		Fe I	357
4113.876 4113.902		Sm II	16	4123.543 4123.559		T1 I	296	4132.903 4132.94	P	Fe I	44
4114.00		N I	10	4123.566		V I	27	4133.006		Sc I	20
4114.449		Fe I A II	357 1 24	4123.748		Fe I	217,422	4133.33 4133.361		La II Nd Il	19
4114.52 4114.95		Na II	20	4123.812 4123.872		Cb I Ce II	1 60	4133.65		Ne II	53
4114.957		Fe I	695	4123.881		Nd II	65	4133.66		C1 II	60
4114.99		K II	2	4123.90		0 V	4	4133.669		N II	65
4115.185		V I	27	4123.956		Sm II	46	4133.800		Ce II	4

42					FIND	ING LIB	T				
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
	_	V2- V	017	4146.20		Cr I	260	4158.5906		AI	2
4134.19 4134.343	P	Fe I Fe I	217 3	4146.20		Ce II	203	4158.76		o v	11
4134.433		Fe I	482.697	4146.47		Cr I	108	4158.798		Fe I	695
4134.488		V I	27	4146.695		Cr I	107	4158.90		Hf II Ce II	41 246
4134.681		Fe I	357	4146.94		s II	65	4159.033 4159.407		Al II	71
4134.72		KII	1	4147.09	P	Cl II Fe II	60 141	4159.450		Al II	71
4135.325 4135.443		Nd II Ce II	188	4147.26 4147.34	P	Fe I	693	1159.634		Ti I	206
4135.68		Zr I	50	4147.43		A II	9	4159.686		V I	25
4135.77	P	Cr II	163	4147.49	P	Fe I	832	4159.725		Al II	71
4135.77		Fe I	1073	4147.532		Mn I	37	4159.809		Al II Al II	71 71
4135.784	_	Os I	3	4147.673		Fe I	42 832	4160.239 4160.263		Al II	71
4135.9	P	0 V V I	11 26	4148.27 4148.52	P	Fe I Cr I	241	4160.28	P	Fe II	149
4136.386 4136.512		Fe I	694	4148.75	P	Ni I	89	4160.56		P II	31
4136.894		T1 I	221	4148.859		v I	26	4160.561	_	Fe I	419
4137.002		Fe I	726	4148.901		Ce II	28	4160.62 4160.78	P P	Fe II Fe I	39 1116
4137.090		CP I	1	4148.91		S III K II	6	4160.78	•	N II	50,51
4137.104 4137.257		Mn I	37	4149.19 4149.22		Zr II	41	4161.05		Cr II	162
4137.284		Ti I	253	4149.372		Fe I	694	4161.080		Fe I	689
4137.42	P	Fe I	1103	4149.445		Ti I	296	4161.175		Ce II	22
4137.63		N I	6	4149.45		Cr I	261	4161.20	P	Zr II Cr II	42 127
4137.646		Ce II	2	4149.49	P P	Fe I Fe I	9 4 2 3	4161.27 4161.34	P	N1 I	86
4137.93 4137.97	P	Fe III Fe I	118 320	4149.76 4149.831	P	Sm II	8	4161.415		Cr I	305
4138.21	P	Fe II	150	4149.897		Al III	5	4161.488		Fe I	422
4138.40	P	Fe II	39	4149.917		Al III	5	4161.524		Ti II	21
4138.52		N1 I	237	4149.936	_	Ce II	158, 189	4161.56	P	Cr II 8r II	127 3
4138.84		Fe L	117	4150.08	P	V II	37	4161.796			
4139.37		Fe III	118	4150.138		Al III	5	4161.94		La II V II	175
4139.452		Co I	94	4150.258		Fe I	695	4162.072 4162.39		8 II	65
4139.48		Ti I Cb I	221 1	4150.366 4150.429		N1 I Co I	178 16	4162.40		Hf II	60
4139.702 4139.933		Fe I	18	4150.429		Ti I	253	4162.698		S II	44,65
4140.24	P	Fe I	418	4150.67		Ne II	53	4162.732		Gd II	17
4140.304		Sc I	20	4150.809		Ti I	221	4162.80	P	C III Fe I	21 476a
4140.42	P	Ti I	221	4150.963		Ti I Zr II	206 42	4162.93 4163.092	F	Gd II	44
4140.441 4140.450		Fe I Gd II	694,695 48	4150.97 4151	P	0 V	4	4163.16	P	Cr I	35
							400	4163.35	P	F9 I	1073
4140.51 4140.74		Fe III O II	118 19	4151.00		Cr II N I	163 6	4163.516	•	Ce II	35
4141.017		Gd II	117	4151.46 4151.52		Eu II	10	4163.625		Cr I	35
4141.25	Forb	Al III	17	4151.60	P	Fe II	149	4163.644		T1 II	105
4141.257		Pr II	10	4151.79	P	Fe II	12	4163.655		V II	175
4141.352		Fe I	480	4151.957		Fe I	764	4163.658 4163.676		Cb I Fe I	1 274,699
4141.73		La II Hf II	4 0 87	4151.970		Ce II La II	2 40	4163.94		Cr I	241
4141.84 4141.862		Fe I	422	4151.98 4152.07	P	Fe I	1049	4164.015		V II	37
4141.96		0 11	106	4152.172	-	Fe I	18	4 16 4 . 1 34		Ti I	163
4142.08		0 11	106	4152.209		Sm II	16	4164.1800		A I	2
4142.15		Al III	16	4152.355		Sc I	20	4164.192	P	Pr II Fe I	8 694
4142.184		N1 I Cr I	212 305	4152.43		C III	21 1	4164.24 4164.54		Pt I	6
4142.193 4142.24		0 11	106	4152.575 4152.775		Cr I	261	4164.636		N1 I	28
4142.291		S II	44	4152.78		La II	78	4164.661		СРІ	1
4142.320		N1 I		4152.98	P	Fe II	45	4164.79		Fe III	118
4142.398		Ce II	10	4153.067		Cr I	35	4164.80 4164.96		Fe I S III	418
4142.47 4142.480		Cr I Ti I	179 296	4153.098 4153.302		8 II 0 II	44 19	4165.11		8 11	64
4142.628		Fe I	1103	4153.328		v i	26	4165.184		Sc I	20
4142.66		V I	26	4153.332		Sm II	54	4165.519		Cr I	305
4142.86		ΥI	5	4153.510		Gd II	117	4165.606		Ce II	10
4142.90		V II	226	4153.67	P	Ce II	159	4166.003 4166.311		Ba II Ti I	4 163
4143.048	P	Ti I Fe II	253 188	4153.816		Cr I	35 605	4166.37		Zr I	45
4143.07 4143.136	r	Pr II	4	4153.906 4154.109		Fe I Fe I	695 694	4166.73		PII	16
4143.280		T1 I	253	4154.502		Fe I	355	4166.86		Fe III	118
4143.418		Fe I	523	4154.812		Fe I	694	4167.159		Gd II	18
4143.42	P	N I	6	4154.862		Gd II	67	4167.2604		MgI	15
4143.50	P	Fe I	697	4154.865		Ti I	221	4167.2712		Mg I Y I	15 7
4143.52		O II	106	4154.98		Fe III	0.50	4167.52 4167.67	P	Ti II	21
4143.759 4143.77		He I La II	53 54	4155.217 4155.525		Sm II Mn I	8,50 37	4167.69	P	Fe II	149
4143.77		0 11	106	4155.532		Ce II	29	4167.80		Cr I	107
4143.83	P	Fe I	354	4156.083		Nd II	10	4167.804		Ce II	29
4143.87		Fe III	44	4156.11		A II	52	4167.862		Fe I	599
4143.871 4144.164		Fe I Ru I	43 7	4156.24		Zr II	29 14	4168.122 4168.31		Cb I Cr I	.1 261
4144.164 4144.492		Ce II	3	4156.265 4156.3		Nd II Li II	1 4 3	4168.409		8 11	44
4144.553		Nd II	61	4156.460		Fe I	693	4168.41		Fe III	118
4144.995		Ce II	9	4156.50		C III	21	4168.424		Al II	61
4145.100		S II	44	4156.54		o II	19	4168.511		Al II	61
4145.209		Fe I	274	4156.670		Fe I	419	4168.625	n	Fe I Fe II	689 22
4145.74 4145.764		Fe III N II	65	4156.8		N II	50,51 354	4168.66 4168.942	P	Fe I	22 694
4145.77		Cr II	162	4156.803 4157.788		Fe I Fe I	354 695	4168.971		He I	52
4145.90		0 11	106	4157.788		C1 II	380	4168.98		A II	
4146 071		E ₂ Y	400					4400 00	- 7	F. Y	

1						LIND	ING DIG	-				70
1999-199	ĭ A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.
1909.7732 C. II 2010 2779.45 C. II 205 1111.0000 A I 7 7 7 7 7 7 7 7 7	4169.330		Ti I	163	4179.419		v i	25	4190.738		Si II	
4680-777												
1985-258 C 1 278 277 289 58 11 39 139												
1300.00 P												
170.08		_										
A370.502 C T 279		Р										
1470.06						P						
177.06		P	Cr II	18								
177.06	4170 86		Cr II	101	4190 41	ъ	Po T	074	4101 605		D- T	AFF
4371-058						r						
4171.070							Pr II					
1471-1680 Fe 941												
1771-1872 P						P						
A171-194			Pr II			•						
1471-162						_						79
4170.048										р		193
4172-120					11011.20	-	-0 -	000	4150.01	•	20 11	100
1472-730 P						_						
4172.073		P				Р						
1472.000												
4172-244												
### ### ### ### ### ### ### ### ### ##						ъ				ъ		
4173-05 P Fe I 909-1073 4182.98						P				P		
4173.18 P Fo I 688							A II					
1479.3284 OB I 4 4853.20 P Fe II 231 4135.015 Fe II 478 1477.3292 Fe I 305 4135.2084 TI I 200 4135.015 Fe II 478 1477.3770 SG II 1 10 4135.416 V II 37 4105.615 Fe II 478 1477.3770 SG II 1 10 4135.416 V II 37 4105.616 Fe II 1 10 10 11 11 11 11 11 11 11 11 11 11 1	4173.05	P	Ti II	96	4183	P	N IV	14	4195.337		Fe I	693
1479.3284	4173.18	P	Fe I	698	4183.025		Fe I	697	4195.41		Cr II	161
1477.379 Nd II 10 4193.31 Zr I 51 4100.70 N III 6 4193.31 Zr I 51 4100.70 N III 6 4193.31 Zr I 51 4190.70 N III 6 4193.31 Zr I 51 4190.83 V II 19 4173.305 N II 57 4190.83 V II 19 7 4190.83 V I			Os I			P						
## ## ## ## ## ## ## ## ## ## ## ## ##												
4173.55												
## 1473.557 ## 71												
4173.76 N II									4196.26			42
4173.76												
#173.77 #173.285 #1												
4173-926 Fe I 19												
4174 P N IV										P		
4174-042		P										
4174.088 T1 II 105												
4174.14 Y I 6 4185.456 O II 80 4197.58 P Fe I 576 4174.15 Cr I 305 4185.60 P Cr II 163 4197.68 C Cr I 349 4174.27 Fe III 4185.61 C III 43 4197.688 C C II 136 4174.30 B III 4185.61 C III 43 4197.688 C C II 136 4174.30 B III 2 4185.65 P Fe I 1004 4197.688 C C II 136 4174.31 P Mn II 2 4185.61 P T II 220 4197.98 C C II 200 4174.32 P T II 220 4186.08 P T II 1 220 4197.98 C C II 200 4174.31 P II 1 220 4186.08 P T II 1 220 4197.98 C C II 200 4174.31 P II 1 220 4186.08 P T II 1 220 4198.28 Fe I 693 4174.491 C T I 241 4186.08 P T II 127 4188.28 Fe I 693 4174.941 C T I 278 4186.59 C I I 129 4186.39 C C I I 241 4174.941 C T I 278 4186.59 C I I 107 4188.425 C C I 274 4175.588 C I I 5 4186.70 C I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										P		
4174.15 Cr I 305 4185.60 P Cr II 163 4197.47 Cr I 249 4174.27 Fe III 4185.61 Cl II 43 4197.688 Ce II 136 4174.27 Fe III 4185.66 P Fe I 1104 4197.681 Od II 136 4174.300 S II 4185.66 P Fe I 1104 4197.681 Od II 136 4174.300 S II 4185.66 P Fe I 104 4197.681 Od II 136 4174.300 S II 4186.08 P Fe I 104 4197.681 Od II 136 4174.30 Hr I 3 4186.00 P T1 I 200 4197.688 Ce II 200 4174.419 Fe I 799 4186.03 M4 II 24 4188.174 Si II 200 4174.419 Fe I 799 4186.03 M4 II 24 4188.174 Si II 1474.419 Fe I 799 4186.08 PC II 127 4188.288 Fe I 693 4174.785 Cr I 241 4186.189 Cr I 128 4186.08 Fe I 693 4174.785 Cr I 241 4186.189 Cr I 129 4188.310 Fe I 152 4174.618 Cr I 281 4186.389		٠								P		
4174.300 S II 4185.66 P Fe I 1104 4197.681 04 II 4174.31 P Mn II 2 4185.66 P Fe I 1104 4197.681 04 II 4174.31 P Mn II 2 4185.66 P Fe I 1104 4197.685 P TI II 96 4174.313 HF I 3 4186.01 P TI I 220 4197.998 C II 209 4174.419 Fe I 799 4186.033 Nd II 24 4198.174 81 II 4174.419 Fe I 799 4186.033 Nd II 24 4198.174 81 II 4174.479 TI I 220 4186.01 P TI I 122 4198.286 Fe I 693 4174.795 CF I 241 4186.119 TI I 122 4198.310 Fe I 152 4174.917 Fe I 19 4186.24 K II 1 4198.317 A I 4 4174.941 CF I 278 4186.359 CF I 249 4198.310 Fe I 152 4175.538 GG I 5 4186.70 ZF II 97 4198.525 CF I 24 4175.538 GG I 5 4186.70 ZF II 97 4198.525 CF I 24 4175.640 Fe I 364 4187.05 C III 18 4198.645 Fe I 693 4175.69 P Fe I 694 4187.324 CF I 32 4198.699 CF II 1						P				•		
4174.31 P Nn II 2 4185.95 S II 220 4197.99 C II 309 4174.433 NI I 3 4186.01 P T1 I 220 4197.99 C II 209 4174.419 F F I 799 4186.03 NA II 24 4198.174 S III 4174.472 T1 I 220 4186.08 P C II 127 4198.288 F I 693 4174.495 C I 241 4186.119 T1 I 127 4198.288 F I 693 4174.495 C I 241 4186.119 T1 I 127 4198.288 F I 1 693 4174.491 C I 279 4186.38 C I 1 4198.3170 A I 4 4174.917 F I 19 4186.34 K II 1 4198.3170 A I 4 4174.917 C I 279 4186.389 C I 1 29 4198.310 C II 207 4175.227 C I 1 261 4186.599 C I I 1 1 4198.425 C I 2 2 4175.227 C I 1 261 4186.599 C I I 1 1 4198.431 C II 207 4175.508 C I 1 5 4186.70 C I II 97 4198.285 C I 1 249 4175.606 R I I 39 4187.044 F I 152 4198.611 V I 24 4175.640 F I 1 594 4187.386 C I 93 4198.611 V I 24 4175.640 F I 1 694 4187.386 C I 93 4198.611 V I 24 4175.640 F I 1 694 4187.386 C I 93 4198.601 C I I 03 4176.080 C I I 135 4187.92 C I I 88 4198.09 C I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						_						136
4174.433	4174.300		8 11		4185.66	P	Fe I	1104	4197.681		Gd II	
4174-419 Fe I 799 4186.039 M II 24 4198.174 SI II 34 4174-472 Ti I 220 4186.08 P C II 127 4198.288 Fe I 693 4174.975 Cr I 241 4186.119 Ti I 129 4198.210 Fe I 152 4174.981 Cr I 278 4186.08 P C II 1 1 4198.210 Fe I 152 4174.981 Cr I 278 4186.359 Cr I 240 4189.310 Fe I 152 4174.981 Cr I 278 4186.359 Cr I 240 4189.325 Cr I 2 2 4175.538 Gd I 5 4186.70 Zr II 97 4189.425 Cr I 240 4175.638 Gd I 5 4186.70 Zr II 97 4189.625 Cr I 240 4175.606 Nd II 39 4187.044 Fe I 152 4188.611 V I 24 4175.606 Nd II 39 4187.044 Fe I 152 4188.611 V I 24 4175.606 Nd II 39 4187.246 Cr I 93 4188.659 Cr I 1 28 4175.690 Cr I 106 4187.246 Cr I 93 4188.699 Cr II 7 3 4175.690 Cr II 106 4187.230 Cr II 85 4188.794 Cr II 7 3 4175.690 Cr II 106 4187.320 Cr II 85 4188.794 Cr II 107 4175.690 Cr II 108 4187.323 Cr II 86 4189.02 P Cr II 180 4176.44 P Fr I 144 4187.323 Cr II 86 4189.02 P Cr II 180 4176.44 P Fr I 689 4187.323 Cr II 86 4189.09 P Fr II 141 4176.44 P Fr I 689 4187.80 P Fr I 694 4187.90 P Fr I 694 4187.90 P Fr I 695 4187.80 P Fr I 694 4189.09 P Fr II 141 4176.44 P Fr I 689 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 698 4187.80 P Fr I 699 R II 17 7 1 199.09 R II 18 14 1477.37 P Fr I 689 4187.80 P Fr I 699 4188.09 R Fr I 7 1 18 1 18 1 18 1 18 1 18 1 18 1 18		P			4185.95		S II		4197.95	P	Ti II	96
4174.472						P						209
4174-795						ъ						60.9
4174.917 Fe I 19 4186.24 K III 1 4198.3170 A I 4 4174.941 Cr I 278 4186.599 Cr I 249 4198.425 Cr I 2 4175.227 Cr I 261 4186.599 Cr II 1 4198.425 Cr I 2 4175.528						•						
4175.227					4186.24		K II	1			AI	4
4175.538												
4175.606 Nd II 39 4187.044 Fe I 152 4198.611 V I 24 4175.640 Fe I 354 4187.05 C III 18 4198.645 Fe I 693 4175.989 P Fe I 694 4187.246 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.144 N II 42 4187.56 Zr I 45 4199.09 Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.571 Fe I 695 4187.68 Hf II 73 4199.27 V II 5 4176.571 Fe I 696 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Nd II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 TI I 220 4199.918 Tm II 1 4177.327 TI I 163 4188.88 Al III 15 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 12 4189.10 Fe II 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.09 P Fe I 993 4177.50 Fe I 18 4189.50 Co I 2 4200.09 P Fe I 993 4177.50 Fe II 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4177.59 Fe II 18 4189.567 A II 4200.38 Fe III 4200.40 P TI II 96 4179.59 Fe II 21 4189.67 A II 424 4200.78 P Fe I 444 4179.50 Cr I 250 4189.81 V I 24 4200.78 P Fe I 446 4179.082 V II 19 4190.66 Cr I 169 4201.65 Zr I 45 4179.082 Fe III 19 4190.66 Cr I 19 4200.99 Fe I 689 4179.082 Fe III 19 4190.66 Cr I 19 4200.67 Fe II 45												
4175.89 P Fe I 694 4187.248 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.164 N II 42 4187.56 Zr I 45 4199.09 P Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.93 Re II 1 4177.357 Ti I 163 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.50 Co I 2 4189.50 Co I 2 4200.06 Fe III 417.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4200.00 P Fe I 993 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 19 4180.66 Cr I 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.40 P	4175.606		Nd II	39	4187.044		Fe I					
4175.89 P Fe I 694 4187.248 Co I 93 4198.669 Ce II 7 4175.945 Cr I 106 4187.31 La I 5 4198.724 Ce II 3 4176.080 Ce II 135 4187.323 Ce II 86 4199.02 P Cr II 180 4176.164 N II 42 4187.56 Zr I 45 4199.09 P Fe II 141 4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.93 Re II 1 4177.357 Ti I 163 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.50 Co I 2 4189.50 Co I 2 4200.06 Fe III 417.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.51 PI 8 4200.00 P Fe I 993 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.06 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.59 Fe I 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 18 4189.50 Co I 2 4200.08 Fe III 4177.50 Fe II 19 4180.66 Cr I 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.75 P Fe II 44 4179.05 Co II 106 4200.40 P	4175, 640		Fe I	354	4197 05		C III	10	4100 648		Fo T	600
4175.945	4175.89	P	Fe I									
4176.164 N II 42 4187.56 Zr I 45 4199.08 P Fe II 141 4176.44 P Fe II 149 4187.56 Zr I 45 4199.08 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.089 Nd II 15 4176.57 P Fe I 689 4187.68 Hf II 73 4199.27 Y II 5 4176.793 V I 6 4188.099 Gd II 17 4199.83 He II 3 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.321 Nd II 10 4188.684 Ti I 220 4199.918 Tm II 1 4177.357 Ti I 163 4188.82 Cl III 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al IIII 15 4199.97 Fe I 3 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.50 Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.59 P Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.59 Co I 2 4188.518 Pr II 8 4200.06 Fe III 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe I 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4177.59 Fe II 18 4188.518 Pr II 8 4200.09 P Fe II 993 4178.019 Sm II 16,50 4188.71 S II 44,64 4200.675 A II 4200.39 Fe II 4477.09 P Fe II 28 4188.58 O II 36 4200.675 A II 4200.39 Fe II 4477.09 P Fe II 28 4188.58 O II 36 4200.675 A II 4200.675 A II 2200.40 P T II II 26 4178.50 P Fe II 28 4188.58 O II 36 4200.675 P Fe II 44 4178.50 P Fe II 28 4188.58 O II 36 4200.675 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe II 44 4189.50 C C II 84 4200.78 P Fe II 44 4178.50 P Fe III 44 4189.50 C C II 169 4200.60 P II 16 68 4200.50 P Fe II 44 4178.50 P F					4187.31			5	4198.724		Ce II	3
4176.44 P Fe II 149 4187.59 Fe I 694 4199.098 Fe I 522 4176.57 P Fe I 689 4187.616 Tm I 4199.099 Md II 15 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 Ti I 220 4199.918 Tm II 1 4177.321 Nd II 10 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 AI III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.70 P Fe II 18 4189.64 Fe I 940 4200.03 Cr I 4177.70 P Fe II 18 4189.67 A II 4200.03 Fe III 4178.39 A II 7 4189.78 O II 36 4200.40 P Ti II 96 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.96 Cr I 106 4200.75 Ti I 220 4179.062 V II 19 4190.66 Cr I 184 4200.99 P Fe I 44 4179.062 V II 19 4190.66 Cr I 169 4201.65 Tr I 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 689 4179.062 V II 19 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe I 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689 4179.26 Fe III 44 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689 4179.26 Co I 144 4190.66 Cr I 169 4201.65 Tr I 4500.99 Fe II 689												
4176.57 P Fe I 689 4187.616 Tm I 4199.099 Nd II 15 4176.571 Fe I 695 4187.68 Hf II 73 4199.27 Y II 5 4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 Od II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 Ti I 220 4199.918 Tm II 1 4177.357 Ti I 163 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.57 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.59 Fe I 18 4189.667 A II 4200.38 Fe III 96 4177.00 P Fe II 21 4189.67 A II 4200.38 Fe III 96 4178.390 V II 25 4189.71 S II 44,64 4200.40 P TI II 96 4178.855 Fe II 28 4189.96 Cr I 166 4200.752 Ti I 220 4179.05 Cr I 250 4190.29 Ti II 21 4200.88 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 64 4179.062 V II 19 4190.66 Cr I 84 4200.90 Fe I 689 4179.05 Fe II 14 4190.66 Cr I 169 4201.85 Cr I 689 4179.05 Fe III 19 4190.66 Cr I 169 4201.85 Cr I 45 4179.062 V II 19 4190.66 Cr I 169 4201.55 Cr I 45 4179.05 Fe III 44 4190.66 Cr I 169 4201.55 Cr I 45 4179.05 Fe III 44 4190.66 Cr I 169 4201.55 Cr I 45 4179.062 V II 19 4190.66 Cr I 35 4201.55 La II	4176.44		Fe II							r		
4176.793 V I 6 4187.802 Fe I 152 4199.37 P Fe I 416 4177.07 P Fe I 690 4188.099 0d II 17 4199.83 He II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.684 Ti I 220 4199.918 Tm II 1 1 4177.357 Ti I 163 4188.82 Cl III 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4188.10 Fe III 4200.02 N III 6 4177.54 V II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4188.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.597 Fe I 1 18 4189.57 A II 4200.38 Fe III 4177.597 Fe I 1 18 4189.57 A II 4200.40 P Ti II 96 4177.599 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.390 V II 25 4189.541 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.56 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4189.67 Cr I 106 4200.752 Ti I 220 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Cr I 250 4190.29 Ti II 21 4200.99 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.40 V II 25 4200.990 Fe I 689 4179.05 Fe III 19 4190.60 Cr I 35 4201.50 La II		P			4187.616		Tm I		4199.099		Nd II	15
4177.07 P Fe I 690 4188.099 Gd II 17 4199.83 Re II 3 4177.17 Cr I 133 4188.128 Sm II 50 4199.902 Ru I 8 4177.321 Nd II 10 4188.694 T1 I 220 4199.918 Tm II 1 4177.357 T1 I 163 4188.82 C1 II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.70 P Fe II 18 4189.66 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179.05 Cr I 250 4199.96 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.80 Fe I 689 4179.25 Fe III 44 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III												
4177.17		P								P		
4177.321 Nd II 10 4188.694 T1 I 220 4199.918 Tm II 1 4177.357 T1 I 163 4188.82 C1 II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 A1 III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 C0 I 2 4200.06 Fe III 4177.59 C0 I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P T1 II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P O V 4 4189.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 35 4201.50 La II												•
4177.357 Ti I 163 4188.82 Cl II 43 4199.93 A II 124 4177.50 Hf II 51 4188.88 Al III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.59 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.855 Fe II 25 4189.841 V I 24 4200.6751 A I 24 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.66 Cr I 35 4201.85 Zr I 45 4179.25 Fe III												
4177.50 Hf II 51 4188.88 AI III 15 4199.97 Fe I 3 4177.52 P Fe I 172 4189.10 Fe III 4200.02 N IIII 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4200.09 P Fe I 993 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 24178.855 Fe II 28 4189.841 V I 24 4200.6751 A I 24178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 169 4201.45 Zr I 45 4179.25 Fe III 44 4190.66 Cr I 35 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II												
4177.52 P Fe I 172 4189.10 Fe III 4200.02 N III 6 4177.54 Y II 14 4189.50 Co I 2 4200.06 Fe III 4177.59 Co I 2 4189.518 Pr II 8 4200.09 P Fe I 993 4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 96 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P T1 II 96 4178.39 A II 7 4189.788 O II 36 4200.464 Ni I 89 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 T1 I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I	4177.50	_		51	4188.88		Al III					
4177.59		P						•				
4177.597 Fe I 18 4189.564 Fe I 940 4200.103 Cr I 4177.70 P Fe II 21 4189.67 A II 4200.38 Fe III 4178.019 Sm II 16,50 4189.71 S II 44,64 4200.40 P Ti II 96 4178.39 A II 7 4189.788 O II 36 4200.40 P Ti II 96 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.25 Fe III 44 4190.66 Cr I 169 4201.45 Zr I 45 4179.25 Fe III 44 4190.66 Cr I 35 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II										P		903
4178.019	4177.597	_	Fe I	18	4189.564		Fe I			•		900
4178.39 A II 7 4189.788 O II 36 4200.464 Ni I 89 4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P O V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.666 Cr I 35 4201.50 La II		P						44 **	4200.38	_	Fe III	
4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.666 Cr I 35 4201.50 La II	#1(0.01A		Oct 11	10,50	4189.71		s II	44,64	4200.40	P	Ti II	96
4178.390 V II 25 4189.841 V I 24 4200.6751 A I 2 4178.855 Fe II 28 4189.96 Cr I 106 4200.752 Ti I 220 4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 Ti II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II									4200.464		N1 I	89
4179 P 0 V 4 4190.16 Cr I 84 4200.78 P Fe I 44 4179.05 Cr I 250 4190.29 T1 II 21 4200.89 V I 6 4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II												2
4179.05		P								D		
4179.062 V II 19 4190.40 V II 25 4200.930 Fe I 689 4179.226 Co I 144 4190.626 Ce II 169 4201.45 Zr I 45 4179.25 Fe III 4190.66 Cr I 35 4201.50 La II	4179.05		Cr I	250						r		
4179.25 Fe III 4190.66 Cr I 35 4201.50 La II					4190.40		V II	25	4200.930		Fe I	689
101100 1011				1.8.8								45
				179.250								**

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
4201.73		Fe I	799	4213.86		Zr I	45	4225.956		Fe I	521
4201.851		Rb I	2	4214.041		Ce II	203	4226.14		Fe III	44
4201.99 4202.031		A II Fe I	8,124 42	4214.73 4215.023		N I Gd II	5 32	4226.426 4226.44		Fe I Cl I	352 9
4202.031		Ni I	179	4215.430		Fe I	274,419	4226.570		Ge I	4
4202.350		V II	25	4215.524		Sr II	1	4226.65		A II	113
4202.4		Al II	87	4215.556		Rb I	2	4226.728	_	Ca I	2
4202.755 4202.944		Fe I Ce II	476a,521 186	4215.69 4215.76		N III Zr II	6 68	4226.76 4226.827	P	Cr I Al II	105 46
4202.944		Sm II	42	4215.77		Cr II	18	4226.918	Forb	Al II	46
4203.30 4203.43		Fe I A II	418	4215.92 4215.975		N I Fe I	5 273	4227.02 4227.14	P	A II Fe II	113 45
4203.465		Ti I	220	4216.04		Ba II	17	4227.140	•	Gd II	43
4203.570		Fe I	19	4216.186		Fe I	3	4227.34	P	T1 II	33
4203.590	_	Cr I	35	4216.365	_	Cr I	132	4227.42	P	Fe I	689
4203.67 4203.730	P	Fe I Tm I	1245	4217 4217.07	P	C IV Cr II	11 18	4227.420 4227.434		Al II Fe I	46 693
4203.750		Fe I	850	4217.09		0 I	33	4227.509		Al II	46
4203.987		Fe I	355	4217.15		Ne II	52	4227.545	Forb	Al II	46
4204.03		La II	53	4217.195		Gd II	49	4227.654		Ti I	278
4204.19		Cr I	35	4217.23		8 11	44	4227.719		Nd II	19
4204.20		V II	25	4217.282		Nd II	57	4227.73		Cr II	155
4204.471		Cr I Cl II	272 43	4217.34	P	Ti II A II	96	4227.746 4227.749		Ce II N II	. 8 3 3
4204.54 4204.66	P	Cr II	43 127	4217.45 4217.551		Fe I	693	4227.76		Zr I	45
4204.69		YII	1	4217.56		La II	78	4227.875		Al II	46
4204.83	P	Cr II	180	4217.591		Ce II	19	4227.945		Al II	46
4204.857 4205.05		Gd II Eu II	46 1	4217.626 4218.12	P	Cr I Fe I	132 19	4227.999 4228.18		Al II A II	46 8
4205.05	P	V II	25	4218.12	P	Ti II	33	4228.200		Nd II	3 6
									_		
4205.07		C1 II V II	67 37	4218.21	P	Fe I A II	172 64	4228.71 4229.516	P	Fe I Fe I	690 416,649
4205.080 4205.19		A II	111	4218.69 4218.710		VI	24	4229.704		Sm II	4
4205.37	P	Mn II	2	4219.364		Fe I	800	4229.760		Fe I	41
4205.48	P	Fe II	22	4219.383	_	WI	3	4229.803		Gd II	117
4205.546 4205.595		Fe I Nd II	689 19	4219.41 4219.51	P	Fe I V I	419 24	4229.81 4229.89		Cr II A II	26
4205.91		Zr II	133	4219.59	P	Fe I	763	4229.955		CoI	1
4205.92		Fe III	22	4219.74	P	Fe I	832	4230.29		Cr I	106
4205.92	P	Ti II	33	4219.76		Ne II	52	4230.35		N I	5
4206.128		Sm II	38	4220.047		v II	25	4230.39	P	N1 I	150
4206.21		Ca II	16	4220.05	P	Fe I	994	4230.481		Cr I	132
4206.375		Mn II	7	4220.13		Ca II	16	4230.584		Fe I La II	478
4206.43 4206.59		Ne II Hf II	53 74	4220.258 4220.32		Nd II Fe III	32	4230.95 4230.98		8 II	83 67
4206.702		Fe I	3	4220.347		Fe I	482	4231.040		Ni. I	136
4206.739		Pr II	8	4220.45		Cr I	106	4231.165		V II	25
4206.899 4207.130		Cr I Fe I	352	4220.659 4220.92		Sm II Ne II	15,50 52	4231.35 4231.525		C I Fe I	17 6 4 7
4207.130	P	Mn II	2	4221.572		Cr I	155,248	4231.60		Ne II	52
4207.35 4207.51		Cr II Cr I	26 133	4221.696 4222.00		N1 I Cr II	86 180	4231.64 4231.745		Zr II Ce II	99
4207.61		La II	133	4222.15		P III	3	4232.065		V II	225
4208.03		C1 II	43	4222.219		Fe I	152	4232.222		Cr I	29 4
4208.357		Cr I	249	4222.39		Fe III		4232.378		Nd II Hf II	8
4208.610 4208.99		Fe I Zr II	689,696 41	4222.41 4222.599		Zr II Ce II	80 36	4232.43 4232.460		V I	72 111
4209.02		Cr II	162	4222.67		A II	77	4232.724		Fe I	3
4209.368		Cr I	248	4222.732		Cr I	132	4232.866		Cr I	132
4209.409		Ce II	3	4222.78		0 I	33	4232.952		V I	111
4209.649		Mo II	3	4222.97		K II	7	4232.96	P	Cr II	180
4209.74		V II	25	4222.98		Pr II	4	4233.167		Fe II	27
4209.756		Cr I	155	4223.020		Gd II	141	4233.25		Cr II	31
4209.84 4209.857	P	Cr II V I	180 24	4223.04 4223.47		N I Cr I	5 132	4233.32 4233.608		O I Fe I	33 152
4210.00		A II	78	4223.73	P	Fe I	417	4233.996		Co I	1
4210.22		La II		4224.09	P	Cr II	31	4234.000		V I	6,111
4210.352		Fe I	152	4224.176		Fe I	689	4234.09		C1 II	24
4210.352 4210.39	P	Sm II Fe I	8 482	4224.27 4224.30	P	Zr II Fe I	29 1104	4234.196 4234.251		Nd II V II	20 24
	_				-			1011101			
4210.62		Zr II	97	4224.43		P II	16	4234.515		Cr I	178
4210.77 4210.87		Cr I Fe III	106	4224.509 4224.51		Fe I V II	689 25	4234.524 4234.55		V I V II	6 200
4211	P	0 V	4	4224.514		Cr I	155	4234.573		Sm II	42
4211.286		Nd II	57	4224.57		Ne II	52	4234.727		Ce II	170
4211.349		Cr I Fe III	133	42-1.63	P	Fe I N I	274	4235.140		Mn I Mn I	23 23
4211.51 4211.729		Ti I	104 279	4224.74 4224.795		N I Ti I	5 301	4235.290 4235.49		Mn 1 Cl II	23 71,83
4211.80	P	Fe II	21	4224.85		Cr II	162	4235.54		Fe III	•
4211.88		Zr II	15	4224.92		C1 II	83	4235.54	P	N1 I	256
4212.001		Gd II	15	4225.02	P	Ni I	169	4235.65	P	Fe I	215
4212.06	P	Fe I	697	4225.148	-	Gd II	14	4235.73	-	Y II	5
4212.063		Ru I	6	4225.228		V II	37	4235.756	_	V I	111
4212.44 4212.95		Si IV Pd I	5 7	4225.327 4225.328		Pr II	8	4235.84	P	Fe I	172 5
4212.95 4213.036		Ce II	169	4225.328 4225.460		Sm II Fe I	22 693	4235.94 4235.942		Y I Fe I	5 152
4213.179		Cr I	155	4225.67		K II	4	4235.96	P	Fe I	692
4213.42	P	Fe I	274	4225.71	P	Fe I	1102	4235.98	_	Cr I	132
4213.5		8 11	44	4225.79	P	Fe I	118	4236.33	P	Cr II	17

					FIND.	ING LIS	r					45
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet	Ņo.
4000 50		Zr II			_		-	4050 000		Fe I	689	
4236.56 4236.66	P	Fe I	110 907	4247.31 4247.367	P	Fe I Nd II	172 8	4259.988 4260.135		Fe I	476a	
4236.745		Sm II	53	4247.43	P	Fe II	125	4260.19		Cr I	240	
4236.76		Fe I	906	4247.432		Fe I	693	4260.47	P	Mn II	.2	
4236.82 4236.930		V II N II	18 48	4247.56 4248.228		C III Fe I	11 482	4260.479 4260.73	P	Fe I Fe I	152 351	
4237.049		N II	48	4248.344		Cr I	131	4260.738	•	Ti I	251	
4237.085		Fe I	19	4248.40	P	Fe I	19	4260.75		V II	18,24	
4237.162 4237.21		Fe I Fe III	104	4248.676 4248.72	P	Ce II Fe I	1 939	4260.854 4261.164		Os I Ce II	1 19	
				4240.12	r	re 1	<i>5</i> 0 <i>5</i>	#£01.10#				
4237.23 4237.27		A II Cr I	32 106	4248.73 4248.820		Cr I V II	105 24	4261.22 4261.354		Cl II Cr I	66 96	
4237.57	P	Al II	23	4249.114		Ti I	252	4261.609		Ti I	252	
4237.663	_	Sm II	8	4249.32	P	Fe I	117	4261.615		Cr I		
4237.67 4237.710	P	Fe I Cr I	418 132	4249.33		Hf II	39	4261.796	P	Pr II Cr II	23 17	
4237.786		Ti I	252	4249.57 4249.81	P	P IV Cr I	2 155	4261.80 4261.92	P	Cr II	31	
4237.889		Ti I	284	4249.92	-	8 11	66	4262.092		Gd II	44	
4238.027		Fe I	689,696	4249.95		Fe III		4262.133		Cr I	84,178	
4238.38		La II	41	4249.99		La II	79	4262.38		Cr I	154	
4238.61 4238.69	P P	Fe I Cr II	849 17	4250.125		Fe I	152	4262.677 4262.72		Sm II Hf II	37 15	
4238.78	r	Fe III	104	4250.68 4250.689		Ne II Mo II	52 3	4263.134		Ti I	162	
4238.782		Gd II		4250.790		Fe I	42	4263.141		Cr I	247	
4238.79	P	Mn II	2	4250.90	P	Fe I	478	4263.40		KII	2	
4238.816 4238.957		Fe I Cr I	693 131	4251.1852	P	A I Fe II	2	4263.427 4263.49	P	Ce II Cr II	254 17	
4238.957 4239.01	P	Fe I	131 274	4251.49 4251.618	P	re II Ti I	12 162	4263.49 4263.59	r	La II	17 84	
4239.31		Zr I	45	4251.733		Gd II	15	4263.836		V II	24	
4239.36	P	Fe I	907	4251.769		Ti I	251	4263.895		Fe II		
4239.5		0 111	1	4251.88	P	Fe I	216	4264.19	P	Cr II	17	
4239.725		Mn I	23	4252.05	P	Ti II	95	4264.209		Fe I	692	
4239.735 4239.847		Fe I Fe I	416 18,273	4252.107		N1 I Cr I	136	4264.370 4264.50		Ce II V II	239 24	
4239.912		Ce II	2	4252.243 4252.302		Co I	131 1	4264.743		Fe I	993	
4239.95	P	Fe I	476a	4252.62		Cr II	31	4264.88		YII	71	
4239.95		Ne II	52	4253.02		Mn II	7	4264.91		Zr II	98	
4240.35 4240.372		Zr I Fe I	45 764	4253.28 4253.356		N I Ce II	4 77	4265.075 4265.170		Sm II V I	15	
4240.456		Ca I	38	4253.366		Gd II	46	4265.260		Fe I	993,994	
4240,705		Cr I	105,178	4253.51		C1 II	24	4265.273		Ti I	252	
4240.75		Al II	36	4253.52	P	Fe I	690	4265.723		Ti I	162	
4241.019		Pr II	9	4253.55	P	Fe I	1245	4265.924		Mn I	23	
4241.112 4241.20		Fe I La II	351 163	4253.593		Gd II	4	4266.227 4266.23	P	Ti I Cr II	252 37	
4241.20		Zr I	45	4253.612 4253.74		0 II	101	4266.2867	r	A I	4	
4241.276		Gd II	117	4253.93	P	Fe I	905	4266.44		Cr I	199	
4241.38		C1 II	24	4253.98		0 II	101	4266.53		A II	7	
4241.68 4241.787		Zr I N II	45 47,48	4254.346 4254.41		Cr I V II	1 18	4266.716 4266.72		Nd II Zr II	58 80	
4241.93		Hf II	108									
4242.153		Tm II	5	4254.420 4254.7		Pr II N I	27 4	4266.82 4266.88		Cr I Fe III	105	
4242.20		Ne II	52	4254.938		Fe I	419,477	4266.968		Fe I	273	
4242.38		Cr II	31	4255.01		8 11	44	4267.02		CII	6	
4242.47 4242.588		Mg II Fe I	20 273	4255.20		Fe III	440	4267.27	_	C II	6	
4242.723		Ce II	58	4255.499 4255.502		Fe I Cr I	41 6 105	4267.30 4267.47	P	Zr II A II	1 32 52	
4242.730		Fe I	649	4255.62		A II	63	4267.802		8 11	49	
4242.82		Cr I	131	4255.784		Ce II	81	4267.830		Fe I	482	
4242.894		V II	200	4256.025		Ti I	252	4267.95		Ba II	11	
4243.368		Fe I Pr II	906 33	4256.156 4258.16		Ce II	172	4268.01		Zr I	45 1	
4243.528 4243.60		B III	33 1	4256.16 4256.212		Cr II Fe I	192 690	4268.032 4268.096		Co I Ir I	1 4	
4243.71		A II	63,78	4256.239		NG II	59	4268.10		Hf II	86	
4243.786		Fe I	994	4256.32	P	Fe I	172	4268.446		Co I	127	
4243.85 4244.17		Fe III Ne II	62	4256.393 4256.620		Sm II Cr I	37 131	4268.643 4268.731		V I Gd. 11	88 68	
4244.26		Mn II	7	4256.79		Fe I	1102	4268.744		Fe I	649	
4244.33		Cr I	240	4257.02		V II	200	4268.788		Cr I	271	
4244.374		W .I	1	4257.121		Ce II	123	4268.928		Ti I	252	
4244.53 4244.55	P	Fe II P II	12 30	4257.368 4257.42		Cr I 8 II	131 66	4268.93 4268.99		Cr II C I	192 16	
4244.702		Sm II	30 27	4257.42 4257.659		Mn I	23	4269.02		Cr I	240	
4244.80		N1 II	9	4257.82		Ne II	52	4269.28		Cr II	31	
4245.258		Fe I	352	4258.05		Zr II	15	4269.50		La II	76	
4245.358 4245.84		Fe I Hf II	691 72	4258.155 4258.320		Fe II Fe I	28 3	4269.67 4269.76		Hf II 8 II	26 49	
4245.976		Ce II	158	4258.35	P	Fe II	21	4269.87	P	Fe I	690	
4246.02	P	Fe I	649	4258.523		Ti I	252	4269.951		Cr I	154	
4246.090		Fe .1	906	4258.619		Fe I	351	4270.139		Ti I	251	
4246.16		F II Cr II	9	4258.956		Fe I	419	4270.189 4270.31	P	Ce II Fe I	204 215	
4246.41 4246.568		Od II	31 67	4259 · 15 4259 · 18		Cr I 8 II	131 66	4270.31 4270.39	P	Fe II	215 125	
4246.59	P	Fe I	689	4259.203		Mn II	7	4270.427		Co I	29	
4246.68		P III	3	4259.312	~	V I	6	4270.565		Nd II	12 66	
4246.711 4246.79	P	Ce II Fe I	77 216	4259.34 4259.3618	P	Fe I A I	416 9	4270.61 4270.64		C1 HI	66 23	
4246.829	-	8c II	7	4259.52		C1 II	42,52	4270.716		Ce II	21	
4046 070		NA TT	1/	4050 749		Co TT	170	4271 061		Cr I	184	

I A	Type	Element	Multiplet No.	IA	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
4271.47		Fe III		4283.010		Ca I	5	4294.432		s II	49
4271.554		V I	88	4283.13	_	0 II	67	4294.623		WI	6
4271.65 4271.764	P	Fe I Fe I	70 42	4283.40 4283.70	P	Fe I S III	215	4294.76 4294.767		N III Sc II	15
4271.704	P	Ti II	95	4283.75		0 11	67	4294.78		Zr I	45
4271.95	, P	Fe I	171	4283.772		Mn II	6	4294.82		O II Fe I	54 500
4272.1690		A I Pr II	4 15	4283.87 4284.055	P	Fe I V I	19 88	4294.93 9 4295.3 7	P	Cr II	598 37
4272.271 4272.440		Ti I	44	4284.084		Mn I	23	4295.751	-	Ti I	44
4272.789		Nd II	11	4284.21		Cr II	31	4295.757		Cr I	64
4000.00		Hf II	14	4284.415		Fe I	417	4295.888		N1 I	178
4272.85 4272.910		Cr I	96	4284.425		Mn II	6	4296.05		La II	53
4273.17		0 11	68	4284.51		N III		4296.069		Ce II	172
4273.312		Ti I Fe II	251 27	4284.518 4284.683		Nd II N1 I	10 86	4296.076 4296.107		Gd II	46 120
4273.317 4273.42		Fe III	121	4284.725		Cr I	96	4296.11		C II	42
4273.52		Zr II	28	4284.988		Ti I	148	4296.30		Cr I	176
4273.87		Fe I	478	4284.991 4285.19	P	S III Ni I	4 86	4296.30 4296.567		Gd II Fe II	117 28
4274.13 4274.408		O II Ti I	68 252	4285.366	r	Ce II	11	4296.680		Ce II	2
12. 1. 100											
4274.584		Ti I Cr I	44,162	4285.445 4285.496		Fe I Sm II	597 27	4296.74 4296.743		Zr II Sm I	98 3
4274.803 4275.19		A II	1 77	4285.70		0 11	78	4296.786		Ce II	57
4275.52		O II	67	4285.782		Co I	1	4296.86		Fe III	121
4275.561		Ce II	206	4285.832 4285.96		Fe I C II	904 42	4297.050		Cr I Gd II	64
4275.57 4275.64		Cr II La II	31 40	4286.006		Ti I	44	4297.173 4297.60		Ba II	7
4275.72		Fe I	215	4286.13		Fe III	121	4297.681		V I	120
4275.90		0 II	68	4286.13		V II	23	4297.711		Ru I	5
4275.973		Cr I	240	4286.311		Fe II		4297.738		Cr I	247
4276.21		0 11	68	4286.440		Fe I	414	4297.764		Pr II	7
4276.441		Ti I	148	4286.51		Zr II	69	4297.99		A II	400
4276.51		C1 II	66	4286.640 4286.97		Sm II La II	42 75	4298.029 4298.040		V I Fe I	120 520
4276.657 4276.684		Ti I Fe I	252 976	4286.976		Fe I	976	4298.21	P	Fe I	476a
4276.71		0 11	54,67	4287.405		Ti I	44	4298.515		N1 I	178
4276.958		V I	88	4287.71	P	Ti I	45	4298.664		Ti I Ni I	44 28
4277.246 4277.279		Mo I Nd II	7 17	4287.80 4287.893		Ba II Ti II	16 20	4298.767 4298.986		Ca I	5
4277.322		Th II	2	4288.005		Ni I	178	4299.17	P	Ti I	45
				4000 440		Fe I	273	4000 177		F II	7
4277.37 4277.40		Zr II O II	40 67,68	4288.148 4288.161		Ti I	273 43,79	4299.177 4299.229		Ti I	1 4 8
4277.41	P	Fe I	214	4288.21		N III	,	4299.242		Fe I	152
4277.55		A II	32	4288.53		PII	33	4299.25	P	Fe I Ce II	597 47
4277.68		Fe I O II	172 67	4288.65 4288.72		Mo I N III	7	4299.362 4299.49	P	Fe I	47 648
4277.90 4278.01	P	Fe I	1102	4288.78	P	Ti I	45	4299.636	-	T1 I	43
4278.10		Cr II	161	4288.78		v ii	17	4299.65		Fe I	416
4278.128		Fe II Ti I	32 291	4288.83 4288.962		O II Fe I	54 214	4299.718 4300.052		Cr I Ti II	96 41
4278.231		11 1	231	4200.002			211				
4278.234		Fe I	691	4289.068		Ti I	44	4300.1011		A I	4
4278.38	P	Fe I S II	351	4289.18 4289.29	P	Zr II Fe I	117 117	4300.197 4300.21	P	Mn II Fe I	6 975
4278.54 4278.829		Ti I	49 252	4289.364	r	Ca I	5	4300.331	•	Ce II	134
4278.866		Ce II	111	4289.454		Ce II	135	4300.44	_	La II	9
4278.893	_	V II	225	4289.721		Cr I	1	4300.52	P	Ti I Ti I	205 44
4278.94 4279.023	P	Cr II Mo II	17 3	4289.919 4289.938		Ti I Ce II	205 111	4300.566 4300.66		A II	36,76
4279.3		YII	70	4290.222		Ti II	41	4300.828		Fe I	976
4279.480		Fe I	993	4290.382		Fe I	416	4301.089		Ti I	44
4279.678		Sm II	27	4290.40		Ne II	57	4301.130		V II	225
4279.864		Fe I	351	4290.55		N III	• •	4301.178		Cr I	
4279.927		Sc II	15	4290.80		N III	0.54	4301.81		Zr II	109 41
4280.069 4280.141		Ti I Ce II	252 225	4290.870 4290.933		Fe I T1 I	351 44	4301.928 4302.100		Ti II Pr II	41 32
4280.141		La I	5	4291.214		Ti I	45,147	4302.12	P	Ni I	102
4280.33	P	Cr II	17	4291.25	_	0 11	55	4302.123		W I	7
4280.405 4280.490		Cr I Gd II	247 15	4291.44 4291.45	P	Fe I S II	273 49	4302.191 4302.527		Fe I Ca I	520 5
4280.53		Fe I	598	4291.466		Fe I	3,41	4302.81		0 11	100
	_			4004 70		63 TT	40	4000.00		7- T	48
4280.63 4280.789	P	Fe I Sm II	41 6 4 6	4291.76 4291.816		Cl II V I	19 120	4302.88 4302.979		Zr I Ti I	45 79
4281.009		Sm II	40	4291.88		Ti I	251	4303.06		0 11	100
4281.03	P	Cr II	17	4291.964		Cr I	240	4303.166		Fe II	27
4281.099		Mn I	23	4292.00	ъ	C II	41	4303.235		Co I Nd II	1
4281.371 4281.40		Ti I O II	44 54	4292.13 4292.182	P	Fe I Sm II	· 70 32	4303.573 4303.82		0 II	10 54
4281.60	P	Fe I	171	4292.23		0 11	78	4304.07		C1 II	19
4282.20		Zr I	45	4292.246		Mn II	6	4304.087		Gd II	128
4282.21		Zr II	132	4292.293		Fe I	70	4304.11		La II	165
4282.406		Fe I	71	4292.676		Ti I	79	4304.15	P	Fe I	647
4282.440		Pr II	19	4292.747		Gd II	128	4304.15		v II	213
4282.443		Nd II	10	4292.767		Ce II	205	4304.552		Fe I	414
4282.570 4282.63		Nd II S II	13 49	4292.885 4293.14		Zn I Zr II	3 110	4304.81 4304.87	P	Fe III Fe I	121 598,756
4282.702		Ti I	162	4293.228		Mo I	7	4304.895	-	Gd II	000,100
4282.82		0 11	54	4293.565	~	Cr I	96	4305.00	_	K II	5
4282.90 4282.96		A II O II	7 67	4294.04 4294.101	P	Fe I Ti II	214 20	4305.13 4305.20	P	Fe I Fe I	272 760
- AU NO 10 U		, II	٠,			^*	₩0	40001 2U			100

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	IA	Туре	Element	Multiplet No.
4305.453		Cr I	96	4319.45	P	fе I	214	4331.13		0 11	66,75
4305.455 4305.46		Fe I N I	476	4319.51 4319.631		Hf II J II	52 · 2	4331.231		Co I	168
4305.474		Ti I	147	4319.641		Cr I	96	4331.25 4331.47		A II O II	7 41
4305.53		0 II	55	4319.69		A II	87	4331.529		Fe II	
4305.715 4305.763		Sc II Pr II	15 8	43 19.717 43 19.93		Fe II O II	220 61	4931.55		V II	36
4305.910		Ti I	44	4320.13	P	Fe I	1170	4331.645 4331.79		N1 I V II	52 23
4306.214		V I	5	4320.36	P	Fe I	691	4331.89		0 11	41
4306.340		Gd I	4	4320.52		Fe I	691	4331.93		Mg II	27
4306.58	P.	Fe I	691	4320.592		Cr I	96	4332.0		Al II	31
1306.724		Ce II	1	4320.69		Hf II	40	4332.06		A II	1
1306.945		Ti I	43	4320.723		Ce II	125	4332.569		Cr I	176
1307.08 1307.184	P	Fe I V I	690 5	4320.745 4320.965		Sc II Ti II	`15 41	4332.71		S III O II	4
4307.20		Al II	85	4321.110		Gd II	46	4332.76 4332.823		O II	65 5
4307.31		0 II	53	4321.238		Cr I	83	4332.88	P	Fe II	33
4307.42 4307.741		Cl II Ca I	19 5	4321.341		Fe II	220	4333.06	P	Fe I	1135
4307.778		Nd II	63	4321.36 1321.37		Hf II N III	86 10	4333.28 4333.5612		Zr II A I	132 9
								100010010			J
4307.900 4307.906		Ti II Fe I	41 42	4321.617		Cr I Ti I	177	4333.76		La II	24
4308.233		Gd II	42 47	4321.655 4321.95		T1 I C II	235 28	4333.84 4333.913		8 II Pr II	49 8
4308.514		Ti I	79	4322.02		VII	17	4334.153		Sm II	27
4308.54	P	Fe I	70	4322.195		Gd II	15	1334.29		O II	63,64
4308.94 4308.96		Zr II O II	88 64	4322.51 4322.66		La II Ne II	25 63	4334.65	_	Hf II	69
4309.012		Sm II	15	4322.70	P	Fe I	215	4334.77 4334.840	P	V II Ti I	36 43
4309.036		Fe I	849	4323.284		Sm II	8	4334.96		La II	77
4309.06		C1 II	52	4323.35		C1 I	9	4335	P	n v	3
4309.071		T1 I	235	4323.37	P	Fe I	171	4335.15		Hf II	6
4309.10		KII	7	4323.440	_	Ti I	79	4335.290		Gd II	128
4309.11		A II	36	4323.523		Cr I		4335.3380		AI	9
43 09.25 43 09.32		A II Ba II	99 11	4323.551 4323.62		Pr II Zr II	23 141	4335.46	P	Fe I	477
4309.382		Fe I	414	4323.81		Fe III	32	4335.53 4335.89		N III Fe I	10 991
4309.46	P	Fe I	478	4323.93		N III	10	4336.255		Ce II	89
4309.62		Y II Ce II	5	4324.064		Gd II	68	4336.26		C1 II	19
4309.739 4309.795		V I	126 5	4324.36 4324.961	P	Fe II Fe I	147 70	4336.36 43 3 6.48		Zr II N I	119
								20001 20			
4310.37	P	Fe I	994	4325.010		Sc II	15	4336.51	_	A II	
4310.37 4310.373		Fe III Ti I	121 79	4325.075 4325.1	P	Cr I Mn II	104: 6	4336.60 4336.66	P	Fe I Hf II	990 74
4310.699		Ce II	133	4325.134	-	Ti I	235	4336.86	P	Fe I	692
4310.72	P	V II	36	4325.22		V II	233	4336.865		0 11	2
4310.981 4311.654		Gd II Ti I	15 205	4325.361 4325.566		N1 I Gd II	116 10 3	4337.049		Fe I	41
4312.10		0 11	79	4325.607		N1 I	86	4337.10 4337.33		A II Ti II	113 94
4312.23		Zr II	99	4325.64		Zr II	108	4337.510		Gd II	128
4312.469		Cr I	177	4325.65		Cr I	176	4337.52	P	Fe I	214
4312.550		Wn I	23	4325.7		Li JI	5	4337.566		Cr I	22
4312.861		Ti I	41	4325.70		C III	7	4337.63		Zr II	119
4313.034 4313.04	P	Fe Il Fe I	220 273	4325.73 4325.74		Ba II Fe I	17 2	4337.777		Ce II	82
4313.11	r	N I	213	4325.765	P	Fe I	42	4337.78 4337.916		La II Ti II	138 20
4313.30		V 11	23	4325.766		Nd II	10	4338.24		A II	88
4313.43		0 11	78	4325.77		0 11	2	4338.260		Fe I	70
4313.50 4313.845		C II Gd I	28 4	4325.88 4325.95	P	C II Fe I	28 598	4338.476 4 33 8.52		Ti I Si III	204 3
4314.084		Sc II	15	4326.359	•	Ti I	43	433 8.67		He II	3,
4044 40		64 777		4000 445		0 7	•				
4314.18 4314.289		Si IV Fe II	4 32	4326.445 4326.74		Sr I Ba II	6 7	4338.694 4338.697		Pr II Nd II	31 68
4314.356		Ti I	45	4326.756		Mn II	6	1338.70	P	Fe II	32
4314.511	D.	Nd II	9	4326.762		Fe I	413	4338.799	_	Cr I	198
4314.74 4314.801	P	Ti I Ti I	43 43	4326.826 4326.986		Ce II Ti I	224 43	4338.84 4339.13	P P	Fe I Co I	117 1
4314.979		Ti II	41	4327.04	P	Fe II	20	4339.287	F	D	1
4315.087		Fe I	71	4327.100		Fe I	761	4339.317		Ce II	34
4315.35		0 II 0 II	64,79 78	4327.125 4327.48		Gd II O II	15 41	4339.450		Cr I	22
4315.80		U 11	10					4339.52		N III	10
4315.90	_	La II	41	4327.89		0 11	41	4339.56		Zr II	41
4315.95 4316.052	P	Fe I Gd II	171 4 3	4327.92 4328.15		Fe I N III	597 10	43 39.718 433 9.78		Cr I Ne II	22 62
4316.258		V II	23	4328.22		81 IV	4	4340.018		Ti I	174
4316.266		Gd II	67,68	4328.62	_	0 11	61	4340.03		KII	4
4316.807	P	Ti II Fe I	94 762	432 8.91 432 9.016	P	Cr II Sm II	37 15	4340.130		Cr I 8 III	64
4317.04 4317.139	•	O II	3	4329.415		Pr II	27	4340.3 0 4340.3 6		S III O II	4 77
4317.32		Zr II	40	4329.54	P	Fe I	70	4340 . 468		H	1
4317.42		C II	28	4329.62		Ba II	17	4340.49	P	Fe I	272
4317.65		0 11	53	4330.024		v i	5	4340.51	P	Fe I	691
4317.70		N I		4330.14		N III	10	4341.013		V I	5
4318.216		Fe II Ti I	220	4330.264 4330.44		T1 II N III	94 10	434 1.09		Cr II	179 61
4318.631 4318.652		Ca I	235 5	4330.445		Ce II	82	4341.1 3 4341.2 3	P	Zr I Fe I	61 691
4318.68		s II	49	4330.606		Gd II	46	4341.282	•	Gd II	14
4318.77	P	Cr II	37	4330.708		Ti II Ni I	41 140	4341.369		T1 II	32 50
4318.81 4318.92	P	Fe I C II	215 28	4330.720 4330.81	P	N1 I Fe I	149 475	4341,42 4341.48		Ne II Cr I	59 64
4318.936		Sm II	27	4330.962		Fe I	597	4341.57	P	Fe I	644

