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ABSTRACT 
International recommendations for subjective video 
quality assessment (e.g., ITU-R BT.500-11) include 
specifications for how to perform many different types of 
subjective tests.  In addition to displaying the video 
sequences in different ways, subjective tests also have 
different rating scales, different words associated with 
these scales, and many other test variables that change 
from one laboratory to another (e.g., viewer expertise and 
criticality, cultural differences, physical test 
environments).  Thus, it is very difficult to directly 
compare or combine results from two or more subjective 
experiments.  The ability to compare and combine results 
from multiple subjective experiments would greatly 
benefit developers and users of video technology since 
standardized subjective data bases could be expanded 
upon to include new source material and past 
measurement results could be related to newer 
measurement results.  This paper presents a subjective 
method and an objective method for combining multiple 
subjective data sets.  The subjective method utilizes a 
large meta-test with selected video clips from each 
subjective data set.  The objective method utilizes the 
functional relationships between objective video quality 
metrics (extracted from the video sequences) and 
corresponding subjective mean opinion scores (MOSs).  
The objective mapping algorithm, called the iterated 
nested least-squares algorithm (INLSA), relates two or 
more independent data sets that are themselves correlated 
with some common intermediate variables (i.e, the 
objective video quality metrics).  We demonstrate that the 
objective method can be used as an effective substitute for 
the expensive and time consuming subjective meta-test.   

Keywords: single stimulus continuous quality evaluation 
(SSCQE), double stimulus continuous quality scale 
(DSCQS), comparison, correlation, video quality, 
image quality, subjective testing, objective testing.  

1.  INTRODUCTION 
International recommendations for subjective video 
quality assessment such as ITU-R BT.500-11 [1] include 

specifications for how to perform many different types of 
subjective tests.  These specifications include conditions 
under which subjective video quality testing should be 
performed:  lighting conditions, monitor resolution, 
monitor contrast, viewing distance, viewing angle, 
subjective scale, video presentation, the number of 
viewers to be used, and so forth.  Tests performed in 
accordance with ITU-R BT.500 yield reasonably robust 
subjective video quality measurements.  

However, multiple tests that adhere to the same testing 
methodology identified in ITU-R BT.500 may still differ 
from each other in significant ways.  Test variables such 
as time of day, physical location, viewer expectations, and 
the range of video quality displayed can all impact the 
subjective mean opinion scores (MOSs).  Thus, MOSs 
from different subjective experiments are not in general 
directly comparable, even when they are performed in the 
same laboratory using the same subjective testing 
methodology.  

As an illustrative example, consider the Full Reference 
Television (FR-TV) Phase 1 subjective test performed by 
the Video Quality Experts Group (VQEG) [2].  Each 
laboratory was given an identical copy of the two viewing 
tapes and performed the identical experiment according to 
ITU-R BT.500-8.  In this case, the Double Stimulus 
Continuous Quality Scale (DSCQS) was used, where “0” 
represents quality as good as the reference, and “100” 
represents quality much worse than the reference.   

Results from the four laboratories for the 525-line low 
quality range are plotted in Figure 1.  In Figure 1, the 
average Hypothetical Reference Circuit (HRC) quality 
(from all four laboratories taken together) is plotted versus 
the individual laboratory’s HRC quality.  Here, each data 
point represents averaging over both scenes and viewers, 
so that the confidence of each data point is very high.  
HRC quality can be thought of as the quality of a given 
video system or HRC, independent of scene.  HRC quality 
is normally a principal component, or contributor, to the 
overall variance of the subjective data.  The method of 
plotting HRC quality as shown in Figure 1 provides a 



 

clear visual means for examining differences between the 
various laboratories. 

Notice that each laboratory’s data is scaled differently 
with respect to the overall estimate of the underlying truth 
(i.e., the Average HRC Quality as shown on the y-axis).  
For example, the viewers from laboratory 7 used more of 
the quality scale than did the viewers from laboratory 3 
(i.e., the laboratory 7 quality scores exhibit a gain factor 
with respect to the laboratory 3 quality scores).  Also 
notice that the laboratory 2 quality scores are shifted to the 
right with respect to the laboratory 5 quality scores. 

 
Figure 1. VQEG FR-TV Phase-1 525-line low quality test, 

plotting the average HRC quality from all four 
laboratories taken together versus the laboratory HRC 
quality. 

