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ABSTRACT

The Alpine Experiment (ALPEX) has revealed that low-level air is typically diverted around the Alps
without reaching the mountaintop. In pursuit of an understanding of the physical basis of this phenomenon
and of its generality, we have explored the characteristics of orographic blocking of a rotating continuously
stratified fluid, as revealed in a simple model problem retaining full nonlinear and transient effects. Hydrostatic
dynamics is assumed, and the obstacle is taken to be an infinitely long ridge with height A(x). The key
questions treated are the strength of the upstream deceleration of cross-mountain flow and the length scale
over which the decelerated region extends. By means of scale analysis, the controlling parameters are found
to be the Rossby number Ro = U/fL and the Froude number Fr = Nh,,/U, where U is the speed of the
oncoming flow, f is the Coriolis parameter, L the mountain half-width, N the Brunt-Viisilid frequency, and
h,, is the maximum mountain height. The scale analysis also determines the qualitative dependence of the
strength of the blocking on Ro and Fr; these predictions were confirmed and made quantitative via extensive
numerical simulation.

In the nonrotating limit, Fr is the sole parameter. In this case, it is found that for sufficiently large Fr a
decelerated layer of fluid forms near the obstacle and propagates arbitrarily far upstream with time, in a
manner similar to that familiar in one-layer hydraulic theory. The upstream influence requires neither
downstream lee wave trains nor vertical confinement by a rigid lid; rather, the upstream modes appear to be
generated by wave breaking above the lee slope of the mountain. For a Gaussian mountain profile, wave
breaking and upstream influence set in near Fr = 0.75; low-level flow upstream of the mountain is decelerated
to rest for Fr > 1.5. In the rotating case, the decelerated zone does not propagate infinitely far. Instead, it
attains a maximum extent on the order of the radius of deformation Nh,/f before retreating toward the
mountain. The upstream scales remaining after a long time has passed are also discussed.

The theory accounts for a number of aspects of the ALPEX data, as well as for features seen in earlier
observations of barrier winds elsewhere. It appears though that the sharp transition between flow over and
flow around found in certain ALPEX vertical soundings obtained from aircraft cannot be explained in terms
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of inviscid theory. It is conjectured that the sharp division is due to low-level convective mixing.

1. Introduction

One of the most striking features revealed by the
Alpine Experiment (ALPEX) was the sharp division
between currents below mountain-top level, which
flow predominantly around the Alps, and those above
mountain-top level, which cross the mountain barrier
with little evidence of orographic perturbation. This
pattern was observed on a number of occasions and
under a variety of different synoptic situations. A
particularly clear-cut instance of the phenomenon is
evidenced in the set of aircraft soundings from flight
E430 on 30 April 1982, shown in Fig. 1, as adapted
from the Quick-Look microfilm archives. These
soundings were taken at three points along the north-
ern edge of the Alps, approximately 100 km north of
the ridge line. The ambient far-upstream flow at this

! A preliminary version of this work was presented at the Fifth
Course on Meteorology of the Mediterranean, held in Erice, Italy,
May 1983 (Pierrehumbert, 1985a).

time was generaily northerly at all levels. At 9 and
10°E one sees a sharp shift in wind direction from
generally northerly above 3000 m altitude to generally
westerly below 3000 m. This height corresponds
roughly to mountain-top level. Sharp shifts in the
wind speed are also noted. At 8°E, towards the
western edge of the Alps, the directional shift is also
seen, but the winds become essentially stagnant at
low levels. This is the “flow splitting” point; farther
to the west air flows around the mountains to the
right rather than to the left.

The blocking of low-level flow described above is
likely to be an essential feature of flow in the vicinity
of steep mountains. As such it would participate in
virtually all other important orographic effects, in-
cluding lee cyclogenesis, gravity wave generation and
frontal distortion. It has obvious implications for the
initialization of numerical models in mountainous
terrain. Accordingly, an understanding of the physical
basis of the phenomenon is of utmost importance.
Several key questions emerge: Under what range of
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FIG. 1. Aircraft soundings of wind direction and speed taken approximately 100 km upwind of the Alps on 30 April 1984.
Wind directions which are unreliable owing to low wind speeds are shown as dashed lines. See text for details.

atmospheric circumstances and for what orographic
heights and steepnesses does the blocking occur?
What are the controlling nondimensional parameters?
How long does it take for the pattern to become
established? How far upstream does the blocked
region extend, and how deep is it? What role, if any,
does the Coriolis force play in the phenomenon? In
the ‘present work, we endeavor to provide some
answers to these questions. The emphasis will be on
the fundamental physics governing the upstream pat-
tern, as revealed in an idealized model; a detailed
analysis of cases of upstream blocking observed during
ALPEX and their simulation in more realistic models
will be given in a future paper.

Intuitively, one would expect low-level dense air
to be blocked by a sufficiently high mountain, pro-
vided the air is not moving too swiftly. Upstream
influence of this sort is well known in the context of
a single layer of fluid impinging on an obstacle in a
nonrotating system. In the real continuously stratified
atmosphere, however; the upstream blocking must
overcome vertical dispersion, Coriolis force, and hor-
izontal dispersion arising from three dimensionality.
In the following, we address ourselves primarily to
the implications of vertical dispersion and Coriolis
force, though our results will enable us to draw some
simple inferences concerning the likely three-dimen-

sional flow patterns. Specifically, we consider the -

upstream effects attendant upon impulsive initiation
of continuously stratified flow over an infinite ridge
h(x) on the rotating earth. The atmosphere is taken
to be unbounded in the vertical. This problem is
among the canon of fundamental problems of classical
fluid dynamics; yet, the current understanding of the
behavior of the solutions leaves much to be desired.
Our main tool for investigating the system will be
*numerical simulation, buttressed by simple theoretical

and physical arguments offered in explanation of the
results. It will be seen that despite the limiting factors
a blocked region can form upstream of the mountain
when suitable conditions are met.

The upstream flow patterns of concern to us may
be divided into three categories: 1) steady motions
remaining a long time after flow is initiated, which
decay in space with increasing distance from the
obstacle, 2) transient motions which are created by
the startup, but which decay to zero in any fixed
spatial region given sufficient time, and 3) transient
motions which form near the obstacle as a result of
the initiation process and lead to order unity modi-
fications of the upstream flow which extend progres-
sively farther upstream of the obstacle without dimi-
nution of amplitude as time passes. Motions of the
latter type are commonly denoted by the term “up-
stream influence.” In the nonrotating case, there is
still considerable dispute concerning the circumstances
under which upstream influence can occur in a
continuously stratified fluid; hence, we will treat this
case in detail. It will be seen that Coriolis forces
prevent the occurrence of true upstream influence,
though the blocked region can temporarily extend
quite far upstream when the Coriolis forces are small.

The structure of the paper is as follows. In Section
2 we present the equations of motion and identify
the nondimensional parameters. Scale analysis is used
to determine the qualitative dependence of the solu-
tion on these parameters. In Section 3 we review
previous numerical work on the problem and describe
the numerical model used in our simulations. Section
4 treats upstream influence in nonrotating fluids; a
historical review of the outstanding issues is given in
Section 4a and numerical results addressing these
issues are given in Section 4b. Results concerning
modification of the initial upstream surge by Coriolis
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forces are presented in Section 5. In Section 6 we
describe the characteristics of the motions remaining
in the system at very long times after the impulsive
startup. In particular we compare the asymptotically
steady solutions found at low Rossby numbers with
analytic results based on the semigeostrophic approx-
imation (Merkine, 1975; Pierrehumbert, 1985b). Some
speculations concerning three-dimensional and dissi-
pative effects are discussed in Section 7, along with
applications of the theory to the Alpine problem and
to the representation of mountains in numerical
models. Our principal conclusions are summarized
in Section 8.

2. Scale analysis of the model problem

Consider flow of a Boussinesq stratified fluid on
the f-plane over an infinite ridge with height s(x), as
depicted in Fig. 2. Let u, v, and w be the velocity
components in the x, y and z directions. We assume
that at time ¢ = 0 the velocity field is a potential flow
with uniform value U in the x direction far from the
obstacle; this corresponds to impulsively started flow.
Suppose also that the Brunt-Viisild frequency initially
has constant value N = (—gd,p/po)"/%, where pq is the
constant mean density. A radiation condition is im-
posed at z = oo, and it is assumed that the scales of
motion are such that the hydrostatic approximation
is valid. This is a nonlinear version of the problem
first studied by Queney (1947) and used in our earlier
work (Pierrehumbert, 1984) to estimate the magnitude
of steady-state deceleration appearing upstream
of mountains. It is convenient to nondimensionalize
horizontal distances by the length scale L of the
mountain and vertical distances by the deformation
depth D = fL/N, where f is the Coriolis parameter.
Velocities are scaled by U, time by L/U, pressure by
pofLU and density by poNfL/g. In these units the
equations of motion become

W

u = CONST
N2 = CONST.
(AT t = 0)
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Ro(du/dt) = v — d,p, 2.1)
Ro(dv/dt) = 1 — u, (2.2)
dp/dt = 0, (2.3)
d{Ro-p)=—p (2.4)
A+ dw=0, (2.5)

where d/dt = 0, + ud, + wd, and Ro = U/fL is the
cross-mountain Rossby number. The term “1” on
the right-hand side of (2.2) represents the meridional
pressure gradient that balances the incident geo-
strophic wind. In nondimensional units, the initial
conditions on velocity and density far upstream of
the mountain are

u=1, (2.6)

2.7

Thus far, the only free parameter that has appeared
in the problem is Ro. For a given mountain shape
with maximum dimensional height #,,, the only
remaining free parameter is the nondimensional
mountain height 4,,/D = (N/f)hn/L). This is the
square root of a Burger number, and may also be
written RoFr, where Fr = Nh,,,/U. Thus, the nonlinear
Queney problem is completely controlled by Ro and
Fr. It is our plan to investigate the general character
of the flow as a function of these two parameters.
We will be especially interested in how small u
becomes immediately upstream of the mountain, as
this characterizes the strength of the blocking effect
of the mountain.

