
39

Key elements of the user-friendly, GFDL
SKYHI general circulation model

Richard S. Hemler
Geophysical Fluid Dynamics Laboratory/NOAA, P.O.
Box 308, Princeton University, Princeton, NJ 08542,
USA
Tel.: +1 609 452 6598; Fax: +1 609 987 5063;
E-mail: rsh@gfdl.gov

Over the past seven years, the portability of the GFDL SKYHI
general circulation model has greatly increased. Modifica-
tions to the source code have allowed SKYHI to be run on
the GFDL Cray Research PVP machines, the TMC CM-5
machine at Los Alamos National Laboratory, and more re-
cently on the GFDL 40-processor Cray Research T3E sys-
tem. At the same time, changes have been made to the model
to make it more usable and flexible. Because of the reduc-
tion of the human resources available to manage and analyze
scientific experiments, it is no longer acceptable to consider
only the optimization of computer resources when produc-
ing a research code; one must also consider the availability
and cost of the people necessary to maintain, modify and use
the model as an investigative tool, and include these factors
in defining the form of the model code. The new SKYHI
model attempts to strike a balance between the optimization
of the use of machine resources (CPU time, memory, disc)
and the optimal use of human resources (ability to understand
code, ability to modify code, ability to perturb code to do
experiments, ability to run code on different platforms).

Two of the key features that make the new SKYHI code
more usable and flexible are the archiving package and the
user variable block. The archiving package is used to manage
the writing of all archive files, which contain data for later
analysis. The model-supplied user variable block allows the
easy inclusion of any new variables needed for particular
experiments.

1. Introduction

SKYHI is a grid-point atmospheric general circula-
tion model which was developed at the NOAA Geo-
physical Fluid Dynamics Laboratory nearly twenty
years ago (Fels et al. [1]).The model is global, and
extends in the vertical from the ground to about 80

km. SKYHI has been used to investigate various tro-
pospheric, stratospheric and mesospheric phenomena,
including sudden stratospheric warmings, the quasi-
biennial oscillation, ozone depletion, gravity wave-
mean flow interactions and chemical and tracer trans-
port problems. A concise description of the model
equations, numerics and physics may be found in Jones
et al. [2]; a more detailed description is found in Hamil-
ton et al. [3].

Jones et al. [2] describe changes made to the model
in order to port it to the Thinking Machines Corporation
CM-5 machine at Los Alamos National Laboratory.
This paper concentrates on changes made to the model
that significantly enhance the ability of the SKYHI user
to quickly and easily modify the model code to initi-
ate, run and analyze new scientific experiments, and to
attach new features to the model with a minimum of
difficulty. Section 2 discusses the development of the
generic SKYHI code in which the efficient use of hu-
man resources is balanced with the efficient use of ma-
chine resources. Section 3 defines the basic structure
of SKYHI and the current meaning of “modularity” as
used by SKYHI. In Section 4, two of the important
new user-friendly “modules” of SKYHI are presented,
along with examples of their use. Section 5 discusses
the parallel performance and scaling of SKYHI on Cray
Research PVP shared memory and Cray Research T3E
distributed memory machines, while Section 6 serves
as a summary.

2. Balanced optimization

The SKYHI model code that existed in 1990 was the
result of the efforts of many people over many years
and several machines to produce a code which would
run using a minimum amount of CPU time, memory
and I/O time. As a result, the relationship between
the model code and the analytical expressions it rep-
resents was difficult to see; model variables were of-
ten defined to minimize arithmetic operations, rather
than to be physically- or numerically-meaningfulquan-

Scientific Programming 8 (2000) 39–47
ISSN 1058-9244 / $8.00  2000, IOS Press. All rights reserved

40 R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model

Table 1
Desirable model resource optimizations

Machine resources Human resources

Minimize disc usage Maximize ease of code modification
Minimize memory usage Maximize ease of code maintenance
Minimize I/O time Maximize portability
Minimize system and
user CPU times

