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ABSTRACT

The study considers deep moist convection involving only a liquid-vapor phase change. An alternative
form of the classical thermodynamic equation for reversible saturated flow is derived. Four approximate
forms of this equation are obtained and their relative errors compared to the full equation are evaluated
by using parcel theory. The best approximation is found to be an adequate representation of the full
equation throughout the total depth of the convection,

The two best approximations are compared with some forms of the thermodynamic equation used

by other investigators.

1. Introduction

In this study the form of the thermodynamic equa-
tion used to represent deep moist convection is
examined. The thermodynamics is assumed to be re-
versible and the equation obtained must be valid for
both saturated and unsaturated conditions. It is
realized that the assumption of reversibility is not
valid for deep convection in the atmosphere. Such
important non-reversible effects as turbulent diffu-
sion and the formation, fallout and evaporation of
finite raindrops are not included. What is of primary
interest here is an accurate expression of reversible
moist thermodynamics into which these non-re-
versible effects may be included as required in a
given theoretical model.

At first glance it might appear that a discussion
of such a basic thermodynamic equation would not
be required. Indeed, a well-known classical expres-
sion of the reversible first law for moist convection
is given by Eq. (1b). In this equation, the heating of
the air is given in terms of the dry air potential tem-
perature 6, which is expressed in terms of the partial
pressure py of the dry air. In theoretical models,
however, the potential temperature 8, defined in
terms of the total pressure p, is commonly used. It
is when (1b) is replaced by an equation which in-
volves 0 instead of 6, that various approximations
are made and ambiguities arise.

A recent discussion of the thermodynamic equa-
tion for saturated adiabatic flow has been given by
Wilhelmson (1977). Various approximations of the
first law are compared with Eq. (1b) and the resulting
differences in 6, are computed as functions of p,
for three different cloud base heights. His analysis,
however, contains various approximations. The
latent heat of vaporization /, in Eq. (1b) is given the

constant value [, = 2.500 x 10¢J kg~'. Since in
reality I, varies slowly with temperature, there is
some error in the calculated comparisons. Another
major ambiguity of his analysis is that Wilhelmson
does not clearly distinguish between 6 and 6, or
between p and p,. For the comparisons in his study,
the differences between 6, as calculated from (1b)
and from the other approximate forms of the first law
are often several degrees or more. When such large
differences exist, Wilhelmson’s approximations are
probably a relatively small source of error.

In the present study we consider different forms
of the thermodynamic equation which have relative
errors =< 0.5 K. This degree of accuracy is con-
sidered necessary to represent atmospheric situa-
tions in which the temperature excess in the cloud
may be only a few degrees warmer than the sur-
rounding atmosphere. For this accuracy a clear
distinction between 8 and 6, and between p and p,
must be made in all expressions. In addition, the
importance of the variation of /, with temperature
must be evaluated. In Section 2 an exact alternative
equation to (1b) is derived which involves 6 instead
of 6,. Approximations to this exact equation are
made in Section 3a and their relative errors are dis-
cussed. In Section 3b a comparison is made between
the present approximate equations and some forms
of the thermodynamic equation used by other
researchers.

2. Derivation of alternative form of the thermo-
dynamic equation

a. Saturated adiabatic flow

A standard form of the equation for reversible

saturated motion is given by Iribarne and Godson
(1973, Chap. 6) as
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[cpa + culrs + w)ld InT

- R,d Inp,; + d(l,r,/T) = 0, (la)

where T is the temperature, p, the partial pressure
of the dry air, r, the saturation value of the water
vapor mixing ratio, w the cloud water mixing
ratio, /, the latent heat of vaporization, c,4 the
specific heat of dry air at constant pressure, ¢, the
specific heat of liquid water and R, the gas constant
for dry air. A well-known equivalent form of this
equation is
cpad In8; + ¢ (ry + w)d InT + d(l,r/T) = 0, (1b)
where 0, is the potential temperature of the dry air.
In this study an alternative form of (1b) will be
obtained in which 6, is replaced by the potential
temperature 0. These two quantities are defined by

Py~ Py "
0(1 = T(—o‘) 9 6= T("_o'> y K= Rd/de, (2)
Da p

where p is the total pressure of the moist air and
P, is a reference pressure level. To obtain the
alternative form of (1b), in addition to reversibility
and saturation, three explicit assumptions are made:
(i) water vapor and dry air behave as perfect gases;
(ii) the coefficients ¢ 4, v, R4, R, and ¢, are constant
and [, is a linear function of T; and (iii) the specific
volume of liquid water is neglected in the Clausius-
Clapeyron equation. Using assumption (i), r, is
given by