Consider first the case of small Ro. If - is order
unity or less and motions with time scales faster than
L/U have had time to decay, then the left-hand side
of (2.1) is negligible. The wind parallel to the mountain
is then geostrophically balanced. With this approxi-
mation (2.1)-(2.7) reduces to the semigeostrophic

p=*=z

X,u

FiG. 2. Geometry of the model problem. The domain is taken to be unbounded in z, and
the system is assumed to be rotating about the z axis with constant Coriolis parameter f.
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system, steady solutions of which were discussed by
Merkine (1975) and Pierrehumbert (1985b). Substi-
tuting v = d,p, into (2.2) we find.

(d/dD[0(Ro )] = 1 — w. (2.8)

Since Ro now appears only in the combination Ro - p,
it can be absorbed into the definition of pressure,
whence we find that the single parameter RoFr de-
termines the character of the flow. ‘
From (2.8) we can derive an estimate of the
magnitude of . When a parcel is displaced in the
vertical by a nondimensional height 6z, a density
anomaly on the order of 6z is created by virtue of
(2.7). If D, is the dimensional depth scale over which
this mountain-induced displacement vanishes, then
(2.4) implies that (Ro-p) ~ (D,/D)éz, whence (2.8)
implies {1 — u) ~ (D,/D)éz. Near the ground 6z is
approximately the nondimensional mountain height
RoFr, provided that sufficient time has passed to
allow fluid to reach the mountain top. For mountains
of small height, the deformation depth D is the only
dynamically relevant depth scale, whence D,/D = 1.
For high mountains, #4,, could also enter as a depth
scale, yielding D,;/D = RoFr. Thus, (I — u) lies
between O(RoFr) and O[(RoFr)?]. In either case, u
will deviate greatly from its upstream geostrophic
value of unity when RoFr = O(1) but will remain
nearly undisturbed when RoFr < 1. This result is
consistent with the behavior found in steady semi-
geostrophic and quasigeostrophic flow (Pierrehumbert
1984, 1985b). The regime of validity of quasi-geo-
strophic theory is defined by RoFr < 1. Note that
RoFr = (N/f)h,,/L) is independent of the speed of

the oncoming flow, so that if the slope of the mountain-

is too great the flow will never be quasi-geostrophic,
no matter how small Ro may be.

As flow approaches the mountain, the isentropes
must begin to rise, whence the pressure for fixed z
increases; geostrophic balance then requires that v
become positive. as the mountain is approached. If
v vanishes . far upstream, (2.2) then implies that
(1 — u) becomes positive as the mountain 1is ap-
proached. Thus, the fluid slows down, becomes
subgeostrophic, and turns to the left as it approaches
the mountain from the upstream side. The scale
analysis then implies that when Ro < 1 the blocking
effect of the mountain becomes strong when RoFr
= O(1).

If the flow is impulsively started, the balanced
solution described above will not be established until
a dimensional time of O(1/f) has passed. Nondimen-
sionally, the adjustment time is O(Ro). During this
time parcels near the ground move a nondimensional
distance Ro in the horizontal and Ro - (RoFr) in the
vertical as they ascend the upwind slope. Equations
(2.7) and (2.4) then imply that ép ~ (D;/D)RoFr.
Substituting this into (2.1), integrating over a time
interval Ro and making use of the assumption that
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v does not cancel the pressure gradient during this
time, we find that éu ~ —(D,/D)RoFr. Three length
scales could enter into the determination of D,: the
gravity wave scale U/N, the deformation depth D and
the mountain height 4,,. The first of these can be

. discarded, as group velocity arguments imply that at

small Ro there is insufficient time to set up a gravity
wave. We expect D to dominate for low mountains
and A,, to dominate for higher mountains. In either
case, the maximum deceleration appearing during
the initial adjustment stage becomes order unity
when RoFr becomes order unity. At small Ro then, :
the deceleration in the adjustment stage obeys the
same scaling law as the deceleration in the balanced
state, even though the adjustment stage is ageostrophic.

Finally, we estimate the magnitude of the deceler-
ation at large Ro. Equations (2.1)-(2.4) may be

rewritten .
du/dt = —0(p/Ro) + O(1/Ro), 2.9
dv/dt = O(1/Ro), (2.10)
d(p/Ro)/dt = 0, (2.11)
Rod.(p/Ro) = —p/Ro. (2.12)

Then, if we introduce a new pressure variable p;
= p/Ro, a new density variable p; = p/Ro and a new
depth variable z; = z/Ro, the appearance of Ro is
eliminated from the system, to the extent that the
O(1/Ro) terms are negligible. Note also that the
upstream boundary condition on density becomes p,
= —z, in the new units. The symbol z, is given in
terms of the dimensional altitude z* by z, = (V/
U)z*, whence the nondimensional mountain height
is Fr = Nh,,/U. Now, if a parcel is displaced in the
vertical by a nondimensional distance Fr, and if the
displacement remains coherent over a nondimensional
depth ND,/U, then hydrostatics implies a nondimen-
sional pressure gradient of order (ND,/U)Fr with
high pressure appearing on the upwind slope of the
mountain. According to (2.9), this leads to a decel-
eration: of ¥ on the order of (ND,/U)Fr. If D, = U/
N the deceleration is O(Fr), while D, = h,, leads to a
deceleration of O(Fr?). We expect the former scaling
to be valid in the linear range Fr < 1, where the
mountain height does not provide a dynamically

‘relevant depth scale. In any event, the argument

implies that the deceleration becomes order unity
when Fr becomes order unity.

An important caveat attaching to the above argu-
ment is that the large Ro approximation is not
uniformly valid in space and time; given enough
distance over which to act, the O(1/Ro) terms in
(2.9)~(2.12) can yield order unity effects. This was
discussed quantitatively for.linear steady theory in
Pierrehumbert (1984), and we shall have more to say
about the matter in Section 5. In addition, the
scale analysis at best estimates the deceleration im-
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mediately upstream of the mountain; it tells us nothing
about true upstream influence in the sense defined in
Section 1. , ,

A few comments on the nomenclature for the
parameter Nh,,,/U are in order. There seems to be no
general agreement in the literature as to the name of
this nondimensional number. The term “Froude
number” is often used for its reciprocal U/Nh,,; this
notation is consistent with the definition of Froude
number for one-layer flow in the sense that the fluid
velocity appears in the numerator (see Section 4a).
Less frequently, the term “Froude number” is used
for Nh,, /U itself; it is this terminology that we have
implicitly adopted in defining Fr = Nh,,/U. We prefer
this definition because small Fr (in the nonrotating
case) corresponds to the linear regime, so that Fr may
be thought of as an expansion parameter. Readers
who are more comfortable with the orthodox notation
may think of Fr as standing for “reciprocal Froude
number.”

3. Description of numerical model

The mathematical difficulty of the problem is such
that further progress cannot be made without recourse
to numerical simulation. There has been a great deal

of work on simulation of mountain waves in the -

nonrotating system (e.g., Peltier and Clark, 1979,
Lilly and Klemp, 1979). This work has generally
focused on the wave motions appearing above and
downstream of mountains, and the effects of these
waves on downslope wind storms. None of the studies
treat the upstream effects in any detail. There has
been less work on the simulation of the rotating
problem. The first numerical solutions were accom-
plished by Eliassen and Rekustad (1971), who dis-
cussed only two cases, both of which involved rather
broad and low mountains, and restricted attention to
steady motion; further results with a similar model
are reported in'Eliassen and Thorsteinsson (1984). A
number of other simulations of isolated cases have
subsequently been reported (e.g., Parish, 1982), but
the most systematic studies to date are those of
Mason and Sykes (1978, 1979). The latter authors
emphasize viscous and form drag effects, and do not
discuss upstream deceleration or transience in any
great detail. The interpretation of their results is
complicated by the use of cyclic horizontal boundary
conditions. In the present work we explore a much
more extensive range of parameter space than any of
the earlier studies. In Section 7 we will discuss some
of the previous numerical results within the framework
developed herein.

