
T1A1.5/99-205

Contribution to T1 Standards Project

_____________________________________________________________________________
STANDARDS PROJECT: Coding and Performance Specifications for Multimedia

Communications on Internet Services (T1A1-15).
_____________________________________________________________________________
TITLE: Medium Bandwidth Techniques for Estimating Temporal

Delays Between Input and Output Video Sequences
_____________________________________________________________________________
SOURCE: NTIA/ITS

CONTACT: Margaret Pinson
Voice:  (303) 497-3579
Fax:      (303) 497-5323
e-mail:   margaret@its.bldrdoc.gov

Stephen Wolf
Voice:  (303) 497-3771
Fax:    (303) 497-5323
e-mail:  steve@its.bldrdoc.gov

_____________________________________________________________________________
DATE: May, 1999
_____________________________________________________________________________
DISTRIBUTION: Working Group T1A1.5
_____________________________________________________________________________
KEY WORDS: video delay, temporal alignment, medium bandwidth features
_____________________________________________________________________________
ABSTRACT: This contribution presents new techniques for estimating

temporal delays between input and output video streams from
video teleconferencing systems.  The discussion in this
contribution considers “variable alignment,” defined as an
alignment process that can assign a unique alignment offset, or
delay, to every output video frame in a given output video
sequence.  To achieve the bandwidth reduction necessary for
in-service measurements, the variable alignment techniques
presented in this contribution are applied to subsampled video
images.  We have found that a sub-sampling factor of 128 to 1
produces useful variable alignment results.  Regardless of the
sub-sampling factor used (including sub-sampling factors of 1),
there is always a possibility of misalignment.  The probability
of misalignment increases as the amount of scene motion
decreases and the video distortion present in the output
increases.  Therefore, it has been necessary to implement
artificial intelligence techniques that examine the set of most
probable alignments produced by the signal processing portion
of the algorithm.  All of the techniques presented in this
contribution can also be applied to whole field correlation
algorithms such as those given in ANSI T1.801.04.



1

Medium Bandwidth Techniques for Estimating Temporal Delays Between Input
and Output Video Sequences

1. Introduction

ANSI T1.801.04-1997 [1] describes a “variable alignment” technique where each output video
field can have a unique alignment offset, or transmission delay.  The variable video alignment
technique described in ANSI T1.801.04 requires comparisons of output video fields to input
video fields.  Hence, this technique is computationally expensive and difficult to implement as an
in-service1 measurement since perfect copies of the sampled output video fields must be sent to
the transmission system input (or vice versa).

On the other hand, ANSI T1.801.03-1996 [2] and a companion contribution [3], describe
“constant alignment” techniques where each output video field in the output sequence is assigned
the same fixed alignment offset, or transmission delay.  These constant alignment techniques
estimate video delay by correlating low bandwidth feature streams that are extracted from the
input and output video (e.g., temporal information, or TI).  Since these extracted features are very
low bandwidth, they may easily be communicated in real time between the input and output ends
using commonly available ancillary data channels.  Hence, constant alignment techniques are
suitable for real-time in-service measurements.  Constant alignment techniques track the average
video delay of the output video sequence being examined and are thus insensitive to delay
variations of individual video fields.

The purpose of this contribution is to present a real-time in-service video delay algorithm with
the desirable attributes of both variable alignment (each output video field can have a unique
video delay) and constant alignment (the ancillary data channel bandwidth required to perform
the delay measurement is much less than the original video stream).  To achieve the bandwidth
reduction necessary for in-service measurements, the variable alignment techniques presented in
this contribution are applied to subsampled video images.  We have found that a sub-sampling
factor of 128 to 1 (sub-sampling NTSC fields by 16 in the horizontal direction and by 8 in the
vertical direction) produces useful variable alignment results.

Regardless of the sub-sampling factor used (including sub-sampling factors of 1), there is always
a possibility of misalignment.  The probability of misalignment increases as the amount of scene
motion decreases and the video distortion present in the output increases.  Therefore, it has been
necessary to implement artificial intelligence techniques that examine the set of most probable
alignments produced by the signal processing portion of the algorithm.  All of the techniques
presented in this contribution can also be applied to whole field correlation algorithms such as
those given in ANSI T1.801.04.

                                                     
1 The term “in-service” is used in the sense that the input and output ends of the video transmission/storage
system under test are not at the same physical location, and there is no a priori knowledge of the input
video.



2

2. Overview of Variable Alignment Algorithm

Figure 1 presents an overview of
the variable alignment algorithm.
The algorithm requires a initial
alignment guess and an alignment
uncertainty to limit the amount of
searching that is performed.  The
initial alignment guess can be
obtained from a constant
alignment algorithm [2, 3] and the
uncertainty can be estimated as
one half of the maximum amount
of delay variation.

For each output field, the likely
set of matching input fields is
determined by correlating with
subsampled input images.  The
shape of the correlation function
determines how many input fields
are included in the likely set of
matching input fields.  A flat
correlation function (such as
produced when the motion is very
limited) results in more matching
input fields than a sharp
correlation function.

Output motion information is
used to identify probable output
field updates and repeated fields.
Using field update information to
cross check the correlation
alignment information enables
one to discard those input fields
from the set of matching input
fields that do not produce
consistent alignments.

At this point, some alignments
might still be ambiguous.  The
algorithm can be terminated or a
higher level artificial intelligence
(AI) algorithm can be used to
deduce the most likely
alignments.  This AI algorithm

imposes causality constraints and looks for patterns in the aligned fields.  For example,
examination of the data might reveal that one NTSC field type (e.g., field 1) is much more likely
than the other and hence alignments to the other field type might be discarded.  All output fields

Enter

Exit

Exit

For each output field, find the set of matching input fields
(section 3).