_ Rd €s .
Rvpd’

€)

rs

where e, is the saturation vapor pressure and R, is
the gas constant for water vapor. Likewise, using
assumptions (ii) and (iii), Kirchhoff’s law and the
Clausius-Clapeyron equation are given by

j’; = Cpy — Cu )
and
dine, _ I, -
dT  R,T?’

where c,, is the specific heat of water vapor at
constant pressure.
Now, using (4) and (5), Eq. (1a) can be written as

(Cpa + Cpots + cyw)d InT — Ryd Inp,

— R,ryd Ine, + ’I;T dr; = 0. (6)

Likewise using (3) and the relation p = p; + e, for
the total pressure, Eq. (6) can be put in the form
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v RU
c,,d(l + rsjdlnT ——Rd(l + R rs)dlnp

Cpa d

)

= — ﬁ’- dry — c,wd InT.
T

It is remarked that this last equation is equivalent to
the result given in Section 3.32 of Holmboe, et al.
(1945). Finally, using the definition of ¢ and dividing
by [1 + (R,/Ry)rs), Eq. (7) can be written as

R 1,
vrs) [—l—drs
R

Cpo

3 T
+ [cww + cpdrs( _ R )}dlnT] . ®

Cpd d

coad InG = — (1+

Eq. (8) is considered as the alternative to (1b) in the
present study. To the authors’ knowledge, this equa-
tion represents the first time that the reversible moist
adiabatic thermodynamic equation has appeared in
this form in the meteorological literature.

b. Unsaturated adiabatic flow

In unsaturated adiabatic motion the liquid water
mixing ratio w is zero and the water vapor mixing
ratio r is conserved following a parcel. Thus, for
the parcel, the thermodynamics can be treated as for
an ideal gas with fixed ratios of constituents

c,,,,(l 4 ey )d In6,, = 0, )
Cpd
where
P K(r) R ( 1 + % r)
6 = T(—O—) . k(r) = =% a . (10)
14 Cpa (1+Cpur).
Cpd

These expressions for the moist potential tempera-
ture 6, and «(r) are equivalent to those given by
Iribarne and Godson (1973, Chap. 4). These authors
also find that the difference (8,, — 0) is very small,
being generally less than 0.1 K. Hence, to a high de-
gree of accuracy, the potential temperature 6 is con-
served for unsaturated reversible flow.

It can be seen that Eq. (9) is equivalent to Eq.
(7) with w =0 and dr, =0, and is therefore
equivalent to Eq. (8) under the same conditions.
Thus Eq. (8) can be considered the exact equa-
tion for reversible adiabatic flow whether saturated
or unsaturated. Likewise, the approximate equa-
tions (11) and (13a)—(13c) obtained below reduce to
Cpad In6 = 0 when w = 0 and dr; = 0. Thus they
also can be considered as approximate equations
representing both saturated and unsaturated flow.
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3. Approximate forms of the thermodynamic equation
a. Approximate forms of Eq. (8)

Several approximate forms of Eq. (8) are now
considered. The most accurate of these is given by

Cpad In6

= (1 + R,
Rq
where the temperature dependence of /, is retained.
Compared with (8), it is seen that the last term,
Cparsl(Cpplcna) — (Ry/Rg))d InT, on the right side of
(8) has been dropped. The factor [1 + (R,/Ry)rs]™
multiplying (—cywd InT) has also been set equal to
unity. The relative magnitudes of these two approxi-
mations will be estimated below.

The dominant term on the right side of (8) is the
latent heating term which is represented by (I,/T)dr,
inside the large parentheses. The magnitudes of the
two approximations used to obtain (11) will be com-
pared with the estimated magnitude of the (/,/T)dr,
term. This latent heating term is labeled as A and
its magnitude is estimated by considering that the
major variation in dr, is due to the variation of the
saturation vapor pressure e,. Using (3) and (5)
we find

,s) (_ %”drs) ~ cywd InT, (11)

l l

A= —”drs ~ 2 _l”r.__s.
T T R, T

The last term on the right side of (8) is labeled C and
can be approximated! by

d InT. (12a)