48					FIND	ING LIS	r				
		Plament.	Multiplet No.			Element	Multiplet No.	I A	Туре	Klement	Multiplet No.
IA	Type	Element	Multiplet No.	ı A	Type	Flement	mulciplet No.	1 4	1, pc	3200110	
4342.00		0 11	77	4355.308		Ti I	174	4368.14		CII	45
4342.071		Nd II	8	4355.911		N1 I	149	4368.14	_	C III	
4342.179		6d II	15	4355.943		V I	5	4368.20	P	Cr II Ce II	37 227
4342.23		Zr II O II	98 103	4356.711		Al II Cr I	60 130	4368.234 4368.252		Cr I	130
4342.83 4342.832		V I	103	4356.760 4356.807		Al II	60	4368.262		Fe II	
4342.84		8 II	43	4357.24	P	Al III	9	4368.30		0 I	5
4343.163		Cr I	64	4357.25		0 11	18,63,64	4368.312		Ni I	102
4343.22	P	Fe I	644	4357.50	P	Fe I	1170	4368.327		Pr II Nd II	5 11
4343.257		Fe I	645	4357.525		Cr I	198	4368.632		NG II	11
4343.36		o II	75,103	4357.53	P	Fe I	994	4368.66	P	Fe I	644
4343.62		C1 II	19	4357.574	•	Fe II		4368.67	P	VII	188
4343.699		Fe I	517	4357.85	P	N1 I	256	4368.89		Cr I	198
4343.798		Ti I	204	4358.169		Nd II	10	4368.941		Ti I O II	245 26
4343.86	P	Fe I	756	4358.27		N I	1	4369.28 4369.29	P	Fe I	1244
4343.987		Mn II Ti II	6 2 0	4358.343 4358.40		Hg I Ò II	64 64	4369.404	•	Fe II	28
4344.291 4344.300		Gd II	44	4358.505		Fe I	412	4369.52		C1 I	8
4344.42		0 11	65	4358.53		A II	87	4369.61	P	Fe II	148
4344.487		Gd II	31	4358.66		Cr I	176	4369.682		T1 I	290
		Cr I	22			Nd II	57	4369.73	P	Fe I	976
4344.507 4345.085		Cr I	198	4358.699 4358.73		Y II	5	4369.77	•	Ne II	56
4345.1682		A I	9	4358.95	P	Fe I	987	4369.771		Gd II	15
4345.562		O II	2	4359.12	P	Fe II	202	4369.774		Fe I	518
4345.6	P	Mn II	6	4359.152		Gd II	47,68	4370.041		N1 I	149
4345.858		Sm II	.7	4359.38		0 11	26	4370.27		V II A II	31 39
4345.963		Ce II Ti I	251 234	4359.585		Ni I Cr I	86 22	4370.76 4370.875		MnI	17
4346.104 4346.458		Gd L	23 4 4	4359.631 4359.636		tel II	67	4370.95		Hf II	26
4346.50	P	Fe II	202	4359.74		Zr II	79	4370.96		Zr II	79
	-								_		
4346.558		Fe I	598	4359 795		Pr II	26	4371.00	P	Fe I	69 57
4346.61Ò		Ti I	204	4359.929		Tm I	1	4371.069 4371.10		Nd II Fe III	57 4
4346.833		Cr I Al II	10 4 70	4359.992	P	Cr I Fe II	198 148	4371.10 4371.130		Co I	93
4346.866 4346.89		V II	17	4360.03 4360.16	r	Ce II	245	4371.17	P	V II	36
4346.918		Al II	70	4360.487		Ti I	204	4371.279		Cr I	22
4347.223		Al II	70	4360.49		8 II		4371.28	P	Cr I	304
4347.239		Fe I	2	4360.690		Be II	4	4371.33		CI	14
4347.310		Gd II	103	4360.720		Sm II	23	4371.36		A II C II	1 45
4347.316		Al II	70	4360.80		Zr I	31	4371.59		0 11	***
4347.425		O II	16	4360.813		Fe I	903	4371.65		O II	76
4347.490		Pr II	30	4360.917		Gd II	16	4372.09		AII	86
4347.785		Al II	70	4361.025		Be II	4	4372.208	_	Ru I	13
4347.801		Sm II	37	4361.031		Co I	1	4372.22	P	Fe II Ti I	33 277
4347.802		Al II	70	4361.249		Fe II 8 III	4	4372.383 4372.4		Fe III	122
4347.854 4348.11		Fe I A II	828 7	4361.53		Ce II	157	4372.401		Ce II	169
4348.36		N III	10	4361.661 4361.710		8r I	6	4372.49		C II	45
4348.64	P	Zr II	132	4361.85		C III		4372.50		AII	63
134 8.939		Fe I	414	4361.913		Co I	1	4372.88	P	V II	13
4040 00	P	Fe II	202	4000 040		Sm II	45	4372.91		Cl II	52
4349.28 4349.426	P	0 II	202	4362.040 4362.07		A II	39	4372.994		Fe I	473
4349.789		Ce II	59	4362.10		Ni II	9	4373.230		V I	140
4349.97		V II	3 6	4362.93		Cr II	179	4373.254		Cr I,	22
4350.465		Sm II	46	4362.95		Cr I	82	4373.462		Sm II	42
4350.52		Hf II	72	4363.05		LA II	133	4373.563		Fe I Cr I	214, 413 304
4350.834		Ti II Cr I	94 22	4363.134		Cr I Cl I	103 8	4373.656 4373.818		Ce II	202
4351.051 4351.269		0 11	16	4363.30 4363.525		V I	23	4373.90	P	Fe I	904
4351.295		Nd II	10	4363.644		Mo II	3	4374.158		Cr I	104
4351.37	P	Fe I Fe I	691	4364.01		Y II Cr I	70 130	1374.243 1374.28		Gd II C II	83 4 5
4351.549 4351.764		Fe II	413 27	4364.14 4364.140		Gd II	33	1374.455		Sc II	14
4351.770		Cr I	22	4364.17		Y II	70	374.495		Fe I	648
4351.849		Pr II	23	4364.59		Al III	9	:374.61	P	Cr II	179
4351.8941		Mg I	14	4364.658		Ce II	135	4374.825		Ti II	9 3
4351.9056		Mg I	14	4364.66		La II	53	4374.87		A II Co I	77 150
4352.1		C I Sm II	15	4364.73		8 III 6- T	7	4374.918 4374.923		Nd II	15
4352.101 4352.23		A II	1	4364.87 4364.89	P	Cr I Fe II	153 202	4374.94		Y II	13
1002120				2002.00	•						
4352.25		As II	7	4365.56		Fe III	4	4375.00		N II	16
4352.68	P	Cr II	37	4365.72		Ne II	57	4375.039		Nd II	8
4352.70		Fe III	4 220	4365.745		V I	79 415	4375.304 4375.333		V I Cr I	140 103
4352.733 4352.737		Ce II Fe I	220 71	4365.902 4366.165		Fe I Fe II	415 216	4375.33	P	Ti II	104
4352.737 4352.872		V I	5	4366.165 4366.315		NG II	12	4375.425	-	Ti I	219
4353.60		0 11	76	4366.33		Cr I	153	4375.48	P	Fe I	797
4353.66		N III	10	4366.45		Zr I	61	4375.540		Co I	143
4353.983		Cr I	198	4366.896		11 C	2	4375.918		Ce II	134
4354.064		Ti I	204	4366.91		A II	36 -	4375.932		Fe I	2
4354.28	P	Fe I	975	4367.07	P	Fe I	1170	4375.96		A II	17
4354.358		Fe II	213	4367.07 4367.36	P.	N1 I	88	4376.78		C II	46
4354.40		La II	58	4367.581	-	Fe I	414	4376.782		Fe I	471,904
4354.540		Mg I	13	4367.657		Ti II	104	4376.798		Cr I	304
4354.56		8 111	7	4367.87		A II	98	4377.330		Fe I	990 .
4354.609		Sc II	14	4367.90		Hf II	15	4377.549		Cr I	83
4354.979 4355.03	P	V I Fe II	103 202	4367.906		Fe I	41	4377. 765		Mo II Fe I	3 6 45
4355.03 4355.09	r	Fu II	202 22	4367.966 4368.031		Cb II Sm II	8 37	4377.7 96 4377. 95		Ne II	65
4355.096		Ca I	37	4900.031		V T	о. Б	1279 01		0 11	102

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4378.10		La II	77	4391.84		s II	43	4406.67		Gd II	103
4378.236 4378.41		Sm II O II	53 102	4391.87 4391.94	P.	Fe I Ne II	992 57	4407.278 4407.637		Ce II V I	6 <u>4</u> 22
4378.73	P	Fe I	759	4392.074		V I	23	4407.678		Ti II	51
4379.09		N III V I	17 22	4392.26	P	Cr I	130	4407.714		Fe I Cr I	68 129
4379.238 4379.25		A II	63	4392.31 4392.58	P	Fe I Fe I	757 973	4407.72 4407.911		Be I	129 4
4379.50		Ne II	56	4393.03	P	Fe I	473	4408.204		V I	22
4379.74 4379. 78		A II Zr II	7 88	4393.45 4393.534		Na I Cr I	17 102	4408.248 4408.419		Gd II Fe I	44 68
2010110				20001001			202	11001110			
4379.782 4379.90		Cr I Cl I	1 3 0 7	4393.70 4393.835	P	Fe I V I	899 4 0	4408.511 4408.844		V I Pr II	22 4
4379.97		CIII	14	4393.925		Ti I	244	4408.92		V II	224
4380.060		Ce II	155	4394.057	_	Ti II	51	4409.123		Fe I	645
4380.38 4380.55		Mg I Cr I	12 1 3 0	4394.31 4394.65	P	Fe I A II	975 87	4409.22 4409.30		Ti II Ne II	61 57
4380.642		Gd II	68	4394.719		Gd II	44	4409.519		Ti II	61
4381.04 4381.112		V I Cr I	23 64	4394.779 4394.83		Ce II Cr I	259 130	4409.84 4410.026		Mig I Ru I	48 5
4381.290		Nd II	56	4394.855		Ti I	78	4410.06		CII	40
4381.79	P	Fe II	9	4394.94		Zr I	61	4410.304		Cr I	129
4382.02	P	Fe I	938	4395.031		T1 II	19	4410.516		N1 I	88
4382.061 4382.167		Gd II Ce II	46 2	4395.22 8 4395.288		V I Fe I	22 828	4410.641 4410.967		Ce II Cr I	33 102
4382.31		Fe III	4	4395.417		Cr I	129	4411.052		Nd II	8
4382.33	P	V II	36	4395.514		Fe I	991,992	4411.080		Ti II	115
4382.777 4382.853		Fe I Cr I	799a 64	4395.78 4395.788		Fe III Pr II	4 29	4411.093 4411.20		Cr I C II	129 39
4382.95		Zr II	109	4395.848		T1 II	61	4411.21		La II	138
4383.10		Zr II	97	4395.95		0 11	26	4411.34		8 I	5
4383.119		Gd II	67	4397.251		Cr I	129	4411.52		C II	39
4383.17 4383.24		Eu II C III	27 14	4397.27	P	Fe II Ti IV	33	4411.786 4411.878		Co I Mun I	27
4383.44		La II	76	4397.37 4397.51		Gd II		4411.936		Ti II	61
4383.547		Fe I	41	4397.94		Ne II	56	4412.155		Pr II	8
4383.79 4384.08		A II Ne II	16 60	4398.02 4398.314		Y II Ti II	. 5 61	4412.250 4412.265		Cr I Nd II	22 9
43 84. 13	P	Fe I	1101	4398.52		V II	187	4412.43	P	Fe I	69
4384.33 4384.54 3	P	Fe II Ni I	32 86	4398.625 4398.787		N1 I Ce II	102 81	4412.436 4412.54		T1 I Ne II	5 <u>4</u> 55
	_										
4384. 6 4384. 643	P	Ni II Mg II	10 10	4399.14 4399.203		Cl II Ce II	46 81	4413.04 4413.20		Zr I Ne II	61 57,65
4384.682		Fe I	474	4399.44		Zr II	67	4413.40	P	Fe I	1046
4384.722 4384.813		V I Sc II	5,22 14	4399.607		N1 I T1 II	196	4413.600		Fe II Pr II	32 26
4384.977		Cr I	22	4399.767 4399.823		Cr I	51 129	4413.765 4413.784		Nd II	22
4385.00		Ne II	56	4399.86	P	Fe II	20	4413.866	_	Cr I	234
4385.08 4385.20		A II La II	98 75	4400.09 4400.18		A II	1 67	4414.03 4414.17	P P	Fe I V II	825 13
43 85.260		Fe I	415	4400.26		N1 I	146	4414.20	P	N1 I	88
4385.381		Fe II	27	4400.355		8c II	14	4414.23	P	Fe I	475
4385.45	P	V II	30	4400.575	_	V I	22	4414.29		PII	25
4385.663 4386.434		Tm I	50 1	4400.63 4400.828	P	Ti II Nd II	93 10	4414.3 7 4414.4 32		Nd II	60 3
4386.461	_	N1 I	168	4400.870		N1 I	149	4414.47	P	Fe I	643
4386.57 4386.6	P	Fe II Fe I	26 899	4401.02 4401.293		A II Fe I	1 828	4414.54 4414.879		Zr II Mn I	79 22
4386.835		Ce II	57	4401.35		Zr II	68	4414.909		0 11	5
4386.858 4387.213		Ti II V I	104 40	4401.447 4401.547		Fe I N1 I	350 86	4415.125 4415.37		Fe I S II	41 53
4387.380 4387.496		Cr I Cr I	8 4 103	4401.74 4401.97		A II P II	76 24	4415.559 4416.474		Sc II V I	14 22
4387.674		Gd II	15	4402.86		SII	43	4416.535		Ti I	161
4387.897 4387.928		Fe I He I	476 51	4402.875 4403.03		Fe II Cl I	6	4416.77 4416.817		Ne II Fe II	61 27
4388.007		Ce II	5	4403.35		Zr II	79	4416.975		0 II	5
4388.077		Ti I	219	4403.360		Sm II	22	4417.274		Ti I	161
4388.16 4388.24		K II	7 14	4403.372 4403.498		Cr I Cr I	128	4417.31 4417.37		P II Hf II	24 51
4388.412		Fe I	830	4403.54		Ti IV		4417.398		Co I	150
4388.50		Zr II	140	4403.605		Pr II	34	4417.718		Ti II	40
4389.12	P	V II	13	4404.10	P	Fe I	987	4418.340		Ti II	51
4389.244 4389.76		Fe I Cl I	2 7	4404.276 4404.397		T1 I T1 I	218,219 78	4418.432 4418.60	P	Fe I Fe Î	412 89 9
4389.870		N1 I	87	4404.68		V II	30	4418.784		Ce II	2
4389.974 4390.14		V I Na I	22 17	4404.752 4404.81		Fe I Zr II	41 118	4418.84 4419.032		S III Gd II	4 15
4390.322		N1 I	136	4404.911		Ti I	161	4419.10		Cr I	128
4590.460 4390.585		Fe I Mg II	413 10	4404.932 4405.011		Co I V I	127 23	4419.16 4419.30	P	La II Fe I	89 893
									•		
4390.858 4390.953		Sm II Gd II	15 32	4405.02 4405.23	P	Fe I Ba II	2 16	4419.59 4419.78	P	Fe III Fe I	4 644
4390.954		Fe I	414	4405.23 4405.40	P	Fe I	991	4419.935		V I	21
4390.977		Ti II	61	4405.694		Ti I	78	4419.94		Na I	16
4391.110 4391.114		Nd II Th II	24 6	4405.849 4406.02		Pr II O II	4 26	4420.45 4420.468		Zr I Os I	61 1
4391.26		Fe III	42	4406.147	_	V I	40	4420.526		Sm II	32
4391.568 4391.661		Co I Ce II	150 81	4406.22 4406.26	P	V II Cr I	30 · 152	4420.665 4420.75	P	Sc II Fe II	14 9
				-=00180					-		-

50

30											
I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4421.138		Sm II	37	4431.922		Mn I	40	4444.207		V I	21
4421.231		Pr II	13	4432.089		T1 II	51	4444.259		Sm II	
4421.24		Gd II	103	4432.175		Cr I	81	4444.267		Ti I	218
4421.337 4421.38		Co I Ne II	150 66	4432.26 4432.41		Ne II S II	74 43	4444.393 4444.559		Ce II Ti II	19 31
4421.573		V I	22	4432.41		Fe I	797	4444.563		Fe II	201
4421.754		Ti I	218	4432.739		N II	55	4444.704		Ce II	
4421.949		Ti II	93	4432.80	P	Fe I	471	4445.26	P	Fe II	9
4422.477		V I	79	4432.82		Al II	84	4445.48 4445.711		Fe I Co I	2 150
4422.570		Fe I	350	4432.90	P	Fe I	271	4445.711		CO 1	100
4422.59		Y II	5	4432.95		La II	11	4445.77	P	V II	13
4422.697		Cr I	234	4433.223		Fe I	830	4445.88		Zr II	96
4422.76		Hf II	103	4433.39	P	Fe I	412	4446.248		Fe II	187
4422.823		Ti I	78	4433.48		N II	55	4446.387 4446.46		Nd II Ne II	49 56
4422.882 4423.000		Fe I Ni I	646 168	4433.501 4433.578		Mo II Ti I	3 267	4446.487		Gd II	14
4423.145		Fe I	412	4433.635		Gd II	82	4446.71		F II	10
4423.212		V I	40	4433.793		Fe I	825	4446.842		Fe I	828
4423.22	P	T1 II	61	4433.83		A II	123	4446.90	P	Fe I	596
4423.31		Na I	16	4433.885		Sm II	41	4447.033		N II	15
4423.318		Cr I	128	4433.968		Cr I	128	4447.134		Fe I	69
4423.678		Ce II	21	4433.991		MgII	9	4447.18		F II	10
4423.73		K II	5	4434.003		Ti I	113,161	4447.722		Fe I	68
4423.858		Fe I	830	4434.323		Sm II	36	4447.8		A1 II	83
4423.9		P II Cr I	31 82	4434.75		Cr I	128	4447.82 4448.21	P	0 III 0 II	33 35
4424.075 4424.102		Gd II	67	4434.960 4435.151		Ca I Fe I	4 2	4448.47		A II	127
4424.194		Fe I	757	4435.58		Eu II	4	4448.88		AII	127
4424.281		Cr I	129	4435.688		Ca I	4	4448.97	P	Fe I	891
4424.339		Sm II	45	4435.84		La II	8	4449.143		T1 I	160
		7. 7	242				40	4440 996		Ce II	202
4424.401 4424.62	P	Ti I V II	243 30	4436.025 4436.138		Mn I V I	40 21	4449.336 4449.573		V I	202 62
4424.84	r	N1 I	262	4436.225		Ga II	117	4449.663		Fe II	222
4425.129		Cr I	152	4436.352		Mn I	22	4449.867		Pr II	4
4425.441		Ca I	4	4436.48		Mg II	19	4449.985		Ti I	159
4425.662	_	Fe I	798	4436.586		Ti I	160	4450.13		N1 I N1 I	178
4425.75 4425.79	P P	Fe I Fe I	555 899	4436.64 4436.931		Ti I Fe I	267 516	4450.301 4450.320		Fe I	236 476
4425.840	r	Ti I	78	4436.981		N1 I	86	4450.487		Ti II	19
4425.95		PII	24	4437.549		He I	50	4450.732		Ce II	3
									_		
4426.005		V I	22	4437.570		Ni I	168	4450.77 4450.896	P	Fe I Ti I	972 160
4426.01 4426.054		A II Ti I	7 161	4437.612 4437.837		Ce II V I	169 21	4451.545		Fe II	100
4426.151		Gd II	14	4438.044		Sr I	6	4451.566		Nd II	50
4426.18		Hf II	87	4438.12		AII	123	4451.586		Min I	22
4427.098		T1 I	128	4438.13		0d 11	67	4451.61	P	V II	30
4427.12	P	T1 I	78	4438.232		Ti I	218	4451.978		Nd II V I	6
4427.21 4427.30	P	N II Fe I	56 828	4438.266 4438.353		Gd II Fe I	44 828	4452.008 4452.32	P	V I Fe I	87 898
4427.312	r	Fe I	2	4438.48		Cl I	6	4452.377	•	0 11	5
			_				-				
4427.52		La II	76	4438.53	P	Fe I	969	4452.45		PII	31
4427.606		Gd II	66	4439.13	P	Fe II	32	4452.62	P	Fe I Hf II	969
4427.71	P	Cr I Ti II	129 61	4439.30		Ne II V II	65 46	4452.70 4452.727		Sm II	94 26
4427.90 4427.917	r	Ce II	171	4439.42 4439.45		A II	127	4453.005		Mn I	22
4427.97		N II	55	4439.643		Fe I	515	4453.312		Ti I	113
4427.995		Mg II	9	4439.87		8 111	7	4453.35		V II	199
4428.501		Cr I	129	4439.883		Fe I	116	4453.708		T1 I	160
4428.515 4428.54		V I Ne II	21 57,61	4439.95		Ne II A II	61	4453.931 4454.382		Gd II Pr II	6 4 5
4420.04		Ne II	37,01	4440.09		A 11	76,127	7101.00£			· ·
4428.57	P	Fe I	973	4440.1		0 111	33	4454.383		Fe I	350
4428.74	P	Fe I	899	4440.345		Ti I	159	4454.629		Sm II	49
4429.11	P	V II	13	4440.41		V II	224	4454.655		Fe I	902
4429.20 4429.238	P	Fe I Pr II	987 2,4	4440.45		Zr II Fe I	79 829	4454.781 4454.80		Ca I Zr II	4 4 0
4429.270		Ce II	19	4440.479 4440.840		Fe I	992	4455.012		Mn I	28
4429.32		Fe I	972	4440.883		Ce II	238	4455.032		Fe I	974
4429.34		Zr II	118	4440.972		Fe I	645	4455.258		Fe II	
4429.60		Ne II	74	4441.272		Ti I	160	4455.318		Mn I	28
4429.796		V I	22	4441.56	P	Fe I	987	4455.321		Ti I	113
4429.90		La II	38	4441 609		v i	21	4455.45		Cr I	127
4429.938		Cr I	23 4	4441.683 4441.73	P	T1 II	40	4455.79		La II	53
4430.023		Ti I	267	4441.81		C IV	4	4455.821		Mn I	28
4430.18		A II	7	4441.99		N II	55	4455.85	P	Fe II	140
4430.197		Fe I	472	4442.268		Cr I	102	4455.887		Ca I	4
4430.366		Ti I	113	4442.343		Fe I	68	4456.331		Fe I	516 50
4430.486 4430.51	P	Cr I Cr I	234 128	4442.441 4442.50		N1 I Zr II	87 53	4456.394 4456.43		Nd II S II	50 43
4430.618	-	Fe I	68	4442.67		Ne II	56	4456.53		V II	199
4430.90		Ne II	56	4442.72	P	Ce II	19	4456.612		Ca I	4
		.	_						_	.	
4430.95		Fe III	4	4442.835		Fe I	69	4456.63	P	Fe I	973
4431.02 4431.02		A II S II	1 32	4442.99 4443.05		Zr II O II	88 35	4456.650 4456.84	P	Ti II Cr II	115 16
4431.284		Ti I	32 218	4443.07		Hf II	งบ	4456.95		Ne II	61
4431.369		8c II	14	4443.197		Fe I	350	4457.045		Mn I	28
4431.48		Zr I	61	4443.707		Cr I	234	4457.179		Nd II	18
4431.608		Co I	143	4443.743		Ce II	171	4457.42		Zr II	79
4431.626		Fe II	222	4443.802		Ti II	19	4457.428		Ti I	113

I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	
4457.759		v i	101	4467.98		P II	25	4481.056		Gd II	44	
4458.101		Fe I	992	4468.010		V I	87	4481.129		Mg II	4	
4458.262		Mn I	28	4468.38		Cr I Ti II	127 31	4481.21 4481.23		La II Ni I	146 168	
4458.336		Pr II Sm II	8 7	4468.493 4468.712		Pr II	20	4481.261		Ti I	146	
4458.517 4458.538		Cr I	127	4468.759		VI	102	4481.273		Tm II	1	
4459.037		N1 I	86	4468.91		Ne II	61	4481.327		Mg II	4	
4459.121		Fe I	68	4469.160		Ti II	18	4481.44		Cr I	270 827	
4459.34		Cr I	63	4469.32		O II C1 I	59,94 15	4481.621 4481.83		Fe I A II	39	
4459.738		Cr I	127	4469.37		01 1	10	4401.00			00	
4459.760		V I	21	4469.381		Fe I	830	4482.02		Cl II	85	
4459.96		N II	21	4469.547		Co I V I	150 87	4482.04		Zr II Fe I	131 2	
4460.12	P	Fe I V I	271 62	4469.710 4469.850		V I Ce II	230	4482.171 4482.257		Fe I	68	
4460.16 4460.213	P	V I Ce II	2		P Forb	He I	15	4482.40	P	Ti II	30	
4460.292		V I	21	4470.138		Mn I	22	4482.688		T1 I	113	
4460.377		Min I	28	4470.39	P	V II	30	4482.750		Fe I	828	
4460.55	P	Fe I	1100	4470.483		N1 I T1 II	86 40	4482.878 4483.328		Cr I Gd II	197 62	
4460.5 6 446 0.769		A II Cr I	1 63	4470.864 4471.238		Ti I	146	4483.424		SII	43	
44001100							_				004	
4461.085		Mn I	28	4471.240		Ce II Gd II	8 82	4483.50 4483.67		V II P II	224 25	
4461.138		Ce II Fe I	10 471	4471.29 4471.477		He I	14	4483.78	P	Fe I	898	
44 61.205 44 61.22		Zr II	67	4471.52		Ne II	65	4483.900		Ce II	3	
4461.37		Fe I	725	4471.550	_	Co I	150	4483.918		Co I	150	
4461.43	P	Fe II	26	4471.68	P	Fe I	2	4484.227		Fe I Co I	828 27	
4461.56		O III	33 2	4471.688 4471.81	P	He I Fe I	14 972	4484.513 4484.54		Ni I	102	
4461.654 4461.80	P	Fe I Fe I	2 412	4472.09	•	Ca II	6	4484.68		Cr I	151	
4461.80 4461.989	r	Fe I	471,825,902	4472.52	P	Fe I	39	4484.93	P	Fe II	9	
				4470 57	P	Fe I	411	4485.013		Ti I	184	
4462.022		Mn I Ti I	28 8	4472.57 4472.721	r	re 1 Fe I	595,900	4485.013 4485.15		Eu II	26	
4462.099 4462.20	P	Fe I	824	4472.792		Mn I	22	4485.44		Zr II	79	
4462.363	•	V I	87	4472.921		Fe II	37	4485.679	_	Fe I	830	
4462.407		Nd II	54	4473.015		Sm II	26 82	4485.97	P	Fe I Hf II	825 23	
4462.460	_	N1 I	86	4473.782		Cr I La II	63 133	4486.14 4486.352		Hr II Gd II	23 135	
4462.76	P	V II Cr I	13 127	4474.03 4474.045		V I	110	4486.65		Hf II	107	
4462.774 4462.90		Fe III	106	4474.194		Fe II	171	4486.66		8 11	43	
4462.95		PII	25	4474.714		V I	101	4486.909		Ce II	57	
4400 000		Nd II	50	4474.77		A II	38	4487.01	P	Fe I	988	
4462.985 4463.14	P	ra II Fe I	471	4474.852		T1 I	113,184	4487.28		Y I	14	
4463.16	P	Fe I	901	4474.95		0 111	37	4487.36	P	Fe I	824	
4463.247	-	Gd II	83	4475.19	P	Ti I	184 63	4487.46		B III Cr I	2 63	
4463.391		Ti I	160	4475.20 4475.22	P	Cr I Ne II	65	4487.46 4487.47		Y I	14	
4463.4 10 4463.42 7		Ce II N1 I	20 102	4475.24		V II	198	4487.72		0 11	104	
4463.539		Ti I	160	4475.27		PII	24	4487.74	P	Fe I	594	
4463.582		S II	43	4475.28		Cl II	41 ,85 7	4487.821		Pr II Cr I	3 29 3	
4464.32		A II	199	4475.31		C1 I	•	4488.051				
4464.425		8 11		4475.345		Cr I	95	4488.09		O II	104	
4464.458		Ti II	40	4475.518		Ti I	184	4488.140		Fe I N II	819 21	
4464.669		Cr I	127	4475.70 4475.72		V II Y I	199 14	4488.15 4488.27	P	Ti I	184	
4464.677	P	Min I Fe I	22 555	4475.72 4475.99	P	Fe I	899	4488.319	-	Ti II	115	
4464. 69 4464. 747	F	A I	110	4476.021	-	Fe I	350	4488.401		Gd II	82	
4464.773		Fe I	472	4476.08		0 II	87	4488.898		V I	86,110	
4464.907		Cr I	127	4476.082	D	Fe I Ti I	830 184	4488.917 4489.089		Fe I Ti I	213,827 146	
4464.97		Eu II Nd II	27 5	4476.61 4477.02	P	Cr I	6 3	4489.185		Fe II	37	
4465.075		na II	J									
4465.15		Cr I	267	4477.45		Y I	14 21	4489.471		Cr I O II	86	
4465.33	P	Fe I	1099	4477.74 4477.88		N II O II	21 88	4489.48 4489.741		Fe I	2	
4465.357		Cr I Y II	127 81	4477.88	P	V II	13	4489.87		Al II	107	
4465.4 4465.40		0 II	94	4478.040		Fe I	69	4490.00		Cl II	41	
4465.54		N II	21	4478.319		Co I	150	4490.081		Mn I Fe I	22 469	
4465.601		Nd II	13	4478.48		S III Sm II	7	4490.084 4490.24	P	re I Fe I	319	
4465.78		Cr II Ti I	191 1 4 6	4478.657 4478.795		Gd II	15	4490.541	•	N1 I	134,235	
4465.807 4466.11		PII	24	4479	P	N IV	6	4490.56		Cr I	267	
	_			4470 00	P	Fe I	987	4490.60		Hf II	74	
4466.13	P	Cr I Cr I	34 127	4479.00 4479.01	P	Fe I	899	4490.63	P	Fe I	891	
4466.465 4466.183		Cr I Fe I	901	4479.29	-	Ca II	6	4490.773		Fe I	974,974	
4466.32		0 11	87	4479.359		Ce II	203	4490.815	D1	V I	86 7	
4466.394		N1 I	168	4479.432		Ce II	124 828.848	44 90.90 44 90.99	Forb	Al III A II	39	
4466.41		Hf II	72 44	4479.612 4479.724		Fe I Ti I	828,848 146	4490.99 4491.10	P	Ce II	19	
4466.547		Gd II Fe I	44 3 50	4479.724		Al III	8	4491.164		V I	62	
4466.554 4466.57	P	re I Fe I	2	4479.968		Al III	8	4491.25		O II	86 37	
4466.65	-	K II	6	4479.97	P	Fe I	974	4491.401		Fe II	31	
4488 004		Co I	150	4480.142		Fe I	515	4491.678		Cr I	95	
4466.881 4466.939		Fe I	992	4480.263		Cr I	197	4491.858		Cr I	8 3 197	
4467.227		Gd II	82	4480.27	P	Fe I	823	4492.312		Cr I S II	197 58	
4467.342		Sm II	53	4480.350	D	Cu I Fe II	8 20	4492.3 4492.40		N I	50	
4467.36		Fe III	106 1048	4480.46 4480.570	P	re II Ni I	20 211	4492.427		Pr II	23	
4467.446 4467.537		Fe I Ce II	1048 17	4480.600		Ti I	146	4492.540		Ti I	184	
4467.561		Cr I	127	4480.687		Fe II		4492.693	n	Fe I	969 639	
4467.83		S III	7	4480.85		AII	104	4492.98	P	Fe I	706	

52					LINDI	NO LIS.	ı				
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4493.53		Ti II	18	4507.854		Ca I	24	4521.924		Ni I	116
4493.579		Fe II	222	4507.95		Cr I	267	4521.94		Gd II	135
4494.05	P	Fe I	973	4508.083		Ce II	153	4522	P	o v	15
4494.180		Na I	15	4508.21	n	Ne II	68	4522.00		Cr I	173
4494.41 4494.47	P	Zr II Fe I	130 411	4508.26 4508.283	P	Fe II Fe II	222 38	4522.3238 4522.37		A I La II	7 8,7 4
4494.568	•	Fe I	68	4508.48		La II	52	4522.59		Eu II	4
4494.67		N I		4509.0		S II	48	4522.634		Fe II	38
4494.71		La I	11	4509.082		Gd II	84	4522.66		Ne II	68
4494.746		Co I	168	4509.13	P	Fe I	21 3	4522.798		Ti I	42
4494.853		Gd II	14	4509.287		V I	110	4522.82		Gd II	103
4495	P	N IV	6	4509.306		Fe I	514,937	4523.037		Sm II	3
4495.006		Ti I		4509.446		Ca I	24	4523.077		Ce II	2
4495.04		Cr I	101	4510.160		Pr II	20	4523.403		Fe I	829
4495.275		Cr I	275	4510.210		Mn II	17	4523.60	_	N III	3
4495.386 4495.389		Fe I Ce II	319,970 154	4510.380 4510.7333		Gd II A I	30 9	4523.74	P	N1 I Sm II	99 41
4495.44		Zr II	79	4510.82	P	Fe I	823	4523.912 4524.218		V I	99
4495.46	P	Ti II	40	4510.92		N III	3	4524.344		Mo I	6
4495.52	P	Fe II	147	4511.04	P	Fe I	970	4524.68		S II	40
4495.566		Fe I	827	4511 176		Ti I		4504 500		M4 TT	20
4495.9		S II	827 48	4511.176 4511.29		Ne II	70	4524.732 4524.74		Ti II Hf II	60 104
4495.986		Fe I	825	4511.310		In I	1	4524.74		Sn I	5
4496.062		V I	110	4511.37		Ne II	70	4524.81	P	V II	21 2
4496.146		Ti I	146	4511.82	P	Cr II	191	4524.841		Cr I	276
4496.245		Ti I	8	4511.829		Sm II	14	4524.928		Ba II	3
4496.429 4496.75	P	Pr II Ti I	4,25 184	4511.903		Cr I Ca I	150 24	4524.946		S II	40
4496.862	r	Cr I	104	4512.282 4512.535		Al III	3	4525.142 4505.15	P	Fe I Fe I	826 819
4496.864		V I	86	4512.72		V II	212	4525.15 4525.168	r	V I	110
								2020.200		-	
4496.96		Zr II	40	4512.734		Ti I	42	4525.21	P	Ti II	18
4496.989		Mn II	17	4512.995		N1 I	163	4525.31	_	La II	76
4497.30		C1 II B III	41,85	4513.21		Cr I Y I	150 15	4525.75	P	Fe II	9
4497.58 4497.657		Na I	3 15	4513.58 4513.715		Ti I	15 112	4525.875		Fe I Cr I	319 196
4497.709		Ti I	184	4513.72	P	Fe I	213	4526.108 4526.12		La II	50
4497.849		Ce II	19	4513.89		Cr I	175	4526.20		C1 I	15
4497.88		S II	53	4513.90	P	N1 I	131	4526.374		Ti I	127,184
4498.276	_	Gd II	31	4514.189		Fe I	514	4526.40	P	Fe I	969
4498.54	P	Fe I	988	4514.191		V I	110	4526.466		Cr I	33
4498.55		A II	13 6	4514.373		Cr I	287	4526.563		Fe I	471
4498.730		Cr I	81	4514.505		Gd II	103	4526.565		Tm II	1
4498.76		La II	94	4514.531		Cr I	95	4526.58	P	Fe II	171
4498.897		Mn I	22	4514.80		Ne II	55	4526.794		Co I	177
4498.94 4499.18		Ne II P II	6 4 11	4514.89 4515.094		N III Sm II	3	4526.935		Ca I Y I	36 14
4499.29		S III	7	4515.17	P	Fe I	319	4527.25 4527.305		Ti I	42
4499.475		Sm II	23	4515.19	P	Fe II	20	4527.339		Cr I	33,82
4500.295		Cr I	150	4515.337		Fe II	37	4527.348		Ce II	108
4500.32	P	Ti II	18	4515.440		Cr I	126	4527.455		T1 I	7
4500.86	P	v II	30	4515.558		v i	100	4505 451		Cr I	174
4501.112	r	Cr I	81	4515.610		Ti I	184	4527.471 4527.648		CP II	8
4501.256		V I	86	4516.02		CIII	9	4527.796		Fe I	641
4501.270		T1 II	31	4516.08	P	Fe I	639	4527.80		Y I	14
4501.692		N1 I	115	4516.27	P	Fe I	819	4527.86		N III	13
4501.788		Cr I	81	4516.38	_	La II		4527.90	P	Fe I	897
4501.808 4501.972		Nd II V I	53 62	4516.45 4516.56	P P	Fe I Cr II	825 191	4527.919		Co I S III	156 · 7
4502.16		La II	154	4516.93		CIII	9	4527.96 4527.990		V I	•
4502.220		Mn I	22	4517.094		Co I	150	4528	P	N IV	6
4502.52		Ne II	56	4517.10		Gd II V II	135	4528.472		Ce II	1
4502.592 4502.95		Fe I A II	796 63	4517.35 4517.43	P Forb	V II He I	211 13	4528.51 4528.619		V II Fe I	56 68
4503.05		Cr I	310	4517.530	1 1010	Fe I	472	4528.76	P	Fe I	595
4503.13	P	V II	13	4517.595		Pr II	2	4528.82	P	Fe I	468
4503.762		Ti I	184	4517.60	P	Fe I	992	4528.911		Al III	3
4504.23	P	Fe I	988	4517.79		Ne II	55	4529.08		V II	198
4504.27		C1 II	41	4517.81		Ni I	103	4529.176		Al III	3
4504.52 4504.838	P	Cr II Fe I	16 555	4518.022 4518.18		T1 I N III	42 3	4529.301		V I Tm II	95 5
20021000			000	4010.10		.,	· ·	4529.376		111111	ŭ
4505.00		Ca I	24	4518.30	P	Ti II	18	4529.465		Ti II	82
4505.22		Cr I	151	4518.38		V II	212	4529.56	P	Fe II	171
4505.33		K II	4	4518.45	_	Fe I	593	4529.562		Fe I	987
4505.715		Ti I	184	4518.58	P	Fe I	69	4529.589		V I	99
4505.75 4505.95		Nd II Y I	3 14	4518.58 4518.63		Lu I Cr I	34,100	4529.7 4520.851		O III Cr I	32 33
4505.95 4505.997		Cu II	14	4518.700		Ti I	112	4529.851 4530.034		Mn II	33 17
4506.302		Ni I	133	4518.9		SII	47	4530.12	P	Cr I	126
4506.333		Gd II	44	4519.02		Hf II		4530.403		N II	59
45 06.50		0 11		4519.19		C1 II	41	4530.54		La II	73
4506 500		W	-	4540 086		Q- TT	40			,	0.5
4506.582 4506.624		Nd II Ca I	7	4519.633		Sm II Cr I	49 1 2 6	4530.57		A II Cr I	35 33
4506.74	P	Ti II	24 30	4519.83 4519.986		NI I	51	4530.688 4530.755		Cr I	33
4506.853	-	Cr I	288	4520.070		Gd II	82	4530.75		P II	25,35
4506.931		Gd II	13	4520.225		Fe II	37	4530.785		Cu I	8
4507.11		Zr I	31	4520.24	P	Fe I	471	4530.84		N III	3
4507.19	P	Cr II	16	4520.37	P	Ti II	30	4530.949		Co I	150
4507.195		Fe II	213	4521.141		Cr I	277,287	4531.152		Fe I	39

I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4531.82		Cr I	275	4545.335		Cr I	33	4561.03		A II	51
4532.188		V II	212	4545.394		V I	109	4561.20		Cr I	34
4532.75		Cr I	212	4545.49	P	Cr II	16	4561.461		Pr II	23
4533.143		Fe I	641	4545.54	P	Fe I	894	4561.54		Cr I	277
4533.18		Hf II	25	4545.956		Cr I Co I	10	4561.88 4562.05		S II Ne II	64
4533.238 4533.3		Ti I S II	42 47	4545.985 4546.36		N III	142 13	4562.360		Ce II	1
4533.81		PII	25	4546.47	P	Fe I	1047	4562.5		La II	161
4533.966		Ti II	50	4546.68	P	Fe I	989	4562.637		Ti I	7
4533.985		Co I	150	4546.930		N1 I	261	4563.245		Cr I	246
4534.154		Pr II	20	4547.022		Fe I	39	4563.427		Ti I	266
4534.166		Fe II	37	4547.234		Ni I	146	4563.657		Cr I	172
4534.26		Mg II N III	26 3	4547.34 4547.78		N III A II	3 76	4563.761 4563.78		Ti II A II	50
4534. 57 4534. 62	P	Fe I	1169	4547.850		Ti I	270	4564.166		Cr I	312
4534.66	•	Ne II	58	4547.851		Fe I	755	1564.216		Ti I	112
4534.782		Ti I	42	4548.094		Ti I	270	4564.43		AII	85
4535.11		N III	13	4548.764		T1 I	42	4564.592		V II	56
4535.146		Cr I	33	4549.214		Fe II	186	4564.715		Fe I	823
4535.215		V II	210	4549.467		Fe II	38	4564.78		N II	14
4535.38		Hf II	72	4549.50		La I	11	4564.832	_	Fe I	472
4535.47		Ne II	55	4549.547		8 11		4565.13	P	N1 I	88
4535.50 4535.51		Fe III A II	86	4549.622 4549.644		T1 II V I	82	4565.22 4565.324		P II Fe I	36 641
4535.574		Ti I	42	4549.658		Co I	150	4565.43		Zr II	116
4535.721		Cr I	33,276	4549.82	P	Ti II	39	4565.45	P	Ni I	99
4535.75		Zr I	30	4550.954		Gd II	44	4565.49		Ne II	55
4535.87	P	Ti I	112	4551.236		N1 I	236	4565.512		Cr I	21
4535.920		Ti I	42 1	4551.297		Ce II Gd II	229 62	4565.578 4565.684		Co I Fe I	150 554
4535.921		Pr II	1	4551.455		0d 11					
4536.051		Ti I	42	4551.667		Fe I	972	4565.73		Mn I Cr II	52 39
4536.509		Fe I Cr I	896 190	4551.860 4552.25	P	V I Ti II	82 30	4565.78 4565.842		Ce II	21
4536.55 4536.78		C1 II	41	4552.37	•	As II	4	4566.03	P	Fe I	1169
4537.663		VI	82	4552.378		S II	40,48	4566.206		Sm II	32
4537.67		A II	123	4552.453		Ti I	42	4566.520		Fe I	641
4537.677		Fe I	594	4552.536		N II	58	4566.602	_	Cr I	125
4537.751		Ne I	11 45	4552.544		Fe I S III	2	4566.68 4566.990	P	Fe I Fe I	212 723
4537.952 4538.20	P	Sm II Fe I	1071	4552.654 4552.659		Sm II	23	4567.415		Ni I	102
										W4 TT	40
4538.58	P	Fe I V II	972 212	4553.01 4553.056		Zr I V I	31 133	4567.606 4567.872		Nd II Si III	49 2
4538.64 4538.73		A II	104	4553.16		Ne II	55	4567.90		La I	11
4538.764		Fe I	115	4553.175		N1 I	135	4568	P	O IV	15
4538.84		Fe I	969	4553.48	P	Fe I	472	4568.312		Ti II	60
4538.87		La II	149	4553.949		Cr I	276	4568.545		Pr II	33
4538.95	P	Fe I	10 48	4553.96		Zr II Ba II	1 3 0 1	4568.62 4568.789	P	Fe I Fe I	989 55 4
4539.096 4539.62		Ti I Cr II	39	4554.033 4554.28		0 V	7	4568.842		Fe I	894
4539.755		Ce II	108	4554.467		Fe I	319	4569.01		Ne II	69
453 9.788		Cr I	33	4554.509		Ru I	5	4569.06	P	Fe I	593
4540.014		v 1	100	4554.81		P II	28	4569.42		C1 II	35
4540.016		Gd II	135	4554.830		Cr I	173	4569.50		O III Cr I	36 173
4540.376		Ne I Ti I	17 8	4554.989 4555.02		Gd II Cr II	82 44	4569.530 4569.644		Cr I	173
4540.483 4540.502		Cr I	33	4555.069		Ti I	266	4569.82		Fe III	82
4540.71		La II	81	4555.09		Cr I	149	4569.849		Nd II	5
4540.719		Cr I	150	4555.30		Cr I	212	4570.02		LaI	11
4540.873		Ti I	112	4555.30		0 III	34	4570.024 4570.30		Co I Cr I	178 125,190
4541.071		Cr I	33	4555.421		Cs I	2	4070.30			
4541.269		Nd II	58	4555.486	_	Ti I	42	4570.34		Fe III V I	66 109
4541.31 4541.513		Hf II Cr I	36 149	4555.75 4555.890	P	Fe I Fe II	640 37	4570.425 4570.70		Hf II	86
4541.513		Fe II	38	4555.922		Cu II	1	4570.906		Ti I	266
4541.59		He II	2	4556.129		Fe I	410,820,974	4570.97		La II	38
4541.671		Na I	14	4556.136		Nd II	6	4570.977		Gd II	84
4541.953		Fe I	593	4556.169		Cr I	173	4570.98 4871.0056		Cr I Mg I	173 1
4542.22 4542.422		Zr I Fe I	49 894	4556.735 4556.765		Nd II V II	12 198	4571.0956 4571.105		mg I Cr I	125
4542.603		Nd II	001	4556.939		Fe I	638	4571.24	P	Cr II	16
4542.621		Cr I	149,275	4557.237		Sc I		4571.44	P	Fe I	319
4542.720		Fe I	827	4557.857		T1 I	270	4571.676		Cr I	32
4542.77	P	Cr II	16	4558.04		P II	29	4571.783		V I	109
4543.22	P	Fe I	893	4558.080		Gd II	44 262,263	4571.83 4571.971		Cr I Ti II	246 82
4543.74		Cr I Co I	100	4558.092 4558.108		T1 I Fe I	894,974	4572.13		C1 11	35
4543.810 4543.91		A II	142 95	4558.46		La II	39	4572.16		Cr I	190,246
4543.948		Sm II	32	4558 • 46		A 11	212	4572.277		Ce II	1
4544.009		T1 II Ne II	60 64	4558.58 4558.659	P	Fe II Cr II	20 44	4572.671 4572.83	P	Be I Cr II	3 16
4544.11											
4544.48	ъ.	C1 II	48 970	4558.83 4559.09		Cr II Fe III	44	4572.86 4572.92	P	Fe I A II	819 94
4544.5 0 4544. 619	P	Fe I Cr I	33	4559.28		La II	53	4573.14		Fe III	
4544.688		Ti I	42	4559.920		Ti I	112	4573.38	_	Cr I	246
4544.70	P	Cr II	16	4559.945		N1 I	115	4573.63	P	Cr II Hf II	16 40
4544 .80		N III	12	4560.096		Fe I Cr I	823 211	4573.81 4573.993		Sc I	T V
4544. 961 454 5.08		Ce II A II	123 15	4560.26 4560.280		Ce II	211 8	4574.03		N1 I	87
4545.144		Ti II	30	4560.710		V I	109	4574.240		Fe I	554
4545.218		Na I	14	4560.959		Ce II	2	4574.32		Ta I	1

54				1	LIND	ING LIST					
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
	-,,,	DICMONT	Marorprov Not		13 pe	Diemeno	murorprov nov	• •	-, po	220	
4574.45		Cr I	148	4500 017		Cr II	44	4602.005		Fe I	39
				4588.217	_						93
4574.49		Ne II	64	4588.40	P	Cr II	16	4602.11		0 11	
4574.49		Zr II	139	4588.730		Co I	15	4602.51	_	Cr I	210
4574.724		Fe I	115	4589.689		Al II	45	4602.75	P	Fe II	19
4574.777		Si III	2	4589.750		Al II	45	4602.944		Fe I	39
4574.87		La II	23	4589.76		Pr II	23	4602.99		Li I	6
4575.121		Cr I	196	4589.79		P II	24,36	4603.2	P	n v	1
4575.52		Zr I	5	4589.89		Cr II	44	4603.34	P	Fe I	348
4575.80		Fe I	593,970	4589.93		A II	31	4603.956	-	Fe I	410
		Fe II	38				50		P	Fe I	348
4576.331		re II	36	4589.961		Ti II	50	4604.23	P	re 1	940
										_	
4576.500		Mo I	6	4590.00	P	Cr II	16	4604.42		Zr I	29
4576.551		Ti I	262	4590.505		V II	210	4604.58		Cr I	190
4576.76		Cr I	1 4 8	4590.68		Fe III	52	4604.85	P	Fe I	846
4577.13	P	V II	56	4590.69		Cr I	125	4604.994		Ni I	98
4577.173		V I	4	4590.8		S II	47	4605.10	P	Fe I	348
4577.690		Sm II	23	4590.971		0 11	15	4605.352	-	V II	56
	P	Fe II					10			Mn I	00
4577.78	r		54	4591.05		SII	400	4605.363			
4578.139		Pr II	10	4591.220		VI	133	4605.78		La II	52
4578.334		Cr I	24 6	4591.2 6	P	Fe II	17	4605.79		Hf II	22
4578.558		Ca I	23	4591.394		Cr I	21	4605.99	P	Fe I	893
4578.728		V I	109	4591.818		Sm IÍ	14	4606.146		v i	4
4579.05	P	Fe I	988	4591.991		V I	95	4606.231		N1 I	100
	P	Fe I				Cr II				Cr I	303
4579.07	P		640	4592.09			44	4606.375			
4579.198		V I	109	4592.529		N1 I	98	4606.402		Ce II	6
45 79. 344		Fe I	319,936	4592.54		Cr I	303	4606.514		Sm II	1
4579.39		A II	17	4592.655		Fe I	39	4606.59	P	V II	45
4579.446		CP II	8	4593.195		Cs I	2	4607.08	P	Fe I	724
4579.523		Fe II		4593.44		A II	51	4607.153		N II	5
		Cr I	246			C 111	01			Sr I	2
4579.59	-		24 6	4593.47			064	4607.331		Fe I	
4579.68	P	Fe I	894	4593.544		Fe I	971	4607.655		re 1	554,969
4579.825		Fe I	469	4593.544		Sm II	36	4607.94		Y II	80
4580.05		La II	53	4593.84		Cr I	190	4608.030		Gd II	144
4580.055		Fe II	26	4593.932		Ce II	6	4608.21		Cl III	13
4580.056		Cr I	10	4594.03		Bu I	1	4608.45		K II	7
							4			Co I	57
4580.139		Co I	27	4594.103		V I	4	4608.908			
4580.35		Ne II	72	4594.4 03		Cr I		4609.148		Nd II	3
4580.394		V I	4	4594.44 7		Nd II	52	4609.26	P	Ti II	39
4580.458		Ti II	60	4594.51	P	Ti I	262	4609.42		0 II	93
4580.4 6	P	Fe I	34 8	4594.633		Co I	176	4609.60		A II	31
4580.600		Fe I	827	4594.908		N1 I		4609.646		V I	61
20001000			02.	10011000				20001020			
4500 610		NA T	140	4504 050		Fe I	690	4600 7		Al II	44
4580.619		N1 I	146	4594.959			638	4609.7			
4581.063		Cr I	148	4595.05		Cr I	190,211	4609.894		Cr I	303
45 81.086		Gd II	44	4595.160		Mo I	6	4610.14		0 11	92
4581.32		ΥI	15	4595.21	P	Fe I	8 4 6	4610.59	P	Fe II	170
4581.380		Co I	156	4595.291		Sm II	45	4610.925		v I	39
4581.402		Ca I	23	4595.363		Fe I	594	4611.05	P	Fe I	641
4581.517		Fe I	555	4595.590		Cr I	286	4611.19	P	Fe I	319
					_				r		318
45 81.596		Co I	150	4595.68	P	Fe II	38	4611.25		A II	
45 81.77		P II	9	4595.951		N1 I	101	4611.285		Fe I	826
4582.12	P	Fe II	19	4596.059		Fe I	820	4611.29	P	Fe I	819
4582.38		Gd II	82	4596.09		Fe III		4611.35	P	Fe I	17
4582.502		Ce II	7	4596.0970		AI	9	4611.968		Cr I	
4582.53		Gd II	65	4596.174		0 11	15	4612.473		Nd II	3
4582.835		Fe II	37	4596.37		v II	210	4612.64		Fe I	349
										PII	9
4582.941		Fe I	348	4596.38		Cr I	210	4612.84			
4583.443		Ti II	39	4596.433		Fe I	8 23	4612.89		Ne II	64
4583.72	P	Fe I	472	4596.90		Cr I	171	4613.11		O II	93
4583.783		V I	109	4596.903		Co I	177	4613.210		Fe I	554
4583.829		Fe II	38	4596.978		Gd II	44	4613.373		Cr I	21
4583.89		Cr I	125	4597.013		Nd II	51	4613.38		La II	50
1000.00		v. ₁	120	#091.010			. 01	*010.00			•••
4500.00		Po TT	00	4800 00		Po T	400	4010 47		8 111	10
4583.99	P	Fe II	26	4597.06	P	Fe I	17	4613.47			
4584.095		Cr I	172	4597.91		Gd II	44	4613.67		0 11	92
4584.28		C1 II		4598.122		Fe I	554	4613.74		Hf II	10 3
4584.445		Ru I	6	4598.33	P	Fe I	17	4613.868		N II	5
4584.732		Fe I	820	4598.37	P	Fe I	970	4613.95		Zr II	67
4584.75		Cr I	125	4598.441		Cr I	172	4614.15		Cr I	148
4584.824		Fe I	822	4598.528		Fe II	219	4614.216		Fe I	638
4584.934		Cr I			P	Fe I	819			Cr I	245
			196	4598.74	r			4614.523			
4585.03		C1 II	34	4598.77	_	A II	3 8	4614.58		N1 I	99
4585.088		Cr I	212	4598.99	P	Ti I	2 62	4614.73		Cr I	
4585.59	P	Fe I	468	4599.00		Cr I	171	4615.441		Sm II	49
4585.72		Cr I	211	4599.226		Ti I	_	4615.690		Sm II	22
		Al II				Cr I	171	4615.98		Ne II	64,67
4585.820			45	4599.25			171				
4585.871		Ca I	23	4599.46		Hf II	92	4616.137		Cr I	21
4585.923		Ca I	23	4600.104		Cr I	32	4616.64		Cr II	44
4585.94		V I	61	4600.11		Ne II	64	4616.95		Fe III	108
4586.138		Cr I	172	4600.19		V II	56	4617.269		Ti I	145
4586.25		Hf II	23	4600.28	P	Ti II	60	4617.94		Ni I	115
					•				n		
4586.364		V I	4	4600.372		N1 I	98	4618.12	P	V II	56
4586.95	P	Ti I	2 66	4600.59		La II	1 4 8	4618.52		V II	25 2
		_				_				_	
4586.99		Cr I		4600.752		Cr I	21	4618.568		Fe I	1151
4587.132		Fe I	795	4600.937		Fe I	591	4618.765		Fe I	409
4587.72	P	Fe I	971	4601.00		Cl I	15	4618.800		v r	39
4587.86		Cr I	125	4601.021		Cr I	32	4618.83		Cr II	44
		A II									
4587.90			16	4601.05		Gd II	44	4618.85		CII	50
4587.91		PII	15,35	4601.15	_	Cr I	172	4619.294		Fe I	821
4587.91		P III	7	4601.34	P	Fe II	43	4619.329		Co I	27
4588.082		Al II	45	4601.478		N II	5	4619.4	P	N V	1
4588.13		Ne II	68	4601.97		P II	15	4619.525		Ti I	261
4588.194		Al II	45	4601.97		Zr II	138	4619.551		Cr I	81 81
-200 · 101			a'U	#00T+01		II	¥00	4019:001		OF I	0.1

I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.
4619.64 8		v i		4634.16		N III	2	4649.54	P	Cr I	233
4619.048 4619.771		VI	4	4634.21		V II	210	4649.828		Fe I	592
4619.87		La II	76	4634.59		Cr I	171	4650.016		Ti I	145
4620.13	P	Fe I	468	4634.60	P	Fe II	25	4650.04	P	Fe II	146
4620.38		Ni I	163	4634.73		Ne II La II	67 133	4650.16 4650.544		C III	1 59
4620.513		Fe II	38 32	4634.95 4635.176		V I	133 4	4650.646		Al II	59 59
4621.00 4621.28		Cr I O II	32 92	4635.328		Fe II	186	4650.841		0 11	1
4621.39		Fe III	108	4635.539		Ti I	261	4651.285		Cr I	21
4621.392		N II	5	4635.62	P	Fe I	319	4651.35		C 111	1
4621.41	P	Cr II	25	4635.7 4635.846		Al II Fe I	97 34 9	4651.42 4651.517	P	V II Pr II	45 6
4621.63 4621.893	P	Fe I Cr I	989 32	4635.845		re I Ti II	38	4652.158		Cr I	21
4621.893 4621.963		Cr I	32,244	4636.42		La II	101	4652.280		Fe II	219
4622.40	P	Fe II	17	4636.66	P	Fe I	513	4652.816		Mn II	18
4622.491		Cr I	233	4637.182		Cr I Ti I	32 261	4653.0 4653.49	P	Al II Fe I	81 17
4622.71 4622.71		Hf II P II	70 3 6	4637.209 4637.25		A II	201 31	4653.49 4654.14	r	Si IV	7
4622.71 4622.761		Cr I	36 81	4637.512		Fe I	554	4654.23		0 I	18
4623.020		Co I	156	4637.772		Cr I	32	4654.286		Ce II	154
4623.098		Ti I	145	4637.887		Ti I	261	4654.501		Fe I O I	38 18
4624.11		S II V I	90	4638.016 4638.12		Fe I Si III	822 13	4654.56 4654.57		N II	18 11
4 624.404 4 624.42		V I Fe III	39 108	4638.854		0 II	1	4654.628		Fe I	554,821
4624.42 4624.561		Co I	141	4639.001		Gd II	64,102	4654.736		Cr I	186
4624.657		v i	94	4639.150		Mn II	18	4654.986		Gd II	65
4624.86		Zr II	116	4639. 3 26		Al II Ti I	69 1 45	4655.05 4655.36		Al II O I	106 18
4624.899		Ce II Fe I	27 554	4639.369 4639.384		Al II	145 69	4655.49		La II	75
4625.052 4625.30		re 1 Cr I	171	4639.538		Cr I	186	4655.661		N1 I	115
4625.44	P	Fe I	974	4639.669		Ti I	145	4655.712		Ti I	261
4625.549	-	Fe II	219	4639.725		Al II	69	4655.75	P	Ti II	38
4625.65		Cr I	244	4639.833	a.	Al II Ti I	69 1 4 5	4656.048 4656.189		Ti I Cr I	145 147
4625.71		C II Co I	49 176	4639.944 4640.062		V I	145 39	4656.189 4656.468		Ti I	6
4625.767 4625.911		Fe II	176 186	4640.14		HP II	74	4656.74		S II	9
4625.925		Cr I	244	4640.309		v r	94	4656.80		Si II	
4626.188		Cr I	21	4640.362		Al II	69 60	4656.837		Cr I Fe II	311 43
4626.36 4626.467	P	Fe I Mo I	636 6	4640.384 4640.431		Al II Ti I	69 261	4656.974 4657.210		Ti II	59
		v i	39	4640.55		Cr I	171	4657.38		N1 I	254
4626.480 4626.53		V I Fe III	39 108	4640.64		N III	2	4657.390		Co I	156
4626.544		Mn I	230	4640.67		Cr I	244	4657.598		Fe I	346
4626.565		Tm II		4640.735	~	V I	39 947	4657.64		Zr I	64 15
4626.61		P II	15	4641.22	P Forb	Fe I K I	347 2	4657.94 4658.03	P	A II Fe II	15 170
4626.758	n	Fe I Fe II	4 10 170	4641.77 4641.811	FUFD	O II	2 1	4658.03	F	Lu I	2
4626.78 4626.81	P	re II Cr I	170 209	4641.90		N III	2	4658.12		P II	15
4627.02	P	Fe I	637	4642.011 4642.235		Cr I Sm II	244 36	4658.29 4658.64		Fe I C IV	591 8
4627.22		Bu I	1		** -						
4627.48		V II	210	4642.27 4642.58	Forb P	K I Fe I	2 688	4659.38 4660	P	K II C IV	5 9
4627.66 4627.85		Gd II Ne II	43 73	4643.086	•	N II	5	4660.93	P	Fe II	146
4627.85 4627.86	P	Fe II	5 4	4643.20	P	Fe I	38	4661.19	P	Fe II	170
4628.160		Ce II	1	4643.468		Fe I	820	4661.22	D	C1 I Fe I	15 347
4628.4410		A I	9	4643.69 4644.09	P	Y I Fe II	4 31	4661.33 4661.538	P	re I Fe I	1207
4628.473 4628.60	Р	Cr I Fe I	186 819	4644.09 4644.82	,F	Zr I	64	4661.635		0 11	1
4628.69 4628.71	P	P II	28	4645.193		Ti I	145	4661.78		Zr II	129
4628.751		Pr II	1	4645.28		La II	8	4661.88		Eu I	1
4628.821		Fe II	219	4645.971		V I	4	4661.933		Mo I	6
4628.908		Co I	15	4646.059		Pr II	22	4661.975	D Fact	Fe I	409 13
4629.07	_	Zr II	139	4646.174 4646.326		Cr I Gd II	21 82	4662.0 4662.51	P Forb	Na I La II	13 8
4629.29 4629.336	P	Ti II Fe II	38 37	4646.326		V I	39	4662.71	P	Ti II	38
4629.336		Ti I	145	4646.495		Cr I	147	4662.74	P	T1 II	38
4629.359		Co I	156	4646.684		Sm II	26	4662.767		Mo I	6
4629.7		Al II	35	4646.808	n	Cr I	186 145	4663.054 4663.183		Al II Fe I	2 754
4629.814 4629.90	P	Zn I Fe II	8 170	4646.94 4647	P P	N1 I C IV	145 6	4663.328		Cr I	186
				4647.34		Ne II	72	4663.403		Co I	156
4629.98 4630.125	P	N1 I Fe I	223 115	4647.40		C III	1	4663.53		C III	5
4630.125 4630.52		CII	49	4647.40		T1 IV		4663.700		Fe II	44
4630.537		N II	5	4647.42	P	N1 I	148	4663.76		La II Fe III	82 52
4630.785	_	Fe I	969	4647.437 4647.50		Fe I La II	409 77	4663.78 4663.832		re III Cr I	52 186
4631.03	P	Fe I Si IV	1071 6	4647.50 4647.585		Mn II	18	4664.14		Hf II	14
4631.38 4631.49		S1 IV Fe I	1152	4647.72	P	Fe I	722	4664.272		Gd II	127
4631.5		Al II	97	4647.759 4648.126		Nd II Cr I	46 32	4664.32 4664.647	P	Ni I Pr II	147 27
4631.895		Fe II	219						מ	Fe I	347
4632.14	P	Fe I	754 171	4648.160 4648.17		Sm II S II	1 36	4664.71 4664.79	P P	re I Fe II	17
4632.180	P	Cr I Fe I	171 8 2 0	4648.23	P	Fe II	38	4664.798		Cr I	186
4632.83 4632.915	r	Fe I	39	4648.62		Al II	82	4664.811	~	Na I	12
4633.05	P	Fe I	17	4648.659		N1 I	98	4665	P P	C IV Fe I	7 1115
4633.2		Al II	97	4648.868 4648.933		Cr I Fe II	32 25	4665.24 4665.56	P	Fe I	1044
4633.286		Cr I Fe I	186 410	4648.933 4649.06		A II	51	4665.8	P Forb	Na I	13
4633.764 4633.99		re I Zr I	410 5	4649.139		0 11	1	4665.80	P	Fe II	26
4634.11		Cr II	44	4649.461		Cr I	32	4665.87		Si III	13
				•							

