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Abstract 
Perceived speech quality is most directly measured by subjective listening tests.  These tests are often slow 
and expensive,  and numerous attempts have been made to supplement them with objective estimators of 
perceived speech quality.  These attempts have found limited success, primarily in analog and higher-rate, 
error-free digital environments where speech waveforms are preserved or nearly preserved.  The objective 
estimation of the perceived quality of highly compressed digital speech, possibly with bit errors or frame 
erasures has remained an open question.  We report our findings regarding two essential components of 
objective estimators of perceived speech quality:  perceptual transformations and distance measures.  A 
perceptual transformation modifies a representation of an audio signal in a way that is approximately 
equivalent to the human hearing process.  A distance measure reflects the magnitude of a perceived distance 
between two perceptually transformed signals. 

We then describe a new objective estimation approach that uses a simple but effective perceptual 
transformation and a distance measure that consists of a hierarchy of measuring normalizing blocks.  Each 
measuring normalizing block integrates two perceptually transformed signals over some time or frequency 
interval to determine the average difference across that interval.  This difference is then normalized out of 
one signal, and is further processed to generate one or more measurements.  The resulting new estimators, 
and several established estimators, are thoroughly evaluated and compared in Part II of this paper.  
Hierarchical structures of measuring normalizing blocks, or other structures of measuring normalizing 
blocks may also address open issues in perceived audio quality estimation, layered speech or audio coding, 
automatic speech or speaker recognition, audio signal enhancement, and other areas.



I. Background 
Digital speech encoding and transmission involve a four-way compromise between complexity, 

delay, bit rate, and the perceived quality of decoded speech.  Complexity, delay, and bit rate can often be 
quantified in fairly straightforward ways, but perceived quality can be more difficult to measure.  
Subjective listening or conversation tests can be used to gather firsthand evidence about perceived speech 
quality, but such tests are often fairly expensive, time-consuming, and labor-intensive.  These costs are 
often well-justified, and there is no doubt that the most important measurements of perceived speech quality 
will always rely on formal subjective tests. 

There are also situations where the costs associated with formal subjective tests do not seem to be 
justified. In particular, much speech codec development and optimization work apparently relies on 
objective estimators of  perceived speech quality, along with “informal listening tests.”  Of 26 codecs 
described at the 1995 IEEE Workshop on Speech Coding for Telecommunications, only 11 had been tested 
in formal subjective tests.  Segmental SNR (SNRseg) or SNR was used to estimate perceived speech 
quality in ten cases, cepstral distance (CD) was used twice, and Bark spectral distortion (BSD) was used 
once [1].  Codec evaluations presented at the 1997 IEEE Workshop on Speech Coding for 
Telecommunications relied mainly on informal and formal subjective tests [2]. 

SNR and SNRseg are simple to implement, have straightforward interpretations, and can provide 
indications of perceived quality in some waveform-preserving speech systems.  Unfortunately, as shown in 
Part II of this paper and in [3]-[5], when they are used to evaluate more general coding and transmission 
systems, SNR and SNRseg often show little, if any, correlation to perceived speech quality. The continued 
popularity of these two estimators is likely due to their history, their simplicity, and the lack of a widely 
tested and accepted replacement.  The main body of ITU-T  Recommendation P.861 describes a perceived 
speech quality estimation algorithm called perceptual speech quality measure (PSQM), but its scope is 
limited to higher bit rate speech codecs operating over error-free channels [6],[7].  The objective 
measurement of the perceived quality of highly compressed digital speech, possibly with bit errors or 
frame erasures has remained an open question. 