C-= c,,drs(cm _ R )d InT
Cpd R,
1 R, !
= 7 Cpd rsd InT. (12b)

d

When the factor [1 + (R,,/R,,,)rs]‘1 mu]tipiying the
—c,wd InT term in (8) is dropped, we are in effect
neglecting the term

R,
R, * R
B = d cowd InT =~ R—”rscwwd InT. (12¢)
1+ =2 rg d

d

The denominator in this expression is nearly equal
to unity sincer, = 10~?and R,/R, =~ 1.6. The values
of the various constant coefficients in the present
study are given in the Appendix. ’

! Air is primarily a diatomic gas so that ¢,4/Rq = 7/2, whereas
water vapor is a triatomic gas so that c¢,,/R, = 4. These two
ratios _imply (CpolCpa) — (Ry/Rg) = H(R,/Ry).
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The relative magnitudes of the two terms ne-
glected in Eq. (11) are now estimated from the ratios
C/A and B/A. For atmospheric values of T we find

C 1 R, lv lv

R — /= ~ 1.4 x 1073, (12d
A 7c”de/(T R,,T) (129
B Ru lv l

—=c, w/(—— 2 ) ~ 0.4 x 1073, (12e)
A R, T R,T

where w = 1072 is assumed in (12¢). Thus the
present analysis finds that the terms neglected in
(11) appear to be negligible when compared with the
latent heating term.

A larger approximation is made when the factor
[1 + (Ry/R)r )™ multiplying [—(l,/T)r,] is set equal

‘to unity. It can be seen that neglecting this factor

represents the relative error (R,/Ry)r, = 1.6 X 1072
with respect to the total term —[1 + (R,/Ry)r,]™!
x (1,/T)dr,. This additional approximation leads to
the equation

L
Cpad InO = — 7drs ~ ¢, wd InT. (13)

The importance of the variation of /, with tempera-
ture will be examined for this equation. Thus three
forms of (13) are considered:

[,(T) is a function of temperature (13a)
l,=425x108(Jkg™), T=273K (13b)
1(T,), T, = temperature atcloud base  (13c)

Note that for both (13b) and (13¢), , is held constant.
The relative accuracy of (11) and (13a)-(13¢) com-
pared with the full equation (8) will be examined
from parcel theory.

The saturation parcel calculations are carried
out in a manner similar to Wilhelmson (1977). The
saturation mixing ratio 7, is given by (3). The satura-
tion vapor pressure ey(7T) is calculated from the
Clausius-Clapeyron equation (5) using the assump-
tion that /, is a linear function of temperature, i.e.,

l,=1,-1LT, (14
so that

ei(T) = e(Ty)

conf i) -l o

where e (T,) is the saturation vapor pressure at
cloud base. Here the constants /, and /, have been
chosen to give a good fit to /, for temperatures at
and above the freezing point of water. It is also a
reasonable fit for lower temperatures as well. We
find that Eq. (15) is of comparable accuracy as




JANUARY 1980

Tetens’ formula for temperatures encountered near
and above cloud base.

The parcel calculations require a relationship be-
tween d In@ and d Inf,;. From Egs. (2) and, (3) and
the relation p = p,; + e, we find

ded ln0 = ded ln@d

— R,dr; (1 + R,
Ry

rs)—l . (16)

Using (2), (3), (15) and (16), the potential tempera-
ture 6, can be calculated as a function of p, from
cloud base upward for Eqgs. (8), (11) and (13a)-(13c¢).
The temperature is expressed in terms of 6, and p,
from the definition of 6, in (2). The solutions for 6,
T and r, as functions of p, are calculated using an
iterative technique. As in Wilhelmson (1977), an
increment of 10 mb is used in numerically inte-
grating the above equations. Potential temperature
differences for i = (11), (13a)-(13¢) corresponding
to Egs. (11), (13a)-(13c) have been calculated
using (8) as the reference value of 4,, i.c.,

0°C

-20°C ~-40°C
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(A0g); = (04); — (04)s. €17)

Calculations were also carried out using Eq. (1b).
Potential temperature differences (A#,),, between
the values of 8, for (1b) and (8) were negligible. Thus,
as expected, Eqs. (1b) and (8) are equivalent.