Choose an initial, rough constant alignment. This may be chosen
manually or calculated automatically using a different algorithm.

Specify alignment uncertainty, plus or minus, in fields.

Impose causality constraints on fields where alignment is
ambiguous (section 6).

Use output motion information to identify field updates and
repeated output fields (section 4).

Look for patterns in the aligned fields such as field repeat
statistics, constant alignment, field dominance, etc. (section 7).

Resolve ambiguous alignments using artificial intelligence
(section 8).

Cross check updates and alignments.  Align repeated output
fields simultaneously, for improved alignment accuracy

(section 5).

Leave
alignments
ambiguous?

yes

no

Figure 1.  Variable alignment overview.



3

aligned by AI techniques are tagged by the action that was performed so that these can be
distinguished from alignments determined in earlier phases of the algorithm.

3. Correlation Alignment of Each Output Field

This section describes the process that is used to select a set of matching input fields for each
output field.  These matching input fields are retained for further consideration in later stages of
the algorithm.  To reduce the ancillary data channel bandwidth required to implement the
variable alignment algorithm, the output to input field correlations are performed using
subsampled luminance images.

3.1 Subsampled, Normalized Luminance Field Generation

Before aligning fields, the valid viewing region of each field must be subsampled and
normalized.  The output video must also have been corrected for spatial shifts.  However, the
output level shift and gain do not have to be corrected since the correlation function that is being
used here is insensitive to these quantities.  In this description, the luminance field is noted as Y,
and the time n where this field occurs is denoted as tn.  Pixels of Y are further subscripted by row
and column, i and j respectively, so that an individual pixel is denoted as Y(i,j,tn).

Pixels outside of the active video area are discarded.  Assuming a 720 pixel by 243 line NTSC
field, pixels outside of the center 672 pixels and 224 lines are also discarded;  this approximates
the region displayed on a television monitor. Then, further lines and pixels are discarded until the
number of lines divides evenly by SUBSAMP_LINES and the number of pixels divides evenly
by SUBSAMP_PIXELS.

An un-normalized subsampled image (UNSn)  is formed by dividing the remaining pixels of Y
into rectangular regions, each containing SUBSAMP_LINES lines and SUBSAMP_PIXELS
pixels, and taking the mean of each rectangle.  For most scenes, choosing SUBSAMP_LINES=8
and SUBSAMP_PIXELS=16, for a bandwidth compression factor of 128, produces good
variable alignment results.

To normalize the subsampled image at time n, divide the subsampled image by the standard
deviation (stdev) of that image’s pixels, namely

subsampn = UNSn / stdev(UNSn).

3.2 Definitions

best is the alignment offset of the closest matching input field.

best_one is the alignment offset of the closest matching input field of NTSC field type 1.

best_two is the alignment offset of the closest matching input field of NTSC field type 2.

consider is the current set of matching input field alignments.

CSi is the value of the correlation function for input field i.

CS_THRES_DIFF is the correlation threshold when comparing different NTSC field types.

CS_THRES_SAME is the correlation threshold when comparing the same NTSC field types.

in_subsampi denotes the normalized, subsampled input field number i.

out_subsampj denotes the normalized, subsampled output field number j.



4

3.3 Correlation Alignment Algorithm Flowchart

Figure 2 shows the processes used to determine the set of matching input fields for each output
field.  At the end of this flowchart, the input fields that are most similar to this output field have
been identified.  If exactly one input field remains, the alignment of the output field is certain,
and the field is aligned.  If two or more input fields remain under consideration at the end of this
flowchart, then the alignment of the output field is ambiguous.

Aligning each field separately requires
three correlation steps.  First, the
output field is correlated with all
source fields under consideration.
Second, the output field is correlated
to only NTSC field type 1 input fields.
Third the output field is correlated to
only NTSC field type 2 input fields.
All of these correlation steps use the
standard deviation of the difference
between the normalized input and the
normalized output, for which smaller
values represent better alignments.

For all three steps, correlations
function values close to the minimum
correlation value are considered to be
equally valid.  The closeness
magnitude tests are implemented using
an additive confidence threshold
(CS_THRES_DIFF,
CS_THRES_SAME), with
recommended values 0.04 and 0.015 as
shown in the flowchart.  When
comparisons include different fields
(NTSC field type 1 vs. NTSC field
type 2) the confidence threshold must
be greater because of possible spatial-
temporal differences between these
two fields.  Namely, a video system
which field repeats a field 1 into a
field 2 may perform a spatial-temporal
interpolation to the latter field to
account for the different sampling of

these two fields.  As a result, the correlation values CSi are often slightly higher when comparing
different NTSC field types than when comparing the same NTSC field types.  Generation of
interpolated output fields by the video system is one contributor of alignment uncertainty since
these output fields do not have a matching input field.

3.4 Alignment Correlation Function

All of the correlation steps for determining output field alignment use the standard deviation of
the difference between the normalized input and the normalized output subsampled images.

 Enter

Discard NTSC field 1 offsets i from set consider where:
CSi > CSbest_one + CS_THRES_SAME,

CS_THRES_SAME = 0.015,
best_one = NTSC field 1 offset which minimizes CSi.

Exit

Discard NTSC field 2 offsets i from set consider where:
CSi > CSbest_two + CS_THRES_SAME,

CS_THRES_SAME = 0.015,
best_two = NTSC field 2 offset which minimizes CSi.

Initialize the alignments under consideration, consider,
to contain all source fields ± uncertainty around an initial

constant alignment offset.

