
Proceedings of the 1997 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, October 19-22, 1997, 
New Paltz, NY 

PERCEPTION-BASED BIT-ALLOCATION ALGORITHMS FOR AUDIO CODING  
 

Stephen Voran 
 

Institute for Telecommunication Sciences, U.S. Department of Commerce  
325 Broadway, Boulder, Colorado 80303, sv@bldrdoc.gov 

 

 
 ABSTRACT 

We describe six algorithms for bit allocation in audio coding.  
Each algorithm stems from the minimization of a different 
perceptually-motivated objective function.  Three of these 
objective functions are extensions of existing ones, and three 
are new.  Closed-form bit-allocation equations result in five 
cases, and an iterative approach is required in the sixth. 

1. BACKGROUND 

Sub-band and transform audio coders generate and encode 
frequency domain decompositions of audio signals.  When 
combined with an understanding of human hearing, this 
approach offers the opportunity to encode signal components in 
a way that minimizes the audibility of coding distortions.  In 
particular, when signal components are to be quantized, 
different quantizer resolutions can be selected for different 
signal components to minimize the audibility of the 
quantization process.  The resolution of a quantizer is increased 
by assigning more bits to it.  The total number of bits available 
for quantizing all signal components is usually fixed by the 
design of the audio coder and its bit rate.  A bit-allocation 
algorithm dynamically distributes this fixed pool of bits over a 
number of signal component quantizers so that the audibility of 
the quantization process is minimized. This results in the 
highest possible audio quality for a given number of bits. 

One important aspect of a bit-allocation algorithm is the 
objective function that represents the audibility of the 
quantization process.  The bit-allocation algorithm minimizes 
this objective function, so higher quality coding is obtained 
with objective functions that more closely track the actual 
audibility of the quantization process.  Existing objective 
functions are most often based on the noise-to-mask ratio 
(NMR)[1-5]. This approach involves decomposing an encoded 
signal into an original signal plus quantization noise. The NMR 
predicts the extent to which this theoretical noise signal would 
be masked by the original audio signal if both were presented to 
a listener at the same time. The NMR is based on well-
documented masking effects, and has been shown to be 
extremely useful in audio coding and audio-quality assessment. 

It is easy to argue that the NMR is a relevant and effective 
model for listeners judging the audibility of a quantization 
process.  However, we argue that it may not be the most 
relevant or effective of all possible models: Listeners hear the 

encoded signal and must judge its purity against some internal 
reference.  They do not hear an original signal that attempts to 
mask a quantization noise.  The decomposition of a single 
signal into a masker and a maskee is generally an ad-hoc 
process.  Finally, if quantization noise is to be treated as an 
actual signal, why not process it with a spreading function, just 
as the original signal is processed? 

We propose three new perception-based objective functions to 
represent the audibility of the quantization process.  Like the 
NMR, these objective functions also contain approximations 
and compromises.  In addition, we extend three established 
objective functions to include additional perceptual weighting 
functions. 

A second important aspect of a bit-allocation algorithm is the 
procedure for minimizing the objective function.  Several 
procedures with varying restrictions on quantization functions 
and admissible bit-allocation values have been reported[6-8].  
Such procedures could be used with the objective functions 
presented here.  In addition, five of our objective functions 
yield closed-form expressions for the minimizing bit allocation 
under a fixed bit-rate constraint. These closed-form expressions 
allow for single step bit allocation, but the resulting bit-
allocation values must be rounded to integers in any practical 
implementation.  Our sixth objective function yields an iterative 
algorithm that results in integer bit allocations. 

2. DEFINITIONS 

The following symbols will be used: 

N =  number of frequency bands in bit-allocation problem, 

xi = i th frequency domain sample of signal to be coded,  

p i

 2 = E(x i

 2) ,  E is the expectation operator, 

yi = i th frequency domain sample of coded signal, 
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 denotes the i th element of the vector c , 

bi
 = number of bits allocated to i th band (bits/sample) , 

ri
 = sample rate in i th band (samples/second) , 
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 =  total sample rate (samples / second). 

