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ABSTRACT

A scale analysis valid for deep moist convection is carried out, The approximate equations of motion are
anelastic with the time scale set by the Brunt-Viisild frequency. A new assumption is that the base state
potential temperature is a slowly varying function of the vertical coordinate. It is this assumption that
eliminates the energetic inconsistency discussed by Wilhelmson and Ogura (1972) for a non-isentropic base
state. Another key result is that the dynamic pressure is an order of magnitude smaller than the first-order
temperature and potential temperature. In agreement with observations, the kinetic energy is found to be
an order of magnitude smaller than the first-order thermodynamic energy.

A set of six numerical simulations representing moderately deep moist convection is carried out. The base
state is an idealized maritime tropical sounding with no vertical wind shear. The first calculation (Run A)
shows the growth and dissipation of a typical shower cloud. The remaining calculations have small changes
in either initial conditions or model equations from Run A. These calculations indicate the sensitivity of
the present model to different approximations and give additional evidence for the validity of the scale

analysis.

1. Introduction

In this study a scale analysis is carried out to ex-
amine the set of anelastic equations used to represent
deep moist convection in the atmosphere. A key com-
ponent of the present aunalysis is the assumption that
the base state potential temperature §(z) is a slowly
varying function of the vertical coordinate z. Because
of this assumption, the present study has its primary
validity for deep convection confined to the tropo-
sphere. For severe mid-latitude convection, where the
clouds make significant penetrations above the tro-
popause, the present analysis is expected to have lim-
ited validity.

There have been several earlier studies giving rig-
orous discussions of the deep anelastic equations
(Ogura and Phillips, 1962; Dutton and Fichtl, 1969;
Gough, 1969). These studies, however, leave unan-
swered several basic questions with respect to deep
moist convection. In contrast to dry convection, it
is desirable to have a non-isentropic base state in
which 6o(z) departs significantly from a constant
value. Such a base state is expected to be relevant in
deep moist convection due to the role of latent heat
release. From a physical point of view, therefore, it
is surprising to learn that the use of a non-isentropic
base state leads to an energetic inconsistency (Wil-
helmson and Ogura, 1972). This problem is resolved
in the present scale analysis through the assumption
that 6y(z) is a slowly varying function of z.

Another relevant question is the role of the dy-
namic pressure in the calculation of the saturation

vapor pressure e;. In their scale analysis, Ogura and
Phillips (1962) found an implicit relationship be-
tween the first-order potential temperature 6,, the
pressure function 7, and the temperature T} for deep
convection. Dutton and Fichtl (1969) obtain essen-
tially the same result. Wilhelmson and Ogura (1972)
have carried out numerical simulations comparing
results with and without the inclusion of x; in the
calculation of e,. They find that the dynamically in-
duced =, is an order of magnitude smaller than ex- -
pected from the analysis of Ogura and Phillips and
thus can be neglected in the calculation of e,. These
authors state that the smallness of =, is partly because
the pressure diagnostic equation acts to smooth out
the pressure distribution. In the present study the
smaliness of 7, is a predicted result of the scale anal-
ysis.

The final question addressed by this scale analysis
is the role of the environmental moisture field in the
calculation of the base state pressure and potential
temperature fields. To the authors’ knowledge, all
previous researchers have neglected this effect. The
present work confirms that this moisture effect is.not
large enough to be physically significant.

The scale analysis and resulting conclusions are
presented in Sections 2-6. In Section 7 some three-
dimensional numerical calculations of moderately
deep moist convection are discussed. The first cal-
culation (Run A) shows the growth and decay of a
typical shower cloud when no vertical wind shear is
present. The remaining calculations have small
changes in either initial conditions or model equa-
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tions from Run A. These calculations show the sen-
sitivity of the present model to different approxi-
mations and also give additional evidence for the va-
lidity of the scale analysis. Section 8 contains a
summary and discussion for .the present study.

2. The basic equations and non-dimensionalization

In the present discussion the dynamics and ther-
modynamics are kept to a maximum simplicity so
that the main conclusions of the scale analysis can
be shown more clearly. Thus the effects of eddy vis-
cosity and eddy diffusivity are omitted. Likewise, the
thermodynamics is’ limited to that involving warm
rain processes with the latent heat of vaporization L
being constant. The value assigned to L corresponds
to a temperature of 0°C. Other physical constants
include ¢,, R, and R, which are respectively the spe-
cific heat of dry air at constant pressure, the gas con-
stant for dry air and the corresponding gas constant
for water vapor.

As in Ogura and Phillips (1962), it is convenient
to represent the atmospheric pressure p’ through the
Exner function r, i.e.,

T = (p'/P), (1)

where P is a reference pressure. Likewise, from the
definition of potential temperature ¢, we have the
relation

K= Rd/Cp N

T ==0. 2)

Throughout the present analysis primes indicate that
the respective variables are dimensional. Dimen-
sional constants, however, do not have primes.

a. The basic equations

The basic equations for continuity, momentum,
thermodynamics, water vapor mixing ratio g,, cloud
. water mixing ratio ¢, and rain water mixing ratio g,

are given in dimensional form by
o'

9p'
VI IVI —
3 + 0, (3)

v
7 VI (
5 + (V- V)V

= —c,0(1 + 0.608¢,)V'mr — gk(1 + g, + q,), (4)

0=0’/0003 T=TI/000a

V=V,

As implied by these relations, Cartesian coordinates
are used with x’, ¥’ and z’ scaled by [ and the time
t' scales by //W. Using (9) Egs. (3)—(8) will be dis-
cussed in non-dimensional form in the remainder of
the present analysis. It is noted that the non-dimen-
sional form of (2) is simply T = 6. Also, the non-

x=x'/l
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p=Dp'lP,
Cy=C/W, E=EUW, A=AUYW, V;=

y=y'l,
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o
cpr[a,+(V’ ’)0’:I=L(CL,—E’), (5)

99,

Py —,+(V:V)q,=-C,+E (6)

aq" 7 / '

'a—,+(V Vg.=Ca— 4 (Z)
aq, 1
— + (V. ’,——— Vrg)=—-E'+A', (8
o TV~ S 6V ra) ®

where p’ is the density of air, V' the vector velocity
of the air, V7 the fall velocity of rain water, C/; the
condensation (evaporation) of cloud water, E' the
evaporation of rain water, A’ the total conversion of
g. into g,, g the acceleration of gravity and k is the
unit vertical vector. The constant 0.608 in (4) is equal
to (R,/R) — 1. Note that =, ¢,, g. and g, are not primed
as they are nondimensional.

The liquid water heating term, which represents
the exchange of heat between ¢, and g, and the air
(Lipps and Hemler, 1980), has been neglected in the
thermodynamic equation (5). A brief discussion of
results from a more complete thermodynamic equa-
tion is given in Section 7 where numerical calcula-
tions are carried out. Also in Section 7 the total con-
version 4’ of g, into g, is split into the two compo-
nents 4 , and A4 | following the ideas of Kessler (1969).
The form of 4, and A4 is given in Appendix A.

b. The non-dimensional variables

Since the scale analysis will be carried out using
non-dimensional variables, the appropriate dimen-
sional scaling parameters need to be determined. For
this purpose the convective velocity W and length
scale /, which are defined and discussed in Section 3,
will be used. The reference pressure Pin (1) is defined
as the base state pressure at the surface (z' = 0) and
the base state potential temperature at the surface is
defined as 6y. Thus an appropriate scaling for the
density is pgo = P/Ry00.

The set of non-dimensional variables already in-
cludes =, g,, g. and g,. Using the above scaling pa-
rameters the remaining variables can be put into the
non-dimensional forms

p = 0'/poo )
W )
z=2z'/l, t=t'Wjl
dimensiongl parameter
L. = L/cyboo (10)

will multiply (C; — E) in the thermodynamic equa-
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tion. For typical atmospheric conditions L, =~ &.3.

In the following scale analysis L, will be treated as
of order unity. Although L. ~ 8.3 may seem large
compared to unity, it is small compared to the inverse
oflthe primary expansion parameter e. As seen below
¢! ~ 100.