 
Figure 2 is like Figure 1 except that it depicts laboratory 
HRC quality linearly mapped to average HRC quality 
using least-squares fitting.  Since the average HRC quality 
is the best estimate of the underlying truth, the linear 
scaling factors shown in Figure 2 show how each 
laboratory’s subjective scores are gained and DC-shifted 
with respect to this underlying truth.  Note that substantial 
gains and offsets may be required to bring the individual 
laboratory’s scores to one common scale (which in this 
case is defined by the Average HRC Quality as shown on 
the y-axis). 

The above example from the VQEG FR-TV phase-1 data 
demonstrates that subjective scores are relative rather than 
absolute.  In other words, one can obtain consistent 
indications from one subjective experiment to another on 
the relative quality difference between two HRCs (e.g., 
HRC 1 is lower quality than HRC 2), but absolute quality 
ratings are not in general repeatable even when the utmost 

care is taken.  Direct comparisons between subjective 
ratings from multiple subjective tests require an additional 
step, that of placing all the subjective data onto one 
common scale.  This paper presents a subjective and 
objective method for performing a common scale 
mapping.  Results from both methods are given for the 
mapping of six original subjective data sets onto one 
common scale. 

 
Figure 2. VQEG FR-TV Phase-1 525-line low quality test, 

plotting the average HRC quality versus the laboratory 
HRC quality after linear fitting. 

 
The subjective method involves the use of a subjective 
meta-test.  Carefully selected video clips from the original 
subjective tests are all combined into a large meta-test.  
The common subjective scale provided by the meta-test is 
used to estimate linear scaling factors for each original 
subjective data set.  These scaling factors are then applied 
to the entirety of the original subjective data to map all 
scores onto the meta-test’s common subjective scale.  
Throughout this paper ‘original ratings’ will refer to the 
subjective ratings associated with the original subjective 
experiment.  ‘Secondary ratings’ will refer to the 
subjective ratings associated with the SSCQE meta-
experiment performed on those same video clips.   

The second method uses an objective mapping algorithm, 
called the iterative nested least squares algorithm 
(INLSA).  This algorithm relates two or more independent 
data sets that are themselves correlated with some 
common external variables (i.e., objective video quality 
metrics).  In essence, INLSA utilizes the functional 
relationships between objective video quality metrics 
(extracted from the video sequences) and their 
corresponding subjective mean opinion scores to deduce a 



 

mapping of the subjective data onto a single common 
scale.  

2.  ORIGINAL SUBJECTIVE EXPERIMENTS 
The video sequences were selected from six different 
video quality experiments.  These six original experiments 
examined impairments from television systems, with a 
particular emphasis on MPEG-2 coding impairments.  
Some of the video systems included MPEG-1 coding, 
VHS record/playback, multiple-generation dubbing with 
1/2-inch professional tape recorders, and MPEG-2 bit-
streams corrupted with digital errors.   

Table 1 summarizes each of the six video tests, listing the 
subjective test method used, the number of viewers, the 
total number of video clips evaluated in the original 
experiment, the number of video clips selected for the 
secondary subjective experiment, and the version of ITU-
R Recommendation BT.500 that was used.  Data sets one, 
two, three, four and six are described in detail in [3], 
where the data set numbers shown in the table correspond 
to those that were used in [3].  Data set twelve was 
collected after the publication of [3] and is documented in 
[4]. 

Table 1 Original Subjective Tests 

Data 
Set 

Method Viewers Total 
Clips 

Clips 
Used 

ITU-R 
BT.500 

One DSCS 32   42 20  -3 

Two DSCS 32 105 20  -3 

Three DSCS 32 112 20  -3 

Four DSCQS 67   90 35  -8 

Six DSCQS 80   90 70  -8 

Twelve SSCQE 32   40 20 -10 

 

Data sets one, two and three employ the Double Stimulus 
Comparison Scale (DSCS) method (section 6.2.4.1 of [1]).  
Viewers are shown pairs of video sequences (the original 
reference sequence and the impaired sequence) in a 
randomized order.  The viewers are then asked to rate the 
difference between the first and second video sequence on 
a discrete seven point scale.  The viewers indicate whether 
the video quality of the second clip is much better, better, 
slightly better, the same, slightly worse, worse, or much 
worse than the first clip.  The nominal range of the mean 
opinion scores is from 0 (no impairment) to -3 (maximum 

impairment), with some chance of a positive score 
occurring (e.g., when the coded output is perceived as 
being of higher quality than the reference).  These three 
subjective experiments were performed by NTIA/ITS 
using 9 second long video sequences. 