Researchers have recently begun to include explicit models for some of the known attributes of 
human auditory perception in their estimators of perceived speech or audio quality [7]-[17].  The 
motivation for this perception-based approach is to create estimators that “hear” speech signals through the 
same transformations that humans hear them.  In principle, this was a significant advance.  In practice, 
when estimators are evaluated, they often show modest improvement, at best.  The limitations of the 
perception-based approach can be traced to two sources.   First, while detailed models for the detectability 
and perceived loudness of many different combinations of tones and narrow bands of noise have been 
derived,  the nonlinear, time-varying nature of human hearing makes aggregating those results into practical 
models for the processing of more general signals (e.g., speech) a formidable task.  Simplifying 
approximations are often made, resulting in moderately complex models that generally are not tested 
beyond tones and noise, if they are tested at all.  Second, human perception of speech quality involves both 
hearing and judgment.  Extensive efforts to model hearing have often been followed by relatively trivial 
models for judgment.  Our studies have led us to reverse this emphasis, resulting in a simple, yet effective, 
model for hearing, and a more sophisticated model for judgment.  
 A high-level description of our approach is shown in Figure 1.  The delay of the device under test 
is first estimated and removed.  The perceptual transformation contains a simple model for hearing, and 
the distance measure models judgment.  This partition is an approximation.  There is no single clean 
dividing line between human hearing and judgment.  The distance measure generates auditory distance 
(AD) values.  Ideally, these non-negative values increase in a consistent way as the input speech and output 
speech signals move apart perceptually.   A logistic function can be used to map AD into a finite interval, 
to better match finite subjective test results.  Note that Figure 1 describes an estimation approach based on 
the comparison of two speech signals.  This most closely parallels the subjective tests known as 
degradation category rating (DCR) tests, or A-B comparison tests.  In DCR tests, listeners hear the 



reference and test signals sequentially, and are asked to compare them.  In the simpler and more popular 
absolute category rating (ACR) tests, listeners hear only the test signal and are asked to rate its quality.  
In spite of the clear parallel between Figure 1 and DCR tests, the results given in Part II show that the 
approach of Figure 1 provides useful estimates of perceived speech quality as measured in ACR tests.  
This is not surprising since listeners may well accomplish the ACR rating task by forming an internal 
template of a perfect version of the test signal for comparison purposes.  Thus, ACR tests might become 
DCR tests inside the listener.  In [17] it is suggested that objective estimators be used to estimate 
differences between ACR test results. 
 In the following sections we describe a delay estimation algorithm and a simple but effective 
perceptual transformation.  We discuss distance measures and identify invariances in conventional 
distance measures that are clearly not perceptually consistent.  Elimination of these undesired invariances 
motivates the development of measuring normalizing blocks (MNBs).  MNBs are defined, and then 
combined in hierarchical structures that form distance measures. The resulting new MNB algorithms for 
objectively estimating perceived speech quality are described in full detail in Appendix A. In Part II of 
this paper we provide evaluations of the resulting objective estimators of perceived speech quality 
through comparison with the results of nine subjective tests.  Part II also contains further observations 
and discussion, and a set of benchmark objective estimates of perceived speech quality for standardized 
codecs. 
 
II. Delay Estimation  
 As shown in Figure 1, the delay of  the device under test must be estimated and removed prior to 
the estimation of perceived speech quality. Many speech codecs do not preserve speech waveforms. When 
waveforms are not preserved, waveform cross-correlation and other waveform-matching techniques give 
ambiguous or erroneous delay estimates.  For this reason we have developed a two-stage delay estimation 
algorithm.  The algorithm is included in [18].  A coarse stage uses speech envelopes, and a fine stage uses 
speech power spectral densities (PSDs), both of which are approximately preserved by speech codecs. 
 Speech envelopes are calculated in the coarse stage by rectifying speech samples and low-pass 
filtering them to an approximate bandwidth of 125 Hz.  These envelopes are then subsampled at 250 
samples/s, and cross-correlated.  The peak in the smoothed cross-correlation function becomes the coarse 
delay estimate with an uncertainty of  ±4 ms. 
 Whenever possible, the fine stage then refines this estimate by cross-correlating PSDs.  PSDs are 
calculated from 8 ms segments of speech samples.  Each segment is Hamming windowed and transformed 
using a DFT or FFT.  The  magnitude of the complex transform result is then extracted.  The delay 
estimation algorithm performs PSD correlation multiple times and checks the locations of the resulting 
peaks for consistency.  For some speech codecs PSDs are not adequately preserved and fine estimates are 
not consistent.  This indicates that, from a high resolution viewpoint, the delay is not constant. In these 
situations the coarse delay estimate, along with its inherent 4-ms uncertainty, becomes the total delay 
estimate. 
 The two-stage process is efficient because the coarse stage can search a wide range of delay 
values, but at low resolution.  Once the coarse stage has finished its work, its low-resolution estimate 
provides a starting place for the fine stage that follows.  The fine stage needs to search only a narrow range 
of delay values, consistent with the uncertainty of the coarse estimate.  The sensitivity of the MNB 
algorithms to errors in delay estimation is discussed in Part II of this paper. 
 