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4665.90		C III	5	4681.908		Ti I	6	4700.42	P	Fe I	67
4665.902 4666.149		Cr I V I	233	4681.990		Cu II	4	4700.608		Cr I	62
4666.215		Cr I	9 4 99	4682.12 4682.28		La II Ra II	37 1	4700.80		PII	14
4666.28		AII	51	4682.29		A II	•	4701.052 4701.159		Fe I Mn I	820 21
4666.448		Gd II	101	4682.32		YII	12	4701.23		0 11	58
4666.512		Cr I	186	4682.361		Co I	156	4701.336		N1 I	101
4666.750 4666.8		Fe II Al II	37	4682.58		Fe I	384	4701.536		N1 I	235
4666.994		N1 I	105 146	4682.68 4683.018		Hf II Si III	102 13	4701.65 4701.76		Al III O II	6 58
								1101110		0 11	90
4667.181		Cr I	99	4683.43		Zr I	63	4701.90	P	Fe I	688
4667.28 4667.459		N II Fe I	11 822	4683.565 4683.774		Fe I Si III	346 13	4701.92		Cr I	170
4667.53	P	Ti I	77	4684.457		V I	94	4702.3164 4702.57		A I N II	9 68
4667.585		Ti I	6	4684.484		Ti I	203	4702.9758		Mg I	11
4667.766		Ni I	163	4684.605		Ce II	228	4702.9831		Mg I	11
4668.07 4668.142	P	Fe I Fe I	826 554	4684.605 4684.77		Cr I Cr II	146 178	4702.9909		Mg I	11
4668.357		Ti I	77	4685.03	P	Fe I	347	4703.03 4703.18		Zr II O II	138
4668.560		Na I	12	4685.19		Zr II	129	4703.13		La II	40 76
4660 70						_					
4668.58 466 8.91		S II La II	36 76	4685.265 4685.682		Ca I He II	51	4703.3 6		AII	
4669.174		Fe I	821	4685.837		Ge I	1 3	4703.576 4703.62		Nd II Hf II	55 72
4669.273		V I	4	4685.95	P	Fe II	50	4703.808		Ni I	133
4669.33		0 11	90	4686.218		Ni I	98	4704.33		N II	68
4669.336 4669.396		Cr I Sm II	186 7	4686.921		Ti I V I	203	4704.386		Co I	178
4669.502		Ce II	. (4686.926 4687.183		Sm II	93 3	4704.395		Ne I	11
4669.53		O II	89	4687.30	P	Fe I	17	4704.397 4704.958		Sm II Fe I	1 821
4669.650		Sm II	26	4687.387		Fe I	347	4705.099		V I	136
4669.67		Cr I	170	4607 67	P	Fe I	0.47				
4669.977		Ru I	11	4687.67 4687.80	P	re I Zr I	347 43	4705.355		O II Fe I	25
4670.170		Fe II	25	4687.82	P	Ti I	111	4705.464 4705.50		N1 I	752 101
4670.404		Sc II	24	4688.38	P	Fe I	1071	4705.93		N1 I	128
4670.483		V I	39	4688.392		Ti I	306	4706.102		Cr I	170
4671.25 4671.36	P	Fe III Cr II	58 178	4688.45 4688.45	P	V II Zr I	4 5 5	4706.178	-	V I	94
4671.686	-	Cu II	4	4688.65		La II	92	4706.31 4706.41	P	Fe I N II	890 68
4671.688		Mn I	21	4689.374		Cr I	186	4706.542		Nd II	3
4671.82		La II	80	4689.46	P	Ti II	38	4706.574		V I	119
4671.94	P	Sc II	48	4690.146		Fe I	820	4700 007		Sc I	
4672.02	P	Fe I	1045	4690.38	P	Fe I	17	4706.967 4707.281		Fe I	22 554
4672.081		Pr II	21	4690.827		Ti I	76	4707.487		Fe I	346
4672.75	n	0 I	17	4690.97		0 11	58	4707.541		Pr II	5
4672.83 4673.169	P	Fe I Fe I	40 820	4691.17 4691.336		La II Ti I	23 75	4707.754		Cr I	195
4673.28	P	Fe I	822	4691.414		Fe I	409	4707.78 4707.80		Zr I O II	63 89
4673.462		Be II	6	4691.47		0 11	58	4708.040		Cr I	186
4673.555		Cu II	4	4691.55	P	Fe II	17	4708.663		Ti II	49
4673.70		0 I	17	4692.45	P	Ti I	77	4708.854		Ne I	11
4673.75		0 11	1	4692.50		La II	75	4708.94		Ba II	15
4673.91		CIII	5	4692.97		Cr I	99	4708.972		Fe I	889
4674.41 4674.599		Zr II	139	4693.190		Co I	156	4708.976		T1 I	203
4674.65	P	Sm II Fe I	14 40	4693.628 4693.670		Sm II Ti I	14 6	4709.092		Fe I	821
4674.84	-	ΥÏ	4	4693.949		Cr I	99	4709.336 4709.45		Sc I N II	22 25,68
4674.98		N II	11	4694.13		s 1	2	4709.484		Ru I	14
4675.118		Ti I	77	4694.55		N II	61	4709.714		Nd II	7
4675.45 4675.639		Hf II Ni I	92 115	4695.153 4695.45		Cr I S I	99 2	4709.715		Mn I	21
20.000			110	1000110		~ 1	~	4710.04		Ne II	73
4676.234		0 11	1	4695.91		N II	68	4710.04		0 11	24
4676.911		Sm II O II	3	4696.12	P	Ce II	153	4710.058		Ne I	11
4677.00 4677.528		O II Co I	91 15	4696.25 4696.36		S I O II	2 1	4710.08		Zr I Ti I	43
4677.59	P	Fe I	1072	4696.71	P	Sc II	48	4710.186 4710.24		Cr I	75,203 145
4677.67		S III	10	4696.923		Ti I	203	4710.286		Fe I	409
4677.858		Tm II N II	5	4697.062		Cr I	62	4710.566		V I	119
4677.93 4678.160		Cq I	62 2	4697.395 4697.62		Cr I Cr II	195 177	4711.68	P	Ti I	111
4678.41	P	Fe I	688	4698.276		Sc II	13	4711.732 4711.91		Sc I Zr I	22 64
		_									••
4678.852	ъ	Fe I	821	4698.389		Co I	156	4711.975		Gd II	64
4678.94 4678.95	P	Ce II P II	153 28	4698.408 4698.456		N1 I Cr I	235 186	4712.060		Ne I	16
4679.229		Fe I	688	4698.48		0 11	40	4712.069 4712.104		Ni I Fe I	131 467
4679.73	P	Ti I	77	4698.615		Cr I	62,146	4712.13		N II	68
4679.87	P	Cr II	25	4698.62	_	N II	68	4712.92		La II	38
4679.96 4680.127	P	Fe I	1071	4698.64	P	Cr II	25 50	4713.057		Sm II	49
4680.127 4680.138		Ce II Zn I	18 2	4698.67 4698.766	P	Ti II Ti I	59 75	4713.143	ъ	He I	12
4680.297		Fe I	39	4698.86	p	Ti I	75 203	4713.18 4713.26	P	Fe II Y II	26 22
								-1.10.20			22
4680 458		Ce II	2	4698.947		Cr I	146	4713.373		He I	12
4680.475 4680.49		Fe I Cr I	34 6 186	4699.180 4699.21		Co I O II	27 25 40	4713.84	P	Ni I	128
4680.539		WI	1	4699.589		Cr I	25,40 292	4713.996 4714.074		Ce II Fe I	250 1206
4680.734		Nd II	4	4699.62		La II	39	4714.074		V I	1206 119
4680.870	_	Cr I	170	4699.72		Hf II	71	4714.182		Fe I	591
4681.05 4681 32	P	Ni I S II	143	4700.1		Ne II	67	4714.421		N1 I	98
4681.32 4681.52		A II	8 76	4700.12 4700.171		N II Fe I	68 935	4714.53		Fe III	57
4681.786		Ru I	6	4700.171		S II	935 52	4714.83 4715.12		Ce II Cr II	17 179
							-	10.12		V: 11	178

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4715 005		Ti I	6	4730.711		Cr I	145	4748.525		v 1	113
4715.295 4715.344		Ne I	16	4730.92		As II	3	4748.67		C1 II	75 85
4715.589		Nd II	49	4731.172		Ti I	202	4748.73		La II Cr I	65 195
4715.778		N1 I	98	4731.36		Hf II Fe II	38 43	4749.25 4749.25	P	Fe I	1098
4715.900		V I	136 13	4731.439 4731.77	P	Fe I	67	4749.68	-	Co I	156
4716.13 4716.226	P	Sc II S II	13 9	4731.809	-	N1 I	163	4749.93		Fe I	1206
4716.44		La II	52	4732.051		Co I	15	4750.49	P	Fe II	206
4716.576		Gd II	102	4732.08		A II Zr I	38 48	4750.990 4751	P	V I N V	113 5
4716.644		V I	51	4732.34		Zr I	-10	4101	•	., .	•
4716 650		Si III		4732.465		N1 I	235	4751	P	O VI	10
4716.658 4716.85	P	Fe I	6 34	4732.53		Ne II	67	4751.04		Cr I	290
4717.031		Sc I	14	4732.60	_	Gd II	65	4751.34		O II V I	24 94
4717.58		La II	87	4732.96	P P	T1 II N IV	29 11	4751.574 4751.822		Na I	11
4717.688		Cr I	170	4733 4733.426	•	Ti I	202	4752	P	N IV	11
4717.692 4717.718		V I Sm II	119 41	4733.596		Fe I	38	4752.084		Cr I	
4718.16		Ca II	7	4734.094		Sc I	14	4752.124		N1 I	165
4718.329		Sm II	53	4734.100		Fe I	1133 4	4752.426 4752.70		N1 I O II	132 24
4718.429		Cr I	186	4734.177		Pr II	4	4102.10		0 11	
4710 40		N II	68	4734.427		Gd II	43	4752.7313		Ne I	21
4718.43 4719.040		Gd II	43	4734.52		Y II		4752.87		Cr I	194
4719.10		Hf II	15	4734.682		Ti I	233	4753.06		Zr I Sc I	66 5
4719.12		Zr I	66	4734.75		C II Co I	48 156	4753.152 4753.957		V I	113
4719.37		Ne II	67	4734.828 4734.94		Zr II	138	4754.042		Mn I	16
4719.515 4719.80		Ti II Zr II	59 116	4735.67		Hf II	25	4754.358		Co I	156
4719.838		Sm II	3	4735.75		Hf II	59	4754.38		Ti I	202
4719.93		La II	81	4735.846		Fe I	1042	4754.635		Pr II Cr I	4 168
4720.15	P	Fe II	54	4735.93		A II	6	4754.743		Cr 1	100
		D 77	8	4736.13		Cr I	195	4754.768		N1 I	141
4720.26 4720.56	P	P II Fe I	8 1114	4736.50		Ni I	99	4755.12		S II	35
4720.830	r	Sc I	14	4736.780		Fe I	554	4755.137		Cr I	124
4720.997		Fe I	1071,409	4737	P	C IV	12	4755.347		Gd II Cl II	134 13
4721.14		Cr I	232	4737.282		Ce II Cr I	145	4755.64 4755.728		Mn II	5
4721.273		Gd II	83 75	4737.350 4737.59		V II	16	4756.113		Cr I	145
4721.43 4721.524		C1 II V I	108	4737.633		Fe I	590	4756.519		N1 I	98
4721.59		N II	68	4737.642		Sc I	14	4756.722		Co I	180
4721.62		A II	85	4737.769		Co I	57	4757.326		Cr I	290
			•	4738.11		C II	1	4757.37		v I	113
4722.159 4722.278		Zn I Sr I	2 5	4738.29		Mn II	5	4757.50		V I	113
4722.333		Bi I	2	4738.41		C1 II	75	4757.565		WI	7
4722.58		Ca II	7	4738.52	P	Fe II	170	4757.582		Fe I Cr I	634,1115 231
4722.603		Ti I	75	4739.108		Mn I Cl II	21 13	4757.591 4757.791		Gd II	45
4722.652		Bi I	2	4739.42 4739.48		Zr I	43	4757.841		Ru I	12
4722.741 4722.877		Cr I V I	195 108	4739.49		Ce II	157	4757.842		Ce II	
4723	P	N IV	11	4739.49		PII	14	4758.120		Ti I	233
4723.06		Cr I	145	4739.59		Mg II	18	4758.42		Ni I	193
		m		4739.80		La II	64	4758.421		Cu II	1
4723.171		Ti I Cr I	75 292	4740	P	N IV	11	4758.742		V I	51
4723.18 4723.37	P	Ni I	162	4740.165		N1 I	99	4758.913		Ti I	41
4723.88	P	N1 I	167	4740.27		La II	8	4759.272		Ti I Cr I	233 124
4724.07	P	Fe II	17	4740.343 4740.40		Fe I Cl II	409 51	4759.74 4759.74		Ti I	202
4724.416		Cr I La II	145 50	4741.018		Sc I	14	4759.907		Cr I	169
4724.42 4724.679		Ti I	203	4741.081		Fe I	688	4760.07	P	Fe I	384
4725.090		Ce II	153	4741.089		Cr I	292	4760.15	P	Fe II	169 114
4725.67		Cr I	195	4741.34	P	N1 I	166	4760.23	P	N1 I	114
		10°- 7	1104	4741.533		Fe I	34 6	4760.59		Hf II	85
4725.94 4725.95		Fe I Cr I	11 34 99	4741.71		OII	25	4760.98		Y I	4
4726.165		Fe I	384	4741.922		Sr I	5	4761.242		Cr I	169 176
4726.725		Gd II	148	4742.00		Ge II Ti I	2 202	4761.42 4761.526		Cr II Mn I	176 21
4726.91	_	A II	14 695	4742.129 4742.32	P	Ti I	202 111	4761.67		Zr II	107
4727.01 4727.153	P	Fe I Cr I	6 3 5 99	4742.4	•	8 11	8	4761.73		Cr I	194
4727.21		c II	48	4742.631		v I	128	4762	P	N IV	11
4727.405		Fe I	821	4742.791	_	Ti I	233	4762.376		Mn I C I	21 6
4727.476		Mn I	21	4742.93	P	Fe I	1072	4762.41		0 1	
		WA T	146	4743.08		La II	75	4762.627		Ni I	71
4727.851 4727.9	P	Ni I Mn II	146 5	4743.112		Cr I	290	4762.727		Pr II	26
4727.936		Co I	15	4743.28	P	Fe II	31	4762.77		Ti II	17
4728.41		La II	22	4743.814	_	Sc I	14	4762.78 4763.38		Zr I S II	66 35
4728.42		Ni I	115	4744.13 4744.64	P P	Fe I Fe I	1168 17	4763.624		Nd II	54
4728.468		Gd II Fe I	65 -822	4744.90	*	CII	1	4763.79	P	Fe II	50
4728.555 4728.769		Sc I	522 1 4	4744.925		Pr II	3	4763.84	P	Ti II	48
4728.768		Fe I	1043a	4745.129		Fe I	67	4763.865		Nd II	6 1 4 6
4729.226		Sc I	14	4745.308		Cr I	61	4763.950		N1 I	740
		w. •	005	4745.680		Sm II	7	4764.294		Cr I	231
4729.291	L	N1 I 8 II	235 46	4745.806		Fe I	821,1068	4764.535	;	Ti II	48
4729.45 4729.544	L	V I	93	4746.115		Co I	182	4764.648		Cr I	124 5
4729.699		Fe I	688	4746.638		V I	113	4764.7 4764.89	P	Mn II A II	15
4729.72	3	Cr I	169	4747.00 4747.143		Cr I Ce II	168	4765.30		C1 II	13
4730.026	35	Mg I	10 72	4747.143		Ti I	75	4765.485	5	Fe I	40
4730.24 4730.361		Ne II Mn II	72 5	4747.680		Ti I	233	4765.78		Hf II	84
4790.30		V I	108	4747.941		Na I	11	4765.859	,	Mn I	21

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	IA	Туре	Element	Multiplet Ne
4766.43 0		Mn I	21	4786.908	**pe	Gd II	65	4804.12	Type	S II	Multiplet No.
4766.62		СІ	6	4787.50	P	Fe I	408	4804.529		Fe I	8 794
4766.63		Cr I	231	4787.64	P	Ti I	40	4804.59	P	Fe I	721
4766.635		V I	113	4787.74		Cr I	168	4804.64	•	Cr I	61
476 6.66	P	Cr I	124	4787.84		Fe I	384	4805.105		Ti II	92
4766.87	P	Fe I	688	4788.126		N II	20	4805.18	P	Cr II	25
4767.142		Co I	182	4788.69		Zr I	43	4805.24		Cr I	283
4767. 280 4767. 3 0	P	Cr I Ti II	231	4788.757		Fe I	588	4805.416		Ti I	260
4767.860	r	Cr I	29 231	4788.9258 4789	P	Ne I C IV	15 5	1805.817 4805.88		Gd II Zr I	60 43
4768.072		Co I	156	4789.354		Cr I	31	4806.07		A II	6
4768.334		Fe I	821	4789.654		Fe I	753	4806.165		Gd II	116
4768.397		Fe I	384	4789.68	P	Ce II	228	4806.255		Cr I	61
4768.68		C1 II	4 0	4789.803		T1 I	41	4806.33	P	T1 II	17
4769.775		T1 I	233	4790.218		Ne I	32	4806.75	P	Ti I	40
4769.80 4770.00		Cr I C I	283 6	4790.337	_	Cr I	31	4806.996		N1 I	163
4770.670		Cr I	124	4790.56 4790.72	P	Fe I Hf II	1068 60	4807.14		Hf II	57
4771.09		Cl II.	40	4790.75	P	Fe I	6 32	4807.243 4807.537		Fe I V I	634,1098
4771.103		Ti I	41	4791.00	-	Ni I	71	4807.725		Fe I	113 688
4771.108		Co I	156	4791.150		Gd II	65	4808.155		Fe I	633
4771.57		Cr I	124	4791.250		Fe I	633	4808.52		N1 I	114
4771.66		C1 II	45	4791.500		Sc I	5	4808.531		Ti I	305
4771.702		Fe I C I	67	4791.584		Sm II	7	4808.864		N1 I	160
4771.72 4772.32		C I Zr I	6 43	4792.02		8 II	46	4809.00		La II	37
4772.54		0 I	16	4792.04 4792.06		Cl II P II	18 36	4809.14		Fe I Hf II	933
4772.57		O IV	9	4792.12		A II	62	4809.18 4809.26	P	Fe I	59 10 39
4772.728		Gd II	133	4792.24	P	Ti I	40	4809.32	F	Cr I	230
4772.77	P	Fe II	31	4792.39	P	Ti II	48	4809.94		Fe I	793
4772.817		Fe I	38,467	4792.482		Ti I	260	4810.06		C1 II	1
4772.89		N1 I	162	4792.513		Cr I	168	4810.17		V II	35
4772.89		0 I	16	4792.63		Au I	3	4810.286		N II	20
4773.412 4773.52	P	N1 I Fe I	167 408	4792.855		Co I	158	4810.534		Zn I	2
4773.76	r	0 I	16	4793.47 4793.656		N1 I N II	158	4810.733		Cr I	144
4773.942		Ce II	17	4793.96	P	Fe I	20 512	4810.760 4811.04		Fe II Fe I	169
4774.222		N II	20	4794.22	_	O IV	9	4811.074		Ti I	467 158
4774.557		Cr I	124	4794.36	P	Fe I	115	4811.14		V II	197
4775.141		Cr I	230	4794.54		C1 II	1	4811.343		Nd II	3
4775.53		Cr I	283	4794.84	P	Ti II	29	4811.57		C1 II	74
4775.87		CI	6	4795.62		Ne II	71	4811.61		Au I	3
4775.87	P	Fe I	1115	4795.84		N1 I	128	4811.881		Sr I	5
4776.075		Fe I	635	4795.853		Co I	185	4811.999		N1 I	130
4776.311		Co I Fe I	158	4796. 169		Cr I	283	4812.240		Ti I	260
4776.34 4776.364		V I	1206 113	4796.210 4796.378		Ti I Co I	260	4812.35		Cr II	30
4776.519		νī	128	4796.67		La II	1 4 63	4812.84 4812.906		C I Ti I	5 41
4777.57		Cr I	124	4796.84		Cr I	283	4812.940		Cu II	8
4777.78	P	Cr II	25	4796.930		V I	113	4813.00		VII	248
4777.846		Sm II	3	4797.157		Nd II	60	4813.07		O IV	9
4778.233		Co I	186	4797.69		Cr I	230	4813.11		Fę I	6 30
4778.259		Ti I	232	4797.973		V I	93	4813.290		81 III	9
4778.50		Cr I	124	4797.983		Ti I	260	4813.45	P	Co I	142
4778.93 4779.09		C1 II O IV	4 0 9	4798.25 4798.269		O IV Fe I	9	1813.476	_	Co I	158
4779.11		SII	8	4798.40		Cl II	1042 13	4813.72	P	Fe I V II	1243
4779.347		Sc I	5	4798.535		Ti II	17	4813.952 4813.966		Co I	197 158
4779.444		Fe I	720	4798.736		Fe I	38	4814.265		Cr I	144
4779.710		N II	20	4799.06	P	Fe I	1098	4814.617		N1 I	98
4779.87		Cr I	124	4799.30		Y I	13	4814.80		Ge II	•2
4779.979		Co I	158	4799.412		Fe I	888	4815.05		Zr I	44
4779.986		Ti II	92	4799.423		Nd II	2	4815.22	P	Fe I	720
4780.60 4780.81	P P	Fe II Fe I	50	4799.786		V I	3	4815.515		8 11	9
4781.04	r	YI	633 13	4799.797 4799.83		Ti I Ni I	242 161	4815.62		Zr I	43
4781.168		N II	20	4799.859		Gd II	126	4815.808 4815.900		Sm II Co I	14 142
4781.32		C1 II	40	4799.918		Cd I	2	4815.92		Ni I	131
4781.432		Co I	57	4799.94	P	V II	29	4816.012		Sm II	41
4781.718		Ti I	41	4800.100		Gd II	133	4816.41		Cr I	283
4781.82		C1 II	13	4800.14	_	Fe I	384	4816.47	P	Ti I	40
4781.95	_	Ne II	71	4800.55	P	Fe I	590	4816.47		Zr II	66
4782.79	P	Fe I	588	4800.652	_	Fe I	1042	4816.67	P	Fe I	588
4783.06		Cr I	283	4800.77	P	O IV	9	4817.22		Hr II	69
4783.306 4783.420		Ti I Mn I	41 16	4801.030 4801.05		Cr I Gd II	168	4817.33		C I	5
4783.43		O IV	9	4801.05 4801.150		Pr II	65 36	4817.773 4817.847		Fe I N1 I	67 254
4784.320		Sr I	5	4801.63	P	Fe I	1115	4817.847 4818.26	P	Fe II	254 11
4784.480		v i	3	4801.80		0 I	15	4818.66	P	Fe I	719
4784.70	P	Cr I	168	4801.90	P	Ti I	40	4819.46		C1 II	1
4784.94		Zr I	44	4601.93	P	T1 I	40	4819.60		8 11	46,52
4785.070		Co I	186	4802.20	_	0 I	15	4819.64		Y I	13
4785.42 4785.44		Lu II Cl II	5	4802.53	P	Fe I	1206	4819.740		81 III	9
4785.44 4785.963		Fe I	40 1044	4802.575 4802.81		Gd II 8 III	43	4819.79		Cl II	13
4786.293		Ni I	50	4802.883		Fe I	888,934	4820.336 4820.410		Nd II Ti I	47 128
4786.515		VI	113	4803.00		0 I	15	4821.01	P	Ti II	126 29
4786.541		N1 I	98	4803.272		N II	20	4821.143	-	N1 I	254
4786.58		Y II	22	4803.536		Gd II	102	4991 00		T4 T	004

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4000 00		čr I	144	4840.329		Fe I	1068	4858.24	P	Fe I	1069
4822. 06 4822.3 9	P	Ti II	110	4840.874		Ti I	53	4858.27	P	Fe I	1098
4822.66	P	Fe I	633	4840.89	P	Fe I	1070 266	4858.74 4858.88		N III N III	9 9
4823.31		Y II	22	4841.52 4841.65	P P	Cr I Fe I	633	4859.030		Nd II	3
4823.396		V II Mn I	223 16	4841.67	P	Ni I	164	4859.038		Pr II	25
4823.516 4823.84		PII	13	4841.701		Sm I	2	4859.12		Fe I	1068
4823.93	P	o IV	9	4841.73		Cr I	266	4859.18		La II Si II	86
4824.05		La II	50	4841.80		Fe I Zr II	1070 138	4859.28 4859.31	P	Fe I	632
4824.07		S II	52	4841.98		21 11	100	4000.01	•		
4824.13		Cr II	30	4842.01		N1 I	260	4859.323		He II	2
4824.162		Fe I	888	4842.19	P	Fe I	511	4859.748		Fe I	318
4824.20		Ge II	2	4842.50	P	V II Fe I	248 1098	4859.84 4860.029		Y I D	13 1
4824.29	_	Zr I	43	4842.71 4842.78	P	Fe I	1069	4860.20		Cr II	30
4824.97	P	Cr II Ti I	25 250	4843.155		Fe I	687	4860.35		N II	67
4825.445 4825.482		Nd II	3	4843.165		Ni I	50	4860.37		Cr I	31
4825.51		Cr I	144	4843.19		Mn I	43 105	4860.90 4860.98	P	La II Fe I	8 688
4825.593	_	Mn I	43	4843.26 4843.29		O II La II	98	4861.03	r	0 11	57
4825.71	P	Fe II	30	1010110							
4825.91		Ra I	1	4843.39	P	Fe I	794	4861.205		Cr I	31
4826.649		Pr II	20	4843.454		Co I Ba II	158 15	4861.33 4861.332		N III H	9 1
4826.73		CI	5 22	4843.46 4843.53	P	Ni I	235	4861.842		Cr I	31
4826.87 4826.896		La II Mn I	43	4843.829	-	WI	1	4862.054		Mn I	43
4827.338		Ne. I	10	4843.989		Ti I	217	4862.54	P	Fe I	1070
4827.458		V I	3	4844.00		Hf II Fe I	16 750	4862.60 4863.653	P	Fe I Fe I	1069 687
4827.597		Ti I	250	4844.016 4844.208		Sm II	26	4863.75	P	Ti I	217
4828.05 4828.66		Zr I Cr I	44 31	4844.31	P	V II	29	4863.78	P	Fe I	384
4020.00		0. 1	41								440
4828.923		Si III	9	4844.315		Mn I Ce II	43 8	4863.931		Ni I Ti I	113 201
4829.028		N1 I	131	4844.87 4845.01	P	0 II	30	4864.187 4864.282		N1 I	128
4829.23		K II Cr I	1 31	4845.17		N1 I	115	4864.32		Cr II	30
4829.376 4829.568		Sm II	36	4845.656		Fe I	588,888	4864.38		PII	13
4829.68	P	Fe I	1038	4845.67		Y I	13	4864.741	P	V I V I	3 50
4830.40	P	Fe II	206	4846.29 4846.47	P	Cr I Fe II	208 25	4864.83 4864.95	r	0 11	29
4830.51	P	La II Fe II	51 54	4846.574	•	· Ce II	17	4865.02		Gd II	65
4831.11 4831.15	P	N1 I	100	4847.09	P	Fe I	67	4865.43		Hf II	93
				4048 44		Ba II	14	4865.620		Ti II	29
4831.183		N1 I	111	4847.14 4847.177		Cr I	144	4865.96		A II	85
4831.627 4831.642		Cr I V I	208 3	4847.296		CaI	50	4866.07		Zr I	44
4832.065		Ti I	250	4847.61	P	Fe II	30	4866.267	_	Ni I	111
4832.075		Sr I	4,5	4847.760		Sm II A II	53 6	4866.77	P	Fe I N III	1093 9
4832.236		Cu II	1	4847.90 4848.24		Cr II	30	4867.18 4867.53	P	Fe I	38
4832.276 4832.427		Nd II V I	3	4848.41	P	Ti I	217	4867.59		A II	62
4832.54	P	Cr I	266	4848.46		Hf II	. 83	4867.64	P	Fe I	587
4832.704		N1 I	146	4848.487		Ti I	201	4867.73	P	Fe II	30
		Fe I	888,1098	4848.821		V I	78	4867.79	P	v II	29
4832.734 4832.97	P	Cr II	176	4848.898		Fe I	114	4867.839		Nd II	46
4833.027	-	V I	78	4849.12	P	N1 I	112	4867.870		Co I	158
4833.21	P	Fe II	30	4849.18 4849.4	P	Ti II Ne II	29 71	4868.264 4868.38	P	Ti I Fe I	231 38
4834.232		Gd II Co I	65 57	4849.67	P	Fe I	793	4868.700	-	Sr I	10
4834.359 4834.511		Fe I	115	4850.58		La II	51,88	4868.82	P	Fe II	30
4834.618		Sm II	45	4850.84		Ba II	15	4869.153	P	Ru I Fe I	11 751
4834.82	P	N1 I	158	4851.10 4851.36		Mg II Zr I	25 43	4869.45 4869.8	r	Ne II	71
4835.68		Cr I	229	4001.00							
4835.85		8 II	46	4851.465		Cr I	208	4870.05	P	Fe I	985
4835.862		Fe I	1068	4851.483 4852.560		V I Ni I	3 130	4870.129 4870.71	P	Ti I Fe II	231 30
4835.982		Nd II Ti I	1 241	4852.69		ΥI	13	4870.796	-	Cr I	143
4836.125 4836.18	P	Cr I	266	4853.30	P	N1 I	207	4870.845		N1 I	131
4836.22		Cr II	30	4853.52	P	Cr I	61 99	4871.27	P	Fe II Fe I	25 318
4836.27		N1 I	114	4853.74 4854.18	P	Ní I Fe I	1243	4871.323 4871.58		0 11	57
4836. 79 4836. 857		Cl II Cr I	13 1 44	4854.365	-	Sm II	36	4871.94	P	Fe I	630
4837.42	P	Ti I	250	4854.604		Mn I	43	4872.02		Cr I	30
				4054 65		Zr II	78	4872.144		Fe I	318
4837.65	P	Fe I	12 43 85	4854.65 4854.727		Ti I	217	4872.493		Sr I	4
483 7.65 483 7.948	P	N1 I Co I	15	4854.87		Y II	22	4872.69	P	Fe I	1115
4838.09	P	Fe I	630	4854.89		Fe I	1043	4872.91	P	Fe I	1097
4838.244		Mn I	43	4855.045		Sr I	10 61	4873.27 4873.339	P	N1 I Gd II	112 65
4838.519		Fe I	687	4855.146 4855.235		Cr I Co I	14	4873.339		Ni I	111
4838.651 4838.81	P	Ni I Fe I	260 1167	4855.414		N1 I	130	4873.58		N III	9
4839.08	F	V II	223	4855.54	P	Fe II	25	4873.74	P	Fe I	633
4839.251		Ti I	217	4855.683		Fe I	687	4874.025		Ti II	114
		M1 TT	440	4855.95	P	Ti II	114	4874.35	P	Fe I	467
4839.251 4839.549		Ti II Fe I	110 588	4856.012	-	Ti I	231	4874.651		Cr I	167
4839.616		Gd II	126	4856.19		Cr II	30	4874.805		V II	197
4839.62		Lu II	2	4856.49 4856.76		0 II 0 II	29 29	4874.809 4875.32	P	N1 I Fe I	98 10 38
4839.77	P	Fe I	1206 13	4856.76 4857.04		C1 II	7 4	4875.462	-	VΙ	3
483 9.87 484 0.00	P	Y I Fe II	13 30	4857.34		Cr I	61	4875.49.	P	V II	248
4840.02	-	La II	37	4857.382		N1 I	111 200	4875.72 4875.89	P	Fe I Fe I	12 43 687
4840.22		Cr I	266	4857.60		Cr II	200	4075 066		CA II	126

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
4876.06		8r I	4	4896.71		N III	9	4919.867		Ti I	200
4876.19	P	Fe I	631	4896.77		C1 II	17	4920.272		Co I	57
4876.325		8r I	5	4898.52		Al II	96	4920.28	P .	Cr II	36
4876.41 4876.48	P	Cr II Cr II	3 0 30	4898.76 4899.520		Al II Co I	104 92	4920.35 4920.509	P Forb	He I Fe I	49 318
4877.08	•	A II	112	4899.64		Al II	96	4920.692		Nd II	2
4877.61	P	Fe I	384	4899.90	P	Fe II	30	4920.945		Cr I	143
4878.049		Gd II	64	4899.910		T1 I	157	4920.98		La II	7
4878.132		Ca I	35	4899.92		La II	7	4921.074	_	Ru I	11
4878.218		Fe I	318	4899.934		Ba II	3	4921.18	P	N1 I	100
4879.121		Pr II	20	4900.03	P	Ti I	295	4921.29		Ta I	5
4879.90		A II	14	4900.13		Y II	22	4921.69		Si II	-
4880.06		Cr I	167	4900.47		8 11	46	4921.768		T1 I	200
4880.20		La II Co I	153	4900.50	P	Cr I	202	4921.80		La II	7
4880.25 4880.30	P	V II	15 29	4900.624 4900.625		V I Ti I	118 295	4921.929 4922.14		He I Cl II	48 17
4880.560	-	V I	50	4900.83	P	Cr I	202	4922.18	P	Fe I	1110
4880.922		Ti I	201	4900.97		Ni I	98	4922.267		Cr I	143
4881.25		Zr I	44	4901.30		8 11	46	4922.3		Ne II	71
4881.3		Li II	4	4901.65		Cr II	190	4923.578		Gd II	126
4881.44		Y II	12	4902.77		Al II	96	4923.921		Fe II	42
4881.554		V I	3	4902.89	P	VII	29	4924.043		Zn II	3
4881.726		Fe I	588,1041	4903.10	P	Fe I	589	4924.08		S II	7
4881.81		N III	9	4903.239		Cr I	31	4924.28		C1 II	12
4881.925 4882.151		Fe I	113,133 687	4903.317 4903.71		Fe I Al III	318 11	4924.60 4924.776		O II Fe I	28 114
4882.183		Ϋ́Ι	50	4903.85	P	Fe II	30	4924.83		Cl II	39
4882.25		A II		4904.172		Co I	141	4925	P	0 V	10
4882.326		Ti I	231	4904.285		v i	50	4925.17		C1 II	12
4882.462		Ce II		4904.350		V I	118	4925.28		Fe I	1065
4882.704		Co I	158	4904.413		N1 I	129	4925.32		S II	7
4883.415		V II	209	4904.447		VI	118	4925.396		Ti I	157
4883.61		Zr I	44	4904.51		Hf II	83	4925.578		N1 I	141
4883.69		Y II	22	4904.75		A II	34	4925.657		V I	50
4883.73		S II V II	46	4904.76		Cl II	17	4925.90		Zr II	107
4884.06 4884.14		N III	197 9	4905.09 4905.15		Zr I Fe I	43 986	4926.02 4926.148		Ta I Ti I	6 39
4884.57		Cr II	30	4906.11		ΥÏ	13	4926.82	P	Fe I	8 44
4884.915		Ne I	20,35	4906.80	P	Fe I	1096	4926.94	P	V II	29
4884.949		Cr I		4906.88		0 11	28	4926.99		Hf II	13
4885.082		Ti I	157	4906.88		Si II		4927.17		P II	
4885.435		Fe I	966	4907.125		Co I	14	4927.42		Fe I	1 3 792
4885.63		S II	15	4907.17		C1 II	39	4927.56		Fe III	43
4885.776		Cr I	30	4907.743		Fe I	687	4928.290		Co I	158
4885.957		Cr I	143	4907.888		Ru I	11	4928.342	_	Ti I	200
4886.17 4886.335	P	Fe I Fe I	4 67 1066	4908.46	P	Ti I Fe I	295	4928.62 4928.895	P	V II Ti I	29 39
4886.725		N1 I	158	4908.61 4908.67	r	Zr II	115 145	4930.04	P	Fe I	6 3 1
4886.821		v i	50	4908.74		Fe III	111	4930.183		Cr I	259
4886.92	P	Fe II	54	4909.105		Ti I	39	4930.331		Fe I	985
4886.992		Ni I	141	4909.387		Fe I	985	4930.821		Ni I	193
4887.013		Cr I	143	4909.726		Cu II	960 5	4931.653		Cu II	195 5
4887.189		Fe I	1065	4909.87		Cr I	61	4932.00		CI	13
4887.37	P	Fe I	1037	4910.027		Fe I	687	4932.029		V I	50
4887.72 4887.73		Zr I	43	4910.328		Fe I	1068	4933	P	N V	7
4888.29		Cr I A II	31 135	4910.570 4910.838		Fe I Gd II	1068 64	4933.19 4933.24	P	Fe I A II	1070 6
4888.530		Cr I	31	4911.205		Ti II	114	4933.348		Fe I	1065
4888.542		Gd II	126	4911.34		La II	87	4933.878		Fe I	968
4888.651		Fe I	1066	4911.52	P	Fe I	1098	4934.023		Fe I	1068
4889.009		Fe I	67,749	4911.593		Ru I	11	4934.086		Ba II	1
4889.06		A II	15	4911.664		Zn II	3	4934.46		Hf II	16
4889.113		Fe I	985	4911.786		Fe I	984	4934.83		La II	72
4889.15		Re I	1	4912.030		N1 I	111	4934.89		Cr I	259
4889.690 4889.73		Cu II Cr I	1 61	4912.38		V II	222	4935.03	P	N I Fe I	9
4890.45	P	N1 I	114	4912.399 4912.49		Co I Cr II	14 190	4935.42 4935.61	r	La II	886 50
4890.762	-	Fe I	318	4912.52	P	Fe I	1040	4935.830		Ni I	177
4890.93		0 11	28	4913.248		Sm II	53	4936.13		A II	34
4891.43		La II	95	4913.366		Fe II	218	4936.155		Gd II	116
4891.496		Fe I	318	4913.616		Ti I	157	4936.334		Cr I	166
4891.55	P	Cr II	36	4913.970		N1 I	132	4936.41		Ta I	11
4891.828		Ti I	201	4914.32		A II	112	4936.99		C1 II	12
4891.97		Cr I	61	4914.32		C1 II	17	4937.196		Cu II	6
4891.980		Sr I	10	4914.385		Nd II	52	4937.337		N1 I	114
4892.11 4892.86		Gd II Fe I	116 1070	4914.90 4915.236		N I Ti I	9	4937.719 4938.04		Ti I Ti I	39 173
4893.065		Ti I	231	4915.236 4916.67	P	Fe I	157 986	4938.04 4938.100		Sm II	17 3 23
4893.12		Zr I	43	4916.78	-	Gd II	125	4938.183		Fe I	9 6 6
4893.44		Y I	13	4917.15		S II	15	4938.283		Ti I	289
4000 ==		The	1005					46			
4893.59 4893.70	P P	Fe I Fe I	1096	4917.25		Fe I	1066	4938.820		Fe I	318
4893.780	r	re I Fe II	1113 36	4917.72 4918.00		Cl II Fe I	17	4939.244 49 3 9.46	P	Fe I Fe I	1065,1070
4893.90		Ti I	201	4918.363		re 1 Ni I	1070 177	4939.40	•	Fe I	10 43 16
4893.968		Ce II	31	4918.373		Cu II	5	4940	P	0 V	10
4894.218		V I	118	4918.712		N1 I	113	4941.015		Ti I	173
4894.30 4894.43		Gd II Zr II	65	4918.98		Al II	103	4941.03	P	Cr II	36
		~- 11	107	4918.999		Fe I	318	4941.12		0 II	33

I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.	IA	Type	Element	Multiplet No.
4941.920)	N1 I	114	4967.944		Sr I	4	4997.099		Ti I	5
4942.418		Min I	20	4968.50		V II	68	4997.23		N II	64
4942.47		S II	7	4968.566		Ti I	173	4997.81 4998.233		Ba II Ni I	14 111
4942.495		Cr I	9	4968.575		Gd II Fe I	12 4 887	4998.373		Gd II	133
4942.59	P	Fe I A II	1097 75	4968.709 4968.76		0 I	14	4998.43	P	Al II	30
4942. 96 4943	P	N V	9	4969.65		PII	13	4998.55		Cr I	123
4943.06	-	0 11	33	4969.927		Fe I	1066	4999.114		Fe I	1040
4943.074	4	T1 I	52	4970.12		C1 II	12	4999.46		La II Ti I	37
4943.24		C1 II	47	4970.39		La II	37	4999.504		11 1	38
4943.24		K II	7	4970.496		Fe I	883	4999.69		Hf II	35
4943.42		P II	13	4970.66	P	Fe I	985	5000.335		Ni I	145
4944.388	8	Ti I	173	4971.354		Ni I Ce II	274	5000.73 5000.91	P	Fe II Zr II	25 95
4944.59 4945	P	Cr I N V	259 10	4971.475 4971.668		Sr I	4	5000.97		Al II	79
4945.29	P	Fe I	466	4971.92		Li I	5	5000.991		Ti I	173
4945.38		Hf II	15	4971.935		Co I	158	5001.128		NII	19
4945.458		N1 I	145	4972.16	_	A II	6	5001.15 5001.469		Lu I N II	19
4945.65		Fe I Ni I	1113 1 4 8	4972.39 4972.90	P P	Fe I Fe I	1096 631	5001.489		Ca II	15
4946.037	•	NI I	140	4012.00	•		301				
4946.394	4	Fe I	687	4973.051		Ti I	173	5001.871		Fe I	965
4946.47		La II	36	4973.108		Fe I	984	5002.02 5002.12		Fe III La II	92
4947.58		V II Cr I	197 202	4973.16 4973.4	P Forb	V II Na I	209 10	5002.12		V I	132
4947.91 4947.99		Ti I	202 39	4973.4	rroid	Gd II	64	5002.692		N II	1
4948 . 18		Ti I	200	4974.47		Co I	92	5002.800		Fe I	687
4948.54		Fe III		4975.344		Ti I	283	5003.751	_	N1 I	50
4948.62		Sm II	49	4975.415		Fe I	586	5003.85 5004.034	P	Fe I Fe I	211
4948.64		Cr I Zr I	202 28	4976.155 4976.345		N1 I N1 I	112 49	5004.034		Co I	1112 141
4948.77		ZF I	20	4570.040			***	00011201			
4948.84	8	Fe II		4976.71	P	N1 I	254	5004.264		Fe II	
4949.45		A II	62		P Forb	Na I Fe I	10	5004.38 5004.907		Cr I Mn I	122 20
4949.58		Cr I	259 4	4977.653 4977.731		re I Ti I	985 173	5004.907		N II	19,6
4949.76 4950.11		La I Fe I	687	4978.11	P	Fe I	986	5005.160		Ne I	29
4951.66		V 11	29	4978.191		Ti I	173	5005.18	P	Ti II	71
4952	P	n V	8	4978.541		Na I	9	5005.60		K II	2
4952.06		La II	92	4978.606	_	Fe I Fe I	966	5005.720 5006.126		Fe I Fe I	984 318
4952.33		N1 I Sm II	113 32	4978.70 4979.58	P	re I Fe I	1035 883	5006.120		WI	1
4952.37	1	Om 11	02	2010100							
4952.64		Fe I	1068,1111	4979.84	P	Fe I	465	5006.71	P	S II Fe I	57
4952.78		Cr II	14	4980.161 4980.30	P	Ni I Cr I	112 123	5006.72 5006.787	P	re 1 Cu II	211 10
4953.179 4953.20		Co I Ni I	111	4981.30	P	Cr I	123	5007.209		Ti I	38
4953.37		Ti I	39	4981.38	P	Ti II	71	5007.286		CoI	14
4953.71		Cr I	166	4981.732		Ti I	38	5007.289		Fe I	966, 1065
4953.73		Cu II	9	4982.13		Y II Fe I	20 1067	5007.316 5009.35		N II A II	24 6
4953.97 4954.02		Fe II Gd II	168 114	4982.507 4982.813		Na I	9	5009.54		S II	7
4954.02		C II	25	4983.258		Fe I	1067	5009.652		Ti I	5
	_	.n. •	4000	4000 60	P	Cr I	202	5010.045		N1 I	111
4954.30 4954.33		Fe I P II	1093 13	4983.63 4983.855	r	Fe I	1066	5010.202		Ti II	113
4954.81		Cr I	166	4984.126		N1 I	143	5010.30	P	Fe I	211
4955.78		0 11	33	4984.905		Gd II	64	5010.620		N II	4
4957.03		Ne I	25	4985.261	ъ	Fe I	984	5010.821 5010.961		Gd II N1 I	59 144
4957.15 4957.30		Ba II Fe I	10 318	4985.46 4985.503	P	Cr II Cu II	36 6	5010.901	P	Fe I	144 1066
4957.60		Fe I	318	4985.553		Fe I	318	5011.24		N II	64
4957.68		Fe I	1066	4985.60		As II	3	5012.026		NII	64
4958.26	P	Ti I	52	4985.98	P	Fe I	1094	5012.071		Fe I	16
4958.78	18	Gd II	6 4	4986.24		Fe I	1070	5012.16	P	Fe I	1070
4959.13		Nd II	1	4986.82		La II	22	5012.464		N1 I	111
4959.52	2	C II	25	4986.90	P	Fe I	1092	5012.611	n	Cu II	7
4959.68 4961.39		Co I Nd II	1 4 22	4987.377 4987.62	P	N II Fe I	24 1094	5012.68 5013.00	P	Fe I Ba II	1093 10
4961.39 4961.90		Fe I	845	4987.83	P	Fe I	966	5013.284		Ti I	173
4961.93		Sm II	41	4987.853		Co I	14	5013.316	_	Cr I	60
4962.10		Al II	80	4988.963		Fe I	1066	5013.38	P	Ti II Ti II	113
4962.26 4962.56		Sr I Fe I	4 1097	4989.140 4991.067		Tí I Tí I	173 38	5013.712 5014.03		8 11	71 15
2000100											
4963.75		V II	221	4991.11	P	Fe II	25 64	5014.185 5014.277		Ti I Ti I	5 38
4964.34		Cr II Ti I	36 173	4991.22 4991.27		N II. La II	6 <u>4</u> 57	5014.277		La II	159
4964.71 4964.90		C II	25	4991.277		Fe I	1065	5014.620		v I	132
4964.92		Cr I	9	4991.86	P	Fe I	1094	5014.950		Fe I	965
4965.04	17	Gd II	143	4991.94	_	8 11	7	5015.04	-	Gd I	6
4965.12		A II	14	4992.80	P	Fe I Fe II	1110 3 6	5015.30 5015.675	P	Fe I He I	968 4
4965 . 14 4965 . 40		N1 I V II	147 209	4993.355 4993.51		S I	3 U	5016.162		Ti I	38
4965.86		Wn I	20	4993.687		Fe I	1111	5016.387		N II	19
				4004 400		Fe I	18	5016.48	P	Fe I	1089
4966.08		V II Fe I	29 687	4994.133 4994.14		re I Lu II	16 2	5016.48	•	A II	251
4966.30		Fe I	986	4994.358		N II	24,64	5017.16		A II	37
4966.58		Ço I	14	4995.062		Ti I	216	5017.591		N1 I	111
4966.80	0	Ċr I	259	4995.41	P	Fe I	1113	5017.63	D	A II	13
4967.30		T1 I	5 14	4995.52 4995.65	P	C1 II N1 I	12 145	5018.02 5018.294	P	Fe I Ni I	884 162
4967.40 4967.58		O I Ni I	14 141	4995.89	P	T1 II	145 71	5018.43	P	Fe I	585
4967.86		0 I	14	4996.82	-	La II	93	5018.434		Fe II	42
4967.89		Fe I	1067	4996.850		N1 I	144	5018.78		0 I	13

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5019.18	P	Fe I	1242	5040.902		Fe I	1092, 1094	5070.249		Sc I	13
5019.20		Cr I	20	5041.063		Si II	5	5070.957		Fe II	
5019.34		0 I	13	5041.074		Fe I	16	5071.023		Gd II	114
5019.361 5019.478		Gd II Fe II	81 168	5041.077	P	N1 I Fe I	158 1328	5071.23	P	Hf II Co I	23
5019.74	P	Fe I	966	5041.32 5041.33	P	Fe I	1110	5071.40 5071.475	r	Ti I	14 110
5019.855		V II	232	5041.620	-	Ca I	34	5072.077		Fe I	1089
5019.979		Ca II	15	5041.66		CI	4	5072.30		Ti II	113
5020.028		Ti I	38	5041.759		Fe I	36	5072.690		Fe I	1095
5020.13		0 I	13	5042.195		N1 I	131	5072.920		Cr I	8
5020.368		Gd II	64	5042.589		Mn I	20	5073	P	N IV	17
5020.67	P	Fe I	629	5043.578		Ti I	38	5073.60		N II	10
5020.819		Fe I	748	5044.008		Ce II	16	5073.78		Fe III	5
5021 5021.141	P	C IV Ca II	3 15	5044.221 5044.8		Fe I C II	318 35	5074.063 5074.757		Fe II Fe I	205 1094
5021.60	P	Fe I	1093	5045.098		N II	4	5075.17	P	Fe I	1089
5021.68	P	Fe I	1067	5045.400		Ti I	38	5075.304		Ce II	14
5021.894		Fe I	629	5046.61	_	Zr I	62	5075.814		Sc I	13
5021.903 5022.244		Cr I Fe I	8 965	5047.14 5047.2	P	Fe I C II	1242 35	5075.829 5075.92		Fe II Hf II	16
00221212			800	3047.2		0 11	00	3073.82		111 11	10
5022.82	P	T1 II	71	5047.28		s II	15	5076.15		Cr II	201
5022.871		Ce II	16	5047.308		V II	127	5076.288		Fe I	1089
5022.871 5022.874		Ti I Fe II	38	5047.736 5048.04		He I La II	47 90	5076.321 5077.410		N1 I Co I	143 184
5023	P	CIV	3	5048.082		Ni I	161	5078.25		C1 II	16
5023.11		N II	64	5048.208		T1 I	199	5078.28		Zr I	62
5023.133		Gd II	64	5048.454		Fe I	984	5078.53	P	Fe I	744
5023.226 5023.39		Fe I Ti I	1095 199	5048.752		Cr I Ni I	20 195	5078.711		Cr I	4000
5023.476		Fe I	1150	5048.851 5048.91		V II	209	5079.002 5079.226		Fe I Fe I	1092 66
				3013101			200	00101220			00
5024.842		T1 I	38	5049.825		Fe I	114	5079.65		Hf II	71
5025.08	P	Fe I	1110	5050.13	P	Fe I	963	5079.681		Ce II	15
5025.54 5025.570		Cr I Ti I	20 173	5050.878 5051.29	P	Gd II Fe I	114 1089	5079.742		Fe I N1 I	16
5025.665		N II	19	5051.527	r	N1 I	144	5079.961 5080.21		La II	60 80
5025.73	P	Fe I	466	5051.636		Fe I	16	5080.44		Hf II	83
5026.50		N1 I	158	5051.778		Cu II	7	5080.523		N1 I	143
5027.136		Fe I	1065	5051.900		Cr I	8	5080.95	P	Fe I	585
5027.19 5027.212		S II Fe I	1 883	5052.122 5052.879		C I T1 I	12 199	5081.111 5081.39	P	N1 I T1 I	194
00211212			000	0002.078			100	3001.38	-	11 1	109
5027.34	P	Fe I	968	5052.97	P	Fe I	585	5081.554		Sc I	13
5027.51	P	Fe I	960	5053.300		W I	1	5081.86	P	Fe I	962
5027.66 5027.785	P	Cr I Fe I	202 1110	5054.070 5054.647		Ti I Fe I	171,294 884	5081.920		Fe II Ni I	221
5028.00		Cr I	122	5056.00		Fe I	1149	5082.354 5082.68	P	Fe I	130 466
5028.129		Fe I	791	5056.020		Si II	5	5083.342	-	Fe I	16
5029.623		Fe I	718	5056.27		KII	3	5083.713		Sc I	13
5029.812		Mn I	20	5056.353		Si II	5	5084.081	_	N1 I	162
5030.740 5030.75		Fe II Fe III		5056.856 5057.03		Fe I Hf II	1111 71	5084.55 5085 02	P	Fe I Al II	932
0000110				0001100			,,	5085.02		AI II	43
5030.784		Fe I	585	5057.49		Fe I	1067,1150	5085.333		Ti I	109
5031.019		Sc II	23	5057.83	P	Fe I	1185	5085.479		N1 I	130
5031.030 5031.290		Fe I Gd II	746,883 114	5058.00 5058.03		Fe I Ni I	967 141	5085.547 5085.68	P	Sc I Fe I	13
5031.562		Gd II	64	5058.18		Hf II	37	5085.695	•	Co I	1093 14
5031.901		Fe I	1150	5058.50		Fe I	884	5085.824		Cd I	2
5032.41		SII	7	5060.079		Fe I	1,1095	5085.93	P	Fe I	963
5032.748 5032.794		N1 I Fe II	207	5060.635		Cu II Fe II	1	5086.69		Fe III	5
5032.754		CII	17	5061.794 5062.07		A II	6	5086.77 5086.951	P	Fe I Sc I	1067 13
							·	00001001		50 I	10
5034.06		Co I	91	5062.112		Ti I	199	5087.055		Ti I	109
5034.33		Hf II	26	5062.862		Gd II	64	5087.25		Fe II	
5034.415 5035.025		Pr II Fe I	37 885	5062.91 5063.296		La II Fe I	50 1066	5087.42 5088.16	P	Y II Fe I	20
5035.374		Ni I	143	5063.30		Fe III	5	5088.260	r	Cu II	1066 6
5035.773		Fe II		5064.068		T1 I	294	5088.534		N1 I	190
5035.908		Ti I	110	5064.321		Sc I	13	5088.956		N1 I	162
5035.961 5036.294		Ni I Fe I	145	5064.654 5064.69		T1 I Au I	5	5089.278		Fe II	
5036.468		Ti I	110	5064.92		Zr I	1 62	5089.837 5090.55		Nd II A II	46 122
								0000100			100
5036.92		Fe II	36	5064.95	P	Fe I	1095	5090.56		La II	100
5036.931		Fe I	465	5065.020		Fe I	1094	5090.787		Fe I	1090
5037.0 5037.33		C II Ta I	17 12	5065.201		Fe I Cu II	883	5091.14		Cr II	201
5037.65		Ta I	2	5065.448 5065.910		Cr I	11 60	5091.282 5091.72	P	Co I Fe I	14 745
5037.7505		Ne I	14	5065.985		Ti I	110	5091.73	P	Fe I	745 717
5037.81	P	T1 II	71	5066.28	P	Fe I	882	5091.890		Cr I	20
5038.400		Ti I	110	5066.99		La II	162	5092.251		GG II	114
5038.599 5038.81	P	Ni I Fe I	166 510	5067 5067.082	P	N V Cu II	6 7	5092.797		Nd II	48
0000.01	•		010	00011002		vu 11	,	5093.41		Cr I	20
5038.87	P	Cr I	20	5067.162		Fe I	1092	5093.470		Fe II	205
5039.05		CI	4	5067.714		Cr I	60	5093.646		Fe II	
5039.259		Ni I	142	5067.82		N1 I	141	5093.65		Al II	43
5039.266 5039.959		Fe I Ti I	687 5	5068.10 5068.290		C1 II Cr I	16 20	5094.416 5004.055		N1 I	164
5040.25	P	Fe I	1093	5068.332		Ti I	20 294	5094.955 5096.063		Co I Gd II	92 59
5040.642		Ti I	38	5068.774		Fe I	383	5096.17	P	Fe I	1242
5040.744		Ru I	11	5069.12		Ti II	113	5096.716		Sc I	13
5040.76		N II	19	5069.351	-	Ti I	199	5096.874		N1 I	111
5040.82		Hf II	14	5069.60	P	Fe I	211	5096.998		Fe I	1092

I A	Туре	Element	Multiplet No.	I Å	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5097.29		Cr II	24	5123.723	_	Fe I	16	5146.06		0 I	28,39
5097.375		Fe II Cl II	16	5124.05 5124.17	P P	Fe II Fe I	167 1035	5146.12 5146.30	P P	Fe II Fe I	35 1150
5098.34 5098.38		Gd II	114	5124.60	P	Fe I	585	5146.478	-	N1 I	162
5098.594		Fe I	984	5124.718		Co I	197	5146.753		Co I	170
5098.703		Fe I	66	5124.98		Zr II Fe I	87 1090	5147.09 5147.483		Fe II Ti I	4
5099.091 5099.228		Fe I Sc I	965 13	5125.130 5125.211		Ni I	160	5148.061		Fe I	1090
5099.30		C1 II	16	5125.56		Gd II	99	5148.19	P	Fe II	52
5099.322		N1 I	141	5125.715		Co I	181	5148.234		Fe I	1095
5099.946		Ni I	161	5125.84		A II	122	5148.65		N1 I	158
5100.34		Al II	43	5126.13		8 11	57	5148.724		v i	123
5100.66	P	Fe II	35	5126.19	P	Fe II Co I	53	5148.838		Na I Mn I	8 32
5100.704 5100.706		Fe II Fe III		5126.201 5126.218		Fe I	170 1089	5149.13 5149.33		Fe III	32
5100.840		Fe II	185	5126.598		Fe I	961	5149.538		Fe II	
5100.937		Gd II	114	5127.32		Fe III	5	5149.796		Co I Gd II	39 115
5100.95 5101.121		Fe II Sc I	13	5127.363 5127.367		Fe I Ti I	16 230	5149.841 5150.19	P	Fe I	789
5101.48		Fe II		5127.68	P	Fe I	1	5150.843		Fe I	16
5102.24	P	Fe I	65	5127.866		Fe II	167	5150.86		Al III	14
5102.971	-	Ni I	49	5128.03		Ni I	113	5150.890		Mn I	32
5103.04		C1 II	16	5128.53		Hf II	58	5150.93	P	Fe II C II	35 16
5103.30 5103.45		S II Gd I	7 &	5128.530 5129.143		V I Ti II	123 86	5151.08 5151.83		Cr I	19
5104.03	P	Cr II	38	5129.383		N1 I	159	5151.87		V II	196
5104.038		Fe I	465	5129.520		Pr II	38	5151.915		Fe I Ti I	16 4
5104.08 5104.21		Cl II Fe I	16 1092	5129.658 5130.28		Fe I Gd II	965 115	5152.185 5152.20		PII	7
5104.45		N II	34	5130.389		N1 I	177	5153.235		Cu I	7
8104 AT	P	Fe I	1000	K190 E9		0 I	29,39	5153.402		Na. I	8
5104.47 5105.541	r	re I Cu I	1090 2	5130.53 5130.596		Nd II	29,39 75	5153.402		Cr II	24
5105.80		As II	4	5130.91	P	Fe I	1149	5154.061		Ti II	70
5106.23		La I	9	5131.28	P	Ti II Fe I	86 66	5154.40 5155.136	P	Fe II Ru I	35 10
5106.233 5107.406		Gd II	127 81	5131.475 5131.770		Ni I	114	5155.140		Ni I	206
5107.452		Fe I	16	5132.19		V II	127	5155.764		N1 I	210
5107.54		La II Fe I	164 36	5132.67 5132.931	P	Fe II Ti I	35 230	5155.845 5156.0		Gd I Fe III	6 5
5107.645 5107.70		Cr I	19	5132.96		C 11	16	5156.040		Sr I	11
			•	#400 OO		Es T	040	#4#A 0A		Hf II	83
5107.80 5108.903		As II Co I	6 181	5133.22 5133.29	P	Fe I C II	818 16	5156.06 5156.10		Fe II	60
5108.91		Gd II	114	5133.42		Zr I	27	5156.366		Co I	180
5108.93		Cr I	60	5133.467		Co I Fe I	180 1092	5156.74		La II Gd II	7 114
5109.427 5109.662		T1 I Fe I	109 1089	5133.692 5135.10		Lu I	2	5156.76 5157.28		V 11	127
5110.36	P	Fe I	790	5135.125		Pr II	37	5157.43		La II	97
5110.382		Pr II	38	5136.09		Fe I	1036 5	5157.993		N1 I Al II	111 58
5110.414 5110.43		Fe I Cr II	1 199	5136.47 5136.788		Ta I Fe II	35	5158.187 5158.854		Co I	188
										Fe I	1091
5110.61 5110.751		Hf II Cr I	106 60	5137.075 5137.09		Ni I Cr II	48 201	5159.066 5159.350		V I	123
5110.768		Pr II	35	5137.26		CII	16	5159.93		Fe II	
5111.930	P	Gd II O VI	114	5137.388		Fe I Cr I	1090 207	5159.95 5160.02	P	Fe I O II	1095 32
5112 5112.28	r	Zr II	12 95	5137.94 5138.431		VI	123	5160.105		Gd II	115
5112.490		Cr I	19	5138.71		Cr I	19	5160.824		Fe II	167
5113.130 5113.232		Cr I Co I	60 91	5139.21 5139.255		C II Ni I	16 129	5160.896 5161.18	P	0d II Fe II	115 35
5113.36		C1 II	16	5139.260		Fe I	383	5161.765	•	Cr I	60
		m	400	F400 400		F- T	000	F160 000		Fe I	1000
5113.448 5114	P	Ti I O V	109 1	5139.468 5139.654		Fe I Cr I	383 207	5162.288 5162.34		Cl II	1089 33
5114.07		CII	51	5140.839		Gd II	115	5162.38	P	Fe I	210
5114.10	P	Fe III Fe I	5 1242	5141.55 5141.63	P	Fe I Ta I	930 6	5162.47 5162.80		Gd II A II	140 126
5114.52 5114.55	r	La II	36	5141.750		Fe I	114	5162.93	P	Ni I	159
5115.397		N1 I	177	5141.84		A II	37	5163.61		La II	7
5115.788 5116.06		Fe I Cr II	789 24	5142.263 5142.33		Cr I S II	60 1	5163.74 5163.90		Fe III Al III	2 19
5116.700		Sm II	56	5142.541		Fe I	1090,1092	5164.542		Gd II	97
5117.107		Fe II		5142.763		Ru I	11	5164.56		Fe I	1166
5117.107		Ce II	23	5142.771		Ni I	161	5164.56		Hf II	83
5117.937		Mn I	32	5142.932	_	Fe I	16	5164.69	P	Fe II	167
5119.12 5119.55		C II	20 51	5142.98 5143.49	P	N1 I C II	113 16	5164.70 5164.922	P	Fe I Fe I	210 1033
5119.90	P	Fe I	960	5143.73	P	Fe I	65	5165.140		Nd II	77
5120.34	P	Fe II	35	5144.413	_	Al II	68	5165.156		Co I	39
5120.420 5120.89	P	Ti I Fe I	288 1150	5144.47 5144.672	P	Cr II Cr I	38 60	5165.422 5165.82		Fe I A II	1089 75
5120.89	r	Ni I	177	5144.875		Al II	68	5166.227		Cr I	207
				8444 00 0 0		Ne I	34	5166.286		Fe I	1
5121.646 5121.69		Fe I C II	1095 12	5144.9376 5144.998		Ne I	68	5166.286 5167.28		Le II	95
5121.96	P	Fe I	745	5145.011		Ne I	34	5167.321	3	Mg I	2
5122.082 5122.121		T1 I Cr I	230 19	5145.105 5145.16		Fe I C II	66 16	5167.491 5167.70	P	Fe I Fe I	37 717
5122.767		Co I	170	5145.36		A II	13	5167.96		Cr I	207
5122.99		La II	36	5145.42		Lá I	9	5168.18	P P	Fe I Fe I	96 4 9 60
5123.21 5123.28	P	Y II Fe I	21 1150	5145.465 5145.654		Ti I Al II	109 68	5168.19 5168.24	r	re I N II	960 70
- AU - AU	•			51151001	-		204	5160 CO		C= T	10