Data sets four and six were generated by the Video 
Quality Experts Group (VQEG) during the first phase of 
FR-TV testing [2].  Data set four corresponds to the 525-
line high quality test, data set six to the 525-line low 
quality test.  These data sets employ the DSCQS method.  
Like DSCS, DSCQS viewers are shown pairs of video 
sequences in a randomized order.  Unlike DSCS, DSCQS 
viewers are shown each pair twice and then asked to rate 
the quality of each video sequences using a continuous 
scale.  The difference between these two scores is then 
used to quantify changes in quality.  The nominal range of 
this difference is from 0 (no impairment) to 100 
(maximum impairment), with some chance of negative 
differences occurring (e.g., when the coded output is 
perceived as being of higher quality than the reference).  
Data sets four and six have some overlap, with all source 
(i.e., reference) scenes and two video systems being in 
common to both data sets.  This overlap spans 20 video 
clips. 

Data set twelve employs the Single-Stimulus Continuous 
Quality Evaluation (SSCQE) method.  SSCQE viewers are 
shown an arbitrarily long video sequence nonstop.  While 
watching the video, viewers indicate their current opinion 
on a continuous slider mechanism with an associated 
scale.  Data set twelve uses hidden reference removal, a 
second stage in post-processing of the SSCQE scores that 
is also being proposed by VQEG for the upcoming 
Reduced Reference No Reference Television (RRNR-TV) 
test [5].  With hidden reference removal, the original 
video sequences are presented, but viewers are not aware 
that they are evaluating the original video.  The viewer’s 
opinion of the original video sequence is subtracted from 
the viewer’s opinion of the distorted video sequence, 
analogous to the DSCQS method.  The quality scores are 
scaled such that the nominal range of the difference is 
from 0 (worst quality) to 100 (best quality), with some 
chance of excursions above 100 (e.g., when the coded 
output is perceived as being of higher quality than the 
reference).  Data set twelve uses ten 1-minute video 
sequences run through four video systems.  The video 
sequences were split into two viewing sessions, with two 
orderings for each session.  

Notice that the original subjective scores for data sets one 
through six contains only one score for each 8-10 second 
sequence, whereas the original subjective scores for data 



 

set twelve consists of subjective ratings produced every 
half second.  Preliminary analysis we performed on an 
unpublished subjective data set provided by the 
Communications Research Centre (CRC) showed that the 
SSCQE rating located at the end of the 8-10 second video 
sequence is most highly correlated with the DSCQS score 
of that same sequence.1  This observation was verified 
using the subjective meta-test data presented in this paper 
[4].  Therefore, for all analyses, the SSCQE ratings at the 
end of the video sequence are used; and all other SSCQE 
ratings are removed from consideration.   

Table 2 summarizes the nominal dynamic range for the 
MOSs from each of the three methods that were used to 
evaluate video quality.  

Table 2 Dynamic Range of the Subjective Scales 

Method Best Quality Worst Quality 

DSCS 0 -3 

DSCQS 0 100 

SSCQE 100 0 

3.  SUBJECTIVE META-TEST METHOD 
FOR COMBINING MULTIPLE DATA SETS 

ONTO ONE COMMON SCALE 
The subjective meta-test method for combining multiple 
data sets consists of the following five steps.  (1) Carefully 
select video sequences from the six original experiments 
such that the full range of quality is represented and is 
uniformly distributed throughout this range.  (2) Combine 
these sequences into a new pool of video sequences.  (3) 
Subjectively rate the new pool of video sequences in a 
secondary subjective meta-test.  (4) Using least-squares 
fitting, compute the optimal linear scaling factors for 
mapping the original mean opinion scores of each data 
subset to the secondary mean opinion scores.  (5) Apply 
these linear scaling factors to the entirety of the original 
subjective data sets to map them onto the secondary meta-
test’s scale, which will be defined as the common scale. 