For all offsets i in set consider, compute :
CSi = stdev (in_subsampi - out_subsampj), and

best = alignment offset that minimizes CSi.
Replace consider with set of alignment offsets i where

CSi < CSbest + CS_THRES_DIFF,
CS_THRES_DIFF = 0.04.

Execute for
each

out_subsampj

Figure 2.  Algorithm to align one output field.



5

Fundamentally, this is the same correlation function used to time align feature streams for
constant alignment [2, 3], except that here we are applying it to fields.  Using this correlation
function for output to input field alignment has several advantages.  The correlation function is
easy to compute and is not sensitive to DC level or gain variations in the output video.
Intuitively, the correlation function finds the point of maximum cancellation of the signal
variance.  The image normalization process described in section 3.1 is helpful because it
compensates for reduced contrast in the output video when blurring is present.

3.5 Outcome of the Algorithm

At the completion of the flowchart in Figure 2, the one or more input fields which most closely
resemble each output field have been identified.  Ambiguous alignments are common when the
output video is extremely distorted or when the input video is nearly still.

Each field is represented by a subsampled luminance image. If the recommended subsampling
values are used, these subsampled images will require approximately 1 Mbits/sec of ancillary
data channel bandwidth to make in-service video delay measurements.  Subsampling factors may
be increased or decreased according to the ancillary data channel bandwidth that is available.
Measurement accuracy as a function of ancillary data channel bandwidth will be fully examined
at a later time.

4. Locate Field Updates

This step identifies sequential output fields which align to a common input field or to a common
input frame.  This behavior may be loosely termed “field repeating” and “frame repeating”
respectively.  While section 5 will distinguish between output fields which align to a common
input field versus output fields which align to a common input frame, this section does not
differentiate between these two cases.

Contiguous sequences of identically aligned output fields will be used to reduce alignment
uncertainty.  The amount of motion present in the output video can be used to fairly reliably
differentiate field updates (i.e., new field) from field repeats (i.e., repeat of previous field).
However, the identification of field updates and field repeats is approximate since no one
algorithm has yet been found to work perfectly for any amount of scene motion, video system
output distortions, scene noise level, and measurement instrument sampling noise.  The field
classifications produced by this step will be made more robust in Section 5, which incorporates
additional information to improve their reliability.

4.1 Output Field Motion Detection

The active video area must be determined before computing motion, a Boolean array that
specifies which output fields are updates.  The subsequent calculations described here are only
performed within this active video area.  First, compute the temporal information for each pixel
using output field Y(tn) and the previous output field of the same NTSC field type Y(tn-2) as

TI2(i,j,tn) = | Y(i,j,tn) - Y(i,j,tn-2) |.

Next, compute

MOVING(i,j,t n) = { 1  if  TI2(i,j,tn)  > MOTION_THRESHHOLD, and 0 otherwise },

where

MOTION_THRESHHOLD = 30.



6

Then compute

FRACTION(tn) = meanspace [ MOVING(i,j,t n) ],

which is the fraction of pixels at time tn where TI2 detects a moderate to large amount of motion.
FRACTION(tn) is then converted to the Boolean motion(tn) as follows:

motion(tn) = { true if (FRACTION(tn) >= MOTION_FRACTION), and false otherwise },

where

MOTION_FRACTION = 0.00006

which is true when at least 0.006% of the valid region contains moderate to large amounts of
motion.  When motion(tn) is false, that field is very likely to be a repeated field (i.e., identical to
the previous field of the same NTSC field type).  Conversely, when motion(tn) is true, that field
is likely a be a true field update.  The setting of ***

With the above algorithm, a 15 frames per second codec would have the following pattern:  “…
false, false, true, true, false, false, true, true, …”  Notice that the field update is detected twice,
once by NTSC field type 1 and once by NTSC field type 2.  The difference between a given field
and the immediately preceding field (e.g. NTSC field type 1 and NTSC field type 2) is not used.
This is because the different spatially-temporal sampling locations of these two fields can
introduce errors into the field update measurement.

4.1.1 Motion Detection Thresholds

In our experience, the MOTION_THRESHHOLD should be set between 20 and 50 to produce
good field update detection performance.  As the threshold is reduced, the probability of missing
an update is reduced but the probability of falsely detecting a field repeat as an update is
increased.  The default value of 30 represents a reasonable compromise between these two types
of errors for the scenes that we have been using.  The optimal setting of
MOTION_THRESHHOLD is clearly scene dependent.  Lower thresholds can be used to detect
smaller amounts of motion provided the scene has a higher signal to noise ratio.  One must
consider all sources of noise in the output scene when setting the MOTION_THRESHOLD (e.g.,
compression noise, tape noise, NTSC encoding noise, and sampling noise).  The reader is
referred to [4] for additional information and techniques that may be helpful for determining the
proper motion detection threshold that will differentiate true pixel motion from output scene
noise.

The MOTION_FRACTION serves to make the measurement more reliable.  At the default
motion threshold of 30 for a region size of 672 pixels by 243 lines, the default value for
MOTION_FRACTION requires that at least ten pixels be above the motion threshold for the
field to be declared an update.  This prevents a single abnormal pixel difference from controlling
the measurement but enables small amounts of motion to trigger the update.

4.2 Definitions

motionj is a Boolean that specifies if output field j is an updated field; see Section 4.1.

updatesj contains the position and length of the field updates.  For each output field j:
If updatesj  = 0, then field j is identical to field j-2.  These two fields align to the same

input field.
If updatesj  = 1, then field j appears to be different from both field j-2 and j+ 2.  Field j

has a unique alignment.



