
THE DEVELOPMENT AND EVALUATION OF AN OBJECTIVE VIDEO QUALITY ASSESSMENT
SYSTEM THAT EMULATES HUMAN VIEWING PANELS

S.D. Voran, S. Wolf

Institute for Telecommunication Sciences, United States

Abstract the appropriate video quality level for a given video

The Institute for Telecommunication Sciences
is conducting research to develop an objective video for a video quality assessment system that utilizes
quality assessment system that emulates human
perception.  The system should return results that
agree closely with quality judgements made by a large
panel of viewers.  Such a system is valuable because it
provides broadcasters, video engineers and standards
organizations with a means for making meaningful
video quality evaluations without convening viewer
panels.  The issue is timely because compressed digital
video systems present new measurement questions that
are largely unanswered.  We describe our development
procedure, present some results, and evaluate a
prototype version of the video quality assessment
system.

1. Introduction

The traditional performance measurements
for video transport and storage systems use fixed test
signals and assume that the system under test is
time-invariant[1].  While these signals and the
associated measurements are indispensable for the
characterization of the electrical performance of
time-invariant, analog video systems, the
measurements often do not correlate well with video
quality as perceived by the end users of the video
system.  For example, weighted signal-to-noise ratio
does not give an accurate indication of image quality
when the noise is correlated with the image, as is the
case with predictive video coders[2].

In recent years, the problem has become more
complicated and wide-spread.  Video signals are now
commonly transmitted and stored in compressed
digital form with a possible resulting loss of quality.
Effective compression algorithms are dynamic, with
the input video signal dictating the overall behavior of
the algorithm through many sub-algorithms that
perform motion prediction, adaptive transforms, and
adaptive quantization, to name only a few.  The
resulting video systems are clearly time-varying and
signal dependent.  Static, deterministic test signals
cannot provide an accurate characterization of their
performance on program material.

In a broadcast environment, digital video
equipment must provide virtually flawless imagery.
In other applications, larger distortion levels are often
tolerated in order to allow video communications over
lower bit rate digital channels.  An accurate and
repeatable characterization of these different
distortion levels will allow users to specify and verify

application.
 The forgoing observations motivate us to look

actual video signals.  This approach provides a
realistic measurement environment and allows for
in-service measurements of video systems.  The
system should work well for all possible video scenes
and for a wide range of analog and digital video
systems.  It should mimic the human visual and
perceptual system, so that measured video quality
agrees with video quality as perceived by the viewer
who actually receives the video signal.  In short, we
seek to measure the video quality of program material
while it is being delivered, in a way that correlates
with the subjective evaluations made by those who
actually view the video.

To meet these goals, we must incorporate
knowledge of human perception in the design of the
assessment system.  Our perception-based
development process is described in Figure 1.  A set of
test scenes is selected and impaired by imperfect
video systems.  From the video, we extract a set of
candidate objective measurements that seek to
quantify the perceptual impact of the video scene
impairments.  A panel of viewers watches the same
set of test scenes and their subjective judgements of
the impairments are recorded.  The final step in the
derivation process is a joint statistical analysis of the
objective and subjective data sets.  This analysis
reveals which objective measurements are
meaningful, and how they might be combined to
create an objective metric that emulates human
perception.