Maximize ease of data analysis

Maximize ability to exe-
cute on a variable num-
ber of processors

Maximize ease of use by novice
users

Minimize data archival
requirements

Maximize ease of use by experi-
enced users

tities. Memory usage was minimized by implicit and
explicit equivalencing; certain common blocks were
used to provide the current functionality of the stack.
Specific coding practices needed for performance on
previous platforms were still in place, even though they
were no longer needed. The result was a model which
could be run with scientifically-meaningful horizontal
resolution on a machine with limited central memory,
but which was difficult to modify and often failed in
unexpected ways when perturbed, and in which code
for specific model processes was scattered across many
subroutines.

At the same time, the shrinking budget for basic re-
search and the desire to reduce the Federal workforce
was shrinking the number of GFDL programmers and
scientists available to manage the code and to run sci-
entific experiments. To augment the dwindling perma-
nent staff, more visiting scientists were being invited
to GFDL, usually for periods of a few years. In order
for these people to make productive use of their time
at GFDL, it was essential that they quickly become
able to use the model in their studies, and not spend
a lot of time attempting to attach their experiment to
SKYHI. The existing code structure of SKYHI made
this process difficult.

With the coming of the Cray Research Y-MP ma-
chine in 1990, the available computing power at GFDL
increased significantly. This allowed the “machine de-
optimization” and “user optimization” of the SKYHI
code to begin, without resulting in a reduction in model
throughput for the SKYHI user community. Code con-
structs which may have been machine efficient at some
point in the past but which were difficult for users to un-
derstand and modify correctly were replaced with more
easily understood code, the first step toward balanced
optimization.

Balanced optimization attempts to optimize not only
the use of machine resources, but also the human re-
sources required in scientific investigations. Table 1

Table 2
Lines of code devoted to various model functions

Function Lines of code

Backbone code 6000
Dynamics 14000
Physics 24000
I/O, Archiving 21000
Diagnostics 7000

lists several of the important code qualities that need
to be optimized in a research code designed to be used
by a variety of users. The ideal code would be optimal
in all of these user and machine resource dimensions;
since no real code is ideal, it is desirable to produce
code in which none of these features is out-of-balance
with the others. Typically these features compete with
each other; for example, a code which is highly I/O
efficient is likely to be less memory efficient than it
could be if the I/O were not so efficient. The strategy
then is to produce a generic production code in which
there exists a balance between these features.

This generic code is the form that is maintained and
made available to users. It is written so that it allows
easy access to the model to a broad spectrum of users
with diverse research interests, each of whom may wish
to view different parts of the model as a black box, and
who may not need or want all of the features that are
provided. Individual users then optimize the generic
code as they must in order to reach their scientific goals.

3. The structure of SKYHI and modularity

The SKYHI model consists of nearly 300 subrou-
tines and 200 include files containing parameters and
common blocks, all written in Fortran. It totals nearly
72000 lines of code, of which about 25000 are com-
ments. A pre-processor is used to selectively activate
desired portions of the code for particular experiments
and to insert the include files where desired. Table 2
indicates the approximate number of lines of code as-
sociated with each of the major model functions.

Figure 1 shows the four basic sections of the SKYHI
model. The model’s initialization phase consists of
setting up tables, initializing constants, reading input
data – all the things that are only done once during
a model run. After completion, the time-step loop is
entered. Some of the calculations in this loop are not
a function of gridpoint, but only a function of the time
or timestep. This is called the time-dependent phase.
After it is executed, the chunk loop is entered. This
loop extends over the model domain, which is broken

R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model 41

 Diagnostic Code

 Prognostic Code

Time-dependent calculations

Initialization phase

Time

Step

Loop

Chunk

 Loop

 STOP

Fig. 1. The basic structure of the SKYHI model.

up into rectangular portions in the horizontal, referred
to as chunks. These chunks may be executed either
sequentially or in parallel. Within this prognostic sec-
tion the model equations are time-integrated, contribu-
tions from the chunk to any integrands being calculated
are computed, and any data from the chunk which are
needed in archive files are written. After the domain
chunks are processed, the processing of global integrals
is done in the diagnostic code section to complete the
time step.