D_k

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I Å	Туре	Element	Multiplet No.
5168.660		N1 I	112	5191.60		Zr II	95	5214.64		Cr I	189
5168.901		Fe I	1	5192.000		Cr I Fe I	201 383	5215.185 5215.29		Fe I Cr I	553 206
5169.030 5169.30	P	Fe II Fe I	42 1032	5192.350 5192.524		Ni I	111	5215.928		V II	55
5169.733	•	Fe II	1002	5192.621		Nd II	75	5216.17		Cr I	189
5170.08	P	Fe I	1241	5192.75		Si II		5216.278		Fe I	36
5170.08		N II Ru I	70 11	5192.971 5193.004		T1 I V I	4 125	5216.512 5216.84		N1 I A II	113 126
5171.028 5171.13	P	V II	115	5193.03		C1 II	33	5216.99		Fe III	
5171.46	_	N II	70	5193.43	P	V II	115	5217.36	P	V II	115
F4F4 F00		En T	0.0	5193.488		Cr I	206	5217.395		Fe I	553
5171.599 5171.62	P	Fe I Fe II	36 3 5	5193.89		Fe III	5	5217.69	P	Fe I	965
5172.21	P	Fe I	210	5194.043		Ti I	183	5217.83		La II	
5172.32		N II	66	5194.43		Fe III	5	5217.927		Fe I	880
5172.6		Al III	18	5194.57		Hf II V I	69 125	5217.93 5218.202		C1 II Cu I	3 7
5172.6843 5172.89		Mg I La II	2 100	5194.824 5194.943		Fe I	36	5218.51	P	Fe I	1240
5173.002		Fe II	185	5195.110		Pr II	38	5219.008		Co I	170
5173.15		C1 II	33	5195.307		Pr II	38	5219.053		Pr II	37
5173.37		N II	66	5195.394		V I	125	5219.40		Gd I	6
5173.742		Ti I	4	5195.471		Fe I	1092	5219.697		T1 I	4.
5173.83		La II	158	5196.100		Fe I	1091	5220.070		Cu I	7
5173.898		Pr II	35	5196.24	P	Fe I	406	5220.113		Pr II	35
5174.46		N II	70 1	5196.43 5196.443		Y II Cr I	28 207	5220.297 5220.307		Gd II N1 I	80 114
5175.71 5175.78	P P	Fe I Ni I	188	5196.57		Cr I	207	5220.912		Cr I	201
5175.839	•	Gd II	114	5196.591		Mn I	32	5221.34		C1 II	3
5175.85		C1 II	50,81	5197.165		N1 I	204	5221.43	P	Fe I	1
5175.89		N II	66	5197.216 5197.569		Mn I Fe II	32 49	5221.75 5221.753	P	Fe I Cr I	628 1 93
5176.00		0 11	32	3197.309		10 11	40	0221.700		V. 1	100
5176.085		Co I	92	5197.768		Gd I	6	5222.39		Cr I	206
5176.26	P	Cr II	38	5197.93	P	Fe I	1091	5222.40	P	Fe I Cr I	112 59
5176.28		A II Gd II	37 60	5198.714 5198.843		Fe I Fe I	66 7 4 3	5222.676 5222.685		Ti I	183
5176.285 5176.565		Ni I	209	5198.89		8 11	57	5223.191		Fe I	880
5177.230		Fe I	930	5199.211		Gd II	115	5223.623		Ti I	183
5177.30		La I	9	5199.50		N II	66	5224.082		Cr I	201
5177.430		Cr I Fe III	201	5199.68 5200.188		V II Cr I	55 201	5224.14 5224.30	P P	Ti I Fe I	37 65
5177.73 5177.83		Cr I	206	5200.42		Y II	20	5224.301	-	T1 I	183
5178.104	ъ	Gd II	114	5200.549 5201.00		Gd II S II	147 39	5224.541 5224.558		Cr I Ti I	59,193 183
5178.71 5178.798	P	Fe II Fe I	35 1166	5201.096		Ti I	183	5224.680		wī	1
5178.843		Gd II	147	5201.32		s II	39	5224.928		Ti I	183
5178.95	P	Fe II	35	5202.27		Fe I	1090	5224.94		Zr I	27
5179.136		N1 I	202	5202.339 5202.51		Fe I Si II	66	5224.941 5225.032		Cr I Cr I	201 201
5179.50 5179.919		N II Gd II	66,70 100	5202.94		V II	142	5225.533		Fe I	1
5180.065		Fe I	1166	5203.86		P III	5	5225.821		Cr Į	58
5180.34		N II	66	5204.14		La II	96	5226.06		Fe I	716
5180.53	P	Fe II	35	5204.46		A II	126	5226.20		La II	96
5181.77	•	Si II	00	5204.518		Cr I	7	5226.42	P	Fe I	406
5181.86		Hf I	1	5204. 582		Fe I	1	5226.534		Ti II	70
5181.97	P	Fe II	53	5204.95	P P	Fe I Fe I	407 1112	5226.868 5226.891		Fe I Cr I	38 3 193
5181.995 5183.21		Zn I N II	7 70	5205.31 5205.73	P	Y II	20	5227.10		Cr I	59
5183.41		Cr I	19	5206.039		Cr I	7	5227.15	P	Fe I	114
5183.42		La II	36	5206.059		Ti I	276	5227.192		Fe I	37
5183.6042		Mg I	2	5206.15	P P	Cr I Cr I	59 206	5227.53 5227.70		Fe III V II	115
5183.72		Ti II	86	5206.52	r	01 1	200	3221.10		, 11	110
5184.17	P	Fe I	1147	5206.562		Pr II	38	5227.75	_	Cr I	58
5184.292		Fe I	1089	5206.73	ъ	O II Fe I	32 1005	5227.87	P	Ti II Cr I	103 193
5184.585 5184.590		Ni I Cr I	159 201	5206.80 5207.852	P	Ti I	1095 183	5228.082 5228.408		Fe I	1091
5184.97		N II	66	5207.95	P	Fe I	880	5228.427		Nd II	46
5185.09		Si II		5208.07	P	Cr I	59	5229.57		Fe III	113
5185.90		Ti II	86	5208.436 5208.601		Cr I Fe I	7 553	5229.857 5230.210		Fe I Co I	553,10 90 39
5186.17 5186.329		N II Ti I	70 183	5208.601 5209.90	P	Fe I	584	5230.228		Cr I	58
5186.592		Ni I	205	5210.042		Co I	167	5230.363		Co I	187
				F040 000		Ti I	4	5230.967		Ti I	215
5186.915		Gd II	114	5210.386 5210.488		Gd II	115	5231.41		Fe I	787
5187.237 5187.452		Gd II Ce II	114 15	5210.488		Co I	187	5232.50		Cr II	43
5187.75		Hf II	23	5210.87		Cr II	24	5232.946		Fe I	383
5187.86		N1 I	159	5210.88	P	Cr II	38	5233.817		Ti I	37
5187.922		Fe I	1032	5211.22 5211.544	P	Ti I Ti II	37 103	5234.088 5234.195		V I	131 74
5188.21 5188.700		La II Ti II	95 70	5211.544 5211.832		Co I	184	5234.195 5234.27		La I	10
5188.848		Ca I	49	5211.85		La I	9	5234.28	P	V II	55
5189.61	P	Ti I	215	5212.27		Cr I	189	5234.620		Fe II	49
5100 70		C1 II	33	5212.271		Ti I	215	5235.188		Co I	83
5189.70 5190.42		N II	33 66	5212.271		Nd II	44	5235.3		Fe III	113
5190.56		0 11	32	5212.61		s II	39	5235.392		Fe I	210,1031
5191.081		Gd II	115	5212.699		Co I	170	5235.45	-	N1 I	208
5191.41		P II Nd II	7 45	5212.75 5212.997		Ta I Ti I	1 215	5236 5236.189	P	N IV Fe I	5 1034
5191.448 5191.46		Na II Cr II	45 24	5212.997 5213.08	P	V II	215 55	5236.189 5236.38	P	Fe I	1146
5191.460		Fe I	383	5213.35	P	Fe I	1165	5236.63		Cr I	205
5191.58	P	Fe II	52	5213.80	P	Fe I	962	5237.34		Cr II	43

I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.
5238.25	P	Fe I	962	5261.754		Cr I	237	5278.955		Fe II	184
5238.560	P	Ti I Fe II	37,183	5262.104		Ti II Ca I	70 00	5278.99	ъ.	SI	4
5238.58 5238.971	P	Cr I	41 59	5262.244 5262.48	P	Fe II	22 52	5279 5279.11	P	0 VI La II	14 90
5239.823		Sc II	26	5262.61	P	Fe I	1149	5279.11	P	Fe I	58 4
5239.942		Ti I	37	5262.89	P	Fe I	628	5279.92	-	Cr II	43
5240.3 6	P	Fe I	584	5263.314		Fe I	553	5280.00		V II	195
5240.468		Cr I V I	237	5263.483		Ti I	183	5280.08		Cr II	43
5240.878 5240.94		Cr I	131 193	5263.750 5263.874		Cr I Fe I	309 788	5280.21 5280.289		Al II Cr I	95 192
			200	02001011			100	3200.208		01 1	192
5240.97	P	V II	55	5263.99		v II	115	5280.364		Fe I	880
5241.19		V II Cr I	241	5264.14		Mg II	17	5280.62	P	V II	55
5241.458 5241.90	P	Fe I	59 1150	5264.152 5264.239		Cr I Ca I	18 22	5280.631	n	Co I	172
5242.4 95		Fe I	843	5264.49	P	V II	55	5280.91 5281	P P	Fe I N IV	210 5
5243.3		Fe III	113	5264.801	_	Fe II	48	5281.18	P	Fe I	1240
5243.395		Cr I	201	5264.95		Hf II	70	5281.18		N I	14
5243. 50 5243. 798	P	Cr II Fe I	38	5265.160	P	Cr I Fe I	201	5281.692		N1 I	231
5244. 5		C III	1089 4	5265.25 5265.42	P	Fe I	407 1145	5281.796 5282.1		Fe I Fe III	383 113
			-	0203112	•		1110	0202.1		re 111	113
524 5	P	N IV	5	5265.523		Ço I	38	5282.378		Ti I	74
5245.4 9	ъ.	A II	40	5265.557		Ca I	22	5282.52		N III	15
5245. 62 5245. 72	P P	Fe I Fe I	1149 715	5265.710 5265.722		Ce II Cr I	23 18	5283.076 5283.441		Gd I Ti I	6 156
5246.00	P	Fe I	628	5265.748		N1 I	141	5283.441		Fe I	553
5246.143		Ti I	282	5265.786		Co I	170	5283.77		Al II	95
5246.574		Ti I	37	5265.94	P	Fe I	210	5284.092		Fe II	41
5246.75		Cr II Fe I	23	5265.967 5266.118		Ti I	156	5284.27	P	Fe I	875
5247. 052 5247. 10		Hf II	1 92	5266.302		V I Co I	139 172	5284.380 5284.416		Ti I Fe I	74 842
			<i>5</i> ~	32001002			~·~	5284.416			O'E&
524 / . 293		Ti I	183	5266.49	P	Ti I	36	5284.62	P	Fe I	1032
524 7.564		Cr I	18	5266.506		Co I	83	5284.85		Fe III	
524 7.921		Co I Fe II	39	5266.562		Fe I Cr II	383 38	5285.12	P	Fe I	1166
5248.028 5248.402		Ti I	37,156	5267.10 5267.28	P	Fe I	1146	5285.34 5285.38		Ca II Cr I	14 285
5249.099		Fe I	1166	5267.322	_	Gd II	60	5285.48		C1 II	32
5249.22		V II	220	5268.06		O III	19	5285.60	P	Fe I	961
5249.40		Cr II	23	5268.348		N1 I	273	5285.63		Cr I	192
5249.43 5249.585		NG II C II	30 75	5268.498 5268.62		Co I Ti II	172 103	5285.752		Sc I Al II	23 102
0240.000		NG II	70	0200.02		11 11	103	5285.85		A1 11	102
5249.6		C III	23	5269.15		Fe III	112	5286.42	P	v II	54
5250.003		Co I	190	5269.541		Fe I	15	5286.74		Fe III	110
5250.212 5250.650		Fe I Fe I	1 66	5269.93 5270.06	P	Ti I Fe I	156 877	5286.92		A II Cr I	13 225
5250.816		Nd II	80	5270.00	r	Ca I	22	5287.188 5287.574		Co I	225 175
5250.95		Ti I	37	5270.322		Be II	3	5287.62		Cr I	309
5251.180		Gd I	6	5270.360		Fe I	37	5287.785		Co I	187
5251,49		Ti I	37	5270.59		N III	15 3	5288.21	P	N1 I	202
5251.738 5252.04	P	Pr II Ti II	20 103	5270.843 5271.18		Be II La I	4	5288.24 5288.31	P	Fe I V II	818 195
0202101	-		100				_	0200101			200
5252.105		Ti I	4	5271.26	P	V II	55	5288.38	P	Fe I	406
5252.14	_	Gd II	99	5272.0		Fe III Cr I	113	5288.533	_	Fe I	929
5253.03 5253.25	P P	Fe I Fe I	113 875	5272.010 5272.413		Fe II	225 185	5289 5289.27	P	O VI Cr I	16 192
5253.479	•	Fe I	553	5272.56		C III	4	5289.28		Ti I	36
5253.49		P II	10	5272.60		N III	15	5289.82		Y II	20
5253.55		CII	30	5272.86	_	Fe III		5289.98		Hf II	100
5253.55 5254.652		C III Co I	4 187	5273 5273.176	P	N V Fe I	4 553	5290.74 5290.79	P	V II Fe I	207 1147
5254.918		Cr I	201	5273.170		Fe I	11 4	5290.79	r	La II	6
5254.92	P	Fe II	49	5273.431		Nd II	75	5291	P	O VI	18
5254.956 5255 122		Fe I Cr I	1 225	5273.439 5273.62	P	Cr I Fe I	201 1147	5291.78 5202	P	Fe III O VI	17
5255.132 5255.325		Mn I	225 32	5273.62	-	Ce II	15	5292 5292.10	r	Pr II	24
5255.510		Nd II	43	5274.99		Cr II	43	5292.630		Pr II	37
5255.68	P	Fe I	1089	5275.00		Fe I	1029	5292.861		Mn I	36
5255.76	P	Fe I Gd I	1091	5275.08 5275.11	P	O I Cr I	27 192	5292.865 5293.03	P	Cr I Fe I	205 1165
5255.805 5255.811		Ti I	6 183	5275.11	r	Cr I	94	5293.03	r	Nd II	75
5256.030		Gd II	114	5275.30	P	Fe I	742	5293.383		Cr I	192
5256.89	P	Fe II	41	5275.54		Re I V II	1	5293.973		Fe I Mn II	1031 11
5257.07 5257. 36		Cr I C II	205 30	5275.65 5275.689		V II Cr I	195 94	5294.216 5294.555		Mn 11 Fe I	875
5257.50	P	V II	55	5275.994		Fe II	49	5294.97		Si II	J. J
5257.621		Co I	188	5276.03		Cr I	94	5295.292		Mn II	11
5257.65	P	Fe I	788	5276.183		Co I	190	5295.30	P	Sc II	22
5258.333 5250.00	P	Sc I	23 1149	5276.2 5276.42		Fe III Al II	113 67	5295.316 5295.781		Fe I Ti I	1146 74
5259.09 5259.38	r	Fe I La II	1149 21	5276.42 5276.81		Al II	67	5295.781 5296.09		P II	7
5259.62		CII	30	5276.879		Nd II	81	5296.48		A II	110
				<u> </u>	_		4440			c	**
5259.743		Pr II	35	5277.31 5277.32	P P	Fe I Fe I	1149 584	5296.686 5296.968		Cr I Mn II	18 11
5259.976 5260.25		Ti I Fe III	298	5277.32 5277.40	•	Zr I	27	5290.908 5297.236		Ti I	156
5260.25 5260.375		Ca I	22	5277.59	P	Fe I	983	5297.360		Cr I	94
5260.44		Hf II	36	5277.68		Al II	67	5297.86		N III	15
5260.771		Mn I	32	5278.10		S I	4	5297.976	P	Cr I O VI	94 15
5260.91 5260.91		Al III N III	13 15	5278.262 5278.265		Cr I Fe II	309 225	5298 5298.06	r	Hf II	15 49
5260.91 5261.49	P	Fe I	406	5278.62		Al II	95	5298.269		Cr I	18
	_										

66					LIND.	ING LIST					
I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5298.44	P	Cr I	94	5322.78	P	Cr II	24	5346.56	P	Fe II	49
5298.789	=	Fe I	875	5322.81	_	V II	240	5347.499	n	Co I	196
5298.93		N III	15	5323.51	P	Fe I Ti I	113 36	5347.71 5347.806	P	Ni I Ce II	145 227
5299.00		0 I	26 11	5323.958 5324.185		Fe I	553	5348.069		Mn I	36
5299.278		Mn II Hf II	11 14	5324.165		Hf II	36	5348.319		Cr I	18
5299.85 5299.9		Fe III	113	5324.61		Al II	101	5348.40		Hf II	22
5300.012		Ti I	74	5325.276		Co I	192	5348.67		Gd I	6
5300.41	P	Fe I	1240	5325.559	-	Fe II	19	5349.08		Ta I Sc I	5 17
5300.749		Cr I	18	5325.71	P	V II	54	5349.294		GC 1	11
5301.042		Co I	39	5325.949		Co I	194	5349.472		Ca I	33
5301.33	P	Fe I	1162	5326.154		Fe I	407,785	5349.702		Sc I	4
5301.67		Gd I	6	5326.247		Co I	175	5349.742		Fe I	1163
5301.936		Sc I	4	5326.793	ъ.	Fe I	1147	5349.75		V II Zr II	54 115
5301.97		La II	36	5327.25 5327.45	P P	Fe I N II	875 69	5350.10 5350.36		Zr II	115
5302.279		Nd II Fe I	80 553	5327.86	P	Fe I	1145	5350.37		V II	54
5302.307 5302.320		Mn II	11	5328.042		Fe I	15	5350.38		Gd I	7
5302.5		Fe III	113	5328.339		Cr I	94	5350.527		Tl I	1
5302.62		La II	86	5328.38		Ta I	2	5351.072		Ti I	300
		0.1 7	P	E000 E94		Fe I	37	5351.21		N II	69
53 02.76.		Gd I V II	6 54	5328.534 5328.70		N I	13	5351.21	P	Ni I	177
5303.26 5303.419		Fe II	225	5328.70	P	Ni I	129	5352	P	o v	13
5303.43		Gd II	80	5328.98		0 I	12	5352.046		Co I	172
5303.54		La II	36	5329.12		Cr I	94	5353.26		Gd I	7
5304.11	P	Fe I	983	5329.59		0 I	12	5353.386		Fe I	1062 70
5304.211		Cr I	225	5329.719		Cr I	94	5353.415		Ni I Co I	198
5304.26	P	Fe II	184	5329.994		Fe I Ce II	1028 13	5353.500 5353.534		Ce II	15
5304.923	P	Gd II O IV	62 11	5330.582 5330.66		0 I	12	5353.78		Fe III	10
530 5.3	P	0 10	**	0000100							
5305.41	P	Fe I	877	5330.779		Ne I	9	5354.01	P	Co I	91
5305.77		A II	93	5331.20	P	Fe I	817	5354.66	P	Cr II	29
5305.85		Cr II	24	5331.456	-	Co I	39	5354.67		Ta I Sc I	6 19
5306.6		Fe III	113	5331.48	P	Fe I As II	210 3	5355.752 5356.100		Sc I	17
5307.121		Tm I Cr I	237	5331.54 5332.65		V II	54	5356.14		C1 II	- ·
5307.281 5307.30		Ca II	14	5332.652		Co I	170	5356.77		N I	13
5307.30		Gd I	6	5332.673		Fe I	1031	5356.976		Nd II	80
5307.365		Fe I	36	5332.903		Fe I	36	5357.195		Sc II	30
5307.53	P	Mn I	36	5333.15	P	Fe I	1023	5357.35		V II	54
5308.44		Cr II	43	5333.30		Gd I	7	5357.790		Gd II	62
5308.71	P	Fe I	1091	5333.647		Co I	190	5358.10	P	Fe I	628
5309.267		Ru I	10	5333.70		C1 II	15	5359.200		Co I	194
5309.47		Cr I	285	5333.77	P	Fe I	464	5361.174		Nd II	46
5310.219		Co I	196	5334.228	_	Sc II	30	5361.35		Ba II Nd II	6 7 4
5310.70		Cr II	43	5334.32	P	Fe I Mn I	1064 36	5361.474 5361.637		Fe I	1143
5310.76		Al II	94 27	5334.804 5334.821		Co I	191	5361.724		Ti I	35
5311.42 5311.461		Zr I Nd II	80	5334.88		Cr II	43	5362.4	P	O IV	11
5311.60		Hf II	37	5336.163		Co I	191	5362.56		Zr I	27
								5000 00		e 11	61
5311.78		Zr II	95	5336.7		C II Ti II	11 69	5362.69 5362.781		S II Co I	61 198
5312.32		Al II	94	5336.809 5337.713		Fe II	48	5362.864		Fe II	48
5312.650		Co I Cr I	197 225	5337.79		Cr II	43	5362.98		Cr I	258
5312.878 5313.239		Ti I	74	5338.326		Ti I	35	5363.80		Fe III	
5313.41		Fe I	1239	5338.66		N II	69	5364.874		Fe I	1146
5313.43		N II	69	5339.29		Ca II	20	5365.403	7	Fe I	786
5313.59		Cr II	43	5339.40	P	Fe I	1162	5366.651	-	Ti I Fe I	35 1146
5313.76	P	Ti II	81	5339.528 5339.92		Co I Fe III	199	5367.470 5367.53	P	V II	53
5313.839		Fe I	1238	0009.92		10 111		0007700	_		
5314.45		N III	15	5339.935		Fe I	553	5367.78		Cr I	258
5315.07		Fe I	1147	5340.20		N II	69	5367.95	P	T1 II	80
5315.618		Fe II	225	5340.437		Cr I	225	5368.10	P	Cr II	29
5315.78	P	Fe I	877	5340.66		La II	91	5368.546		Cr I Co I	258 167
5316.07		Al II	94	5340.68		Ti I Fe III	36	5368.904 5368.97		Pt I	6
5316.07		P II Fe II	6 4 9	5340.92 5341.026		Fe I	37	5369.25	P	Cr II	29
5316.609 5316.772		Co I	152	5341.040		Sc I	19	5369.591		Co I	39
5316.777		Fe II	48	5341.065		Mn I	4	5369.635		Ti I	
5317.095		Mn I	36	5341.096		Ne I	9	5369.965		Fe I	1146
							000	5070 OF 6		Cr I	
5317.394	_	Fe I	584	5341.22		V II Co I	239 199	5370.356 5371.43	P	Fe I	1163
5317.53	P	Fe I Fe II	1032	5341.328 5341.492		Ti I	316	5371.48	•	Cr I	258
5318.025 5318.04	P	Fe I	406	5342.05	P	Sc II	.30	5371.493		Fe I	15
5318.267	-	Fe II	-50	5342.703		Co I	190	5371.621		Gd II	60
5318.337		Sc II	22	5342.961		Sc I	4	5371.84		Al II	42
5318.41		Cr II	23	5343	P	0 V	13	5371.935		Nd II	79
5318.61	P	V II	53	5343.00		Gd I	7	5372.216		Gd II N I	99 13
5318.775	ъ	Cr I	225	5343.284 5343.383		Ne I Co I	9 190	5372.66 5373.704		r I Fe I	13 1166
5319.22	P	Fe I	1029	2020.000				30.01101			
5319.818		Nd II	75	5344.570		Co I	191	5373.715		Cr I	258,302
5320.048		Fe I	877	5344.73		PII	6	5374.78	P	Fe I	785
5320.70		S II	38	5344.761	_	Cr I	225	5375.346		Sc I	19
5320.78		YII	20	5345.61	P	Cr I S II	225	5375.393 5375.68		Gd II Fe III	99
5320.96		N II Fe I	69	5345.67 5345.807		S II Cr I	38 18	5375.68 5376	P	0 V	13
5321.106 5321.496		re 1 Gd I	1165 6	5346.12	P	Cr II	24	5376.59	P	Ti I	3
5321.777		Gd I	6	5346.30		Hf II	92	5376.849		Fe I	1132
									_		

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5378. 07	P	Cr II	29	5405.778		Fe I	15	5435.79	P	Fe II	48
5378.12	_	PII	23	5406.36	P	Fe I	1026	5435.871		N1 I	70
5379.19 5379.580	P	Ti II Fe I	102 928	5406.77 5407.424	P	Fe I Mn I	1148 4	5436.299 5436.594		Fe I Fe I	1161 113
5380.242		CI	11	5407.44		A II		5436.703		Ti I	51
5380.97		La II	56	5407.520		Co I	192	5436.80		Fe III	110
5381.020		Ti II Co I	69 56	5407.62 5408.119		Cr II Co I	23 112	5436.83	P	0 I	11
5381.105 5381.262		Pr II	37	5408.59		0 I	53	5437.19 5438.04	P	Fe I Fe I	1145 1237
5381.77		La II	91	5408.842		Fe II	184	5438.310	_	Ti I	108
F004 F76		Co I	196	#400 010		Ti I	3	F.100			
5381.776 5381.91		La II	91	5408.940 5409.125		Fe I	1147	5438.41 5439.30		Si II V II	53
5382.52	P	Fe II	184	5409.224		Ce II	23	5440.53	P	Ti I	107
5382.750		Fe I	741	5409.28	P	Cr II	29	5441.17		Gd II	146
5382.96	P	Ti I	155	5409.609		Ti I	155	5441.321		Fe I	1144
5383.374 5383.82		Fe I N II	1146 23	5409.66 5409.791		P II Cr I	6 18	5442.274 5442.413		Nd II Cr I	76 204
5384.22	P	Fe I	817	5410	P	0 VI	13	5443.41	P	Fe I	1059
5384.634		Ti I	35	5410.39	P	Cr II	29	5443.42		C1 II	2
5384.89		V II	53	5410.76		0 I	51,52	5443.88		Fe III	110
5385.14		Zr I	26	5410.913		Fe I	1165	5444.07		Hf II	69
5385.28		Cr I		5411.227		N1 I	222	5414.096		Mn I	31
5385.58	P	Fe I	927	5411.39	P	Fe I	670	5444.25		C1 II	2
5386.341 5386.87		Fe I P II	1064 6	5411.524 5412.56	P	He II Fe I	2 1237	5444.585 5444.99		Co I Cl II	196 2
5386.958		Fe I	875	5412.80	P	Fe I	1162	5445.045		Fe I	1163
5386.978		Cr I	191	5413.47		Ta I	5	5445.97	P	Fe II	53
5387.136		Fe II		5413.687		Mn I Fe II	42	5446.46	P	Ti II	68
5387.35 5387.51		Fe III Fe I	1031	5414.089 5414.91	P	Fe I	48 874	5446.57 5446.58	P P	Cr II Fe I	35 11 44
5501.01					-				-		
53 87.573		Cr I	191	5415.201		Fe I	1165	5446.593		Ti I	3,259
5388.350		N1 I Al II	70 34	5415.277		V I Nd II	130 80	5446.76 5446.87	P	Cr I Fe I	204 37
5388.48 5388.521		Mn I	36	5416.381 5417	P	0 V	13	5446.920	r	Fe I	15
5389.180		Ti I	35	5417.03		Fe I	1148	5447.59		La II	112
5389.461		Fe I	1145	5418.01		Zr II	94	5448.882		Ti I	259
5389.996		Ti I Cr I	155 191	5418.802 5419.189		Ti II Ti I	69 258	5449.155 5450.66		Ti I P II	107 23
5390.394 5391. 06	P	Ti I	155	5419.19		Ta I	6	5450.836		Sr I	9
5391.350		Cr I	191,302	5419.36		Cr II	22,29	5451.115		Nd II	
E001 00		Hf II	48	5419.876		Gd II	99	5451.60	P	Fe II	184
5391.36 5391.4 93		Fe I	1062	5420.362		Mn I	4	5451.965	r	Ti I	265
5391.60		Ba II	6	5420.90		Cr II	23	5452.03		Ti II	109
5391.78	P	Fe I	270	5421.05	_	Ba II	6	5452.119		Fe I	870
5392.075 5392.12		Sc I Cl II	19 28	5421.4 0 5421. 559	P	Fe I Nd II	874 79	5452.12 5452.305		N II Co I	29 175
5392.12		N1 I	250	5421.85	P	Fe I	1183	5453.255		N1 I	231
5392.95	P	Cr II	29	5422.15	P	Fe I	1145	5453.338		Co I	194
5393.174		Fe I	553	5422.47		Ti II	80 2	5453.646		Ti I	108
5393.391		Ce II	24	5423.25		C1 II	2	5453.81		S II	6
5393.659		Gd II	100	5423.52		C1 II	2	5453.98	P	Fe I	1064
5394.321		Gd II	63	5423.73	P	Fe I	927 7	5454.05	P	Ti II N II	68
5394. 674 5394. 682		Mn I Fe I	1 1031	5423.82 5424.072		La II Fe I	1146	5454.26 5454.41		AII	29
5395.25		Fe I	1143	5424.15	P	Fe I	1026	5454.573		Co I	195
5395.41	P	Cr II	29	5424.36		C1 II	2	5455.09	P	Fe I	627
5396.3	n	T1 II T1 II	80 102	5424.551 5424.56	P	Ba I Ni I	9 231	5455.14 5455.433		La I Fe I	3 1145
5396.59 5396.600	P	Ti I	3	5424.654	•	Ni I	70	5455.613		Fe I	15
5396.90	P	Fe I	464	5425.269		Fe II	49	5455.80		Cr II	50
F007 000		m t	155	5495 90	P	Cr II	29	5455 015		Nd II	69
5397.093 5397.131		Ti I Fe I	155 15	5425.29 5425.621	•	Co I	196	5455.815 5456.11		Si II	83
5397.60		A II		5425.93		PII	6	5456.27		Ç1 II	2
5397.60		Fe I	841	5426.256		Ti I	3	5456.48		Fe I	817
5398.285		Fe I Ti IV	1145	5427.832 5428.64		Fe II S II	6	5457.02 5457.10		C1 II V II	2 53
5398.82 5399.489		Mm I	42	5428.71	P	Fe I	1032	5457.47		C1 II	2
5400.509		Fe I	1145	5428.79		Ba II	9	5457.471		Mn I	4
5400.5620		Ne I Cr I	3 191	5428.85 5429.139		Ni I Ti I	161 259	5458.68 5460.502		La II Ti I	99 3
5400.608		01 1	101	0420:100		•••	200	01001002			· ·
5400.67		SII	61	5429.43	P	Fe I	1029	5460.644		Mn I	31
5401.05	n	Mg II Fe I	24 1146	5429.52 5429.699	P	Fe I Fe I	1062 15	5460.742 5460.8		Hg I Fe III	1 68
5401.27 5401.32	P	Ti I	35	5429.83	P	Fe I	1162	5460.909		Fe I	464
5401.945		V I	130,139	5430.14		Fe III		5461.31		Ta I	4
5402.000		Co I	195	5430.41 5431 536	P	Cr II	29 80	5461.54 5461.80	P	Fe I Fe I	1145 817
5402.113 5402.27		Fe II Fe III		5431.526 5432	P	Nd II	80 13	5461.80 5462.487	۳	re 1 Ni J	817 192
5402.27		Ta I	1	5432.09	_	V II	53	5462.62		N II	29
5402.57		Lu I	2	5432.318		Ti I	265	5462.970		Fe I	1163
5402.69		A II		5432.347		Cr I	204	5463.282		Fe I	1163
5402.78		Y II	35	5432.548		Mn I	1	5463.38		Hf II	14
5403.823		Fe I	1029	5432.77		S II	6	5463.974		Cr I	204
5404.023	p.	Ti I Fe I	259 1145	5432.950	ъ	Fe I Fe II	1143 55	5464.286 5464.36	P	Fe I Cr II	1030 35
5404.12 5404.144	P.	re I Fe I	11 4 5 1165	5432.98 5434.527	P	re II Fe I	55 1 5	5464.37	•	La II	49
5404.87		0 I	53	5435.16		0 I	11	5465.04.	P	Fe I	840
5404.95		Ta I	13	5435.17	P	Fe I	1161	5466.021		Fe II	4444
5405.004		Cr I	191	5435.27		Ta I	9	5466.404		Fe I	1144

68					LIND	ING LIST	Ľ				
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5466.46		y I	12	5490.65	P	Ti II	68	5519.83	P	Fe II	52
5466.5 5		s II	11	5490.840	-	Ti I	3	5520.19	P	Fe I	1144
5466.94		Fe II		5491.84		Fe I	1031	5520.496		Sc I Fe I	15 839
5466.993		Fe I	784,817	5492.43		Ti IV O I	62	5521.14 5521.28	P P	Fe I	1162
5467.76	P	Fe I Ni I	741 192	5492.8 5492.82	P	Ti II	68	5521.44	•	N1 I	175
5468.101 5468.37	P	Ce II	24	5493.22	•	Hf II	113	5521.56	P	YII	27
5468.44	P	Ti II	102	5493.33	P	Fe I	873	5521.765		Sr I	9
5468.92		Si II		5493.45		La II	4	5522.46		Fe I Co I	1108 112
5469.09	P	Fe I	1131	5493.508		Fe I	1061	5523.310		CO 1	112
5469.29	P	Fe I	1143	5493.850		Fe I	464,1062	5524.25	P	Fe I	1059
5469.29 5469.305	r	Co I	56	5494.35	P	V II	53	5524.35		Hŗ II	25
5469.72		Gd II	60	5494.468		Fe I	1024	5524.990	_	Co I	192
5470.17		Fe I	1144	5494.726		T1 I	108 231	5525.14	P P	Fe II Fe I	56 1107
5470.460		Co I	175	5494.890		N1 I Co I	166	5525.48 5525.552	P	Fe I	1062
5470.50		Ti I Gd II	108 63	5495.682 5495.70		N II	29	5525.90	P	Cr II	22
5470.53 5470.638		Mn I	4	5495.8720		A I	14	5526.06		Sc I	18
5470.81	P	Fe II	52	5496.020		V I	2	5526.22		S II	11
5471.198		Ti I	106	5496.24		Si II		5526.26		N II	63
E470 007		Ce II	24	5496.57	P	Fe I	1281	5526.809		Sc II	31
5472.297 5472.63		Cr II	50	5497.42	•	YII	27	5527.07	P	Fe I	464
5472.696		Ti I	107	5497.519		Fe I	15	5527.54		Y I	12
5472.720		Fe I	1108	5497.70	P	Fe II	204	5527.606		Ti I V I	265 1
5473	P	o v	13	5497.86	P P	Cr II Ti I	22 51	5527.72 5528.3876		MgI	9
5473.18	P	Fe I	1064 27	5497.92 5498.18	r	S I	12	5528.3986		Mg I	9
5473.40 5473.517		Y II Ti I	259	5498.19	P	Fe II	24	5528.4094		MgI	9
5473.517		Ti II	109	5499.39	P	N1 I	176	5528.89	P	Fe I	1161
5473.59		s II	6	5499.60	P	Fe I	1159	5529.15		Fe I	872
		P. 1	1060	5499.72		P II	6	5529.80	P	Fe I	344
5473.908	P	Fe I Fe I	1062 131 4	5500.43		Gd II	99	5529.94	P	T1 II	68
5474.09 5474.228		Ti I	108	5500.61	P	Cr II	35	5529.940		Fe II	224
5474.449		Ti I	259	5501.34		La I	3	5530.10		V II	247
5474.734		Nd II	82	5501.469		Fe I	15	5530.27		N II Co I	63 38
5475.57		Ni I	159	5501.54		S I Cr II	12 50	5530.780 5531.949		Fe I	1281
5476.298		Fe I Fe I	1029 1062	5502.05 5502.88		Al II	78	5532.13	P	Fe I	344
5476.571 5476.69		Lu II	2	5503.18		Cr II	50	5532.17		La II	106
5476.906		N1 I	59	5503.397		Fe II		5532.65		Fe III	56
				****		Ti I	287	5532.752		Fe I	783
5477.089	P	Co I Cr II	175 50	5503.897 5504.120		N1 I	175	5533.01		Mo I	4
5477.45 5477.67	P	Fe II	49	5504.184		Sr I	9	5534.68		Fe I	871,1063
5477.695		Ti I	265	5504.21		Mn I	31	5534.794		Sr I	9
5477.82		Zr II	115	5505.75	P	Fe I	1162	5534.860		Fe II	55
5478.13		N II	29	5505.869		Mn I	4 1145	5535.382		V I N II	1 63
5478.35		Cr II	50	5505.893 5506.268		Fe I Fe II	1145	5535.39 5535.419		Fe I	626,1029
5478.48 5478.6		Fe I C II	1062 34	5506.51		Mo I	4	5535.484		Ba I	2
5479.95	P	Fe I	1282	5506.782		Fe I	15	5535.66		La II	71
							40	5536.0		C II	10
5480.10		N II	29	5507.01		S I P II	12 23	5536.01		K II	6
5480.30 5480.503	,	Ba II Cr I	9 204	5507.15 5507.753		v I	129	5536.59	P	Fe I	345
5480.502 5480.72	,	La II	90	5508.11		0 111	16	5536.77		S II	11
5480.75		YII	27	5508.60		Cr II	50	5537.11		Ni I	188
5480.865	•	Sr I	9	5508.88	P	Cr I	224 6	5537.756		Mn I Gd II	4
5480.872		Fe I	1062	5509.67 5509.91		S II Y II	19	5538.32 5538.54		Fe I	839,1064
5480.893 5481.252		Ni I Fe I	191 1058	5510.001		N1 I	190	5539.28		Fe I	871
5481.396		Mn I	4,31	5510.174		Mn I	31	5539.831		Fe I	1130
					_	E- T	1000	##40 OF4		e= T	9
5481.426		Ti I Fe I	265 1061	5510.23 5510.58	P	Fe I Gd II	1023 132	5540.051 5540.16		Sr I N II	63
5481.451 5481.862		Ti I	106	5510.68		Cr II	23	5540.74		Si II	9
5481.989		Sc I	16	5511.795		Ti I	108,275	5541.030		Sc I	18
5482.26	P	Fe I	873	5512.085		Ce II	24	5541.19	_	PII	23
5482.27		La II	4	5512.277	_	Fe I	1143	5541.58	P P	Fe I Fe I	627 1064
5482.471		V I	2	5512.40	P	Fe I Ti I	1148 106	5543.03 5543.04	P	Fe I	926
5483.111 5483.354		Fe I Co I	1061 39	5512.529 5512.69		Cr I	121	5543.184	•	Fe I	926
5483.55	•	Li II	1	5512.71		0 I	25	5543.49		N II	63
		<u> </u>	00	PP-10		Co T	48	\$E40.00	P	Cr II	35
5483.56	.	P II Co I	23 175	5512.979 5513.86	P	Ca I Fe I	925	5543.86 5543.930	r	Fe I	1062
5483.962 5484.618		Sc I	16	5514.215	-	Sc I	15	5544.61		YII	27
5485.6	-	Fe III	68	5514.350		Ti I	106	5544.76	P	Fe II	166
5485.65		Li II	1	5514.536		Ti I	106	5544.865		V I	38
5485.699		Nd II	79	5514.712		WI	1	5545.01		Gd II	98 26
5486.136	3	Sr I	9	5514.80 5515.083		Ni I V I	189 2	5545.11 5545.26	P	N I Fe II	26 24
5486.6 5486.86		O I La II	63 68	5515.083 5515.371		V I	1	5545.26	•	V I	38
5487.00		VII	53	5515.990		Co I	195	5545.937		Co I	191
						o_ *	2	EE40 00		Y II	27
5487.16 5487.40	P	Fe I Fe I	1143 870	5516.09 5516.29	P	Sm. I Fe I	1057	5546.02 5546.512		Fe I	1145
5487.49 5487.52		re I Fe I	870 1064	5516.29 5516.771	K.	Mn I	4	5547.00		Fe I	1061
5487.747		Fe I	1025	5517.08		Fe I	1109	5547.080		VI	38
5487.915		V I	129	5518.11	P	Ti I	265	5548.474		Nd II	73
5488.14	P	Fe I	1183	5518.491		Ce II	26	5549.55	P	Fe I	1159
5486.210		Ti I	265	5518.57	P	Fe I	1314	5549.66	P	Fe I	1314 15
5488.97	P	Cr II	35	5518.74		S II	61	5549.68		Sc I	15

FINDING LIST

					FIND.	MG PIO	•				35
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
	• •		•		• •			#004 00B		v i	37
5551.29 5551.77	P P	Fe I Fe I	714 1059	5587.865 5587.9		Ni I Fe III	70	5624.605 5624.895		V I	37
5551.95	•	N II	63	5588.07	P	Fe I	1109	5625.326		N1 I	221
5551.985		Mn I	~	5588.25		PII	27	5625.43		N I A II	24 121
5552.12 5552.25		Hf I Sc II	7 25	5588.757 5589.00	P	Ca I Fe I	21 1160	5625:74 5626.014		V I	37
5552.54		N II	63	5589.384	•	N1 I	205	5626.60	P	Cr II	22
5552.70	P	Fe I	1281	5590.120		Ca I	21	5627.08	P	Fe I	1084
5552.85 5553.22	P P	Fe I Fe I	344 1064	5590.73		Hf II Co I	48 90	5627.49 5627.628	P	Fe II V I	57 37
	r			5590.744						Ni I	215
5553.586 5553.693		Fe I Ni I	1161 6 9	5591.322 5591.38	P	Sc I Fe II	18 55	5628.347 5628.645		Cr I	203
5553.81	P	Cr II	34	5592.146	-	N1 I	250	5630.14		Y I	12
5554.895		Fe I	1183	5592.283		N1 I	69	5631.404		Tm I	
5554.94 5555.17	P	O I Fe I	24 740	5592.37 5592.409		V I	5 37	5631.707 5631.72		Sn I Fe I	4 1159
5556.01	•	8 11	6	5592.962		v i	1	5632.25		Gd I	3
5556.19		Cr I	120,121	5593.23		Al II	16	5632.469		V I	1
5556.48 555 7.08		Yb I Al I	1 6	5593.735 5594.425		N1 I Nd II	206 79	5633.970 5634.53	P	Fe I Fe I	1314 1281
5557.453		v i	1	5594.468		Ca I	21	5634.84		Cl II	23
5557.90	P	Fe I	464,1164	5594.661		Fe I	1182	5635.85		Fe I	1088
5557.95		Al I	6	5595.06	P	Fe I	1314	5636.00	P	Fe I	1058
5557.954 5558.31		Fe I	1163 2	5597.21		Gd II	95	5636.235		Ru I Fe I	10
5558.752		As II V I	77	5597.87 5597.92		Cr I Ti I	239 229	5636.708 5637.121		N1 I	868 218
5558.825		Co I	166	5598.303		Fe I	1183	5637.734		Co I	195
5559.06	_	8 II	61	5598.47	P	Fe I	113	5638.266		Fe I	1087
5559.64 5560.230	P	Fe I Fe I	.282 1164	5598.487 5600	P	Ca I O V	21 3	5638.82 5639.492		N1 I S1 II	203 9
					•						
5560.37 5560.548		N I V I	25 1	5600.038		N1 I Fe I	219	5639.96		SII	14
5560.69		Gd II	99	5600.242 5601.285		Ca I	866,1108 21	5640.32 5640.46		S II Fe I	11 1202
5561	P	N IV	13	5602	P	o VI	11	5640.50		C II	15
5561.670		V I V II	77	5602.54	P.	Fe I	1281	5640.971		Sc II	29
5562.02 5562.12	P	Fe I	247 1162	5602.788 5602.846		Fe I Ca I	1062 21	5641.112 5641.464		Ni I Fe I	230 1087
5562.712		Fe I	626,1163	5602.955		Fe I	686	5641.880		N1 I	234
5562.769		Ne I	19	5603.651		Nd I	45	5642.01		V II	238
5563.604		Fe I	1062	5604.205		V I	85	5642.362		Cr I	239
5563.69 5564.37	P	Fe I N I	112, 1023 25	5604.943		V I Fe II	37	5642.660		Ni I Fe I	203
5564.861		Sic I	18	5605.91 5606	P P	0 V	51 3	5642.75 5643.099	P	re I Ni I	1184 259
5564.94		8 II	6	5606.11	-	SII	11	5643.24		Gd I	3
5565.30		N II	63	5607.05	_	N1 I	205	5643.94	P	Fe I	1021
55 65.476 55 65.56		Fi I Hf II	229 100	5607.12 5607.66	P P	Fe II Fe I	24 1058	5644.137	P	Ti I Fe I	240 1057
5565.708		Fe I	1183	5608	P	o v	3	5644.35 5644.84	P	Gd II	60
5566.06	P	Cr II	35	5608.98	P	Fe I	1108	5645.62		S II	6
5566.82	P	Fe I	625	5609.19		Cr I	223	5645.665		81 I	10
5566.92		La II	90	5609.97	P	Fe I	866	5646.112		V I	37
5567.401 5567.815		Fe I Fe II	209	5610.01 5610.257	P	Cr Il Ce II	34	5646.70	₽	Fe I	1109
5568.07	P	Fe I	1059	5610.36		Y II	26 19	5646.98 5647.234		S II Co I	14 112
5568.44	P	Fe I	1058	5610.53		La II	106	5648.08		C II	15
5568.71 5568.81	P	Fe I Cl II	1026 80	5611.35	P	Fe I	869	5648.18		Cr I	239
5568.81		Fe I	869	5613.19 5613.698		Al II Ce II	77 32	5648.570 5648.90	P	Ti I Fe I	269 625
5569.625	_	Fe I	686	5613.70	P	Fe I	1282	5649.371	-	Gr I	239
5570.06	P	Fe I	345	5614.29	P	Fe I	1314	5649.66		Fe I	838
5570.46 5571	P	Mo I	4	5614.303	_	Nd II	87	5649.697		N1 I	231
5571 5572.849	r	N IV Fe I	13 686	5614.58 5614.790	P	Fe I Ni I	739 250	5650.01	n	Fe I	1314
5573	P	0 V	3	5615.18	P	Fe I	250 1143	5650.31 5650.7034	P	Fe I A I	1180 12
5573.10		Fe I	1061	5615.308		Fe I	209	5650.71		Fe I	1314
5573.3 5574.41		Fe III Cr I	68 120	5615.54	P	Cr I	239	5651.47	P	Fe I	1161
5576.097		Fe I	686	5615.652 5616.21		Fe I Gd II	686 61	5651.53 5651.734		As II Co I	2 56
5576.61	_	81 II	9	5616.54		ΝI	24	5652.01	P	Fe I	1059
5577.03	P	Fe I	1314	5616.63		8 11	11	5652.3		La II	103
5577.70 5579.794		A II	134	5617.14	P	e I	1086	5652.32		Fe I	1108
5578.734 5578.85		N1 I 8 II	47 11	5617.22 5617.91		∧e I Gd I	626	5653.889		Fe I	1159
5579.34	P	Fe I	1061	5618.646		Fe I	3 1107	5655.179 5655.506		Fe I Fe I	1314 1107 ,131 4
5580.51		Cr I	223	5619.23	P	Fe I	923	5656.6585		Ne I	24
5581.87 5581.071		Y I	12	5619.60		Fe I	1161	5656.895		V I	127
5581.971 5582	Þ	Ca I O V	21 3	5620.04 5620.16		Fe I Zr I	1026,1205 25	5657.449 5657.870		V I Sc II	37 29
5583.33		PII	23	5620.527		Fe I	1061	5657.92	P	Fe II	29 57
5583.68		Gd II	59					5658.334		Sc II	29
5583.97	¥	Fe I	1059	5620.62	P	Nd II	86	5658.542		Fe I	686
5584 5584 490	P	0 V	3 97	5620.63		Cr II	189	5658.67	P	Fe I	1087
5584.490 5584.738		A I	37 85	5621,43 5622.075		Od II V I	1 32 85	5658.826 5659.104		Fe I Ti I	686 50
5584.768		Fe I	782	5622.23		81 I	11	5659.10 <u>4</u> 5659.121		Co I	50 82
5586.007		V I	85	5623.20	_	N I	24	5659.86		Sm I	2
5586.16 5586.763		Od II Fe I	78 686	5623.64 5624.056	P	Fe I Fe I	625 1160	5659.95 5660.79		S II Fe I	11 869
		-		2023.000				0000118		a	

70						ING LIDI					
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	í A	Type	Element	Multiplet No.
5661.97	P	Fe I	1109	5701.138		Si I	10	5731.771		Fe I	1087
5662.154	•	Ti I	249	5701.35		Gd I	3	5732.29	P	Fe I	1313
5662.51		C 11	15	5701.375		Si II		5732.72	P	Fe II	57
5662.525		Fe I	1087 34	5701.46 5701.553	P	Cr II Fe I	22 209	57 32. 86 5733.86	P	Fe I Od II	1055 94
5662.58 5662.891	Р	Cr II Ti I	269	5701.553		Nd II	78	5734	P	N IV	9
5662.94		Fe I	924	5702.307		Cr I	203	5734.004		V I	135
5662.95		Y II	38	5702.434		Fe I	866	.735.70		Zr I	4 54
5664.017		Ni I	272	5702.666	P	Ti I Fe I	249 1053	5735.74 5736.55		Ca I Lu I	1
5664.040		Cr I	203	5703.09	P	rei	1000	0700.00		25 2	•
5664.55		Zr I	47	5703.32		La II	48	5736.632		Cr I	228
5664.73		s II	11	5703.562		V I	35	5737.040	D	V I	35 58
5665.601		Si I	10	5705.32	P	Fe I Fe I	1058 1087	5737.68 5737.71	P	Fe II Fe I	1053
5666.64 5666.78	p	N II Ni I	3 233	5705.48 5705.988		Fe I	1183	5738.22	P	Fe I	1084
5666.837	r.	Fe I	1053,1060	5706.11	P	Fe I	1088	5738.286		Mn I	
5667.164		Sc II	29	5706.11		SI	11	5738.554	р	Cr I Ti I	227 249
5667.67	P	Fe I V I	209 37	5706.206 5706.375		Nd II Si II	86	5739.08 5739.30	r	Sc I	12
5668.369 5668.868		Nd II	84	5706.973		v i	35	5739.464		Ti I	228
30001000											
5668.901		Ce II	23	5707.03		Ca I Fe I	54 868	5739.762 5739.78	P	Si III Fe I	4 1057
5669.030 5669.590		Sc II Si II	29	5707.068 5707.25	\mathbf{p}	Fe I	866	5739.975		Ti I	228
5669.8	P Forb		7	5707.70	P	Fe I	1056	5740.65		La I	8
5669.945		Ni I	250	5708.109		Fe I	1161	5740.862		Nd II	86
5670.827		VI	36	5708.199		Ti I	249 79	5741.192		Ti I Sc I	280 12
5671.54	n	La II Cr II	95 22	5708.280 5708.437		Nd II Si I	10	5741.36 5741.861		Fe I	1086
5671.62 5671.805	P	Sc I	12	5708.600		Sc I	12	5742.95	P	Fe I	1084
5672.28	P	Fe I	1234	5709.378		Fe I	686	5743.28		Ca I	
		11.0 TT	110	5700 550		Ni I	46	5743.438		v i	35
5673.58 5675.08	p	Hf II Fe I	112 583	5709.559 5709.93	p	Fe I	1088	5746.32	P	Cr I	228
5675.3	P Forb		7	5709.976	_	Tm II		5746.432		Cr I	243
5675.413		Ti I	249	5710.76		NII	3	5746.81		Ca I	54
5675.853		Tm I	0	5711.0735		Mg I	8 8	5747.29 5747.36		N II N I	9 35
5676.02	Р	N II Fe I	3 1057	5711.0831 5711.0912		Mg I Mg I	8	5747.85	P	Fe I	343
5677.68 5678.04	P	Fe I	1290	5711.754		Sc I	12	5747.88	P	Fe II	164
5678.38	P	Fe I	982	5711.852		Ti I	249	5747.95	ъ	Fe I	1182
5678.42		Cr II	189	5711.867		Fe I	1087	5748.15	P	Fe I	1290
5678.60	P	Fe I	113	5711.905		Ni I	69	5748.299		Ne I	13
5679.023	1	Fe I	1183	5712.150		Fe I	686	5748.343		Ni I V I	45
5679.56		NII	3	5712.39		La II Cr I	20	5748.412 5748.860		VI	127 9 2
5679.908 5680.26	1	Ti I Fe I	269 1026	5712.635 5712.778		Cr I	119	5749.28		N1 I	176
5680.93		Zr I	25	5713.895		Ti I	249	5749.41		Gd II	97
5681.198		Cr I		5714.88	P	Fe I	552 231	5749.65 5750.424	P	Fe I O I	1160 40
5682.204 5682.483		Ni I Çr I	232 239	5715.086 5715.107		Ni I Fe I	1061,1086	5751.41		Mo I	5
5682.633		Na I	6	5715.123		Ti I	228	5752.043		Fe I	1180
				~~	75	tre t	1054	E750 64		N I	33
5682.88	`	Ca I Sc II	29	5715.47 5715.80	P P	Fe I Fe I	1054 1198	5752.64 5752.711		ví	92
5684.190 5684.523		Si I	11	5716.450	•	Ti I	249	5752.89		Ti I	214
5685.86	P	Fe I	1281	5717.30		Sc I	12	5753.136		Fe I	1107
5686.21		N II	3	5717.845		Fe I	1107	5753.38	P	Fe I Cr I	1084
5686.532		Fe I Sc I	1182 12	5717.99 5718.120		Ca I Nd II	54 86	5753.692 5753.97	P	Fe I	170
5686.826 5688.193		Na I	5	5719.18		Hf I	6	5754.17		Gd II	
5688.205		Na I	6	5719.2254		Ne I	28	5754.258		Si I	10
5688.47		Ca. I		5719.821		Cr I	119	5754.41		Fe I	866
5688.525	5	Nd II	79	5720.445		Ti I	249	5754.675		Ni I	68
5688.593		Co I	90	5720.613		0 I	40	5754.89	P	Fe I	113
5688.856	3	Si II	r-	5720.79	P P	Fe I Fe I	1291 1178	5756.45 5757.69	P	Ti I Ca I	228 54
5689.22		Mo I Ti I	5 2 4 9	5720.89 5721.02	P	Cr II	34	5759.270		Fe I	1184
5689.465 5690.07	P	Fe I	1281	5721.70	p	Fe I	1057	5759.56	P	Fe I	1087
5690.470)	Si I	10	5721.71	P	Fe I	1088	5759.57	P	Fe I	1204
5691.38	P	Fe II	47	5721.99		Gd II Fe II	110	5760.351 5760.53	P	Fe I Fe I	867 1054
5691.509 5691.52	•	Fe I Ni I	1087 228	5722.56 5722.65	P	Al III	58 2	5760.71	P	Fe I	1056
										AT	001
5691.69	P	Fe I	1084	5723.66	P	Fe I Ti II	1160 79	5760.847 5761.08	P	Ni I Fe I	231 1057
5691.71 5691.99	P	A II Ti II	134 79	5723.87 5724.073	Р	Sc I	12	5761.08	•	Fe I	867
5694.46	. *	He II	8	5724.37		AII	12	5761.411		V I	35
5694.730		Cr I	239	5724.445		Fe I	1109	5761.88		Ca I	54 200
5694.998	8	Ni I	220 2	5725.633 5725.95	Р	V I Fe II	135 57	5762.295 5762.434		T1 I Fe I	309 866
5696.0 5696.10	P	C III Fe I	2 1179	5725.95 5727.024	r	V I	35	5762.84	P	Fe I	1086
5696.11	P	Fe II	18	5727.29		La II	48	5762.992		Fe I	1107
5696.22		Gd I	3	5727.662		V I	35	5764.300		Tm I	
5696.47		Al III	2	5727.69		P II	27	5764.32		Ca I	
5696.63		s I	11	5727.75		Fe I	1204	5764.419		Ne I	13
5698.05		Fe I	867	5728.32	т.	Gd II Fe II	60 51	5766.330 5767.18		Ti I Hf II	309 22
5698.330 5698.37		Cr I Fe I	239 1130	5728.74 5728.91	P	Y II	34	5767.18		N II	9
5698.50		V I	35	5729.203		Cr I	257	5768.895		Ce II	32
5700.14		Sc I	12	5730.67		N II	3	5769.06	p	La II Fe I	70 1179
5700.24		s I	11	5731.103		0 I	40	5769.31	r	* · · · ·	

ΙA	T} pe	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5770.17	Р	Fe I	1236a	5801.71		Hf II	59	5840.47		Gd II	112
5772.258	•	Si I	17	5804.020		Nd II	79	5841.01		NI	32
5772.402		V I	92	5804.06		Fe I	959	5841.86		Cr II	198
. 5772.676	P	Cr I Fe II	227 165	5804.265		Ti I Ne I	309 19	5842.23 5842.391		Hf II Nd II	50 86
5773.75 5774.037	r	Ti I	309	5804.4488 5804.478		Fe I	1087	5843.21		Cr I	119
5775.090		Fe I	1087	5804.91	P	Fe II	165	5843.77		C 11	22
5776.670		V I	36	5805.233		Ni I	234	5843.80		AII	12
5776.76		Ta I Ba I	5 9	5805.76		C I Fe I	18	5844.606 5844.879		Cr I Fe I	119 1056
5777.622		na 1	ð	5805.76	P	re 1	1313	0044.015		re i	1000
5777.77		Cr I	257	5805.77		La II	1	5815.27	P	Fe I	1313
5778.47	_	Fe I	209	5806.31	P	Cr II	31	5845.71	-	Gd II	112
5778.81 5779. 65	P P	Fe I Fe II	1203 24	5806.56 5806.727		La II Fe I	90 1180	5846 5846.12	P	N IV Si II	15 8
5780.189	•	Mr I	a. a.	5806.75		Si II	8	5846.306		V I	142
5780.452		Si I	9	5806.77	P	Sc II	21	5846.575		Co I	169
5780.621		Fe I Ni I	552	5807.05		Gd II V I	112 142	5647.010		Ni I Fe I	44 552,117 5
57 80.77 5780.778		Ti I	217 214	5807.14 5807.22	p	V I Fe I	581	5848.09 5848.95		La II	111
5780.83		Fe I	552,922,1159	5807.79	P	Fe I	552	5849.67	p	Fe I	922
##00 0 8		Cr I	188	#60# 0#	P	Fe I	1178	5850.286		v 1	92
5780.97 5781.1 95		Cr I	119,188	5807.97 5808.31	r	La II	4	5851.63		Gd I	3
5781.69		YII	34	5808.63		La II	118	5852.19		Fe I	1178
5781.73	P	Ti II	79	5809.249		Fe I	982	5852.4878		Ne I Fe I	6
5781.806 5782.132		Cr I Cu I	188 2	5809.50 5809.75		Hf II Ti I	14 73	5853.18 5853.48	P	Fe I	35 1340
5782.356		Tm II		5809.88	P	Fe I	1084	5853.62		Al II	41
5782.601		V I	35,127	5811.10		Ta I	3	5853.675		Ba II	2
5783.112 5783.15	P	Cr I Cr I	188 227	5811.572 5811.93		Nd II Fe I	78 1022	5854.1 5854.16		Fe III N I	32
0700.10	•	0. ,		3611.83		***	1022	0002121			-
5783.509		V I	141	5811.93	P	Fe II	24	5854.27	_	Cr I	
5783.934		Cr I Ba II	188 13	5812	P	C IV	15 1	5854.31 5855.126	P	Sc II Fe I	21 1179
5784.18 5784.360		V I	141	5812.14 5812.81		A II	125	5855.24		Gd II	112
5784.69		Fe I	686	5812.827		Ti I	309	5856.084		Fe I	1128
5785.0		Fe II	215	5813.33	P	Fe I	1054	5856.09		C II Gd I	22 3
5785.002 5785.08		Cr I Mg I	188 24	5813.67 5814.00		Fe II Ti I	163 73	5856.22 5856.45	P	Fe II	183
5785.64		Si II		5814.62	P	Ti II	79	5856.96		Gd PI	60
5785.67		Ti I	309	5814.80		Fe I	1086	5857.454		Ca I	4.7
5785.820		Cr I	188	5815.16		Fe I	1055	5857.755		Ni I	228
5785.86		Cr I	17	5815.23	P	Fe I	1234	5857.9	P	c xxx	20
5785.979		Ti I	309	5815.42	P	Fe I	1053	5858.27	P	Fe I Mo I	170 5
5786.153 5786.99	P	V I Fe I	141 1084	5815.85 5816.07	P	Gd II Fe I	112 1127	5858.28 5858.77	P	MO I Fe I	1084
5787.036	•	Cr I	119	5816.36	•	Fe I	1179	5859.20	_	Fe I	1084
5787.27	P	Fe I	625	5816.48		N I	32	5859.23	P	Si I	9
5787.99 5788.389		Cr I Cr I	188 119	5816.844 5817.063		Mn·I V I	92	5859.608 5859.96	P	Fe I Fe I	1181 1054
5788.549		V I	92	5817.532		vi	142	5860.73	-	Gd II	58
		Y - Y	0	*******		0 77	00	#060 00	p	Ti II	79
5789.22 5790.50		La I Cl II	8 27	5817.87 5818.74		C II Eu II	22 9	5860.92 5861.11	p	Fe I	1084
5790.59	P	Cr I	17	5819.22		s II	14	5861.53		Al II	11
5790.659		Hg I	4	5819.93		V II	99	5862.357		Fe I	1180
5791.005 5791.044		Cr I Fe I	188 552	5820.155 5820.99		Ne I Gd II	19 112	5862.80 5863.70		V II La II	91 62
5791.32		La I	8	5823.13		CII	22	5863.96		Cr I	185
5791.38		Gd I	3	5823.17		Fe II	164	5863.97		Ni Y	253
5791.47 5791.53	p	V II Fe I	1234	5823.679 5824.40	P	Ti I Fe II	239 58	5864.24 5864.54	P P	Fe I Fe II	1086 24
0191.00	•	10 1	1001	3024.40	r	re 11	06	0002102	-		~ ~
5791.781		Cr I	243	5826.12	P	Fe II	182	5866.453	P	Ti I Fe I	72 1203
5791.86 5793.128		Mo I Si I	5 9	5826.299 5826.61	P	Co I Fe I	169 1084	5867.01 5867.497	Р	Si II	1203
5793.16	P	Fe II	47	5827.1		C 111	22	5867.572		Ca I	46
5793.51		CI	18	5827.24		Cr II	198	5867.81		Al II	41
5793.70	þ	Fe I Fe I	1236a 1086	5827.80		C II Si II	22 8	5868.404 5870.65	P	Si II Fe I	8 12 35
5793.932 5794	р	N IV	15	5827.80 5827.89	P	Fe I	552	5871.04	•	Fe I	150
5795.87		Fe II	211	5828	P	N IV	15	5871.289	_	Fe I	1055
5796.078		N1 I	68	5829.12	P	Fe II	165	5871.6	P	C III	50
5796.67	P	Fe I	1054	5829.53		N I	32	5871.81		Gd II	79
5796.757		Cr I	440	5830.719		v i	142	5872.73	P	Fe I	552
5797.352 5797.445		V I Ti I	142 309	5831.624 5832.47		Ni I Ti I	233,250 309	5872.828 5872.98		Ne I Eu II	31 9
5797.53	P	Cr I	185	5833.65		Fe III	114	5873.211		Fe I	1087
5797.57		LA II	4	5833.93	P	Fe I	209	5874.00		La II	48
5797.76 5797.81	р	Zr I Fe II	4 165	5834.06	P P	Fe II Fe II	165 57	5875.6 5875.618		Fe III He I	11
5797.81 5797.912	r	si I	9	5834.93 5835.10	P	Fe I	57 1084	5875.650		He I	11
5798.00	p	Cr I	185	5835.41	P	Fe I	1313	5875.989		He I	11
5798.194		Fe 1	982	5835.43	P	Fe II	58	5876.27	p	Fe I	1084
5798.194 5798.46		Cr I	17	5835.50	p	Fe II	182	5876.55	•	Cr I	119
5798.905		v í	142	5835.58	P	Fe I	343	5877.26		Gd II	94
5800.02	Ъ	Fe II Ba I	165 9	5835.61 5836 91		Fe II C II	22	5877.770 5879.49	P	Fe I Fe I	1083 12 01
5800.229 5800.48		Si II	8	5836.31 5837.29		Au I	2	5879.79	•	Zr I	4
5801.14		Cr I	243	5837.709		Fe I	1129	5880.00		Fe 1	1201
5801.17 5801. 3 0		Gd II	18 112	5838.418		Fe I Cr I	959 119	5880.306 5880.63		Ti I La II	71 35
0007.00		44	J. A. W.	5838.66		J. 1	A10	0000100			

