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Abstract The primary motivation for characterizing the electrical

The Institute for Telecommunication Sciences (ITS) is maintain picture quality by controlling measurable electrical
conducting research to derive objective measures of video quality
that emulate human perception.  These measures should agree
closely with quality judgements made by a large panel of viewers.
The measures are valuable because they provide video designers
and standards organizations with means for making meaningful
quality evaluations without convening viewer panels.  The
derivation of these measures involves the following steps.  A set of
test scenes is selected and distorted.  Next, we extract a set of
candidate objective measurements that quantify the video scene
distortions that are thought to be important to the human visual
and perceptual systems.  A panel of viewers watches the same set
of test scenes and their subjective judgements of the distortions are
recorded.  The final step in the derivation process is a
simultaneous statistical analysis of the objective and subjective
data sets.  This analysis reveals which portion of the objective data
set is meaningful, and how the objective data should be combined
to create an objective metric that emulates human perception.
After describing the need for these measures, this paper provides
a detailed description of the derivation process and some
preliminary results. 

1. Introduction

The traditional performance measurements of video
transport and storage systems use fixed test signals and assume
that the system under test is time-invariant.[1]  While these signals
and the associated measurements are indispensable for the
characterization of the electrical performance of conventional,
time-invariant, analog video systems, the measurements often do
not correlate well with video quality as perceived by the end users
of the video system.  For instance, weighted signal-to-noise ratio
does not give an accurate indication of image quality when the
noise is correlated with the image, as is the case with predictive
video coders.[2]  A video system with horizontal resolution limit
of 200 television lines (TVL) may be adequate for head and
shoulders video teleconferencing, but unacceptable when graphics
are added to the scene.  A chrominance phase error of 10 degrees
might be insignificant while the weather map is being transmitted
but it becomes objectionable when the meteorologist appears with
false colored flesh.  In each of these examples, it is the variability
of video scenes that results in a range of perceived video quality
levels for a fixed video system.

performance of video equipment is to objectively and consistently

parameters.  From the examples above, it is disturbing to note
however, that perceived picture quality can change while measured
electrical values remain constant.  One solution to this problem is
to set tight bounds on the electrical parameters to insure that all
possible video scenes of interest will be reproduced with sufficient
quality.  

Over the past decade, the problem has become more
complicated.  Video signals are now commonly transmitted and
stored in compressed digital form with a possible resulting loss of
quality.  The stringent bounds on electrical parameters adopted by
the television broadcasting industry are not realistic limits for
many of the new video services.  On the other hand, some metric
of system performance is essential.  Ideally, this metric should
mimic the metric of the human visual and perceptual system, so
that measured video quality agrees with video quality as perceived
by the end user who actually views the video signal.

Modification of the existing traditional test signals and
measurements will not solve the problem because there is a
fundamental incompatibility between traditional analog video
signal testing and modern digital video systems.  Effective
compression algorithms are dynamic, with the input signal
dictating the overall behavior of the algorithm through many sub-
algorithms that perform motion prediction, adaptive transforms,
adaptive pixel and/or frame prediction, and adaptive quantization,
to name only a few.  The resulting video systems are clearly time-
varying systems.  Due to the complex dynamic nature of these
systems, the conventional family of static, deterministic test signals
cannot provide an accurate characterization of their performance.

2. Overview

This paper describes a method for deriving objective
measurements of video quality that can be used to predict the
human perception of video quality.  The intent is that these
measures should work well over a wide range of analog and digital
video transmission and storage technologies.  Such measurements
would be indispensable to persons who design, operate, and
maintain video components, storage and delivery systems, as well
as those involved in standards work.  Our method for deriving
these measurements is diagramed in Figure 1.
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severity of the impairments.  The final portion of the training
period allows the subjects to practice marking the response form
between scenes.  The remainder of the initial session and the
subsequent three sessions contain 30-second impairment tests.
Here the subject is presented with nine seconds of a scene, three
seconds of grey screen, nine seconds of the impaired same scene,
and finally a nine second period in which to mark the response
form.  The subjects are instructed to decide on and mark the level
of impairment in the second scene, using the first scene as a
reference.  The five possible responses offered are: imperceptible,
perceptible but not annoying, slightly annoying, annoying, and
very annoying.  This scale intentionally covers a very wide range
of impairment levels in a nonlinear fashion.  By including
reference scenes, impairment tests take advantage of the fact that
the human eye excels at making comparisons.  Impairment tests
also tend to reduce inter-laboratory testing variances.  To reduce
unwanted comparison effects, the order of scene presentation is
randomized.