III. P erceptual Transformations 

Perceptual transformations seek to model human hearing.  A useful perceptual transformation will 
modify the representation of an audio signal in a way that is approximately equivalent to the human hearing 
process. The goal is to mimic human hearing so that only information that is perceptually relevant is 
retained.  The literature of psychoacoustics is full of experimental results that describe how humans 



perceive tones and bands of noise.  Many references can be found in [19].  From these results, one finds 
several prominent properties of human hearing that might be modeled in a perceptual transformation.  It 
is clear that the ear’s frequency resolution is not uniform on the Hertz scale.  It is also clear that perceived 
loudness is related to signal intensity in a nonlinear way.  The ear’s sensitivity is clearly a function of 
frequency, and absolute hearing thresholds have been characterized.  Finally, many studies have 
demonstrated time- and frequency-domain masking effects. 

Much less is known about how humans perceive more complex signals, such as speech.  In 
typical models, complex signals are decomposed into simple stimuli for which human auditory 
perception is better understood.  Internal representations for the simple stimuli are calculated, and then 
combined in some manner to generate an internal representation for the original signal. For example, if 
E1( f ) is the cochlear excitation pattern due to simple stimulus 1 and E2( f )  is the cochlear excitation 
pattern due to simple stimulus 2 then the total cochlear excitation pattern has often been modeled as  

 [ ]E E Et 1 2( ) ( ) ( ) .f f fp p p= +
1

 (1) 

However, different values of p have been selected by various authors.  The maximum function, “p = ∞” is 
used in [20], p = 1 in [21]-[24], p = 0.5 in [25], and p = 0.48 in [26].  In [27], p = 0.4 is shown to be most 
useful when Et( f ) is used to estimate the perception of coding distortions, and in [28] values of p between 
0.1 and 0.3 provide the best fit to experimental results.  A comparative study with  p =  0.25, 0.5, 1.0, and 
∞ is given in [29]. 

We have studied many of the perceptual transformation components that have been proposed to 
model various attributes of the hearing process [7]-[16],[19]-[34].  By observing correlations with 
subjective test results, we have sought to identify the most effective perceptual transformation 
components, and the most appropriate level of perceptual transformation detail for perceived speech 
quality estimation [29],[35].  This work was repeated for a collection of different distance measures.  We 
found that simpler perceptual transformations can be as effective or more effective than more complex 
ones.  This observation is in general agreement with [7],[10].  In particular, we have found that the 
nonuniform frequency resolution and the nonlinear loudness perception seem to be the most important 
properties to model.  In fact, these are the only two properties that are explicitly modeled in the 
perceptual transformation described below.  Further, we found that correlation results are much more 
sensitive to the choice of a distance measure than to the details of the perceptual transformation.   

We have arrived at a very simple yet effective perceptual transformation that is built from a 
sequence of already established steps.  This perceptual transformation is applied to frequency domain 
representations of the speech signals.  Speech signals are broken into frames, multiplied by a Hamming 
window, and then transformed to the frequency domain using an FFT.  Our investigations have not 
identified any phase measurements that reliably result in perceptually relevant information.  Thus only 
the squared magnitudes of the FFT results are retained.  The results that follow are based on a sample rate 
of 8000 samples/s, a frame size of 128 samples (16 ms) and a 50% frame overlap.  We have 
experimented with frame sizes of 64 and 256 samples, and found them to be less useful for this 
application.  We have also experimented with the frame overlap value, and have found this to be a less 
critical parameter. 

The nonuniform frequency resolution of the ear is treated by the use of a psychoacoustic 
frequency scale.  Several such scales have been proposed [19],[23],[32]-[34] and we have determined that 
for this application, the minor differences between them are not particularly significant.  We have elected 
to use a Bark frequency scale.  The Hertz scale frequency variable f is replaced with the Bark frequency 
scale variable b using the relationship 

 b
f

 =  6 sinh-1⋅ 



600
,  (2) 



which can be found in [32].  This relationship is plotted in Figure 2  Note that b increases approximately 
linearly with f  below about 500 Hz, and b increases according to a compressive nonlinearity above about 
500 Hz.  This scale was derived to match experimental results on critical bands in human hearing [19].  
Roughly speaking, on this Bark scale, equal frequency intervals are of equal perceptual importance.  We 
use this relationship to regroup frequency domain samples that are uniformly spaced on the Hertz scale into 
bands that have approximately uniform width on this Bark scale.   