2. Development Summary

If an assessment system is to work for a wide
range of scenes, then scenes of sufficient variety must
be used in its development.  The spatial and temporal
information content of the scenes are critical
parameters.  In the analog domain, the spatial
information content governs the relationship between
system passband and video quality.  In digital
systems, information content determines sample rates
and plays a crucial role in determining the amount of
video compression that is possible, and consequently,
the level of impairment that is suffered when the
scene is transmitted over a fixed-rate digital channel.
In order to derive the most general possible system,
our library contains 36 scenes with widely varying
amounts  of spatial and temporal information.
Examples include sports events, news
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a continuously evolving, multi-colored,
multi-dimensional signal.  Useful measures must take
note of this human interpretation and mimic it to the
extent possible.  Thus, our candidate set of objective
measures includes those designed to measure
temporal, luminance, chrominance, and spatial
distortions.  Chrominance distortions are
characterized after transforming luminance and
chrominance values to the International Commission
on Illumination (CIE) LUV color space.  In that 3-
dimensional space, each color axis is perceptually
independent and psychometrically uniform[4].
Representative measures of spatial and temporal
distortion are given in the following section.  As
expected, it is a mixture of these measurements that
provides the best overall characterization of video
quality.  A detailed description of the set of candidate
measurements is available[5].  Further details on the
development of the assessment system are also
available[6]. 

3.  The Linear Model and Selected
 Measurements

The final stage of the development process
involves joint statistical analysis of the subjective and
objective data sets.  This step singles out a subset of
the candidate objective measurements that provides
useful and unique video quality information.  When
combined by an appropriate mathematical structure,
this subset of measurements provides predicted scores
that correlate well with the true scores obtained in the
subjective tests.  Potential combining structures
include linear and quadratic predictors, hybrid linear-
nonlinear decision algorithms  (possibly adaptive), and
Bayesian inferencing.  At this time, we consider only
the simplest of all combining functions: the linear
combination.  Thus, we are looking for p
measurements {m } and p+1 constants {c }, that willi     i

allow us to calculate

(2)

For the search procedure, we adopt the least squares
error criterion,

(3)

where n denotes the number of video sequences
involved in the test.  If the p measurements are given,
then the standard least-squares solution can be used.
In this case, the measurements are not given, they
must be selected from a larger set.  Our selection
algorithm uses 128 scenes and iterates between a
selection step and a least-squares solution step to
arrive at a nearly optimal set of measurements.

Here we present a third-order solution:

(4)

The first measurement selected is:

(5)

where O  denotes the n  frame of the original videon
th

sequence, D  is the n  frame of the degraded videon
th

sequence, S(•) indicates the Sobel filtering
operation[7], and std  indicates that a standardspace

deviation of pixel values is computed.  The numerical
scale factor serves to normalize the variance of this
measurement.

Since m  is computed at each of the 2701

frames of the 9 second video sequence, it returns a
sequence of 270 values.  Each viewer returns a single
measure for the entire 9 second sequence.  Since our
goal is the emulation of the human visual and
perceptual systems, our next step is to compress the
sequence down to a single value, using an algorithm
that might approximate the algorithm viewers use.
The selection of such "time collapsing functions" is an
integral part of our measurement selection algorithm.
For m , we find that the RMS value of the time series1

provides the measurement that agrees best with the
subjective data.

The Sobel filtering operation enhances edges
and other high frequency content in the video frame.
The standard deviation returns the non-dc energy of
the filtered frame.  Thus, m  is a normalized1

measurement of how the high frequency spatial
energy is affected by the video system under test.
When D  matches O  exactly, the measurement valuen  n

is zero.  The absolute value function ensures that
either a loss (eg: blurring) or a gain (eg: false edges) of
high frequency image content will cause a positive
swing in m .  In light of this interpretation of m , we1         1

categorize it as a "spatial measurement".  This helps
to differentiate m  from m  and m , which fall into the1  2  3

class of "temporal measurements"; those that measure
how the video system impairs the smooth flow of time
and motion.  