A spreading function emulates the way in which a spectral 
component of an audio signal excites a neighborhood on the 
basilar membrane[9]. Thus, spreading functions can be used to 
convert spectral representations into excitation patterns.  When 
a spectral representation is uniformly spaced on a critical band 
or Bark scale, a spreading function can be efficiently 
implemented as a matrix-vector multiply: 
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where~p2
 is the excitation pattern due to p2  and Tp is an N by 

N Toeplitz power spreading matrix. The first row of Tp is 
[1, α, α2,…,αN-1 ] and the first column of Tp is [1, β, β2,…,βN-1 ]T, 
where 10·log10(α) = -d·∆, 10·log10(β) = -u·∆, d and u are the 
magnitudes of the downward and upward spreading slopes 
respectively, in dB/Bark, and ∆ is the sample spacing in Bark. 
(We use d = 25 dB/Bark, u = 10 dB/Bark, ∆ = 1 Bark, and 
N = 25 bands.) We also define the amplitude spreading matrix 
Ta, which is simply the element-by-element square root of Tp.  
We will exploit the invertibility of Tp: 
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We also define tij to represent the elements of Tp, and 
~tij to 

represent the elements of Tp

-1. 

In many audio coding algorithms, groups of m samples from 
adjacent frequencies and/or times are divided by a single scale 
factor (chosen from a fixed set of n possible scale factors) 
before quantization.  This scaling brings all samples in the 
group into the appropriate range for quantization.  The scale 
factor multiplies the same group of samples at the decoder.  We 
use si to represent the scale factor used in the i th band.  The 
scaling operation can also be viewed as coarse quantization at a 
fixed (independent of bit allocation) bit rate of log2(n)/m 
bits/sample. 

We assume that quantization errors are zero mean, and are 
independent from each other and from the signal x.  The mean-
squared quantization error in the i th band is assumed to be  
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where ki

2 is a distribution-dependent scale factor.  For example, 
when quantization errors are uniformly distributed 
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The bit allocations that follow are made under the total bit-rate 
constraint of B* bits/second: 
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3. BIT-ALLOCATION ALGORITHMS 

We present six objective functions that attempt to model the 
audibility of the quantization process. Sections 3.1-3.3 contain 
extensions of existing objective functions, and  Sections 3.4-3.6 
contain new objective functions.  When combined with the bit-
rate constraint in (1), each objective function leads to a bit-
allocation algorithm. Additional observations on these results 
are offered in Section 4. 

3.1. Average Weighted NMR 

Average NMR has been used as an objective function.  
Examples can be found in [2,3].  We add a set of frequency-
dependent perceptual weights to form Average Weighted NMR 
(AWNMR): 
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The weights are represented by wi.  They are on a dB scale and 
larger values represent greater listener sensitivity. The vi are 
samples of the masking index.  At each frequency i, vi indicates 
how many dB must be subtracted from the excitation pattern 
~ )p T xp

2 2= ⋅E(  to obtain the masking pattern[9].  Masking 

indices are based on prior knowledge of human hearing. 
Experiments to determine most effective values for the wi have 
yet to be done.  Once the wi are determined, they can be 
combined with the vi to form a single modified masking index. 

Necessary conditions for the minimization of AWNMR under 
the bit-rate constraint in (1) can be found by invoking the 
Lagrange multiplier λ and solving 
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This results in the closed-form bit allocations 
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As described in Section 4, our experiments have shown that, in 
practice, these necessary conditions are also sufficient. The 
resulting minimized value of AWNMR is 
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3.2. Maximal Log Weighted NMR 

Maximal Log NMR has been widely used as an objective 
function.  Examples can be found in [4,5].  Again, we add a set 
of frequency-dependent perceptual weights represented by w

i . 
The weights are on a dB scale and larger values represent 
greater listener sensitivity.  The Log Weighted NMR in the i th 
band (LWNMRi) is given by 
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Minimization of average LWNMR cannot result in meaningful 
bit allocations.  The Maximal Log Weighted NMR 
(MLWNMR) is 

MLWNMR LWNMR= max( )
i i . (8) 

MLWNMR is minimized under the bit-rate constraint in (1) by 
forcing LWNMRi = constant, for i = 1 to N. The resulting bit 
allocations are again given by (4), with 
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The resulting minimized value of MLWNMR is 
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using fi as given in (9). 

3.3. Maximal Log Weighted Noise-to-Signal 
Ratio 

When the spreading of signal power and the masking index are 
eliminated, MLWNMR simplifies to Maximal Log Weighted 
Noise-to-Signal Ratio (MLWNSR): 
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MLWNSR is minimized under the bit-rate constraint in (1) by 
the bit allocations given in (4), with 
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The resulting minimized value of MLWNSR is 
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using fi as given in (12). 