3. The scale analysis assumptions
a. The parameters € and §

The first assumption of the present study is the

existence of the two small parameters ¢ and 6. The
first of these is the most important and is defined by

€=Aac/000, (11)

i

p=polz) + -
V=Vx,y,z,8) + + -+
T = Ty2)

8 = 80 (2) + 805 (2)
wo(2) + 0w (2)

T

@ 8Gux(2)

%,
4 =
Cy=
E=
4=
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where A6, is a characteristic value of the (dimen-
sional) potential temperature excess in the clouds.
This parameter is a measure of the strength of the
moist convection. The second parameter § is a mea-
sure of the water vapor present in the cloud environ-
ment and is defined as the value of the base state
mixing ratio ¢, at z = 0. In this analysis it is assumed
that € and & are the same order of magnitude:
6=De, D~ 1, (12)

Typical values of & and ¢ are the order of 1072

All dependent variables are expanded as power se-
ries in ¢ and §. The initial form of this expansion is
given by )

el (o n )+ e )
+eb, (X, y,2,0)+ ++
+em (X, 0,2, 0)+
teq, (X, 0,2, + » - , (13)
e (X, 1, 2,0+ <+« ¢
eqgn Gy, 2,0+ « - -
eCa(X, ¥, 2, )+ + « -
Ey (61,20 + + - -
eA (x, ), z, 1)+ J

VT= VTO(-xa Y, Z, t) t o

where it is noted that V is the total vector velocity
rather than the horizontal component as in Ogura
and Phillips (1962). Higher order terms not important
in the present analysis have been omitted above. The
base state variables in (13) are po, Ty, 8o, 7o, 05, 75 and
g.s. It is assumed that T, and g,; are observed. The
remaining base state variables can be obtained from
T, and q,; using hydrostatics. This procedure is out-
lined in Section 5. It should be noted that the base
state density po(z) can be obtained from Ty, 7 and
the equation of state. As in Ogura and Phillips (1962),
higher order terms in p and V will not appear in the
equations below.

The variables 6; and =, exist due to the finite water
vapor mixing ratio ¢,; in the base state. The definition
of & requires ¢,s(0) = 1. Since Ty(2) is the observed
base state temperature, there is no 6 component in
the temperature field. _

After the primary results have been obtained be-
low, it will be seen that a modified form of (13) is
appropriate. The final form of the power series ex-
pansion is given by Eq. (40) in Section 5.

b. Other scale analysis assumptions

In addition to the assumption of the small param-
eters € and §, the present scale analysis has four pri-
mary assumptions. '

1) The time scale 7 is set by the inverse of the
Brunt-Viisild frequency N:

& Abr
000 d’

where Af7 is the change in the (dimensional) base
state potential temperature through the depth d of
the troposphere. As in Ogura and Phillips (1962), the
above condition on 7 and the existence of the small
parameters e and § imply that acoustic waves are ab-
sent. The following set of equations is therefore ane-
lastic. The continuity equation to leading order is
given by

r~N", N?= (14)

V.poVo =0. (15)
2) The first-order buoyancy and the vertical ac-
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celeration are required to be the same order of mag-
nitude in the vertical momentum equation. Since the
first-order buoyancy ~ge and the vertical accelera-
tion ~ W?/l, this balance is expressed by

G =gd/W?*~ 1. (16)

Note that G ~ 1 excludes moist convection on the
scales of meso-B and meso-a (Fujita, 1963; Orlanski,
1975) from the present analysis. For these larger hor-
izontal scales, the motion is either hydrostatic or
quasi-hydrostatic (Orlanski, 1981). In that case it is
not appropriate to set buoyancy and momentum
terms the same order of magnitude.

3) The base state potential temperature 6y(2) is a
slowly varying function of z. Specifically, we assume
that the dimensional vertical advection term w'df),/
dz' is the same order of magnitude as the total time
derivative of disturbance potential temperature
doy/dt'. Since w'dy/dz' ~ WAOL/d, db\/dt ~ WAS,/
!/ and e = A8,/04, this assumption is expressed by the
relation

Aby |

oo d

In Eq. (9) of Section 2b the assumption 7 = //W has
been made for the scaling of the non-dimensional
variables. Combining (16) and (17) we find

= IW~Y(GB)'*N ", (18)

so that assumptions 2) and 3) and the scaling in Eq.
(9) are mutually consistent with assumption 1).

4) The final assumption sets the order of magni-
tude of the mean lapse rate Af7/d in the troposphere:

H A6 _
7 G (19)

=Be, B~ 1. (17)

a, a~ 0.5,

where H = ¢,000/g. The length scale H is thus the
height of an isentropic atmosphere. Noting that an
equivalent form of (19) is

Adr/d = agf/c, ,
we see that (19) implies A0,/d ~ 5K km™".

(20)

An important relation is obtained from dividing
(17) by (19), i.e.,
I/H = Be/a. 21

Hence the length scale / is the order of ¢ smaller than
H. This is a key result of the present analysis. In this
discussion the length scale / should not be thought
of as the depth of the total cloud but rather as the
length scale of a typical eddy. Considering a thermal,
the horizontal and vertical length scales are the same
order of magnitude and both can be represented by
L. Using (21) it might be tempting to argue that the
continuity equation (15) could be simplified to the
form of zero velocity divergence (V-V, = 0). For
deep convection, however, the total cloud depth is a
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large fraction of the depth d of the troposphere. Since
the density p, has a significant variation over this
depth, the full form of the continuity equation (15)
should be retained.

The parameters B and G are given explicit values
so that (17) and (16) can be considered as defining
equations for / and W. Since there is no rigorous
method to specify B and G from the scale analysis,
any values assigned to these parameters are ad-
mittedly arbitrary. One obvious choice is to set
B = G = 1. This choice, however, gives values of /
and W which appear unrealistically small. In this
study we set

G=1, B=4 (22)

The condition G = 1 appears reasonable for convec-
tion which has similar length scales in the horizontal
and vertical. The second condition B = 4 then allows
values of / and W which are compatible with the
numerical calculations in Section 7. For those cal-
culations we have ¢ =~ 1072, Afy/d =~ 5 K km™! and
6o =~ 300 K. Using these values and Eqgs. (17), (16)
and 22) we find / =~ 24 kmand W =~ 16 m s\,

4. Thermodynamic and water substance equatiqns

a. Thermodynamic equation

The variables 0,(Z) and T,(Z) are useful in the
discussion of the thermodynamics and energetics.
They are defined by

6o =1+ (——AaT)oz (Z), (23)
oo
d,_ _° ABT)
To+pZ=1+ (—000 T,(Z), (24)

where Z = z'/d. Thus Z represents the dimensional
vertical coordinate z' scaled on d rather than /. Note
that the dimensional form of the left side of (24) is
¢,To + gz’ which is the sum of the sensible heat plus
potential energy in the base state.

The thermodynamic equation to leading order is
given by

db, db;

R
To{at +(V0 V)Bl‘l"Wo BdZ+DdZ

= Lc(Cdl - El)’ (25)
where a factor of € has been cancelled from both sides
of (25) and terms of higher order than first order in
¢ have been dropped. The form of the expression
multiplying the vertical velocity w, has been obtained
by using (23), (17) and (12). Since the variation of
0y over the depth d of the troposphere is A87/6q0, it
can be seen from (23) that the vertical gradient
df/dZ ~ 1. 1In Section 5 it will be shown that the
term DdB,/dz is-actually the order of e. Thus including
this information
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EY db,
Wol:a—l + (Vo V)01 + woB E] L, (Cdl - E) (26')

~ 1s the final form of the thermodynamic equation to
first order in e. It is noted that the Bwydb,/dZ term
is the same order of magnitude as the (V,- V)8, term
due to the assumption, as expressed by Eq. (17), that
6y is a slowly varying function of z.

b. Water substance equations

Equations to first order in ¢ for the mixing ratios
15 41 and dr are given by

aqvl dqu

o1 + (Vo V)g,1 + Dwy dz —(Ca — E), (27)
9g.
S+ (Vor V)aa = Ca = 4y (28)
9gn 1
a1 L+ (Vo Vg — E & (poVr0dn)
= _El + A| . (29)

The correspondence between the previous dimen-
sional equations [(5)-(8)] and the present dimension-
less equations [(25)-(29)] can be clearly seen.

5. Analysis of the momentum equation

The full momentum equation (4) is first written in
dimensionless form without neglecting any higher
order terms. Scaling the variables as given in (9) yields
v GH

o +(V-V)V=——— 0(1 + 0.608g,)Vr
€

- (;; k(1 +g.+q). (30)

a. Hydrostatic equations

The leading order buoyancy and pressure gradient
terms in (30) are inversely proportional to e. From
the power series expansion (13) it is seen that these
terms represent the zeroth order hydrostatic relation

e 31)

Another relation which can be obtained frbm the
. zeroth order form of (2) is simply 7T, = mof,. Com-
bining this relation with (31) gives

/1

dlnﬂ'o _ b

. dz HT, (32)
Since Ty is observed, m, can be calculated from (32)
using the boundary condition 7o = 1 at z = 0. Then
8o can be obtained from T, = ;.