Within the chunk loop, the prognostic code takes
the form of triply-nested do loops, with k as the outer
and i as the inner loop. Model arrays are dimen-
sioned (i, j, k), corresponding to (longitude, latitude
and height), so that this loop structure provides vec-
torization over the i loop, which in most production
experiments is the longest.

Part of the ongoing effort to make SKYHI more
user-friendly is the separation of the source code into
“model” code and a number of modules. In SKYHI at
this time, a module is defined simply as code needed
to perform a specific model function which has been
isolated from the rest of the source. That part of the
code not yet contained within a module is referred to
as the “model”. The following guidelines must be met
for a portion of code to be called a module in SKYHI:

1) No “model” include files, common blocks or sub-
routines may appear in any module.

2) No module include files, common blocks or sub-
routines may appear in the “model”.

3) All communication between “model” and a mod-
ule must be through argument lists.

4) Module to module communication must occur by
going through the “model”.

5) Modules may have an interface to the “model” in
each model section defined above.

These conditions assure that the communication be-
tween model and module is explicitly defined, via a
subroutine call argument list. It makes it obvious to
a user what model variables must be supplied to the
module, and prevents the inadvertent modification of
model variables that could be brought into a module via
a model include file or common block. Experience has
indicated that many argument lists may be shortened by
some code reorganization, which also invariably pro-
duces a more understandable and more modular code.

At the moment, SKYHI contains several physics
modules that follow these coding guidelines. These
include a radiation package, a cloud package, a surface
albedo package, an astronomy package and an ozone
package. These modules have been carved out of the
previous SKYHI radiation code by isolating the code
which is related to these processes. A modular structure
allows easy implementation of alternative parameteri-
zations and also allows the output from these modules
to be passed back to the model and then used as input to
other parameterizations, e.g., the stratospheric chem-
istry package associated with SKYHI requires astron-
omy package output. More processes will be pulled
out of the “model” and made into “modules” as time
permits.

Several modules have been added to SKYHI re-
cently, following the coding guidelines presented
above. These added modules include two optional
tracer transport packages (advection plus subgrid-scale
diffusion) and a particle trajectory package. An inter-
face for each module was created in each of the four
model sections (initialization, time-dependent, prog-
nostic, diagnostic), and the package code which should
be executed in each model section is accessed through
this interface. As time allows, the modules in SKYHI
will be made into Fortran 90 modules, further increas-
ing the ease with which new Fortran 90 code written
by others may be incorporated into SKYHI.

4. The archiving module and the user variable
module

Two new higher-level modules have been created in
SKYHI. These modules handle two functions which

42 R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model

are essential for users who must significantly alter the
existing code for their experiments. Both of these fea-
tures help to isolate the user’s code from the SKYHI
model code and so reduce the chances of the user inad-
vertently modifying the model code.

4.1. The archiving module

The archiving module controls the writing of data
files that will be analyzed offline. Five file types are
currently recognized: restart, point data, column data,
slab data and reduced data. A restart file is written at
the end of a job, and must contain the time-dependent
variable fields and any other data that are necessary to
allow the model to be started again at a later time, as
though it had never been halted. Point data, column
data and slab data files contain the desired model vari-
ables at a specified set of individual grid points, grid
columns or grid planes, respectively. In the limit, the
slab data files will cover the entire model domain. Re-
duced data files contain non-gridded data; they may
contain integrals over the globe or some portion of it,
or any other grid-independent data set.