After allowance for training periods, rest intervals, and
some redundancy (to provide consistency checks), the cumulative
80 minutes of testing allow for the viewing and rating of 127 test
scenes.  In order to hold the subjects' interest, this body of 127
scenes is composed of 36 distinct scenes, with each scene
appearing 3 or 4 times.  Thus, the impact of 3 or 4 different
impairments can be measured for each scene.  The scene-
impairment combinations are selected from the library of impaired
test scenes described in the previous section.  

5. Objective Impairment Measurements

The objective data set is built up from objective
measurements or computations performed on the digitized (756 x

486 x 24 bits) video signal.  The measurements are performed on
every frame of each test scene.  This intensive measurement
approach, along with the need for large data sets, dictates that the
measurements be automated.  A controlling program with a
windowed user interface passes instructions to device drivers that
in turn control the tape machines, frame digitizer, video routing
switcher, and video codecs.  Additional software distributes the
computation of measurements across several workstations to
reduce the total measurement time.

In an exact parallel to the subjective tests, these
measurements are all differential.  That is, they involve both the
impaired and the unimpaired versions of each scene.  In order to
make meaningful differential measurements, the two frame
sequences must be aligned as closely as possible.  Spatial
alignment is determined by the video frame acquisition hardware
and is accurate to a fraction of a pixel.  Because there are unknown
delays in the video systems used to create the impaired sequences,
the temporal alignment of the two, 30 frame-per-second sequences
is a non-trivial task.  To further complicate the matter, many video
codecs output the same frame two or more times.  This frame
repetition technique allows significant data reduction, but it also
means that any possible one-to-one correspondence between the
input and output sequences is lost.  We have adopted the following
technique for temporal alignment.  For each output frame, match
it with the input frame that is the closest (in terms of squared pixel
error) and consistent with a causal system under test:

After the minimizing value of k=k  is found, the output frame0

D(x,y,t) is paired with the input frame S(x,y,t-k ).  The value of k0      0

is an estimate of the time delay of the system-under-test at time t.
Since we are seeking measurements that emulate those

made by the human visual system, we are well-advised to mimic
its properties whenever possible.  The human visual system has
greater resolving power on still scenes than on moving objects.
Further, since the time-averaged information content of a still
video scene is much less than the time-averaged information
content of a moving scene, most compressed digital video systems
have very different static and dynamic responses.  In light of these
observations, it is clear that measurements could be enhanced by
partitioning each video frame into still and motion parts,
performing separate measurements on each part and then
recombining these measurements in an appropriate way.  We have
adopted this technique.

The partitioning of each frame is accomplished
according to the following algorithm.  To partition the k  frame,th

first compute the absolute difference image, |Frame  - Frame |.k+1  k-1

Then compare each pixel of the absolute difference image with a
threshold value of 15. (The 8 bit luminance pixel values range
from 0 to 255.)  Those pixels exceeding the threshold value are
declared to be motion pixels, and those below are considered to be
still.  A three by three dilation operation serves to smooth and fill
the thresholded image, and the resulting binary motion mask
indicates which regions of the k  frame are still and which areth

moving.  The threshold value of 15 was selected following a
statistical analysis of 3 million motion pixels and 3 million still
pixels.[5][6]