The six original video quality experiments contain a total 
of 479 video sequences.  Of these, we chose 185 distorted 
video sequences and their 30 associated reference video 
sequences for inclusion into the subjective meta-test.  Five 

                                                           
1 This data was received by means of a private communication with 

Philip J. Corriveau at Communications Research Centre (CRC), Ottawa, 
Ontario, Canada. 

scenes and four video systems were chosen for inclusion 
from each of the original subjective data sets one, two, 
three and twelve (for data set twelve, five 9-second scene 
segments were selected from the 1-minute scenes).  An 
indicator for the coding difficulty of each original scene 
was obtained by averaging the subjective mean opinion 
scores for that scene across all video systems.  Scenes 
were then chosen to evenly span the full range of available 
quality in each test.  The selection of the original video 
systems to include in the secondary test was performed in 
a similar manner. 

Data sets four and six are unique, having a high accuracy 
(i.e., a large number of viewers) and an overlap of 20 clips 
between the two data sets.  Therefore, additional clips 
were selected from data sets four and six for inclusion into 
the secondary subjective meta-test.  Thirty-five video clips 
were chosen from data set four, including all the clips that 
overlapped with data set six.  All the video clips from data 
set six were chosen except the overlapping clips with data 
set four.  Since the video content for the overlapping clips 
is truly identical (i.e., stored on a digital medium), this 
exclusion is dictated by the data analysis and not the 
unavailability of secondary subjective MOSs.  This 
exclusion was necessary in order to produce subjective 
and objective mapping functions for data sets four and six 
that were independent of each other.  Even with the 
exclusion, data set six had twice as many clips as data set 
four, which is appropriate since data set six spanned about 
twice the range of quality as data set four.  

Having selected our pool of 185 video sequences, we 
performed the subjective meta-test using SSCQE with 
hidden reference removal.  To simplify analysis, the five 
scenes from each data set were treated as a 45-second 
super-scene.  For data sets four and six, which had 8-
second video clips, an extra 5 seconds of video was 
inserted at the beginning of the super-scene to fill out the 
45 seconds (the scores from these extra 5 seconds were 
not intended to be analyzed).  Test presentation ordering 
was randomized over both super-scenes and video 
systems, with the added constraint that the same super-
scene or video system would never appear twice in a row.  
A panel of 20 viewers was split into two groups, with each 
group seeing one of the two possible orderings.  Each 
viewing session was approximately one half hour in 
duration. 

After all meta-test data had been collected and processed 
for hidden reference removal, the subjective SSCQE score 
at the end of each of the 185 video clips was retained and 



 

all other SSCQE scores were discarded.  A first order 
linear predictor was trained for each of the six data subsets 
separately, using the original subjective ratings as the 
predictor variable (x-axis) and the secondary subjective 
ratings as the response variable (y-axis).  The resulting 
gains and offsets were then used to map all of the original 
subjective data sets onto the secondary mean opinion 
scale. 

The drawback of the subjective meta-test procedure is the 
time, expense, specialized hardware, and expertise that is 
required.  The addition of a new data set would also 
require repeating the entire meta-test process again, with 
each subsequent meta-test becoming longer and more 
involved than the one before.  Let us now consider a much 
less expensive alternative, a purely objective means for 
combining multiple data sets onto one common scale. 

4.  OBJECTIVE METHOD FOR COMBINING 
MULTIPLE DATA SETS ONTO ONE 

COMMON SCALE 

4.1  Iterative least squares algorithm 
The iterative least squares algorithm (INLSA) [6] 
objectively maps multiple subjective data sets onto a 
single scale by means of some common external variables 
(i.e., the video quality metrics).  INLSA contains two 
least-squares problems.  One attempts to homogenize 
heterogeneous data sets through the use of a single first-
order correction for all of the data points in each data set.  
The other solves for the approximate linear combination 
of the parameters, across all data sets.  By iterating over 
these two least-squares problems, the algorithm provides 
an optimal procedure for the simultaneous computation of 
the model weights and subjective data set scaling factors. 

Before applying INLSA, the original subjective MOSs 
from each data set should be normalized to lie between 
zero and one, where zero represents no impairment and 
one represents maximum impairment.  This provides a 
common scale and serves as a good starting point for 
proper convergence of INLSA.  This normalization is 
accomplished by the transformation 

 si = (si
o – besti) / (worsti – besti),  (1) 

where si
o is the original score vector for the ith subjective 

test, si is the corresponding normalized score vector on [0, 
1], besti is the no impairment value of the ith original 
subjective scale, and worsti is the maximum impairment 
value of the ith original subjective scale.  For example, 
besti = 0 and worsti = -3 for DSCS (see Table 2). 