All of these files (with the exception of the restart
file) may capture either a “snapshot” of the data or
may be used to contain some type of time-averaged
representation of the data. Standard forms for each of
the five file types are provided with the model code as a
template to be used in creating customized files. Three
standard forms are provided for each file type: the form
for the standard version of the file; the form which will
produce a time-averaged standard version of the file,
and a form which may be customized by the user to
provide whatever set of variables is desired, either as a
snapshot or as a time-average.

User control of the archive files is provided through
a combination of pre-processor options, namelist vari-
ables and model parameters. Pre-processor variables
define how many file forms of each file type are present
in the code. If the user adds code for a new file form,
then the variable for that file type would be increased
from the default value. If the model is to be integrated
without writing any files of a given type, then the vari-
able for that type is set to zero, and all the code and
storage associated with the data files of that type will
be removed from the model source.

If any data files for a given file form are to be written,
then the user must specify namelist variables that define
the temporal characteristics for each of the file forms
of that file type. These variables and their use are
described in Appendix A.

Data for each of the file forms of the grid-dependent
file types is collected in an array dimensioned by
(i, j, n) where i and j refer to the horizontal grid points
in x and y respectively, and n is the sum over all vari-
ables of the number of k levels at which each variable
is to be written. The beginning and ending spatial lo-
cation indices of these arrays and the value of n for a
given file form are specified as parameters in the model
code.

Appendix B defines the recommended procedure for
a user to follow when using the archiving module.This
procedure has been successfully followed by SKYHI
users. The naming conventions and supplied code al-
low even an inexperienced user to successfully create
new archive file forms by making it evident what code
changes must be made to the default code to create a
new file form. Equivalent variables for different file
types have names which differ only by the unique let-
ter associated with that file type. Equivalent variables
for different file forms of a given file type have names
which differ only by the file form number, which is
(are) the last digit(s) in the variable name. For exam-
ple, the parameter defining the record length of the data
record is ItRECLENa where t is the file type (r, t, s, h,
or i) and a is the file form number. Thus the variable
names are very recognizable, and contain the file type
and file form information within them. The creation of
control code for new file forms simply requires the du-
plication of existing supplied code, the location of the
file-form-specific variable names, all of which contain
the file form number, and the replacement of the old
file form number with the new in these variable names.

The archiving package has also been incorporated
into the GFDL Limited-Area Non-hydrostatic model
(LAN) without difficulty, and should be insertable into
any atmospheric model which has the proper interfaces.
New and useful Fortran 90 constructs will soon be in-
corporated into the package and any problems or lack of
clarity reported by users will continue to be addressed.
Additional capabilities are also planned, including the
ability to create time-averaged files that span jobs.

4.2. The user variable module

The user variable module allows the user to easily
add variables to the model. The model contains an ar-
ray ooo (ist:iend, jst:jend, kst:kend, n, m), where
the first three dimensions are the (i, j, k) spatial indices,
n is the number of ooo variables, and m is the time level
index, indicating lag, mid or lead time. This variable is
available to the user to contain n variables of his choos-

R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model 43

ing. If no user supplied variables are desired, then a
preprocessor option is set, and all the code and stor-
age associated with this variable is removed from the
code. When user-defined variables are desired, model-
supplied code will handle all aspects of their integra-
tion except for the calculation of the specific physics-
chemistry-source-sink terms relevant to the variable in
question, which obviously must be supplied by the user.

These user variables may be fully prognostic, semi-
prognostic, or diagnostic. Fully prognostic variables
have a time tendency resulting from transport and may
also contain physics-chemistry-source-sink terms. The
transport is handled by the model, as specified by the
user from a series of options that are offered; there
is no need for the user to provide code to transport
these variables, unless a scheme is desired that is not
offered by the model. Semi-prognostic variables have
a time tendency resulting from source / sink terms, but
are not transported. Diagnostic variables are defined
on the basis of other conditions, and do not have an
explicit time tendency equation. These variables may
be integrated with a timestep either smaller or larger
than the model timestep, if desired.