The variables w; and 6; can also be calculated from
hydrostatics using the observed g,;. Since the tem-
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perature T has no § component, the total relation
T = w0 has the 6 component
T, Y

0= (33)

o 00 '
The ¢ component of the pressure gradient term in
(30) gives the hydrostatic relation
dry ' d
0 = —6 —d’ﬁ - ﬂ’ (65 + 0.60800gs5).
Dividing (34) by 7, and using the relations (31), (33)
and Ty = wofy yie]ds.

(34)

d ! l .

Eq. (35) can be solved for =; using the boundary con-
dition m; = 0 at z = 0. The potential temperature -
f; can then be obtained from (33). Thus, in summary,
the base state variables 8y, 7o, 6; and r; can be ob-
tained from hydrostatics assuming that To(z) and
q.5(z) are observed. _

A significant conclusion can be inferred from (21).
Since //H is the order of ¢, it follows from (35) that
w5 and therefore 6; are the order of . Thus the terms
865 and 65 in the expansion (13) are the order of De?
so that these contributions to the base state are neg-
ligible. This argument has used the assumption that
the length scale / is the correct order of magnitude
to represent the depth of the moist layer as deter-
mined by ¢,;. This assumption appears reasonable.

(35)

b. The zeroth order momentum equation

A further look at the full pressure gradient term
in (30) is required to obtain the zeroth order mo-
mentum equation. Specifically we consider the term

- g EHOVem = -G E 00V7T| .
e [ /
Since H/l ~ €' it follows that we must set =,
= em, because the highest order momentum terms
are zeroth order in e. Thus =, is the order of ¢ smaller
than 7', and 8, so that the first order expansion of T
= wf gives

Tl = 7l'001 . (36)

Hence T and 6, are linearly related.
It is now shown that 6, can be put inside the pres-
sure gradient term. Using (23) and (17) we find .

db

00V7I'2 V(007I'2) + kB€7I'2 dZ

Thus the term involving df,/dZ is the order of ¢

smaller than the —V(fy,) term. This result is a direct

consequence of (17), the assumption that 6, is a slowly
varying function of z.

At this point the zeroth order momentum equation

(37

.
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can be derived. Using the power series expansion (13),
Eq. (21) for H// and the above results we find
v,

Yy + (Vo V)V,

]
= -Vo¢ + Gk(o_l + 0.6089,1 — gct — er) , (38)
0

where

¢=G%%m. (39)
The first two buoyancy terms are obtained from the
first-order expansion of the pressure gradient term in
(30) using (31) to represent dmo/dz.

A complete set of basic equations has now been

= o)+ -
V=Vyx,p,z,t)+ -
T = T«2)
6 = 8o(2)
7 = wo(2)
v =
qc=
g, =

where the relation 6 = De has been used to eliminate
the explicit 6 dependence in the expansion of ¢,. Thus
no explicit dependence on 6 remains in (40). For the
dependent variables not shown in (40) the expansion
remains the same as in (13).

6. Energetics
a. Kinetic energy
To obtain the kinetic energy equation, (38) is mul-

tiplied by pyV, (vector dot product) and written in
flux form using continuity (15), i.e.,

1
%(Epovoz) + V- [poVo(2V* + ¢)]

0
= GPOWO(E; + 0-608qvl g — er) . (41)

The above equation will be integrated over a finite

three-dimensional volume. In this and subsequent .

integrations it is assumed that the flux terms vanish
upon integration. This assumption implies that no
net energy of any form is advected into or out of the
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+eTx,y,z,0)+ -+ -

+ ebi(x, y,z, )+ - -

+ Emx, Yy, z, )+ - - _
dDgui(2) + qui(x, ¥, 2, ) + - - -
eqa(x, y, z, ) + ¢+« -
equ(X, ¥, 2, )+ » + »
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obtained from the scale analysis for deep moist con-
vection. The six equations [(15), (38) and (26)-(29)] -
can be solved for the six variables Vg, ¢, 01, qu1, Gei
and g,, subject to the appropriate initial and boundary
conditions. As is necessary for the anelastic equations,
the pressure function ¢ is obtained from the solution
of a Poisson equation which is derived by multiplying
(38) by pp and taking the divergence of the resulting
equation. The time tendency term vanishes by virtue
of continuity (15) for the continuous Poisson equa-
tion. For numerical models this is not exactly so and
is discussed in detail by Williams (1969).

¢. Modified expansion of dependent variables

A modified form of the power series expansion (13)
is now given using the results of the analysis above.
For the primary dependent variables we have

N

L, (40)

volume of integration. Upon integration (41) yields

3 [ (1 2)
21z %
at V(z”°v° d

0
= G [ pow(2 + 0.6080, - 40— a0 Jav. @)
14 0

Hence the term on the right represents the total
source of kinetic energy.

b. Thermodynamic energy

As discussed in Section 4a the thermodynamic
equation to leading order is given by (26). If the factor
mo on the left side of (26) is put inside the derivative
terms and the relation (36) for 7, is used, a prognostic
equation for the temperature 7', is obtained:

aT, dT,
L L (Vo V)T, + Bwy 22
o T Vo VT4 Buwo "

I 0 '
7o 0—0 + L(Cq — Ey). (43)
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For the present scale analysis this equation is equiv-
alent to (26). Using Eqs. (17) and (24) it can be shown
‘that the left side of (43) represents the total time de-
rivative of the sensible heat plus potential energy.
Multiplying by py and writing the equation in flux
form, Eq. (43) becomes
|

a . ' d
5; (poTl) +V. {‘poV()[é_l(To + E Z) + T'l]J' .

0,
H + poL (Ca — EY).

PoWo -
8

(44)
The component of the flux term proportional to ¢
represents the base state sensible heat plus potential
energy. It is seen that for the anelastic system the
potential energy corresponding to (d/H)Z has no

first-order component. Integrating (44) over the vol-
ume gives

; f
- V
ot VPOTld

A
= Pol — 73

v H "8,
The first and second terms on the right side of (45)
represent the conversion of sensible heat into kinetic
energy and the conversion of latent heat into sensible
heat.

Since the potential energy has no first-order com-
ponent, the relevant total energy equation involves
the volume integral of the sum of the sensible heat,
latent heat and kinetic energy. The time rate of
change of total energy is given by

171
aﬁzvo]d”

+ LACy — El):,dV. (45)

0
' &IVPO[TI + Legy +

' )
=fp{§%wmwm—%vmeV (46)
Vv

Thus, in the present formulation, total energy is not
conserved for deep moist convection. The lack of
conservation is not due to the thermodynamics but
rather is due to the water vapor and liquid water
buoyancy terms in the wy-momentum equation. The
energetic inconsistency discussed by Wilhelmson and
~ Ogura (1972) for a non-isentropic base state is not
seen in Eq. (46). Evidently this problem has been
eliminated. since, as shown by (37), 6, can be put
inside the pressure gradient term and the correspond-
ing df,/dZ term [which would give rise to an addi-
tional term in (46)] is negligible.

The relation (21) indicates that the kinetic energy
term on the left side of (46) and the buoyancy terms
on the right side of (46) are the order of ¢ smaller
than the sensible heat and latent heat terms. This
result can be understood when it is remembered that
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kinetic energy is séaled by W2 whereas first-order sen-

sible heat is scaled by c,Af.. The ratio W?/(c,A8,)
gives

W2

A8,

_1L
GH’

47)

which is just the term multiplying the kinetic energy

1 . .
E,ooVo2 in (46). Thus the present scale analysis con-

firms that the usual practice of neglecting the kinetic
energy budget when discussing the energetics of deep
moist convection is legitimate to leading order.

¢. Special case of dry convection

Several insights can be obtained by considering the-
special case of a dry atmosphere with no latent heat
release. Under these conditions g,;, = ¢,; = g4 = 0,
so that (46) becomes

171
PO[TI

NIV P

GH?2 (48)

ot

Hence, in distinction to the moist convection case,
the above equation indicates a conservation of vol-
ume-integrated sensible heat plus kinetic energy.