Many models for loudness perception as a function of signal intensity are available as well 
[19],[23],[27],[32].  Again, our studies indicate that for this application, the choice of a model is not 
critical, as long as it contains a compressive nonlinearity.  We have chosen to use a logarithm to convert 
signal intensity to perceived loudness. 

We have also implemented models for the inner-outer ear transfer function, absolute hearing 
thresholds, equal loudness curves, and time- and frequency-domain masking effects.  We have elected not 
to include these models in our perceptual transformation.  While these attributes of hearing have all been 
well-documented in tone and noise experiments, modeling them does not appear to help with the estimation 
of the perceived quality of 4-kHz bandwidth speech. 

 
IV. Distance Measures 

Distance measures seek to measure the magnitude of the perceived distance between two 
perceptually transformed signals. Unfortunately, many existing conventional distance measures display 
properties that are clearly inconsistent with human auditory judgment.  As an example, consider a distance 
measure that takes the form   

 [ ]D[X( ),Y( )]= X( )-Y( ) dff f f f1
1

Ω
γ γ

∫ ,  (3) 

where X( f ) and Y( f ) are frequency-domain representations of the input and output of the device under 
test, respectively, and the integration is over some band of interest with bandwidth Ω.  Such distance 
measures are invariant to the sign of  the difference X( f )-Y( f ).  This means that the hissy signal Y1( f ) 
and the muffled signal Y2( f ) in Figure 3 will receive the same distance value, which would not generally be 
a perceptually consistent result. 

For a second example, consider the refined distance measure 
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In (4) the sign of Y( f )-X( f ) is acknowledged, with separate integrations, integration exponents γ, and 
weighting functions w( f ).  With the signals X( f ), Y1( f ), and Y2( f ) shown in Figure 4, 
D[X( f ),Y1( f )] = D[X( f ),Y2( f )]. This is unlikely to be a perceptually consistent result, because Y1( f ) 
has a harsh sound, while Y2( f ) has a hollow sound.  Analogous examples exist for undesired time-domain 
invariances. 
 
V. Measuring Normalizing Blocks 

Section IV provides several simple examples of undesired invariances exhibited by conventional 
distance measures.  These invariances are undesirable because they are not perceptually consistent:  



differences that are obvious to listeners disappear inside of these conventional distance measures.  The 
problem of undesired invariances in conventional distance measures extends far beyond these examples.  In 
general, distance measures that follow, or are similar to, the forms of (3) and (4) are invariant to the 
distributions of the differences that they are attempting to measure.  Listeners, on the other hand, are often 
sensitive to distributions of differences.   

To address these shortcomings of conventional distance measures, we developed measuring 
normalizing blocks (MNBs), and then formed distance measures from hierarchies of  MNBs.  Each MNB 
treats spectral differences that are distributed over a given scale in time or frequency.  The MNB provides 
simple modeling of the disturbance caused by that spectral difference, and the ability of a listener to adapt 
to that spectral difference.  When multiple MNBs covering multiple time or frequency scales are combined, 
they allow for simple modeling of the way in which listeners adapt and react to more complex spectral 
deviations that span different time and frequency scales.  

 
A. Measuring Normalizing Block Definitions and Discussion 

A time measuring normalizing block (TMNB) is shown in Figure 5 and a frequency measuring 
normalizing block (FMNB) is given in Figure 6.  Each of these blocks takes perceptually transformed input 
and output signals (X( f,t) and Y( f,t), respectively) as inputs, and returns a set of measurements and a 
normalized version of Y( f,t).  The TMNB integrates over some frequency scale, then measures differences 
and normalizes the output signal at multiple times.  Finally, the positive and negative portions of the 
measurements are integrated over time. In an FMNB the converse is true. An FMNB integrates over some 
time scale, then measures differences and normalizes the output signal at multiple frequencies.  Finally, the 
positive and negative portions of the measurements are integrated over frequency.  Through these steps, 
each MNB provides a simple modeling of the disturbance caused by a spectral difference at a given scale, 
and the ability of a listener to adapt to that spectral difference. 