The user must customize the general user variables
so that they become the variables that are desired. The
model contains the chemical species nitrous oxide as
a sample ooo variable, the treatment of which the user
can follow for his own variables. Interfaces between the
model and user variable module are provided in each
model section; the user must determine the variables
that will become the argument list between model and
module.

Different types of variables have been coupled with
SKYHI using the user variable code block. The experi-
ence gained in coupling these diverse types of variables
to SKYHI has produced a more general structure of the
user variable block, so that all of these variable types,
each with their own special requirements, may be han-
dled properly. The result is a more robust module, one
that is more likely to be able to handle the next set of
variables thrown at it than it was previously.

Several different uses have been made of the user
variables in a chemistry context. The investigation of
tracer transport by different transport schemes has been
done very neatly by setting up an experiment with sev-
eral initially identical copies of a given species, each of
which is integrated with a different transport scheme,all
within the same model run. The data for all the schemes
are then present in the same data files, simplifying
the analysis effort. A stratospheric chemistry package
with thirty-seven chemical species has been attached to

SKYHI and run without difficulty. In this case, some
variables are prognostic, some semi-prognostic, some
diagnostic, and some may be prognostic or diagnostic,
dependent on the time of day. The option to have vari-
ables change between prognostic and diagnostic was
not originally present and required a generalization of
the original code.

Experiments that have investigated the vertical diffu-
sion scheme in SKYHI have employed a simple radon
tracer with a surface source. Multiple versions of the
diffusion scheme may be tested in the same job by
starting multiple identical copies of the tracer, each as
a different user tracer variable which has a different
diffusion scheme. In such a case the model needs to be
run only once in order to compare n different diffusion
formulations, rather than n times.

Another use of the user variables has been with a
cloud ice parameterization scheme. Here there was
a need for twenty-three diagnostic variables, and the
presence of the user variable block allowed the easy
inclusion of that many new variables. It is anticipated
that cloud microphysics and atmospheric aerosols may
soon be examined in SKYHI and it is likely that both
of these variable sets will be handled within the user
variable block.

None of the above-cited cases could have been run
using the 1990 SKYHI code without extensive and
unique recoding for each specific experiment, which
for similar studies in the past has taken inexperienced
users of SKYHI many weeks to months of effort. The
presence of the archive package and the user-variable
code block confines the required code generation for
these experiments to the definition of the model inter-
faces to the new code,which has been done even by new
users within a week. The ability to easily create new
archive files specific to a new experiment also greatly
reduces the analysis effort. The price paid for this en-
hanced ability is a slight degradation in CPU perfor-
mance (less than 5%), primarily resulting from enforc-
ing clean interfaces between the model and these new
modules. This is a small price to pay for the savings in
human resources that are realized.

5. Performance on parallel systems

One of the optimization dimensions of Table 1 is
the ability to execute the model in production mode
on multiple processors. This feature is essential to
avoid limiting the numerical experiments which may

44 R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model

be undertaken and the platforms upon which the model
can be run.

Two major changes were necessary to allow the code,
which had been running on a single processor, to be run
on multiple CPUs of the Cray Research PVP machine.
The original unitasked code executed the model one
latitude row at a time (the chunk loop of Fig. 1) because
of memory constraints, marching from south to north,
providing a natural coarse-grained, one-dimensional
data decomposition scheme for parallel execution. In
unitasked mode, this decomposition allowed the center
and northern row variable fields and the fluxes that had
been calculated at the northern boundary of a grid row
to be saved and used as the southern and center row
variable fields and southern boundary flux of the next
row. Thus each new row required only the reading of
the new northern row of data from disk and the calcu-
lation of the northern boundary fluxes. However,with
multitasked execution, each processor must calculate
fluxes at both boundaries, and read all the data it needs
from disc, since it is not certain that it will have the data
from the previous row. These two changes result in a
10–15% increase in CPU time for SKYHI, but allow
the model to be run on parallel systems.