For deep dry convection it is appropriate that the
base state be an isentropic atmosphere with 8y(z)
= 1..Thus the present case is now the same as that
discussed by Ogura and Phillips (1962) and it can be
shown that (48) is equivalent to their energy conser-
vation equation (31). For this purpose, it is necessary
to separate the sensible heat 7, into two forms of
energy. Since 7; = mof, we have

Iy=0, P=(mo—1)0,, Ty=15+P, (49
where P, is a potential energy and I, has the char-
acteristics of an internal energy.
In the present context the thermodynamlc equa-

tion (26) reduces to

a9

—+ (Vo V)0, =0,
at
which states the conservation of 6, following a parcel.
Putting (50) in flux form and integrating over the
volume yields

(50)

9

atf poIng O

(51)
so that I, is conserved for dry convection. When (50)
is multiplied by pg(mo — 1), put in flux form and
integrated over the volume we obtain

vl i/

— dV = — — wob dV. 52

ol poPs 7 J Pl (52)
Since 6, = 1, the term on the right is equal to the
conversion of potential energy into kinetic energy.
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The volume integral of kinetic energy plus P, po-
tential energy is therefore conserved. For an isen-
tropic atmosphere, the form of w(z) can be calculated
as given by Ogura and Phillips. With my(z) known,
P, can be obtained from (49), i.e.,

' {
P6=_Ezals

(53)
using the present notation. Hence, multiplying (48)
by GH/I, the conservation of kinetic plus potential
energy can be written as

9 f po(2Ve* — Gz0,)dV = 0. (54)
aJdy : ’

The I, energy component vanishes in this equation
by virtue of (51). Thus (54) corresponds to Eq. (31)
in Ogura and Phillips (1962).

The energetics for deep moist convection can also
be formulated in terms of I, and P, instead of the
sensible heat 7. In that case, Eq. (51) would contain
a heat source term involving L{Cy; — E;) on the right
side of the equation. The conversion of sensible heat
into kinetic energy would again be accomplished
through the conversion of P, potential energy into
kinetic energy. The energy I, has the characteristics
of an internal energy in that it does not get converted
into kinetic energy. In the numerical calculations to
follow the more familiar sensible heat 7 will be an-
alyzed. Although of possible interest in other studies,
the alternative energy forms I, and P, will not be
discussed further in this investigation.

7. Numerical calculations

In this section we present some three-dimensional
numerical calculations of moderately deep moist con-
vection associated with an idealized maritime tropical
sounding. These calculations will indicate the general
validity of the scale analysis and will show the sen-
sitivity of the present model to different approxi-
mations. In addition, results from a more accurate
form of the thermodynamic equation will be dis-
cussed.

a. The numerical model

A brief description of the numerical model is pre-
sented here. A more detailed discussion of the bulk
cloud physics, subgrid-scale mixing processes, bound-
ary conditions and finite difference methods is given
in Appendix A. The numerical values of various con-
stants used in the model calculations are given in
Appendix B. In this section and Appendix A all vari-
ables are dimensional; the primes are dropped. The
basic equations are the dimensional counterparts of
(15), (38) and (26)-(29). The finite difference forms
of (38) and (26)—(29) are obtained after multiplying
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these equations by the density po(z) and writing the
nonlinear advection terms in flux -form.

The numerical procedure for the present model is
parallel to that discussed by Lipps (1977) for shallow
moist convection. The domain of integration is a
horizontally square area with L, = L, = 12 km and
is bounded by rigid vertical boundaries at z = 0 and
z = 10 km. Horizontal periodicity is required on the
lateral side walls of the domain. The grid spacing
is Ax=Ay=375 m in the horizontal and Az
= 250 m in the vertical. Thus the domain involves
a total of (32 X 32 X 40) grid points. The time step
is either Az = 5 s or At = 10 s depending on the
strength of the convection.

b. Initial conditions

The base state mixing ratio (g,), potential tem-
perature , and relative humidity are shown as func-
tions of height in Fig. 1. The angle brackets denote
a horizontal average. For the present calculations, the
environment is assumed to have no vertical wind
shear. The dashed curve shown along with the 6y(z)
profile represents the potential temperature calcu-
lated from Eq. (26) using parcel theory for moist sat-
urated ascent. The cloud base is assumed to have the
same temperature as the environment and to be lo-
cated at z = 625 m. The parcel calculations are carried
out as described by Lipps and Hemler (1980). The
difference between the two potential temperature
curves is a measure of the convective instability of
the present base state. The maximum difference be-
tween the curves is approximately 4.5 K at mid-levels.

To initiate the convection, an axisymmetric heat
flux distribution is applied at z = 0. This is accom-
plished by specifying the first-order potential tem-
perature 6, at the lowest 8 level (see Appendix A).
The form of 6, is represented by'a Gaussian function
with the maximum value located at the center of the
numerical model:

01(x, 3) = A explyal (/AR + /80T, (59)

where 4 = 2.0 K, « = 0.08 and x and y are specified
by
—‘LXS.XS}‘LX —lL <y<lL
2 27 2 27
where, as indicated above, L, = L, = 12 km. With
the given value of «, the magnitude of 0,(x, y) de-
creases rapidly as the distance from x = 0, y = 0

(56)

) 1 ‘
increases. For example, with |x| = ZLX’ Bi(x, ¥) < 2

1
X 107" and with |x| = ELX, 6,(x, y) < 1074,

The lower layers in the atmosphere near x = 0,
y = 0 warm up rapidly due to the subgrid-scale ver-
tical diffusion of heat. At 15 min a shallow cloud has
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FIG. I. Vertical sounding of the base state mixing ratio {(g,), potential temperature 6, and relative humidity.
The angle braces indicate a horizontal average. See text for explanation of the dashed curve.

developed and #,(x, y) as given by (55) is turned off.
For the remainder of the calculations the boundary
condition of zero vertical heat flux is applied at
z=0.

¢. Primary calculations

The primary calculations in the present study con-
sist of a set of six runs. Run A is calculated with the
above initial conditions and includes all of the ap-
proximations indicated to be valid by the scale anal-
ysis. The remaining five runs are calculations which
represent small changes in either initial conditions or
model equations from Run A. These changes are the
same order of magnitude as terms neglected in the
scale analysis. Run B is the same as Run A except
that the base state mixing ratio (g, shown in Fig. 1
has been uniformly reduced by 1%. A comparison of
Runs A and B will indicate in a quantitative way the
sensitivity of the present model to changes in initial
data.

Run C is the same as Run A except that the sat-
uration vapor pressure ¢, is included in the denom-
inator of Eq. (A1) of Appendix A. This equation spec-

ifies the form of the saturation mixing ratio g,, used
in model calculations. In both Runs A and C the base
state pressure p(z) in (Al) is calculated neglecting the
parameter 4 in the scale analysis. Run D is the same
as Run C except that first-order effects of the param-
eter 6 are included. This change implies a slight mod-
ification of p(z) from Run C and, more importantly,
the dimensionless term wyDdb;/dz in Eq. (25) is now
included in the thermodynamic equation.

In Run C; the thermodynamic equation (26) is
written in the form of (43) using the relation (36).
Thus the thermodynamics is represented through a
prognostic equation for the first-order temperature.
For the present scale analysis Eqgs. (26) and (43)
should be identical and, for the compatible finite dif-
ference formulations, the numerical results are iden-
tical to within machine roundoff errors. In Run Ct
the non-dimensional kinetic energy conversion term
—I/H(wyf,/8,) in Eq. (43) has been neglected. In all
other respects the calculations in Run Cr correspond
to those in Run C.

In Run E the same approximations are used as
discussed for Run D. The thermodynamics, however,
is represented through Eq. (8) of Lipps and Hemler
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FIG. 2. The time history of Run A. For definitions of R(¢) and the volume-averaged
variables CD(r), EV(t), QR(?) and QC{(r) see Eq. (57) in the text. The two arrows
along the ¢ axis indicate the times of the flow fields plotted in Figs. 3 and 4.

(1980). In this equation the latent heat of vaporiza-
tion L is a function of the base state temperature T
and the liquid water heating term is included. Al-
though this equation is a more accurate representa-
tion of the thermodynamics, an order of magnitude
analysis indicates that the change in thermodynamics
from Run D to Run E is relatively small, involving
terms the order of . For all of the calculations, viscous
and diffusive effects are computed as described in
Appendix A.

d. Discussion of Run A

In Run A the numerical calculations indicate the
development and decay of a convective shower cloud
similar to that discussed by Byers and Braham (1949)
for the case of weak or no vertical wind shear. The
total simulation was carried out for 72.5 min of real
time.