7

If updatesj  > 1, then fields j, j+ 1, j+2, …, (j+updatesj -1) all align to the same input
field, but field j-2 aligns to a different field. This field is an update
followed by one or more repeats.  The value of updatesj is the number of
sequential output fields which align to the same input field.

update_rate is an estimation of the system’s field update rate based solely upon the array motion.
The value of update_rate is a whole number, representing the number of output fields
which align to one input field.  This number is chosen on the high side and is equal to 1
for systems that do not exhibit any field repeating.

4.3 Field Updates Algorithm Flowchart

Figure 3 and Figure 4 show the process used to
identify the location of field updates and runs of
repeated fields.  The variable motion identifies
fields which are probably updates. Whenever an
update is detected in one NTSC field type but
not the other NTSC field type (e.g. the update is
detected in NTSC field type 1, but not in the
fields of NTSC field type 2 immediately
preceding and following), then an ambiguous
case has occurred.  While this update pattern is
unlikely, it may occur due to either a false
update detection on one field type or a missed
update on the other field type.  In our test data,
both of these cases occurred.  To be safe, the
algorithm assumes that both the field before and
the field after the detected update are also
updated fields.

With that special case handled, the next step is
to locate updated fields followed by one or more
output fields with identical input alignments.
Variable updates holds this information and it is
established by applying pattern matching to
variable motion.

At this point recall that the purpose of detecting
field updates is not to precisely determine the field repeat rate of the video system.  Rather, the
goal is to use field update information to improve the reliability of alignment.  With that goal in
mind, a likely or probable rate of updates is computed.  Updates with lengths more than twice the
probable update rate may occur, but often this is indicative of a missed update. Updates in near
still portions of video sometimes fall below the recommended motion thresholds and are thus
missed.

If the probable update rate (i.e., update_rate in Figure 4) is “every field has a unique alignment”
(i.e., update_rate = 1), then the algorithm assumes that all repeated fields are errors.  Otherwise,
the updates that exceed twice the probable update rate are split into two or more smaller updates,
each at least as long as the probable update rate.

Enter

Compute motionj for all values of j.

Set updatesj = 1, for all values of j.

Where ever the following pattern occurs in
motionj:

motionj-1 = false
motionj = true

motionj+ 1 = false
then set

motionj-1 = true
motionj+ 1 = true

(An update was detected at tj.  The other
field type was probably updated, but not
detected.  Thus, mark both tj-1 and tj+1 as

updates.)

Figure 3.  Locate field updates.



8

If an undetected update occurred,
then splitting the long update will
be a more accurate representation
of the data.  If an update really did
not occur, little harm is done.  For
example, a codec that usually
issues updates at a six field
interval may issue fourteen
identical fields immediately
preceding a scene cut.  The length
fourteen update would be split
into two length seven updates.
The knowledge that each of these
seven fields probably align to the
same input field can still be used
to greatly improve the alignment
calculations of those seven fields
in later stages of the algorithm.

4.4 Outcome of Algorithm

At the completion of the
algorithm shown in Figure 3 and
Figure 4, a pattern of updated
fields and repeated fields has been
identified.  Because there were no
comparisons of unlike field types
(NTSC field type 1 vs NTSC field
type 2), there is no way to
determine whether the fields that
are grouped by this algorithm
align to an input field or an input
frame.  This ambiguity will be
addressed later in the
contribution.

The final pattern of updates will
include errors, both false
detections and missed updates.
One example of a falsely detected
update is a field update that is
detected by three consecutive

fields, instead of two consecutive fields.  For example, the codec outputs a single field six times,
but the first one is ever so slightly different than the rest.  In this instance, the first output field of
the sequence of six fields would be mistakenly labeled as having a unique alignment and thus
updates = { 1, 5, 0, 0, 0, 0}, when the correct update pattern is really = {6, 0, 0, 0, 0, 0}.  This
may occur in noisy areas of the scene when the motion detection thresholds are too low and noise
is detected as motion.

Missed updates will falsely suggest that a series of output fields all align to a single input field
when in fact one of the supposedly repeated output fields is an update, and the output fields after

Where ever the following pattern occurs in motionj:
motionj = true
motionj+ 1 = true
motionj+ 2 = false
…
motionj+ N = false

where motionj+k = false for all 2 ≤ k ≤ N, then field j is likely
an update, and the next N fields contain the same image.
Then, set

updatesj = N + 1,
updatesj+k = 0, for all 1 ≤ k ≤ N.

Example motion:  1,1,0,0,0,1,1,1,0,1,1,1,0,0
          (0 = false, 1 = true)

Example updates: 5,0,0,0,0,1,3,0,0,1,4,0,0,0

Find Probable Field Update Rate
Set update_rate =  the 90th percentile value of updates,

ignoring all zeros.

Exit

Split Large Updates
For all j where updatesj > 2 * update_rate,
where half = updatesj / 2, set

updatesj+half = updatesj - half
updatesj = half

update_rate
=  1 ?

No Repeats
For all output
fields j, set
updatesj = 1

yes

 no

Figure 4.  Locate field updates (continued).



9

this update align to a different input field.  For example, updates = { 10, 0, 0, 0, 0, 0, 0 , 0, 0, 0}
when the pattern should be {6, 0, 0, 0, 0, 0, 4, 0, 0, 0}.  This may occur in very low motion areas
of the scene when the motion detection thresholds are too high to detect movements that are
nonetheless perceptible to a viewer.  The last two steps of the flowchart in Figure 4 seek to
reduce the probability and impact of such errors.

5. Cross-check Updates with Correlation Alignments

This section combines the field alignments from the correlation algorithm in section 3 with the
field update pattern from section 4.  Both sets of data are improved through bi-directional cross
checks.  Identical output fields are averaged and correlated for improved alignment accuracy.
One alignment is selected for each sequence of two or more identical output fields.