We now  formalize the MNB definitions.  The TMNB operating on the band of width Ω that 

begins at f0  using the measurement time intervals defined by ti, i=0 to N, normalizes Y( f,t) to
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generates 2N measurements m( j): 
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The FMNB definition is analogous, with the roles of time and frequency exchanged.  At time t0 , 
the FMNB operating over time scale τ, using the measurement bands defined by fi, i=0 to N, normalizes 
Y(f,t) to~

( , )Y f t and generates 2N measurements m(j): 
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By design, both types of MNBs are idempotent. 

 If MNB(X,Y) =  (X,Y, ),   then   MNB(X,Y) =  (X,Y,
~ ~ ~

).m 0  (7) 
In other words, a second pass through a given MNB will not further alter the output signal, and the vector 
of measurements resulting from that second pass will contain only zeros.  This property of MNBs is critical 
as it allows them to be cascaded and yet they measure the deviation at a given time or frequency scale once 
and only once. 
 
B. Distance Measures that Use Measuring Normalizing Blocks 

In order to measure spectral deviations at multiple time and frequency scales, we have formed 
structures of TMNBs and FMNBs.  We hypothesized that hierarchical structures that work from larger 
time and frequency scales down to smaller time and frequency scales would be most likely to emulate 
listeners’ patterns of adaptation and reaction to spectral differences.   By this technique spectral deviations 
at one time or frequency scale are measured and removed before the next smaller scale is considered.  
Results in Part II of this paper indicate that this hypothesis is a reasonable one.  Specifically, when these 
hierarchical structures are used as distance measures in conjunction with the simple perceptual 
transformation described above, this top-down approach generates very useful estimates of perceived 
speech quality.  A generalized diagram of these hierarchical MNB structures is shown in Figure 7.  Each 
MNB in the structure generates a measurement vector mi,j. 

There are many alternatives to explore within the framework of Figure 7.  As always, there is a 
complexity-performance trade-off at work here.  Through a sequence of heuristic explorations, we have 
identified two MNB structures that offer relatively low complexity and high performance as estimators of 
perceived speech quality across a wide range of conditions and quality levels.   These structures are shown 
in Figures 8 and 9.  These are referred to as MNB structure 1 and MNB structure 2, respectively. Other 
MNB structures may be more appropriate for more specific speech or audio quality estimation 
applications.  In addition, these structures or other MNB structures may address open issues in perceived 
audio quality estimation, layered speech or audio coding, automatic speech or speaker recognition, audio 
signal enhancement, and other areas. 

Both MNB structures start with an FMNB that is applied to the input and output signals at the 
longest available time scale.  Four measurements are extracted and stored in the measurement vector m.  
These measurements cover the lower and upper band edges of telephone band speech (0 - 500 Hz and 
3000 - 3500 Hz.)  In essence, this MNB stage measures and equalizes out the long-term frequency response 
at the edges of the telephone band.  In MNB structure 1, a TMNB is then applied to the input and output 
signals at the largest frequency scale (approximately 15 Bark).  This step can be viewed as a short-time, 



wide-band spectral difference measurement, followed by a fast adaptive gain stage that removes this 
spectral difference.  Six additional TMNBs are then applied at a smaller scale (approximately 2-3 Bark).  
These TMNBs correspond to additional, narrower-band, spectral difference measurements and gain 
adaptations.  Finally a residual measurement is made to take account of the spectral differences at all 
remaining (finer) scales.  In MNB structure 2,  the middle portion of the band undergoes two levels of 
binary band splitting, resulting in bands that are approximately 2-3 Bark wide.  The extreme top and 
bottom portions of the band are each treated once by a separate TMNB.  Finally a residual measurement is 
made.  We can also loosely describe the action of these MNB structures as a dynamic decomposition of a 
codec output signal.  This decomposition proceeds in a space that is defined partly by human hearing and 
judgment (via the MNB structure) and partly by the codec input signal.  