N

TABLE 1. Maximum values of vertical velocity w, disturbance
potential temperature ), cloud top Z, rainfall TR, kinetic energy
PK, and sensible heat SH for the six numerical calculations.

w & Zr TR PK X 1073 SHX 1073
Run (ms!) (K) (m) (cm) (J m) (J m)
A 219 340 7375 4.30 2.73 11.79
B 20.8 3.13 7125 399 2.19 10.53
C 18.9 3.03 7125 354 1.67 9.11
Cr 19.3 3.08 7125 3.58 1.72 9.43
D 20.4 322 7375 3.80 2.00 10.39
E 194 7125 3.55 1.85 9.35

3.04

1) TIME HISTORY OF RUN A

The time history of Run A is shown in Fig. 2 where
the horizontally averaged rain R(f) at the ground is
compared with the volume-averaged variables CD(?),
EV(1), OR(f) and QC{(r) associated with the bulk cloud
physics. These variables are defined by

N

t
RO =d™ [ (Vradr
0

o= [ (wCidr
" , (57)
o= [ (o

QR@) =
) =

where the braces represent a volume average. From
the above definitions it is seen that continuity of water
content implies

CD =R+ EV+ QR+ QC.

{POQr}
{quc}

(58)

The curves plotted in Fig. 2 appear typical of a
convective shower cloud with no vertical wind shear
present. The convection initially develops slowly so
that by 15 min a small amount of cloud water QC
is present. By 25 min QC is near its maximum and
a strong conversion of QC into QR is starting to oc-
cur. At 36 min QR is near its maximum and heavy
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rainfall has just begun at the ground. Most of the rain
at the ground falls within the next 18 min. By the
end of the run (t = 72.5 min) the cloud is well into
the dissipation stage.

In order to give physical significance to the mag-
nitudes of @C and QR, it is assumed that the active
cloud is contained within a fraction a of the total
volume. As will be seen below, Figs. 3 and 4 suggest
that the estimate a = 1072 is qualitatively correct.
When expressed in terms of this fractional volume,
the maximum cloud water o 'QC ~ 1.0 g m™3 at 25
mm and the maximum rain water a'OR ~ 35¢g

3 at 37 min.

The time history in Flg. 2 can be compared with
that shown in Fig. 2 of Murray and Koenig (1972).
Their calculations were carried out using a shallow
axisymmetric model with the grid intervals Ar = Az
= 200 m. The basic sounding (San Juan, P.R., 2300
GMT 20 August 1963) and the initial disturbance
were the same as used by Murray (1970). For Run
2 of their calculations the maximum vertical velocity
was 13.9 m s™! and the average rainfall (over a disk
" 300 m in radius) was 0.64 cm. The corresponding
values for Run A are wp,, = 21.9 m™! s and the
average rainfall (over a disk 562.5 m in radius) of
~3.10 cm. The maximum cloud top (determined
by q.) appeared to be about 4.0 km in their study
whereas in Run A the cloud top reached 7.375 km
(see Table 1).

" In spite of the more intense convectlon in Run A,

a comparison of Run A with Murray and Koenig’s
Run 2 shows that the time histories have much in
common. The time required for the formation of
cloud water QC and rain water QR and for the fallout
of rain R are very similar. In Run A the time required
for the rain to reach the ground is somewhat longer.
This delay is associated with the greater heights to
which the rain water is advected before falling. out
(see Figs. 3c and 4c¢). Also note that QC has secondary
maxima at 41 and 56 min in Run A whereas the
shallow convection run has only the primary maxi-
mum in QC at 25 min.

2) VERTICAL CROSS SECTIONS FOR RUN A

Flow patterns in Run A are shown for the times
t = 27.5 min and 42.5 min in Figs. 3 and 4. These
times are noted by the two arrows along the ¢ axis in
Fig. 2. Fig. 3 is plotted at the time of maximum ver-
tical velocity and 2.5 min past the time of maximum
¢, in the simulation. Vertical sections of the vector
wind field, the disturbance 6, and ¢/, fields, and the
4. and ¢, fields are shown in Figs. 3a-3c. The shaded
area represents the cloud. These sections are limited
to the central half of the total x-z cross section. The
disturbance potential temperature ¢ and disturbance
mixing ratio g} are defined as deviations from the
horizontal average (6,) and (g,), respectively.
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The vector velocity field in Fig. 3a indicates a
strong positive w through the depth of the cloud, with
the maximum w = 21.9 m s™! on the cloud axis at
the height z = 4.75 km. A strong horizontal gradient -
in w exists at the cloud side boundaries with negative
w outside the cloud. The largest negative w = —3.6
m s”! and is located just outside the cloud at-the
height z = 3.75 km. The data in Fig. 3b indicate a
warm moist cloud with strong evaporative cooling at
the cloud top and sides. Evaporative cooling and up-
ward motion near cloud base is apparently giving rise
to the cool moist tongue of air oriented at approxi-
mately a 45° angle from cloud base. As seen in Fig.
3¢, cloud water ¢, is being converted into rain water
g, in the upper levels of the cloud where the vertical
velocity and the condensation are the largest. At this
stage in the cloud’s development the vertical velocity
is strong enough to hold the rain water g, in the upper
part of the cloud.

The same flow fields are plotted in Fig. 4 at
¢t = 42.5 min of Run A. At this time the cloud top
has just reached its maximum height and heavy rain
is falling at the ground. The cloud circulation has
decreased sharply in intensity with a maximum w
= 9.0 m s”! located at z = 6.50 km. As seen in Fig.
4a, the circulation in the upper part of the cloud ap-
pears to closely approximate a vortex ring with rising
motion inside the cloud and sinking motion just out-
side the cloud. This aspect of the cloud circulation
and the circulation shown in Fig. 3a appear to follow
the descriptive discussion given by Murray and
Koenig (1972). Another feature which is prominent
in Fig. 4a is the relatively large area of downward
motion above the cloud top. This downward motion
appears responsible for the positive ¢, and negative
g, above the cloud as shown in Fig. 4b.

Strong evaporative cooling' is again indicated at
the cloud top and sides by the negative values of
#,. The maximum 6] ~ 1.6 K at z = 3.50 km is in
the lower portion of the cloud where w =~ 5 m s~}
and the cloud width is less. Another area with
#, > 1.0 K is seen below cloud base in the region of
the strong downdraft. Here the adiabatic warming
due to downward motion more than compensates for
the evaporative cooling in this relatively moist air.
This warming effect has been seen in earlier numer-
ical simulations as well. It is shown very strongly in
Fig. 6 of Miller and Pearce (1974) and to-a much
lesser degree in the axisymmetric model results of
Soong and Ogura (1973).

The fallout of precipitation below cloud base seen
in Fig. 4¢ is associated with a maximum downdraft
of w=-35ms!at z = 0.5 km. At lower levels

! This conclusion is confirmed by cloud water evaporation data
which infer a maximum evaporative cooling rate of 1.9 K min™'
at cloud top.
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FiG. 5. Total accumulated rainfall 7R as a function of x at
t = 72.5 min. The cloud center is at x = 0. The four curves cor-
respond to Runs A, B, C and D.

evaporative cooling dominates adiabatic warming so
that the air is cool and dry near the surface. Thus at
the surface #, =~ —0.7 K and at z = 0.5 km the max-
imum drying effect is ¢/, =~ —0.5 g kg™'. Note that
the cold air outflow is associated with a vortex cir-
culation on either side of the cloud. These vortices
remain weak and no secondary shower clouds de-
velop.

In Figs. 3b and 4b a double maximum is seen in
6, along the vertical cloud axis inside the cloud. Al-
though multiple maxima in #, can occur in observed
clouds, the authors believe the present double max-
ima are non-physical. The evaporative cooling gives
rise to a very strong gradient in 6} at the cloud top.
Furthermore, the wavelength between the minimum

| associated with evaporative cooling and the relative
minimum inside the cloud is 4Az. These considera-
tions apply to both Figs. 3b and 4b. Another artificial
effect is seen in Fig. 3¢ where rain water ¢, diffuses
above the cloud top and through the cloud sides with-
out evaporating. This effect is minimized in Fig. 4c
due to the lower relative humidity in the environment
and the strong downward motion above the cloud.
In spite of these deficiencies, the numerical simula-
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tion of Run A has given reasonable results which will
be compared with Runs B-E.

e. Comparison of Run A with other calculations

The total accumulated precipitation at ¢t = 72.5
min is shown as a function of x in Fig. 5 for Runs
A, B, C and D. The maximum precipitation is at the
cloud center with the amount of rainfall decreasing
rapidly with distance. At 2Ax (750 m) from the center
the precipitation has been reduced to approximately
one-fourth of its maximum value. The curves for Run
Cr and Run E are not shown as they are very similar
to the Run C curve. As may have been expected, the
precipitation amount is sensitive to small changes in
the model. In Run B the precipitation at cloud center
is 7.2% less than in Run A and this reduction appears
to be valid away from the cloud center as well. This
decrease in rainfall is a direct consequence of the 1.0%
reduction of the base state mixing ratio (g, used as
initial data in Run B.