Our simulations were carried out using a slight
modification of the two-dimensional (x, z) dry, hy-
drostatic primitive equation model described in Or-
lanski and Ross (1977). The model incorporates open
horizontal boundary conditions which allow motions
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with well-defined phase speeds to propagate out of
the domain without affecting the interior. An impor-
tant feature of the model is a parameterized vertical
diffusivity of mass, vorticity and y-momentum which
is essentially zero in statically stable regions but
becomes large as the lapse rate becomes statically
unstable. This common expedient allows wave break-
ing to be handled without explicitly resolving convec-
tive mixing; it may be viewed as a surrogate for
convective adjustment. A free-slip boundary condition
is used at the ground, eliminating complicating
boundary layer effects. We modified the model as
follows:

~ 1) Mountains were incorporated via a terrain-
following coordinate system s = H[z — h(x)}/[H
— h(x)], where H is the height of the model lid.
Except where otherwise noted we used a Gaussian
mountain h = h,, exp(—x?/L?).

2) A sponge layer was introduced at the top of the
domain to prevent reflection of energy from the lid.
In this layer winds and densities were made to relax
toward their initial values with a damping constant
that ranged from zero at the bottom of the sponge
layer to its maximum value at the top. Tests against
known linear solutions indicated the spurious reflec-
tion to be very small. Some tests in the nonlinear
range are discussed in Sections 4 and 5.

3) The model was made Boussinesq by replacing
all densities by a constant except in the buoyancy
term.

4) A weak biharmonic horizontal diffusion was
added in order to damp two-grid noise that was
sometimes created by wave breaking. The coeflicient
was chosen so as to have negligible effect on the large
scale.

All results will be presented in terms of nondimen-
sional units with velocity scale U, length scale L,
time scale L/U and depth scale U/N. On some plots,
the original dimensional units for which the calcula-
tion was carried out are also indicated. The horizontal
grid length was held fixed at 0.2 units for all runs.
Except where otherwise indicated, the domain extends
ten units upstream and downstream of the mountain
peak. Because some problems were occasionally noted
with spurious reflection from the horizontal bound-
aries, calculations were generally terminated when
high-amplitude motions arrived at either boundary.
A nonuniform grid with maximum resolution at the
ground was used for the vertical coordinate s. For
most runs 44 points were used in a domain with
depth 13.5; the grid length was 0.15 at the ground
increasing monotonically to 0.50 at the lid. For runs
with Fr > 2.5 (all conducted at low Ro) the height
of the lid was increased so as to keep the mountain
height less than about 20% of the model depth. These
simulations suffered a slight degradation of vertical-
resolution, though the relatively smooth vertical
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structure obtaining in the low-Ro regime is likely to
render this inconsequential. For runs conducted spe-
cifically to test sensitivity to the lid height, the height
of the lid was doubled by adding points at the top
without altering the low-level resolution. ’

4. Upstream influence: The nonrotating case
a. Historical review

The problem of upstream influence has a long
history. Early attention centered on the hydraulic
problem, consisting of flow of a thin (hence hydro-
static) layer of homogeneous fluid in a nonrotating
system. A review of this work may be found in Long
(1972, pp. 81-87). Suppose that a finite-area obstacle
of maximum height 4, is located in a fluid layer of
initial depth H,, and that the layer is impulsively
. given a velocity Uj at time ¢ = 0. The nondimensional
parameters controlling the subsequent evolution are
the initial Froude number Fy = Up/(gH,)? and the
nondimensional obstacle height B = h,,/H,. For B
less than a certain critical value B.(Fp), the upstream
and downstream current is left unmodified after a
long time has passed; for Fy < 1 the fluid draws
down symmetrically over the obstacle, while for F,
> 1 the fluid draws up symmetrically over the obstacle.
For B > B, the steady symmetric solution ceases to
exist. This situation is resolved by the “Gadarene
swine” solution (see Benjamin and Lighthill, 1954;
and Mark v, 13): A wave of elevation forms upstream
of the obstacle and propagates upstream with time,
leaving a layer of decelerated fluid between the wave
. front and the obstacle. The upstream surge is accom-
panied by a downstream-propagating wave of depres-
- sion. After a sufficiently long time, the flow near the
obstacle takes the form of a steady waterfall, with
subcritical flow [U/(gH)'? < 1] just upstream of the
obstacle and supercritical flow [U/(gH)'? > 1] just
downstream of the obstacle. From Egs. (38)-(40) of
Long (1972) it may be inferred that when Fy < 1

1 3
B =1+ (g - ()

As Fy — 1, B, — 0, but is positive otherwise. Thus,
in hydraulic theory, upstream influence occurs only
when the obstacle is of finite height, as long as F,
# 1. Consequently the upstream surge cannot be
obtained by an expansion about the limit of infini-
tesimal obstacle height, no matter how many terms
are included. While a rigorous analytical theory of
the formation of the upstream surge appears to be
lacking, the phenomenology at least is well understood
and the agreement between experiment and the ex-
isting theory is good.

The theoretical understanding of the continuously

stratified case derives from elegant work by Benjamin -

(1970) and MclIntyre (1972) on the weakly nonlinear
problem. Benjamin’s results are based on general
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conservation laws, and apply both to nonhydrostatic
flow of a layer. of homogeneous fluid with a free
surface and to continuously stratified flow between
rigid horizontal boundaries. The theorems require
that the formation of a lee wave train propagating
downstream of the obstacle be inevitably accompanied
by the formation of surge of decelerated fluid propa-

. gating upstream of the obstacle. By “lee wave” here

we refer to an undular motion that, given sufficient
time, extends arbitrarily far downstream of the obsta-
cle without diminution of amplitude. McIntyre ex-
plicitly calculated the upstream response for the case
of a layer of fluid of constant stratification bounded
above by a rigid lid. It was found that the upstream
surge is generated in the tail of the lee wave train
and not over the obstacle; this feature suggested that
the upstream influence would disappear if the rigid
lid were removed, allowing the wave to spread verti-
cally as well as horizontally. In both calculations, the
amplitude of the bore is of second order in the lee-
wave amplitude. These theoretical results would imply
that upstream influence can exist only when lee waves .
can exist. For a fixed layer depth in either the
stratified or one-layer case, the lee wave-amplitude
vanishes as the obstacle is made broad compared to
the lee wavelength. Consequently, the upstream surge
is predicted to vanish in the hydrostatic limit. While
Benjamin did not make any claims concerning the
unbounded, stratified ‘case, Mclntyre’s theory decid-
edly implies that no upstream influence would be
generated in hydrostatic flow in the unbounded do-
main, for which no lee waves can exist.

The association between upstream influence and
lee waves should perhaps be disturbing in considera-
tion of the firmly established fact that vigorous up-
stream surges occur in shallow-water flow over obsta-
cles, even though the system does not’support lee
waves. Indeed the laboratory experiments of Baines
(1977, 1979) demonstrate that the mechanism ex-
plored by Benjamin and by Mclntyre is not the
only—or even a particularly significant—mechanism
for the generation of upstream influence-in stratified
flow. Baines (1977) reports two major discrepancies
with the theory. First, the observed amplitude of the
upstream bore is approximately first order rather than
second order in the mountain height. The amplitude
predicted by weakly nonlinear theory is over an order
of magnitude below the observed strength. Second,
no bore was detectable between the obstacle and the
lee wave tail, in contrast with Mclntyre’s theory. The
implication here is not that upstream influence is a
linear phenomenon or that the theories of Mclntyre
and Benjamin are incorrect. Rather, it seems that the
experiments were carried out in a regime in which
the nonlinearities were order unity, revealing a type
of upstream influence which is analogous to that
found in hydraulic theory, and which is not accessible
to the asymptotic analysis. As noted in Baines (1984),
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the symmetric steady states in the continuously strat-
ified problem with a lid cease to exist at a finite
critical obstacle height in the same manner as the
one-layer case, suggesting a Gadarene solution. The
unbounded stratified case is fundamentally different
in this regard. Steady states without upstream influ-
ence continue to exist for arbitrary obstacle heights;
these states do, however, become unstable when the
wave amplitude becomes large enough to overturn
density contours.

In a subsequent set of experiments (Baines, 1979)
it was found that the degree of upstream influence is
determined primarily by Nh,,/U, (called “Fr” in the
present work). The relative insensitivity of the up-
- stream influence to NH/U, where H is the layer
depth, demonstrates the unimportance of the lee
waves and suggests that the upstream influence attains
a nonvanishing asymptotic form in the limit of
infinite layer depth. Understanding this limit is the
key to understanding upstream influence in the real
atmosphere.

b. Numerical results for f= 0 -

In the following we describe the character of up-
stream influence in a nonrotating system. The phe-
nomenon appears in its clearest form in this case,
and provides the foundation necessary for under-
standing the rotating problem. In this and subsequent
sections the flow patterns will be described via the
streamfunction Y(x, z, {) in the x-z plane, defined
such that u = 3, and w = —d,y. Generally, we will
show contour plots of the perturbation streamfunction
¥', defined by

¥x, z, ) = z +Y/(x, 2, 1) 4.2)

In this definition, it is not assumed that ' is small.
Negative values will be shown as dashed contours,
minima will be indicated by the symbol L and
maxima by the symbol H. The perturbation circula-
tion follows contours clockwise around minima and
counterclockwise around maxima.