The present study considers two sets of calcula-
tions, the first corresponding to one of the cases
considered by Wilhelmson (1977) with cloud base at
Pa =900 mb, T,=2843K, 6, =293 K and r,
= 0,917 x 1072, This is case I with the (relatively)
cold, high cloud base. Case II (warm cloud base)
has pg = 920 mb, T, = 2939 K, 6, = 301 K and
r, = 1.657 X 1072 at cloud base. Results for both
cases are shown in Fig. 1. The vertical dashed lines
show the temperatures 0, —20 and —40°C as calcu-
lated from (8). Because of the presence of ice in
observed clouds, the present results are considered
to have limited relevance for temperatures between
—20 and —40°C and little relevance for temperatures
colder than —40°C. The calculations are stopped at
pa = 300 mb for case I and at p; = 200 mb for
case II.
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FiG. 1. Dry air potential temperature differences between parcel theory calculations using Egs. (11) and (13a)—(13c), and Egq. (8).
Fig. 1arepresents case I with the cold cloud base at p, = 900 mb and 1b represents case II with the warm cloud base at p; = 920 mb.
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The data shown in Fig. 1 indicate that Eq. (11) is
a very accurate approximation to the full equation
(8). For both case I and case II, Eq. (11) represents
a slow monotonic relative cooling with height. For a
cloud parcel temperature of —20°C, case I has A,
= —0.026 K and Case II has Ag; = —0.051 K. Ata
cloud temperature of —40°C, case I has A6,
= —0.037 K and case Il has Ag; = —0.070 K. These
small values of A8, give conclusive evidence that,
as indicated by (12d) and (12¢), the terms neglected
in (11) are negligible. Thus (11) is an adequate
approximation to (8).

The curves for (13a)—(13c) are also shown in Fig.
1. For temperatures warmer than —20°C, these
curves indicate that (13c) is the best approximation
to (8) of the three cases. In this temperature range, it
is seen that (13c) is an excellent approximation to
(8) with |A6,| < 0.1 K. For colder temperatures,
the data in Fig. 1 indicate that (13b) gives the
best approximation for case I and that (13c) con-
tinues to give the best approximation for case IIL.
Over the total temperature range, it is evident that
(13c) gives the best representation of (8).

b. Other approximate forms of the thermodynamic
equation

The above approximations to Eq. (8) are com-
pared with other forms of the thermodynamic
equation used by different researchers. The first
equation considered is that given by Das (1969):

cpad 08y + (1,/T)dr, = 0, (18)

where [, is assumed to remain constant. Das (1969)
argued that (18) was an accurate representation of
* the thermodynamics to within 10%. After comparing
various forms of the thermodynamic equation,
Wilhelmson (1977) concluded that (18) represents a
good approximation. to (Ib) for deep saturated
thermodynamics. For the present calculations /, is
set equal to /[, = 2.500 X 10%J kg™' which is the
same value as used in (13b) and is the value used by
Wilhelmson (1977).

The second form of the thermodynamic equation
considered is given by

de L,

—+
(] cpaToo

Cw

dry = — wdT, (19)

¢paloo

where © and T,, are constant reference values of
the potential temperature and temperature, re-
spectively. Eq. (19) is similar to a simplified form of
the thermodynamic equation used by Orville and
Kopp (1977) obtained when the effects of diffusion,
finite size raindrops and freezing are neglected in
their Eq. (30). Orville and Kopp, however, do not
retain the full term involving dT on the right side of
(19). Their thermodynamic equation includes the
effect of heating due to the advection of cloud water
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but does not include the corresponding heating
associated with the local time derivative of tempera-
ture. In this respect (19) is slightly more general
than their equation.

Eq. (19) can be written in the form

1

oo

Cpgd In0 = — (ldre. + cowdD), (20)

where 7y, = T/0. From Eq. (2), 0 can be defined
by the relation T = 76 where the pressure function -
w is given by

= (17-) , k= Rulcpa @)

Po

Thus 7y can be considered as a reference value
of 7. In the present calculations , is set equal to
oo = 0.903, corresponding to a pressure p = 700
mb. The latent heat of vaporization is again held
constant at the value [, = 2.500 x 10% J kg™

A comparison of the curves obtained from parcel
theory for (18) and (20) with those obtained for (11)
and (13c) is given in Fig. 2, where Fig. 2a represents
case 1 (cold cloud base) and Fig. 2b represents
case II (warm cloud base). It can be seen that (11)
and (13c) represent much better approximations to
Eq. (8) than either (18) or (20). A possible modifica-
tion in the calculations for (18) and (20) is to set
I, equal to I (T,), where T, is the temperature at
the cloud base. Such a modification for (18) and (20)
for both case I and case II results in smaller values
of the positive deviations (A8,); but it also results
in larger negative deviations at the higher levels
(lower py). Thus, using I, = [(T,) does not result
in a significant improvement in the approximate
equations (18) and (20).