The reduction of rainfall at cloud center is 17.7%
in Run C compared with Run A. This rather large
decrease is directly attributable to the inclusion of e
in the denominator of Eq. (A1). With this term in-
cluded in (A1) the saturation mixing ratio g, is in-
creased, thus. delaying and reducing the amount of
condensation C, This effect is accentuated in the
present simulation because the cloud base is low and
warm, typical of tropical maritime conditions. At
cloud base the ratio e/p(z) ~ 2.8 X 1072 which im-
plies that g, is increased by 2.8% compared with the
corresponding value in Run A. Thus the decrease in
rainfall in Run C is seen to be compatible with the
decrease in Run B.

The final curve in Fig. 5 indicates that the rainfall
associated with Run D is larger than for Run C. This
increase is a result of the inclusion of the first-order
terms in 6 in Run D. Specifically, the dimensional
potential temperature gradient df,/dz ~ —0.1 K km™!
for vertical levels at and below cloud base
(z < 625 m). This destabilizing effect included in the
thermodynamic equation acts to increase the inten-
sity of the convection in Run D.

Another comparison of the numerical data is
shown in Table 1 where the maximum values of dif-
ferent variables are tabulated for each of the six runs.
The rainfall TR is evaluated at the cloud center and
the two forms of energy are represented by the vertical
integrals

d
PK = 1/2f po < V2> dz
0 : . (59)

d
SH = Cpf p07r0<01>dz
0

where {#,) = 0 at ¢ = 0. Thus PK and SH are both
equal to zero at the beginning of each run.
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The data in Table 1 indicate that other parameters
vary as much as the rainfall 7R. The only exception
is the cloud top height Z . For Runs A and D the
cloud top is one grid interval higher than for the other
runs. As seen by the comparison between Runs A
and B, the model is sensitive to changes in initial
conditions. This sensitivity, however, is not as strong
as for the shallow convection study of Lipps (1977).
The differences between Runs A, C and D parallel
those shown in Fig. 5 and occur for the same reasons

as discussed above.

© A very close agreement is seen in Table | between
Run C and Run Cr. Evidently the non-dimensional
kinetic energy conversion term —I//H(wyf,/6,) ne-
glected in Run Cy is not important for the present
calculations. This conclusion is compatible with the
scale analysis which indicates that //H ~ e from (21).
Thus the kinetic energy conversion term is an order
of ¢ smaller than the other terms in the thermody-
namic equation (43).

The numerical calculations support the validity of
the scale analysis in other ways as well. The values
of #, in Table 1 suggest a value ¢ ~ 1072 as discussed
in Section 3b. The data in this table also indicate a
ratio PK/SH ~ 0.25 X 1072 which is in agreement
with PK/SH ~ ¢ as obtained in Section 6b. In Run
A the maximum dynamic pressure p; ~ 0.4 mb
which was observed at 25 min in the upper levels of
- the cloud circulation. This value of p, is small enough
to consider the dynamic pressure a second-order ef-
fect as obtained in Section 5b. In some earlier cal-
culations the pressure gradient term was written as
—c,0V7, in one run and written as —V(c,fpm;) in a
second run. The rainfall 7R differed by about 3% and

maximum values of w, #; and Z; were virtually iden-

tical for the two runs. These calculations support the
validity of Eq. (37), indicating that 6, can be put inside
the pressure gradient term.

A comparison of Runs E and D shows the effect
of a more accurate thermodynamic equation. As seen
from Table 1, the values of the various parameters
in Run E fall between those of Runs C and D, being
on average closer to Run C. Thus, for the present
calculations, the inclusion of the more accurate ther-
modynamics has an effect opposite in sign and slightly
weaker in magnitude than that associated with the
parameter 6. The apparent cancellation between these
two effects is the reason for the very close agreement
between Run C and Run E. }

The relative behavior of Runs D and E can be
examined in terms of the analysis of Lipps and Hem-
ler (1980). The thermodynamic equations (5) and
(25) in the present study correspond to the equation
associated with the curves labeled “W” in Fig. 2 of
that study. Likewise Run E corresponds to the axis
of comparison in that figure. It was noted that the W
curves were quite accurate for temperatures = —10°C.
Since the presently simulated cloud temperatures are
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warmer than —10°C except near the cloud top, it
could be anticipated that Runs D and E would have
relatively good agreement. The form of the W curve
in Fig. 2b of Lipps and Hemler also suggests that Run
D would be slightly warmer than Run E at mid-levels
in the cloud. The data for ¢, in Table 1 indicate that
this is indeed the case.

8. Summary and discussion
a. Scale analysis

In this study a scale analysis is carried out which
is valid for deep moist convection in the troposphere.
The primary new assumption of this analysis is that
the base state potential temperature 6y(z) is a slowly
varying function of z. In Section 6b it is shown that
this assumption eliminates the energetic inconsis-
tency discussed by Wilhelmson and Ogura (1972). It
should be noted that Dutton and Fichtl (1969) were
able to obtain a consistent set of energy equations in
their study. They defined a form of available potential
energy which requires 9 Inf,/3z = constant for ener-
getic consistency In the present study no such re-
striction is placed upon 6y(z).

Another key result, as shown by Eq (21), is that
the convective length scale / is the order of ¢ smaller
than the scale height H. Several important conclu-
sions are associated with Eq. (21). The first is that the
kinetic energy is the order of e smaller than the first-
order sensible heat. A second conclusion? is that the
dynamic pressure , is the order of ¢ smaller than 7
and 6,. Thus a linear relation [Eq. (36)] exists between
T, and 6, so that there is no need of an implicit re-
lationship, as thought necessary by Ogura and Phillips
(1962), to calculate the saturation vapor pressure e,
when 6, is the prognostic variable. Hence the present
analysis is in agreement with the numerical study of
Wilhelmson and Ogura (1972). Another result due
to 7, being small is that the thermodynamics can be
represented through a prognostic equation in 7.

The importance of moisture in the base state is
represented through the parameter 4 in the scale anal-
ysis. The initial assumption of the present study is
that & and ¢ are both the same order of magnitude.
By applying Eq. (21) to the hydrostatic equation (35),
it is shown that the 6 components of the base-state
« and 0 fields are the order of ¢2. Thus these contri-
butions to the base state are predicted to be negligible.

2 An important aspect of this conclusion was noted by a reviewer
(Terry Clark). In Ogura and Phillips’ (1962) scale analysis the base .
state was an isentropic atmosphere (fy = constant). Clark (1979)
points out that if the observed nonisentropic base state is used to
obtain 6y, Ty and o, then 7, is much smaller since a base state
component m,(z) has been eliminated. In this case =, is equal to
the perturbation =" associated with the convection. Since Wilhelm-
son and Ogura (1972) and the present study both use observed
nonisentropic base states, m; = #” for both investigations. Thus -
both studies find " < T, or 6,.
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b. Numerical results

In Section 7 a set of six three-dimensional numer-
ical calculations are discussed which represent mod-
erately deep moist convection. The base state is an
idealized maritime tropical sounding as shown in Fig.
1. The first calculation (Run A) has all of the ap-
proximations indicated to be valid by the scale anal-
ysis. The remaining runs have small changes in either
initial conditions or model equations. A primary pur-
pose of this set of calculations is to examine the va-
lidity of results obtained in the scale analysis.

The numerical simulation for Run A appears typ-
ical of a convective shower cloud with no vertical
wind shear as discussed by Byers and Braham (1949).
A couple of features shown in Fig. 4 at f = 42.5 min
are considered noteworthy. One is the large area of
downward motion above the cloud as seen in Fig. 4a.
The second is the maximum in 6, below cloud base
as seen in Fig. 4b. Evidently, since mixing with the
outside air is relatively weak, adiabatic warming dom-
inates evaporative cooling in this moist region of the
precipitation induced downdraft. Thus the authors
view this maximum in # as a physically realistic ef-
fect.