5.1 Definitions

updatesj contains the position and length of field or frame updates, from section 4.

field_updatesj will be filled with the position and length of field updates.  Otherwise, this
variable is the same as updatesj.  Set field_updates = updates.  For each output field j:
If updatesj  = 0, then field j is identical to field j-1.  These two fields align to the same

input field.
If updatesj  = 1, then field j is different enough from both j-1 and j+ 1, that a common

alignment cannot be assumed (i.e., field j is a unique output field).
If updatesj  > 1, then fields j, j+ 1, j+2, …, (j+field_updatesj -1) all align to the same

input field, but field j-1 aligns to a different field.  The value of
field_updatesj is the number of sequential output fields which align to
the same input field.

choicesj is the number of input fields that could align to output field j, from section 3.

wherej,i is the possible input field alignments for output field j, numbered according to timecode
and sorted as follows:  wherej,i < wherej,i+1, 1 ≤ i ≤ choicesj, from section 3.

intersect is the set of input fields where each input field in the set is a candidate alignment for all
of the output fields in sequence being examined.

CS_THRES_AVE is the correlation threshold when comparing averaged output NTSC fields.

5.2 Cross-check Algorithm Flowchart

Figure 5 shows the algorithm used to perform the cross-checks between the correlation alignment
data from section 3 and the field update patterns from section 4.  Notice that, for simplicity, the
definition of the update pattern is narrowed here to include only cases where the sequence of
output fields appears to align to one input field. This may be loosely termed "field repeating".

First, the field update pattern is checked against the correlation alignment data. This check
identifies output field sequences that were falsely said to identically align to one input field,
when in fact these output fields align to two or more input fields. When an error is detected, each
output  field in the sequence is re-classified as a unique output field. This check sometimes (but
not always) detects instances where one or more field updates have been missed by the updates
location algorithm in section 4.  When small but perceptible differences in image content are
insufficient to trigger the MOTION_FRACTION threshold in section 4, the field alignments
from the correlation algorithm may indicate that an update has occurred.  Also, this check will



10

sometimes (but not always) detect sequences of output fields that align to one input frame instead
of one input field.

Next, correlation alignment data are checked against the new field update pattern.  For each
sequence of output fields that (according to the new field update pattern) align to one input field,
this check eliminates those input fields that are not a potential alignment for all of the output
fields.  The later steps in this flowchart (i.e., Figure 6) are only appropriate for sequences of
output fields that can all align to one input field.

In Figure 6, output fields are averaged for greater alignment accuracy and one alignment is
chosen for each sequence of output fields that all align to the same input field.  The algorithm
takes advantage of the knowledge that several output fields align to a single input field.  The
normalized, subsampled output images that contain NTSC field type 1 are averaged together to
form an averaged field type 1 image.  This averaged field type 1 image is then correlated with the
input fields under consideration.  The process is repeated for NTSC field type 2 output images.
Note that the spatial-temporal differences between the two NTSC field types prevent us from
averaging them both together. This averaging process is thus applied to output fields of each
NTSC field type separately.

intersect = { wherea,m = whereb,n, for all a, b elements of set K,
0 ≤ m < choicesa and 0 ≤ n < choicesb }

(intersect is the set of input fields that every output field in set K considers to
be an alignment candidate )

Enter

Does
intersect contain

one or more
alignments?

These output fields in set K do not
all align to the same input field.

Set field_updatesk = 1, for all k ∈ K.

Exit

This flowchart takes as input a sequence of identically aligned output fields, K.
If j is the first output field in the sequence K:

field_updatesj > 1 and set K = { k: j ≤ k < j + field_updatesj }

no

yes

Execute for each output field j
where field_updatesj > 1

Cross Check Field Alignments and Update Pattern

Figure 5.  Cross-check alignment of identical fields.



11

An extremely tight correlation uncertainty threshold (CS_THRES_AVE) with a recommended
value of 0.0002 is applied to each correlation curve as shown in Figure 6.  The averaging of
output fields reduces noise and improves the accuracy of the correlation curve, which is one
reason for the extremely tight uncertainty at this point in the algorithm.  Another reason is that
we desire to choose one alignment for the set of output fields by the end of this flowchart.  The
extremely tight correlation criteria forces the algorithm to select only those input fields that are
very close to the minimum correlation value for either NTSC field type 1 or NTSC field type 2.

Average NTSC Field Type 1 Output Fields for Greater Correlation Accuracy

Set one_subsamp to the average of all out_subsampk, where k ∈ K and k is NTSC field type 1.
ONEi = stdev (in_subsampi - one_subsamp)

best_one = alignment offset which minimizes ONEi, for all i ∈ intersect.

Exit

Keep Only the Best Correlated Alignments

best = { i: i ∈ intersect and either (ONEi < ONEbest_one + CS_THRES_AVE)
or (TWOi < TWObest_two + CS_THRES_AVE), where CS_THRES_AVE = 0.0002 }

Average NTSC Field Type 2 Output Fields for Greater Correlation Accuracy

Set two_subsamp to the average of all out_subsampk, where k ∈ K and k is NTSC field type 2.
TWOi = stdev (in_subsampi - two_subsamp)

best_two = alignment offset which minimizes TWOi, for all i ∈ intersect.

Does
best contain
exactly two

choices?

ONEbest_one

<
TWObest_two?

wherek,1 = best_one,
k ∈ K

Sort best by timecode.
For all k ∈ K, set wherek,1  to
the middle choice of all input
fields in best.  If an even
number remain, pick randomly
between the middle two.

wherek,1 = best_two, k ∈ K

choicesk = 1
k ∈ K

no
yes

yes

no

Pick One
Alignment

Figure 6.  Cross-check alignment of identical fields (continued).