In Fig. 3 we show contours of ' at times ¢ = 3.6,
7.2, 10.8 and 14.4 after the impulsive start of flow
over a mountain with Fr = 2. The calculations were
done with the model lid at z = 13.5 and the sponge
layer beginning at z = 9. The response is seen to
consist of 1) an upstream-propagating disturbance, 2)
a downstream-propagating disturbance, and 3) an
upward-propagating hydrostatic gravity wave located
immediately over the mountain. Only the last of
these is present in the traditional picture of stratified
hydrostatic flow over an obstacle.

The upstream disturbance creates a layer of decel-
erated fluid below mountain-top level accompanied
by an accelerated jet above mountain-top level. This
pattern shows no sign of dispersing in the vertical as
it propagates upstream. The downstream disturbance
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creates a thin low-level layer of accelerated fluid
accompanied by a decelerated layer centered at
mountain-top height. It, too, maintains its intensity
as it propagates. Stratified flow thus exhibits upstream
influence of a type similar to that found in one-layer
hydraulic theory; in both cases, a deep upstream-
propagating layer of decelerated fluid is created in
conjunction with a shallow downstream-propagating
layer of accelerated fluid. .

Further properties of the upstream surge are re-
vealed in the time evolution of the ground-level wind
upstream of the mountain, shown in Fig. 4. The
vertical axis is distance upstream of the peak, with
the peak located at the top of the figure, and the
horizontal axis is nondimensional time. In this do-
main, we plot contours of u(x, z, £)|,-x at contour
intervals of 0.25. The decelerated region (u < 1) is
shaded, the boundary of the most darkly shaded
region corresponding to # = 0 and successive contours
corresponding to ¥ = 0.25, u = 0.50, # = 0.75 and
u = 1.00. We will adhere to this convention for all
figures of this type referred to in the subsequent
discussion.

.Figure 4 confirms that the obstacle creates a layer
of stagnant fluid which extends progressively further
upstream as time passes. It also reveals that the
upstream surge is composed of waves which propagate
with well-defined speeds. The contours for u = 0.75
and u = 0.5 propagate upstream with uniform speed
—1.06 following some initial transience, while
the contours for ¥ = 0.25 and ¥ = 0 propagate with
speed ¢ = —0.39 (at least for ¢ < 10). When Fr is
reduced to 1.5 the excitation of the slower disturbance
is increased at the expense of the faster disturbance.
This effect is evident in Fig. 5, where it is seen that
the u = 0.5 contour is carried by the slow disturbance
for the lower mountain. The reason for the discrete-
ness of the upstream-propagating disturbances will be
discussed later.

Many features of the upstream surge can be un-
derstood in terms of the dispersion relation for Bous-
sinesq hydrostatic gravity waves. If k, is the vertical
wavenumber and k, is the horizontal wavenumber,
the frequency w is given by

w = (U — NIk )k, (4.3)

in dimensional terms. [For the sake of economy of
argument we have assumed a vertical structure pro-
portional to cos(k,z) or sin(k,z), so that the two
branches of the dispersion relation correspond to k,
> 0 and &, < 0.] In terms of nondimensional variables
with unit of depth U/N, (4.3) becomes

w=(1 — 1/k)k,. (4.4)

The wavenumbers for which w = 0 are particularly
important, since they can be excited and maintained
by steady forcing. According to (4.4) w vanishes when
k, = 1, corresponding to the familiar stationary
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FIG. 3. Time evolution of streamfunction deviation at Fr = 2 in the nonrotating case. Nondimensional times after the impulsive startup are 3.6
(upper left), 7.2 (upper right), 10.8 (lower left) and 14.4 (lower right). Dashed contours indicate negative values. The perturbation wind circulates
clockwise around minima (marked by L) and counterclockwise around maxima (marked by H).

vertically propagating gravity wave, or when k, = 0,
corresponding to an x-independent modification of
the horizontal wind. Motions of the latter type are
known as “columnar disturbances.” Differentiating
(4.4) and setting k, = 0, we find that columnar
disturbances have group velocities

Cex = 1 — 1/k;, (4.5a)
=0. (4.5b)
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Equation (4.5b) implies that columnar disturbances
have purely horizontal propagation; hence they do
not lose energy to z = oo as they propagate away
from their source. Because the gravity waves are
nondispersive in the horizontal, the temporary tran-
sients created by the impulsive startup also travel
upstream and downstream with speed given by (4.5a);
however, because they have nonzero vertical group
velocity, these motions spread out in the vertical and
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FiG. 4. Time evolution of the ground-level wind pattern upstream of the mountain for
Fr = 2 in the nonrotating case. The vertical axis is distance upstream of the mountain peak,
with the peak at the top of the figure. The horizontal axis is nondimensional time. In this
domain are plotted contours of the cross-mountain wind u at the ground, with contour intervals
0.25. The boundary of the most darkly shaded contour corresponds to u = 0, and successive
contours demarcate the less decelerated regions.

decay as they propagate away from the obstacle. disturbances with 0 < k, < 1 travel upstream. We
Equation (4.5a) implies that columnar disturbances tentatively identify the former with the downstream
with k, > 1 or k, < O travel downstream, while surge and the latter with the upstream surge. For a

JOB= R=1 .F1.5.
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ROSSBY NUMBER = xxxxxx FROUDE NUMBER = 1,500
F= .0 u=10.0 - H = 1500.
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DISTANCE

TIME (T-U/L)
FIG. 5. As in Fig. 4 but for Fr = 1.5.
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domain unbounded above, k, can be made arbitrarily
small. In the usual terminology, such a system is
always subcritical, as there is always a spectrum of
columnar disturbances which propagate upstream. In
an unbounded domain then, the importance of up-
stream influence is determined by the spectrum of
vertical wavenumbers which are excited with appre-
ciable amplitude.

As discussed above, weakly nonlinear theory gives
little useful insight as to the level of excitation. The
numerical results and laboratory experiments point
in the following direction: for sufficiently high moun-
tains, the fundamental depth scale is the mountain
height and the dominant vertical wavelength with
which columnar modes are excited is proportional to
this height. In nondimensional terms the dominant
wavenumber k, = a/Fr, where a is some universal
constant; according to 4.4a this disturbance moves
with speed:

e = | — Fr/a. (4.6)

Hence, when Fr > a, an upstream columnar distur-
bance is efficiently excited. It follows from (4.6) that
the strongly decelerated layer propagates upstream
faster as the mountain is made higher. Note that in
stratified flow in an unbounded domain Fr plays the
dual role of determining the amplitude of the response

(as seen in Section 2) and of determining the possibility .

of appreciable upstream propagation. In the hydraulic
case these features are controlled by two independent
parameters, B, and F;.

The effects of columnar disturbances can be easily
recognized in instantaneous plots of wind at the

1.7

A(1-U) ——
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ground, as such disturbances create long intervals in
which u(x) is constant and less than unity. A conve-
nient measure of the amplitude of a columnar dis-
turbance is the velocity deficit 1 — u taken at some
far-upstream point after all the disturbances have
arrived. This amplitude is plotted as a function of Fr
in Fig. 6. For Fr > 0.8 the columnar modes were
well defined by ¢+ = 14.7, and the amplitude 1 — u
was determined four units upstream of the mountain
peak at this time. For Fr < 0.7 we found only
dispersive upstream transients which eventually prop-
agated away without substantially affecting the far-
upstream flow. The amplitude jumps discontinuously
to a modest value of about 0.2 as the threshold Fr
= (.75 is crossed; as Fr is further increased, the
excitation rises approximately linearly. The columnar
disturbance becomes strong enough to decelerate the
far-upstream surface flow to rest at about Fr = 2.0,
though values in this range were not plotted because
near-mountain transience made their accurate deter-
mination impossible. v :

The reason for the threshold at Fr = 0.75 is
revealed in the time sequence of density and pertur-
bation streamfunction cross sections for this value,
shown in Fig. 7a, b. The key point is that Fr = 0.75
is just slightly above the value at which wave breaking
first occurs in this model. At ¢ = 14.4 the density
contours in the lee have just become vertical, but
wave breaking has not yet set in. At this time there

. is a well-developed vertically propagating gravity wave

over the mountain but essentially no excitation of
columnar disturbances. The fact that the wave has
maintained its phase tilt even though the wave front

.75 1.00

Fr ——e

FIG. 6. Dependence of strength of the upstream surge on Fr in the nonrotating
case. See text for definition of the ordinate.
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reached the top well before ¢ = 7 demonstrates that
spurious reflection from the sponge layer is insignifi-
cant. By t = 18 wave breaking has begun, and the
deceleration has started to extend farther upstream
of the mountain. The process continues, and by ¢
= 25.2 the upstream influence is clearly exhibited.
There are many mechanisms by which wave breaking
and the associated vertical mixing could lead to
excitation of disturbances with k, = 0, one candidate
being the Reynolds stress convergence arising from
deposition of wave pseudomomentum. An important
subtlety is that in linear theory the response of the
unbounded system to any forcing with a k, = 0
component grows logarithmically in time without
ever reaching a steady state (see Smith and Lin, 1985,
for an example involving heating). These matters
certainly merit further study.