A comparison of Run A with the other calculations
is shown in Fig. 5 and Table 1. Run B is the same
as Run A except that the initial base state mixing
ratio {(g,) has been uniformly decreased by 1%. The
comparison of these two runs indicates the sensitivity
of the present model to small changes in available
moisture. The data in Table 1 indicate that the max-
imum values of w and @, and the total rainfall 7R
at cloud center decrease between 5 and 10% in Run
B compared with Run A. This comparison suggests
a limit to the accuracy to be expected from the present
model. Since an uncertainty of 1% in initial data for
{gqv) is not considered unreasonable, changes in
model results no greater than 5-10% are not consid-
ered physically significant.

For Run C the maximum values of w and #, and
the rainfall TR in Table 1 are decreased by ~15%
from the corresponding values in Run A. As discussed
in Section 7e, this reduction is due to the inclusion
of e; in the denominator of Eq. (A1) in Appendix A.
This term increases the value of the saturation g,
thus delaying and reducing the amount of conden-
sation in Run C. Hence including this term has an
effect approximately double of that in Run B where
the initial (g,) was reduced by 1%.

The non-dimensional term —//H(wyf,/6,), repre-
senting the conversion of sensible heat into kinetic
energy, has been omitted from the thermodynamic
equation in Run Cr. In agreement with the scale anal-
ysis, the data in Table 1 indicate that this term is not
important for the present calculations. As discussed
in Section 7e, the numerical calculations support the
validity of the scale analysis in several other ways as
well.
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The convection is slightly stronger in Run D than
in Run C due to smaller values of the base state static
stability below cloud base. As seen in Table 1, this
o-related effect results in the maximum values of w
and 6}, and the rainfall TR being 5-8% larger in Run
D than in Run C. Hence the change in the convection
due to the inclusion of é is not negligible; however,
in view of the sensitivity of the model associated with
Run B, this change cannot be considered physically
significant.

In Run E the thermodynamics is represented by
Eq. (8) of Lipps and Hemler (1980). As seen from
Table 1, the inclusion of the more accurate ther-
modynamics has an effect opposite in sign and slightly
weaker in magnitude than that associated with the
parameter 6. The resulting very close agreement be-
tween Runs E and C is considered largely fortuitous.
The important conclusion to be drawn from Run E
is that the more accurate thermodynamics does not
result in a large change in the convection for the pres-
ent warm rain cloud model.

Calculations are currently being carried out using
a numerical model analogous to Run C and a more
realistic vertical sounding. The base state now rep-
resents a maritime tropical atmosphere from the sur-
face to z = 16 km. Model simulations are being per-
formed to determine the role of vertical wind shear
and large-scale convergence in tropical moist con-
vection.
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APPENDIX A
Some Detailed Aspects of the Numerical Model

The numerical procedure parallels that of Lipps
(1977) for shallow convection. Significant departures
from that model (other than the straightforward mod-
ifications involving deep convection) are given in the
discussion below.

1. The condensation C,; of cloud water g,

Before calculating C,, it is necessary to have ex-
plicit expressions for the saturation water vapor mix-
ing ratio g,; and the saturation vapor pressure ¢,. The
mixing ratio g, is given by

_ 0.622¢,

- (Al

vs
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where p(z) is the base state pressure. The variable p(z)
is discussed in more detail in Section 7.

The variation of L with temperature is taken into
account in the calculation of ¢, from the Clausius-

Clapeyron equation. The form of L is given by
L=L, - L,T. (A2)

Solving the Clausius-Clapeyron equation for e(T) we
find

) (To— Tyy) L To:|
T) = e(T, ZLAt0 el 22y, 0
el(T) = e T) exp[ R. Tolw In Tes
L01 ] ’
X
expl: RoToi)’ (A3)

where Ty is a reference temperature, To(z) the base
state temperature, fy(z) the base state potential tem-
perature and #, the first-order potential temperature.
Too Tepresents a temperature near cloud base. The
approximation 6,/6, ~ € has been used in the deri-
vation of (A3).
When the air is saturated, the rate of condensation

C,is given by
9 _ 9dvs
ot at’
where dq,,/dt represents the local increase in g, if no

condensation were present and dq,,/d¢ is the time rate
of change of the saturated mixing ratio ¢, i.c.,

Ci= (A4)

8w _ _ 1 [ 0 9 T ]
at - 20 (pO qu) j (pOujq'v)‘ ’ (AS)
99,5 _ Lg,(1 + 1.608¢,,) 36, _
ot R, T8 at’ (46)

where the second term on the right in (A5) represents
the subgrid-scale turbulent diffusion of g,. Eq. (A6)
is obtained by taking the time derivative of (A1) using
(A3) to represent e,. For calculations in which e is
neglected in the denominator of (A1), the numerator
in (A6) is reduced to Lg,. In the majority of the
numerical calculations, L'is a constant in the ther-
modynamic equation. For these cases L = constant
in (A3) and (A6). For the one case in which L is not
constant (see Section 7¢), L = L, — L,T, in (A3)
and (A6). :

With the condensation C;, specified through (A4),
(AS5) and (A6), the prognostic equations for d6,/0¢ and
dq,/0t are solved using a procedure analogous to that
of Lipps (1977).

2. The bulk cloud physics

The bulk cloud physics parameterization follows
the approach of Kessler, (1969). The total conversion
A of cloud water g, into rainwater g, is split into two
parts,

A=A, +A,, (A7)
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where A, is the autoconversion and A4, the conversion
due to accretion. In the present model 4, and A, are
given by

=103 — 1.5X 102 ps"!),  (AS8)
A, = 3.274q.q.°%. (A9)

In (A8) no autoconversion takes place for pog. < 1.5
g m~3, In the model equations all units are MKS.

Expressions for the mean fall velocity V', of the
rain water ¢, and for the evaporation E of rain water
are required:

Vr = 5.32(pog,10°)°?, (A10)
E = 0.0486(gss — Gu)(pod (Al1)

In (A11) evaporation of rainwater occurs only in a
subsaturated environment. The form of Egs. (A8) and
(A1l) was originally proposed by Kessler (1969)
whereas the form of Egs. (A9) and (A10) was taken
from the ideas of Liu and Orville (1969).

0.65

3. Subgrid-scale mixing and boundary conditions
a. Subgrid-scale mixing processes

The subgrid-scale turbulence parameterization is
simplified from that presented in Lipps (1977). The
terms involving thermal variance or total buoyancy
variance have been dropped from the diagnostic
equations of that study. The net éffect is that the
turbulence can be represented through an eddy vis-
cosity K, and an eddy diffusivity K},. Following Dear-
dorff (1972) we assume

K, = 3K,,. (A12)

In discussing the subgrid-scale mixing, the dimen-
sional forms of (38) and (26)-(29) are multiplied by
po and tensor notation is used. A frictional term of

the form ‘
et hge)]
Fi=a [” °K’"(ax, o 3%ax)] A1Y

is added to the right side of Eq. (38). In Egs. (26)-

auj 2

".(29) the turbulent diffusion is represented through

gradients of the subgrid-scale correlations —pou;#,
—poli ;g —pot;q. and —pou;q,. These correlations
are given by

— a
—pou ;8 = PoKh{ax" (6o + 0))
j

. j3f’Y 6qv - ]}
+ I+ gy [ 5 (00 +6) ]|, (Al4)
T 3%_ j3f
poU;qy, = PoKh{axj ——1 + By
9 _ 50 ]}
X[az Baz (0o +0) ¢, (ALS)
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- 7 aQC
—potjqc= poKy——, (A16)

0% axj'

dq,
oot} q; = poKi 5 (A17)

J

Lg,(1 + 1.608¢g,,) L

= . Yy=—, (AI18
ﬂ RuToﬁo Y Cp7l'o ( . )

where f is the same parameter as used in Lipps (1977).
Thus f = 1 inside of clouds, f = 0 outside of clouds,
and f = %2 on a cloud edge. Using (Al) and (A3) to
represent g,; and e, it was found that condensation
effects identically vanish for the horizontal correla-
tions (j = 1, 2) in (A14) and (A15). For consistency,
in those calculations for which e, is neglected in the
denominator of (Al), the factor (1 + 1.608g,,) in
(A18) is replaced by unity. In all calculations,
L = constant in (A18).