12

After the preceding step, one or more valid input alignments remain. If exactly two alignments
remain, then the best alignment choice is made deterministically based on the lowest point in
either of the two correlation curves.  If an odd number of input alignments remain, then the
middle alignment is chosen.  For example, if the input alignments remaining were 02:00:58:12,
02:00:58:12*, and 02:00:58:13 (here * indicates NTSC field type 2 and the absence of a *
indicates NTSC field type 1, where field 1 occurs earlier in time than field 2), then input field
02:00:58:12* would be chosen as the best alignment.  If only one input alignment remains, it is
thus chosen.  If an even number of input fields remain (four or greater), then the best alignment is
randomly selected between the middle two alignments.

5.3 Outcome of Algorithm

At the completion of the algorithm in Figure 5 and Figure 6 for a sequence of output fields that
all align to the same input field, either that sequence has been re-classified so that each field has
a unique alignment, or one input field has been selected to align to all the output fields in that
sequence.  Unique output fields may still have an ambiguous alignment.  These output fields may
or may not have an alignment different from both the preceding and following field.  These
intermittent ambiguous alignments may be resolved by choosing the middle alignment as
outlined above, or they may be left ambiguous (as shown in Figure 1).  Alternatively, artificial
intelligence may be used to further align these ambiguous output fields.  This last option will be
considered in greater detail next.

6. Eliminate Non-Causal Alignments

Taken together, sections 6, 7 and 8 describe one method for resolving remaining alignment
ambiguities (i.e., output fields j where choicesj is not equal to one).  This section describes an
optional step that imposes causality, a reasonable assumption for most video systems.  The
algorithm finds and eliminates non-causal alignments from further consideration.  Causality
constraints are imposed on each NTSC field type separately.

6.1 Definitions

choicesj is the number of input fields that could align to output field j, from section 5.

wherej,i is the possible input field alignments for output field j, numbered according to timecode
and sorted as follows:  wherej,i < wherej,i+1, 1 ≤ i ≤ choicesj, from section 5.

ambiguous_fieldj is an output field j for which choicesj ≠ 1.

6.2 Causality Algorithm Flowchart

Figure 7 shows the process that is used to impose causality constraints on the remaining
ambiguous alignments.  First, forward causality is imposed such that the earliest possible input
alignment of an output field must be at or past the earliest possible input alignment of the
previous output field of the same NTSC field type.  Next, backward causality is imposed such
that the latest possible input alignment of an output field must be at or before the latest possible
input alignment of the next output field of the same NTSC field type.  Note that in both cases, we
might be left with no choices for some output fields.



13

7. Gather Statistics on Unambiguously Aligned Fields

This algorithm in this section determines field repeating patterns and statistics for the
unambiguously aligned output fields (i.e., those output fields j that have choicesj = 1).  These
patterns and statistics will then be used to deduce likely alignments for the ambiguous cases.

7.1 Definitions

total is the total number of output fields in the scene.

choicesj is the number of input fields that could align to output field j, from section 6.

Enter

Exit

Forward Causality
For every ambiguous_fieldj, eliminate those choices k in wherej,k
if the following is true:

wherej,k < wherej-2,1

( The alignment of a field must be at or past the earliest possible
alignment of the previous field of the same NTSC field type. )

Backward Causality
For every ambiguous_fieldj, eliminate those choices k in wherej,k
if the following is true:

wherej,k > wherej+2,choices(j+2)

( The alignment of a field must be at or before the latest possible
alignment of the next field of the same NTSC field type. )

Update choicesj accordingly.  Note that there may be no
alignments left for some output fields j (e.g. choicesj = 0)

Update choicesj accordingly.  Note that there may be no
alignments left for some output fields j (e.g. choicesj = 0)

Figure 7.  Impose Causality Constraints.



14

wherej,i is the possible input field alignments for output field j, numbered according to timecode
and sorted as follows:  wherej,i < wherej,i+1, 1 ≤ i ≤ choicesj, from section 6.

alignj contains the input field to which output field j aligns if choicesj = 1; undefined otherwise.

aligned_fieldj denotes an output field j for which choicesj = 1.

ambiguous_fieldj denotes an output field j for which choicesj ≠ 1, from section 6.

known_align is the total number of unambiguously aligned output fields in the scene.

rough_constj is the alignment of output field j assuming an initial constant alignment that is an
input to this algorithm (see Figure 1).

Statistics Gathered in Algorithm

f1_more_likely is true if 90% or more of aligned_fieldj align to input fields of NTSC field type 1,
provided at least 2% of total output fields are aligned (weak f1 dependence).

f2_more_likely is true if 90% or more of aligned_fieldj align to input fields of NTSC field type 2,
provided at least 2% of total output fields are aligned (weak f2 dependence).

f1_dominant is true if 95% or more of aligned_fieldj align to input fields of NTSC field type 1,
provided at least 20% of total output fields are aligned (strong f1 dependence).

f2_dominant is true if 95% or more of aligned_fieldj align to input fields of NTSC field type 2,
provided at least 20% of total output fields are aligned (strong f2 dependence).

choose_constant is true if a constant alignment [3] is chosen.

Variables Used to Define Each Contiguous Sequence of Ambiguous Fields

before and after are the input fields that are aligned to the output fields immediately before and
after the ambiguous section, respectively.

start and stop are output field numbers noting the beginning and ending of the ambiguous
section.

before_repeat is the number of contiguous output fields prior to start, all of which align to input
field before.