Successive iterations of INLSA perform three steps.  Step 
one holds the objective parameter weights constant and 
tries to bring all subjective scores onto a common scale.  
This least-squares treatment provides a single first-order 
correction for all of the scores in each subjective test, 

 s̃i = aisi + bi1  (2) 

where si is the normalized score vector on [0, 1] for the ith 
subjective test from equation (1), s̃i is the corresponding 
corrected score vector, and 1 is a column vector of ones.   

Step two holds the data set weights (ai, bi) constant and 
searches for the optimal combination of video quality 
parameters.  Given r video quality parameters and n video 
sequences taken from m different subjective tests, form r 
column vectors pi, i=1 to r, where each column vector has 
length n.  Thus, pi contains the values of the ith parameter 
for the n video sequences.  We then build the n by r 
parameter matrix  

 P = [p1,p2,…pr]. (3) 

Arrange the n corresponding subjective scores from 
equation (2) into the length n column vector s̃.  We can 
then solve the least-squares problem 

 s̃ ≈ ŝ = Pw (4) 

to find the set of weights w that describe the linear 
relationship between the parameters and subjective scores.  
Equation (4) defines the second step used by the iteration 
process. 

As defined so far, INLSA has two excess degrees of 
freedom (one ai and one bi) that preclude a unique 
solution.  This situation is easily remedied by constraining 
aj = 1 and bj = 0, for some value of 1 ≤ j ≤ m (i.e., for the 
jth subjective video quality test).  The third step enforces 
this constraint by shifting and scaling {ai}i=1..m, {bi}i=1..m, 
and w.  Thus, when INLSA completes, all subjective 
scores are scaled to the jth subjective video quality test, 
which has been normalized to [0, 1] by equation (1). 

Figure 3 depicts steps one and two of INLSA.  The least-
squares problem defined by equation (2), depicted on the 
left, identifies appropriate values for {ai}i=1..m, {bi}i=1..m, 
while the least-squares problem defined by equation (4), 
depicted on the right, identifies w.  INLSA iteratively 
performs these steps to improve the estimates for {ai}i=1..m, 
{bi}i=1..m, and w until the convergence criteria have been 
met.   

The above summary omits an important piece of INLSA 
[6].  The subjective scores s and the combined parameters 



 

ŝ are both noisy measurements of the true underlying 
MOSs.  The subjective scores s have errors because they 
are estimated means based on a finite number of viewers 
influenced by environmental factors unique to that 
particular video quality test.  The video quality parameters 
have errors because they are only estimators of the true 
underlying perceived video quality.  So, rather than 
implementing a standard least-squares solution, we would 
like to be able to apportion the least squares fitting error 
between both sources.  To this end, INLSA utilizes a 
Direct Estimation (DE) algorithm [7] to find {ai}i=1..m, 
{bi}i=1..m when given a cost-weighted error power ratio that 
specifies how to distribute the total fitting error between 
the subjective scores and the parameters.  The DE 
algorithm provides a low complexity closed form solution 
by restricting the problem to the utilization of a single 
piece of side information (cost-weighted error power 
ratio) and estimating only a scalar gain and bias.  For the 
results in this paper, we choose to distribute the fitting 
error equally between the subjective scores and video 
quality parameters (i.e., error power ratio is equal to one 
in the DE algorithm). 

 
Figure 3. Block diagram depicting one iteration of INLSA. 

 

Without loss of generality and to simplify analysis, the 
combined data set produced by INLSA was scaled using a 
first order least-squares fit to the secondary subjective 
data set.  The resulting coefficients were applied to the 
INLSA gain and offset values as well as the original 
subjective data.  Thus, the gains and offsets produced by 
INLSA are placed on the same scale as the secondary 
meta-test data (i.e., the SSCQE zero to 100 point scale 
shown in Table 2).  The Pearson correlation coefficient 
between the INLSA mapped subjective data for all six 

data sets and the secondary meta-test data is not impacted 
by this scaling. 

4.2  Objective video quality metrics 
The objective video quality parameters used to train 
INLSA were taken from our “General” video quality 
model.  This model was specifically developed by ITS to 
work over a very wide range of video quality (i.e., low bit 
rate video conferencing to high end television 
applications).  The General model [3] can be calculated 
using the Video Quality Metric (VQM) software [8].  This 
model was trained on 1563 video clips taken from eleven 
video quality data sets.  Original subjective data sets one 
through six were part of the eleven data sets used to train 
the General model [3] (data set twelve was collected after 
the General model was finalized and hence was not used 
for training). 