An alternative form of Eq. (18) for which 6, is
replaced by 6 is shown by the curves labeled W in
Fig. 2. The reason for plotting these curves is that
this form of (18) appears to correspond to the thermo-
dynamic equation used by Wilhelmson and Ogura
(1972), Wilhelmson (1974) and Klemp and Wilhelm-
son (1978a,b). It should be also noted that these
curves correspond to Eq. (13b) with the liquid water
heating term, —c,wd InT, neglected. As seen in
Fig. 2, the curves using 6 in (18) are much more
accurate for temperatures warmer than —10°C,
being comparable in accuracy to (13c). For colder
temperatures, however, these curves indicate a
rapidly increasing negative temperature difference
compared with (8).

4. Summary and conclusions

Eq. (8) has been obtained as an alternative to
Eq. (1b) for saturated reversible thermodynamics.
This equation is expressed in terms of the potential
temperature 6 instead of the dry air potential tem-
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F1G. 2. Dry air potential temperature differences between parcel theory calculations using Eqgs. (18), (20), (11) and (13c), and
Eq. (8). The curve-marked W indicates Eq. (18) but with 8, replaced by 6. As previously, Figs. 2a and 2b are for cloud base at

pa = 900 mb and p; = 920 mb, respectively.

perature 6, and has been derived subject to the three
assumptions listed in Section 2a. Approximations to
(8) are given as Egs. (11) and (13a)~(13c). The dis-
cussion in Section 2b indicates that Egs. (8), (11) and
(13a)-(13c) can also be applied to the unsaturated
reversible case.

The accuracy of (11) and (13a)-(13¢) compared
with (8) is evaluated in Section 3a by using parcel
theory. The results are shown in Fig. 1. The most
accurate approximation is Eq. (11) with the differ-
ence in values of 8, for (8) and (11) being less than
0.1 K for all p,;. This small difference between
(8) and (11) is sufficient reason to consider (11) as
an adequate approximation to (8). Of the three cases
(13a)-(13c), Eq. (13¢) gives the best approximation
to (8). For a problem which involves warm clouds
only, (13c) is thought to be sufficiently accurate.

If the ice phase is included in deep convection,
a variable /,(7) is probably required for an accurate
representation of the thermodynamics. When freez-
ing occurs, the relation /, = [, + [, should be satis-
fied. In this expression the latent heat of sublimation
l, is approximately constant whereas the latent
heats of fusion and vaporization, /; and [,, are
variables. For this case Eq. (11) can be used to
represent the thermodynamics before freezing
occurs. This conclusion is in agreement with the
study of Orville and Hubbard (1973) who found

that variations in [, and /; can be important in the
thermodynamics of deep convection.

The accuracy of other approximate forms of the
thermodynamic equation is discussed in Section 3b.
Two of these equations are the equation suggested
by Das (1969) and an equation representing the
thermodynamic approximation used by Orville and
Kopp (1977). In the text, these two equations are
given by (18) and (20), respectively. These two
approximations are compared against Egs. (11) and
(13c) in Fig. 2. It is seen that both (11) and (13c)
represent much better approximations to the exact
equation (8) than either (18) or (20). The curves
labeled W in Fig. 2 represent an alternative form of
(18) for which 8, is replaced by 6. It is seen that this
form of (18) is much more accurate than Das’ equa-
tion, being comparable in accuracy to (13¢) for
temperatures warmer than —10°C. This last com-
parison shows that the difference between using 6
and 8, is significant for the accuracy of the present
study.
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APPENDIX

Numerical Values of Constant Coefficients

specific heat of dry air at constant pressure
(1005.7 J kg ' K™

specific heat of water vapor at constant pres-
sure (1860.6 J kg™t K™)

gas constant for dry air (287.04 J kg™! K™?)

gas constant for water vapor (461.50 J kg™ K1)

(C‘"” _ R ) = 0.2423

Cpd d

P, reference pressure level (1000 mb)

¢, specific heat of water (4217.8 J kg™' K™)

I, constantin Eq. (16) for/, (3.1447 x 10° J kg™)
I, constant in Eq. (16) for [, (2357.2 J kg™ K™)

--%

Note that c,,, ¢,, and dl,/dT have been required
to be compatible with Kirchhoff’s law [dl,/dT

= Cpp — Col.
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