7.2 Statistics Gathering Algorithm Flowchart

Figure 8 and Figure 9 shows the processes used to gather patterns and statistics on aligned output
fields.  These statistics and patterns are then used by the algorithms in section 8 to choose likely
alignments for the ambiguous fields.



15

Enter

known_align = 0 ?

For all aligned
output fields i and j, is
aligni - alignj = i - j  ?

yes

no

Define Statistics
choose_constant = true
f1_more_likely = false
f2_more_likely = false
f1_dominant = false
f2_dominant = false

yes no

Is One NTSC Field Type Dominant?
Using aligned_fieldj output fields only, count the occurrences of
matching input fields with NTSC field type 1 and NTSC field type 2.
• If field type 1 is 95% of known_align and known_align is 20%

of total, then set f1_dominant = true; false otherwise.
• If field type 2 is 95% of known_align and known_align is 20%

of total, then set f2_dominant = true; false otherwise.

Constant Alignment
choose_constant = true
f1_more_likely = false
f2_more_likely = false
f1_dominant = false
f2_dominant = false

Field Repeat or Changing Delay
 choose_constant = false

Go to flowchart in
section 8 to choose
alignments for the

ambiguous segments.

Entire Alignment is Ambiguous
Find the output field j with the minimum value for
choicesj, do one of the following to assign before:
(1)  If wherej,1 > rough_constj, before = wherej,1 - j

(2)  If wherej,choices(j) < rough_constj,
before = wherej,choices(j) - j

Otherwise, (3)  before = rough_constj  - j

Then, assign the following:
before_repeat = 0

after = before + total + 2 (fields)
start = 1

stop = total

(Initialize before and after using rough_const,
adjusted by the least amount possible.)

Is One NTSC Field Type More Likely?
Using aligned_fieldj output fields only, count the occurrences of
matching input fields with NTSC field type 1 and NTSC field type 2.
• If field type 1 is 90% of known_align and known_align is 2% of

total, then set f1_more_likely = true; false otherwise.
• If field type 2 is 90% of known_align and known_align is 2% of

total, then set f2_more_likely = true; false otherwise.

A

Figure 8.  Identify field alignment patterns.



16

Go to flowchart in
section 8 to choose
alignments for the

ambiguous segment.

known_align < total ?

yes

no

is stop the last field?
(stop = total)

is start the first field?
(start = 1)

Hypothetical Alignment Before
Ambiguous Segment

after = alignstop+1

before_repeats = 1
before = after - (stop - start + 2)

Both Endpoints Known
before_repeats = field repeats

of alignstart-1 at or prior to
start-1 (1 or greater)

before = alignstart-1 -
before_repeats

after = alignstop+1

Hypothetical Alignment After
Ambiguous Segment

before_repeats = field repeats of
alignstart-1 at or prior to start-1
(1 or greater)

before = alignstart-1 - before_repeats
after = before + (stop - start + 2)

yes

noyes

no

Exit

Update known_align

Find An Ambiguous Segment
Assign:
start = output field number of first ambiguous field
stop = output field number of last ambiguous field

All output fields j between start and stop are
ambiguous_fieldj.  If start-1 exists, it is aligned.  If
stop+1 exists, it is aligned.

Specify location of
ambiguous segment

and determine before
and after.

A

Figure 9.  Locate ambiguous fields and resolve ambiguities.



17

8. Choose Alignments for an Ambiguous Segment

This section presents a method for utilizing the update patterns and statistics found by the
algorithms in sections 6, 7 and 8 to choose plausible alignments for the ambiguous segments.
The artificial intelligence algorithm presented here takes the patterns identified in the
unambiguously aligned output fields and attempts to replicate them on those output fields for
which alignment is still ambiguous.  This algorithm may be loosely defined as following a
constant alignment through the ambiguities, while attempting to impose a field update pattern
similar to that seen in the aligned segments.  Whenever possible, chosen field alignments either
repeat the previous field’s alignment, or go to a new future alignment.  Backward jumps in
alignment are avoided whenever possible.

8.1 Definitions

update_rate is determined by the algorithms in section 4.

The following variables are determined by the algorithms in section 7:

alignj

before and after

before_repeat

choicesj

choose_constant

f1_dominant

f2_dominant

f1_more_likely

f2_more_likely

start and stop

wherej,i

Other Variables Used Within These Flowcharts

before_constj is the extrapolated constant alignment for output field j, presuming constant
alignment starting at the alignment of output field (start -1) to input field before.  This is
the target constant alignment that the algorithm will try to approximate.

have_repeatedj is the number of contiguous output fields up to and including output field j that
all align to the same input field.  For example, if have_repeatedj = 3, then output fields j,
j-1, and j-2 all align to the same input field.

j is a loop variable from start to stop that is used to examine each output field in the ambiguous
segment.

x is an offset within wherej,x that specifies an input field under consideration when choosing a
new alignment, 1 ≤ x ≤ choicesj.

8.2 Ambiguity Resolution Algorithm Flowchart

Figure 10, Figure 11, and Figure 12 contain the overall flowchart which describes the ambiguity
resolution algorithm.



18

Enter

choicesj = 0?

This branch only
occurs when all
alignments were

discarded for being
non-causal.

Plus One Field
alignj = alignj-1 + 1 field

yesno

no yes

yes

no

Repeat Last
alignj = alignj-1

have_repeatedj-1
≤

2*update_rate
?

no yes

choose_constant
= true ?

Choose Constant Alignment
alignj = alignj-1 + 1 field

for some i,
alignj-1 + 1 field =

wherej,i  ?

If constant
alignment is

requested and
available,
choose it.

for all i, is
wherej,i < alignj-1 ?