The idempotence of the MNB along with the hierarchical nature of MNB structures leads to 
linear dependence among the MNB measurements.  As shown in Figures 8 and 9, only linearly 
independent measurements are retained.  Thus, MNB structure 1 results in 12 measurements, while MNB 
structure 2 results in 11 measurements.  For these two structures, a full set of linearly independent 
measurements can be formed from just the positive portions of the error functions e( f,t).  These are the 
odd-numbered measurements in (5) and (6).  Linear combinations of these measurements provide good 
estimates of the perceptual distance between two speech signals and good estimates of perceived speech 
quality.  The value that results from this linear combination is called auditory distance (AD): 

 AD =  w mT ⋅ ,  (8) 

where w is a length 12 (MNB structure 1) or 11 (MNB structure 2) vector of weights.  In practice, AD 
values are non-negative.  When the input and output signals are identical, all measurements are zero and 
AD is zero.  As the input and output signals move apart perceptually, AD increases.  

MNB structures 1 and 2 were designed to be used as distance measures.  The AD distance values 
they generate were intended to be used to estimate perceived speech quality.  Subjective perceived speech 
quality ratings usually cover finite ranges.  The mean opinion score (MOS) scale is often used in ACR 
tests, while the degradation mean opinion score (DMOS) scale is very popular for DCR tests.  Both of 
these scales cover the interval from 1 to 5.  Thus, correlation with these subjective rating scales may be 
increased by mapping AD values into a finite range.  We use the logistic function with asymptotes at 0 and 
1:  

 L =
1

1+e
( ) .z

a z b⋅ +   (9) 

When a > 0, L(z) is a decreasing function of z.  We selected this function because it maps AD into a finite 
interval, it exhibits the necessary scale compression at the high and low quality extremes, and it is nearly 
linear over the intermediate quality range. 
 Note that MNBs were developed to measure (react) and normalize (adapt) in a way that emulates 
listeners.  The MNB structures, in turn, were developed to perform these steps sequentially at decreasing 
scales, as we hypothesized listeners might do.  Combining the resulting measurements linearly was a purely 
utilitarian choice, not motivated by properties of perception or judgment.  Part II of this paper shows that 
the structures are successful in the sense that they generate very useful estimates of perceived speech 
quality.  On the other hand, we do not claim any direct, firm, correspondence between the algorithmic steps 
given above and the process of human audition and judgment.  That is, the MNB structures are able to 
emulate the responses of listeners, but they do not directly explain or explicitly model how listeners arrive 
at those responses. 

The perceptual transformation and the MNB structures are described together in full detail in 
Appendix A.  Part II of this paper provides further discussion, interpretation, and results. 
 
 



V.  Conclusion 
 There is a clear need for estimators of perceived relative speech quality that provide reliable 
estimates, especially for lower-rate speech codecs, errored transmission channels, and other situations 
where waveforms are not preserved.  Although they are clearly not perceptually consistent, SNR-based 
estimators are still in common use, probably due to their history, their simplicity, and the lack of a widely 
tested and accepted replacement.  The recent attempts to incorporate models for human auditory perception 
into these estimators are clearly an important step forward.  Unfortunately, it is not clear how simple 
models for the perception of tones and bands of noise might be best combined to create perceptual 
transformations that model the perception of more general signals such as speech.  In addition, judgment is 
at least as important as hearing, but many highly refined hearing models have been followed by fairly 
simplistic judgment models, resulting in estimators that do not perform as reliably as one might hope.  Our 
studies of perceptual transformations and distance measures have led us to an effective but rather simple 
perceptual transformation and more sophisticated distance measures built from measuring normalizing 
blocks.  

Listeners adapt and react differently to spectral deviations that span different time and frequency 
scales.  This motivates the development of a family of analyses that cover multiple frequency and time 
scales. To best emulate listeners’ patterns of adaptation and reaction to spectral deviations, these analyses 
should proceed from larger scales to smaller scales.  Further, spectral deviations at one scale must be 
removed so they are not counted again as part of the deviations at other scales. To meet these requirements, 
we have developed time measuring normalizing blocks and frequency measuring normalizing blocks.  These 
idempotent blocks have been combined to form two hierarchical structures that comprise two distance 
measures.  In effect, these structures decompose a codec output signal in a space defined partly by human 
hearing and judgment, and partly by the codec input signal.  The parameters of this dynamic decomposition 
are combined linearly to form a measure of the perceptual distance between those two signals, which in 
turn is used to form an estimate of relative perceived speech quality.  This new technique for objectively 
estimating perceived speech quality is thoroughly evaluated in Part II of this paper.  These structures or 
other MNB structures may also address open issues in perceived audio quality estimation, layered speech 
or audio coding, automatic speech or speaker recognition, audio signal enhancement, and other areas.  
 