7.5											
I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
5881.76	P	Fe I	63	5929.700		Fe I	1176	5978.970		81 II	4
5881.8950	F	Ne I	1	5930.173		Fe I	1180	5980.748		V I	49
5883.06	P	Fe I	1124	5930.61		La I	2	5980.89		Ti I Ba II	72
5883.421 5883.838		Co I Fe I	90 982	5930.68 5931.79		La I N II	2 28	5981.25 5981.38	P	Fe I	13 837
5884.451		Cr I	119	5931.79	P	Fe I	1017	5981.96		Cr I	185
5884.59		Gd II	112	5932.05	P	Fe II	47	5982.52		T1 I Cr I	264 185
5885.61		Zr I	2	5932.95	P	S II Fe I	13 1198	5982.8 4 5983.704		Fe I	175
5887.46 5888.32	P	Fe I Mo I	1203 5	5933.80 5934.658	r	Fe I	982	5983.90		Lu II	2
5000 051		Na I	1	5934.747		Nd II	78	5984.092		Co I	37
58 89.95 : 5889. 97		CII	5	5935.23		Zr I	2	5984.253		Co I	201
5890.02	P	Sc II	21	5935.391		Co I	55	5984.586		T1 I V I	2 49
5890.48	P	Fe I	1313	5936.22		La II Ti I	19 72	5984.602 5984.805		Fe I	1260
5890.487 5891.12		Co I Fe I	82 581	5937.806 5939.75		Ta I	. 7	5986.54	P	Fe II	24
5891.16	P	Fe I	1179	5940.25		N II	28	5987.057		Fe I	· 1260
5891.36		Fe II	211	5940.68		Ti I S II	2 21	5987.11 5988.560		Gd II Ti I	. 97 154
5891.528 5891.5		Nd II Fe III	86 114	5940.69 5940.972		Fe I	1083	5990.59	P	Fe II	51
		СП	5	5941.36	P	Fe II	58	5991.34		0 1	44
5891.65 5891.89	P	Fe I	1236	5941.67	•	N II	28	5991.383		Fe II	4.6
5891.9		Fe II		5941.755		T1 I	72	5991.58	I	Fe I	1232
5892.46	P	Fe I	1201	5942.71	P P	Fe I Fe I	1233 1021	5991.890 5991.93		Co I O I	90 44
5892.66 5892.71		La II Fe I	48 1086	5943.11 5943.58	P	Fe I	63	5992.65	P	Fe I	1080
5892.76	P	N1 I	250	5943.62	P	Fe I	1085	5993.18		1 O	44
5892.80	P	Fe I	63	5944.01		Ta I	8	5995.28		0 I	44
5892.878	P	Ni I Fe I	68	5944.65 5944.8342	P	Ti I Ne I	2 1	5995.685 5995.93	P	Ti I Fe I	311 1198
5893.24	P		1055						_		
5893.42	_	Ge II	1	5946.484	_	Co I Fe I	169 1056	5996.007 5996.16		Ti I S II	154 13
5894.1 5894.351	P	C III Zn II	20 1	5947.30 5947.50	P P	Fe I	1199	5996.22	P	Fe I	624
5895.007		Fe I	1235	5948.30	-	La II	105	5996.49	P	Fe I	1083
5895.646		Tm I		5948.584		81 [16	5996.74		Ni I Ba I	249 7
5895.89		S II Cr II	2 0 198	5949.35 5950.13	P	Fe I Fe I	14,1176 1200	5997.088 5997.24		Ta I	12
5895.90 5895.923		Na I	1	5950.91	•	A II	12	5997.610		N1 I	252
5897.54		V II	98	5951.30		8 II	21	5997.808		Fe I	1175
5897.62		Gd II	112	5951.45		A II	98	5998.86		N1 I	226
5898.212		Fe I	1259	5951.60		Gd II	95	5999.003		Ti I	198
5899.295		Ti I	72	5952.19	P	Fe I N II	1313 28	5999.30 5999.47		Fe III N I	117 16
5901.0 5901.53	P	Fe III Fe I	115 1083	5952.39 5952.55	P	Fe II	182	5999.668		Ti I	227
5901.95	E	La II	107	5952.749	-	Fe I	959	5999.70		Al II	93
5902.182		Cr I	119	5953.162		Ti I	154	5999.83		Al II Ba II	93
5902.52		Fe I	1234	5953.65	P	Fe III Fe I	115 1233	5999.85 6000.668		Co I	13 16 9
5903.317 5903.6		Ti I Fe II	71	5955.12 5955.37	•	Zr I	3	6001.18		Al II	109
5904.07		Gd II	112	5955.682		Fe I	1106	6001.53	P	Sc II	20
5905.673		Fe I	1181	5956.48		Gd II	59	6001.81		Al II	93
5906.50	P	Ti I	105	5956.5		Fe II	44	6002.273		V I	49 34
5907.36		C II Fe I	44 150	5956.702 5957.612		Fe I Si II	14 4	6002.601 6002.640		Ti I	198
5908.24 5908.25		SII	13	5958.22	P	Fe I	1199	6003.033		Fe I	959
5909.38	P	Fe II	57	5958.23	P	Fe I	14	6004.53		Lu I	1
5909.99		Fe I	552	5958.34	P	Fe I O I	63 23	6004.57 6005.030		Gd II Co I	112 37
5911.4 5 5913.3 5	P	Gd II Fe I	781	5958.46 5958.63		0 I	23	6005.53		Fe I	207,1079
5913.55	_	Gd II		5959.878		Fe I	1020	6006.42		Al II	93
5913.730		Ti I	.2	5960.93		N II	28	6007.313		N1 I	42
5913.87		Cr II		5961.91	P	Fe I	1080	6007.75	P	Fe I	581
5914.16		Fe I	1180,1181	5962.4		Fe II Fe I	63	6007 .961 6008 .295		Fe I Mn II	1178 16
5914.28 5914.92		V II	126 44	5963.25 5965.040		Co I	169	6008.35	P	Fe I	1079
5915.123		Ti I	228	5965.474		Ne I	39	6008.48		NI	16
5915.266		Si II	8	5965.828		Ti I	154	6008.577		Fe I V I	982 49
5915.551 5915.93		Co I Or I	82 185	5966.07 5967.77		Eu II V II	9 126	6008.648 6009.298		Mn II	16
5916.250		ře I	170	5969.38		Hf II	66	6009.45	P	Fe I	64
5916.364		V II	126	5969.554		Fe I	1086	6009.83	P	Fe I	624
5916.73		Cr I	185	5969.64		K II	7	6009.962		Mn II	16
5918.548	_	Ti I	71	5971.07		Ti I	264	6011.12	70	Gd II	60
5918.93 59 19.60	P	Fe I C II	1083 44	5971.09 5971.28		La II Tm I	69	6012.21 6012.251	P	Fe I Ni I	64
5920.0		Fe III	115	5971.699		Ba I	7	6012.53		Ti I	264
5920.520		Fe I	581	5971.9 4		Al II	100	6012.75	P	Fe I	1198
5922.112		Ti I	72 55	5973.37 5973.52	P	Fe I La II	1175 103	6013.498 6015.25	P	Mn I Fe I	27 63
5922.365 5923.930		Co I Ni I	55 259	5973.52 5973.66		Ni I	103 226	6016.637	•	Mn I	27
5925.81	P	N1 I	42	5974.62	P	Fe I	1055	6016.66		Fe I	738
5926.83	P	Fe I	1231	5974.628	-	Ne I	28	6016.95	P	Fe I	1232
5927.15		SII	21	5975.355		Fe I	1017,1260	6017.52	P	Ti I	257
5927.71 5927.798		La II Fe I	111 1175	5975.5340 5975.830	1	Ne I Ce II	1 30	6017.90 6018.34	P	V I Fe I	49 176
5927.82		N II	28	5976.18	P	Fe I	1125	6018.423	•	Ti I	198
5928.50	P	Fe I	1055	5976.799		Fe I	959	6018.62	_	T1 I	70
5928.86 5929.35		V II Hf II	.9E 80	5978.17 5078 543	P	Fe I Ti I	1199 154	6019.36	P	Fe I	780
5929.35		11A 1A	.69	5978.543		44 1	10.1	6019.470		Ba I	7

I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
6021.09		Ge II	1	6080.65		Gd II	112	6120.98		V II	97
6021.18	P	Fe II Mn I	24 27	6080.85 6081.421		S II V I	20 34	6121.008 6122.219		Ti I Ca I	153 3
6021.802 6021.82		Fe I	63,1079,1085	6081.51		Cr II	188	6122.438		Mn II	13
6022.81		As II	1	6081.72	P	Fe I	1142	6122.640		Co I	169
6023.41		YI	3	6081.85	P	Fe I Co I	1018 169	6122.799 6123.164		Mn II Mn II	13 13
6024.066 6024.15		Fe I P II	1178 5	6082.431 6082.718		Fe I	64	6123.38		A II	102
6025.723		Pr II	39	6083.67	P	Fe I	981	6123.41		S II	13
6025.73		N1 I	251	6083.82		A II.	125	6124.08	P	Fe I	1326
0000 01		V II	125	6084.11		Fe II	46	6124.85		81 I	30
6026.81 6027.057		Fe I	1018	6085.228		Ti I	69	6124.86		Zr I	24
6027.23		V II	90	6085.267		Fe I	269	6125	P	N IV	16
6027.57	_	Hf II	91	6085.43		La II Ni I	111 249	6125.03		Si I Mn II	30 13
6027.76	P	Fe I V II	1312 97	6086.290 6086.55		N I	249 49	6125.855 6126.09		La II	69
6028.26 6028.64		Zr II	136	6086.663		Co I	165	6126.210		Mn II	13
6028.98		V II	125	6086.93		V II	125	6126.217		Ti I	69
6029.28		Cr I	242	6087.485 6087.76		V I P II	33 5	6126.516 6127.49		Mn II Zr I	13 2
6029.9971		Ne I	3	0087.70			Ū	0121110			_
6030.66		Ko I	5	6089.473		V I	33	6127.913		Fe I	1017,1082
6031.07		V II	97	6089.566		Fe I	1327	6128.21 6128.30		8 II V I	28 33
6031.68 6032.124		Ti I A I	2 13	6089.69 6090.184		Cr II V I	187 34	6128.725		Mn II	13
6032.30		Fe III	117	6090.54	P	V I	33	6128.990		N1 I	42
6032.67		Fe I	1082	6091.175	_	Ti I	238	6129.022		Mn II	13
6034.01	_	PII	5	6091.74 6092.13	P	Fe I S II	1200 20	6129.23 6129.255		Cr II Mn II	105 13
6034.04 6034.204	P	Fe I Ce II	1142 30	6092.13		Ti I	153	6129.57		La II	47
6035.34	P	Fe I	1125	6093.144		Co I	37	6129.71	P	Fe II	46
				2000 00		D- 7	4400	P400 484		N1 I	248
6035.487		Ce II Sc I	30	5093.66 6094.419		Fe I Fe I	1177 1177	6130.17 4 6130.37	P	Fe I	248 624
6036.17 6036.7		He II	8	6094.65		Cl II	26	6130.794	-	Mn II	13
6039.312		N1 I	248	6095.37		C II	24	6131.005		Mn II	13
6039.690		V I	34	6095.93		V II	97	6131.30	P	81 I	30
6041.44		Hf II 8 I	65 10	6096.689 6097.08	P	Fe I Fe I	959 64	6131.54 6131.86		Si I Si I	30 30
6041.93 6042.092		Fe I	10	6097.12	•	8 11	13	6131.917		Mn II	13
6043.10		P II	5	6097.42		V I	38	6133.948		N1 I	229
6043.386		Ce II	30	6098.28	P	Fe I	1200	6134.58		Zr I	2
6043.738		Fe I	664	6098.62		C II	24	6135.07		v i	60
6044.53	P	Fe II	46	6098.655		Ti I	304	6135.10		Hf II	90
6045.38		Ta I	10	6100.04	_	Zr II	93	6135.36		V I	34
6045.497		Fe II	200	6100.23 6100.29	P P	Fe I Fe I	1199 1199	6135.759 6135.83		Cr I Ba II	314 12
6046.04 6046.26		8 I 0 I	10 22	6100.25	F	La II	47	6136.620		Fe I	169
6046,46		0 I	22	6102.178		Fe I	1259	6136.9		N II	36
6047.665		Cr I	24.2	6102.26		8 II	26	6136.999	_	Fe I	62
6048.636 6049.110		V I Co I	49 201	6102.59 6102.59	P	C II Fe III	24 3	6137.51 6137.696	P	Fe I Fe I	685 207
0010.110		•••	-01		-						
6049.50		Gd II	59	6102.722		Ca I	3	6138.38		T1 I	197
6049.51 6050.446		Etu II Mrn II	2 16	6103.190 6103.54		Fe I Fe II	1260 200	6138.4 <u>4</u> 6138.67		Y I	3 21,103
6051.00	P	Fe I	207	6103.56		A II	27	6138.77		Cr II	188
6051.860		Mn II	16	6103.642		II I	4	6138.98	_	8 11	63
6052.66		8 I	10	6105.15 6105.381	P	Fe I Mn II	1175 16	6139.65 61 4 0.50	P	Fe I Zr I	208 24
6052.892 6053.48		Mn II Cr II	16 105	6106.19		0d II	95	6141.01	P	Fe II	46
6053.680		N1 I	247	6106.25		O I	43	6141.718		Ba II	2
6054.100		Fe I	1142	6106.47		Zr II	106,137	6141.734		Fe I	816
6055.987		Fe I	1259	6106.84	P	Fe I	208	6142.047		N1 I	244
6058.113		V I	34	8 106.96 7		V I	60	6142.21	P	81 I	30
6058.76	P	Ti 1	70	6107.09	P	Fe I	1081	6142.53		Si I Ne I	30
6059.2 5 606 0.81	P P	Sc I Fe I	20 1081	6107.29 3 6107.32	P	Mn II Fe I	16 1015	6143.0623 6143.23		Zr I	1 2
6061.04	-	Fe I	217	6108.121	_	N1 I	45	6145.06		81 I	29
6061.11		Al I	99	6108.8	P	Mn II	16	6145.42	P	Fe I	685
6062.75		Cr I	185	6109.318 6110.30		Fe I As II	581 5	6146.225 6146.38		Ti I Co I	153 80
6062.88 6062.89		Zr I Fe I	3 63	6110.784		Ba I	7	6146.53		La II	4
6063.117		Ba I Ti I	7	6111.06 6111.622		N1 I V I	230 34	6147.15 6147.735		Cr II Fe II	105 7 4
6064.631 6065.487		Fe I	69 207	6112.26		Cr II	105	6147.755		Fe I	1016
6065.5		N II	27	6113.33		Fe II	46	6148.65	P	Fe I	1141
6065.81	P	Fe I	581	6114.07	_	Od I	3	6149.238		Fe II	74
6066.32		Al II	92	6114.41 6114.6	P	Fe I [.] N II	981 36	6149.743 6150.10	P	Ti I Fe II	197 46
6066.44 6067.13		La II	92 48	6114.7(Zr II	93	6150.132	•	V I	20
6067.62	P	81 I	15	6114.92		A II	102	6150.9		N II	36
6068.00		Cr II	197	6115.21		CII	19	6151.509		V I	33
6068.46		Al II	92	6116.04	P	Fe II	46	6151.624		Fe I	62
6069.69		Cr II	197	6116.181		N1 I	218,251	6152.82	P	Fe I	1312
6070.08		Cr II	105	6116.994		Co I	37	6154.225	n	Na I C III	5 12
6073.23		Al II He II	92 8	6118.06 6118.2		N1 I He II	230 8	6154.4 6155.22	P	81 I	13 29
6074.1 6074.3377		Ne I	3	6119.505		V I	34	6155.24	P	Fe II	161
6077.43		A II	12	6119.780		N1 I	244	6155.4	P	CIII	13
6078.496		Fe I	1259	6120.12	T.	A II	22 14	6155.73 61 55.99		81 I 0 I	29 10
6079.02		Fe I	1176	6120.25	P	Fe I	14	6150.99		Co T	10 20

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
6156.25	_	Hf II C III	67	6212.04 6212.30		Fe I Ti II	1142 108	6257.834 6258.103		Nd II Ti I	72 104
6156.6 6156.78	P	0 I	13 10	6213.06		Zr I	24	6258.591		Ni I	226
6157.41	P	Fe I	624	6213.438		Fe I V I	62 20	6258.595 6258.706		V I Ti I	19 104
6157.734 6158.19		Fe I O I	1015 10	6213.874 6214.58		Zn II	1	6258.962		Sc I	3
6159.409		Fe I	1175	6215.152 6215.212		Fe I Ti I	1018 293	6259.615 6260.31		Ni I Gd II	216 111
6160.747 6160.75	P	Na I Fe II	5 161	6216.368		VI	19	6261.101		Ti I	104
6161.194		Pr II	39	6217.2813		Ne I	1	6261.236		V I	20
6161.289		Ca I	20	6217.288		Fe I	1335	6261.55		0 I	50
6161.84		S II	27	6217.95 6219.290	P	Fe II Fe I	34 62	6262.30 6264.55		La II O I	33 19
6162.172 6163.42		Ca I Ni I	3 23 0	6219.35	P	Fe II	161	6264.825		Ti I	144
6163.560		Fe I	64	6219.54	P P	Fe I Fe II	685 34	6265.140		Fe I Ti I	62 144
6163.5939 6163.758		Ne I Ca I	5 20	6219.54 6220.460	Р	Ti I	293	6266.021 6266.32		VI	20
6165.18	P	Ni I	229	6220.78		Fe J	958	6266.4950		Ne I O I	5
6165.366 6165.56		Fe I P II	1018 5	6221.40 6221.41		Fe I Ti I	981 293	6266.89 6267.64	P	Fe I	48 110
						Fe I	12	6267.845		Fe I	1123
6165.945 6166.443		Pr II Ca I	39 20	6221.661 6221.88		Lu II	13 2	6268.50		Ti I	103
6167.82		N II	36,60	6222.59		Y I	2	6268.841		V I Fe I	20 3 42
6168.46 6168.86		Cr II Co I	196 82	6222.81 6223.994		Hf II Ni I	57 228	6270.238 6271.289		Fe I	685
6169.055		Ca I	20	6224.23	P	Fe I	1257	6271.52	P	Fe I Cr II	12 31 196
6169.559 6170.16		Ca I N II	20 36	6224.2 6 6224.507	P	V I V I	20 20	6271.83 6272.650		Ni I	244
6170.16		VI	20	6226.18		Al II	10	6273.389		Ti I	1
6170.47		As II	1	6226.29		V II	124	6273.76		La II	131
6170.492		Fe I	1260	6226.66		Cr II	105	6274.34		S II V I	19
6170.568 6170.6		N1 I He II	228,230 8	6226.77 622 9.234		Fe I Fe I	981 342	6274.670 6274.94		Cr II	19 196
6171.01	P	Fe I	1256	6229.34	P	Fe II	34	6276.310		Sc I	2
6172.28		A II La II	102 4	6230.115 6230.728		Ni I Fe I	227 207	6277.525 6278.30		Ti I Au I	144 1
6172.72 6173.05		Eu II	9	6230.736		V I	19	6279.757		Sc II	28
6173.343		Fe I	62 36	6230.84 6230.968		Hf II Co I	69 37	6279.84 6280.625		Hf II Fe I	13 13
6173.40 6174.15		N II La II	47	6231.76		Sc I	3	6282.636		Co I	37
				6231.78		Al II	10	6282.92		Cr II	196
6175.158		Fe II	200	6232.661		Fe I	816	6284.00	P	Fe I	624
6175.424		N1 I N1 I	217 228	6232.735 6233.187		Fe I V I	685 20	6284.30 6285.185		N II V I	32 19
6176.813 6176.95		Cr II	105	6233.52		Fe II		6286.35		SII	19
6177.258		Ni I	58	6233.8 6237.34		He II Si I	7 28	6287.06 6290.55	P	S II Fe I	26 208
6177.49 6178.13	P	Ni I Fe II	244 4 6	6237.62		Si I	27	6290.968		Fe I	1258
6179.17		Cr II Fe II	187 163	6238.375 6239.36	P	Fe II Fe II	74 ·	6292.858 6293.00	P	V I Ti I	19 103
6179.378					•				_	T0- Y	1260
6180.093 6180.216		N1 I Fe I	65,217 269	6239.410 6239.64		Sc I F I	2 3	6293.92 6295.251	P	Fe I Ti I	1,144
6180.42		Gd II	111	6239.73		A II	21	6295.949		Ti I	144
6181.57		Al II Al II	66 66	6239.77 6239.778		Cr II Sc I	105 3	6296.08 6296.518		La II V I	47,68 19
6181.68 6182.28		Al II	66	6239.95	P	Fe II	74	6296.646		Ti I	1
6182.45		Al II Al II	66 66	6240.137 6240.266		V I Fe I	20 1015	6297.800 6298.075		Fe I Ti I	62 144
6183.42 6183.892		Ni I	226	6240.656		Fe I	64	6299.07	_	Gd II	123
6184.94	P	Fe II	163	6242.52		N II	57	6299.74	P	Fe III	3
6185.1		Fe III		6242.80		V I	19	6300.363		Ni I	246 28
6185.34	P	Fe II Ti I	46 197	6243.11 6243.13		V I A II	19 21	6300.697 6301.515		Sc II Fe I	816
6186.14 6186.740		N1 I	229	6243.36		Al II	10	6301.86	P	Fe I	863
6187.41	P P	Fe I Cr II	342 187	6243.86 6244.13	P	Si I Si I	28 28	6302.507 6303.41		Fe I Eu II	816 8
6188.00 6188.037	P	Fe I	959	6244.344	•	Pr II	39	6303.46		Fe I	1140
6188.09		La II	117	6244.51		Sc I Si I	3 27	6303.754 6304.35		Ti I Zr I	104 24
6189.005 6189.350		Co I V I	37 20	6244.56 6245.214		V I	20	6305.15		Gd II	94
6191.1 86		Ni I	45	6245.629		Sc II	28	6305.262		Pr II	39
6191.562		Fe I	169	6245.84		Fe I	1289	6305.318		Fe II	200
6191.73		Y I	2	6246.334		Fe I Fe II	816 74	6305.46 6305.51		La II S II	5 19
6192.96 6193.672		Zr I Sc I	24 3	6247.562 6248.916		Fe II		6305.60		Cr II	
6195.18	_	Cr II	105	6248.95	P	Hf II Fe I	22 685	6305.671 6306.047		Sc I Sc I	2 3
6196.71 6199.16	P	Fe II Fe II	46 162	6249.65 6249.92	r	La I	7	6306.17		Hf II	81
6199.202		v i	19	6251.26	P	Fe I V I	1176 19	6306.19 6307.25	P	Fe I La II	1230 117
6199.475		Fe I	208	6251.83					_		
6200.323 6201.52		Fe I Al II	207 57	6252.561 6253.82	P	Fe I Fe I	169 1256	6307.85 6309.902	P	Fe I Sc II	863 28
6201.52		Al II	57	6254.25	-	Si I	28	6310.543		Fe I	405
6202.31	P	Fe I	208	6254.262 6254.96		Fe I Si I	111 28	6310.8 6310.91		He II La II	7 103
6203.51 6204.640		La II Ni I	111 226	6254.96 6256.365		Ni I	43	6311.289		Ti I	103
6207.251		v I	20	6256.370		Fe I	169 50	6311.506 6312.240		Fe I Ti I	342 104
6208.18 6209.73	P	Cr II Fe I	105 981	6256.84 6256.90 6		O I	50 19	6312.240		s II	26
6010 676	-	So I	2	6257.72		Ti I	1	6313.05		Zr I	65

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
6313.57		Zr II	136	6371.359		Si II	2	6435.02		Y I	2
6314.22		Gd II	121	6374.08		La II O I	111 59	6435.148		V I Fe I	107
6314.29 6314.666		S II Ni I	28 67	6374.31 6375.96		Fe II	08	6436.43 6437.01		re I N I	1016 23
6314.67	P	N1 I	249	6376.00		A II	61	6437.63		A II	25
6315.316		Fe I	1015	6376.22	P	Fe I	1140	6437.64		Eu II	8
6315.42	P	Fe I	1016	6378.263 6378.824		N1 I Sc I	247 1	6438.4696		Cd I Fe I	3
6315.79 6315.814		La II Fe I	117 1014	6378.91		Ba II	12	6438.775 6439.073		Ca I	1158 18
6316.61		N1 I	248	6379.63		N II	2	6440.974		Mn I	39
		F- *	400	6380.11		V II	231	0444 70		N I	00
6318.022 6318.027		Fe I Ti I	168 103	6380.748		Fe I	1015	6441.70 6441.95		A II	23
6318.11		Ca I	53	6380.95		Gd II	111	6442.97		Fe II	
6318.23		Mg I	23	6381.416		Ti I	196	6443.05		La II	117
6318.75		Mg I La II	23 19	6382.169 6382.9914		Mn I Ne I	39 3	6443.492 6445.05		Mn I N III	39 14
6320.39 6320.854		Se II	28	6383	P	N IV	2	6445.76		Zr I	57
6322.165		N1 I	249	6383.753		Fe II		6446.281		Mn II	19
6322.693	_	Fe I	207	6384.669 6384.697		Mn I Ni I	39 246	6446.43		Fe II La II	199 104
6322.98	P	Fe III	3	0004.001			2.0	6446.62		Ter 11	104
6323.39		0 I	31	6384.89		8 11	19	6448.10		Sc I	1
6324.45		AII	0.4	6385.196 6385.473		Nd II Fe II	85	6449.810	P	Ca I Co I	19 80
6324.84 6325.22		0 I T1 I	31 1	6385.74	P	Fe I	1253	6450.09 6450.230	r	Co I	37
6325.90		La I	2	6386.48		8 11	5	6450.78		N III	14
6326.43		S II	63	6386.75	P	Fe II Fe I	203 685	6450.854		Ba I	6
6326.845 6327.603		V I N1 I	84 44	6388.41 6390.48	r	La II	33	6450.99 6451.58		Fe I Fe I	13 44 921
6328.6		N II	46	6391.214		Mn I	39	6451.580		N1 I	257
6329	P	0 V	14	6392.534		Fe I	109	6452.354		V I	48
6330.101		Cr I	6	6393.605		Fe I	168	6452.77		N1 I	226
6330.856		Fe I	1254	6394.23		La I	7	6453.50		Sn II	1
6331.969		Fe II	199	6395.158		Co I	174	6453.64		0 I	9
6334.4279		Ne I	1	6395.16 6395.27		Ca I S II		6453.95 6454.48		N III O I	14 9
6335.335 6335.74		Fe I Al II	62 22	6396.39	P	Fe I	921	6454.998		Co I	174
6336.104		Ti I	103	6397.30		S II	19	6455.600		Ca I	19
6336.835		Fe I	816	6398.05		S II La II	19 104	6455.85		Hf II	82
6338.896 6339.090		Fe I V I	1258 84	6399.04 6399.23		A II	21	6455.99 6456.01		La I O I	1 9
0000:000		• •	.					0100101			
6339.148	_	N1 I	248	6399.41		Cl II Fe I	58 816	6456.376	ъ.	Fe II	74
6339.96 6340.67	P	Fe I N II	685 46	6400.010 6400.335		Fe I	13	6456.87 6456.907	P	Fe I Ca II	1256 19
6341.682		Ba I	6	6402.005		Y I	2	6457.93		N I	22
6342.682		Sc II	28	6402.2455	_	Ne I	1	6458.68	P	Fe III	3
6343.29		CaI	53	6402.43 6403.58	P	Fe I S I	1344 9	6460.1		PII	32
6343.963 6344.154		Ce II Fe I	169	6405.89		Ca I	•	6462.210 6462.454		Mn II Mn II	20 20
6344.831		Sc I	1	6406.3		He II	7	6462.566		Ca I	18
6346.54		Zr II	128	6406.42		Fe I	1334	6462.72	P	Fe I	13
6346.65		Gd II	96	6407.03		Zr I	2	6462.731		Fe I	168
6346.67		Mg II	16	6407.30		Fe II	74	6462.799		Mn II	20
6347.091 6347.1		81 II N II	2 46	6408.031 6408.13		Fe I S I	816 9	6463.03 6463.11		N III Lu II	14 2
6347.843		Co I	200	6408.463		Sr I	8	6463.195		Mn II	20
6348.50		F I	3	6410.98	_	LaI	7	6463.637	_	Mn II	20
6349.477		V I Mn I	8 4 39	6411.10 6411.658	₽	Fe I Fe I	1256 816	6464.67 6464.70	P	Fe I Ca I	13 19
6349.748 6351.17		0 I	61	6412.20	P	Fe I	169	6466.86		N III	14
6351.29	P	Fe I	1140	6413.13	P	Ti I	1	6466.97		V I	32
60E1 440		Co I	200	6413.353		Sc I	1	6468.32		N I	22
6351.448 6353.84	P	Fe I	13	6413.66		FI	3	6468.77		N III	14
6355.038		Fe I	342	6413.71		S II	19	6468.86	P	Fe I	1254
6356.057		Mn I Fe I	39 208	6413.92 6414.603		Mn I Ni I	39 244	6469.12 6469.214	P	Fe I Fe I	168 1258
6356.293 6357.0		N II	46	6415.24		81 I		6470.25		Zr I	65
6357.10	P	Zr I	2	6415.50		S I	9	6471.660	_	Ca I	18
6357.297		V I	84	6415.59 6416.905		Cr II Fe II	196 74	6472.15 6472.34	P	Fe I Sm II	1140 60
6358,12 6358.692		La II Fe I	47 13	6416.94	P	Fe I	1253	6473.89		Hf II	91
			_	6417 004		Co I	111	C464 EEO		Co I	105
6359.896 6360.798		Ti I Ni I	1 229	6417.824 6418.87		Cr II	196	6474.558 6474.61		Fe I	165 861
6361.41		Ti I	196	6419.15		Ti I	196	6475.632		Fe I	206
6361.79		Ca I	53	6419.65	P	Fe I	958	6477.861		Co I	174
6362.286		Sc I Zn I	1 6	6419.982 6420.47		Fe I N I	1258 23	6478.69 6480.11		N III Gd II	14 109
6362.347 6362.414		Zn I Ni I	U	6421.355		Fe I	111	6481.73		N I	21
6362.874		Cr I	6	6421.507		N1 I	258	6481.878		Fe I	109
6362.889		Fe I	1019	6424.905 6428.80		Ni I Fe I	227 1138	6482.07 6482.205		N II Fe II	8 199
6364.384		Fe I	1253								
6364.597		N1 I	67	6429.913		Co I V I	81 107	6482.74		N I	21 66
6364.717		Fe I Ti I	1229 1	6430.471 6430.78		V I Ta I	107 11	6482.811 6483.10		Ni I A II	66 27
6364.92 6365.7		N II	2	6430.851		Fe I	62	6483.75		N I	21
6366.33		0 I	60	6431.620		V I	107	6483.95	P	Fe I	34
6366.354		Ti I	103	6432.06 6432.654		Ni I Fe II	126 40	6484.88 6485.36		N I Ta I	21 12
6366.483 6369.34		N1 I S II	230 19	6433.17		V I	107	6487.43		Fe II	203
6369.45		Fe II	40	6433.85	_	Fe II	199	6487.48	P	Fe III	3
6370.383		Ni I	127	6434.44	P	Fe III	3	6487.55		N III	14

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I : A	Туре	Element	Multiplet No.
6400 10	••	Yb I	3	6560.099		He Il	2	6634.10	P	Fe I	1258
6489.10 6489.68		Zr I	65	6560.68		81 I	62	6634.36	_	Gd II	94
6490.344		Co I	81	6561.032		H. D	1 1	6635.15 6635.68	P	Ni I Fe I	264 1155
6491.28 6491.28		Fe II N I	21	6562.817 6563.403		Co I	80	6636.53	-	La II	61
6491.61	P	Ti II	91	6563.86		Hf II Ti I	81	6637.01		N I A II	20 20
6491.712 6492.0		Mn I N II	39 45	6565.62 6565.88		VI	48	6638.24 6639.35	P	Fe I	1279
6493.05		Fe II		6567.22	P	Fe I	168	6639.71	P	Fe I	1195
6493.780		Ca I	18	6567.39		Hf II	90	6639.72		A II	20
6494.11		Gd I	123	6568.00		Gd II	121	6639.90	P	Fe I	1007
6494.52	P	Fe I	1255	6569.261		Fe I Sm II	1253 62	6640.90 6641.06		0 II 8 II	4 25
6494.985 6495.45		Fe I	168 65	6569.31 6570.0		He II	7	6642.79		La II	103
6495.779		Fe I	1253	6570.834		Mn I	51	6643.023		Cr I Sr I	256 8
6496.456 6496.896		Fe I Ba II	1258 2	6570.96 6571.22		La II Fe I	47 1121	6643.536 6643.641		N1 I	43
6497.689		Ti I	102	6572.781		Ca I	1	6643.79		A II	20
6498.19		La II	104 6	6572.900		Cr I Fe I	16 13	6644.60 6644.96		Hf II N I	3 4 20
6498.759		Ba I	0	6574.238		10 1	10	0022.50			
6498.950		Fe I	13	6575.022		Fe I	206	6645.11		Bu II N I	8 20
6499.52 6499.649		N I Ca I	21 18	6575.180 6576.95	P	Ti I Ni I	286 283	6646.52 6646.90	P	Fe I	1156
6500.25		A II	26	6578.03	-	CII	2	6646.98		Fe I	206
6501.212		Cr I Fe I	16	6578.51		La I V I	1 32	6647.06 6647.90	P	Hf II Fe I	65 551
6501.681 6503.989		Sr I	8	6578.96 6580.22		N1 I	265	6648.08	P	Fe I	13
6504.164		v I	48	6580.96		Cr I	16	6653.41		N I	20
6504.9 6506.33		N II Fe II	45	6581.22 6582.85		Fe I C II	34 2	6653.75 6653.78		C1 II O I	38 65
0000.33				0002.00							
6506.45		N I Ne I	21 3	6584.53		HF II Y I	99 1	6653.88 6656.61		Fe I N I	1052 20
6506.5279 6508.135		Ti I	3 102	6584.89 6586.328		N1 I	4	6657.54		Cr I	262
6508.742		Ca I	18	6586.343		Mn I	51	6660.49		Si II	
6509.16 6509.56		A II Fe I	21 1012	6586.69 6587.75		Fe II C I	22	6661.07 6 6661.39		Cr I Ni I	282 246
6511.62		Hf II	69	6588.91		Sm I	1	6661.68		Cl II	38
6512.61		Hf II	49	6591.32		Fe I Co I	1229 202	6663.26		Fe I Fe I	1195 111
6516.026 6516.053		Cr I Fe II	265 40	6591.83 <u>4</u> 6592	P	C IV	202 10	6663 .44 6 6665 .4 2	P	Fe I	1156
									_		
6517.01 6517.27		Fe II V II	230	6592.472 6592.91	P	N1 I T1 I	248 102	6665.43 6666.36	P	Fe I A II	34 25
6518.376		Fe I	342	6592.919	•	Fe I	268	6666.548		Ti I	101
6519.371		Mn I	39	6593.878		Fe I	168	6666.94	P	O II Fe I	85 110
6521.39 6522.3		S II N II	25 45	6595.326 6595.869		Ba I Co I	6 174	6667.17 6667.42	P	Fe I	168
6522.38		C1 11	59	6597.556		Cr I	282	6667.73		Fe I	1228
6524.76	P	Fe I	1280	6597.607		Fe I N1 I	1253 249	6669.257 6671.36		Cr I Fe I	282 1343
6526.99 6527.20	P	La II Si I	33 52	6598.59 <u>4</u> 6598.9529)	Ne I	6	6671.41		La II	33
							40		P	Fe 1	1255
6527.312 6527.49		Ba I Si I	6 62	6599.112 6601.13	P	Ti I Fe I	19 1290	6671.43 6671.51	P	Sm I	1200
6528.53		Fe I	5.	6603.20	P	Fe I	862	6671.88		81 II	
6529.197		Cr I V I	265 48	6603.67	P	Fe I Sc II	860 19	6672.84 6672.88	P	V II Fe I	229 205
6531.44 6531.66		Hf II	48	6604.60 6604.67		Fe I	1254	6673.84	P	Fe I	1254
6532.891		N1 I	64	6605.546		Mn I	51	6675.271	_	Ba I	6
6533.0 6533.97		N II Fe I	45 1197	6605.98 6607.02	P	V I Ti II	48 91	6676.86 6677.24	P	Fe I Cr I	11 94 256
6537.921		Cr I	16	6607.82	-	v i	96	6677.25		Ti I	274
6539.72		Fe I	405	6608.03		Fe I	109	6677.33		Fe II	210
6541.49	P	Fe I	1195	6609.116		Fe I	206	6677.49	P	Fe I	1280
6542.80		Hf II	100	6609.20		Hf II	105	6677.54	P	Fe I	551
6543.17 6543.51		La I V I	7 48	6609.56 6609.64		Fe I Al II	76	6677.96 6677.993	P	Fe I Fe I	205 268
6543.98		Fe I	1139	6609.68	P	Fe I	19	6678.03		Zr II	128
6545.2		N II	4 5	6610.04		Gd II	108	6678.149		He I O II	46 85
6545.80 6546.245		Mg II Fe I	23 268	6610.58 6612.17		N II Cr I	31 282	6678.19 6678.276	4	Ne I	6
6546.276		Ti I	102	6613.74		Y II	26	6678.60	P	Ti I	213
6546.791		Šr I	8	6613.83	P	Fe I	13	6678.818		Co I	54
6547.58	P	Fe I	13	6615.03	P	Fe I	1155	6680.19		Cr I	282
6548.72		Hf II	444	6617.126	_	Co I	202	6680.26		TI II	112
6550.01 6550.244		Hf II Sr I	111 12	6617.14 6617.266	P	N1 I Sr I	248 8	6681.03 6681.23		GG II	38 94
6551.466	_	Co I	54	6621.24		N1 I	97	6681.34	P	Fe I	1155
6551.68 6552.77	P	Fe I Fe I	13 1325	6622.28 6622.41	P	Gd II Fe I	110 1157	6682.23 6683.2	P	Fe I He II	1008 7
6554.18		La II	109	6622.41 6622.53	-	N I	20	6684.36		A II	20
6554.226		Ti I	102	6623.78	P	Fe I	1010	6686.04		C1 II	36
6555.20		81 I	62	6624.86		v I	48	6687.57		Y I	1
6555.87	P	Fe I	1007	6625.04		Fe I	13	6690.80		N1 I	140
6556.066 6556.79		Ti I Fe I	102 1255	6627.28		Fe II Fe I	210	6692.47	P	Fe I Ba I	1192 6
6557.40		Y I	1200	6627.558 6627.62		0 II	117 4 85	6693.842 6695.97		Al I	5
6557.87		Sc I	24	6630.015		Cr I	16	6696.30	P	Fe I	1255
6557.91 6558.02		Hf II V I	66 59	6630.5		N II Co I	41 111	6696.39		Al II	29
6558.05		8c I	24	6632.438 6633.44		Fe I	111 1258	6698.63 6699.14		Al I Fe I	5 1 226
REKO KOO		T4 TT	01	0000 704		D. 7	4405	2220121			

6700.89 P Fe I 1156 6752.832 A I 11 6623.48 6700.90 P Fe I 1333 6753.00 V I 31 6624.82 P 6700.90 P N1 I 248 6753.45 P Fe I 1196 6628.25 6701.64 Cr I 256 6754.61 Hf II 35 6628.5 6702.12 Gd II 130 6754.75 C II 21 6828.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.56 P Fe I 1120 6829.92 6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.17 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 N1 I 245 6832.44 6707.89 Li I 1 1 6759.42 Cl II 54 6832.49	Al II Fe I Gd I C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II	9 1280 2 21 1195 81 31 12 108 550 44 31 26
6700.90 P Ni I 248 6753.45 P Fe I 1196 6828.25 6701.64 Cr I 256 6754.61 Hf II 35 6828.5 6702.12 Gd II 130 6754.75 C II 21 6828.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.56 P Fe I 1120 6829.94 6704.48 P Fe I 1052 6756.61 A II 20 6829.94 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.49	Gd I C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II	2 21 1195 81 31 12 108 550 44 31 26
6701.64	C I Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II	21 1195 81 31 12 108 550 44 31 26
6702.12 Gd II 130 6754.75 C II 21 6628.610 6703.573 Fe I 268 6755.609 Fe I 6829.92 6704.18 Gd II 110 6756.58 P Fe I 1120 6829.94 6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 N1 I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	Fe I Co I V I O V La II Fe I C1 II V I Y II Zr I Fe I La II	1195 81 31 12 108 550 44 31 26
6704.18	V I O V La II Fe I C1 II V I Y II Zr I Fe I La II	31 12 108 550 44 31 26
6704.48 P Fe I 1052 6756.61 A II 20 6830 P 6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	O V La II Fe I C1 II V I Y II Zr I Fe I La II	12 108 550 44 31 26
6705.117 Fe I 1197 6757.16 S I 8 6830.83 6705.13 P Fe I 1280 6757.78 Cr I 315 6831.44 P 6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	La II Fe I C1 II V I Y II Zr I Fe I La II	108 550 44 31 26
6706.20 N I 31 6758.60 N I 30 6831.62 6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	C1 II V I Y II Zr I Fe I La II	44 31 26
6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	V I Y II Zr I Fe I La II	31 26
6707.74 Li I 1 6759.41 Ni I 245 6832.44 6707.89 Li I 1 6759.42 Cl II 54 6832.49	V I Y II Zr I Fe I La II	31 26
	Zr I Fe I La II	
	Fe I La II	
6708.27 F I 2 6761.07 P Fe I 1227 6832.93 6708.81 N I 6762.38 Zr I 1 6833.24	La II	1 11 94
6709.49 La I 6 6762.41 Cr I 315 6834.07		3
6709.88 Ca I 45 6764.13 P Fe I 1225 6834.26	F I	2
6710.31 Fe I 34 6766.49 V I 31 6835.03 6711.24 P Fe I 1220 6767 P 0 V 12 6835.29	Sc I Hf II	13
6712.44 P Fe I 1279 6767.778 N1 I 57 6836.2	N II	54
6712.68 P Fe I 206 6769.62 Ba IJ 8 6837.00		
6712.68 P Fe I 206 6769.62 Ba IJ 8 6837.00 6713.14 Fe I 1013,1195 6769.66 P Fe I 1226 6837.14	Fe I Al II	1225 9
6713.43 C1 I1 38 6771.040 Co I 54 6837.91	La II	33
6713.76 Fe I 1255 6772.36 Ni I 127 6838.08 6714.08 La II 103 6773.97 F I 2 6838.86	Fe I	1192
6714.08 La II 103 6773.97 F I 2 6838.86 6715.38 Cr I 282 6774.28 La II 2 6839.828	Fe I Fe I	205
6715.410 Fe I 1174 6775.97 Al II 111 6841.349	Fe I	1195
6716.24 Fe I 1225 6777.44 Fe I 1010,1013 6841.65 P 6716.679 Ti I 273 6779.74 C II 14 6841.86	Fe I	1333
6716.679 T1 I 273 6779.74 C II 14 6841.86 6717.556 Fe I 1194 6780.27 C II 14 6841.89	C1 II V I	54 31
		V 1
6717.685 Ca I 32 6783.27 P Fe I 206 6842.07 6717.911 Ti II 112 6783.71 Fe I 205 6842.35 P	N1 I	126
6717.911 Ti II 112 6783.71 Fe I 205 6842.35 P 6718.14 Gd II 130 6783.75 C II 14 6842.668	Si I Fe I	61 1197
6718.68 La II 129 6784.98 V I 31 6843.671	Fe I	1173
6719 P N V 11 6785.25 P T1 II 112 6844.05 6719.40 Hf II 110 6785.76 P Fe I 1226 6844.67 P	Sn II	1
6719.40 Hf II 110 6785.76 P Fe I 1226 6844.67 P 6721.35 0 II 4 6785.88 P Fe I 1007 6845.24	Fe I Y I	34 16
6721.97 Si I 6786.41 P Fe I 551 6845.93 P	Fe I	1190
6722.67 Si I 38 6786.88 Fe I 1052 6846.60 6723.12 N I 31 6787.09 C II 14 6846.97	Gd II	94
6723.12 N I 31 6787.09 C II 14 6846.97	0 11	45
6725.39 Fe I 1052 6787.15 Zr II 135 6847.60 P	Fe I	1078
6726.25 0 I 2 6787.61 P Fe I 1156 6848.65 6726.50 0 I 2 6789.17 Cr I 6848.86 P	Si I Fe I	37
6728.50 0 1 2 6789.17 Cr I 6848.86 P 6726.668 Fe I 1197 6790 P 0 V 12 6850.07	Rf II	1192
6726.78 Fe I 6790.00 Sm II 56 6850.21	C1 II	54
6726.84 C II 21 6791.022 Sr I 3 6850.48 6727.1 P C III 3 6791.30 C II 14 6851.64 P	Ni I Fe I	157
6727.1 P C III 3 6791.30 C II 14 6851.64 P 6727.83 Gd II 96 6793.26 Fe I 1005 6854.82	Fe I	34 1224a
6729.72 Cr I 301 6793.62 Fe I 6855.176	Fe I	1195
6729.80 P Si I 61 6793.71 Y I 1 6855.74	Fe I	11 94
6730.38 P Si I 61 6794.60 P Fe I 1279 6856.02	FI	2
6730.7 P C III 3 6795.41 Y II 26 6856.03	Sm II	58
6730.73 Gd I 2 6795.52 F I 2 6857.13 6730.79 C II 21 6796.11 Fe I 1007 6857.25	Gd II Fe I	122 1006
6731.84 Sm II 59 6798.04 C II 14 6857.3 P	C 111	19
6732.06 Fe I 1225 6798.51 Ca I 31 6857.6 6732.80 La II 109 6799.32 A II 74 6858.164	N II	71
6732.80 La II 109 6799.32 A II 74 6858.164 6732.88 S II 25 6799.61 Yb I 3 6858.25	Fe I Y II	1173 26
6733.164 Fe I 1195 6800.50 C II 14 6859.03	La II	34
6733.48 N I 31 6801.16 V II 219 6859.49 P	Fe I	340
6733,56 C II 21 6801.31 P Fe I 551 6860.13 P	Fe I	1255
6734.16 Cr I 282 6801.38 La II 130 6860.29	Fe I	205
6735.00 P Fe I 1157 6801.87 P Fe I 34 6860.96 P 6736.56 P Fe I 1122 6803.30 P Fe I 1192 6861.24	Fe I N1 I	341 293
6737.29 P Fe I 551 6803.84 P Fe I 1191 6861.30	A II	25
6737.87 Sc I 6804.020 Fe I 1174 6861.47 6738.36 C II 21 6804.27 Fe I 1225 6861.93	Ti I	237
6738.36 C II 21 6804.27 Fe I 1225 6861.93 6738.81 Cr I 315 6805.72 P Fe I 1220 6862.481	Fe I Fe I	109 1191
6739.54 Fe I 34 6806.851 Fe I 268 6862.82	Sm II	.55
6741.29 N I 31 6808.55 A II 24 6862.9 P	C III	19
6742.05 C II 21 6808.80 P Fe I 340 6863.52	A II	20
6743.124 Ti I 48 6808.88 La II 1 6864.31 P	Fe I	1186
6743.58 8 I 8 6810.28 Fe I 1197 6869.74 6744.2 P C III 3 6812.19 C II 14 6870.22	O II F I	45 2
6744.66 Cr I 315 6812.26 N II 54 6870.8	N II	71
6745.11 Fe I 1327 6812.40 V I 31 6871.7 P	C III	19
6745.56 P Ti I 226 6813.55 P Fe I 1288 6872.32 6745.96 P Fe I 1005 6813.598 Ni I 288 6874.09	Co I Ba II	5 <u>4</u> 8
6746.433 Ti I 152 6813.68 La II 110 6875.45	Fe I	167
6746.96 P Fe I 205 6813.85 P 81 I 61 6875.98	Fe I	1013
6748.43 T1 I 152 5814.950 Co I 54 6876.71	Ni I	97
6748.79 S I S 5816.60 A1 II 9 6878 P	0 V	12
6749.52 P Fe I 860 6817.08 Sc I 6878.313	8r I	3
6750.152 Fe I 111 6818.39 A II 50 6879.51 P 6750.22 C II 21 6819 P O V 12 6879.59 P	Fe I Fe I	1157 551
6751.28 Cr I 315 6819.42 P Fe I 463 6880.65	Fe I	1051
6751.94 Ti I 152 6819.60 P Fe I 1051 6881.07 P 6752.40 N I 30 6820.43 Fe I 1197 6881.46	Fe I Fe I	1174
6762.40 R 1 30 6820.43 Fe 1 1197 6881.40 6762.67 G 11 130 6822.00 P Fe I 1220 6881.64	Cr I	222

76						TNG LIG	_				
IA	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.
6882.48		Cr I	222	6971.95		Fe I	404	7039.22		Sm II	57,61
6883.04		Cr I	222	6975.46		Fe I Fe I	1194	7039.36		Ti I Al II	307 3
6885.07		O II Fe I	45 1173	6976.306 6976.53		Si I	60	7042.06 7042.24		Sm II	58
6885.772 6886.57		A II	20	6976.8		N II	53	7044.60		Fe I	1276
6887.63		Gd II		6976.934		Fe I	1221	7045.8		C 11	26
6888.7		NII	71	6977.445		Fe I	1225	7045.96		La I	6
6890.88		He II	7	6978.46 6978.855		Cr I Fe I	222 111	7050.65		Ti I Gd II	256 122
6892.585 6894.92	P	Sr I Mg I	1 34	6979.10		N I	29	7051.00 7052.872		Co I	54
6895.29		0 11	45	6979.17	P	Fe I	340	7052.9		C II	26
6896.00		Y II	26	6979.82		Cr I	222	7053.48	P	Fe I	1186
6898.31		Fe I	1078	6980.86		Gd II Cr I	222	7054.042		Co I Gd II	140 130
6900.73		Gd II Co I	122 164	6980.91 6980.91		Hf II	22	7054.62 7055.01		A II	7 4
6901.52 6902.46		FI	2	6981.40		SII	18	7056.60		Al II	3
6902.80		Fe I	_	6983.53	P	Fe I	1220	7057.96	P	Fe I	815
6906.54		0 11	45	6983.54	P	Fe II	63	7058.02		Gd II	130
6908.08 6908.11		Co I O II	164 45	698 5.74 698 5. 89		A II Gd II	137	7059.941 7060.43	P	Ba I Mg I	5 32
6909	P	o v	12	6988.530		Fe I	167	7061.90		Hf II	
6909.82	-	FI	2	6988.75		Gd II	130	7062.80	P	Fe I	1273
6910.75		0 11	45	6989.64	P	Fe I	1191	7062.97		N1 I	64
6910.84		Co I	80	6990.16		A II Gd I	20 2	7063.4 7063.57		C II Ni I	26 270
6911.52	P	Fe I Fe I	109 341	6991.92 6995.35		Ta I	5	7063.64		Al II	3
6912.43 6914.562	r	N1 I	62	6996.63		Ti I	256	7065.15		Ti I	100
6916.57		Gd I	2	6996.76		Gd II	121	7065.188		Не I	10
6916.702		Fe I	1052	6997.13	P	Fe I	1273	7065.719	_	He I	10
6917.52	P	Fe I	1190	6997.83		Hf II	89	7066.15	P	Fe I	1277
6917.93		Al II	75	6999.902		Fe I	1051	7066.24		La Il	1
6919.96	_	Al II	15	7000.633		Fe I Gd II	1005 122	7067.2170		A I	1
6920.16	P	Fe I Gd II	1192	7000.75 7001.57		Ni I	64	7067.44 7067.50		Fe II Ni I	277
6920.62 6924.13		Cr I	122 222	7001.07		0 I	21	7068.02	P	Fe I	1276
6925.24		Cr I	222	7002.22		0 I	21	7068.37		La I	1
6926.04		Cr I	222	7003.0		N II	53	7068.415		Fe I	1004
6926.40	P	Fe I	1222	7003.58		Si I Ti I	60 256	7068.60	P	Fe I Ti I	1276 307
6926.90 6928.25		N I Ni I	29 110	7004.60 7004.81		Co I	89	7069.11 7069.54	P	Fe I	205
		a T	10	7005 04		Si I	60	7070 071		Sr I	3
6928.319 6928.52	P	Zn I Ni I	10 61	7005.84 7006.16		Gd II	130	7070.071 7071.88		Fe I	1194
6929.4678		Ne I	6	7007.81		Ti I	100	7072.82	P	Fe I	1003
6929.96	P	Fe I	34	7008.014		Fe I	1078	7074.45	P	Fe I	1173
6930.35	P	Fe I	1186	7008.35		Ti I	256	7077.03		A II	20
6930.64		Fe I	1221	7010.362		Fe I Ti I	1221 256	7077.10	P	Eu II Fe I	8 1278
6932.49 6933.04	P	Fe I Fe I	1220 1051	7010.94 7011.364		Fe I	1221	7079.32 7082.22	r	N1 I	267
6933.55		Y I	1	7014.99		Fe I	167	7082.37		Sm II	55
6933.628		Fe I	167,1005	7015.3		N II	53	7083.396		Fe I	1277
6935.16		Hf II	35	7016.075		Fe I	109	7084.25	P	Ti I	99
6936.27		K I	7	7016.436		Fe I	1051	7084.33		Si I	60
6936.48	P	Fe I	1196	7016.602	D	Co I	54	7084.974		Co I	54
6937.81		Co I	139	7016.90 7016.99	P	Si I Hf II	51 99	7085.52 7086.76		Gd II Fe I	130 815,1311
6938.472 6942.82	P	Zn I Fe I	10 1008	7010.55		Si I	51	7087.35		Zr I	42
6942.9		N II	53	7017.73		Gd II	137	7089.03	P	Si I	70
6943.202		Zn I	10	7017.98		Si I	51	7089.73	P	Fe I	1220
6943.67	P	Fe I	1349	7020.44		Sm II Hf II	59 67	7090.404		Fe I	1051
6945.208		Fe I	111	7021.23				7090.55		A II	60
6945.22 6945.98		N I Gd II	29 122	7022.39 7022.976	P	Fe I Fe I	1078 1051	7091.83 7091.91	P	Fe I Fe I	1278 1277
6946.31		Co I	110	7024.0508		Ne I	6	7093.10	P	Fe I	1189
6947.501		Fe I	1221,1224	7024.084		Fe I	1003	7094.30	P	Fe I	778
6949.37	P	Fe I	1220	7024.649		Fe I	1187	7095.40		N1 I	276
6950.32	_	Y I	16	7024.86		Ni I	271	7095.425		Fe I	1105
6950.82	P	Fe I	205	7025.52 7027.60		O I Fe I	32 1221	7097.78 7100.20	P	Zr I Fe I	42 267
6951.261 6951.62	P	Fe I Fe I	1186,1193 1078	7027.797		Co I	179	7100.20	P	Fe. I	61
6951.68	•	YII	33	7028.58	P	Fe I	463	7102.95		Zr I	42
6952.13		C1 II	54	7028.60	P	Ni I	156	7103.15	P	Fe I	167
6952.52		La II	18	7028.95	P	N1 I	61	7103.28		N IV	4
6953.01	P	Fe I	815	7030.06		Ni I	126	7103.77	_	Zr I	42
6954.54		La II	1	7030.33	P	Hf II Fe I	66	7105.34	P	Si I	70
6955.06 6957.95		Ni I S II	157 18	7031.02 7031.42	P	Fe I	1173 1278	7105.90 7107.30	P P	Fe I Fe I	1008 1324
6958.11		La II	67	7032.16	_	Ni I	279	7107.461	-	Fe I	1005
6959.24		Gd II	130	7032.4127		Ne I	1	7109.48		N IV	4
6960.334 6963.02	P	Fe I Fe I	1222 1007	7034.06 7034.08	P P	Fe I Fe I	1190 1190	7109.67 7110.91	P	Fe I Ni I	1190 64
	-				-						
6964.18 6964.69		Ķ I K I	7 7	7034.42 7034.96		Ni I Si I	97 50	7111.28 7111.71		N IV Zr I	4 23
6965.42	P	Mg I	33	7035.86		Ti I	307	7112.176		Fe I	404
6965.4302		A I	1	7037.04	P	Fe I	61	7112.36		CII	20
6966.35		F I	6	7037.26		Gd II	000	7114.55	P	Fe I	267
6966.9		Fe II	198 53	7037.37		Ni I F I	288	7115.13	n	C II	20
6967.6 6968.78		N II La II	53 109	7037.45 7038.251		r 1 Fe I	6 1051	7115.25 7116.77	P	Fe I Gd II	1186 130
2000 10		D- Y	400	~~~		m. r	050	110111	_	54 11	100