In principle, one could have strong near-mountain
blocking without any accompanying far-upstream
influence; the near and far ficlds may even be con-
trolled by physical processes that are entirely distinct.
Thus the flow profiles immediately upstream of the
mountain measure an independent characteristic of
the flow pattern. In Fig. 8 we show u(z) two units
upstream of the mountain crest at ¢ = 14.4 for Fr
= 1, 1.5, 2 and 2.5. The fluid is decelerated below z
= 3 and weakly accelerated above z = 3. Stagnant
fluid appears first at the ground, when Fr = 1.5.
When the mountain height is increased further, the
blocked layer depth increases roughly in proportion
to Fr — 1.5. This leads us to conjecture that the
limiting flow for very large Fr consists of a blocked
layer of sufficient depth that the layer of unblocked
flow appearing just below the mountain top has
thickness d such that Nd/U is approximately 1.5. The
possibility of ‘““orographic adjustment” of this sort
was first suggested to us by Lindzen (personal com-
munication, 1984). The hypothesis is consistent with
the propagation characteristics of columnar distur-
bances: since only waves with k, < N/U can propagate
upstream, the sharpest shear layer that can be con-
structed from such waves has a thickness of order U/

N. Note that upstream blocking does not preclude.

strong descent in the lee, wherein fluid from above
the blocked layer is entrained into the low-level
turbulent wake of the mountain.

It is not certain that the near-mountain results at
t = 14 represent true steady states. When integrated
for a very long time, the system exhibited a gradual
intensification of the upstream deceleration near the
mountain. However, the details of this process were
found to be sensitive to both the width of the model
domain and the height of the model lid. Examination
of the solutions suggested that the long-term evolution
was caused by spurious reflections from the upstream
boundary.

There appear to be no laboratory experiments
carried out in a parameter range precisely analogous
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to that of our numerical simulations. Perhaps the
closest resemblance is to be found in Baines (1979).
These experiments differ from the simulations chiefly
in that: 1) NL/U and 4,,/L were order unity, so that
the motions were not strictly hydrostatic; 2) the
moderate Reynolds numbers of 300-1000 may not
have been large enough to completely eliminate vis-
cous effects; and 3) wave reflection from the effectively
rigid fluid surface may have been significant. Addi-
tionally, Bainies’s experiments were carried out with
a bell-shaped mountain £ = 1/(1 + x?) instead of
one Gaussian shaped. Nonetheless, the critical value
Fr = 1.5 for onset of near-mountain blocking is in
reasonable agreement with Baines’s value Fr = 2.; we
repeated the calculation for a bell-shaped mountain
and found a critical Fr of 1.75, which is even closer.
Another point of agreement is in the approximate
linearity of the amplitude of the columnar disturbance
in Fr, described in earlier experiments (Baines, 1977).
Recently, Baines and Hoinka (1985) have reported
on upstream influence in an apparatus contrived to
simulate a radiation upper boundary condition. The
upstream profiles at Fr = 2 are again similar to our
simulations, though onset of upstream influence is
found at Fr = 0.3. The discrepancy in the onset
criterion may arise from nonhydrostatic effects in the
laboratory experiments: since A/L = O(1) in the
laboratory model, NL/U is small when Fr is small,
whence nonhydrostatic effects are appreciable in that
regime. Given the dependence of the upstream flow
on wave breaking, the consistency between laboratory
and numerical experiments at the larger values of Fr
is reassuring.

By effectively absorbing energy reaching the higher
model levels, the sponge layer assures that the vertical
confinement provided by the model lid is not neces-
sary for upstream influence. However, the finite-
depth model topped by a sponge layer does not
perfectly mimic the infinite-depth system. The model
does not permit a continuum of upstream-propagating
columnar disturbances, as the modes in question
have vertical wavelengths that are comparable to the
sponge-layer thickness. In a model with rigid lid at
height H without a sponge, the boundary conditions
on vertical velocity require that long waves have a
vertical structure in which u' is proportional to
cos(nrz/H), where n is any integer; the corresponding
horizontal group velocities are 1 — (H/nw). For H
= 13.5, only modes with n = 1, 2, 3 and 4 can
propagate upstream, and the last of these has negligible
propagation speed. The n = 2 mode has speed —1.14
and the » = 3 mode has speed —0.43. These values
are in reasonable agreement with the propagation
speeds measured from Fig. 4. Evidently, the n = 1
mode is not significantly excited at Fr = 2. As the
lid is made higher, more upstream modes are allowed
and the set approaches a continuum. This effect is
demonstrated in Fig. 9, where we show the Fr = 2
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FIG. 7. Time sequence of density (left) and perturbation streamfunction (right) for Fr = 0.75.
Times are 14.4 (7a, top), 18 (7a, bottom), 21.6 (7b, top), and 25.2 (7b, bottom).

time section recomputed with H = 27, for which
depth modes n = 1 through n = 8 propagate upstream.
With N = 0.01 sec™' and U = 10 m s, this depth
corresponds to 27 km, whence we conclude that the
details of upstream propagation in the real atmosphere
are likely to be affected by winds over a very deep
layer. The upstream-flow profiles, though, are not
greatly troubled by this sensitivity; despite the richer
spectrum of upstream-propagating modes, the near-

mountain wind patterns in the high-top case (not
shown) were found to be virtually identical to those
shown in Fig. 8.

In summary there are three critical values of Fr
for the nonrotating case: 1) Fr = 0.75, at which wave
breaking and the associated excitation of upstream
influence sets in, 2) Fr = 1.5, at which a stagnant
region first forms near the obstacle and 3) Fr =~ 2.0,

at which the initial upstream surge becomes strong
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F1G. 7. (Continued)

enough to create a stagnant region propagating far
upstream.

5. Numerical results for f# 0: The initial upstream
surge

We have seen that in the nonrotating case a
mountain with sufficiently large Fr generates an up-
stream layer of stagnant fluid that is eventually of
infinite extent. In a rotating system, on the other

hand, the Coriolis force would inhibit. the upstream
influence by forcing an adjustment to geostrophy
sufficiently far upstream of the obstacle. Two simple
results germane to this idea follow directly from the
equations of motion. Both derive from the fact that
where u is subgeostrophic the unbalanced pressure
gradient in y tends to drive v positive, which in turn
creates a Coriolis force in the x-direction that tends
to accelerate u back toward geostrophy. The first
result is as follows: in the nonrotating case the
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upstream surge has the effect of replacing the initial
current far upstream with a modified x-independent
current u(z) which differs from the initial current by
an order unity amount. In the rotating case, there
can be no such permanent modification of the current
by any finite amount over any stretch of fluid of
nonzero length. If such a modification were to occur,
the left-hand side of (2.1) would vanish because of x-
independence and stationarity. Also, the pressure
gradient vanishes because stationarity implies that
the density is constant on streamlines, which would
be horizontal under the postulated circumstance.
Thus, v = 0 identically in the region of concern.
However, (2.2) would then imply that « = | identically
in this region, which proves the claim. The second
result is that in a steady state u can never cross zero,
provided d,v is finite everywhere. This follows im-
mediately from (2.2), as the left-hand side of (2.2)
vanishes where u = 0, which implies in contradiction
that ¥ = 1. Curiously, solutions in which u approaches
zero and d,v approaches infinity near a given point
are not precluded. It is easy to construct such solutions
locally for a specified finite pressure gradient, though
their physical relevance is not clear.

The above considerations suggest that the evolution
of the rotating system should resemble that of the
nonrotating system up to a dimensional time ¢
= O(1/f) (t = O(Ro) in nondimensional units),
whereafter geostrophic adjustment causes a reduction
in the upstream deceleration and a retreat of the
decelerated zone toward the obstacle. This conjecture
is amply borne out by the simulations. In Figs. 10a-
13a we show the time sections of surface wind u for
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TIME

8 10 12 14.
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FG. 9. As in Fig. 4 but with doubled model depth.
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FIG. 10. (a) As in Fig. 4, but for (Ro, Fr) = (4, 2). (b) Vertical profile of cross-mountain
wind (u, solid line) and along-mountain wind (v, dashed line) two units upstream of the crest
at approximately the time of maximum velocity deficit.

(Ro, Fr) = (4, 2), (2, 2.5), (1, 4) and (0.25, 8). These mately zero before recovering to a less decelerated
values were chosen such that each experiment lay in  value. It is also evident that the upstream surge
the strongly nonlinear range. In each case the cross- propagates only a finite distance before being arrested
mountain wind near the mountain falls to approxi- by geostrophic adjustment. The time scale for both
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FIG. 11. As in Fig. 10 but with (Ro, Fr) = (2, 2.5).

processes becomes smaller in proportion to Ro as Ro
is decreased. Recall, though, that the unit of time is
L/U, so that the corresponding dimensional value
remains roughly fixed at the inertial time scale; at
small Ro, this time becomes small only in comparison
with the time required for a fluid parcel to cross the

obstacle. Thus, at small Ro the strong deceleration
occurs at a time before fluid has traveled very far
along the upwind slope, and likewise before there is
time for a wave to develop aloft. It should also be
noted that, according to the scaling arguments of
Section 2, the short-time deceleration at small Ro is
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an ageostrophic effect which would be missed in a
balanced model.