The scaling performance of SKYHI on the GFDL
Cray Research T932 machine during a dedicated test
time is summarized in Table 3 for both one degree lati-
tude (N90) and for one-third degree latitude (N270) res-
olution. These numbers were obtained by running the
model for several timesteps without archiving any data,
and do not include the time spent in the initialization
section of the model, which is primarily spent reading
the initial data and is not parallelized. It is seen that
scaling for both resolutions deteriorates above 9 pro-
cessors. This decay likely reflects the single-threaded
nature of access to the model data stored on the solid-
state storage device (SSD), meaning that as the number
of processors increases, processors must wait longer to
get the data they need. A further degradation of per-
formance occurs on 24 CPUs, which presents an in-
herent load balancing problem for 180 or 540 chunks,
since some CPUs have more chunks to integrate than
do others.

Thus, on the Cray Research PVP machine, a one-
dimensional domain decomposition is adequate, since
the number of processors which can be efficiently used
on a problem will be limited by the single-threaded
SSD access time before any load balancing problem
resulting from the limited number of latitude rows be-
comes important. Currently only the one-third degree
latitude SKYHI experiment is being run multitasked in

Table 3
SKYHI PVP scaling characteristics

Resolution Number of Wall clock Scaling Parallel
processors time Efficiency

(seconds)

N90 1 334 – –
(unitasked)

N90 1 369 1.00 1.000
N90 3 125 2.95 0.983
N90 9 44 8.39 0.932
N90 18 26 14.19 0.783
N90 24 24 15.38 0.641
N270 1 267 – –

(unitasked)
N270 1 308 1.00 1.000
N270 3 104 2.96 0.987
N270 9 35 8.80 0.978
N270 18 23 13.39 0.744
N270 24 23 13.39 0.558

production mode on the GFDL T932; lower resolution
runs are run unitasked to take advantage of the CPU
savings discussed above. The one-third degree experi-
ment is multitasked 4 ways; on 4 processors the code is
still parallel efficient and the machine resource usage is
balanced. The model at this resolution requires 12% of
the total system memory and 15% of the total system
SSD, so that 4 processors (15% of the total of 26) is
reasonable.

The SKYHI code running on the Cray Research
PVP machine has also been modified to run on the
Cray Research T3E distributed memory machine. Pre-
processor options are used to select either the shared
memory or distributed memory version of the code.
These code versions differ by about 1200 lines, primar-
ily in code involving the T3E domain decomposition
and assignment of data to processors, the storage of the
time-dependent grid point data in local memory rather
than on the SSD, communication of data between pro-
cessors (shmem calls), and the data archiving process.
The code remains that which has been optimized for
the vector machine; no specific T3E optimizations have
been made. As a result, raw performance of this code
on the T3E is about 36 Mflops/pe, compared to 500
Mflops on a single T90 CPU.

The major source of load imbalance in SKYHI is
the polar Fourier filter. All latitude rows which are
filtered take about the same time to execute, as do lat-
itude rows which are not filtered, with the difference
in time between filtered and non-filtered rows being
about 15%. This information may be used in deciding
how to assign latitude rows to processors, and so bet-
ter balance the load across processors, in contrast to a
simple round-robin assignment of rows to processors.

R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model 45

Table 4
SKYHI T3E scaling characteristics

Number of Wallclock Scaling Parallel
processors Time Efficiency

(seconds)

15 266 15.0 1.000
30 135 29.55 0.985
45 93 42.9 0.953
60 72 55.42 0.924

For example, the best balanced load for an experiment
with 180 latitudes was obtained using eight processors
(in contrast to nine, ten or twelve), even though the
eight processors were not all responsible for the same
number of latitude rows. However, as the number of
processors approaches the number of latitude rows, the
ability to balance the load decreases. Ultimately, it
is essential that a two-dimensional decomposition be
employed, to allow better load balancing on a greater
number of processors.