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
7118.86		Gd II	130	7193.74		Y II	33	7284.27		A II	24
7119.45	_	C 11	20	7193.89	P	Si I Fe I	25 1307	7284.843 7285.28		Fe I Co I	1004 140
7120.01	P P	Fe I Fe I	1187	7194.02 7194.81	r	Eu II	8	7285.286		Fe I	1188
7120.56 7122.24	r	Ni I	1006 126	7194.92		Fe I	1273	7285.94	P	Si I	58
7123.10		N IV	4	7195.235		Ba I	10	7286.56		N1 I	109
7124.28		S II	18	7196.37	P	Fe I	1252	7287.36		Fe II	197
7124.47	_	Co I	53	7196.83		Cr I N1 I	264 62	7288.760 7289.05	P	Fe I Fe II	1077 72
7125.00 7125.28	P P	Fe I Fe I	815 1220	7197.07 7197.08		Gd II	121	7289.05	r	81 I	24
.120.20	_									a	
7125.49		CII	20	7202.194 7202.37		Ca I F I	29 6	7290.21 7290.87		S1 I N1 I	24 287
7126.71 7127.21		N1 I N IV	97 4	7205.51	P	Fe I	1251	7291.03	P	Ti I	143
7127.58	P	Fe I	1273	7207.123		Fe I	1001	7291.48		N1 I	6 3
7127.88		FI	6	7207.406		Fe I	1051	7292.856		Fe I	1189
7129	P	N IV	4	7207.85		Cr I Si I	264 25	7293.068		Fe I Fe I	1077 1187
7129.30	P P	Fe I T1 I	1219 100	7208.20 7209.44		Ti I	99	7295.00 7295.27	P	Fe I	1189
7130.34 7130.942	r	Fe I	1051	7212.47		Fe I	1273	7297.75		N1 I	293
7131.29		Al II	114	7213.35		Ti I	143	7299.67		Ti I	97
~****		Fo t	1000	7213.84	P	Fe I	1105	7300.47		Fe I	1275
7132.989 7133.16		Fe I Gd II	1002 137	7214.78	P	Ti II	101	7300.59	P	Fe I	1003
7133.10		C 11	20	7214.97		Ti I	314	7301.17		Eu II	8
7134.290		Co I	179	7216.20	_	Ti I	98	7301.57	P	Fe II	72 70
7134.66		Al II	114	7216.68	P	Fe I N II	1273 52	7302.89 7305.87		Mn I Ti I	50 143
7134.99 7135.73		Fe II Gd II	197	7217.0 7217.34		Co I	126	7306.61		Fe I	1077
7138.05	P	Ti I	98	7217.55		Eu II	8	7307.938		Fe I	1002
7138.81		A) II	114	7218.57		Cr I	264	7307.97		Fe II	73
7138.91		T1 I	99	7219.686		Fe I	1001	7310.24		Fe II	73
7139.79		S II	18	7220.79		N1 I	294	7311.02		F I	5
7139.8		N II	52	7221.22		Fe I	1189	7311.101		Fe I	1077
7141.17		Gd II	131	7222.39		Fe II	73	7311.26	P	Fe I	1105
7141.62		N1 I	283	7222.88 7223.668		Fe I Fe I	1187,1311 463	7312.05 7315.73	P	Fe I Co I	1310 89
7142.522		Fe I Fe I	1274 1186,1193	7224.51		Fe II	73	7316.77	P	Fe I	267
7145.317 7146.13		Gd II	130	7225.82	P	Fe I	1278	7317.03		s II	18
7147.0406		A I	1	7226.20		81 I	26	7317.40	P	Fe I	1278
7147.31		Gd II	••	7228.70		Fe I Pb I	267 2	7318.39 7320.694		Ti I Fe I	212 1188,1276
7148.147		Ca I	30	7228.974		FU I	~	70201001			1100,12.0
7148.61		Ta I	11	7231.12		CII	3	7320.70	_	Fe II	73
7148.69	_	Fe I	1078,1339	7233.58		A II Si I	26	7323.20 7323.38	P P	Ti II Fe I	101 859
7151.18	P	Sc II Fe I	27 109	7235.32 7235.86		81 I	25	7324.89	•	Gd II	000
7151.495 7154.688		Co I	89	7236.19		CII	3	7325.33	P	Fe I	980
7155.64		Fe I	1276	7236.91		S II	18	7326.146		CaI	44
7156.80		0 I	38	7229.885		Fe I	1105 137	7326.51		Mn I Ni I	50 140
7158.502		Fe I	815 98	7242.24 7244.77		Od II S I	15	7327.67 7328.64		Hf II	65
7160.33 7160.85	P	Ti I Fe I	1310	7244.86		Fe I	1276	7330	P	N V	12
				7044 08		Ti I	99	7330.16	P	Fe I	1187
7161.04	P P	Fe I Fe I	1190 1278	7244,86 7245.1668		Ne I	3	7330.10	P	Mn II	4
7162.37 7164.469	r	Fe I	1051	7247.82		Mn I		7330.97		Ti I	143
7164.63		SII	18	7250.12		Co I	53	7331.95		FI	1
7164.75		Si I	49	7250.69		Si I	25	7332.26 7332.97		Ti I Y II	143 25
7164.90	ъ.	Gd II	130	7251.74 7252.70		Ti I Gd II	99 109	7332.97		Ni I	263
7165.09 7165.62	P	Si I Si I	49 48	7253.76		T1 I	143	7333.62		Fe I	1078
7167.01		N1 I	109	7254.19		0 I	20	7334.66		Fe II	20.9
7168.37		Gd I	1	7254.47		0 I	20	7336.03		Zr I	23
7169.14		Zr I	42	7254.649		Fe I		7337.61		8 II	18
7170.14		N1 I	282	7255.28	P	Si I	59	7337.78	P	Ti I	212
7172.26		Gd II	109	7256.13	P	Fe I Cl I	1278 5	7338.92 7340.78	P	V I Fe I	117 684
7173.73		N1 I Ne I	269 6	7256.63 7256.72		Ni I	97	7341.78	P	Fe I	1307
7173.9389 7175.937	•	Fe I	1188	7256.96		s II	18	7344.18	P	Fe I	266
7176.886		Fe I	1276	7259.3	_	N II	52	7344.72		Ti I	97
7177.50	_	He II	6	7261.00	P P	Fe I Fe I	267 1273	7346.37 7347.16	P	Ta I Fe I	12 266
7178.33 7179.16	P P	Sc II Fe II	27 72	7261.29 7261.54	-	Fe I	1188	7347.72	P	Mn II	4
11.0.10	-						0.0	7040 44		A II	60
7180.020	_	Fe I	33	7261.94 7262.46	P	Ni I Fe I	62 859	7348.11 7348.51	P	Fe I	1004
7181.21	P	Fe II Fe I	72 1078	7264.19		YII	33	7350.55	P	Fe I	509
7181.222 7181.93		Fe I	1274	7264.99		Fe II	197	7351.160		Fe I	1273
7182.00		N1 I	126	7266.22		N1 I	288	7351.56		Fe I	1275 272
7184.54		Si I	25	7266.29	P	Ti I Fe I	143 61	7352.16 7353.52	P	Ti I Mn II	272 4
7184.89 7185.50		Si I Cr I	25 264	7267.00 7268.58	P	Fe I	957	7353.528	-	Fe I	1251
7187.341		Fe I	1051	7271.41		T1 I	97	7354.579	_	Co I	53
7188.06		Cr I	264	7273.20		S II	18	7355.46	P	Ti II	101
7188.55		Ti I	99	7273.77		T1 I	212	7355.94		Cr I	93
7188.7		N II	52	7275.28		Si I	24	7356.51	_	V I	117
7189.17		Fe I	463	7277.67		Hf II	66	7356.81 7357.74	P	Fe I Ti I	1187 97
7189.57		Gd II	138	7278.48 7278.72	P	Fe I Hf II	127 4 111	7357.74	P	Fe I	1310
7189.89 7190.12	P	Ti I Fe I	285 463	7280.298		Ba I	5	7361.39		V I	117
7190.12	•	Fe I	1274	7281.349		He I	45	7361.56	P	Ti I	212
7193.20	P	Mg I	31	7282.36		La II	1	7361.59 7362.31		Al I Al I	11 11
7193.23		Fe II	197 25	7282.39 7283.80		Fe I Mn I	1274 50	7362.31		V I	117
7193.56		81 I	£0								

••

-

1. Type Classical Section Color Co	80					LIND	ING LIS	T				
1986.11	I A	Type	Element	Multiplet No.	I A 7	Гуре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
1780.11	7363.96		Fe I	1274	7449.34		Fe II	73	7559.62		N1 I	292
1					7449.42				7559.68			
1996.10 P	7366.37					_						
1970		_				P						1207
1977-197 11		P				D						291
1777-08						-						
1971-0.07 P						P						
7279-464		P					Fe I	204			Fe I	
7981.08		_		200	7462.37		Cr I	93	7573.76	P	Fe I	957
7981.08	2020 40		Po TT		7462.38		Fe II	73	7574.08		N1 I	156
7931.46						P						
7981.08 P P1 300 7406.28 N I S 7000.58 P P1 1 300 7406.28 N I S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 P P1 1 300 747.58 N I S 1 S 7000.58 N I S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S				292			Ti I	142			8 I	
7926.98		P			7468.29			3	7580.55			
7980.44 MI 1 68 7271.41 AL 11 21 7880.044 Pe I 1137 7380.45 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1301 771.75 Pe I 277 780.00 Pe I 1300 7723.00 Pe I 1308 7723.	7382.99		Fe I	1188						P		
7280.44 P Ps 1 1201		P										
7286.37		_				ъ						
Type 1		P				r				P		
7384.546 P P										-		
1987.10	7000121			200								
7981.70	7386.394		Fe I	1275								
7286.40	7387.10					P						
7389-348 P Fe I 1274		P				D						
7989-436 P P I 1274 7470-32 P P I 1006 7814-00 T 1 I 139 7989-436 P P I 1077 7477-31 P 0 I 050 7814-00 T 1 I 139 7989-436 P P I 1077 7477-31 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 170 7477-31 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 100 7478-77 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 100 7478-77 P 0 I 050 7817-00 P 1 I 139 7989-436 P I 1 1278 7478-70 P 0 I 050 7817-00 P 1 I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7817-00 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7800-038 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 050 7800-038 P I I 1300 7989-436 P I 1 1278 7478-70 P 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I 0 I 0 0 I 0						•						
798-380		D				P						
7389.18		•					0 I	55				
7393.63 18 I 100 7478.77 7593.60 18 I 1 109 7478.77 7593.60 7594.00 7594.00 7595.79 7595.70		P			7477.52	P	Fe I	957	7617.19	P	Fe I	1304
7984.90 P 04 II 109 7478.67 P 76 I 683 7631.23 M I 1860 77386.50 P 76 I 1278 7740.00 P		_							7617.86			
7988.00 p Fe I 1278 7470.00 0 I 55 7200.538 Fe I 1280 7288.00 p Fe I 1200 7288.73 Co I 164 7480.06 0 I 1 55 7204.73 II 1 21 21 22 22 22 22 22 22 22 22 22 22 2			N1 I	109	7478.79		Zn II	1	7617.97	P	Fe I	1001
7988.00 p Fe I 1278 7470.00 0 I 55 7200.538 Fe I 1280 7288.00 p Fe I 1200 7288.73 Co I 164 7480.06 0 I 1 55 7204.73 II 1 21 21 22 22 22 22 22 22 22 22 22 22 2					7470 07	ъ	Vo I	809	7610 01		N4 T	156
7988.68		_				P						
1988.72		P				P						
Table Tabl							0 I				N1 I	292
7389.8e		P						286	7627.85			91
7400.28					7481.74							
Table Tabl	7398.98	P										
7400.13		_				P						
		P										
7401.686	7401.13		NI I	291	7200720			_	1000100		· -	
7401.866	7401.17	P	N1 I	283	7484.28	P	Fe I		7647.83	P	Fe I	1137
Table Tabl						P			7650.95	P		
7409.13	7405.85											
7409.17 P N I 283 7489.61 T1 I 225 7687.30 NI Z78 7409.17 P N I 283 7491.678 Fe I 1077 7687.00 Ng I 22 7409.89 NI I 139 7494.72 P Fe I 33 7661.223 Fe I 1077 7481.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1077 7441.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1077 7441.178 Fe I 1077 7489.088 Fe I 1077 7681.66 P Fe I 1309 7441.10 C1 I 4 7489.67 P Fe I 1275 7681.66 P Fe I 1309 7441.10 C1 I 4 7489.68 Fe I 1077 7681.66 P Fe I 1309 7441.10 P Fe I 1300 7485.65 P Fe I 1001 7684.15 P Fe I 1280 74415.19 P Fe I 1300 7495.65 P Fe I 1001 7684.15 P Fe I 1280 74415.18 P Fe I 1280 7601.25 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 7495.65 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 Fe I 1280 74415.18 P Fe I 1002 7495.86 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1002 7505.80 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1002 7505.80 P Fe I 1306 7685.48 O I 42 74418.82 P Fe I 1001 7507.800 F Fe I 1374 7677.46 Nn I 54 74815.87 Nn I 287 7509.53 F Fe I 1374 7677.46 Nn I 54 74815.87 Nn I 287 7509.53 F Fe I 1374 7677.46 Nn I 54 7482.30 Nn I 1 287 7509.53 F Fe I 1001 7685.83 Nn I 28 750.74 Nn I 1 180 7709.50 F Fe I 1374 7677.46 Nn I 54 7482.30 Nn I I 1380 7511.445 Nn I 1077 7680.32 F Fe I 1001 7685.32 Nn I 1 1077 7680.32 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.33 Nn I 1 1077 7680.30 Nn I 1 1 1077 7680.30 Nn I 1 1 1077 7680.34 Nn I 1 1077 7680.34 Nn I 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1077 7780.50 Nn I 1 1 1 1077 7780.50 Nn I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
Table Tabl												
7406.38		Ð										
7414.178 Fe I 1077		-				P						
7416.51					7495.088			1077	7661. 4 6	P		
TABLE P	7414.10		Cl I	4	7495.67	P	Fe I	1275	7663.09		Hf II	68
TABLE P			W4 7	20	7406 19		T1 T	225	7669 45		О Т	49
7411.37		ъ								P		
7415.78 p		r				P				-		
7417.38		P					N1 I	282			KI	
7417.38					7503.8676				7665.02			
7418.674 Fe I 1001 7507.300 Fe I 1137 7672.44 Cl I 3 7419.35 Ni I 287 7508.52 P Fe I 1274 7679.60 S I 7419.35 Ni I 287 7509.03 S II 24 7679.60 S I 7 7619.00 Fe I 1307 7509.03 S II 24 7679.60 S I 7 7 7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 S I 36 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 S I 36 7423.17 Ti I 97 7512.12 P Fe I 108 7686.13 S I 7 7 7423.54 SI I 23 7512.17 P Fe I 101 7687.779 Ag I 2 7423.54 SI I 23 7512.17 P Fe I 101 7687.779 Ag I 2 7423.54 SI I 23 7515.88 Fe II 73 7689.30 P Fe I 1304 7424.63 SI I 23 7515.88 Fe II 73 7689.30 A II 7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7426.57 Eu II 8 7525.14 Ni I 139 7696.99 K I 1 1 7430.58 Fe I 204 7526.2 Al II 119 7699.49 Yb I 3 7430.73 Fe I 1189 7526.2 P Fe I 1307 7706.77 O I 42 7431.17 P SI 1 89 7531.171 Fe I 1307 7706.77 O I 42 7431.17 P SI 1 89 7531.171 Fe I 1307 7709.78 Al II 133 7431.94 P Fe I 189 7525.15 P Fe I 1307 7709.78 Al II 133 7431.94 P Fe I 189 7532.42 P Fe II 72 7709.98 Mn I 54 7431.99 P TI I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.99 P TI I 142 7534.83 P Fe II 1307 7709.78 Al II 133 7431.94 P Fe I 189 7532.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 1000 7711.71 Fe II 107 7432.27 P Mn II 4 7637.44 P Fe I 266 7712.42 Mn I 55 7437.16 C I 53 7640.44 P Fe I 266 7712.42 Mn I 55 7437.16 C I 53 7640.69 Ni I 287 7712.60 P Fe I 1004 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7442.28 N I 3 7651.10 P Fe I 1300 7722.60 P Fe I 1304 7443.09 Fe I 1007 7652.99 P Fe I 1300 7722.60 P Fe I 1304 7444.28 P Fe I 107 7652.99 P Fe I 1300 7722.60 P Fe I 1304 7444.29 P Fe I 1007 7652.99 P Fe I 1300 7722.60 P Mg I 4464.774 Fe I 107 7652.99 P Fe I 1300 7722.60 P Mg I 4464.774 Fe I 107 7652.79 P Fe I 1300 7722.60 P Fe I 108 7744.44 Fe I 1077 7653.90 C I I 183 7723.60 C I			Co I	89		_						
7419.35 N.1 I 287 7508.52 P Fe I 1274 7677.46 Mm I 54 7420.20 P Fe I 1307 7509.03 S II 24 7679.60 S I 7 7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 N.1 I 139 7511.045 Fe I 1077 7680.35 S I 36 7423.17 T1 I 97 7512.12 P Fe I 106 7686.13 S I 7 7423.63 N I 3 7512.17 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 S I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 200 7521.00 N II 1 282 7681.57 P Mg I 29 7425.64 F I 1 1 7522.78 N II 1 282 7681.57 P Mg I 29 7425.65 F I 204 7526.2 Al III 119 7698.97 K I 1 7430.58 Fe I 204 7526.2 P Fe I 1307 7706.52 Mm I 54 7430.73 Fe I 189 7526.15 P Fe I 1307 7706.52 Mm I 54 7431.17 P S I I 69 7531.171 Fe I 1307 7706.77 O I 42 7431.98 P T I 1 142 7534.83 P Fe II 72 7709.88 MI I 133 7431.98 P T I I 142 7534.83 P Fe II 137 7709.78 Al III 113 7431.98 P T I I 142 7534.83 P Fe II 1307 7706.77 O I 42 7431.98 P T I 1 120 7534.83 P Fe II 1307 7706.77 O I 42 7431.98 P T I I 120 7534.83 P Fe II 1307 7709.78 Al III 113 7430.89 P T I I 120 7534.83 P Fe II 1307 7709.78 Al III 113 7430.89 P T I I 120 7534.89 P Fe I 1355 7712.42 Mm I 54 7431.98 P T I I 122 7534.89 P Fe I 1356 7712.42 Mm I 55 7437.16 C I 53 7540.44 P Fe I 1368 7712.42 Mm I 55 7439.89 Z T I 23 7546.69 NI I 287 7715.63 NI I 109 7440.54 A II 60 7544.706 C I I 55 7437.16 C I 53 7540.69 NI I 287 7715.63 NI I 109 7440.98 F F I 1273 7546.99 P Fe I 1300 7726.68 P Fe I 1304 7442.88 N I 3 7565.19 P Fe I 1300 7726.68 P Fe I 1304 7442.88 N I 3 7565.19 P Fe I 1300 7726.68 P Fe I 1304 7442.88 P F I 1002 7652.99 P Fe I 1300 7726.68 P Fe I 1304 7444.89 F F I 1007 7652.79 P Fe I 1303 7724.606 NI I 166 7444.80 F F I 1077 7653.970 C I 183 7724.606 NI I 166		P				Р						
7420.20 P Fe I 1307 7509.03 S II 24 7679.60 S I 7 7421.80 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 Si I 36 7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 T1 I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.54 Si I 23 7512.17 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 Mi I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Mi I 126 7696.73 S I 7 7426.57 Eu II 8 7522.78 Mi I 126 7696.73 S I 7 7420.73 Fe I 1351 7526.2 Al III 119 7699.49 Yb I 3 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.79 Fe I 189 7528.15 P Fe I 1307 7706.77 O I 42 7430.80 Fe I 1189 7528.15 P Fe I 1307 7708.77 O I 42 7431.17 P Si I 88 7531.171 Fe I 1307 7708.77 O I 42 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.88 Mi I 54 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.88 Mi I 54 7431.96 P T1 I 42 7534.63 P Fe I 1000 7711.71 Fe II 73 7432.27 P Mi II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.89 P T1 I 142 7534.63 P Fe I 1000 7711.71 Fe II 73 7439.89 Zr I 23 7545.69 Ni I 287 7710.83 Ni I 109 7440.54 A II 60 7547.06 C I 5 7712.60 P Mg I 44 7440.54 A II 60 7547.06 C I 5 7712.00 P Mg I 44 7440.54 P Fe I 1273 7547.89 P Fe I 1000 7712.60 P Mg I 44 7440.54 P Fe I 1279 7547.60 C I 1 5 7719.00 P Fe I 1004 7440.54 A II 60 7546.177 Fe I 1006 7712.60 P Mg I 44 7440.54 P Fe I 1002 7555.59 P Ni I 286 7722.50 P Mg I 44 7440.54 P Fe I 1002 7555.59 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.29 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1006 7722.60 P Mg I 44 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P Fe I 1008 7722.60 P Mg I 16 7440.54 P Fe I 1006 7555.79 P Fe I 1007 7722.60 P Mg I 16 7440.54 P Fe I 1007 7555.79 P						ъ						
7421.60 Fe I 1188 7510.74 Au I 2 7680.22 Mm I 55 7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 Ti I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.63 Ni I 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 Si I 23 7514.93 F I 1 7689.10 P Fe I 1304 7425.12 P Fe II 209 7521.09 Ni I 282 7691.67 P Mg I 29 7425.12 P Fe II 209 7521.09 Ni I 282 7691.67 P Mg I 29 7425.12 P Fe II 1 1 7522.78 Ni I 1 282 7691.67 P Mg I 29 7426.57 Ru II 8 7526.72 P Ni I 1 19 7430.58 Fe I 204 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.90 Fe I 1189 7538.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 137 7709.78 AI II 113 7431.98 P Ti I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 200 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe II 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe II 187 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe I 100 7711.71 Fe II 173 7430.48 Ni I 280 7537.44 P Fe I 100 7711.71 Fe II 173 7430.89 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 266 7712.661 Co I 126 7439.89 P Ti I 1223 7547.06 Ci I 5 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.09 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7711.00 P Fe I 100 7440.54 A II 60 7546.177 Fe I 100 7722.00 P Mg I 44 7440.09 Fe I 100 77552.79 P Fe I 100 7722.00 P Mg I 44 7440.09 Fe I 100 77555.79 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1273 7554.73 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1077 7555.99 P Fe I 100 7722.00 P Mg I 44 7440.54 Fe I 1077 7555.99 P Fe I 100 7722.00 P Mg I 44		ъ				•						
7422.30 Ni I 139 7511.045 Fe I 1077 7680.35 Si I 36 7423.17 T1 I 97 7512.12 P Fe I 1001 7687.779 Ag I 2 7423.63 Ni I 3 7514.93 F I 1 7689.10 P Fe I 1304 7423.63 Si I 23 7514.93 F I 1 7689.10 P Fe I 1304 7423.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 128 7696.73 S I 7 7426.57 Bu III 8 7522.78 Ni I 129 7698.97 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mm I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1307 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 77 7431.94 P Fe I 1189 7533.42 Fe II 77 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe II 1352 7712.66 Ni I 162 7439.89 Zr I 23 7545.69 Ni I 287 7440.54 A II 60 7545.69 Ni I 287 7440.60 T1 I 225 7547.06 C1 I 5 7711.90 P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7440.54 P Fe I 1309 7555.10 P Fe I 1300 7771.57 C1 I 4 7440.98 Fe I 1273 7545.69 Ni I 287 7440.54 A II 60 7545.69 Ni I 287 7440.54 P Fe I 1309 7552.24 F I 1 100 772.60 P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7711.99 O P Fe I 1304 7440.98 Fe I 1273 7545.69 Ni I 287 7711.90 P Fe I 1304 7440.54 A II 60 7552.52 P Ni I 287 7711.90 P Fe I 1304 7440.54 P Fe I 1309 7552.52 P Ni I 287 7711.90 P Fe I 1304 7440.54 P Fe I 1002 7552.54 F I 1 107 77440.50 P Fe I 1007 7552.79 P Fe I 1300 7722.60 P Mg I 44 7443.031 Fe I 1007 7552.52 P Ni I 288 77444.09 P Fe I 1007 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1007 7552.79 P Fe I 1303 7722.60 Ni I 1 7440.74 Fe I 1077 7553.70 C I I 3 7722.60 Ni I 1 67 7444.74 Fe I 1077 7553.70 C I I 1 3 7722.60 Ni I 1 16	7420.20	r	re 1	1307	1000100				1010100		-	•
7422.30 N1 I 139 7511.045 Fe I 1077 7680.35 S1 I 36 7423.17 T1 I 97 7512.12 P Fe I 108 7686.13 S I 7 7423.54 S1 I 23 7512.12 P Fe I 1001 7687.779 Ag I 2 7423.63 N I 3 3 7514.93 F I 1 7689.10 P Fe I 1304 7424.63 S1 I 23 7515.88 Fe II 73 7689.36 A II 7425.12 P Fe II 209 7521.09 NI I 202 7691.57 P Mg I 29 7425.64 F I 1 7522.78 NI I 20 7696.73 S I 7 7426.57 Bu II 8 7525.14 NI I 120 7696.73 S I 7 7426.57 Bu II 8 7525.14 NI I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al II 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1307 7706.77 O I 42 7431.17 P S1 I 89 7531.171 Fe I 1307 7706.77 O I 42 7431.17 P S1 I 89 7531.171 Fe I 1307 7708.77 O I 42 7431.98 P T1 I 142 7534.83 P Fe II 72 7709.98 Mn I 54 7431.98 P T1 I 142 7534.83 P Fe II 1000 7711.71 Fe II 107 7432.27 P Mn II 48 7537.44 P Fe I 1000 7711.71 Fe II 17 7433.48 N1 I 280 7537.47 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 1000 7711.71 Fe II 73 7433.48 N1 I 280 7537.49 P Fe I 1352 7712.42 Mn I 55 7439.89 Zr I 23 7545.69 N1 I 287 7715.63 N1 I 109 7440.54 A II 60 7546.177 Fe I 1000 7711.71 Fe II 100 7440.54 A II 60 7546.177 Fe I 1000 7711.50 P Fe I 1304 7440.60 T1 I 225 7547.06 C I 5 7747.06 P Fe I 1304 7443.031 Fe I 1273 7547.66 P Fe I 1300 7723.20 Fe I 1304 7443.22 P Fe I 1273 7545.69 P Fe I 1300 7723.20 Fe I 1304 7443.22 P Fe I 1002 7552.24 F I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7421.60		Fe I	1188	7510.74				7680.22			
7423.63			N1 I	139		_						
7423.63 N I 3 7514.93 F I 7689.10 P Fe I 1304 7424.63 Si I 23 7515.88 Fe II 73 7689.36 A II 7425.64 F I 1 7522.78 Ni I 282 7691.57 P Ng I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Nm I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1307 7706.77 O I 42 7431.19 P Fe I 1189 7533.42 Fe II 72 7709.98 Nm I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 44 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Nm I 55 7437.16 Co I 53 7540.44 P Fe I 1000 7711.71 Fe II 73 7439.89 P O V 17 7541.61 Fe I 266 7712.661 Co I 126 7439.89 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Fe I 1273 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.06 P Fe I 1304 7440.98 Fe I 1273 7545.69 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1002 7552.96 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1007 7552.97 P Fe I 1303 7722.60 P Ng I 44 7443.031 Fe I 1007 7553.970 Co I 183 7722.60 P Ng I 44 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 1 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166												
7426.03						P				ъ		
7425.12 P Fe II 209 7521.09 Ni I 282 7691.57 P Mg I 29 7425.64 F I 1 7522.78 Ni I 126 7696.73 S I 7 7425.57 Eu II 8 7525.14 Ni I 139 7696.73 S I 7 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7430.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.661 Co I 126 7439.89 P TI 23 7545.69 Ni I 287 7712.661 Co I 126 7439.89 P TI 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7443.031 Fe I 1002 7552.24 F I 1 100 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.79 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7445.70 P Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7445.70 P Fe I 1077 7553.970 Co I 183 7727.66 Ni I 166 7444.743 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2										F		1001
7425.64 F I 1 7522.78 Ni I 126 7698.73 S I 7 7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 0 I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Mn I 54 7431.99 P Ti I 142 7534.83 P Fe II 87 7710.990 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.		P								P		29
7426.57 Ru II 8 7525.14 Ni I 139 7698.979 K I 1 7430.58 Fe I 204 7526.2 Al III 119 7699.49 Yb I 3 7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1357 7706.52 Mn I 54 7431.94 P Fe I 1189 7531.171 Fe II 127 7709.78 Al III 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Mn I 54 7431.98 P Ti I 142 7534.43 P Fe II 72 7709.78 Mn I 54 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97		•					N1 I	126				7
7430.73 Fe I 1351 7526.72 P Fe I 1352 7706.52 Mn I 54 7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1020 7552.24 F I 1 1 772.20 Fe I 108 7443.031 Fe I 1002 7552.24 F I 1 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7724.604 A I 6 7445.70 P Fe I 107 7553.970 Co I 183 7724.604 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7724.604 A I 6 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2			Bu II	8					7698.979			
7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 266 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1002 7552.24 F I 1002 772.60 P Mg I 44 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.59 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1077 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1273 7564.73 Zr I 23 7732.50 Zr II 2	7430.58		Fe I	204	7526.2		Al II	119	7699.49		Yb I	3
7430.90 Fe I 1189 7528.15 P Fe I 1307 7706.77 O I 42 7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 266 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.98 Fe I 1273 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7440.98 Fe I 1002 7552.24 F I 1002 772.60 P Mg I 44 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.59 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1077 7553.700 Co I 183 77266 Ni I 166 7447.43 Fe I 1273 7564.73 Zr I 23 7732.50 Zr II 2	W400		TP- 7	1051	7598 79	Þ	Po T	1989	7700 E0		Mm T	R4
7431.17 P Si I 89 7531.171 Fe I 1137 7709.78 Al II 113 7431.94 P Fe I 1189 7533.42 Fe II 72 7709.78 Al II 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1077 7432.27 P Mn II 4 7537.44 P Fe II 1000 7711.71 Fe II 1077 7432.42 Mn I 25 7437.44 P Fe I 1000 7711.71 Fe II 1077 7432.42 Mn I 55 7437.16 Co I 55 7437.16 Co I 55 7439.89 P Fe I 266 7712.66 Co I 126 7439.89 P Fe I 287 7715.63 Ni I												
7431.94 P Fe I 1189 7533.42 Fe II 72 7709.98 Mn I 54 7431.98 P Ti I 142 7534.83 P Fe II 87 7710.998 Mn I 54 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.49 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 352 7712.42 Mn I 62 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7719.05 P Fe I<		D				-						
7431.98 P Ti I 142 7534.83 P Fe II 87 7710.390 Fe I 1007 7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.62 Mn I 52 7439.89 P O V 17 7541.61 Fe I 957 7712.62 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 62 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60												
7432.27 P Mn II 4 7537.44 P Fe I 1000 7711.71 Fe II 73 7433.48 Ni I 280 7537.97 P Fe I 1352 7712.42 Mn I 55 7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.69 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10					7534.83			87			Fe I	
7437.16 Co I 53 7540.44 P Fe I 286 7712.661 Co I 126 7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.26 P Fe I 1309 7552.24 F I 1 7723.7597 A I 1 7445.70 P Fe I 107 7552.52 P			Mn II						7711.71			
7438 P O V 17 7541.61 Fe I 957 7714.27 Ni I 62 7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7445.70 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.776 Fe I 1077 7553.970												
7439.89 Zr I 23 7545.69 Ni I 287 7715.63 Ni I 109 7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td>r</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_				r						
7440.54 A II 60 7546.177 Fe I 7717.57 Cl I 4 7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2		P										
7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1903 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn III 2	(439.89		. &F I	43	. 520 + 58			20.	1113.03			108
7440.60 Ti I 225 7547.06 Cl I 5 7719.05 P Fe I 1304 7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1903 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn III 2	7440.54		A II	60	7546.177				7717.57		C1 I	4
7440.98 Fe I 1273 7547.89 P Fe I 1306 7720.68 P Fe I 1304 7442.28 N I 3 7551.10 P Fe I 1303 7722.60 P Mg I 44 7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 2r I 23 7732.50 2n III 2			Ti I		7547.06							
7443.031 Fe I 1002 7552.24 F I 1 7723.20 Fe I 108 7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2	7440.98											
7443.26 P Fe I 1309 7552.52 P Ni I 286 7723.7597 A I 1 7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.66 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2						P				P		
7445.70 P Fe I 107 7552.79 P Fe I 1303 7724.2064 A I 6 7445.776 Fe I 1077 7553.970 Co I 183 7727.68 Ni I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2						Ð						
7445.776 Fe I 1077 7553.970 Co I 183 7727.66 N1 I 156 7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2												
7447.43 Fe I 1273 7554.73 Zr I 23 7732.50 Zn II 2						-						
								23				
		D			7555.60		N1 T	187				

KINDING TISE

Element Multiplet No. Multiplet No. IA Type I A **Rlement** Multiplet No. IA Type Element Туре 8035.39 81 I 57 Fe I 1287 7909.60 P 7733.50 Gd I Cr I 316 8043.306 Co I 193 7910.50 7733.68 P Fe I 1306 8046.073 Fe I 1136 7911.338 Ba I 7734.43 Mn I 55 1 Si I 73 Si I 68 8046.78 P N1 I 281 7912.55 7735.99 12 8047.60 Fe I 12 Fe I 7912.866 7737.67 P Fe I 1137 Sm II 67 Si I 35 8048.70 7913.47 7742.7 Si I S II 109 8051.91 31 N1 I Fe I 1306 7917.48 7742.71 Co 193 Cr I 316 8055.996 I 7743.2 S1 I 7917.85 Si I 57 8058.14 Zr I 41 7918.38 7743.27 Co I 183 I 22 Cr I 300 7923.95 s 8061.27 7744.94 C1 I 5 7924.14 Fe I 1250 8063.10 Zr I 40 S II 70 7745.05 C1 I 8065.99 Al I 16 7924.62 Fe 1305 7745.48 1 308 8066.05 P T1 I 151 7926.37 T1 I P Fe I 1309 7746.56 Y II 31 7928.14 Sm II 65 8066.20 Fe 7748.281 Ι 402 22 8068.24 T1 I 151 7928.84 SI Gd II 7748.37 142 Gd II 8068.46 Sm II 68 N1 I 156 7930.25 7748.93 7930.33 S 1 22 8070.12 Zr I 40 Fe I 1304 7751.18 8070.64 P Si I 67 F 1 7930.83 Mg I 42 7754.70 4 Mn I 55 7931.70 S I 22 8072.16 P Fe I 108 7755.15 7932.20 Si I 57 8075.13 Fe I 12 Hf II 66 7757.89 7933.130 Cu I 6 8075.37 Al I 16 Mn I 54 7764.72 p Ti I 195 Fe I 7937.166 Fe I 1136 8080.55 P 957 7766.72 623 7938.53 P Ti I 151 8080.668 Fe I Cr I 7771.74 Ne 1 6 7939.49 0 I 35 8082,4580 0 1 1 7771.96 Cr 299 I 7941.09 Fe I 623 8084.98 0 1 7774.18 Fe I 1136 8085,200 7941.84 P Fe I 508 0 7775.40 s II 69 Ba I 7942.02 Cr I 300 8085.29 7780.478 S1 I 67 8086.18 Fe I 1154 7942.91 Mn I 7780.586 11 S 31 7943.15 O 1 35 8086.67 N1 I 62 7788.95 Al II 201 7943.1802 Ne I 18 8086.91 116 N1 I 7797.62 Ti I s ΙI 69 8089.86 7798.90 P Fe I 403 7943.93 308 Gd II 145 8089.96 81 I 7943.94 81 I 57 7800.0 81 Cu I 6 8092.634 F I 4 7944.65 Zr I 40 7800.22 S 11 68 8093.25 7945.878 Fe I 1154 7800.227 Rb I 81 I 8093.32 34 7802.49 Fe I 1303 7945.98 Fe I 107 30 8093.48 I 7807.97 P Fe I 1303 7947.204 O I 35 Co I 189 8093.932 Fe I 7947.56 0 1 35 7808.04 N1 I 290 79 7947.60 Rb I 1 8095.93 Co I 7809.24 999 6 8096.874 7948.1754 A 7809.4 Na I 20 Ti I Ti I 125 8098.50 195 7810.81 P Fe I 1303 7949.17 0 I 35 8098.72 Mg I 41 7950.83 7811.14 P Mg I 43 1 3 7952.18 0 1 35 8103.6922 Al II 90 7812.31 8108.33 Fe I 265 N1 I 266 7953.11 7813.62 P Fe I 1305 Co I 183 P Fe I 402 8112.13 7954.94 7815.83 Al II 90 8112.17 Fe I 265 Fe I 1305 7955.81 He I 69 7816.16 8114.93 8 II 69 Zr I 41 7820.80 p Fe I 1118 7956.69 Fe I 1304 8115.3115 A I 1 7959.21 7821.47 8 II 31 8116.80 v Ι 30 7961.58 T1 I 308 Al II 90 7823.72 7963.25 Gd II 8119.13 Cr I 299 109 7826.81 N1 I P Fe I 1303 8119.72 Al II 110 1154 7964.93 Fe I 7832.224 Fe I 1305 8121.89 Al II 110 7965.52 P Sm II 69 7835.08 Fe I 1000 8122.08 Al II 110 7967.03 P 10 7835.33 Al I S II 12 8123.52 Al II 110 7967.43 7836.15 Al I 10 81 I 57 8126.52 L1 I 3 7970.26 64 7837.27 Sm II 7978.88 Ti I 151,308 8128.28 Cr I 300 Fe II 87 7838.09 Fe I 265 Fe I 1304 8129.32 P 7980.04 Fe II 72 7841,40 Zr I 40 P Fe I 1250 7980.58 C1 I 2 8133.00 7844.55 S II 68 Gd II 7981.97 0 I 19 8133.02 7844.87 P Ti I 195 7982.41 O 1 19 8133.36 Gd II 7846.35 23 7983.66 Hf II 99 8136.4060 Ne I Fe I 1323 7846.47 v 8144.58 I 30 7987.00 Û 1 19 Zr I 40 7849.38 8145.47 Fe I 32 7987.34 O 1 19 C I 7850 8146.67 P Fe I 623 7850.5 81 I 81 7987.36 Co I 89 Fe I 1217,1218 300 8149.59 Cr I T1 I 34 7989.36 7852.74 P P 81 I 20 8150.57 Fe 7855.12 N1 I 267 7994.473 1 Co I 193 81 I 21 8151.95 P 7855.41 P Fe Į 1305 7995,00 Al II 118 8160.15 19 N1 I 156 7995.12 0 I 7861.10 v i 30 Ti I 308 8161.06 Hf II 66 7996.53 7861.22 Cr I 298 79 8163.22 7996.80 Co I Ni I 268 7863.79 8166.66 Cr I 298,299 7997.80 C1 I 7869.65 Fe I 1137 Cr I 7997.85 8 II 69 8167.94 291 7869.868 Co I 189 Fe 1136 8169.80 Cr I 300 7998.972 I 7870.00 Zr I 41 1322 Fe I 8171.30 P Fe I 8002.55 1217 7871.370 Co I 189 Fe I 1136 8 11 8179.03 8005.24 68 Mg II Cl I 7877.13 8 8 II 8179.31 69 8006.1556 A 1 3 7878.22 3 33 S1 I 81 I 74 8179.43 P 8009.39 P 7879.75 P Fe I 1306 I 8183.256 Na I 4 8014.7856 A 1 Y II 32 7881.90 N 1 2 P Fe I 1249 8184.80 Ti I 8016.51 34 7885.00 P Cr 1 299 8 II 0 I 8185.69 68 8018 C I 31 7885.26 I v 30 8186.73 8018.04 Cr I 299 64 7886.31 1272 Fe I 8018.70 8 II 68 8186.80 N1 I 200,267 7890.22 I 8187.95 8024.50 Fe I P Ti I 34 7895.50 C1 I 2 8194.35 8024.84 T1 I 151 Mg II 7896.37 8194.791 Na I 8025.12 Sm II 63 81 I 69 7898.38 Sm II 8194.824 Na I Fe I 8026.32 67 403 7904.12 V 8196.52 P Fe I 1217 30 I 8027.36 7905.751 Ba I 10 v I 30 8198.87 P 623 Fe 7908.06 Gd II 120 8027.96 Fe I 1154 Fe 1154 8198.951 Cr 316 8028.341 7908.30

87					FIND	MING LIS	T				
I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.
8203.2	P	Ca II	13	8316.38		Gd II		8428.342		0 I	54
8203. 572	P	H Fe I	14 12	8317.45		81 I	19	8428.94		As I	4
8204.10 8204.93	P	Fe I	12	8322.06 8323.428		Cr I H	298 12	8429.128 8429.36		O I Y II	54
8207.767	_	Fe I	1136	8323.44		Cr I	298	8431.20		Mn I	53
8208.57		Co I	193	8327.063		Fe I	60	8434.51	P	Fe I	1270
8210.64 8211.48		N I Si I	2 19	8331.941 8333.29		Fe I Cl I	1153 2	8434.98	P	Ti I Si I	33 8
8212.00		Cl I	2	8333.785		H	11	8435.28 8435.68	Р	Ti I	8 33
8212.43		Mn I		8334.37		Ti I	33	8437.958		н	10
8212.59 8213.02	P	Zr I Mg I	40 28	8335.19 8338.43		C I Si I	10 33	8438.93 8439.603		T1 I Fe I	224 1172
8216.28	-	Cr I	299	8338.83		Cr I	298	8442.58		Gd II	1172
8216.28	_	N I	2	8339.431		Fe I	1153	8442.98		Ti I	210
8217.8 8220.40	P	Mg II Cl I	7 3	8342.21 8342.95	P	Fe I Fe I	401 1270	8444.00		Si I	46
8220.406		Fe I	1136	8345.20	P	Fe I	265	8444.48 8446.35		81 I 0 I	4 6 4
8221.63		S II	31	8345.553	_	H	11	8446.42	P	Fe I	1272
8221.73 8221.84		O I	3 34	8346.13 8348.28	P	Mg I Cr I	40 56	8446.56 8446.76	P	Fe I O I	1267 4
8222.15		s II	68	8348.68		Sm II	64	8447.41	P	Fe I	1266
8223.07 8223.16		N I S II	2 68	8349.05 8353.15	P	Fe I	12	8447.63	P	Fe I	12
8224.09		Cr I	98	8354.35		Ti I Al II	33 4 0	8449.54 8450.26		S I Cr I	14 56
8225.15		S II	69	8355.16	P	Fe I	1050	8450.89		Ti I	224
8225.67		Cr I	299	8356.07	P	Fe I	1117	8451.55		S I	14
8227.64 8230.01		0 I 0 I	34 34	8358.53 8359.006	P	Fe I H	401 11	8452.14 8455.24		S I Cr I	1 4 56
8230.67		Si I	19	8359.23		Al II	40	8457.10		Ti I	141
8232.347		Fe I	1136	8359.57		Al II	40	8459.01	P	Fe I	1270
8232.99		0 I	34	8360.63		Cl II	5	8461.41	P	Fe I	814
8233.30		8 II 0 I	68	8360.822		Fe I	1153	8464.02	P	Fe I	1330
8235.31 8235.89		Cr I	34 298	8361.77 8 3 61.95		He I S II	68 31	8464.65 8465.23	P	Zr I Fe I	40 1270
8236.13		HF II	65	8363.30		Al II	40	8466.10	P	Fe I	1269
8236.77		He II	6	8363.52	_	Al II	40	8466.54	P	Fe I	999
8238.29 8238.4	P	Cr I Mg II	298 7	8363.58 8364.24	P	Ti I Ti I	182 33	8467.15 8467.256		Ti I H	182 10
8239.130	•	Fe I	108	8365.642		Fe I	623	8468.413		Fe I	60
8241.61		V I	30	8369.87	P	Fe I	1271	8468.46		Ti I	150
8242.34		N I	2	8370.21		Zr I	40	8471.75	_	Fe I	1270
8248.151 8250.2	P	Fe I Ca II	1136 13	8372.79 8374.478		Co I H	193 11	8480.63 8481.96	P P	Fe I Fe I	1272 9 99
8253.51		v i	30	8375.95		C1 I	2	8483.16	-	Ti I	150
8253.78	P	Fe I	1216	8376.41		Ne I	12	8485.99		Sm II	66
8254.10 8254.34	P	Be I Fe I	2 508	8377.6068 8377.79		Ne I S II	12 31	8493.79 8494.42	P	Fe I Ti I	1269
8255.153	•	н	14	8377.90		Ti I	33	8495.3600		Ne I	141 18
8255.90	_	V I	30	8379.44		Co I	193	8495.51		Ti I	210
8256.1	P	Ca II	13	8380.77		Mn I		8496.03		Ti I	209,313
8257.859 8258.27		H 8 II	1 4 31	8382.23	P	Fe I	12	8496.51	P	Fe I	1136
8260.938		H 11	31 14	8382.54 8382.82		Ti I Ti I	33 33	8497.00 8498.018		Fe I Ca II	1172 2
8261.95		Cr I	98	8386.24	P	T1 I	182	8498.44		Zr I	40
8263.86	P	Fe I	1272	8387.781		Fe I	60	8501.50		Si I	47
8264.27 8264.288		Fe I H	1332 14	8389.42 8389.48		Zr I Ti I	40 182	8501.81 8502.38		Ni I 81 I	186 4 6
8264.5209		A I	8	8392.400		H	11	8502.487		Н	10
8266.076 8267.941		Ne I H	27 13	8395.87 8396.93		Mn I Ti I	53 33	8503.17	P	Si I Fe I	1100
								8509.63	r		1136
8269.66 8271.934	P	Fe I H	1218 13	8397.0 <u>4</u> 8397.96	P	Cr I Si I	57 18	8510.90 8512.95	P	Sm II Fe I	64 462
8273.46		8 II	31	8401.42		Fe I	108	8514.075	-	Fe I	60
8273.519		Ag I	2	8401.68	P	Fe I	1136	8514.64	P	Si I	18
8274.28 82 75.91		Fe I Fe I	1332 1270	8402.54 8408.208		Ti I A I	224 8	8515.08 8515.48		Fe I S II	401 37
8276.310		H	13	8409.88		Mn I	53	8518.05		Ti I	182
8281.125		H	13	8412.36		Ti I	33	8518.37		Ti I	150
8286.434 8287. 38		H Cr I	13 298	8413.321 8414.00		H 2r I	10 40	8519.05 8520.23	P	Fe I S II	1267 3 4
8290.62		Cr I	298	8414.08	P	Fe I	1154	8521.10		Cs I	1
8292.309		H Po T	12	8416.97		Ti I	224	8521.4407		AI	8
8293.527 8296. 90		Fe I Cr I	623 57	8417.24 8417.54		Ni I Ti I	156	8522.64 8525.04	D	S II	62 121 5
8297.58		Cr I	297	8417.89	P	Si I	182 18	8525.04 8526.685	P	Fe I Fe I	1215 1270
8298.837		H	12	8418.4274	-	Ne I	18	8527.32	P	Si I	18
8300.01	P	Fe I	1331	8418.70		Ti I		8527.88	P	Fe I	1270
8300.3258 8303.11	P	Ne I Fe I	12 265	8420.968 8422.39		0 I 8 II	5 <u>4</u> 37	8531.36 8523.38		Ti I Si I	141 80
8303.19	•	Cr I	57	8422.95		Fe I	999	8538.02	P	Fe I	80 1266
8305.62		As I	5	8423.10		Ti I	150	8539.36		Ti I	209
8305.79 8305.94		Sm II Zr I	69 4 0	8424.14		Fe I	1272	8541.65		As I	3
8306.115		B I	40 12	8424.41 8424.647		Ti I A I	182 3	8542.089 8543.72		Ca II Cr I	2 56
8306. 80		Si I	19	8424.780		0 I	54	8545.384		H	10
8307.41	р	Ti I	33	8425.37	_	8 11	62	8548.07		Ti I	150
83 07.61 83 10.98	P P	Fe I Fe I	12 12	8425.89 8426.326	P	Fe I O I	12 54	8548.83	ъ	Cr I	56
	-			0 4 KU 1 U LU		U 1	unt	8550.34	Р	Si T	RR

I A	Type	Element	Multiplet No.	I A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet N
8555.54		Cr I	56	8680.77	P	Fe I	999	8819.42	P	Fe I	1266
556.64		Si I	45	8681.920 8682.99		Ne I Ti I	23 68	8819.48 8820.45	P	Fe I O I	1269 37
559.98	P	Fe I Fe I	1321 1153	8683.38		N I	1	8821.14		T1 I	139
562.13 564.71	P	As I	3	8686.13		N I	î	8821.76		As I	3
65.45		Ti I	141	8686.28		C1 I	14	8824.227		Fe I	60
67.74		N I	8	8686.77	P	Fe I	1269	8828.08	P	Fe I	1269
67.78	P	Fe I	1269	8686.79	P	Fe I	956	8828.91		Al I	1 5
69.72		Ti I	209	8688.633		Fe I	60	8834.04	P	Fe I	1050
71.84	P	Fe I	1272	8689.71	P	Fe I	507	8835.67		Cr I	142
75.25	_	C1 I	2	8689.83	P	Fe I Ti I	1330	8835.85		Y II Fe I	30
76.46	P P	Si I Fe I	87	8692.34 8693.24		SI	68 6	8838.433 8841.26		Al I	339 15
76.50 78.40	P	Ti I	1215 141	8693.98		S I	6	8846.82		Fe I	1267
79.15		Si I	56	8694.70		SI	6	8848.25	P	Fe I	1153
81.88		Hf II	66	8698.71	P	Fe I	400	8848.46	P	Fe I	1214
82.267		Fe I	401	8699.13		Mn I	49	8852.30	P	Fe I	1318
84.82	P	Fe I	1270	8699.43		Fe I	1267	8853.867		Ne I	27
85.60 85.96		S I Cl I	2	8700.34 8701.05	P	Fe I Mn I	1266 49	8858.39 8858.77		Al II Al II	115 115
	n			8702.49		Ni I	83	8862.59		Ni I	214
86.20 89.78	P	N1 I Co I	296 193	8702.49 8703.24		N I	1	8862.59 8862.787		H	9
91.2584		Ne I	30	8703.76		Mn I	49	8863.64		Fe I	1283
92.10	P	Fe I	1269	8704.15		Ne I	23	8865.759		Ne I	8
92.97		Fe I	1267	8707.42		Cr I	56	8866.961		Fe I	1172
94.01		N I	8	8707.95		Cr I	296	8868.42		Fe I	400
96.02	P	Si I	80	8710.29		Fe I	1267	8869.69		As I	4
97.00		Si I	80	8710.82		Ba II	5	8874.53		S I	21
598.18 598.394		T1 I H	236 9	8711.69 8713.19		N I Fe I	1 400,1267	8876.13 8877.07		Fe I Ni I	1267 285
						Cr I	296		P	Fe I	401
98.79		Fe I	1153	8718.70 8718.82		N I	296 1	8878.26 8878.76	P P	re 1 Fe I	401 1050
.06.43		Ti I Si I	141,209 55	8718.82 8719.56		Ti I	1 1 4 0	8880.70		S I	21
306.43 606.45		N1 I	275	8725.76		Ti I	139	8882.47		SI	21
607.08	P	Fe I	1272	8727.10	P	Fe I	999	8883.84		Si I	54
310.62	P	Fe I	1153	8728.38		Si I	79	8884.23		s I	21
611.807		Fe I	339	8728.88		N I	1	8887.10	P	Fe I	1265
812.91		Ti I	141	8729.02	_	Si I	79	8892.13	P	Fe I	1302
313.93 316.27	P P	Fe I Fe I	1272 1266	8729.12 8732.17	P	Fe I Cr I	713 296	8892.97 8896.00	P	Si I Fe I	54 1153
	_					Mn I				Si I	
618.44 621.612		Ti I Fe I	209 401	87 34. 60 87 34. 70		Ti I	49 68	8898.97 8899.50		Si I	79,86 79
329.24		N I	8	8736.0	P.	Mg I	39	8901.0		Mn I	56
632.42	P	Fe I	1050	8737.32		Mn I	49	8902.94	P	Fe I	1266
334.6480		Ne I	23	8737.74		Ba II	5	8905.99	P	Fe I	1302
836.26		Cr I	56 196	8740.93 8742.60		Mn I Si I	.49 44	8912.88 8912.88		Al I Cl I	14 13
637.04 640.70		Ni I Al II	186 4	8742.60 8747.32		Fe I	401	8916.26		Fe I	32
641.47		Ti I		8747.35		N I	1	8918.88		Se I	1
343.03		Cr I	56	8750.13		Co I	203	8919.50		Ne I	27
643.29	P	Fe I	1261	8750.475	_	H	9	8919.95	~	Fe I	1301
847.05		Ne I	33	8751.18	P	Si I	44	8920.02	P	Fe I	1261
648.89		Si I	40	8752.17		Si I Fe I	43 339	8922.66 8923.56	P	Fe I Al I	1298 14
649.6	n	Na I	19	8757.192 8761.44		Ti I	139 139	8923.8		Mg I	25
852.50 854.16	P	Fe I As I	1050 3	8764.000		Fe I	1172	8925.55		Si I	54
354.3835		Ne I	3 33	8766.64		Ti I	68	8925.75		Cr I	142
354.40	P	Fe I	623	8766.68		Si I	54	8926.06		Mn I	56
354.51		Ne I	33	8767.65	P	Fe I	814	8929.04		Fe I	1301
854.63		Mn I	59	8770.68		Ni I	82	8929.72		Mn I	56
55.88	_	N I	8	8771.70		Ne I	38	8931.78	P	Fe I	507
56.67	P	Fe I	1269	8772.88		Al I	9	8943.00		Fe I Cs I	338 1
59.38		Mn I Fe I	59 60	8773.56 8773.91		Cr I Al I	296 9	89 43.5 0 89 43. 6		Na I	26
61.908 62.140		re 1 Ca II	60 2	8778.66		Ti I	1 4 0	8945.204		Fe I	1301
363.73	P	Fe I	1270	8779.12	P	Fe I	1050	8946.25		Fe I	338
65.021	-	Н	9	8780.6223	-	Ne I	27	8947.20		Cr I	142
367.37	P	Fe I	166	8783.755		Ne I	38	8948.01		C1 I	1
667.40 667.9430	Þ	Si I A I	55 6	8784.44 8786.28	P	Fe I Cr I	1270 142	8949.33 8950.20	P	Si I Fe I	54 1050
					•				-		
870.19 870.65		S I S I	6 6	8786.96 8790.62		Cr I Fe I	296 1267	8954.65 8956.26	P	Ni I Fe I	200 1266
370.92		Mn I	49	8790.88		81 I	79	8959.88	P	Fe I	1320
371.06		Al II	112	8791.28		Si I	79	8965.94		Ni I	225
371.28		Al II	112	8793.376		Fe I	1172	8967.53	P	Fe I	1286
371.37	_	8 I	6	8796		Na I	27	8968.20		Ni I	284
371.86	P	Fe I	1272	8796.42	~	Fe I	1266	8975.408		Fe I Cr I	400
372.06 373.97		Mn I Mn I	49 49	8798.05 8801.78	P P	Fe I Fe I	1286 956	8976.88 8978.04	P	Fe I	142 1266
374.751		Fe I	339	8804.624	-	Fe I	106	8978.17	P	Fe I	713
674.92		Al II	112	8805.21	P	Fe I	1265	8979.34	P	Ti II	100
675.28		Al II	112	8806.7032		Mg I	7	8982.35		N1 I	213
675.38		Ti I	68	8806.7358		Mg I	7	8984.87		Fe I	1301
679.00		8 I	6	8806.7678	_	Mg I	7	8988.58		Ne I	8
679.491	_	Ne I	37	8808.17	P	Fe I	1267	8989.44	P	Ti I Fe I	138 622
679. 61 679. 70	P	Fe I S I	1286 6	8809.47 8814.50	P	Ni I Fe I	200 1330	8994.57 8999.561	F	Fe I	339
		N I	1	8816.86	P	Fe I	1271	9002.00		Sc I	1

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
9009.04		Si I	91	9214.85	P	Fe II	71	9413.46		s i	18
9009.95		Cr I	187	9217.4	P	Mg II	1	9413.59		Si I	14
9010.55		Fe I	202	9217.54		Fe I	1298	9414.14		Fe I	1298
9012.098		Fe I	1301	9220.05		Ne I	33	9415.04	P	Fe I	1297
9013.90		Fe I	106	9221.59		Ne I A I	33 8	9415.5		Mg I Si I	38 72
9014.911		H Zr I	9 39	9224.498 9225.55		Fe I	1213	9421.82 9421.93		SI	18
9015.16 9017.10		Cr I	187	9226.67		Ne I	30	9423.07	P	Fe I	1300
9019.84		Fe I	1301	9228.11		S I	1	9425.38		Ne I	36
9021.69		Cr I	187	9229.017		Н	8	9429.58		Mn I	57
9024.47	P	Fe I Fe I	1265 1297	9233.15 9237.49	P	Fe I S I	1342 1	9430.08 9433.29	P	Fe I Fe I	1292
9024.78 9027.32	r	Ti I	138	9238.60		Si I	66	9437.11	•	SI	18
9027.90	P	Ti II	100	9242.32		Fe I	1262	9437.91		Fe I	1171
9028.9		N I	15	9243.29		Mn I	46	9443.98		Fe I	1298
9030.67		Fe I	338	9213.4	P	Mg II	1	9444.36		Cr I	29
9035. 86 9035. 92		Cr I S I	. 142 13	9246.54 9248.13	P	Fe I Fe I	203 1338	9447.00 9452.06		Cr I Cl I	29 13
9036.32		s i	13	9248.80	P	Fe I	1285	9452,45		Fe I	1263,1292
9036.73		s I	13	9249.41		Al II	117	9454.24		Fe I	1298
9036.74	P	Fe I	1269	9252.67	P	Ti II	100	9459.21		Ne I	38
9038.65		Sc I S I	1 13	9253.72 9254.59	P	Fe I Si I	1261	9460.66 9462.97	P	N I Fe I	7 1263
9038.72 9038.84	P	Fe I	400	9254.59		Mg I	27	9463.57		He I	67
9039.27	•	S I	13	9258.30		Fe I	1172	9466.0		Na I	24
9045.40		Cl I	13	9259.05		Fe I	1263	9476.57		Mn I	57
9052.56	P	Fe I	1342	9260.88		0 I	8	9482.82	P	Fe I	1319
9059.74		Cr I	165	9262.73		0 I	8	9485.93	P	Fe I	622
9060.6	_	N I	15	9263.97		Cr I O I	165 8	9486.680		Ne I Cl I	8 1
9061.33	P	Fe II	71	9265.99				9486.89			
9061.48		CI	3	9267.29		As I Zr I	3 39	9487.49		0 I 0 I	47 4 7
9062.24 9062.53		Fe I C I	1301 3	9276.89 9286.578		Al II	64	9498.04 9499.39		0 I	46
9063.40		He I	77	9286.794		Al II	64	9502.12		Mn I	58
9064.06		Si I	91	9288.145		Al II	64	9505.28		Si I	72
9070.42		Fe I	1076,1300	9288.550		Al II	64	9505.67		0 I	46
9073.15		C1 I	12	9288.82	P	Cl I Fe I	11 1298	9506.04		Ti I Ti I	312 312
9078.32 9079.599		C I Fe I	3 1172	9289.39 9290.44	P	Cr I	29	9508.49 9510.81		Ti I	312
9080.48		Fe I	1265,1298	9290.649		Al II	64	9511.55		Ti I	312
9084.20	P	Fe I	1076	9290.747		Al II	64	9511.80		Ti I	312
9084.29		Mn I	46	9294.17		Cr I	29	9513.24		Fe I	1298
9088.326		Fe I	339	9294.66	P	Fe I Fe I	1301 1247	9516.51 9516.66		He I He I	76 76
9088.57 9089.413		C I Fe I	3 400	9297.14 9298.05	P	Fe I	1262	9520.06		Ni I	22 4
9090.70		Ti I	138	9300.62	•	As I	5	9522.01		0 I	45
9094.89		CI	3	9300.85		Ne I	33	9525.78		PΙ	3
9100.50		Fe I	1264	9304.88		PΙ	3	9526.17		He I	82
9103.37 9103.64		Si I Fe I	66 1076	9307.94 9313.55		Fe I Cr I	1297 80	9527.73 9529.27	P	Fe I He I	1297 86
9106.40		N1 I	289	9313.98		Ne I	33	9529.31		Fe I	
9111.85		CI	3	9313.98		Fe I	1263	9531.22	P	Fe I	1292
9112.25	P	Fe I	1297	9318.24		Si I	66	9534.17	-	Ne I	38
9112.95	P	Fe II	71	9324.07		Fe I	1300	9535.72		Mn I	57
9114.02	_	Mn I	46	9326.52	_	Ne I	36	9543.376		D 	2
9116.89	P	Fe I	1265	9328.64	P	Fe I Al II	1261 56	9545.974		Н Т1 I	8 32
9117.10 9118.888		Fe I Fe I	338 338	9331.546 9331.979		Al II	56	9546.07 9547.26		Zr I	39
9121.10		C1 I	1	9333.94		Fe I	1297	9547.40		Ne I	38
9122.9660		A I	1	9335.27	P	Fe I	1338	9550.90		Fe I	1263
9124.27		Al II	108	336.47		Mn I	58	9556.56		Fe I	622
9140.15	P	Fe I	622	9343.40		Fe I	1300	9563.45		P I	2
9146.11 9147.800		Fe I Fe I	202 1301	9344.93 9346.69		He II La II	6 152	9568.58 9569.960		Cr I Fe I	29 1296
9148.45		Cr I	165	9350.46		Fe I	1171	9570.08		Si I	42,65
9148.68		Ne I	30	9354.218		A I	8	9571.76		Cr I	29
9154.7		Na I	25	9359.420		Fe I	203	9573.65	P	Fe I	1297
9155.67	P	Fe I	1301	9362.06		Cr I	80	9574.25		Cr I	29
9156.02 9156.23	P	O I Fe I	41 400	9362.370 9370.57	P	Fe I Fe I	106 338	9582.28 9584.77		C1 I	106 1
9157.07	P	Fe I	1268	9372.900		Fe I	202	9585.72		Si I	7
9157.08	P	Fe I	1261	9372.900		Ne I	33	9592.20		C1 I	11
9164.51		Fe I	1263	9375.14	P	Fe I	400	9593.54		PΙ	2
9172.09	n	Mn I	46	9382.93	P	Fe I	1284	9595.60		KI	10
9173.20 9173.63	P P	Fe I Fe I	203 1300	9383.40	P	Fe I Ni I	1285 225	9597.76 9597.94		K I As I	10 3
9173.83		Fe I	622	9385.62 9386.79		NI I	225 7	9597.94 9599.53		Ti I	32
9175.85		PΙ	3	9388.28		Fe I	1263	9602.07		Fe I	1283
9178.57		Fe I	1262	9392.77	P	Fe I	1262	9603.09		C I	2
9191.67		C1 I	1	9392.80		N I	7	9603.50		He I	71
9197.49		Cl I Fe I	14	9393.40		Si I	72	9608.56	•	Mn I	60
9199.52 9201.76		Ne I	1298 30	9393.81 9394.71		Cl I Fe I	1 1264	9608.89 9608.97	P	Fe I P I	1285 2
9203.10	P	Fe I	1298	9396.57		N1 I		9611.60		VI	106
9208.29		Cr I	165	9401.09		Fe I	1297	9614.68		v i	106
9208.55		Si I	66	9403.36	P	Fe II	71	9620.86	_	C I	2
9210.030		Fe I	338	9404.80	P	Fe I	1264	9620.93	P	Fe I	7 37