The profiles of u(z) and v(z) for the aforementioned
cases, taken two units upstream of the mountain
peak at approximately the time of maximum velocity
deficit, are shown in Figs. 10b-13b. As in the non-
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FIG. 12. As in Fig. 10 but with (Ro, Fr) = (I, 4).
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rotating case, the cross-mountain flow below moun-

tain-top level is strongly decelerated while the flow

above mountain-top level is somewhat accelerated.
The maximum reduction occurs at the ground and,
in this parameter range, decays smoothly with height.
The along-mountain wind v has its maximum at the
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FiG. 13. As in Fig. 10 but with (Ro, Fr) = (0.25, 8).

ground, where u has its minimum, whence the asso-
ciated Coriolis force tends to accelerate u. As time
progresses, v continues to increase and the deceleration
of u becomes less pronounced; the resulting states
will be discussed in Section 6. At the time of maxi-

mum deficit, the reduction of u and acceleration of
v lead to a sharp turning of the wind to the left below
mountain-top level. When Ro = 2 for example, the
wind turns by almost 90° between z = 5 and z = 0.
It is also noteworthy that for Ro > 1 the vertical
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profiles are nearly identical when expressed in terms
of a vertical coordinate scaled by the mountain
height. This confirms the mountain height as a fun-
damental dynamical depth scale in the nonlinear
range. :

The two most important characteristics of the
upstream pattern are the strength of the blocking and
the length scale over which the upstream influence

extends. The former is conveniently summarized by

the minimum value of u (call it wun;,) appearing
anywhere upstream of the mountain crest at any time
before geostrophic adjustment sets in. Contours of (1
— Umin) In the Ro-Fr plane are plotted in Fig. 14.
The filled circles in the figure indicate the actual
values of (Ro, Fr) for the set of simulations used in
determining the contours. The shapes of the curves
are in excellent agreement with the the scaling argu-
ments given in Section 2, with the transition between
the small Ro and large Ro behavior occurring near
Ro = 1.

If transients in the nonrotating system propagate
upstream with typical speed 1 — Fr/a, as argued in
Section 4, and can continue to do so for an inertial
‘time b Ro without being inhibited by the Coriolis
force, then they should attain a maximum upstream
extent dx given by

dx = b Ro(Fr/a — 1) = (b/a) RoFr — bRo. (5.1)
Thus, a plot of dx against RoFr should yield a straight

Fr

FiG. 14. Contours of the maximum deficit (1 ~ um;,) appearing
upstream of the mountain during the initial phase, drawn in the
(Ro, Fr) plane. The region of parameter space in which stagnant
fluid is formed lies above the curve labeled 1.0.
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line with intercept that shifts to the right as Ro is
increased. A convenient and practical measure of dx
is the distance upstream of the mountain crest at
which u recovers to half the geostrophic value at the
ground (call it xsp); this quantity is shown as a
function of RoFr in Fig. 15. For purposes of reference,
the line x5, = RoFr is also shown. The values for Ro
= (.25, 0.5 and 1.0 rise linearly in RoFr with slope
near unity, though the intercept appears to remain
fixed at nearly zero. For Ro = 2, 3 and 4 the apparent
intercept shifts to the right with increasing Ro, in
qualitative agreement with (5.1), though the upstream
scales increase somewhat. faster than linearly with
increasing RoFr. The latter behavior may reflect the
greater importance of wave breaking in generating
the upstream motions when Ro is large. In light of
the spurious discretization of columnar modes dis-
cussed in Section 4, one might also be suspicious of
the estimates of upstream scale at the larger values
of Ro, for which cases the discrete modes have
sufficient time to become separated in space. Indeed,
the upstream behavior for (Ro, Fr) = (4, 2) with
doubled lid height shows a richer spectrum of modes
(see Fig. 16). The two-stage adjustment visible in the
low-top case—whereby the fast mode arrives upstream
first, adjusts, and is followed by the slow mode—is
absent in the high-top case. Nonetheless, the estimates
of x50 are quite robust. The values for Ro = 4 in the
high-lid case are indicated by the symbol “H” in Fig.
15, and do not reveal any great change.

These results lend some support to (5.1). To the
extent that (5.1) is correct, the maximum dimensional
upstream extent attained by the blocked layer scales
approximately with the radius of deformation Nh,,/f
when Fr is large. Since positive v is generated wherever
u is appreciably subgeostrophic, this also gives the
length scale over which the mountain-parallel wind
extends at the end of the transient stage.

It is difficult to quantify the importance of wave
breaking in generating the motions discussed above.
In the nonrotating case, we could separate permanent
upstream motions (presumably forced by breaking)
from dispersive transients by examining the flow far
upstream after a long time has passed. In the rotating
case, both kinds of disturbance affect the results.
Certainly wave breaking is unimportant at Ro
= (.25, for which streamlines do not overturn during
the time under consideration. Wave breaking does
occur for (Ro, Fr) = (2, 2.5), and no doubt influences
the upstream pattern to some extent.

6. Numerical results for f# 0: Long time behavior
a. Steady states for Ro < 1

Figure 13a suggests that for Ro = 0.25 the solution
attains a nearly steady state after an order unity
adjustment time has passed, even though the system
is in the strongly nonlinear region of parameter space.
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This typifies the long-term behavior at low Rossby
number. In the limit of small Ro the semigeostrophic
approximation is valid and steady states can be found
analytically. Solutions pertinent to the geometry under
consideration herein were presented by Pierrehumbert
(1985b), and it is instructive to compare them with

JOB= RO=4 .FR=2,

the numerical results. In semigeostrophic theory u(x,
z) depends only on RoFr and is symmetric about the
mountain peak. At the ground the minimum velocity
Umin 1S attained near the upstream and downstream
feet of the mountain while the maximum velocity
Umax 1S attained at the crest and becomes infinite
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F1G. 16. As in Fig. 10a but with doubled model depth.
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when RoFr = #'/2/2. The theoretical results for wp;,
and u,,,, are plotted against RoFr in Fig. 17. We also
show the corresponding steady numerical results for
Ro = 0.25, with the solid triangles representing the
minimum u appearing upstream of the mountain
peak and the open triangles representing the value of
u at the mountain peak. The numerical values for
the wind at the peak agree with the theoretical values
for small RoFr but fall below the theoretical curve as
the breakdown point is approached; past this point
the numerically determined peak winds increase ap-

» proximately linearly in RoFr. Despite this deviation,
the theoretical and numerical values for the upstream
deceleration are in excellent agreement over the entire
range examined, indicating that the breakdown does
not affect the upstream pattern.

On the downstream side, the effects of the break-
down are dramatic. In Fig. 18 we show the steady
streamfunction perturbation for RoFr = 0.375, 0.625
and 2, with Ro fixed at 0.25. When RoFr = 0.375,
well below the breakdown point, the pattern is quite
symmetrical and exhibits only a hint of wave radia-
tion. At RoFr = (.625, just below breakdown, the
maximum wind shifts markedly to the downstream

7

0 T T T 1

Roff ——

FIG. 17. Minimum velocity on upwind slope (solid line); semi-
geostrophic theory (solid triangles); numerical results for Ro = 0.25
and velocity at peak (dashed line); semigeostrophic theory (open
triangles); numerical results as a function of RoFr.
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slope and the wave radiation becomes more pro-

nounced. At RoFr = 2, well above breakdown, the
strong, shallow current penetrates further downstream
of the mountain. The sequence in Fig. 18 demon-
strates the effect of the inertial terms neglected in the
semigeostrophic approximation: when u becomes large
near the crest the formerly negligible advection of the
x-momentum becomes significant and high-momen-
tum air.is carried into the lee.?

We conclude that the semigeostrophic solutions
continue to provide accurate estimates of the upstream
deceleration at small Ro even when RoFr is consid-
erably larger than the critical value at which the
approximation breaks down near the mountain crest,
as the effects of the breakdown are manifested pri-
marily on the downstream side. The results of Pierre-
humbert (1985b) then imply that the dimensional
length over which the steady-state decelerated zone
extends is proportional to (LL,)"?, where L; = Nh,,/
[is the radius of deformation. In the strongly nonlinear
range (RoFr > 1) this is considerably less than the
length L, attained by the blocked zone during the
transient stage. '

b. Long-term behavior for Ro = 1

Unfortunately, the character of the solution at long
times in the ageostrophic regime is more complicated
than that found in the semigeostrophic regime. In
the ageostrophic regime, the system fails to reach a
steady state when Fr is sufficiently large. This is
apparent in Figs. 10a-12a; moreover, an integration
4, Fr = 2 case out to ¢t = 57 showed
that the transience does not disappear at longer times.
Yet, the details of the long-term transience were
found to be sensitive to model-dependent parameters,
and in particular to the height of the model lid. This
difficulty has prevented us from obtaining reliable
estimates of the strength of the blocking or the
upstream length scales in the regime Ro = 1. We will

" confine ourselves here to a few comments on the

qualitative nature of the flow.