Table 3 identifies the ability of the General model to 
predict the original and secondary subjective data.  The 
values listed in Table 3 are calculated as the root mean 
square error (RMSE) of a first order linear regression, run 
with the general model as the predictor variable (x-axis) 
and either the scaled original subjective data (i.e., the 
SSCQE zero to 100 point scale shown in Table 2) or the 
subjective meta-test data as the response variable (y-axis).  
Since all subjective data have been placed onto the same 
100-point scale, the RMSE values in this table can be 
directly compared to RMSE values occurring later in this 
paper. 

Table 3 RMSE of General Model to Scaled Original Data and 
Secondary Data 

Data Set General to Scaled 
Original Data 

General to 
Secondary 
Data 

One   6.37   5.37 

Two   7.93 10.04 

Three   6.67   8.62 

Four   3.80   5.94 

Six   6.73   7.65 

Twelve 12.25 11.84 

All  8.62  9.27 
 
Because the total variance of each original data set is 
different (i.e., each original data set spans a different 
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range of video quality), the Pearson linear correlation 
coefficient does not tell the whole story.  For example, 
when the variance of a subjective data set is small (e.g., a 
small fraction of the full range of the subjective scale), a 
poor-looking correlation coefficient (e.g., 0.7) could 
produce accurate estimates in a RMSE sense.  Thus, 
RMSE can complete the picture because it provides an 
estimate to the prediction errors with respect to a common 
video quality scale, which in our case is the 100-point 
secondary meta-test scale.  For those unfamiliar with 
RMSE, this is an approximation of the standard deviation 
of the residuals (or observed errors) when the predictor 
variable is used to estimate the response variable [9].       

5.  RESULTS 

5.1  Subjective meta-test results 
The calculated meta-test scaling factors are listed in Table 
4, along with the RMSE associated with each linear 
regression.  This table includes the 95% confidence 
interval for each weight (i.e., gain and offset).  Notice that 
the scaling factors for data sets one, two and three (which 
used the DSCS method) are very similar.  The gains for 
data sets four and six (which used the DSCQS scale) are 
not as consistent and may be due to original viewers’ 
adjustment of their ratings based on the range of quality in 
the test.  Since the range of quality in original data set six 
is about twice that of data set four, viewers may have 
tended to expand their ratings in data set four to fill the 
scale (i.e., apply a gain factor).  Thus, when data set four 
is placed on the secondary scale, it must have a smaller 
gain than data set six.  Note that even though data set 
twelve and the secondary meta-test data used the same 
SSCQE scale, there is a significant gain required to map 
data set twelve to the meta-test scale. 

Table 4 Subjective Meta-test Mapping:  Scaling Factors & 
RMSE 

Data Set Gain Offset RMSE 

One 18.59 ± 2.64 98.08 ± 4.69 4.55 

Two 18.21 ± 2.53 98.08 ± 3.85 5.55 

Three 17.82 ± 4.57 96.41 ± 7.51 9.60 

Four -0.65 ± 0.18 94.19 ± 3.07 5.05 

Six -0.91 ± 0.10 97.79 ± 2.69 5.70 

Twelve  0.80 ± 0.16 12.93 ± 9.50 7.24 

5.2  INLSA results 
With the scaling factors produced by the subjective meta-
test specified, let us now move to INLSA.  In this section, 
INLSA will be evaluated in terms of its ability to replicate 
the subjective meta-test’s mappings.  We initialized 
INLSA two different ways to obtain greater understanding 
of the objective mappings this algorithm provides (this 
same examination would also have been appealing for the 
meta-test, but was not possible due to time and expense).  
The two initial conditions we looked at for INLSA were: 

1. General model parameters run on the 185 clips 
present in the secondary meta-test. 

2. General model parameters run on the 185 clips 
from the secondary meta-test plus an additional 274 
video clips that were not in the secondary meta-test.  
This set of 459 video clips includes the entirety of 
the six original subjective data sets (except for the 
20 overlapping clips from data set six, which were 
excluded for previously mentioned reasons). 