Scaling results for a one-degree latitude version of
SKYHI with 160 vertical levels run on the 512 pro-
cessor T3E at the National Energy Research Scientific
Computing Center (NERSC) are shown in Table 4. As
in Table 3, these results are from several timesteps of
integration, without archiving data, and do not include
the time spent in the initialization section of the model.
This resolution requires a minimum of fifteen 32-Mw
T3E processors in order to have enough memory per pe
to integrate the model with a one-dimensional domain
decomposition. The degradation of performance with
increasing number of processors seen here reflects the
reduction in the ability to balance the load as the num-
ber of processors approaches the number of chunks of
parallel work (180); the efficient use of a greater num-
ber of processors requires a two-dimensional domain
decomposition.

6. Conclusions

The increase in the relative value of human resources
compared to machine resources at GFDL in recent years
means that the definition of code optimization must be
changed to include human factors in addition to the
traditional machine resource usage. A meteorological
model used in research must be structured so that in-
vestigators not familiar with the details and history of
the model may quickly learn enough about it in order
to use it productively in their scientific research. This
user-friendliness will usually come at the expense of
machine performance, a condition which must be ac-

cepted in order to optimize the total scientific produc-
tivity of the model and of the scientists who use it.

A user-friendly model requires at a minimum that
the code is “modular”, meaning that the different model
processes communicate with the rest of the model in
clearly specified ways, as opposed to being intertwined.
In this way investigators may easily examine individual
parts of the model, without having to extract the process
of interest from a dense ball of code, a process which
usually proves to be both difficult and time-consuming,
even for those experienced in handling the code.

The restructured GFDL SKYHI general circulation
model has also addressed two specific topics which in
the past have inhibited investigators in their productive
use of SKYHI; the ability to easily define new data
files for later off-line analysis of the model output, and
the ability to easily add new variables to the model for
specific investigations. The archive module and user
variable module described here have a standard format
and are flexible to user needs. These packages will
continue to evolve in response to user desires and com-
plaints, becoming even more user-friendly over time.
Inclusion of Fortran 90 constructs in these packages
should result in some performance improvements and
ultimately cleaner code, albeit code which will look
less familiar to the current user community.

SKYHI has been successfully integrated in produc-
tion mode on the Cray Research T932 PVP machine
in both unitasked and multitasked modes using one-
dimensional domain decomposition. Parallel perfor-
mance scales well with number of processors (if obvi-
ous load imbalance configurations are avoided) to the
point where the single-threaded nature of SSD access
limits performance. The same PVP-friendly source has
been successfully run in production mode on the Cray
Research T3E machine, also using one-dimensional de-
composition.

At this time, three major areas are negatively im-
pacting the performance of SKYHI on parallel systems.
Single-processor performance is an issue; whether im-
provements in cache size and system software and util-
ities will improve performance significantly or whether
major code redesign is essential remains unclear. Mo-
tivation for such code redesign will naturally increase
when SKYHI is no longer primarily executed on a PVP
machine, thus allowing cache-friendly coding tech-
niques to replace the vector-friendly techniques now in
place. The lack of parallel I/O significantly reduces
the scaling efficiency shown in Table 4 in production
runs; when data are read or written, a single processor
does the i/o while the remaining processors wait. Fi-

46 R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model

nally, the need for a two-dimensional domain decom-
position to produce more, smaller chunks and therefore
permit better load balancing is obvious as the number
of processors employed on a problem increases. The
longitudinal data dependencies in SKYHI which must
be handled in order to allow such a decomposition have
been identified, and it remains to develop a mechanism
to deal with them, within the context of a user-friendly
model.