The value of u at the ground two units upstream
of the crest at £ = 14.4 is about 0.25 in both the (Ro,
Fr) = (4, 2) and (2, 2.5) cases, indicating that at long
times as well as short times the cross-mountain wind
is insensitive to Ro in the large Ro range. The
maximum v at the same time is about 1.8 in both
cases; this behavior contrasts with steady linear theory,

2 An instance of this phenomenon may have been reported by
Twain in 1872 (RI, p. 128). In describing a downslope wind storm
in Carson City, he writes: “. . . “The Washoe Zephr’ (Washoe is a
pet nickname for Nevada) is a peculiarly Scriptural wind in that
no man knoweth ‘whence it cometh.’ That is to say, where it
originates. It comes right over the mountains from the west, but
when one crosses the ridge he does not find any of it on the other
side! It probably is manufactured on the mountaintop for the
occasion, and starts from there.”
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for which v decreases as Ro is increased. As Ro is
reduced to unity, the dependence of both winds on
Ro becomes appreciable. At ¢ = 14.4 in the (Ro, Fr)
= (1, 4) case, the minimum u is somewhat less than
0.5 and the maximum v is about 3. Semigeostrophic
theory would imply a minimum u of 0.43 when RoFr
= 4, suggesting that semigeostrophic behavior remains
qualitatively correct for values of Ro as large as unity.

The limit of large Ro with fixed Fr may be thought
of as the “knife-edge” limit, in which the breadth of
the mountain is made to vanish while keeping its
height fixed. A question of particular import is whether
the mountain blocks a stretch of fluid of finite length
in -this limit. In nondimensional units based on the
mountain width, the question amounts to that of
whether the upstream length scale increases linearly
with Ro when Fr is held fixed.

The upstream scale must be built out of some
combination of the dimensional lengths L, L, = U/f
and L; = Nh,/f (corresponding to nondimensional
lengths unity, Ro and RoFr). We have seen that the
upstream scale in the initial phase is probably L,,
whence a mountain affects, at least temporarily, a
finite volume of fluid in the knife-edge limit. What
is the corresponding answer for the long-time behavior
at large Ro? In steady linear theory, the upstream

flow at large Ro adjusts to geostrophy over a distance
L;, and within this distance all lengths scale with the
mountain length L (Pierrchumbert, 1984); this would
give a nondimensional upstream scale that is inde-
pendent of Ro. In contrast, the upstream extent of
the u = 0.5 contour toward the end of the (Ro, Fr)
= (4, 2) simulation is clearly greater than that in the
(2, 2.5) case. The near-mountain u and v values
provide an indirect indication that the increase is
nearly linear: since u and v have nearly the same
magnitude near the mountain in the two cases, the
subgeostrophic region must extend twice as far in the
Ro = 4 case in order to yield the same v, because
the nondimensional Coriolis force is Ro™' times the
subgeostrophic velocity. Linearity in Ro would imply
an upstream length that is some combination of L,
and L,, and because L; = FrL,, the particular com-
bination cannot be determined without recourse to
examination of the variation of the length scale with
increasing Fr. Such a study must await a better

understanding of the nature of the long-term tran-
sience.

7. Discussion

In the nonrotating case, a good approximation to
the two-dimensional geometry can be (and has been)
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realized in laboratory experiments. This may not be
possible for the rotating case, as the mountain-parallel
wind could lead to complicated sidewall effects. Real
mountains being in any event three-dimensional, we
are led to speculate on the implications of our results
for the pattern of flow around a long (but not
infinitely long) ridge, the long dimension of which
we will denote by L,. Consider first the nonrotating
case at values of Fr large enough to produce nearly
total low-level blocking. In the two-dimensional prob-
lem, the blocking propagates infinitely far upstream,
but in the three-dimensional problem, the upstream
influence will be limited to a distance proportional
to L, by horizontal dispersion. This is suggestive of
Drazin’s (1961) analytic solution for steady flow of a
very strongly stratified fluid around a three-dimen-
sional obstacle. The strong stratification suppresses
vertical motion, whence the flow consists of potential
flow in horizontal planes around the mountain. An
identification of the long-term state with Drazin’s

solution upstream is also suggested by the fact that -

the infinite L, limit for potential flow around a barrier
consists of identically blocked flow. We thus speculate
that the three dimensional pattern at large Fr attains
the form shown in Fig. 19a upstream of the mountain.
Our results show, on the other hand, that strong
descent in the lee occurs even when the upstream
flow is blocked, suggesting that potential flow would
not provide a good description of the downstream
flow. This is borne out by the behavior found in
laboratory experiments (e.g., Baines, 1979).

In the rotating case, the Coriolis force provides an
additional mechanism for limiting the extent of the
upstream influence; in the transient stage, the char-
acteristic scale is L; = Nh,,/f, and in the longer term
the scale is perhaps less than this. It follows that
when L, > L,, the dominant limitation is horizontal
dispersion, and again a pattern like Fig. 19a will be
set up. Significantly, the low-level flow in this case is
essentially nondivergent, and therefore will not be
affected by the Coriolis force even in the long term.

Lo

(a) (b)

FiG. 19. Schematic three-dimensional flow patterns for L, < L,.
(a) (potential flow in horizontal planes); (b) for L, > La
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On the other hand, if a system with L, < L, were
impulsively started from rest, the strong upstream
influence would be arrested at L, and would never
reach L,. Within the distance L, the flow is subgeos-
trophic and the Coriolis force creates an appreciable

“along mountain wind, causing the fluid to flow around

the mountain predominantly to the left in a pattern
schematized in Fig. 19b. The barrier jet is trapped
within a deformation radius of the mountain, and
the situation is distinguished from potential flow by
the presence of horizontal divergence, which allows
the Coriolis force to be felt near the mountain.

Three dimensionality may also limit the retreat of
the blocked region following the initial stage. We
have seen in the two-dimensional case that # cannot
be maintained at zero in a steady state. In the three-
dimensional steady case, though, setting u identically
zero along some line of fixed x in (2.2) implies only
that

an

whence we see that v accelerates in y rather than in
time. The implication is that blocked air travels some
distance to the left before it flows over the mountain,
and if the mountain is not long enough the air could
go around before it had a chance to flow over. Since
v is order unity in the transient stage, which lasts a
time of order Ro, the nondimensional distance trav-
eled along the mountain during the transient stage,
compared to the nondimensional length, is order
Ro(L/L,); since (L/L,) < 1, there exists the possibility
for air to be diverted around only in the large Ro
regime, and then only if (L,/L) < O(Ro). This
conclusion applies only to the transient stage. In the
steady state v = O(1/Ro), whence marked deflection
of flow around the obstacle can occur at small Ro
even if u is not decelerated at all. -

Next, we return to the Alpine problem that moti-
vated this work. The impulsive startup is relevant
because the event shown in Fig. 1 was initiated by
the arrival of a cold front, with associated strong
cross-mountain winds, at the Alps six to twelve hours
earlier. For the Alps, we take L = 50 km, #,, = 2.5
km, N = 0.01 sec™! (which is consistent with upstream
thermal soundings), and /' = 107* sec™!. This yields
RoFr = 5, whence the flow for small U could at best
be semigeostrophic. For the 10 m s™! U appropriate
to the observations though, we have Ro = 2 and Fr
= 2.5, which is the case shown in Fig. 11. This is
well within the regime in which the low-level blocking
is strong and in which the blocking persists over
several hours. The values of along-mountain wind at
the time of maximum blocking (about 6 m s™') are
also consistent with the observations. The value of
L, is 250 km, which is rather less than the value L,
= 800 km appropriate to the Alps; thus the three-
dimensional pattern is expected to be an interpolation
between Figs. 19a and b. Preliminary analyses of 850

3,(v*/2) = 1,
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mb wind patterns appear to be consistent with this
prediction.

A notable difference with the observations is that
the observed wind shift is much sharper than the
predicted. We believe the sharpness of the observed
transition to be due to low-level convective mixing,
which mixes low-velocity with higher-velocity air.
The height of the shift did indeed correspond approx-
imately to cloud-top height at the locus of the obser-
vations, and radiosonde observations away from the
flight track (not shown) suggest a smoother transition.
Future observational work will explore the relation
between cloud distribution and wind pattern, to see
if the conjecture is correct.