At this point it is appropriate to define the deriv-
ative notation .

a6, 4 aq,

=+ 0)+vy—, Al
ax; 0x; G+ 6) Y ax; (A19)
4, 9

—=— (0 +

ox, ax, () 0,) + 0. 60800 . (A20)

where 0, and 6, are analogous to equivalent and vir-
tual potential temperature. Defining the turbulent
flux pou 6, and applying (A14) and (A15) yields

’ YT aae
pott 0, = po(u;0 + yujqy) = —poKhé; - (A21)
]

Thus (Al4) and (A15) are compatible with the tur-
bulent mixing of 4.

The remaining requlrement of the present turbu-
lence parameterization is to specify K,, and K. The
eddy viscosity includes both deformation and unsta-
ble stratification effects (Lilly, 1962; Clark, 1979). The
form of X, is given by

D* 2 {3\
K. = zAz{ _(_k) _
m 7 “3\ax) %

pAB padh o)
[(1 Do o 9z f()o 9z 9z 9z » (A22)

where ¢ = 0.21, A = (Ax- Ay-Az)"*and 6 = 0, 1; if
the term in brackets is =0, 6 = 0; if this term is <0,
6 = 1. The factor 3 multiplying & represents the ratio
K,/K,, as specified by (A12). In addition we have de-

fined
T )
dx;  dx;/\dx; Ix; (A23)
) = 1 + 0.60884,
oz —‘—_1 T ﬁ‘y_
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Note that a(z) is the same parameter as given by Eq.
(47) of Lipps (1977). From (A12) K, is specified by
Kh = 3Km

b. Boundary conditions

Periodicity is required at the lateral side boundaries
as indicated in Section 7. When discussing the upper
and lower boundary conditions, it is necessary to note
that the numerical grid is staggered in space as in
Lipps (1977). Thus the vertical velocity w is evaluated
on the upper and lower boundaries and the nearest
grid points for u, v, 8, g,, g. and g, are a one-half grid
interval (125 m) from these boundaries. At the upper
boundary, w = 0. At u, v, 8, q,, ¢. and g, grid points
125 m below the top boundary, the vertical finite
difference derivatives of pow'u’, pow'v’, oWt
pow'qy pow'q. and pow'q) are requlred to vanish.
These boundary conditions are the same as used by
Klemp and Wilhelmson (1978).

At the lower boundary (z = 0), the vertical velocity
w = 0 and the vertical derivatives of g, and ¢, are
required to vanish. The values of u, v, # and ¢, are
specified at their lowest vertical level which is located
125 m below the z = 0 surface. In the present cal-
culations we set ¥ =-v = 0 and ¢, = constant at this
level. At the beginning of the simulations, when sur-
face heating is present, ¢ is required to vary as a
Gaussian at its lowest level (see Section 7). Later,
when the surface heating is turned off, the condition
on f is replaced by the condition pow'd = 0 at
z=0.

The condition g, = constant at the lowest vertical
level was intended to give a crude representation of
the vertical moisture flux across an ocean surface.
More recent calculations use a drag law formulation
to represent surface boundary conditions.

4. Finite difference methods

The momentum equation and the 6 and ¢, equa-
tions are solved using centered time and space dif-
ferences as in Lipps (1977). Instead of time smoothing
every 30 time steps, a Robert (1966) time filter with
¢ = 0.4 is used as in Clark (1979). In addition, small
fourth-order horizontal damping terms have been
added to these equations with KpAt/(Ax)* = 0.0025
as in Klemp and Wilhelmson (1978).

The prognostic equations for ¢, and ¢, are solved
using the method given by Clark (1979). This method
involves a hybrid finite difference scheme based on
a second-order in space and first-order in time Crow-
ley (1968) scheme and an upstream differencing
scheme which is first-order in both space and time.
The motivation for using this scheme is to eliminate
the problem of numerically generated spurious
negative values of ¢, and g,.
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APPENDIX B

Numerical Values of Constant Coefficients

L constant latent heat of vaporization
(0.2501 X 107 J kg™'):
¢ specific heat of dry air at constant pressure

(1005.7 T kg™' K™Y

Ry dry air gas constant (287.04 J kg! K1)
R, water vapor gas constant (461.50 J kg™
. K™Y

P reference pressure (1000 mb)

0. base state potential temperature at z = 0
(300.65 K)

d depth of troposphere in scale analysis; total
depth in numerical model (10* m)

Abr total change in base state potential

temperature through depth &; in
numerical model (52.85 K)
g acceleration due to gravity (9.781 m s7?)

Ty - reference temperature (294.15 K)

es( Ty) saturated vapor pressure at temperature
T4 (24.861 mb)

L, - constant in Eq. (A2) for variable L (3.1447
X 105 J kg™)

L, constant in Eq. (A2) for variable L (2357.2
Jkg™' K™).

REFERENCES

Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. Govt.
Printing Office, Washington, DC, 287 pp.
Clark, T. L., 1979: Numerical simulations with a three-dimensional
" cloud model: Lateral boundary condition experiments and
multicellular severe storm simulations. J. Atmos. Sci., 36,

2191-2215.
Crowley, W. P., 1968: Numerical advection experiments. Mon.
Wea. Rev., 96, 1-11.

Deardorff, J. W.,

) unstable planetary boundary layers. J. Atmos. Sci.,
115. ’

Dutton, J. A., and G. H. Fichtl, 1969: Approximate equations of
motion for gases and liquids. J. Atmos. Sci., 26, 241-254.

1972: Numerical investigation of neutral and
29, 91-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 39

Fujita, T., 1963: Analytical mesometeorology: A review. Severe
Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc.,
77-125. :

Gough, D. O., 1969: The anelastic approximation for thermal con-
vection. J. Atmos. Sci., 26, 448-456.

Kessler, E., 1969: On the Dzstrzbutwn and Commutty of Water
Substance in Atmospheric Circulations. Meteor. Monogr., No.
32, Amer. Meteor. Soc., 84 pp.

Klemp, J. B,, and R. B. Wilhelmson, 1978: The simulation of
three-dimensional convective storm dynamics. J. Atmos. Sci.,
35, 1070-1096.

Lilly, D. K., 1962: On the numerical simulation of buoyant con-
vection. Tellus, 14, 148-172.

Lipps, F. B,, 1977 A study of turbulence parameterization in a
cloud mode]. J. Atmos. Sci., 34, 1751-1772.

——,and R. S. Hemler, 1980: Anotherlook at the thermodynamic
equation for deep convection. Mon. Wea. Rev., 108, 78-84.

Liu, J. Y., and H. D. Orville, 1969: Numerical modelling of pre-
cipitation and cloud shadow effects on mountain-induced cu-
muli. J. Atmos. Sci., 26, 1283-1298.

Miller, M. J., and R. P. Pearce, 1974: A three-dimensional prim-
itive equation model of cumulonimbus convection. Quart. J.
Roy. Meteor. Soc., 100, 133-154.

Murray, F. W.,; 1970: Numerical models of a tropical cumulus
cloud with bilateral and axial symmetry. Mon. Wea. Rev., 98,
14-28.

——, and L. R. Koenig, 1972: Numerical experiments on the re-
lauon between microphysics and dynamics in cumulus con-
vection, Mon. Wea. Rev., 100, 717-732.

Ogura, Y., and N. A. Phllhps 1962: Scale analysis ‘of deep and
shallow convection in the atmosphere. J. Atmos. Sci., 19, 173-
179.

Orlanski, I., 1975: A rational subdivision of scales for atmospheric
processes. Bull. Amer. Meteor. Soc., 56, 527-530.

——, 1981: The quasi-hydrostatic approximation. J. Atmos. Sci.,
38, 572-582.

Robert, A. J., 1966: The integration of a low order spectral form
of the primitive meteorological equations. J. Meteor. Soc. Ja-
pan, 44, 237-245.

Soong, S.-T., and Y. Ogura, 1973: A comparison between axisym-
metric and slab-symmetric cumulus cloud models. J. Atmos.
Sci., 30, 879-893.

Wilhelmson, R., and Y. Ogura, 1972: The pressure perturbation
and the numerical modeling of a cloud. J. Atmos. Sci., 29,
1295-1307.

Williams, G. P., 1969: Numerical integration of the three-dimen-
sional Nav1er-Stokes equations for 1ncompre551ble flow. J.
Fluid Mech., 37, 727-750.