The remaining two measurements are given
as:

(6)

Here RMS(F) returns the RMS value of the pixels of
frame F.  Notice that both of these measurements are
based on the input and output first-order temporal
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frame differences: O -O  and D -D .  This temporal is .947, which happens to be higher than the modeln n-1  n n-1

differencing operation allows m  and m  to measure correlation on the training data.2  3

how the video system distorts time and hence motion. This commendable predictive performance
The time collapsing function for m , given by f , indicates that the model fits more than just the2    time

involves high-pass filtering the time series before training scenes.  It is clear, however, that there are
calculating its standard deviation.  For m  we simply scenes that present a significant measurement3

take the maximum, or "worst case" value of the time challenge.  This is not surprising in light of the wide
series.  It seems quite reasonable that the human range of scenes and impairments that these 64 data
perceptual system would also work on a "worst case" points represent.  As an example, bit errors in a highly
basis, at least for video sequences of 9 second compressed digital video link can cause a large colored
duration. block to appear for 1 or 2 seconds.  This impairment is

Having selected a set of measurements, it dramatically different from effects of low SNR in an
remains only to find the four constants that define analog system, often described as "snow".  Yet the
their best linear combination.  In order to test the assessment system described by equations 4 through
generality of our solution, we randomly select half of 8 is dealing with both of these conditions along with
the 128 video scenes as training scenes and the other many others.
half become testing scenes.  We calculate the linear When the video system under test is a
regression of the three measurements on the true distribution or broadcast channel, access to both input
scores over the 64 scenes in the training group.  The and output video must be considered.  In order to
solution is: implement the assessment system, one must transmit

c  = 4.7485 c  = -.9553 (7)0  1

c  = -.3331 c  = -.3341 .2  3

Since the measurements have been normalized for
unit variance, we can interpret the magnitudes of c ,1

c , and c  as indications of the relative importance of2   3

m , m , and m  in modeling the true scores.1  2   3

4.  Model Fit and Prediction Performance  

Equations 4 through 7 together describe an
objective model for subjective video impairment
scores.  Figure 2 is a scatter plot showing the
relationship between true scores and those of the
model.  The spread of the 64 data points about the line
y=x is a measure of the goodness-of-fit of the model.
This third-order linear model explains 84.2% of the
variance in the true scores.  Equivalently, the
coefficient of correlation between the model scores and
the true scores is (.842) =.918.  As a consequence of½

the least squares solution, the errors between the true
scores and the modeled scores have zero mean.  The
standard deviation of the errors is .53 impairment
units.

Now we consider our model as a video quality
assessment system that provides predictions of true
subjective scores and we evaluate its performance on
the 64 testing scenes.  Since these scenes did not enter
into the regression equations, they can help us to
verify the generality of our result.  First we apply a
clipping function to prevent predictions outside the
valid range:

Figure 3 shows the relationship between true and
predicted scores for the 64 testing scenes.  For this
particular set of scenes, the predictions are slightly
biased to the low side, with an average error of .27
impairment units.  The error standard deviation is .43
impairment units.  The coefficient of correlation

a small amount of side information from one end of
the channel to the other.  In particular, for each frame
we can send the three scalar values; std (Sobel(O )),space n

RMS(O -O ), and std (O -O ), from the input ton n-1   space n n-1

the output.  This requires an uncoded data rate of
roughly 1.5 Kbps.  Depending on the type of system
being tested, this data might be carried in the vertical
blanking interval.  The measurements m , m , m  and1  2  3

the predicted score can then be computed at the
output end of the channel.

5. Concluding Remarks

We have presented a method for deriving an
objective video quality assessment system that
emulates human perception.  The prototype system
shows much promise, with prediction errors on the
order of .5 impairment units when tested on a set of
64 scenes.  We continue with research to improve our
model, strengthen and test its predictive power, and
enhance its generality.  Components of this
assessment system are currently being considered for
inclusion into the draft standard of "Analog Interface
Performance Specifications for Digital Video
Teleconferencing/Video Telephony Service" by the
American National Standards Institute (ANSI)
Accredited Standards Committee T1, Working Group
T1Q1.5, Video Teleconferencing/Video Telephony Sub-
working Group.  The research described here is being
conducted at the Institute for Telecommunication
Sciences in Boulder, Colorado under sponsorship of
the U.S. Department of Commerce.  In addition to the
authors, research participants include Arthur
Webster, Margaret Pinson, Coleen Jones, and Paul
King, who are members of the System Performance
Standards Group.