Alignment  Must Jump Backward
alignj = wherej,choices(j)

no

yes

have_repeated = before_repeats
for all j, start ≤ j ≤ stop, before_constj = before + (j - start + 1)

j = start

If f1_dominant is true, eliminate all input alignments of NTSC field type 1.
If f2_dominant is true, eliminate all input alignments of NTSC field type 2.

B C

Figure 10.  Ambiguity resolution algorithm.



19

yes
for some i, is

wherej,i = alignj-1 ?
(can repeat last

alignment)

no

yes
wherej,choices(j) =

alignj-1 ?
 (no later alignments

exist)

no

have_repeatedj-1 < update_rate ?
(below target field repeat rate)

OR
alignj-1 > before_constj ?
(ahead of target constant

alignment)

no

yes

(f1_more_likely AND alignj is NTSC field type 2)
OR

(f2_more_likely AND alignj is NTSC field type 1)?
(opposite field preferred)

Repeat Last
Alignment

 alignj = alignj-1

yes no

wherej,choice(j) < before_constj ?
(latest alignment is prior to

constant alignment)

Find the smallest x such that wherej,x ≥ before_constj

(wherej,x is the earliest possible alignment at or past
constant alignment)

x = choicesj
(wherej,x is alignment nearest

to constant alignment)

choicesj > x (later alignment exists)
AND

wherej,x+1 field’s type is opposite of wherej,x field’s type?
(next alignment is of the more likely type)

(f1_more_likely AND wherej,x is NTSC field type 2)
OR

(f2_more_likely AND wherej,x is NTSC field type 1) ?
(opposite field preferred)

x = x + 1
(go to next alignment)

yes

no

yes

yes
no

no

Repeat Last Alignment
alignj = alignj-1

Field Repeat

Go forward to a
new alignment

B C

D E

Figure 11.  Ambiguity resolution algorithm (continued).



20

9. Results and Conclusions

Preliminary testing of the alignment algorithms was performed using video clips from the T1A1
data set [5].  This data set contains a wide range of scenes and compression systems.  Output
fields and their corresponding input fields (as determined by the alignment algorithm given here)

Find the smallest s such that wherej,s ≥ alignj-1

(s is the earliest possible alignment at or past the last field’s alignment)

x = x - 1
(use earlier alignment)

x > s
AND

wherej,x - alignj-1 > 2 * update_rate ?
(Is there an earlier choice and does alignment

x look like an unreasonably large jump
forward?)

x = x - 1
(use earlier alignment)

Choose this Alignment
alignj  = wherej,x

(This is probably a new
alignment, but may be a repeat

of the old alignment)

Update Variables
choicesj = 1

wherej,1 = alignj

Update have_repeatedj
 j = j + 1

(go to the next output field)

 j ≤ stop ? Exit

yes

no

yes

no

noyesGoes to the top of flowchart

Go backward,
closer to last
alignment

x > s
AND

wherej,x > after ?
(Is there an earlier choice and are we

past the alignment of the field
immediately after the ambiguous

segment?)

D E

Figure 12.  Ambiguity resolution algorithm (continued).



21

were sent to a video disk recorder and recorded in sequential order (output field 1, input field
corresponding to output field 1, output field 2, input field corresponding to output field 2, etc.) so
that human examiners could step through the fields and precisely note any misalignments.

As expected, the amount of motion in the scene was found to be the single largest contributing
factor for successful field alignment.  For instance, the scene vtc2mp (a full profile shot of a
woman talking) contains so little motion that the artificial intelligence algorithm (sections 6 to 8)
is called for virtually all of the output fields.  Conversely, output fields from the scene ftball (a
clip from a football game including a thrown football and a tackle) can be entirely aligned using
just the signal processing part of the algorithm (sections 3 to 5).  Alignment mistakes from the
signal processing part of the algorithm are rare.  When the artificial intelligence algorithm is
called because alignments remain ambiguous after section 5, usually the correct alignment or an
alignment very close to the correct alignment is chosen.

When field updates and repeated output fields are present and correctly identified (section 4),
cross-checking of this information with the correlation alignment data (section 5) greatly
increases the reliability of alignment estimates.  Unfortunately, the selection of the optimal
motion threshold that can be used to separate field updates from repeated fields is scene
dependent and no automated method has yet been found that can be used to set this optimal
motion detection threshold.

In conclusion, this contribution has presented variable alignment techniques that work well with
subsampled image data.  This makes it possible to implement real-time, in-service video delay
measurements that can be used to estimate the video delay of individual output fields.  All of the
techniques presented in this contribution can also be applied to whole field video delay
algorithms such as those given in ANSI T1.801.04.

10. References

                                                     

[1]  ANSI T1.801.04-1997, “American National Standard for Telecommunications – Multimedia
Communications Delay, Synchronization, and Frame Rate Measurement,” American National
Standards Institute, 11 West 42nd Street, New York, New York 10036.

[2]  ANSI T1.801.03-1996, “American National Standard for Telecommunications – Digital
Transport of One-Way Video Signals – Parameters for Objective Performance Assessment,”
American National Standards Institute, 11 West 42nd Street, New York, New York 10036.

[3]  Margaret Pinson and Stephen Wolf, “Low-Bandwidth Techniques for Estimating Temporal
Delays Between Input and Output Video Sequences,” ANSI contribution T1A1.5/99-204, May,
1999.

[4]  Stephen Voran and Stephen Wolf, "Motion-Still Segmentation Algorithm for VTC/VT
Objective Quality Assessment," ANSI contribution number T1Q1.5/91-110, January 22, 1991.

[5]  A. C. Morton, “Subjective Test Plan (Tenth and Final Draft),” ANSI T1A1 Contribution
T1A1.5/94-118R1, October 3, 1993.