Once the video sequences have been digitized, time-
aligned, and partitioned into motion and still regions, a family of
over 90 differential measurements is computed and stored in the
objective data set.  These candidate measures were selected with
an eye toward the following desirable properties:  correlation with
subjective quality, applicability to many types of scenes, value as
a local estimate of quality in space and time, computational
efficiency, stability, functional independence (each measure should
provide different information), and technology independence (each
measure should be useful for a wide range of video storage and
transmission technologies).  All video impairments can be
described as distortions of the amplitude or the timing of the video
waveform.  On the other hand, when displayed on a monitor for
human use, this one-dimensional voltage waveform is interpreted
as a continuously evolving, multi-colored, two-dimensional signal.
Useful measures must take note of this human interpretation and
mimic it to the extent possible.  Thus, our candidate set of
measures includes those designed to measure temporal, luminance,
chrominance, and spatial distortions.  A detailed description of the
set of candidate measurements is available.[7]  These techniques
are currently being considered for inclusion into the draft standard
of "Analog Interface Performance Specifications for Digital Video
Teleconferencing/Video Telephony Service" by the American
National Standards Institute (ANSI) Accredited Standards
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Committee T1, Working Group T1Q1.5, Video 6. Analysis of Measurements
Teleconferencing/Video Telephony Sub-working Group.

Temporal distortions are perceived by the viewer as
unnatural motion.  Both the residual squared pixel error sequence
given in the above equation, and the sequence of minimizing
values of k  contain information which aids in quantifying0

unnatural motion.  Color distortions are measured after
transforming luminance and chrominance values to the
International Commission  on Illumination (CIE) LUV color
space.  In that 3-dimensional space, each color axis is perceptually
independent and psychometrically uniform.[8]  The remainder of
this section provides some discussion and examples of spatial
distortion measurements.

Investigators in the fields of human vision and object
recognition have noted the importance of sharp edges in the visual
perception and recognition of objects.  Thus, an important class of
spatial distortions are those that destroy, soften, blur, displace, or
create edges in the video image.  Our measurements of these
effects utilize the Sobel and Laplace edge extraction or edge
enhancement filters.[9][10]  These filters are followed by
differencing operators, energy accumulators, averagers, et-cetera,
to create a family of measures that quantify edge distortions.   As
an example, the blurring of the sharpest edges can be measured by
examining the decrease in the number of pixels in the filtered
output that exceed a fixed threshold.  More detailed examples of
two spatial distortion measurements follow.

The measurements p  and p  are described77  60

mathematically at the end of this section.  The measurement p  has77

been named "Edge Fraction Gained, Still Portion", because it
quantifies edges in the distorted frame that are not present in the
original frame.  The measurement is restricted to the still portion
of each frame.  The second measure, p  is called "Absolute Edge60

Energy Difference, Motion-Still Weighted".  Here a logarithmic
energy difference measure is computed for both the motion and the
still portions of each frame.  The measures are passed through the
absolute value operator and then combined using the weighting
factors � and (1-�), which indicate the relative amounts of stillness
and motion in the frame.  The merit of p  and p  as predictors of77   60

subjective picture impairment is discussed in the following section.

where:
S is the original video frame,
D is the distorted frame,
mean_ is the mean of the negative pixels,
still  takes only the still parts of frame,
motion takes only the motion parts of frame,
std is the standard deviation of frame pixel values,
�� = (number of still pixels)/(total number of pixels).

The final stage of the derivation process involves joint
statistical analysis of the subjective and objective data sets.  As of
this writing, only preliminary work has been done in this stage.
The step is intended to single out a subset of the candidate set of
objective measures and provide information that aids in the design
of the prediction algorithm.  The members of this set of "good"
measures should provide enough information to enable an
appropriate algorithm to make accurate predictions of subjective
impairment scores.  Rather than predicting only the mean
subjective impairment score, we hope to predict the fraction of
persons that vote in each of the five impairment categories.  From
this predicted histogram we can compute predicted mean
subjective impairment scores as well as predicted dispersions
about that mean.  Potential prediction, estimation and classification
techniques include linear and quadratic predictors, hybrid linear-
nonlinear decision structures (possibly adaptive), and Bayesian
inferencing.