3.4. Maximal Normalized Excitation Error 

Next we present an objective function based on the excitation 
patterns generated by the coded and uncoded signals.  These 
patterns represent the auditory stimulation a listener would 
receive from the coder, and from a transparent coder.  The 
difference between these excitation patterns is then normalized 
by the excitation pattern due to the uncoded signal, converted to 
a dB scale, and weighted. The weights are on a dB scale and 
larger values represent greater listener sensitivity.  The 
Normalized Excitation Error in the i th band (NEEi) is given by 
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and the Maximal Normalized Excitation Error (MNEE) is 

MNEE NEE= max( ) .
i i  (15) 

MNEE is minimized under the bit-rate constraint in (1) by 
forcing NEEi = constant, for i = 1 to N. The resulting bit 
allocations are again given by (4), with 
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The resulting minimized value of MNEE is 
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using fi as given in (16).  Note that if w
i
 = v

i , the linearity of Ta 
allows one to interpret MNEE as a modification of MLWNMR, 
where the quantization noise has been replaced with the 
excitation pattern created by the quantization noise. Note also 
that if wi

 = constant, i = 1 to N, then the MNEE bit allocations 
given by (4) and (16) reduce to the MLWNSR bit allocations 
given by (4) and (12). 

3.5. Probability of Detection 

Given the excitation patterns generated by coded and uncoded 
signals, we can also model the probability that a difference can 
be detected, using generalizations of the work in [10,11].  The 
resulting objective function is called Probability of Detection 
(PDET): 
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Each weight wi is determined by the dB difference ∆L*

i that is 
required for 50% probability of detection in the i th band.  Thus, 
larger values of wi represent greater listener sensitivity: 
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Necessary conditions for the minimization of PDET under the 
bit-rate constraint in (1) are derived as in Section 3.1.  The 
resulting bit allocations are given by (4), with 
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As described in Section 4, our experiments have shown that in 
practice, these necessary conditions are also sufficient. The 
minimized value of PDET is found by inserting this bit 
allocation into (18). 

3.6.  Relative Excitation Sensitivity 

Our final bit-allocation algorithm is an iterative one.  The 
algorithm is initialized with an integer bit allocation that 
exceeds the constraint in (1) so that the quantization process is 
not audible.  Bits are then removed one-by-one in a way that 
causes minimal disruption to the excitation pattern and maximal 
reduction of the total bit rate B. 

We define the Relative Excitation Sensitivity in the i th band to 
the j th bit allocation as 
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If decreasing the j th bit allocation causes a relatively small 
change in the excitation pattern and/or a relatively large 
reduction in the total bit rate, then RES( j) will be relatively 
small, and bj should be reduced.  The relative impact of these 
two factors can be adjusted in each band using the weights wi.  
If j* minimizesmin[max[ ( )]] ,

j i i
jRES then bj* is decremented by 

one.  Bits are selectively removed in this fashion until the bit-
rate constraint in (1) is satisfied. 

4. OBSERVATIONS 

Equation (4) describes the bit allocations for five of these six 
algorithms.  This equation agrees with our intuitions about bit 
allocations:  Each allocation starts with B*/R bits/sample, the 
global average.  Next, each allocation is decremented by a 
factor that depends on a weighted average of the fi for all bands.  
Finally, the i th allocation is increased according to fi.  Because 
the fi are all in some way inversely related to signal power, 

fewer bits are allocated to more powerful signal components.  
This is what we would expect based on the formulation of the 
objective functions, and our understanding of human hearing. 
Note that these bit allocations must be rounded to integer values 
in practical implementations.  Equations (10), (13), and (17) 
show that the minimized distortion vs. rate curves for the 
objective functions that use decibel units will have slopes of -
20/log2(10) = -6.02 dB/bit, as expected. 

We have implemented all six algorithms, and have used them to 
allocate bits in N = 25 bands (each is one Bark wide) for 6860 
audio frames (each frame covers 11.6 ms) taken from 20 
musical and spoken selections.  We verified the sufficiency of 
the necessary conditions given in Sections 3.1 and 3.5 by 
perturbing those bit allocations, and noting that those objective 
functions always increase in response to perturbations. 

We plan to continue this work and quantize these 20 musical 
and spoken selections according to these six bit allocations. 
This will be followed by formal listening experiments to select 
values for the perceptual weights wi , and to determine the 
relative encoded audio quality provided by each of the bit-
allocation algorithms. 
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