The surface of Earth exhibits a variety of ridgelike
mountains with dimensions such that combinations
of Ro and Fr similar to those found in the Alpine
case would often be encountered. Accordingly, it
would be expected that low-level flow diversion of
the type discussed above would be a fairly common
feature of flow upstream of high or steep mountains.
In fact, we claim that the ubiquitous “barrier wind”
phenomenon, characterized by the formation of strong
winds flowing parallel to high ridges, is a manifestation
of the general theory developed herein. Barrier winds
have been extensively studied by Schwerdtfeger (1975),
who proposed that they are a consequence of the
horizontal temperature gradient created by the “dam-
ming” of low-level stable air, which implies a balanced
thermal wind blowing along the barrier to the left as
seen by an observer facing the barrier. This important
insight is qualitatively correct in many regards, but
should be considered a diagnostic description of the
situation rather than a dynamical theory of the barrier
wind. Schwerdtfeger’s mechanism leaves unanswered
the questions of the circumstances under which the
blocking occurs, the length of time for which it
persists and the distance upstream over which it
extends. These matters cannot be treated indepen-
dently of the mountain-parallel wind, as the Coriolis
force couples the two horizontal wind components.
Also, as we have argued in Sections 2 and 5, neither
total blocking of the cross-mountain wind nor geo-
strophic balance of the mountain-parallel wind are
necessary for the formation of barrier winds. All that
is required is that u be subgeostrophic for a sufficiently
long time and over a sufficiently long distance. This
comment is particularly important in light of the
mesoscale nature of most barrier winds.

Parish (1982) has carried out an observational and
numerical study of barrier winds upstream of the
Sierra Nevada Mountains. The height of these moun-
tains attains a maximum of about 2.5 km and falls
to about a third of the maximum 50 km from the
peak on the windward (western) slope, whence we
take L = 50 km. With the 10 m s™! upstream flow
appropriate to the 20 February 1979 case discussed
by Parish we obtain Ro = 2. Parish does not give the
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upstream static stability, but the canonical value N
= 0.01 s™! would yield Fr = 2.5. This event is thus
dynamically similar to the Alpine case, for which the
appropriate numerical results are found in Fig. 11,
From Fig. 11b we find that the barrier wind is only
6 m s~! at the time of maximum deceleration (3.5
hours dimensionally); by 8.4 hours (results not shown),
it has increased to 18 m s™!, whereafter it remains
somewhat steady. The latter value is consistent with
the 20 m s™! value found in Parish’s numerical
simulation, but both simulations are a bit less than
the observed value of 25 m s~'. In our simulations,
the 50% deceleration point fluctuates between about
300 and 150 km upstream of the crest, which brackets
the 220 km value observed. Parish’s simulation, on
the other hand, shows a decelerated layer extending
more than 280 km upstream, in conflict with the
observations. Nonetheless, the substantial agreement
stands as an indication of the robustness of our’
results.

Mason and Sykes (1978, 1979) have also carried
out numerical simulation of rotating, stratified flow
over topography. The obstacles treated in Mason and
Sykes (1979) were of very small scale [NL/U = O(1)];
hence the results are not relevant to the effects we
have emphasized, which operate on a considerably
larger scale. Broader obstacles were considered in
Mason and Sykes (1978); in our notation, the values
of Ro were approximately 0.1, 0.3, 1.0, and 3.0 (sce
Figs. 3-6 of Mason and Sykes, 1978). However, the
stratified cases were all carried out with Fr = 1, which
is too low to permit strong upstream blocking. For
the first two cases, RoFr = 0.1 and 0.3, whence the
solutions lie within the linear quasi-geostrophic regime
and the streamlines are, as expected, nearly symmet-
rical about the crest. The Ro = 1 and Ro = 3 cases
are more asymmetrical but are no less laminar, and
neither exhibits much blocking. The small, shallow
separation bubble found by Mason and Sykes at the
upstream foot of the mountain in the latter case is
absent in our calculations and may be a result of
boundary layer effects.

Eliassen and Thorsteinsson (1984) report four sim-
ulations in the parameter range Ro = | and Fr < 1.
No pronounced blocking is expected in this range,
and none was found. Additionally, the startup pro-
cedure was tailored to produce rapid convergence to
a steady state, precluding the generation of transient
upstream surges such as we have discussed.

The main implication of our results for numerical
modeling—that smoothing reduces blocking—are
precisely the same as discussed in Pierrehumbert
(1984b) because that discussion depended only on
the shape of the curves exhibited in Fig. 14. An
additional implication of the nonlinear results is that
a mountain creates an upstream region of relatively
stagnant air that can have volume considerably greater
than that of the mountain; in the transient stage, e.g.,
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the stagnant region has cross-sectional area A,,L,

= (N/f)h,2, which is quadratic in the mountain
helght The “effective volume”’ of the mountain would
then be greatly reduced by smoothing. This effect
may imply that use of smoothed mountains in nu-
merical models underestimates the generation of vor-
ticity during lee cyclogenesis and the driving of
Rossby waves.

“Our results may find application in a number of
other orographic effects, such as the commonly ob-
served damming of cold air east of the Appalachians
and associated coastal frontogenesis (S. Garner, per-
sonal communication, 1984). In addition, although
we have emphasized upstream effects, the strongly
nonlinear effects considered herein also lead to con-
siderable downslope wind amplification; the wind
pattern is not too different from that expected in
hydraulic theory, and yet appears in a uniformly
stratified -current. Such currents may play a role in-
severe downslope windstorms such as the Yugoslavian
Bora.

8. Conclusions

We have explored the nature of impulsively started
flow of a rotating, continuously stratified fluid over a
ridgelike - obstacle, with the intent of isolating the
circumstances in which the obstacle causes substantial
blocking of the oncoming flow. The controlling pa-
rameters are Fr = Nh,,/U and Ro = U/fL, where N
is the Brunt-Viisild frequency, 4, the maximum
mountain height, U the speed of the oncoming flow,
f the Coriolis parameter and L is the half-width of
the mountain. In the nonrotating limit (f = 0), Fr is
the sole parameter, and the following results were
obtained:

1) Scale analysis predicts strong blocking when Fr
= O(1).

2) Numerical simulations reveal that flow near the
upstream foot of the mountain is decelerated to rest
whenever Fr = 1.5. The depth of the stagnant layer
increases as Fr is made larger than the critical value.

3) When Fr > 0.75, an upstream-propagating dis-
turbance is formed which leaves behind a low-level
layer of decelerated fluid extending arbitrarily far
upstream with the passage of time. The strength of
the disturbance increases monotonically as Fr is
increased beyond 0.75, and becomes strong enough
to create stagnant fluid when Fr = 2. The upstream
surge appears to be generated by processes associated
with wave breaking above the mountain, and does
not depend on downstream lee-wave trains or vertlcal
confinement for its existence.

4) The character of the flow at Fr = 2 is consistent
with laboratory experiments conducted by. Baines
(1979) and Baines and Hoinka (1985).

In the rotating case, scale analysis predicts that the
upstream deceleration is O(Fr) for large Ro and
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O(RoFr) for small Ro. The upstream cross-mountain
velocity reaches a minimum within an inertial period,
whereafter it recovers to a less decelerated value,
owing to the action of the Coriolis force. The mini-
mum wind in the transient phase has been determined
as a function of Ro and Fr (Fig. 14), and is in
excellent agreement with the scale analysis; the tran-
sition between large and small Ro behavior occurs
near Ro = 1. The Coriolis force also limits the
upstream extent of the decelerated layer; in contrast
with the nonrotating case, this layer attains a maxi-
mum length on the order of the radius of deformation
Nh,,/f before receding back toward the mountain.
Thus, the Coriolis force emerges as the major factor
limiting the strength and upstream extent of flow
blocking. Were it not for the Coriolis force, extensive
mountain ranges would create layers of blocked fluid
reaching hundreds or even thousands of kilometers
upstream.

. For small Ro, the solution settles into a steady
state following the transition phase described above.
The upstream pattern in this state is well described
by semigeostrophic theory, even when RoFr is larger
than the critical value at which the approximation
breaks down at and downstream of the mountain
crest. In the regime Ro = 1, there is evidence of
persistent transience, and we have not yet succeeded
in accurately charactenzmg the nature of the long-
term flow in this range.

The precise role of wave breaklng in generating
upstream influence remains obscure. Although it
seems clear that the onset of upstream influence in
the nonrotating case is associated with wave breaking,
the physical mechanism responsible for excitation of
the columnar disturbances has not been identified. It
also remains to be seen whether excitation mecha-
nisms independent of wave breaking become operative
at large Fr. In the rotating case, the extent to which
the transient upstream motions depend on wave
breaking has yet to be determined.

The Alpine case that motivated the study described
herein was found to lie in a parameter regime in
which strong blocking is expected, though the com-
parison between -theory and observation must be
regarded as tentative pending a more detailed exam-
ination of the data than has been attempted here.
Certain key features of the observations are accounted
for by the theory, but the theory does not reproduce
the sharpness of the wind shift seen in the vertical
soundings; it is suggested that this sharpness is due
to low-level convective mixing. The theory is also
consistent with earlier observations and numerical
simulations of barrier winds, in particular upstream
of the Sierra Nevada Mountains.

The model considered here reproduces the phe-
nomenon stripped to its essentials, but many exten-
sions must be made before the complications obtain-

_ing in realistic situations can be treated. Even within
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the two-dimensional geometry, the effects of vertical
shear, nonuniform stratification, and more realistic
initiation (e.g., frontal passage) need to be explored.
Three-dimensional simulations need to be conducted
in order to test the conjectures presented in Section
7; such work would also seem necessary to probe the
effects of an ambient wind which changes direction
with height. Finally, much analysis of the ALPEX
data will be required in order to better define the
phenomenon and provide rigorous tests of theories
seeking to explain it.
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