I A	Туре	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	ŢΑ	Туре	Element	Multiplet No.
9626.562		Fe I	1296	9790.08		PΙ	4	10061.29		Ni I	284
9632.37		C1 I	12	9796.79		P I	2	10065.080		Fe I Ti I	1247 193
9633.0	P	Mg II	15	9800.335	P	Fe I Fe I	1296 1292	10066.47 10067.84		Si I	64
9633.02		Mn I S I	58 17	9800.79 9811.36	r	Fe I	1285	10070.58	P	Fe I	1345
9633.78 9634.22		Fe I	1296	9820.24	P	Fe I	106	10072.10		He I	80
9636.69		Fe I	1212	9821.8		N I	19	10076.29		Al II	6
9637.55		Fe I		9822.30		Zr I	39	10077.32		Al II	6
9638.28		Ti I	32	9826.69		As I	3	10077.53		Al II Cr I	6
9639.40	P	Ca I	55	9832.15		Ti I	149	10080.32		CF I	226
0048 40		Ti I	32	9833.76		As I	2	10080.44	P	Fe I	1293
9647.40 9649.94		SI	17	9834.04		Fe I	1294	10081.40	P	Fe I	106
9653.143		Fe I	1247	9839.38		Fe I	1211	10084.22		PΙ	4
9657.00		La II	60	9839.58		Si I	65	10084.42	P	Fe I	1209
9657.30		Fe I	1296	9856.7	P	Ca II	12	10084.70	_	Zr I	39
9657.7841		AI	3	9861.793		Fe I N I	1296	10086.27	P	Fe I Te I	399 1
9658.49		C I Fe I	2 1292	9862.5 9865.44		V I	19 76	10091.12 10091.64		Cl I	10
9658.94 9661.42		Ti I	194	9868.09		Fe I	1292,1299	10107.19		Al II	6
9663.58	P	Ca I	55	9875.95		C1 I	11	10108.01		Al II	6
9664.29	P	Ca I	55	9878.18	P	Fe I	1293	10108.37		Al II	6
9665.426		Ne I	8	9879.41	P	Ti I Fe I	149 1209	10113.4 10113.86		N I Fe I	18 264
9666.59		Fe I Cr I	29	9881.51 9886.92	P	Si I	85	10117.81	P	Fe I	1295
9667.20 9668.9		VI	106	9889.082		Fe I	1296	10119.20		Ti I	315
9670.48		Cr I	29	9891.90		Si I	71	10120.90		T1 I	193
9672.34		S I	17	9898.90		N1 I	243	10122.50		Al II	6
9673.16		Fe I	580	9900.87		Cr I	80	10123.61	P	He II Fe I	2 1294
9675.55	_	Ti I	32	9903.74		P I Si I	4 65	10137.06 10138.50	P	He I	89
9676.25	P	Ca I	55	9913.16		31 1	00	10100.00		1	00
9676.42		Fe I	1345	9913.19	P	Fe I	1292	10142.82		Fe I	1294
9676.50		Mn I	60	9917.93		Fe I	1317	10143.59	P	Fe I	979
9677.41		0 I	58	9920.46	P	Fe I	1292	10145.00	P	Fe I	621
9680.80		S I	17	9923.03	_	As I	2	10145.37		N1 I	243
9683.57		Fe I	1337	9924.35	P	Fe I Ti I	737	10145.48		Ti I Fe I	1247
9684.9		Mn I	60	9927.35 9932.26		SI	149 16	10145.601 10147.09		Ti I	315
9686.3 9688.60	P	Mn I Ca I	55	9933.3	P	Ca II	12	10147.3		N I	18
9688.86	•	Ti I	32	9937.10	P	Fe I	1210	10149.09	P	Fe I	1294
9689.35		N1 I	295	9941.33		Ti I	193	10153.13	P	Si I	40
									_	TO - Y	1010
9689.41		81 I	65	9944.13		Fe I	1285	10153.30	P P	Fe I Fe I	1348 59
9690.62		Ti I V I	194	9948.98 9949.06		Ti I Cr I	193 226	10155.18 10155.88	•	Si I	64
9691.58 9693.68		V I S I	106 20	9949.84		S I	16	10156.50	P	Fe I	1209
9693.69		Fe I	1292	9950.5		K I	8	10164.5		N I	18
9697.33		S I	17	9950.70	P	Fe I	1209	10167.4		Fe I	59
9699.70		Fe I	1292,1299	9951.15	P	Fe I	1346	10170.60		Ti I	95
9701.81	P	Ca I	55	9953.45	P	Fe I	1346 8	10179.92		Ti I Ti I	315 95
9702.35		C1 I	1 75	9955.2 9955.85	P	K I Fe I	1211	10189.26 10191.51	P	Fe I	149
9702.66		He I	73	2200.00	•			10101.01			
9702.86		Ti I	248	9958.90		S I		10193.25		N1 I	213
9705.64		Ti I	32	9959.18	P	Fe I	998	10193.66		V I	76
9710.21	P	N1 I	285	9961.0	P	Na I Fe I	23 1293	10195.11 10197.05		Fe I Cr I	264 80
9717.00		Ti I Ti I	248 124	9967.32 9967.46	r	Si I	64	10203.45		v i	76
9718.96 9722.88		Te I	1	9970.26	P	Fe I	461	10204.72		PΙ	4
9728.36		T1 I	32	9976.65		PΙ	2	10216.351		Fe I	1247
9730.32		Cr I	226	9977.52		Fe I	1293	10218.36	_	Fe I	461
9734.52		Ĉr I	29	9980.55		Fe I	1295	10262.49	P P	Si I Fe I	63 59
9734.74		PΙ	2	9981.16		Ti I		10265.23	r	re i	0.0
0729 50		V I	106	9987.0		Mg I	36	10283.87	P	Fe I	1346
9738.50 9738.60		Si I	200	9987.88	P	Fe I	59	10288.83		Si I	6
9738.624		Fe I	1296	9993.7		Mg I	36	10295.05		Ni I	***
9739.74		S I	20	9997.94	•	Ti I	149	10302.61	P	Ni I Fe I	242 1208
9741.49		0 I	57	10001.35	P	Si I Ti I	64 193	10307.48 10307.60	r	Se I	2
9741.93 9742.28		S I Hf II	20 66	10003.02 10011.72		Ti I	193	10307.00		He I	74
9743.60		Ti I	32	10012.15	P	Fe I	1336	10311.37		He I	74
9744.33		C1 I	10	10015.33		Si I		10311.88	P	Fe I	106
9746.86		Ti I	248	10016.67	P	Fe I	1293	10321.10		N1 I	289
		p	1000	10019.77	P	Fe I	1348	10327.30		Se I	2
9747.24		Fe I P I	1209 2	10019.77	P	Si I	41	10327.30		Sr II	2
9750.73 9752.84		Cr I	80	10022.34	P	Fe I	1345	10330.23		N1 I	224
9753.129		Fe I	1247	10023.98		As I	2	10332.33	P	Fe I	858
9758.08		Si I	65	10025.80	P	Si I	64	10333.24	P	Fe I	1208
9760.65		0 I	56	10026.10	P	Fe I	1211	10340.77		Fe I Ca I	59 1 3
9763.450		Fe I	1296	10027.73		He I He I	81 85	10343.85 10348.16		Fe I	1347
9763.913	P	Fe I Fe I	1292 1348	10031.16 10032.84	Р	Fe I	1348	10353.85	P	Fe I	1346
9764.40 9768.27	•	Si I	7	10034.45	-	Ti I	95	10362.73	P	Fe I	1345
\$100t&1		•	•							-	
9770.10		Si I		10036.658		Sr II	2	10364.13	P	Fe I	1347
9770.28	_	Ti I	32	10046.64		D N1 I	2 242	10371.23 10378.62		Si I Ni I	6 224
9771.06	P	Fe I Ti I	1211 32	10048.60 10048.78		Ti I	95	10379.01	P	Fe I	59
9783.30 9783.59		Ti I	32 32	10049.38		H	8	10386.45	-	Se I	2
9783.96		Fe I	1295	10051.55		Te I	1	10388.73	P	Fe I	1346
9784.5010	D	A I	8	10057.64		Fe I	1294	10392.45		Cl I	10 50
9786.62		Fe I	1171	10057.69	n	Ti I	193 59	10395.75 10396.85		Fe I Ti I	59 31
9787.67		Ti I	32 65	10058.28 10059.87	P	Fe I Ti I	95	10401.72	P	Fe I	461
9789.24		81 I	OU	10008+01					-		

Table Part	86					FIND	ING LIS	T				
1985 1	T A	Type	Element	Multiplet No.	I A	Туре	Element	Multiplet No.	I A	Type	Element	Multiplet No.
1942-10		7 , po	2201101110					•	_	••		
1985 100 100	10405.05		Ge I	7	10838.77				11564.8			
1945 1946										P		
1965-107 Part 1960 1966-106 Part 1960 11900-106 Part 1960 11900-106 Part 1960 196												
1985-7-7 8 1 92 1986-13		P								P		
1946-0.7 1 1 2 2006-0.6 P. 1 156 1307-57 P. 1 59										_		
1049-1-6							Fe I	1246				58
100000.000 P. T. 1079 100000.000 P. P. 1 110 11010.000 P. P. 1 11000.000 P. 1 11000.000 P. 1				3						_		o.=
10070.050										P		
1948-1.4	10469.59		Fe I	979	10869.54		51 1	13	11611.49		51 1	90
1948-1.4	10470 051		A T	6	10872.47	P	Al I	12	11619.0		ст	25
1985 1												
1989 1989							Ca I	56				
1001.4.5	10506.5		N I	28	10881.65					P		
10050-0.0										n		
1935.0.5 1 294										P		
1995 2.2 P 1 979 1995 2.6 P Al 1 12 1109-0 N 1 12 1305 2.0 N 1 28 28						P						
1008-1.0 N T 28												
10581-0							N1 I	224			CI	25,29
10581-0						_						
10655.00						Р				Р		
1005.2.5 P Fi												
10060.43		р										
1005.7-14 1 223		-				P						
1057.1.1 P P 1 579								2			K I	6
10084_c6		P	Fe I	579	10916.98							
10084.66												
1088-12												
10000.36	10584.66		11 1	31	10939.11		ь	2	11020.0		wing T	O
10000.36	10585.12		Si I	6	10938.09		Н	8	11836.4	P	Ca II	5
10000.38								6			CI	
10061.75 P Fe 1 779 10061.2 P Mg 1 35 11882.80 Fe 58 10067.66 Si 1 32 10066.1 P Mg 35 11884.12 Fe 1 88 10067.66 Co I 118 10070.27 Si I 77 1180.44 P Si I I I I I I I I I			Si I	5	10949.4	P			11863.0			
19627.81 30 1966.1 P Mg 30 11884.12 Fe 58	10607.78					_						
10047.66		P										
10060.8 Si I S						Р				ъ		
10660.08												
10667.53							Si I					
10697-00	10661.61		Ti I	31	10984.24		Si I	77	11927.89	P	N1 I	242
10697-00						_	n- *	007		_		_
10672.17						Р				Р		
10073.55												
10077.04												
10681.43												
10685.54			ΡĪ	1	11018.00				11997.9			37
10693.52												
10691.36										_		
10694.14										Р		
10707.44	10091.30		0 1	1	11119.00		re 1	337	12103.46		81 1	4
10707.44	10694.14		Si I	53	11125.28		Ge I	6	12107.4		N I	37
10726.33	10707.44			1	11130.37			77				27
10727.21		P										
10729.59 C 1												
10732.89						D						
10734.14 Ge I 6						•						
10745.9												
10749.40	10745.9		Na I	18	11227.5		N I	17		P	Si I	4
10752.99	10748.7		Na I	18	11230.91		Ti I		12434.3		K I	5
10752.99	40740 40		0.4 7	_	44054 00		10- T					••
10754.09						ъ						
10762.24		P										
10768.99			N1 I				Si I					
10780.71		P							12551.0		C I	
10782.12 P Al I 13 11298.83 Fe I 337 12582.3 N I 36 10783.09 Fe I 461 11302.22 O I 7 12602.6 C I 30 10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 2 10792.59 P T1 I 31 1130.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 13123.37 P Al I 1 4 10813.03 P I 1 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11464 S I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 5 11468.54 Si I 19 10827.09 Si I I 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830												
10783.09 Fe I 461 11302.22 0 I 7 12602.6 C I 30 10784.33 SI I 53 11308.45 SI I 76 12614.8 C I 30 10784.33 SI I 53 11308.45 SI I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 SI I 5 11329.0 N I 17 12814.56 D 2 1 10792.59 P TI I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 SI I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10796.52 SI I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10796.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P Al I 4 10813.03 P I 1 11403.89 T1 I 13123.37 P Al I 4 10813.03 P I 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58												
10784.33 Si I 53 11308.45 Si I 76 12614.8 C I 30 10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 10792.59 P Ti I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 Ti I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P Al I 4 10813.03 P I 1 11403.89 Ti I 1 13150.68 P Al I 4 10813.03 P I 1 11403.89 Ti I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10827.09 Si I 5 11 310 11453 S I 19 10827.09 Si I 5 11464 S I 19 10827.09 Si I 5 11464 S I 19 10828.04 Ti I 31 11472 S I 19 10820.31 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11493.68 Si I 90 10830.341 He I 1 11485.68 Si I 90 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I		•										
10786.78 P Al I 13 11313.8 N I 17 12679.0 Na I 21 10786.86 Si I 5 11329.0 N I 17 12814.56 D 2 2 10792.59 P T1 I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 Si I 78 11374.02 Fe I 58 12823.69 P Ca I 52 10796.52 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P Al I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P Al I 4 10813.03 P I 1 1 11403.89 T1 I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 12823.69 P Ca I 27 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11468.54 Si I 19 10821.62 Cr I 118 11468.54 Si I 19 10826.04 T1 I 31 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 Si I 83 10830.341 He I 1 1 11485.68 Si I 83 10830.341 He I 1 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 T1 I											CI	
10786.86												••
10792.59 P T1 I 31 11330.36 C I 19 12816.06 P Ca I 52 10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 10796.52 S1 I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P A1 I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P A1 I 4 10813.03 P I 1 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 1188.36 Fe I 979 11439.06 Fe I 337 10820.31 T1 I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11464 S I 19 10821.09 S1 I 5 11468.54 SI I 9 10820.09 S1 I 5 11468.54 SI I 76 10828.04 T1 I 31 11472 S I 19 10829.061 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11479.87 P Fe I 1315 10830.341 He I 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11479.87 P Fe I 1315 10830.341 He I 1 1 11502.94 S1 I 90 10831.12 Ca I 56 11539.50 T1 I		P							12679.0			21
10793.65 T1 I 310 11355.97 Fe I 858 12818.05 H 8 8 10796.52 S1 I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 T1 I 13123.37 P A1 I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P A1 I 4 10813.03 P I 1 11403.89 T1 I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10881.36 Fe I 979 11439.06 Fe I 337 10820.31 T1 I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 S1 I 5 11468.54 S1 I 76 10828.04 T1 I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 S1 I 83 10830.341 He I 1 1 11495.68 S1 I 90 10833.12 Ca I 56 11539.50 T1 I		_										
10796.52 Si I 78 11374.02 Fe I 58 12823.89 P Ca I 52 10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P AI I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 1 1403.89 Ti I 1 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 1 11485.68 Si I 90 10830.250 He I 1 1 11485.68 Si I 90 10833.12 Ca I 56 11559.50 Ti I		P								P		
10798.12 Ne I 22 11381.21 Na I 3 12827.09 P Ca I 52 10801.37 Cr I 118 11381.53 Ti I 13123.37 P AI I 4 10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 11403.89 Ti I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 90 10830.250 He I 1 11850.94 Si I 90 10833.12 Ca I 56 11559.50 Ti I										τ.		
10801.37												
10812.8 Mg I 37 11403.55 Na I 3 13150.68 P AI I 4 10813.03 P I 1 11403.89 Ti I 13164.1 C I 27 10816.91 Cr I 118 11422.30 Fe I 58 337 3364.1 C I 27 10818.36 Fe I 979 11439.06 Fe I 337 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td>								U				
10813.03			Mg I					3				
10816.91 Cr I 118 11422.30 Fe I 58 10818.36 Fe I 979 11439.06 Fe I 337 10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I	10813.03		PΙ	1				=		-		
10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I	10816.91		Cr I	118				58				
10820.31 Ti I 310 11453 S I 19 10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I	10010 00		Fo T	070	44400		r. •	00~				
10821.62 Cr I 118 11464 S I 19 10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I												
10827.09 Si I 5 11468.54 Si I 76 10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I												
10828.04 Ti I 31 11472 S I 19 10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I												
10829.081 He I 1 11479.87 P Fe I 1315 10830.250 He I 1 11485.68 Si I 83 10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I	10828.04		Ti I	31								
10830.341 He I 1 11502.94 Si I 90 10833.12 Ca I 56 11539.50 Ti I					11479.87	P	Fe I	1315				
10833.12 Ca I 56 11539.50 Ti I								83				
								90				
			Va I	00	11098.00		11 1					

			Forb	idden Line	es			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
2972?	Ne V	2 F	3298.61	Cr II	5 F	3492.5	Co VII	3 F
2972.3	0 I	2 F	3299.6	N1 VII	1 F	3493.55	Fe I Fe VI	10 F 4 F
2990.4	N1 VII	1 F	3299.8	Co VI Fe III	1 F 6 F	3494.7 3500.4	Mg VI	1 F
3000.6	N1 VII A III	3 F 2 F	3300.5 3301.6	Fe III	6 F	3501.62	Fe II	26 F
3005.1 3008.4	Ti III	5 F	3307.0	Co VI	2 F	3503.0	Mg VI	1 F
3026.4	N1 VIII	4 F	3316.1	Fe III	7 F	3503.5	Fe V N1 VII	4 F 1 F
3035. 3	N1 VIII	3 F	3318.38	Fe II Fe III	27 F 6 F	3503.8 3504.02	Fe II	26 F
3038.3 3038.4	N1 VII N1 VII	1 F 3 F	3319.2 3319.3	Na IV	1 F	3504.51	Fe II	26 F
3000.4					- 12	0505.04	Fe II	25 F
3042.44	Mn II	4 F 4 F	3322.54 3326.9	Fe III Co VI	5 F 2 F	3505.81 3509.78	Fe I	10 F
3042.61 3044.52	Mn II Mn II	4 F	3329.3	Ca XII	1 F	3511.6	Fe VI	4 F
3048.8	N1 VII	3 F	3333.8	Fe III	6 F	3511.64	Fe I	10 F
3049.05	Mn II	4 F	3334.9	Fe III	6 F 2 F	3512.9	Co VI Fe I	1 F 10 F
3063.0	N II Cr II	2 F 8 F	3336.9 3337.7	Co VI Ti III	2 F	3516.17 3522.76	Fe I	10 F
3066.29 3068.8	Al VII	1 F	3337.77	Cr II	5 F	3524.38	Fe II	26 F
3070.8	N II	2 F	3337.82	Mn II	3 F	3527.33	Fe I Fe II	10 F 25 F
3071.0	Co VII	4 F	3338.5	Co VII	3 F	3528.28	Fe 11	25 F
3074.0	Al VII	1 F	3339.14	Fe II	27 F	3532.2	F IV	2 F
3074.11	Ni II	6 F	3340.7	Fe III	6 F	3536.25	Fe II Fe II	26 F 26 F
3075.6	N1 VIII	3 F 3 F	3341.38	Mn II Co VI	3 F 1 F	3538.69 3538.8	Co VI	1 F
3081. 6 3089. 76	N1 VII Cr II	3 F	3341.5 3342.7	C1 III	2 F	3539.19	Fe II	26 F
3093.4	Al VII	1 F	3342.9	Ne III	2 F	3543.5	Fe VI Fe VI	5 F 4 F
3098.6	Co VII	4 F	3344.72 3345.9 N	Mn II Ne V	3 F 1 F	3558.1 3559.86	Ni II	5 F
3098.7	Al VII Ni VII	1 F 1 F	3345.9 N 3353.4	C1 III	2 F	3569.0	Fe VI	5 F
3106.0 3106.1	Ni VII	3 F	3355.5	Fe III	6 F	3575.6	Fe VI	4 F
				Fe III	6 F	3575.72	Fe II	25 F
3109.0	A III Ni VII	2 F 3 F	3356.6 3361.7	Co VII	3 F	3579.81	Fe II	25 F
3117.1 3118.3	C1 IV	2 F	3362.5	Fe V	4 F	3583.2	C1 II	2 F
3124.18	Fe II	12 F	3363.2	Ti III	4 F	3586.8	Co VI Fe VII	. 1 F 3 F
3159.5	Co VII	4 F	3366.2	Fe III Fe III	6 F 6 F	3587.2 3590.8	Sc VI	2 F
3162.21	Fe II Ni VII	12 F 3 F	3367.3 3367.5	Co VI	2 F	3593.3	Ti III	6 F
3165.4 3168.2	Co VII	3 F	3368.9	Fe V	4 F	3601.3	N1 XVI	1 F
3170.55	Cr II	7 F	3371.4	Fe III	5 F 4 F	3608.5 3615.5	Ti III Ti III	6 F 9 F
3175.38	Fe II	11 F	3374.6	Fe V	4.5	3013.0		
3181.05	Fe II	12 F	3376.20	Fe II	26 F	3616.00	Fe II	25 F 6 F
3185.01	Fe II	11 F	3378.4	Ti III	4 F 5 F	3622.9 3627.35	T1 III N1 II	5 F
3188.79	Cr II	7 F 3 F	3378.55 3379.7	N1 II N1 VII	1 F	3628.65	Fe II	25 F
3189.1 3190.76	Co VII Fe II	3 F 12 F	3380.95	Fe II	. 27 F	3630.3	Fe VI *	5 F
3191.2	Ni VII	1 F	3387.10	Fe II	26 F	3631.4	Mn VI Ti III	3 F 6 F
3191.3	N1 VII	3 F	3387.7	Fe XIII Co VI	2 F 2 F	3631.8 3638.4	Ti III	6 F
3202.25	Cr II Cl IV	6 F 2 F	3388.2 3396.7	N1 VII	2 F	3640.6	Ti III	6 F
3203.3 3207.4 6	Cr II	6 F	3398.5	Co VI	2 F	3643.3	N1 XIII	2 F
	m	7 F	3400.3	Fe V	4 F	3645.7	Fe VI	4 F
32 07.6 32 09.3	Ti III Co VII	4 F	3402.50	Fe II	27 F	3646.3	Ca VI	1 F 6 F
3209.94	Fe II	12 F	3403.3	Co VI	1 F	3656.3 3658.1	Ti III Co VI	1 F
3212.75	Cr II	6 F	3403.65	Fe I Fe I	10 F 10 F	3659.96	Fe II	10 F
3214.5	N1 VII Ti III	1 F 7 F	3405.39 3406.2	Fe III	5 F	3661.3	T1 III	11 F
3214.5 3214.67	Fe II	11 F	3406.6	Fe V	4 F	3664.1	Fe VI Fe II	4 F 10 F
3216.32	Cr II	6 F	3413.3 3425.8 N	Ni VII Ne V	2 F 1 F	3670.62 3672.37	Cr I	4 F
3224.54 3226.7	Fe II Ti III	11 F 7 F	3425.8 N 3428.24	Fe II	27 F	3675.0	C1 II	2 F
3220.7	•• •••			W- ***	5 F	3675.2	Fe VI	5 F
3226.99	Fe II	11 F 3 F	3428.8 3430.3	Fe III Fe V	4 F	3678.71	Cr I	4 F
3228.2 3230.17	Ni VIII Fe II	12 F	3439.29	N1 II	5 F	3680.3	N1 IX	2 F 1 F
3236.7	Fe III	7 F	3440.3	N1 VII	1 F 26 F	3686 3688?	V VIII Ca VII	1 F 2 F
3239.07	Cr II	5 F	3440.99 3444.1	Fe II Co VI	26 F 2 F	3695.0	N1 VIII	2 F
3239.7	Fe III Co VII	6 F 3 F	3445.4	Fe V	4 F	3702.7	Ca VI	1 F
3239.8 3243.2	N1 VII	1 F	3445.9	Na IV	1 F	3705.8	N1 VIII Co VI	2 F 1 F
3244.18	Fe II	11 F	3450.39	Fe II Fe II	27 F 26 F	3708.3 3709.14	Fe II	10 F
3254.24	Fe II	11 F	3452.30	10 1-			F- 11	10 F
3254.7	Fe III	6 F	3452.54	Fe I	10 F 10 F	3712.26 3721.1	Fe II S III	2 F
3256.31	Fe II	11 F	3454.34	Fe I Fe II	26 F	3726.16 N	0 11	1 F
3256.73	Fe II Co VII	11 F 3 F	3455.11 3457.3	Fe VII	3 F	3728.91 N	O II	1 F 3 F
3261.7 3263.1	Ti VII	2 F	3458.73	Fe I	10 F	3733.6 3735.2	Mn VI Fe V	3 F
3264.84	Fe II	11 F	3460.20 3461.42	Fe II Fe II	25 F 27 F	3736.17	Fe II	10 F
3272.9	Co VI Cr IX	2 F 1 F	3461.42 3463.4	Fe V	4 F	3740.2	Fe VI	5 F 3 F
3273. 5 3274. 7	Co VII	4 F	3465.7	Co VI	2 F	3744 · 1	Fe V Fe II	3 F 10 F
3275.02	Fe II	11 F	3466.4	N I	2 F	3751.66		
3277.12	Fe II	11 F	3470.0	N1 IX	2 F	3754.98	Fe I Fe V	9 F 3 F
3277.12	Co VI	1 F	3476.5	Co VI Co VI	2 F 1 F	3755.5 3759.9	Fe VII	3 F
3277.55	Fe II	11 F	3481.5 3484.01	Fe II	27 F	3761.0	Co VI	1 F
3283.1	Fe III Co VI	7 F 2 F	3484.01	Mg VI	1 F	3764.8	Fe V	3 F 3 F
3285.6 3286.2	Fe III	6 F	3486.6	Ni VII	2 F	3774.9 3776.1	Fe VI Fe VI	3 F 4 F
3287.35	Fe II	11 F	3487.23	Fe I Mg VI	10 F 1 F	3776.1	Fe V	1 F
3289.46	Fe II	11 F 11 F	3488.1 3489.07	Fe I	10 F	3782.9	Fe V	3 F
3289.89 3295.4	Fe II Co VI	2 F	3489.98	Fe II	26 F	3794.6	Fe V	3 F

88			Forb	idden Line	s			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
3796.7	s III	2 F	4055.5	Mn V	4 F	4231.56	Fe II	21 F
3798.2	Fe V Cu II	1. F 2 F	4059.3	F IV Mn V	1 F 4 F	4234.81	Fe II Fe II	37 F 21 F
3806.34 3810.6	N1 IX	2 F	4062.2 4065.7	N1 IX	2 F	4243.98 4244.81	Fe II	21 F
3812.07	Fe I	9 F	4068.62 N	s II	1 F	4249.07	Fe II	36 F
3814.58 3815.1	Fe I Fe VI	9 F 3 F	4070.7 4071.5	Fe III Fe V	4 F 1 F	4249.48 4251.99	N1 II Cr I	4 F 2 F
3820.2	Fe V	3 F	4076.22 N	s II	1 F	4262.7	Co VII	2 F
3834.73	Fe II	9 F	4077.5	Fe V	2 F	4263?	T1 VIII	1 F
3836.89	Fe II	8 F	4079.7	Fe III	4 F	4263.07	Fe I	7 F
3838.1 3838.9	Fe V Fe V	1 F 3 F	4080.00 4083.78	Fe II	24 F 23 F	4263.62 4266.34	Fe I Fe II	8 F 36 F
3846.46	Fe I	9 F	4084.32	Fe II	24 F	4268.67	Fe II	37 F
3847.78	Fe II	8 F	4086.5	Ca XIII Fe V	1 F	4269.60	Fe I Fe II	7 F
3849.1 3850.3	Fe VI Ni VIII	3 F 2 F	4093.0 4096.6	Fe III	2 F 4 F	4270.62 4274.87	Mn II	36 F 6 F
3850.8	Fe V	3 F	4097?	K VI	2 F	4275.21	Mn II	6 F
3851.63 3856.98	Fe II Fe I	9 F 9 F	4099.29 4103.1	Fe I Co VII	8 F 2 F	4276.83 4278.21	Fe II Fe I	21 F 7 F
3862.3	N1 VIII	2 F	4104.59	Fe I	8 F	4278.97	Mn II	6 F
3866.9	Mn VI	3 F	4106.1	N1 VIII	2 F	4280.04	Fe I	8 F
3868.74 N	Ne III	1 F	4107.51	Fe I	7 F	4285.90	N1 II	4 F
3873.51 3874.07	Fe·I Fe II	9 F 8 F	4108.02 4112.7	Fe I Ni IX	8 F 2 F	4287.40 4294.70	Fe II Ni II	7 F 4 F
3882.73	Pe· II	24 F	4113.42	Cr I	3 F	4297.8	N1 VIII	,1 F
3884.57	Fe I Fe I	9 F 9 F	4113.7	Mn V Cr I	4 F	4298.8	N1 VIII Cr V	2 F 3 F
3889.58 3890.9	Fe VI	3 F	4114.10 4114.48	Fe II	3 F 23 F	4302.3 4305.90	Fe II	21 F
3891.8	Fe V	3 F	4116.36	Cr I	3 F	4308.4	Mn V	4 F
3894.40	Fe II	8 F	4116.60	Ti II	20 F	4310.46	Ni II	10 F
3895.7	Fe V	1 F	4117.09	Cr I	3 F	4314.92	N1 II	10 F
3898.19 3905.62	Fe I Fe II	9 F 8 F	4120.7 4122.6	Mn V Mn X	4 °F 2 F	4319.62 4321.92	Fe II Fe II	21 F 37 F
3911.1	Fe V	3 F	4123.9	Fe V	2 F	4326.85	Ni II	3 F
3914.83	Sc III	1 F	4125?	K V	1 F	4329.43	Fe II	36 F
3917.23 3917.64	Fe I Fe I	9 F 9 F	4129.4 4129.49	Fe III Ti II	4 F 20 F	4331.7 4331.9	Ni IX Mn V	1 F 3 F
3923.5	Fe V	3 F	4130.47	Fe I	8 F	4346.85	Fe II	21 F
3929.35 3931. 44	Fe II Fe II	24 F 8 F	4130.7 4131.51	Fe III Fe JI	4 F 24 F	4347.35 4351.05	Fe II Fe II	36 F 36 F
3931.50	Fe I	9 F	4134.01	Fe II	21 F	4351.80	Fe II	36 F
3932.72	Fe II	8 F	4136.4	Fe V	1 F	4352.78	Fe II	21 F
3937.80	Fe II	8 F	4139.5	Co VII	2 F	4356.14	Fe II	22 F
3945.34 3945.70	Sc III Fe I	1 F 9 F	4140.4? 4142.5	Ti III Fe V	8 F 2 F	4358.10 4358.37	Fe II Fe II	6 F 21 F
3946.0	Co VIII	2 F	4143.17	N1 II	10 F	4359?	A XIV	1 F
3949.27	Fe II	8 F	4144.3	Fe III	4 F	4359.34	Fe II	7 P
3967.51 N 3968.23	Ne III Ti II	1 F 11 F	41 44 .8 4144.97	Ti VII Fe I	1 F 7 F	4363.21 N 4365.2	0 III Mn V	2 F 3 F
3968.27	Fe II	8 F	4146.65	Fe II	21 F	4372.43	Fe II	21 F
3968.66	Fe II	24 F	4147.21	Ti II	20 F	4375.71	Cu II	1 F
3970.1	Fe V Fe III	1 F 4 F	4147.30	N1 II	10 F	4377.37	Fe I	6 F
3976.2 3976.97	Fe II	8 F	4149.52 4153.72	Cr I Fe I	2 F 8 F	4382.75 4384.21	Fe II Fe II	6 F 36 F
3979.78	Fe II	9 F	4156.25	T1 II	20 F	4387.4	Mn IV	2 F
3979.93 3983.08	Fe II Ti II	8 F 11 F	4157.5	F II Fe II	2 F 37 F	4391.1 4396.9	Mn IV Cr V	2 F 3 F
3986.1	Fe XI	2 F	4157.89 4160.9	Ti III	10 F	4398.4	Mn V	3 F
3986.38	Fe II	8 F	4163.6?	Ti III	8 F	4402.60	Fe II	36 F
3991.47	Cr II	4 F	4165.79	Cu II	1 F	4404.4	Ni VIII	1 F
3991.84 3992.08	Fe II Cr II	8 F 4 F	4166? 4169.40	K V Ti II	1 F 20 F	4405.2 4406.39	Mn IV Fe II	2 F 36 F
3993.29	Cr II	4 F	4169.41	Ti II	20 F	4407.16	Fe II	36 F
3993.57 3993.65	Cr II Ni II	4 F 4 F	4175.2	Fe V Fe II	2 F	4407.9	Cr IX	1 F
3995.8	Fe VI	3 F	4177.21 4178.93	Fe I	21 F 7 F	4408.5 4409.86	Mn IV Fe II	2 F 22 F
3996.3	Ca V	2 F	4178.95	Fe II	23 F	4413.78	Fe II	7 F
3996.3 4003.2	F IV Fe V	1 F 1 F	4179.45 4181.3	Fe I Fe V	8 F 1 F	4414.45	Fe II Fe II	6 F 6 F
4004.07	Ti II	11 F	4185.74	Fe I	8 F	4416.27 4422.4	Co VIII	2 F
4005.07	Ti II	11 F	4187.46	Ti II	20 F	4427.7	Mn IV	2 F
4008.3 4010.91	Fe III Fe II	4 F 9 F	4190.53	Fe II	37 F	4430.79	Ti I	25 F
4011.2	Na V	9 F 1 F	4190.6 4196.3	Ni IX Mn V	2 F 4 F	4432.45 4432.8	Fe II Mn V	6 F 3 F
4015.3	Na V	1 F	4197.81	Fe II	22 F	4435.08	Fe II	36 F
4017.38 4017.5	Fe II Na V	24 F 1 F	4198.0	Co VIII Ti III	2 F	4435.1	Co VII	2 F
4020.20	Ti II	1 F 11 F	4200.6 4201.56	Fe I	10 F 8 F	4437.10 4438.92	Fe I Fe II	6 F 36 F
4021.6 4025.80	Na V Ni II	1 F 4 F	4201.74	N1 II	3 F	4439.73	Fe II	36 F
			4203.39	Fe I	7 F	4442.0	Mn IV	2 F
4026.6 4029.41	Fe V Fe II	1 F 9 F	4203.5 4204.9	Mn V Co VIII	4 F 2 F	4446.2 4452.11	Ni VIII Fe II	1 F 7 F
4031.15	Ti II	11 F	4216.4	Ni VIII	1 F	4454.37	Fe I	21 F
4032.3 4033.56	Ni VIII Ni II	2 F 4 F	4217.71 4225.9	Fe I Ni VIII	7 F 1 F	4457.95	Fe II Fe I	6 F
4033.98	Fe II	24 F	4226.8	Fe V	2 F	4458.57 4461.0	Co VIII	6 F 1 F
4041.57 4043.4	Ti II Ni IX	11 F	4229.8	Fe V	1 F	4461.0	Mn IV	2 F
4046.4	Fe III	1 F 4 F	4229.86 4230.40	Fe I Fe I	7 F 8 F	4461.54	Ni II Ni II	10 F
4052.5	N1 VII)	1 7	4231.4	N4 VII	6 F	4466.33	Ni II	10 F

			Forb	idden Line	28			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
		•		P- 111	3 F	4874.21	v II	8 F
4470.29	Fe II Ti I	6 F 19 F	4658.1 4662.7	Fe III Mn IV	1 F	4874.49	Fe II	20 F
44 72.37 44 73.46	Fe I	6 F	4664.45	Fe II	4 F	4876.0	Cr III Ti II	3 F 10 F
4474.91	Fe II	7 F	4664.97	Fe II	5 F 2 F	4877.01 4880.00	V II	8 F
4475.0	Co VII	2 F 16 F	4665.5 4665.65	Co VII Fe II	2 F 4 F	4881.0	Fe III	2 F
4477.91 4478.8	Ti I Mn IV	15 F	4667.0	Fe III	3 F	4881.87	Mn II	5 F 1 F
4480.6	Mn IV	2 F	4669.5	P II	2 F	4883.9	Fe III Fe I	1 F 4 F
4484.84	Ti I	19 F	4672.2	Sc VI	1 F	4886.56 4887.27	Cr II	15 F
4485.87	N1 II	3 F	4674.64	Fe I	21 F	2007727		
4486.35	Ti I	19 F	4677.94	Fe I	21 F	4889.49	Mn II	5 F 4 F
4488.75	Fe II	6 F	4680.05	Fe I	5. F	4889.63 4889.70	Fe II Fe II	4 r 3 F
4488.76	Ti I	19 F	4685.99	Fe I	21 F 5 F	4893.9	Fe VII	2 F
4492.3	Co VIII Fe II	2 F 6 F	4687.56 4692.6	Fe II Co VII	1 F	4894.1	Cr III	3 F
4492.64 4493.23	Fe I	5 F	4693.56	Fe I	5 F	4894.8	Cr IV	4 F 5 F
4493.3	Ni VIII	1 F	4694.59	Fe I	5 F	4896.65 4896.87	Mn II V II	8 F
4494.57	Fe I	6 F 2 F	4699.0	Fe VII Mn IV	2 F 1 F	4897.21	V II	8 F
4495.3 4496.21	Mn IV Ti I	2 F 19 F	4699.3 4701.5	Fe III	3 F	4898.49	Ti I	13 F
4400.21			5.52.5		_	4898.64	v II	8 F
4497.23	Tí I	19 F	4711.4	A IV Fe I	1 F 21 F	4899.4	Cr IV	4 F
4497.4	Mn IV Ti I	1 F 19 F	4711.86 4714?	Ne IV	1 F	4901.1	Co VII	- 1 <u>F</u>
4498.90 4500.00	Ti I	19 F	4715.21	Fe I	21 F	4905.35	Fe II	20 F 5 F
4501.36	Ti I	19 F	4716?	Ne IV	1 F	4907.6 4908.8	Cr IV Mn IV	1 F
4504.71	T1 I	19 F	4716.36	Fe II	5 F 1 F	4911.9	Cr III	3 F
4505.9	Co VII 8 I	1 F 2 F	4717? 4719.7	Ne IV Mn IV	1 F	4912.82	Ca I	1 F
4506.9 4508.52	Ti I	19 F	4720?	Ne IV	1 F	4916.18	Ca I Fe I	1 F 4 F
4509.61	Fe II	6 F	4723.39	Fe I	21 F	4916.26	re 1	
	Ti I	19 F	4728.07	Fe II	4 F	4916.81	Ti II	23 F
4509.85 4510.63	Fe I	6 F	4733.9	Fe III	3 F	4917.22	Fe II	3 F 7 F
4511.0	K IV	2 F	4734	V VIII	1 F	4923.05 4924.5	V II Fe III	2 F
4514.90	Fe II	6 F	4736.6	P II Co VII	2 F 1 F	4924.81	Cr II	15 F
4515.52	Ti I Fe I	19 F 6 F	4738.9 4740.3	A IV	1 F	4925.84	Ti II	23 F
4516.60 4517.36	Ti İ	19 F	4745.49	Fe II	20 F	4928.68	V II Cr III	8 F 3 F
4521.76	T1 I	19 F	4750.57	Fe II	5 F	4928.9 4930.5	Fe III	1 F
4523.16	N1 J Cr V	3 F 3 F	4751.75 4754.7	Fe II Fe III	4 F 3 F	4931.8	0 111	1 F
4523.6	01 1	0.2	410411			4000 4	Fe III	1 F
4526.55	T1 I	19 F	4761.9	Mn IV	1 F 3 F	4936.4 4938.6	Ca VII	1 F
4528.3	Mn IV Fe II	2 F 6 F	4769.4 4771.54	Fe III Ti II	10 F	1940.22	V II	7 F
4528.39 4528.7	Mn V	3 F	4772.07	Fe II	4 F	1942.3	Fe VII	2 F 4 F
4532.09	Fe I	6 F	4772.4	N1 VIII	1 F	1942.95 4946.76	Fe I Ti I	12 F
4533.00	Fe II	6 F	4774.74	Fe II Fe III	20 F 3 F	4947.17	Cr II	15 F
4535.7	Mn IV Ti I	1 F 19 F	4777.7 4779?	Ti VIII	1 F	4947.38	Fe II	20 F
4536.05 4544.36	Fe I	5 F	4785.21	T1 II	10 F	4950.74	Fe II	20 F 4 F
4545?	T1 VIII	1 F	4785.9	Co VIII	1 F	4956.35	Fe I	4.5
4545.20	Fe I	21 F	4789.19	Fe I	4 F	4958.23	Fe II	4 F
4548.3	Be I	1 F	4789.5	F II	1 F	4958.91 N	O III Fe I	1 F 4 F
4548.32	Fe I	21 F	4793.03	Ti II	10 F	4961.18 4965.31	V II	7 F
4548.5	Mn IV Fe II	2 F 6 F	4798.28 4799.31	Fe II Fe II	4 F 4 F	4965.6	Cr III	3 F
4550.48 4550.64	Fe I	6 F	4799.4	Cr IV	5 F	4965.78	Fe II	3 F 7 F
4551.98	Fe II	6 F	4799.5	Fe III	3 F	4968.65 4968.8	V II Fe VI	2 F
4554.49	Fe I	6 F	4806.83	T1 II Fe VI	10 F 2 F	4969.3	Cr IV	5 F
4555.01 4563.7	Fe II Mn IV	6 F 2 F	4807.5 4813.27	N1 I	3 F	4971.8	Cr IV	4 F
100011						4973.39	Fe II	20 F
4564.7	Co VIII	2 F 6 F	4813.9	Fe III Cr IV	3 F 5 F	4974.0	Fe VI	2 F
4573.23 4573.45	Fe I Ni II	10 F	4814.0 4814.55	Fe II	20 F	4976.33	V II	7 F 4 F
4573.9	Fe. III	3 F	4823.3	Mn IV	1 F	4976.5 4982.73	Cr IV Ti II	23 F
4573.93	Cr I	1 F	4823.44	Ţ1 II Sc VII	10 F 1 F	4982.73	Ti I	11 F
4575.46 4575.84	Ca I Cr I	2 F 1 F	4824? 4824.1	Fe III	3 F	4983.42	Fe I	4 F
4577.32	Cr I	1 F	4835.4	Cr III	3 F	4985.27	V II Cr II	7 F 15 F
4578.83	Fe I	5 F	4837.42	Ti II	10 F 4 F	4985.64 4985.9	Fe III	2 F
4580.80	Cr II	3 F	4838.7	Cr IV	• •			4 19
4580.88	Cr II	3 F	4842.4	Cr III.	3 F	4987? 4987.2	Sc VII Fe III	1 F 2 F
4581.18	Cr II	3 F	4843.1	Cr IV Fe I	4 F 4 F	4987.68	T1 II	19 F
4589.0 4501.4	8 I Mn IV	2 F 1 F	4843.34 4843.51	Fe II	3 F	4988.75	Ti I	12 F
4591.4 4598.07	Fe II	4 F	4847.01	Ti I	13 F	4989.4 4992.68	Fe VII Cr II	2 F 2 F
4603.66	Fe I	5 F	4847.58	Fe I	4 F	5002.01	Fe I	4 F
4604.48	Fe II	5 F 3 F	4850.9 4851.6	Fe VI' Co VII	2 F 1 F	5002.63	Ti II	19 F
4607.0 4610?	Fe III A V	3 F 2 F	4851.6 4852.73	Fe II	20 F	5002.88	V II Fe II	7 F 20 F
4618.97	Fe I	21 F	4857.50	V II	8 F	5005.52	re II	
4601 F	СІ	2 F	4858.4	Co VII	1 F	5006.63	Ti II	19 F
4621.5 4622.19	Fe I	21 F	4859.87	Cr II	15 F	5006.65 5006.84 N	Fe II O III	4 F 1 F
4627.3	CI	2 F	4861.41	Ti II	23 F 10 F	5011.3	Fe III	1 F
4630.06	Fe I Fe I	21 F 5 F	4862.80 4863.9	T1 II Mn IV	10 F 1 F	5014.37	Fe I	4 F
4631.93 4632.27	Fe II	5 F	4869.3	F II	1 F	5020.24	Fe II Ti II	20 F 19 F
4639.68	Fe II	4 F	4870.8	Cr III	3 F	5021.69 5025.53	Ti I	11 F
4640.05	Fa I	5 F	4871.43	V II	8 F	5027.34	N1 I	3 F

FINDING LIST

			F	INDING LIST	ı			
90			For	bidden Lin	es			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
5032.7	Fe III	2 F	5227.25	V 11	6 F	5428.6	Fe VI	1 F
5034.05	Cr II	15 F	5228.44	Cr II	13 F	5431.39	N1 II	9 F
5035.50 5036.55	Fe II Fe II	4 F 3 F	5229.06 5235.07	Zr II V II	7 F 6 F	5432.1	Cr III Fe II	2 F
5039.10	Fe II	19 F	5236.6	Fe VI	1 F	5433.15 5433.69	Zr III	18 F 1 F
5043.30	Ti I	12 F	5237.7	V IV	3 F	5434.30	Zr II	6 F
5043.53	Fe II	20 F	5238.35	Cr II	13 F	5435.6	Cr III	2 F
5045? 5047.91	Sc VII Ti II	1 F 19 F	5239.47 5242.00	Cr I Cr II	15 F 13 F	5439.72 5439.9	Fe I Fe III	3 F 1 F
5049.29	Fe II	20 F	5245.25	V II	6 F	5440.45	Fe II	16 F
5049.73	Cr II	2 F 1 F	5247.84	Cr II	13 F	5442.82	Cr II	12 F
5056.5 5060.3	Ni IX Fe III	1 F	5248.64 5254.49	Cr II V II	14 F 6 F	5446.0 5449.43	V IV Cr II	3 F 12 F
5063.7	Fe III	2 F	5255.97	Cr II	13 F	5453.4	Cr III	2 F
5065.43	Ti II	19 F	5261.61	Fe II	19 F	5460.0	Ca VI	2 F
5071.6 5072.40	Cr IV Fe II	4 F 19 F	5268.4 5268.82	Co VIII Fe I	1 F 19 F	5466.67	T1 I Cr II	9 F 12 F
5074.90	Fe I	19 F	5268.88	Fe II	18 F	5470.51 5471.3	Cr III	2 F
5076.3	Co VII	1 F	5269.16	N1 II	14 F	5472.09	V II	5 F
5076.57	Fe II	20 F	5270.19	Cr II	13 F	5473.37	Mn II	9 F
5080.84 5082.54	Ti II Cr I	19 F 16 F	5270.4 5273.38	Fe III Fe II	1 F 18 F	5473.94 5475.59	Mn II V II	9 F 5 F
5083.72	Fe ĮI	35 F	5274.27	N1 II	9 F	5477.25	Fe II	34 F
5084.8	Fe III	1 F	5275.83	N1 II	14 F	5477.40	Fe I	20 F
5086.52 5092.60	Fe II Cr II	3 F 2 F	5276.1 5278.39	Fe VII Fe II	2 F 35 F	5478.76	V II Fe I	5 F
5092.97	Cr I	8 F	5279.2	Fe VI	35 F 1 F	5481.17 5482.91	V II	20 F 5 F
5098.44	Cr I	16 F	5279.80	Cr II	13 F	5483.3	Cr III	2 F
5100.4 5104.5	Fe VI Ti VII	1 F 1 F	5280.25 5281.46	Fe II N1 II	16 F 9 F	5485.7 5493.10	Fe VI V II	1 F 20 F
	Cr I	8 F						
5105.16 5107.95	Fe II	8 F 18 F	5282.88 5283.11	V II Fe II	6 F 35 F	5494.80 5495.42	Mn II Zr II	9 F 7 F
5108.53	Cr I	8 F	5285.21	Cr II	13 F	5495.82	Fe II	17 F
5108.57	Cr II	14 F	5285.34	Cr I	15 F	5496.84	V II .	5 F
5111.63 5116.03 C	Fe II	19 F	5286.31	Ti I	10 F	5504.22	V II	5 F
5116.3	N1 XIII N1 XIII	1 F 1 F	5288.83 5289.66	Cr II Fe I	12 F 19 F	5505.1 5505.25	Cr III Cr II	2 F 12 F
5118.07	Zr III	1 F	5290.75	Fe I	20 F	5509.51	Ti I	7 F
5119.47	Cr II	2 F	5295.70	Fe II	17 F	5509.63	A II	5 F
5122.88	Zr II	7 F	5296.3	Cr IV	3 F	5517.2	C1 III	1 F
5124.41 5126.25	Cr I Cr I	16 F 16 F	5296.84 5299.42	Fe II Cr II	19 F 13 F	5517.24	Zr III	1 F
5127.09	Cr 11	14 F	5302.86 C	Fe XIV	15 F	5518.00 5520.18	T1 I Zr II	9 F 7 F
5134.16	Cr I	15 F	5303.37	Zr III	1 F	5523.28	Fe II	33 F
5136.3	Co VII	1 F	5303.6	Fe XIV	1 F	5523.3	Cr III	2 F
5144.39 5145.5	Zr II Cr IV	7 F 3 F	5303.99	Fe I	3 F	5527.33	Fe II	17 F
5148.55	Cr I	15 F	5304.06 5308.68	Fe I Cr II	20 F 12 F	5527.61 5527.92	Fe II V II	34 F 5 F
5146.8	Fe VI	2 F	5308.9	Ca V	1 F	5528.87	Zr II	6 F
5147.16	Fe I	19 F	5310.36	Ti I	10 F	5530.11	Mn II	9 F
5150.07 5151.9	Cr I	15 F	5312.52	Ti I	10 F	5530.69	Mn II	9 F
5154.28	Fe III Cr I	1 F 16 F	5313.88 5316.97	Cr II Zr III	13 F 1 F	5532.41	Fe I A X	20 F
5157.59	Cr II	14 F	5322.2	C1 IV	3 F	5534.6 5535.09	Ti I	1 F 7 F
5158.00	Fe II	18 F	5323.64	Cr II	13 F	5536.98	Mn II	9 F
5158.3 5158.81	Fe VII Fe II	2 F	5326.5	V IV	3 F	5537.7	C1 III	1 F
5162.53	Cr I	19 F 15 F	5331.46 5332.4	Zr II P I	7 F 2 F	5539.6	Sc VI	1 F
5163.94	Fe II	35 F	5333.65	Fe II	19 F	5539.74 5541.7	Zr III Mn VI	1 F 2 F
5165.98	Cr I	15 F	5334.30	Ti I	10 F	5542.54	Ti I	8 F
5170.84 5174.95	Fe I Cr II	3 F	5336.4	Fe VI	1 F	5543.9	Mn V	2 F
5177.0	Fe VI	14 F 2 F	5339.65 5339.7	Cr II P I	13 F 2 F	5545.88	Fe II	33 F
5180.78	Fe I	20 F	5341.39	Cr II	12 F	5546.59 5549.49	Fe II V II	2 F 5 F
5181.21	Cr I	15 F	5347.67	Fe II	18 F	5550.25	v II	14 F
5181.97	Fe II	18 F	5352.29	Fe I	20 F	5550.3	Cr III	2 F
5182.71 5184.80	Cr I Fe II	16 F 19 F	5354.15 5354.76	Cr II	13 F	5551.31	Fe II	39 F
5185	Co XI	1 F	5355.9	Zr II Fe III	7 F 1 F	5552.93 5554.68	Cr II V II	12 F 20 F
5191.4 N	A III	3 F	5356.32	Fe I	3 F	5555.33	Ti I	7 F
5193.13	Fe I	19 F	5358.79	Ti I	10 F	5556.31	Fe II	18 F
5193.82 5194.19	Cr I Fe I	15 F 20 F	5362.06	Fe II	17 F	5557.14	Cr II	12 F
5197.31	Cr I	20 F 15 F	5363.91 5368.91	Fe I Cr II	20 F	5561.21	Mn II	9 F
5198.5	N I	1 F	5370.5	Fe VI	13 F 2 F	5561.66 5562.94	Ti I Ti I	7 F 8 F
5199.18	Fe II	35 F	5374.6	Mn VI	2 F	5565.68	Fe I	3 F
5200.7 5206.02	N I C r II	1 F	5376.47	Fe II	19 F	5567.08	Mn II	9 F
5206.84	Zr II	14 F 7 F	5382.26 5386.27	Fe I	3 F	5572.6	Cr III	2 F
5209.1	Cr IV	3 F	5394.78	Cr II Mn II	12 F 9 F	5573.84 5574.04	V II Mn II	14 F 9 F
5212.95	Fe I	19 F	5396.71	Ti I	10 F	5575.69	V II	14 F
5216.07 5219.02	V II	6 F	5404.80	Fe I	20 F	5577.350 A	0 I	3 F
5219.02 5220.06	Cr II Fe II	13 F 19 F	5412.0 5412.64	Fe III	1 F	5579.06	Cr II	12 F
5220.56	Fe I	3 F	5412.64 5412.97	Fe II Fe I	17 F 20 F	5579.65 5579.73	V II	14 F
5224?	Sc VII	1 F	5413.34	Fe II	16 F	5579.73 5580.82	Mn II Fe II	9 F 39 F
5224.15 5224.30	Fe I	3 F	5415.04	Mn II	9 F	5582.01	Fe II	39 F 2 F
A884.90	Cr II	13 F	5418.0	Cr III	2 F	5594 . 81	T4 T	0 P

			For	olaaen Line	S			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
	D- **	00 F	E020 40	Eu II	2 F	6100.26	Fe I	30 F
55 88.15	Fe II	39 F	5832.40	Fe I	2 F	6101.1	K IV	1 F
5591.3	Cr III	2 F 2 F	5834.64	Cr I	14 F	6104.67	Cr I	12 F
5591.9	Mn V	2 F	5836.21 5843.6	Cr III	1 F	6104.8	V III	3 F
5595.31	Ti I Cr III	1 F	5843.90	Fe II	34 F	6106.17	Cr I	12 F
5600.1	Fe II	33 F	5846.3	Xe III	2 F	6111.14	Cr I	12 F
5600.66 5601.6	Mn VI	2 F	5852.48	Cr I	14 F	6112.75	Cr I	12 F
5603.2	K VI	1 F	5852.8	Co II	2 F	6113.40	Fe I	17 F
5605.36	V II	14 F	5855.37	Zr II	6 F	6113.97	Fe I	30 F
5609.27	Fe I	31 F	5863.1	Mn V	2 F	6114.52	Fe I	18 F
5611.94	v II	14 F	5867.17	Fe I	2 F	6114.66	Cr I	12 F
5613.81	V II	14 F	5867.87	Ti I	6 F	6114.85	V II	19 F
5614.62	Ti I	8 F	5868.3	Mn V	1 F	6117.60	Cr I Ti II	11 F 22 F
5615.19	Cr II	12 F	5872.77	Fe I Cr I	2 F 14 F	6124.57 6140.20	Cr I	11 F
5615.8	Ca VII	1 F 1 F	5876.23 5876.92	Cr I	14 F	6147.13	T1 II	22 F
5618.9	Cr III Mn VI	2 F	5879.32	Bu II	2 F	6151.82	T1 II	26 F
5625.0 5625.4	Co II	2 F	5884.9	Cr III	1 F	6152.9	C1 II	3 F
5629.54	Ti I	7 F	5889.0	Mn V	2 F	6159.3	Mn V	1 F
5630.85	Ti I	8 F	5893.89	Fe I	17 F	6159.3	V III	3 F
5631.0	Ca VI	2 F	5898.30	Fe I	2 F	6160.1	V III	3 F
5631.6	Fe VI	1 F	5900.64	Zr II	12 F	6164.64	T1 II	26 F
5634.78	VII	20 F	5901.26	Fe II	34 F	6165.35	Zr II	12 F
5639.55	Fe I	2 F	5902.64	Fe I	18 F	6167.7	Mn V	1 F
5643.02	Zr III	1 F	5907.1	Mn VI	2 F	6167.84 6160.37	Cr I Cr I	12 F 12 F
5643.44	Fe II	39 F	5913.34	Cr I Cr I	13 F 14 F	6169.37 6172.91	T1 II	12 F 28 F
5644.00	Fe II Ca XV	18 F 1 F	5926.18 5929.20	Zr II	14 F 12 F	6174.44	Cr I	12 F
5648? 564 9.67	Ca XV Fe II	1 F 39 F	5929.31	Eu II	2 F	6176.08	Cr I	12 F
5650.39	Fe II	2 F	5931.19	Fe I	17 F	6177.21	Fe I	17 F
	Fe II	39 F	5932.88	Zr II	6 F	6178.35	Fe I	18 F
5650.94 5654.85	Fe II Fe II	39 F 17 F	5932.88 5933.4	Mn VI	1 F	6180.9	Co II	2 F
5656.39	Fe I	3 F	5934.41	Fe I	2 F	6184.51	Cr I	11 F
5659.83	Fe II	33 F	5934.73	Cr I	14 F	6188.55	Fe II	44 F
5662.62	V II	14 F	5936.99	Fe I	2 F	6193.7	Zr III	3 F
5664.02	Ti I	8 F	5943.2	Co II	2 F	6196.53	Zr II Fe I	12 F 17 F
5669.58	Zr II	6 F	5945.1	Cr III Fe I	1 F 30 F	6196.75 6215.6	A III	3 F
5675.73	Zr II	6 F 1 F	5946.87 5949.99	Cr I	13 F	6220.7	Mn V	1 F
5678.0 5679.3	Fe VI Mn VI	1 F	5951.24	Cr I	14 F	6223.4	K V	2 F
			7	Fe I	30 F	6226.64	Fe I	17 F
5683.56	Fe II Cr III	33 F 1 F	5952.21 5955.61	Fe I	30 F 18 F	6227.19	Ti II	22 F
5689.3 5694.8	Mn V	2 F	5968.87	Fe I	2 F	6229.2	K VI	1 F
5696.36	Fe I	2 F	5971.33	Fe I	17 F	6230.4	Cr V	2 F
5699.57	T1 I	6 F	5971.6	Co II	2 F	6231.27	Fe I	29 F
5703.3	Mn V	2 F	5972.59	Cr I	13 F	6233.9	V III Cr I	3 F 11 F
5703.64	N1 II	14 F	5975.39	Cr I	13 F 7 F	6249.35 6249.75	Cr I	11 F 12 F
5708.96	Fe I	2 F 14 F	5982.55 5983.99	Cr I Cr I	7 F	6250.51	Ti II	22 F
5711.46 5712.7	N1 II Cr III	1 F	5988.76	Cr I	7 F	6251.33	Cr I	12 F
			F000 04	Cr I	7 F	6258.22	Cr I	12 F
5713.35	Fe II	2 F 3 F	5990.31 5991.0	Mn V	1 F	6277.3	Mn VI	1 F
5715.94	Fe I Fe VII	3 F 1 F	5992.15	Cr I	7 F	6280.22	Cr I	6 F
5720.9 5721.2	F III	1 F	5999.99	Fe I	2 F	6300.23 L	0 I	1 F
5721.35	Fe II	33 F	6007.34	N1 II	8 F	6310.2	8 111	3 F
5724.62	Fe II	39 F	6010.53	Cr I	14 F	6314.58	Zr II	17 F
5725.92	Fe II	39 F	6013.28	Ti II	9 F	6316.6	K V Zr II	2 F 11 F
5733.0	F 11	1 F	6015.26	Zr II Fe I	12 F 18 F	6317.64 6328.46	Ti II	31 F
5737.59 5741.11	Ti I Fe II	6 F 33 F	6016.15 6018.54	Fe I	17 F	6333.46	Cr I	11 F
					10 F	6339.70	Fe II	15 F
5742.07 5745.49	Fe I Fe I	17 F 3 F	6019.63 6026.18	Fe I Cr I	18 F 13 F	6342.98	Cr I	11 F
5745.49 5745.70	Fe II	17 F	6029.7	Mn V	1 F	6344.56	Žr II	12 F
5746.96	Fe II	34 F	6040.31	V II	19 F	6346.2	Mn V	1 F
5746.99	Fe I	30 F	6040 - 94	Cr I	12 F	6349.5	K V	2 F
5750.95	Fe II	2 F	6044.94	Zr II	12 F	6360.66 6363.88 I	Ti II O I	18 F 1 F
5753.83	Fe II	33 F	6045.80	Cr I Ti II	12 F 9 F	6363.88 L 6365.52	N1 II	8 F
5754.8 N	N II Ti I	3 F 6 F	6047.46 6049.37	Cr I	13 F	6367.28	Cr I	11 F
5755.39 5755.60	Ti I	6 F	6053.14	T1 II	9 F	6372.11	V II	13 F
		0 F	EURU 04	Cr I	6 F	6372.9	Fe X	1 F
5766.4 5773 51	Ca VI Zr III	2 F 1 F	6059.21 6061.50	Cr I	12 F	6374.51 C	Fe X	1 F
5773.51 5775.05	Zr III Fe I	2 F	6062.98	Cr I	12 F	6376.6	Cr V	2 F
5778.35	Fe II	33 F	6065.2	V III	4 F	6377.59	Zr II	12 F
5778.97	Zr II	6 F	6065.34	Ti II	26 F	6377.83	T1 II V II	31 F 13 F
5780.29	Cr I	14 F	6067.88	Cr I Mn V	12 F 2 F	6381.13 6382.03	V 11	13 F 13 F
5783.4	Mn VI	2 F 1 F	6069.2 6071.35	Mn V Cr I	2 F 12 F	6391.51	T1 II	18 F
5785.4 5794.16	Cr III Ti I	1 F 6 F	6077.80	Ti II	26 F	6393.72	Fe I	29 F
5794.10 5795.58	Cr I	14 F	6083.2	Co II	2 F	6396.2	Mn V	1 F
	P., 11	2 F	6085.5	Fe VII	1 F	6396.30	Fe II	44 F
5796.28 5799.53	Eu II Fe I	2 F 31 F	6085.9	Ca V	1 F	6404.46	N1 I	2 F
5804.45	Fe I	2 F	6087.77	T1 II	9 F	6405.27	Ti II	18 F
5809.43	Fe II	33 F	6088.5	Mn V	1 F	6405.67	V II	13 F 1 F
5812.53	T1 I	6 F	6093.32	Fe I	17 F 30 F	6408.5 6409.46	Zr VI Ti II	31 F
5815.53	Fe I	17 F	6094.65	Fe I Ti II	30 F	6414.93	Cr I	11 F
5 815.79	Cr I	14 F 14 F	6095.96 6096.3	Fe III	10 F	6415,69	V II	13 F
5819.54 5809.9	Cr I Cr III	14 F	6098.1	V 111	4 F	6418.86	Zr II	17 F