The remainder of this section gives the results of
preliminary statistical analysis that was performed on relatively
small data sets.  For this preliminary study, we are utilizing the
results of an experiment conducted by Fish and Judd.[11]  Their
team selected 5 NTSC encoded test scenes.  Each scene consists of
a three second still followed by five seconds of full motion video.
They created two impaired versions of each scene: a VHS record-
play cycle and a simulated codec operating at the DS1 signaling
rate.  The resulting 15 scenes were shown to 45 viewers who rated
each scene in terms of its "distance from ideal".  The researchers
provided our lab with a copy of their test scenes and their
subjective data set.  We applied our family of objective measures
to the test scenes to create a companion objective data set.  This
involved the processing of roughly four seconds from the motion
part of each of the 15 scenes, resulting in approximately 120
values for each of 92 candidate measures.  (One value for each
frame of the four second sequence.)  Since the subjective human
assessments that we seek to emulate consist of a single value for
the entire 4 seconds, we must reduce each temporal sequence of
120 objective measurements to a single value.  This data reduction
step should be done the same way human viewers do it.  It seems
reasonable that the median value of the sequence, augmented in
some way by the minimum and maximum values would provide
a good approximation.  We are currently experimenting with a
family of 10 data reduction functions. Included in this family of
functions are mean value, maximum value, minimum value and
median value.  The final contents of the objective data set is a
collection of 92 measures on 15 scenes for each of the 10 data
reduction functions used.  

Next we performed a correlation analysis between the
objective and subjective data sets, and an analysis within the
objective data set.  Correlation analysis detects monotonic
relationships between data sets.  As relationships become more
monotonic and closer to linear, the  coefficient of  correlation
tends towards ±1.  A correlation  coefficient  (across  the 15
scenes) was computed between the mean subjective impairment
score and each of 92 candidate objective measures.  We found
absolute correlation coefficients larger than  .8 for a large  group
of measures, but many of the objective measures are highly
correlated with each other, indicating that all of them cannot
contribute unique information to the prediction problem.  If we
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select a subset of these measures by requiring that the absolute References
correlation coefficient between every possible pair of members of
the subset be less than .9, we find 14 measurements in the subset.
The correlation thresholds (.8 and .9) are somewhat arbitrary, but
were chosen because they provide the "best family" of 14 objective
measurements.  If one were interested in larger or smaller families,
one could lower or raise the appropriate thresholds.  Of the 14
objective measurements mentioned above, two are those described
in section 4.  The coefficient of correlation between subjective
score and the median value of the objective measurement called
"Edge Fraction Gained, Still Portion" (p ) is .96.  For "Absolute77

Edge Energy Difference, Motion-Still Weighted" (p ) the60

correlation value is .94.  In general, the median function seems to
provide the best data reduction across time.  The majority of the
remaining 12 top measures provide additional information about
edges lost and/or gained in the motion and/or still portions of the
video scene.  Some of them are linear measurements, some are
quadratic, and some are logarithmic.

The correlation values attained indicate that for this set
of scenes, a trivial, first order linear predictor would do a
respectable job of predicting mean subjective impairment values
from either measurement.  While these preliminary results are
encouraging, the data sets are much too small to draw any firm
conclusions from the results.  Larger data sets might yield lower
correlation values and present a greater challenge in terms of
designing an objective video quality prediction algorithm.  We are
confident that a sufficient set of measures can be found and that an
accurate prediction algorithm can be designed.  As of this writing,
we are building up the data sets to enable a much more thorough
analysis, and more sophisticated prediction algorithm design.

7. Conclusion

We have described a method for deriving an objective
video quality metric that emulates the human video quality metric.
The objective metric comprises a family of measurements that
quantify spatial, temporal, luminance and chrominance distortions,
followed by a prediction algorithm.  The intent is that the derived
metric will work well over a wide range of digital and analog
video transmission and storage technologies.  The metric promises
to yield reliable predictions of perceived video quality without the
effort and expense of polling a large group of human subjects in a
controlled environment.  This provides a valuable tool for persons
who design video components, storage and delivery systems, and
those involved in standards work.
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