Acknowledgments

I would like to thank S. Fan, C. Kerr, J. Mahlman
and D. Schwarzkopf for reading the paper and offering
valuable comments. Thanks also to the SKYHI user
community who have provided me with the feedback
necessary to produce a model which is becoming more
user-friendly, and to J. Mahlman who recognized the
need for a user-friendly SKYHI and who provided me
the opportunity to work to that end.

Appendix A: Temporal control of archive file forms

Six variables are used to control the temporal char-
acteristics of the archive file forms:

(1) the number of times which data is to be written to
a file before closing the file and opening another
one;

(2) the number of seconds between writes to the file;
(3) the number of time levels that are to be averaged

to generate the data that is to be written;
(4) the amount of time to be counted toward the

number of seconds between file writes at the
beginning of the run;

(5) the time in the run at which the file clock is to
start;

(6) the time in the run at which the file clock is to
stop.

Variable (1) allows one to write multiple files of a
given file form during a job. File names are created au-
tomatically following a simple pattern. By making the
value of (2) larger than the length of the job, the writ-
ing of the particular file form may be turned off. The
mechanism to define the time-averaging characteristics
are defined by (3); if a snapshot file is wanted, then
variable (3) is set to 1. Otherwise, the combination of
(2) and (3) determine the frequency of data sampling.
Variables (5) and (6) allow one to write a file during

a specified period of an integration, and (4) provides a
means to write files at the frequency given by (2), but
with an offset in time from the start of the job. These
six variables are named in a consistent way for each of
the file types, differing only by a single letter, which
indicates the file type.

Appendix B: Suggested procedure to use the
archiving module

The following process is recommended when using
the archiving module:

I) Decide which archive files are to be written dur-
ing the experiment and define their desired char-
acteristics. The characteristics are found in the
namelist and parameter file associated with the
given file type.

II) For each file type, choose one of the following
options:

A) If no files of this type are desired:

1) Set the preprocessor variable defining the
number of file forms of that type to zero.

2) Remove the namelist variables associated
with that file type from the namelist.

B) If you desire either a subset or all of the de-
fault file forms:

1) Leave the preprocessor file form number
variable at the default value.

2) For those file forms that are not being writ-
ten:

a) Set the seconds between file writes to
be larger than the run time of the job.

b) Set variable (3) of Appendix A to be 1,
reflecting a snapshot file.

c) Set the spatial index parameters for the
file form to all be 1, thus setting the
size of the array which will hold the
data to be of length 1.

3) For those file forms to be written:

a) Set the namelist and parameter file to
contain the desired file characteristics.

b) If the file form containing a subset of
the standard file is to be written, mod-
ify the subroutine defining the file con-
tents so that it will contain the desired
variables.

R.S. Hemler / Key elements of the user-friendly, GFDL SKYHI general circulation model 47

C) If a new file form is to be added:

1) Set the preprocessor file form number
variable to the proper value.

2) Add the code to define the new file form,
following the existing code pattern. Code
mods must be made to six to ten source
files, dependent on the file type.

3) The mods involve duplicating code and
changing file form numbers in the variable
names to the number of the new form. Ad-
ditionally the user must define the variable
names to be placed in the file, following
the provided patterns.

4) Modification to the script will be neces-

sary to save any new files generated and to
assign the file characteristics, if desired.

References

[1] Fels, S.B., J.D. Mahlman, M.D. Schwarzkopf and R.W. Sinclair,
Stratospheric sensitivity to perturbations in ozone and carbon
dioxide: radiative and dynamical response, J. Atmos. Sci. 37
(1980), 2265–2297.

[2] Jones, P.W., C.L. Kerr and R.S. Hemler, Practical considerations
in development of a parallel SKYHI general circulation model,
Parallel Computing 21 (1995), 1677–1694.

[3] Hamilton, K., R.J. Wilson, J.D. Mahlman and L.J. Um-
scheid, Climatology of the SKYHI Troposphere-Stratosphere-
Mesosphere general circulation model, J. Atmos. Sci. 52 (1995),
5–43.