The INLSA scaling factors from running INLSA on the 
185 video clips selected for the secondary meta-test and 
the seven parameters of the General model are presented 
in Table 5.  This corresponds to a scenario of choosing 
between a subjective meta-test and INLSA, where both 
use the same subsets of original video clips.  The gains 
and offsets that lie within the 95% confidence interval of 
the subjective meta-test’s values (Table 4) are identified 
by check marks.  The RMSE for each data set was 
calculated by directly differencing the INLSA mapped 
original subjective data with the secondary subjective 
data.2  Keep in mind that the RMSE values in Table 4 
serve as a lower bound; the INSLA RMSE values cannot 
be smaller than those values.   

Table 5 INLSA Mapping Using 185 Video Clips :  Scaling 
Factors and RMSE 

Data Set Gain Offset RMSE 

One 15.54 99.80 √ 8.66 

Two 16.25√ 97.28 √ 6.12 

Three 21.01√ 100.76 √ 10.15 

Four -0.91 94.93√ 6.65 

Six -0.95√ 96.62√ 6.40 

Twelve 0.79√ 18.05√ 8.74 

                                                           
2 Notice that this RMSE calculation differs from that performed for 

the subjective meta-test.  



 

Table 6 lists the results when training INLSA on the 
aforesaid 459 video clips and the seven parameters of the 
General model.  This corresponds to a scenario of 
choosing between a subjective meta-test spanning less 
than half of the available video clips (presumably for 
economical reasons) and INLSA utilizing all available 
video clips.  Again, the gains and offsets that lie within the 
95% confidence interval of the subjective meta-test’s 
values are identified by check marks.  For RMSE, the 
resultant INLSA mapping was evaluated using the 185 
video clips that were present in the secondary meta-test. 

Table 6 INLSA Mapping Using 459 Video Clips:  Scaling 
Factors and RMSE 

Data Set Gain Offset RMSE 

One 15.18 99.14 √ 8.67 

Two 16.27 √ 95.05 √ 6.01 

Three 22.52 101.05 √ 10.89 

Four -0.75 √ 93.98 √ 5.71 

Six -0.95 √ 97.18 √ 5.89 

Twelve 0.80 √ 17.78 √ 8.85 
 
Table 7 compares the relative correlation and RMSE 
performance of the meta-test and INLSA methods, where 
all comparisons are with respect to the secondary meta-
test data (considered as one large data set).  When 
examining this table, recall that the subjective meta-test 
has the highest possible correlation coefficient and the 
lowest possible RMSE.  As all fits are linear, no fit can do 
better than the meta-test fit. 

Table 7 Relative Correlation and RMSE Performance of Each 
Algorithm When Compared with Secondary Meta-test 
Data 

Algorithm Correlation RMSE 

Subjective meta-test map 
using 185 video clips 

0.936 5.62 

INLSA map using 459 
video clips 

0.914 6.90 

INSLA map using 185 
video clips 

0.910 7.20 

 
The examination of classification errors gives us another 
means of evaluating INLSA.  Classification errors result 
when the mapped original subjective data and the 

secondary meta-test data lead to different conclusions on a 
pair of video clips.  Classification errors are recommended 
in [10] as a means of evaluating the effectiveness of a 
VQM.  The method used herein differs from [10] in that 
two subjective data sets are being compared with one 
another, rather than a subjective data set being compared 
with an objective data set.  When the subjective quality 
scores of two video clips (A and B) are compared, three 
classifications are possible:  A can either be greater than, 
identical to, or less than B, given the 95% confidence 
intervals for each data point.  Let mAj and cAj be 
respectively the mean and 95% confidence interval for 
video clip A in subjective data set j (original or 
secondary); and likewise for video clip B.  When mAj + cAj 
< mBj – cBj we declare that A < B; when mAj - cAj > mBj + 
cB we declare that A > B; and in all other cases we declare 
that A = B.  

Classification errors result when the classification 
indicated by the mapped original data differs from the 
classification indicated by the secondary data.  Four 
categories of results are possible: 

Correct Decision:  A correct decision is made when the 
secondary data and the mapped original data both indicate 
the same classification. 

False Differentiation:  A false differentiation occurs when 
the secondary data concludes that A = B but the mapped 
original data concludes that A < B or A > B. 

False Tie:  A false tie occurs when the secondary data 
concludes that A < B or A > B but the mapped original 
data concludes that A = B. 

False Ranking:  A false ranking occurs when the 
secondary data concludes that A < B but the mapped 
original data concludes that A > B, or vice versa. 