### ### ### ### ### ### ### ### ### ##	92			For	bidden Lir	nes			
March Marc	I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No
Section C. V. 2 F	6422.66	T1 II	31 F	6729.85			7093.98		
### STATE OF THE PART OF THE P									
984.64									
Seding Till 10 P		Ti II	18 F		8 11	2 F	7110.54	Zr II	4 F
9447-70									
Section 6. Fill 15 P									
March Marc	6440.40	Fe II	15 F	6746.2	Cr IV	2 F	7119.56		17 F
Section Sect									
687-38 H. II 8 F 6795-44 Z. II 8 F 7131-13 Fe II 687-60 687-38 Fe II 15 F 7151-60 Fe II 16 F									
## 6479.56									
Main Main									
644.72									
## 448-0.1	6484.72			6791.61			7134.08		
0800.40 Part 11 13 Part 15 P									
0007-00 PP II 30 F									
001.00 Cr 1 1 F									
See See									
Section Sect									
Section Sect									
808.00 While September S									
6646.47 Y N II 1 6836.64 P I 15 7171.6 C IV 14 F 1171.6 C IV 14 F 1717.6 C IV 15 F									
\$648.87	6548.1 N			6836.94			7171.6		
0000.00									
Section									
Company									
Sees. S									
Sees.86									
6886.7 Cr V 2 F 6906.1 Cr IV 1 F 7197.8e 2r II 3 F 688.43 Ti II 8 F 6911.05 Hi II 7 F 7204.82 Zr II 4 F 689.10 Mn II 8 F 6911.05 Hi II 7 F 7204.82 Zr II 4 F 680.10 Mn II 8 F 6913.4 A II 1 F 7214.60 F III 30 F 680.10 Or IV 2 F 693.83 2 II 5 F 7200.0 F III 10 F 680.80 7 II 6 F 693.93 7 III 6 F 693.63 8 III 7 F 7204.00 7 III 1 F 680.80 7 II 6 F 693.63 8 II 7 F 7204.00 7 III 4 F 6003.80 7 II 1 F 6044.61 P F II 43 F 7204.00 1 II 4 F 6003.80 7 II 1 F 6044.61 P F III 1 F F 7204.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
6880.74 SI	6586.7		2 F	6906.1					
6890.88 T1 II 37 F 6932.4 Cr V 1 F 7230.15 Zr II 3 F 6932.6 Cr V 2 F 693.63 Cr V 2 F 693.63 Cr IV 2 F 693.63 Cr IV 3 F 693.63 Cr II 5 F 7230.4 Cr IV 1 F 694.91 T1 5 F 6941.03 M1 I 2 F 7230.4 Cr IV 1 F 694.91 T1 5 F 6941.03 M1 I 2 F 7230.4 Cr IV 1 F 694.91 F II 31 F 7230.4 Cr IV 1 F 694.91 F II 31 F 7230.60 A IV 2 F 6960.97 Pe VII 1 F 6944.91 Pe II 43 F 7236.00 A IV 2 F 6960.30 M1 II 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 43 F 7236.00 M1 I 3 F 6944.91 Pe II 40 F 7236.00 M1 I 3 F 6944.91 Pe II 40 F 7236.00 M1 II 3 F 6944.91 Pe II 40 F 7236.00 M1 II 3 F 6944.91 Pe II 40 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 6942.07 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 6942.07 Pe II 3 F 7236.10 Pe II 3 F 7236.10 Pe II 3 F 6942.07 Pe II 3 F 7236.3 Pe II 3 F 6942.07 Pe II 3 F 7236.30 Pe II 3 F 7236.10 Pe II 3									
8091.0 Cr IV	6590.10	Mn II	8 F	6919	A XI	1 F	7214.69	Fe II	30 F
8992.93									
Sept. Sept									
6699.7 Fe VII 1 F 6944.91 Fe II 40 F 7239.39 Ti I 4 F 6904.60 Mn II 8 F 6904.60 Fe I 27 F 7243.99 Mi I 2 F 6004.60 Mi I 5 F 6906.25 Mi II 8 F 7280.78 Y II 4 F 6004.00 Fe III 10 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.00 Fe III 10 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.01 Ti II 34 F 6903.02 Ti II 17 F 7260.8 Cr V 1 F 6014.01 Ti II 7 F 7260.8 Cr V 1 F 6014.01 Ti II 7 F 7277.06 Cr II 7 F 6014.01 Ti II 7 F 7277.06 Ti II 7 F 6014.01 Ti II 7 F 7277.06 Ti II 7 F 6014.01 Ti II 7 F 7277.06 Cr II 7 F 7277.06 Ti II 7 F 7277.06									
6804.30 Ni I 5 F 6905.25 Ni II 8 F 7250.78 Y II 4 F 6814.0 Fe III 10 F 6963.02 Ti II 10 F 7252.8 Cr V 1 F 6816.12 Ti II 34 F 6963.02 Fe II 20 F 7256.16 Ni II 7 F 6816.18 Fe I 16 F 6963.32 Fe II 31 F 7263.33 A IV 2 F 6817.10 Mi II 8 F 6972.07 Fe II 15 F 7264.43 2 F II 2 F 6817.12 Ti II 17 F 6973.07 Mi II 2 F 7264.43 2 F II 10 F 6817.12 Ti II 17 F 6984.07 2 F II 11 F F 7269.00 11 II 1 F 6818.20 Pe II 31 F 6991.8 7 III 1 F 7269.3 2 F II 1 F 6821.20 Pe II 31 F 6991.72 2 F III 1 F F 7271.40 2 F II 1 F F	6599.7	Fe VII		6944.91			7238.29		
8616.12			_						
6616.12 Ti II 34 F 6963.86 Zr II 20 F 7266.16 Ni II 7 F 6617.06 Mn II 8 F 6963.32 Fe II 31 F 7263.3 A IV 2 F 6617.12 Ti I 5 F 6978.67 Mn II 2 F 7264.43 2 r II 23 F 6617.17 Zr II 1 F 698.67 Mn II 2 F 7264.51 Cr I 10 F 6622.05 Zr II 1 F 6984.07 Zr II 5 F 7273.06 Cr I 10 F 6622.05 Ti II 37 F 6991.75 Zr II 5 F 7273.06 Cr I 10 F 6831.20 Fe II 31 F 6991.8 Ti III 3 F 7274.6 Co II 3 F 6843.27 7 II 5 F 7002.02 Mi I 2 F 7281.67 Fe II 30 F 6842.66 Mn II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F									
6617.06 Mm II 8 F 6672.07 Fe I 15 F 7264.43 Zr II 23 F 6617.12 Ti I 5 F 678.57 Mn II 2 F 7264.51 Cr I 10 F 6617.17 Zr II 17 F 6698.04 Ni I 5 F 7269.33 Cr I 10 F 6622.05 Zr II 11 F 6898.04 Ni I 5 F 7273.05 Cr I 10 F 6622.05 Zr II 11 F 6898.04 Ni I 5 F 7273.03 Cr I 10 F 6625.75 Ti II 37 F 6891.75 Zr II 5 F 7273.03 Zr II 4 F 6631.20 Fe II 31 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6631.20 Fe II 31 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6632.48 Fe I 15 F 6991.8 Ti III 37 F 7274.6 Co II 3 F 6640.0 Cr IV 2 F 7002.02 Ni I 2 F 7287.25 Ti I 4 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.60 Mn II 8 F 7005.23 Fe I 16 F 7290.42 Fe I 14 F 6642.60 Mn II 8 F 7005.84 Cr I 5 F 7290.42 Fe I 14 F 6644.05 Ti II 8 F 7008.84 Cr I 5 F 7290.42 Fe I 12 F 7290.42 Fe I 14 F 6646.01 Ti II 8 F 7008.84 Cr I 5 F 7290.88 Mi I 7 F 6650.61 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.8 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 28 F 6650.7 Mn II 8 F 7011.33 Cr I 5 F 7316.44 Fe I 28 F 6660.8 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7316.44 Fe I 28 F 6660.8 Zr II 15 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6668.15 Mn II 8 F 7007.94 Fe II 31 F 7321.25 Fe I 28 F 6668.63 Mn II 8 F 7007.99 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6671.90 Fe II 31 F 7321.25 Fe I 28 F 6692.45 Ti I 5 F 7006.07 Zr II 17 F 7322.0 A IV 2 F 6692.45 Ti I 5 F 7006.07 Zr II 18 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr II 1 F 7006.07 Zr II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6616.12	Ti II	34. F	6963.85	Zr II	20 F	7256.16	N1 II	7 F
6617.12									
6617.17 Zr II 17 F 6984.07 Zr II 11 F 7266.33 Cr I 10 F 6622.05 Zr II 11 F 6899.04 N1 I 5 F 7273.06 Cr I 10 F 6625.75 T1 II 37 F 6991.75 Zr II 5 F 7273.33 Zr II 4 F 6831.20 Fe II 31 F 6991.8 T1 III 3 F 7274.6 Co II 3 F 6831.43 Fe I 15 F 6991.9 T1 III 3 F 7274.6 Co II 3 F 6831.43 Fe I 15 F 6991.9 T1 III 17 F 7281.67 Fe II 30 F 6833.48 Fe I 15 F 6992.99 T1 III 17 F 7281.67 Fe II 30 F 6840.0 Cr IV 2 F 7002.02 N1 I 2 F 7287.25 T1 I 4 F 6842.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6842.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6842.57 T1 II 5 F 7003.95 T1 III 17 F 7290.42 Fe I 14 F 6842.57 T1 II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6842.57 T1 II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 22 F 6842.50 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 22 F 6851.20 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 22 F 6851.20 T1 II 8 F 7008.89 Fe I 15 F 7307.82 N1 II 7 F 6851.20 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6851.20 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6850.66 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7316.40 Fe I 28 F 6860.66 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6866.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6871.31 T1 II 3 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 7324.89 Ca II 1 F 6871.90 Fe II 31 F 7033.0 T1 II 37 F 7033.0 T1 II 37 F 7323.89 Ca II 1 F 6871.90 Fe II 31 F 7033.0 Cr I F 7323.89 Ca II 1 F 6871.90 Fe II 31 F 7051.04 T1 II 7 F 7322.50 T1 I 4 F 6892.18 Fe I 16 F 7051.7 Cr IV 1 F 7322.90 O II 2 F 6893.00 Fe II 31 F 7053.00 Cr IV 1 F 7323.90 Cr									
6635.76					Zr II				
6631.20 Fe II 31 F 6991.8 T1 III 3 F 7274.6 Co II 3 F 6631.48 Fe I 16 F 6999.99 T1 II 17 F 7291.67 Fe II 30 F 6640.0 Cr IV 2 F 7002.02 M1 I 2 F 7287.25 T1 I 4 F 6642.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6642.57 T1 I 5 F 7003.95 T1 II 17 F 7290.42 Fe I 14 F 6642.66 Mm II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6646.31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6646.31 Zr II 18 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.06 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 23 F 6650.61 T1 II 8 F 7008.89 Fe I 15 F 7307.76 Zr II 23 F 6650.126 T1 II 8 F 7008.89 Fe I 15 F 7307.82 M1 II 7 F 6651.26 T1 II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6668.16 M1 II 2 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.31 T1 II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6071.90 Fe II 31 F 7323.88 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7323.80 Ca II 1 F 6062.40 T1 II 5 F 7064.37 M1 II 8 F 7332.0 A IV 2 F 6669.00 Zr II 16 F 7061.7 Cr IV 1 F 7323.80 Ca II 1 F 6071.90 Fe II 31 F 7332.0 T1 4 F 6062.40 T1 II 5 F 7064.37 M1 II 8 F 7330.7 O III 2 F 6669.00 Zr II 16 F 7064.37 M1 II 8 F 7332.0 A IV 2 F 6669.00 Zr II 16 F 7064.70 M1 II 8 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 Cr IV 1 F 7332.0 F F II 3 F 7066.07 Zr II 15 F 7086.07 Zr II 15 F 7333.0 Cr IV 1 F 733									
6633.48 Fe I 15 F 6999.99 Ti II 17 F 7281.67 Fe II 30 F 6640.0 Cr IV 2 F 7002.02 Ni I 2 F 7287.25 Ti I 4 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.57 Ti I 18 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6447.05 Ti II 8 F 7006.3 A V 1 F 7294.30 V II 4 F 6447.05 Ti II 8 F 7006.84 Cr I 5 F 7307.76 Zr II 23 F 6651.26 Ti II 8 F 7008.88 Fe I 15 F 7307.76 Zr II 23 F 6651.26 Ti II 8 F 7008.89 Fe I 15 F 7307.82 NN II 7 F 6651.26 Ti II 8 F 7001.38 Cr I 5 F 7307.82 NN II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.80 V II 26 F 6650.68 Zr II 16 F 7013.83 Cr I 5 F 7315.44 Fe I 28 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7316.6 O II 2 F 6661.6 Ni II 2 F 7017.94 Fe II 31 F 7319.4 O II 2 F 6668.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7321.87 V II 12 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7322.89 Ca II 1 F 6682.46 Ti I 5 F 7056.04 Ti II 7 F 7322.99 O II 2 F 6682.46 Ti I 5 F 7056.07 Nn II 8 F 7056.07 Ti II 17 F 7322.90 O II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6682.46 Ti I 5 F 7056.07 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 2 F 6683.00 Fe II 3 F 7056.02 Ti II 17 F 7322.00 V II 12 F 6683.00 Fe II 3 F 7056.02 Ti II 18 F 7300.77 V II 12 F 6683.00 Fe II 18 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.6 NI XV 1 F 7066.07 Ti II 18 F 7300.00 V II 12 F 6700.0 NI XV 1 F 7066.07 Ti II 15 F 7300.00 V II 12 F 6700.0 NI XV 1 F 7066.07 Ti II 16 F 7300.0									
6642.67 Fi I '5 F 7003.95 Ti II 17 F 7290.42 Fe I 14 F 6642.66 Mn II 8 F 7006.23 Fe I 15 F 7291.46 Ca II 1 F 646.31 2 F II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 666.31 1 F 7007.62 N II 4 F 6661.36 7 II II 8 F 7008.99 Fe I 15 F 7307.62 N II II 7 F 6651.26 7 II II 8 F 7008.99 Fe I 15 F 7307.62 N II II 7 F 6651.26 7 II II 8 F 7008.99 Fe I 15 F 7307.02 N II II 7 F 6651.26 7 II II 3 F 7013.33 Cr I 5 F 7316.44 Fe I 2 F 6660.43 Zr III 16 F 7016.90 Cr I 5 F 7317.43 Fe I 2 F 6661.7 2 III II 3 F 7016.90 Cr I 5 F 7318.6 0 II 2 F 6668.7									
6642.66 Mn II 8 F 7005.23 Fe I 15 F 7291.46 Ca II 1 F 6646.31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.05 Ti II 8 F 7006.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.64 Cr I 5 F 7307.76 Zr II 23 F 6651.26 Ti II 3 F 7008.89 Fe I 15 F 7307.82 Ni II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6656.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 O II 2 F 6661.6 Ni II 2 F 7017.94 Fe II 31 F 7319.4 O II 2 F 6668.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6671.91 Ti II 5 F 7021.0 Cr IV 1 F 7321.87 V II 12 F 6671.91 Ti II 5 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7329.9 O II 2 F 6682.18 Fe I 16 F 7051.04 Ti II 17 F 7322.99 O II 2 F 6682.18 Fe I 16 F 7051.04 Ti II 17 F 7329.9 O II 2 F 6682.18 Fe I 16 F 7054.37 Ni II 8 F 7330.7 O II 2 F 6682.12 Ti I 5 F 7055.06 Ti I 7 F 7332.0 A IV 2 F 6682.12 Ti I 5 F 7055.06 Ti II 7 F 7332.0 A IV 2 F 6682.12 Ti I 5 F 7064.37 Ni II 8 F 7330.7 O II 2 F 6682.12 Ti I 5 F 7065.66 Ti II 17 F 7332.0 A IV 2 F 6686.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6689.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6680.02 Fe II 32 F 7065.66 Ti II 17 F 7332.0 C V II 4 F 6700.16 Ni II 8 F 7065.06 Ti II 17 F 7332.0 C V II 4 F 6700.16 Ni IV 2 F 7065.06 Ti II 17 F 7332.0 C V II 4 F 6700.6 Ni IV 1 F 7068.67 C II 10 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7350.77 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7370.00 V II 12 F 6700.6 Ni IV 1 F 7068.7 C IV 2 F 7370.32 V II 4 F 7370.08 Fe II 35 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 31 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.2 Fe II 5 F 7370.00 V II 4 F 6700.6 Ni IV 1 F 7068.7 C IV 2 F 7370.32 V II 4 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.08 C II 10 F 7370.09 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.08 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C II 10 F 7370.00 C I			2 F 5 F						
6646-31 Zr II 11 F 7006.3 A V 1 F 7294.30 V II 4 F 6647.05 T1 II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6850.61 T1 II 8 F 7008.89 Fe I 15 F 7307.82 N1 II 7 F 6851.26 T1 II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6856.77 Mn II 8 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6856.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6860.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.63 Nn II 2 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6868.63 Nn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7323.88 Ca II 1 F 6892.46 T1 I 5 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6892.46 T1 I 5 F 7054.37 N1 II 8 F 7330.7 0 II 2 F 6893.12 T1 II 37 F 7055.06 T1 II 7 F 7332.00 A IV 2 F 6893.12 T1 II 37 F 7058.6 C F II 1 1 F 7332.0 A IV 2 F 6893.12 T1 II 37 F 7058.6 C F II 1 1 F 7338.0 Cr II 1 F 7068.7 C T II 1 1 F 7338.0 C II 1 1 F 7068.7 C T II 1 1 F 7068.7 C T II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
6647.06 Ti II 8 F 7008.84 Cr I 5 F 7307.76 Zr II 23 F 6650.61 Ti II 8 F 7008.89 Fe I 15 F 7307.82 Ni II 7 F 6651.26 Ti II 37 F 7011.24 Fe II 31 F 7309.90 V II 26 F 6656.67 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6660.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6661.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6668.63 Mn II 2 F 7017.94 Fe II 31 F 7319.4 0 II 2 F 6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 7317.49 Fe I 28 F 7317.49 Fe I 28 F 7319.4 0 II 2 F 7319.5 0 II 2 F 7319.5 0 I		Zr II	11 F		A V	1 F		V II	4 F
6851.26			8 F	7008.84			7307.76		23 F
6856.77 Mn II 8 F 7013.33 Cr I 5 F 7316.44 Fe I 28 F 6860.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7319.4 O II 2 F 6868.63 Mn II 8 F 7021.0 Cr IV 1 F 7319.4 O II 2 F 6867.66 3 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.91 Ti II 34 F 7047.99 Fe II 31 F 7322.88 Ca II 1 F 6871.90 Fe II 31 F 7051.04 Ti II 17 F 7328.50 Ti I 4 F 689.12 Fe I 16 F 7051.7 Cr IV 1 F 7328.50 Ti I 2 F									
6866.68 Zr II 16 F 7016.21 Fe I 28 F 7317.43 Fe I 14 F 6861.7 Zr III 3 F 7016.80 Cr I 5 F 7318.6 0 II 2 F 6868.61 Ni III 2 F 7017.94 Fe II 31 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.31 Ti II 3 4 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6871.90 Fe II 31 F 7051.04 Ti II 1 F 7328.50 Ti I 4 F 6862.18 Fe II 16 F 7051.7 Cr IV 1 F 7328.50 Ti I 4 F 6892.12 Ti II 3 F 7051.7 Cr IV 1 F 7328.50 Ti I 4 F 6892.12 Ti II 3 F 7054.37 Ni II 1 F 7329.9 0 III 2 F 6897.09 Zr II 1 16 F 7054.37 Ni II 1 T 7332.0		Mn II	8 F		Cr I	5 F		Fe I	
6868.16 Ni II 2 F 7017.94 Fe II 31 F 7319.4 0 II 2 F 6868.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6870.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6871.31 Ti II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 Ti II 17 F 7328.86 Ca II 1 F 6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 O II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 O II 2 F 6697.09 2r II 16 F 7058.76 2r II 3 F 7332.06 V II 4 F 6898.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6900.1 Cr V 1 F 7066.07 TI II 15 F 7344.03 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
6668.63 Mn II 8 F 7021.0 Cr IV 1 F 7321.23 Fe I 28 F 6670.76 Ti I 5 F 7033.0 Ti III 3 F 7321.87 V II 12 F 6671.91 Ti II 34 F 7047.99 Fe II 31 F 7323.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 Ti II 17 F 7328.50 Ti I 4 F 6682.18 Fe II 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.7c Zr II 3 F 7332.0 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
6671.31 T1 II 34 F 7047.99 Fe II 31 F 7328.88 Ca II 1 F 6671.90 Fe II 31 F 7051.04 T1 II 17 F 7328.50 T1 I 4 F 6882.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 O II 2 F 6692.46 T1 I 5 F 7054.37 N1 II 8 F 7330.7 O II 2 F 6693.12 T1 II 37 F 7055.06 T1 II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6898.02 Fe II 32 F 7059.82 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.6 N1 XV 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 N1 XV 1 F 7078.2 Fe II 31 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6705.5 Cr V 2 F 7080.2 Fe XV 1 F 7370.00 V II 12 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 12 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F									
6671.90 Fe II 31 F 7051.04 Ti II 17 F 7320.50 Ti I 4 F 6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.4E Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 12 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.2 Fe XV 1 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.00 V II 12 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7370.32 V III 4 F 6709.08 Mn II 2 F 7086.7 Cr IV 2 F 7370.32 V III 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6721.89 Fe I 15 F 7081.17 Y II 1 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7081.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F									
6682.18 Fe I 16 F 7051.7 Cr IV 1 F 7329.9 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6692.46 Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F									
6692.4£ Ti I 5 F 7054.37 Ni II 8 F 7330.7 0 II 2 F 6693.12 Ti II 37 F 7055.06 Ti II 17 F 7332.0 A IV 2 F 6693.12 Ti II 37 F 7055.06 Ti II 37 F 7332.06 V II 4 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 Ni XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.04 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.68 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F									
6693.12 T1 II 37 F 7055.06 T1 II 17 F 7332.0 A IV 2 F 6697.09 Zr II 16 F 7058.76 Zr II 3 F 7332.06 V II 4 F 6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.68 Fe II 43 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 N1 II 8 F 7370.00 V II 12 F 6701.83 C N1 XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.68 Fe I 16 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F	6692.4E	Ti I	5 F	7054.37	Ni II	8 F		0 11	
6698.02 Fe II 32 F 7059.62 C Fe XV 1 F 7338.0 Cr IV 1 F 6700.1 Cr V 1 F 7066.07 Zr II 15 F 7344.03 V II 12 F 6700.6 N1 XV 1 F 7075.26 Fe II 31 F 7353.77 V II 4 F 6700.61 N1 II 8 F 7075.26 Fe II 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 N1 II 8 F 7370.00 V II 12 F 6701.83 C N1 XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7080.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.88 Fe I 16 F 7087.39 T1 I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F				7055.06		17 F	7832.0	A IV	2 F
6700.1									
6700.61 Ni II 8 F 7078.2 Fe III 9 F 7355.92 La II 1 F 6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F	6700.1	Cr V	1 F	7066.07	Zr II	15 F	73 44 .03	V II	12 F
6700.68 Fe II 43 F 7078.25 Ni II 8 F 7370.00 V II 12 F 6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F							7353.77		
6701.83 C Ni XV 1 F 7080.2 Fe XV 1 F 7370.94 Fe II 30 F 6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 Ni II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F	6700.68	Fe II							
6705.5 Cr V 2 F 7086.7 Cr IV 2 F 7373.32 V II 4 F 6709.08 Mn II 2 F 7087.10 Cr I 10 F 7379.57 N1 II 2 F 6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F	6701.83 C	N1 XV	1 F	7080.2	Fe XV	1 F	7370.94	Fe II	30 F
6710.88 Fe I 16 F 7087.39 Ti I 4 F 7383.38 Cr I 10 F 6717.0 S II 2 F 7088.3 Fe III 15 F 7386.11 Zr II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F									
6717.0 8 II 2 F 7088.3 Fe III 15 F 7386.11 2r II 5 F 6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F	6710.88	Fe I							
6721.89 Fe I 15 F 7091.17 Y II 1 F 7387.23 Cr I 10 F		8 11	2 F	7088.3	Fe III	15 F		'Zr II	
WINNEY III W. H. HOOL OO	6721.89 6722.02	Fe I	15 F	7091.17	Y II	1 F		Cr I	

Forbladen Lines

I A	Element	Multiplet No.	IA	Element	Multiplet No.	I A	Element	Multiplet No.
7 388. 16	Fe II	14 F	7689.65	Cr II	11 F	8039.68	Ti II	39 F
7390.6	Cr IV	1 F	7692.91	Mn II	7 F	8043.80	Cr I	9 F
7393.71	N1 I	1 F	7693.38	Mn II	7 F	8045.57	Cr I	9 F
7395.79	Ni I	2 F	7694.82	N1 II	7 F	8046.1	C1 IV	1 F
7398.95	V II	4 F	7696.30	Mn II	7 F	8047.93	Cr I	9 F
7404.36	Zr II	20 F	7706.06	Y II	3 F	8054.83	Fe I	13 F
7406.61	Fe I	14 F	7706.58	Cr II	20 F	8060.16	Ti II	6 F 7 F
7411.90	V II	4 F 2 F	7708.83	Fe I Zr II	1 F 23 F	8074.29 8078.58	Ti II V II	31 F
7413.33 7418.75	N1 II V II	2 F 4 F	7710.58 7710.79	Fe II	30 F	8085.17	Ti II	6 F
1420110					_			_
7419.42	Fe II	1 F	7717.29	Ti I S I	24 F 3 F	8086.73	Fe I Ti I	24 F 18 F
7421.5	Co II V II	3 F 3 F	7724.7 7733.12	Fe II	1 F	8091.87 8098.70	Zr II	25 F
743 0.26 743 1.08	V 11	12 F	7740.11	Fe II	29 F	8101.03	v II	18 F
7431.2	V IV	2 F	7741.96	Fe I	14 F	8106.38	Ti II	39 F
7432.23	Fe II	47 F	7750.56	Cr II	11 F	8106.88	Cr II	20 F
7439.58	Fe I	28 F	7751.0	A III	1 F	8111.97	N1 I Fe II	8 F 38 F
7440.62	V II	3 F 3 F	7752.86 7756.59	Cr II Fe I	11 F 14 F	8119.16 8119.46	Ti I	18 F
7 444.8 0 7 445.63	Zr II Zr II	3 F 4 F	7757.43	Cr II	11 F	8125.50	Cr II	1 F
7440.00		• •						_
7449.45	Fe II	30 F	7758.47	Cr II	11 F	8137.88	Zr II	19 F 7 F
7452.50	Fe II	14 F	7759.25	Fe I Fe II	14 F 30 F	8138.59 8138.62	Ti II V II	31 F
7454.82	Zr II V II	5 F 4 F	7764.69 7769.35	Zr II	4 F	8148.37	Ti I	18 F
745 7.80 7459. 30	v II	4 F	7773.91	Fe I	13 F	8151.33	Fe I	1 F
7460.57	V II	3 F	7786.03	Zr II	3 F	8153.46	T1 I	18 F
7460.93	Zr II	3 F	7787.00	Y II	3 F	8160.66	Ti I	18 F
7464.39	N1 I	2 F	7793.9 7797.2	Co II Co II	3 F 3 F	8164.85 8166.83	Fe I T1 II	13 F 24 F
7467.0 7468.52	Co II V II	3 F 4 F	7797.2 7803.90	Fe II	3 F 1 F	8176.33	Ti I	18 F
1400.0%	* 11	*	. 500.00					
7469.44	V II	3 F	7805.47	Mn II	7 F	8183.69	Cr I	9 F
7470.10	Y II	4 F	7805.66	Ti I	23 F	8185.52 8189 44	Cr I Ti II	9 F · 24 F
7475.84	V 11	12 F	7805.96	Mn II Fe II	7 F 1 F	8189. 44 8192.33	T1 II	39 F
7477.26	V II Zr II	12 F 15 F	7806.22 7806.88	Cr II	20 F	8194.57	Ni I	8 F
7479. 79 7489. 15	V 11	10 F 29 F	7835.98	Ti II	6 F	8201.77	N1 I	1 F
7497.68	v II	3 F	7845.41	Cr II	11 F	8220.64	Zr II	10 F
7507.44	N1 I	4 F	7847.76	Cr II	11 F	8225.25	Sc II	3 F
7510.54	Fe I	14 F	7849.08	Zr II Zr III	4 F 2 F	8228.16 8229.81	Fe II Cr II	30 F 1 F
7515.13	V II	4 F	7853.3	21 111	2.	0220101		• •
7518.35	v II	29 F	7853.51	Cr II	11 F	8229.81	T1 II	24 F
7518.81	Zr II	4 F	7859.60	Fe I	14 F	8231.57	Fe I Fe I	1 F 24 F
7523.27	Fe II	1 F	7867.83	Cr I P II	9 F 3 F	8233.22 8235.69	A II	18 F
7526.46	V II V II	26 F 3 F	7869.5 7874.23	Fe II	1 F	8245.12	Fe II	29 F
7526.94 7530.9	C1 IV	1 F	7876.34	Fe I	13 F	8249.61	Ti I	3 F
7533.84	V II	3 F	7879,32	Mn II	7 F	8251.14	Cr I	9 F
7536	S XII	1 F	7888.6	Fe XI	1 F	8252.38	Fe II Sc II	38 F 3 F
7536.93	Fe I	14 F	7889.15 7891.94 C	Zr II Fe XI	19 F 1 F	8261.21 8261.59	Zr II	25 F
7537.93	Mn II	7 F	1081.84 C	re AI		0201100		•
7539. 67	Fe II	38 F	7893.57	Zr II	3 F	8268.36	Cr II	25 F
7540.14	V II	12 F	7894.10	Ti II	6 F	8271.32 8272.21	Sc II Cr II	3 F 25 F
7540.54	y II	3 F	7899.63 7904.04	Fe I Y II	14 F 3 F	8275.57	Fe I	1 F
7540.74	Mn II Fe I	7 F 28 F	7906.95	Zr II	22 F	8279.99	Sc II	3 F
7541.42 7541.95	V II	4 F	7908.30	N1 I	4 F	8284.1	Y V	1 F
7 544. 00	Fe II	14 F	7916.25	T1 II	6 F	8289.45	Fe I	13 F
7547.77	Mn II	7 F	7916.98	Fe IJ	29 F	8303.23 8307.67	N1 II Sc II	2 F 3 F
7551.9	V IV Fe II	2 F 1 F	7917.03 7926.90	Ti Il Fe II	25 F 1 F	8308.68	Cr II	1 F
7552.38	le II	1 "	. 520 . 50					
7556.03	V II	29 F	7929.70	N1 I	8 F	8315.71	Zr II	25 F
7567. 6	Co II	3 F	7935.32	Fe I Cr I	26 F 9 F	8321.51 8326.66	Fe I Sc II	26 F 3 F
7571.69	V II Y II	3 F 3 F	7938.41 7940.71	Cr I	9 F	8328.78	Cr II	19 F
7586.23 7604.53	Fe I	14 F	7945.02	Ti II	7 F	8337.65	Fe I	1 F
7611.2	V IV	2 F	7947.28	Cr II	20 F	8339.72	La III	1 F
7611.7	Co II	3 F	7954.24	Y II	3 F	8342.34	Fe II V II	30 F 17 F
7612.96	N1 II	7 F	7954.76	Zr II Ti II	25 F 39 F	8343.02 8347.16	V 11	17 F
7613.15	Fe II Zr II	30 F 3 F	7956.90 7958.50	Fe II	29 F	8347.24	Sc II	3 F
7623.44	2. II	.						
7626.54	Zr II	15 F	7959.00	Fe I	1 F	8347.55	Fe I Ti II	1 F 30 F
7637.52	Fe II	1 F 11 F	7960.85 7964.27	Cr II Fe I	20 F 1 F	8348.93 8357.78	Cr 11	1 F
7640.39	Cr II Co II	3 F	7965.96	Cr II	11 F	8363.05	T1 II	27 F
7642.3 7642.61	Cr II	11 F	7966.36	T1 II	7 F	8367.07	Ti I	3 F
7647.06	Cr II	11 F	7974.31	Cr II	11 F	8371.34	Ti II	30 F
7658.84	Fe I	14 F	7975.58	Ti II	6 F	8380.68 8384.28	Zr II Sc II	22 F 3 F
7658.92	Y II	3 F	7976.95 7978.7	Ti II Mn IX	6 F 1 F	8384.28 8400.89	Cr II	19 F
7662.36 7684.67	Zr II Y II	23 F 3 F	7978.7 7999.47	Fe II	1 F	8403.62	Sc II	3 F
7664.67							M4 TT	97 8
7665.29	Fe II	1 F	8000.12	Cr II	1 F 46 F	8405.16 8408.39	Ti II Zr II	27 F 19 F
7673.74	Fe II	38 F	8009.53 8012.08	Fe II Fe II	46 F	8412.97	Fe I	12 F
7674.06	Fe II Cr II	46 F 11 F	8022.25	Fe I	13 F	8413.26	Fe II	38 F
7681.89 7684.16	Cr II	11 F	8022.63	Fe II	29 F	8413.83	V II	17 F
7685.58	Fe II	46 F	8024	N1 XV	1 F	8416.96	Zr II V II	25 F 2 F
7686.19	Fe II	14 F	8024.21 C	N1 XV T1 II	1 F 7 F	8420.72 8428.62	Zr II	2 F 22 F
7686.90	Fe II	1 F	8028.9 4 8033.86	TI II NI II	7 F	8430.1	Ni VIII	5 F
7687.94	Fe II Cr II	46 F 11 F	8037.29	Fe II	30 F	8431.56	Fe I	1 F
7688.64	V: 11		,···-					

5.5			For	bidden Lin	ies			
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet
8433.7	C1 III	3 F	8702.70	Zr II	9 F	9105.8	N1 VIII	5 F
8436.37	T1 II	15 F	8703.03	Ti II	33 F	9106.17	Fe I V II	36 F 25 F
8437.9	V IIJ Cr II	2 F 25 F	8703.79 8704.24	Cr II Ni II	18 F 12 F	9106.60 9108.42	Ti II	32 F
8441.27 8444.83	Zr II	25 F 10 F	8705.08	Ti I	16 F	9108.53	Zr II	10 F
8445.28	Cr II	25 F	8706.79	Fe II	52 F	9116.41	Fe II	51 F
8446.11	Fe II	29 F	8708.23	Ti I	17 F	9125.8	Cl II Fe II	1 F 42 F
8446.39	Cr II	25 F 33 F	8709.38	V II Fe II	2 F 42 F	9133.63 9134.50	Sc II	1 F
8456.74 8457.2	Fe I V III	33 F 2 F	8715.84 8716.24	Ti I	2 F	9136.73	Fe I	36 F
8466.38	Ni I	4 F	8719.70	Ti II	36 F	9137.01	Ti I	15 F
8466.95	Fe I	24 F	8721.54	T1 I	16 F	9144.25	V II	10 F
8467.54	Fe I	33 F	8722.5 4	T1 II	16 F	9149.11	Ti II	35 F
8469.75	Fe I	25 F	8723.13	Ti I C I	29 F 3 F	9165.30 9166.00	V 11 V 11	10 F 10 F
8471. 07 8481. 6	V II C1 III	2 F 3 F	8727.4 8728.09	Fe III	8 F	9179.54	Zr II	9 F
8485.90	V II	17 F	8730.02	Cr II	18 F	9180.13	Ti I	21 F
8488.19	Fe I	24 F	8731.38	Ti I	17 F	9183.58	V II	9 F
8488.93 8490.18	Ti I V II	2 F 17 F	8735.0 8738.1	V III Fe VII	1 F 4 F	9189.22 9191.34	Ti I Sc II	15 F 1 F
							Fe II	51 F
8490.34	Fe I V II	25 F 11 F	8739.71 8740.05	T1 I T1 I	16 F 17 F	9196.26 9199.44	Ti I	15 F
8490.44 8490.71	Ti II	11 F 15 F	8743.65	Zr II	10 F	9199.54	Ti II	35 F
8491.16	Ti II	27 F	8743.66	Ti II	29 F	9202.81	Zr II	8 F
8493.1	V III	1 F	8745.0	V III	1 F	9208.72	Zr II V II	8 F 9 F
85 01.8	C1 III V II	3 F 11 F	8746.99 8761.8	Fe I Ni VIII	33 F 5 F	9209.25 9216.20	Fe II	51 F
8510.24 8518.20	Sc II	2 F	8763.28	V II	2 F	9217.51	VII	27 F
8520.22	Cr II	19 F	8763.95	Ti II	36 F	9222.25	Cr II	16 F
8521.66	T1 I	3 F	8766.76	Zr II	10 F	9223.81	Cr II	24 F
8525.41	Zr II	10 F	8770.71	Ti I	17 F	9226.60	Fe II	13 F
8529.50	T1 II	15 F	8771.24	Fe I V II	12 F 11 F	9228.60 9235.10	Cr II Ti I	24 F 15 F
8530.15	Cr II Ti I	19 F 30 F	8774.69 8775.19	V 11 Fe I	11 F 33 F	9235.10 9235.60	VII	10 F
8532.12 8544.49	V II	30 F 28 F	8775.19 8777.26	Ti I	2 F	9245.82	Ti I	15 F
8545.12	V II	2 F	8782.6	V III	2 F	9251.37	Ti I	21 F
8549.64	T1 II	16 F	8787.6	PI	1 F	9253.44	V 11	9 F
8550.5	C1 III T1 II	3 F 16 F	8787.81 8789.70	Ti I Ti II	17 F 29 F	9255.10 9256.51	Y II V II	5 F 9 F
8553.73 '8553.87	v 11	10 F 11 F	8792.09	Cr II	18 F	9258.83	Ti I	15 F
8561.42	Zr II	26 F	8792.49	Fe I	24 F	9267.54	Fe II	13 F
8564.56	Fe I	1 F	8794.80	Fe I	25 F	9268.77	V II	10 F
8565.94	T1 II	15 F	8798.79	T1 II	33 F	9273.10	Cr II	29 F
8567.60	Sc II	2 F 1 F	8798.82	Zr II Ti I	26 F 2 F	9274.58 9274.68	Cr II Cr II	16 F 29 F
85,75 • 4 8576 • 73	V IV Ti I	22 F	8799.09 8799.1	PI	1 F	9279.59	V II	10 F
8579.15	V II	11 F	8808 • 47	Ti I	17 F	9281.86	T1 I	15 F
8579.5	C1 11	1 F	8815.9	A IA	1 F	9282.92	V II	27 F
8582.52 8585.04	V II Ti II	28 F 15 F	8826.02 8830.3	Cr II Co II	19 F 1 F	9285.20 9288.45	Sc II Ti I	1 F 15 F
8585.14 8588.84	Fe I Ti I	33 F 2 F	8830.7 8831.94	Fe III Cr II	8 F 18 F	9291.03 9292.19	Zr II V II	9 F 25 F
8596.27	Fe I	33 F	8832.31	N1 I	7 F	9307.5	Zr III	5 F
8598.3	V III	2 F	8838.2	Fe III	8 F	9308.03	Ti I	21 F
8598.79	Ti I	29 F	8843.42	Ni I	1 F	9313.72	4 11	9 F
8599.1	V III Ti i	1 F 30 F	8848.50 8850.73	Ti I Zr II	17 F 9 F	9324.01 9324.8	Y II Ti III	5 F 2 F
8612.91 8613.35	Ti I	2 F	8851.13	Fe II	52 F	9336.2	Co II	1 F
8615.4	VIII	2 F	8851.45	Ti I	17 F	9337.40	Cr II	23 F
8616.96	Fe II	13 F	8858.94	Cr II	18 F	9312.24	Cr II	23 F
8621.67	Zr II	2 6 F	8862.47	Zr II	26 F	9343.61	Cr II	23 F
8623.51	Fe I	33 F	8868.91	Fe I	1 F	9349.2	Zr III	5 F
8625.25	Z r II V III	8 F 1 F	8872.37 8878.98	Zr II V II	8 F 2 F	9356.40 9358.90	V II V II	27 F 9 F
8625.8 8625.93	Ti II	16 F	8884.12	Ti I	2 F	9364.08	Cr 11	16 F
8626.85	Ti I	16 F	8885.66	Fe II	42 F	9376.93	Zr II	2 F
8627.35	A II	11 F	8891.88	Fe II	13 F	9377.33	Ni II	1 F
8640.22	Ti I	22 F	8899.71	Cr II	16 F	9377.83	Zr II	24 F
8640.27 8643.14	Ti I Pe I	29 F 12 F	8909.40 8921.0	Zr II Zr III	2 F 5 F	9381.78 9386.74	Cr II Cr II	23 F 23 F
8645.95	Ti I	22 F	8929.91	Cr II	18 F	9386.96	Fe I	12 F
8647.89	Fe I	1 F	8930.70	Ti I	17 F	9388.12	Cr II	12 F 23 F
8648.72	Ti II	16 F	8931.47	Fe II	49 F	9392.85	Eu II	1 F
8649.11	Sc II	2 F	8954.34	Zr II	9 F	9395.23	V II	9 F
8649.72	Fe I Ti II	24 F 29 F	8969.06	Zr II	22 F	9398.59	Ti II	21 F
8651.14 8652.17	Cr II	29 F 18 F	8970.23 8970.56	Ti I Cr II	2 F 18 F	9399.02 9405.71	Fe II Ti II	13 F 21 F
8653.20	Cr II	19 F	8983.71	Eu II	1 F	9427.18	Cr 11	21 F 23 F
8658.20 8681.20	Ti I Ti II	16 F 15 F	9012.04 9033.45	Cr II	18 F	9428.3	Ti III	2 F
8661.20			9033.45	Fe II	13 F	9432.18	Cr II	23 F
8661.96 8 665. 66	Ti II Y II	15 F 6 F	9033.73 9043.52	Cr II V II	16 F 10 F	9442.77 9444.2	Y II Fe III	5 F
8.669. 28	Ti I	2 F	9051.92	Fe II	10 F 13 F	9454.2 9454.15	V II	12 F 9 F
8674. 27	V II	17 F	9058.16	Zr II	2 F	9457.95	Cr II	23 F
8682.13	V 11	2 F	9069.4	8 111	1 F	9470.93	Fe II	13 F
8683.4 8689.73	V III Ti I	1 F 16 F	9071.07	Ti II	35 F	9487.4	Ti III	2 F
8691.53	Zr II	16 F 19 F	9072.86 9089.24	Cr II Zr II	24 F 10 F	9487.5	Xe II	1 F
8698.18	V II	11 F	9093.67	Fe I	10 F 36 F	9488.3 9490.96	Ti III Zr II	2 F 8 F
8698.69	A II	11 F	9096,76	V II	10 F	9491.15	Cr II	29 F

No.

Forbidden Lines								
I A	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Element	Multiplet No.
9496.60	Zr II	27 F	10021.39	T1 II	4 F	10461.95	Zr II	24 F
9512.58	Cr II	16 F	10028.62	Fe II	28 F	10464.94	Zr II	1 F
9513.87	Fe II	41 F	10028.71	Zr II	1 F	10475.96	Ti I	27 F 6 F
9517.76	Fe II V II	52 F 32 F	10034.9 10036.79	Zr III Fe II	5 F 40 F	10486.97 10491.99	Sc II Cr II	28 F
9522.24 9532.1	8 III	32 F 1 F	10038.79	Fe II	48 F	10494.00	Cr II	28 F
9534.75	Zr II	14 F	10055.97	Fe I	11 F	10500.65	Cr II	10 F
9543.3	Zr III	5 F	10066.92	T1 II	5 F	10502.67	Cr II	10 F
9544.00	Ti I	28 F	10066.98	Ti II Eu II	5 F 1 F	10503.47 10504.3	Ti II Fe III	3 F 8 F
9558.5	Co VII	5 F	10074.84	Eu II	1 -	10001.0		0.
9 565.8	N1 VIII	5 F	10075.00	Fe I	38 F	10508.07	Fe II	28 F
9570.24	V II	9 F 9 F	10083.37	Zr II Cr VIII	13 F 1 F	10510.25 10519.77	V II Ti I	15 F 27 F
9582.55 9590.94	Zr II Cr II	16 F	10098.2 10116.66	T1 II	4 F	10553.58	Mn II	1 F
9594.5	Ti III	2 F	10119,57	Cr II	22 F	10561.05	V II	24 F
9595.12	Ti I	28 F	10120.75	Zr II	24 F	10568.84	Ti I Sc II	27 F 7 F
9595.85	V II Zr II	32 F 8 F	10125.99 10128.19	Ti II Zr II	5 F 27 F	10569.44 10576.98	V II	15 F
9607.90 9608.6	Fe III	12 F	10136.59	Cr II	10 F	10592.32	Fe I	23 F
9619.74	Fe I	12 F	10137.00	Cr II	10 F	10594.89	Fe II	40 F
0000 00	Ti I	28 F	10138.47	Cr II	10 F	10601.80	Ѓе I	37 F
9622.68 9635.9	Cr V	4 F	10148.57	Ti II	4 F	10603.65	Zr II	1 F
9639.4	Co II	1 F	10163.13	T1 II	5 F	10608.1	Fe III	14 F
9642.42	T1 II	21 F	10178.29	Fe I	11 F 1 F	10608.18 10627.5	T1 II N1 VIII	3 F 6 F
9644.96 9649.94	V II Ti II	25 F 21 F	10188.1 10196.82	Co II Fe I	36 F	10640.19	Ti II	3 F
9651.02	Cr II	17 F	10202.05	Ti II	5 F	10640.4	Fe III	13 F
9652.70	Fe II	13 F	10206.5	Xe III	1 F	10642.86	Ti I Sc. II	27 F 7 F
9670.04	Zr II	24 F	10208.43	Zr II Ni II	14 F 12 F	10660.35 10671.7	Sc II Co VII	7 F
9670.87	Zr II	27 F	10209.10	NT 11	TW *	200.200		
9671.2	Zr III	5 F	10209.78	Cr II	10 F	10676.61	T1 II	3 F
9674.66	T1 I	28 F	10210.20	Cr II	10 F	10696.87	Cr II Ni II	27 F 1 F
9681.84	Ti I	28 F 41 F	10211.69 10215.85	Cr II Cr II	10 F 22 F	10718.16 10719.84	Cr II	10 F
9682.13 9686.70	Fe II Cr II	41 F 16 F	10223.27	Cr II	22 F	10746.80 C	Fe XIII	1 F
9694.01	Eu II	1 F	10223.27	Ti II	5 F	10747.64	Ťi II	3 F
9697.42	Ti I	28 F	10225.3	N1 VIII	6 F	10749.7	Fe XIII Cr II	1 F 27 F
9701.3	Fe III	11 F 9 F	10229.79 10235.17	Fe I Fe I	11 F 36 F	10755.91 10758.04	Cr II	27 F
9704.10 9706.8	Zr II Ti III	9 F 2 F	10245.4	Co II	1 F	10758.32	T1 II	3 F
810010						40,000 00	Fe I	36 F
9720.20	Ti I	20 F 23 F	10261.18 10262.84	Zr II Fe I	1 F 11 F	10770.38 10771.88	Fe I	23 F
9731.40 9733.52	Fe I V II	23 F 16 F	10264,65	Fe I	23 F	10780.17	Sc II	7 F
9752.5	Co VII	5 F	10280.7	Co II	1 F	10784.80	Ti II	3 F 27 F
9755.81	Fe II	50 F	10284.3	S II V II	3 F 15 F	10796.00 10796.2	Cr II Fe XIII	1 F
9774.53	Zr II Fe I	14 F 35 F	10291.94 10297.11	Cr II	28 F	10796.48	Fe II	45 F
9775.9 4 9778.67	Ti I	28 F	10297.14	T1 I	27 F	10797.66	Cr II	27 F
9778.70	Fe I	12 F	10298.63	Cr II	28 F	10797.95 C	Fe XIII	1 F
9786.00	Ti I	28 F	10299.05	Cr II	28 F	10798.14	Cr 11	27 F
9795.21	Fe II	28 F	10299.79	Cr II	22 F	10800.75	V II	15 F
9806.20	Cr II	17 F	10300.86	Ti II	5 F	10807.8	Cr V S I	5 F 1 F
9808.9	C I	1 F	10305.67	Cr II Cr II	22 F 22 F	10819.8 10835.22	V II	23 F
9822.50	Fe I C I	39 F 1 F	10307.34 10314.96	Fe I	38 F	10860.44	Zr II	1 F
9823.4 .9826.83	Fe I	11 F	10317.7	S II	3 F	10867.84	Fe I	37 F
9831.29	Ti I	20 F	10318.68	Fe I	23 F	10872.05	Sc II Fe III	5 F 14 F
9849.5	C I	1 F	10321.34	Fe II Fe II	40 F 28 F	10882.6 10890.02	Zr II	13 F
9862.21 9866.49	Fe II Cr II	40 F 17 F	10327.56 10331.43	Cr II	10 F	10901.79	Ti II	3 F
8600.40					40 F	10908.34	Fe I	34 F
9870.08	Zr II	8 F 20 F	10331.86 10333.39	Cr II Cr II	10 F 10 F	10908.34	Čo VII	5 F
9884.29 9885.74	T1 I N1 II	20 F 1 F	10333.39	S II	3 F	10916.5	Fe III	13 F
9886.87	Zr II	27 F	10351.92	Zr II	13 F	10916.64	Fe I Ni II	41 F 1 F
9887.18	N1 I	6 F	10355.58	Zr II V II	1 F 15 F	10921.07 10956.10	Ti II	3 F
9902.2	Kr III La II	1 F 1 F	10355.93 10356.68	Ti I	27 F	10965.77	Ti II	14 F
9903.31 9916.30	Eu II	1 F	10366.26	Cr II	22 F	10972.9	Co II	1 F
9917.9	s viii	1 F	10369.7	S II	3 F 22 F	10983.23 10986.0	V II Co VII	23 F 6 F
9918.01	Fe II	51 F	10372.30	Cr II	ee f	10000+0		
9926.0	Zr III	5 F	10373.30	Cr II	21 F	10991.52	81 I	2 F
9937.20	Zr II	27 F	10373.98	Cr II	22 F 5 F	11011.70 11018.07	La II Fe I	1 F 32 F
9937.27	Fe II	51 F	10379.73 10380.40	Ti II Cr II	21 F	11019.11	V II	24 F
9941.20	Fe II Fe III	51 F 11 F	10382.14	v 11	15 F	11024.82	Ti II	13 F
9942.2 9947.19	Zr II	14 F	10386.86	Ti I	27 F	11044.11	Fe I Ti I	35 F 26 F
9949.32	Fe II	48 F	10388.07	Cr II Cr V	21 F 5 F	11049.28 11056.70	Cr II	26 F
9953.5	Co VII	5 F 12 F	10394.3 10395.4	N I	3 F	11057.76	T1 II	14 F
9957.23 9957. 44	Ni II Fe II	12 F 28 F	10399.33	Sc II	6 F	11058.94	Cr II	26 F
0001032				Fe II	40 F	11069.08	Fe I	37 F
9960.0	Fe III Fe III	8 F 8 F	10400.53 10404.1	re II N I	3 F	11078.26	Ti II	2 F
9969.6 9972.59	Ti II	5 F	10431.10	Fe II	40 F	11080.02	Ti II	14 F 32 F
9972.59	Fe I	23 F	10432.60	Fe II	48 F 11 F	11084.87 11088.0	Ti I Fe III	32 F 13 F
9977.1	N1 VIII		10443.95	Fe I Ti I	11 F 27 F	11096.98	Zr II	18 F
9982.17	V II Fe I	16 F 39 F	10447.44 10452.56	Fe I	11 F	11098.96	V II	23 F
9986.60 9997.3	Mn X	1 F	10456.86	Sc II	6 F	11107.3	Fe III Ti II	13 F 2 F
9997.3	Fe I	11 F	10458.9	Zr III	5 F	11110.92	Ti II	13 F

	rorbidden bines							
IA	Element	Multiplet No.	I A	Element	Multiplet No.	I A	Eleme nt	Multiplet No.
11123.53	Ti I	26 F	11595.50	Zr II	18 F	11951.78	Cr II	9 F
11132.24	Zr II	21 F	11602.41	T1 II	1 F	11971.26	Ti II	1 F
11151.54	Ti II	14 F	11606.00	V II	23 F	11997.42	Fe I	40 F
11173.94	Ti II	14 F	11611.10	Ti II	12 F	12012.60	Ti I	1 F
	Ti II	13 F	11616.88	Ni II	1 F	12019.17	Fe I	470 F
11178.94	Ti I	26 F	11618.68	T1 II	2 F	12024.89	Ti I	14 F
11185.14	Ti II	14 F	11619.10	V II	1 F	12025.23	Fe I	22 F
11185.70	Ti I	26 F	11621.54	Ti I	1 F	12061.0	Ti III	1 F
11191.43		26 F	11658.88	V II	22 F	12072.48	Fe I	40 F
11193.04	Ti I		11659.62	Zr II	18 F	12094.78	Zr II	21 F
11202.11	Fe I	41 F						14 F
11203.92	Zr 11	13 F	11665.66	Ti I	31 F	12095.67	T1 I	14 F 9 F
11228.14	Ti II	2 F	11679.85	Ti I	14 F	12168.18	Cr II	
11233.80	Fe I	22 F	11681.81	Ti I	14 F	12168.8	Co II	1 F
11237.04	Fe I	32 F	11690.94	T1 I	14 F	12168.80	Ti I	1 F
11242.12	Ti II	2 F	11698.62	Zr II	21 F	12170.50	Cr· II	9 F
11246.87	V II	1 F	11714.28	Ti II	12 F	12178.83	Cr II	9 F
11261.79	T1 I	26 F	11715.20	V II	1 F	12209.6	Co VII	6 F
11272.6	Fe III	13 F	11735.52	Ti II	1 F	12211.22	Zr II	18 F
11280.5	Co II	1 F	11748.60	Ti I	14 F	12219.66	V II	22 F
11284.9	Fe III	13 F	11757.66	V II	1 F	12300.16	Cr II	26 F
110110		49.1						
11305.8	8 I	1 F	11764.23	Fe I	32 F	12300.77	Cr II	26 F 11 F
11315.52	V II	30 F	11765.16	Fe I	40 F	12323.27	N1 II	22 F
11324.18	V II	22 F	11767.30	Ti I	14 F	12372.55	Fe I	22 F
11332.50	T1 I	26 F	11771.95	Ti I	1 F	12387.48	Fe I	
11347.6	Co VII	6 F	11778.39	T1 II	12 F	12417.8	Ti III	1 F
11359.87	Ni II	11 F	11782.27	T1 II	1 F	12460.65	Cr II	9 F
11368.21	V II	22 F	11782.63	Cr II	26 F	12463.08	Cr II	9 F
11396.50	Ti II	2 F	11784.62	Cr II	26 F	12471.70	Cr II	9 F
11402.97	Ti I	26 F	11785.17	Cr II	26 F	12645.23	Fe I	22 F
11414.22	V II	1 F	11786.08	Fe I	40 F			
11432.93	T1 II	1 F	11789.27	Cr II	9 F			
11444.61	V II	1 F	11790.50	Fe I	32 F			
11444.66	V II	30 F	11791.90	Fe I	22 F			
11450.66	Fe I	40 F	11792.55	Ti I	14 F			
11458.27	Ti II	2 F	11799.5	Ti III	1 F			
11471.69	V II	23 F	11823.03	Ti II	12 F			
11477.29	T1 II	1 F	11835.06	Ti I	14 F			
11478.92	Ti II	38 F	11849.83	Ti I	1 F			
11479.51	V II	23 F	11852.49	V II	22 F			
11483.2	PII	1 F	11856.02	T1 I	1 F			
	T	00 P	11857.28	v II	1 F			
11495.96	Fe I	32 F	11857.26	Ti II	12 F			
11509.6	N1 VIII	6 F 32 F	11881.68	Ti I	14 F			
11518.28	Fe I		11884.57	Ti II	12 F			
11520.46	Ti I	31 F		Sc II	4 F			
11521.31	Ti I	33 F	11896.48	P II	1 F			
11524.46	Fe I	32 F	11898.2	V II	21 F			
11537.68	Fe I	22 F	11918.75		21 F 14 F			
11557.08	T1 II	1 F	11933.60	Ti I	14 F 9 F			
11568 - 38	V II	22 F	11943.75	Cr II				
11580.17	V II	1 F	11950.77	Ti I	14 F			

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be made either

- NSRDS-NBS 1, National Standard Reference Data System-**Plan of Operation,** by E. L. Brady and M. B. Wallenstein, 1964 (15 cents), SD Catalog No. C13.48:1. □ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2. NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si II, Si III, Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1. □ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.

 ☐ NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C.I., C.II., C.III., C.IV., C.V., C.V., by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3. □ NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, N IV, N V, N VI, N VII, by C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec. 4. NSRDS-NBS 4, Atomic Transition Probabilities, Vol. 1, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. C13.48:4/Vol.I. NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5. ☐ NSRDS-NBS 6. Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1. NSRDS-NBS 7. High Temperature Properties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1. □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials. by R. W. Powell, C. Y. Ho, and P. E. Liley, 1966 (\$3). PB189698* NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9. □ NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No. C13.48:10. ☐ NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No. C13.48:11/Pt.2. NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients from Symmetric to Asymmetric Bases
- * Available from National Technical Information Service, Springfield, Virginia 22151.

and Expectation Values of P2, P2, and P2, by R. H.

by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No.

Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No.

☐ NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts,

□ NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy

Schwendeman, 1968 (60 cents), SD Catalog No. C13.48:12.

C13.48:13.

C13.48:14.

by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superin-

- tendent of Documents, Government Printing Office, Washington, D.C. 20402. ☐ NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1. □ NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2. □ NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3. □ NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold From O to 300°K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18.

 ☐ NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19. ☐ NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S. Johnston, 1968 (45 cents), SD Catalog No. C13.48:20. □ NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal, 1970 (\$7), SD Catalog No. C13.48:21. NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II. ☐ NSRDS-NBS 23, Partial Grotrian Diagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23. NSRDS-NBS 24. Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 100° C, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24. ☐ NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25. NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive lons, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD Catalog No. C13.48:26. □ NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27.
 - ☐ NSRDS-NBS 28, Molten Salts: Vol. 2, Section 1, Electrochemistry of Molten Salts: Gibbs Free Energies and Excess Free Energies From Equilibrium-Type Cells, by G. J. Janz and C. G. M. Dijkhuis. Section 2, Surface Tension Data, by G. J. Janz, G. R. Lakshminarayanan, R. P. T. Tomkins, and J. Wong, 1969 (\$2.75), SD Catalog No. C13.48:28/Vol.2.
 - ☐ NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV, by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29.

of Inorganic Salts, Part 2, Carbonates, by K. H. Stern and E. L.	II, and III.
Weise, 1969 (45 cents). SD Catalog No. C13.48:30/Pt. 2.	NSRDS-NBS 36, Micelle Concentrations of Aqueous Surfactant
☐ NSRDS-NBS 31. Bond Discrimination Energies in Simple Mole-	Systems, by P. Mukerjee and K. J. Mysels, 1971 (In press). SD
cules, by B. deB. Darwent, 1970 (55 cents). SD Catalog No.	Catalog No. C13.48:36.
C13.48.31.	NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, by
☐ NSRDS-NBS 32, Phase Behavior in Binary Multicomponent Sys-	D. R. Stull, H. Prophet, et al., 1971 (in press), SD Catalog No.
tems at Elevated Pressures: η -Pentane and Methane- η -Pentane,	C13.48:37.
by V. M. Berry and B. H. Sage, 1970 (70 cents). SD Catalog No.	NSRDS-NBS 38, Critical Review of Ultraviolet Photoabsorption
C13.48.32.	
NSRDS-NBS 33, Electrolytic and Conductance and the Conductance	Cross Sections for Molecules of Astrophysical and Aeronomic
of the Acids in Water, by W. J. Hamer and H. J. DeWane, 1970	Interest, by R. D. Hudson, 1971 (in press), SD Catalog No.
(50 cents). SD Catalog No. C13.48:34.	C13.48:38.
☐ NSRDS-NBS 34, Ionization Potentials and Ionization Limits De-	☐ NSRDS-NBS 39, Tables of Molecular Vibrational Frequencies,
rived from the Analyses of Optical Spectra, by C. E. Moore, 1970	Consolidated Volume I, by T. Shimanouchi, 1971 (in press). SD
(75 cents). SD Catalog No. C13.48:33.	Catalog No. C13.48:39.
NSRDS-NBS 35, Atomic Energy Levels, Vol. I 1 H to 23 V; Vol. II	NSRDS-NBS 40, A Multiplet Table of Astrophysical Interest, by
24Cr to 41Nb; Vol III 22Mo to 57La-72Hf to 89Ac, by C. E.	C. E. Moore, 1971 (\$). SD Catalog No. C13.48:40.
•• •• ··-, ··-, ··- ··- ··- ··- ··- ··- ··- ·	

FORM NBS-114A (1-71)								
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NSRDS-NBS 40	2. Gov't Accession No.	3. Recipient'	s Accession No.				
4. TITLE AND SUBTITLE	5. Publication	on Date						
A M. 144-1-4 T-1-1	Februar	у 1972						
A Multiplet labi	e of Astrophysical Interest		1	Organization Code				
7. AUTHOR(S)			9 Porformina	g Organization				
Charlotte E. Moo								
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		Project/	Task/Work Unit No.				
1	UREAU OF STANDARDS T OF COMMERCE I, D.C. 20234		11. Contract/Grant No.					
12. Sponsoring Organization Na	me and Address		13. Type of I Covered	Report & Period				
Same as No	o. 9		Fin	a1				
			14. Sponsoring Agency Code					
15. SUPPLEMENTARY NOTES		· · · · · · · · · · · · · · · · · · ·						
16. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significant irvey, mention it here.)	information. If docume	nt includes a s	significant				
printed here to me of 85 chemical ele intensities, excit individual lines,	tion of a current edition, tet continuing demands. The ments are listed in related ation potentials and multipland each multiplet is assign material used for the compil	leading lines in groups called mu et designations ed a number. An	n 196 atom ultiplets. are given	ric spectra Estimated for the				
The Table is prese	nted in two parts:							
Part I includes the of increasing ioni:	e multiplets, with the spect zation, and the elements in	ra of each eleme order of increas	ent being sing atomi	given in order c number.				
Part II is a Finding increasing waveleng	ng List in which all the lin gth, with their multiplet nu	es in Part I are mbers.	e entered	in order of				
The range of the Ta "Forbidden Lines" e	The range of the Table is from 2951 $\hbox{\mbox{$\mathring{\rm A}$}}$ to 13164 $\hbox{\mbox{$\mathring{\rm A}$}}$. A supplementary table of "Forbidden Lines" extends from 2972 $\hbox{\mbox{$\mathring{\rm A}$}}$ to 12645 $\hbox{\mbox{$\mathring{\rm A}$}}$.							
	order, separated by semicolons) ltiplet table; Finding list,	atomic spectra;	Multiple	t table;				
18. AVAILABILITY STATEMEN	NT	19. SECURITY (THIS REI		21. NO. OF PAGES				
X UNLIMITED.		UNCL ASS	IFIED	253				
FOR OFFICIAL D	ISTRIBUTION. DO NOT RELEASE	20. SECURIT (THIS PA	Y CLASS GE)	22. Price \$2.00				
		UNCL ASS	IFIED					

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering Comprehensive scientific papers give complete details of the work including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts

Published in three sections, available separately.

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription. Domestic, \$9.50, \$2.25 additional for foreign mailing.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription. Domestic, \$5.00, \$1.25 additional for foreign mailing.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription. Domestic, \$5.00, \$1.25 additional for foreign mailing.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription. Domestic, \$3.00, \$1.00 additional for foreign mailing.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, painphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

NBS Special Publication 305, Supplement 1, Publications of the NBS, 1968-1969. When ordering, include Catalog No C13 10·305. Price \$4.50, \$1.25 additional for foreign mailing

Order NB5 publications from

Superintendent of Documents Government Printing Office Washington, D.C. 20402