For each method of combining multiple data sets, Table 8 
lists the percentage of pair-wise comparisons, where 
A ≠ B, that fall into each classification.  Keep in mind that 
the error classification distribution for the subjective meta-
test serves as a lower bound.  

Of the four types of classification errors, false ranking is 
probably the most objectionable.  Notice that INLSA had 
only 0.08% more false rankings than did the subjective 
meta-test.  For all comparisons, the 459-clip INLSA 
mapping performed only slightly better than the 185-clip 
INLSA mapping; and both perform respectably with 
regards to reproducing the subjective meta-test’s mapping. 



 

Table 8 Relative Classification Error Performance of Each 
Algorithm When Compared with Secondary Meta-test 
Data 

Algorithm Correct 
Decision 

False 
Tie 

False 
Differ-
entiation 

False 
Rank-
ing 

Subjective 
meta-test 
map using 
185 video 
clips 

76.6% 5.1% 18.2% 0.08% 

INLSA map 
using 459 
video clips 

74.0% 7.0% 18.8% 0.16% 

INLSA map 
using 185 
video clips 

73.8% 7.2% 18.8% 0.16% 

 

5.3  Overlap analysis 
The mappings produced by the subjective meta-test have 
been presumed to define the “true” mappings, within the 
estimated confidence bounds as determined by the 
subjective data.  In this section, we will evaluate the 
performance of the subjective meta-test and INLSA 
mappings using another independent means.  This 
independent method is only available for the 20 
overlapping video clips that are in common to data sets 
four and six.   

The original subjective scores for these 20 video clips 
were fed into a least squares fit, where the ratings from 
data set four were used to predict the ratings from data set 
six.  Table 9 lists the resulting linear prediction 
coefficients along with their 95% confidence intervals.  
The relative gain and offset between data sets four and six 
can also be computed using the mapping weights in Table 
4, Table 5, and Table 6, as follows: 

 Relative Gain = g4 / g6, (5) 

 Relative Offset = (o4 – o6) / g6, (6) 

where gi is the ith data set’s gain, and oi is the ith data set’s 
offset.  These relative gains and offsets are also shown in 
Table 9. 

Examining Table 9, the relative gains and offsets between 
data sets four and six calculated from both INLSA 
methods and the subjective meta-test method all lie within 

the 95% confidence intervals produced by the overlap 
analysis.  While INLSA appears to yield results that are 
closer to the overlap results, we cannot determine whether 
either method (meta-test or INLSA) is better or worse than 
the other. 

Table 9 Relative Gain and Offset between Original Data Sets 
Four and Six, Calculated Four Different Ways 

Algorithm Relative 
Gain 

Relative 
Offset 

Overlap analysis map 
using 20 original video 
clips 

0.919 ± 0.25 2.41 ± 3.73 

Subjective meta-test 
map using 185 video 
clips 

0.714 3.96 

INLSA map using 459 
video clips 

0.789 3.37 

INLSA map using 185 
video clips 

0.958 1.78 

 

6.  CONCLUSIONS 
We have shown that subjective mean opinion scores from 
different video quality experiments cannot in general be 
compared without first mapping all scores to one common 
subjective scale.  This is true even when the subjective 
experiments follow exactly the same subjective testing 
procedures.  In other words, subjective mean opinion 
scores do not provide absolute quality ratings, but merely 
provide relative quality ratings of one video system or 
scene with respect to another.  In order to better utilize 
results from multiple subjective tests for the development 
and evaluation of objective video quality metrics, all 
subjective quality scores must first be mapped to one 
common scale. 

We have presented two methods for performing this 
mapping.  One method uses a secondary subjective meta-
test and is very expensive and time consuming.  The other 
method uses objective video quality metrics together with 
a pure mathematical algorithm called INLSA that is 
inexpensive and easy to compute.  Six subjective data sets 
were placed onto one common scale using both the 
subjective meta-test method and the INLSA method.  
Except for differences in the mapping gains for two of the 
six data sets, the INLSA gains and offsets agreed with the 
meta-test gains and offsets within the estimated precision 



 

of the meta-test.  For one of the subjective data sets where 
the gain disagreed, a different independent analysis based 
on overlapping clips that were included in this data set 
showed that the INLSA gain was reasonable even though 
it differed from the meta-test gain.  In conclusion, we have 
shown that INLSA can be a very effective and cost saving 
tool for combining multiple subjective data sets onto one 
common scale. 
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