Appendix A:  Description of MNB Algorithms 

This appendix provides complete descriptions of the MNB algorithms at a level of detail that 
allows for implementation.  To implement MNB structure 1, follow steps A.1-A.6 and A.8.  To implement 
MNB structure 2, follow steps A.1-A.5, A.7, and A.8.  To avoid a proliferation of variable names, this 
appendix does not use a unique variable for each intermediate result.  Rather, variables are reused, just as 
they would be in a programming language. 
A.1.  Signal Preparation 
 The input to the algorithm is a pair vectors x and y.  These vectors contain speech samples from 
the input and output of the speech device under test, respectively.  The recommended speech sample 
precision is at least 16 bits.  The assumed sample rate is 8000 samples/s.  The vectors must contain at least 
1 second of telephone bandwidth speech.  (Vectors used in the development of these algorithms ranged from 
3 to 9 seconds in duration.)  It is assumed that the two vectors have the same length, and are synchronized. 
 Synchronization may be accomplished as described in [18].  The mean value is then removed from each of 
the N1 entries in x and y: 
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1
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1
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Next, each of the vectors is normalized to a common RMS level: 
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A.2.  Transformation to Frequency Domain 
Each vector is next broken into a series of frames, with 128 samples in each frame.  The frame 

overlap is 50%, so each frame begins 64 samples from the start of the previous frame.  Any samples 
beyond the final full frame are discarded.  Each frame of samples is multiplied (sample by sample) by the 
length 128 Hamming window: 

h( ) . .46 cos
( )

, .i
i

i= − −



 ≤ ≤0 54 0

2 1

127
1 128

π
 

After multiplication by the Hamming window, each frame is transformed to a 128 point frequency domain 
vector using the FFT. Scaling in FFT implementations is apparently not well standardized.  The FFT used 
in this algorithm should be scaled so that the following condition is met.  When a frame of 128 real-valued 
samples, each with value 1, is the input to the FFT (no Hamming window), then the complex value in the 
DC bin of the FFT output must be 128+0xj. For each transformed frame, the squared-magnitude of 
frequency samples 1 through 65 (DC through Nyquist) are retained.  The results are stored in the matrices 
X and Y.  These matrices contain 65 rows, and N2 columns, where N2 is the number of frames that are 
extracted from the N1 original samples in x and y. 
A.3.  Frame Selection 

Only frames that meet or exceed energy thresholds in both X and Y are used in calculation of AD. 
For X, that energy threshold is set to 15 dB below the energy of the peak frame in X: 

xenergy j i j xthreshold xenergy j
ji

( ) ( , ) , max ( ( ) ).= = ⋅
−

=
∑X 10

15

10

1

65

 

For Y, the energy threshold is set to 35 dB below the energy of the peak frame in Y: 

yenergy j i j ythreshold yenergy j
ji

( ) ( , ) , max( ( ) ) .= = ⋅
−

=
∑Y 10

35

10

1

65

 

Frames that meet or exceed both of these energy thresholds are retained: 
{ ( ) } { ( ) } .xenergy j xthreshold yenergy j ythreshold j≥ ≥ ⇒AND frame is retained 

If any frame contains one or more samples that are equal to zero, that frame is eliminated from both X 
and Y. These matrices now contain 65 rows, and N3 columns, where N3 is the number of frames that have 
been retained. If N3=0, the input vectors do not contain suitable signals and this algorithm is terminated. 

The thresholds given above appear to be the most useful for the general problem of estimating 
perceived speech quality across the conditions described in Part II of this paper.  Other thresholds may be 
more useful for other, more specific applications.  In particular, multiple thresholds that separate a speech 
or audio signal into several categories (e.g., main signal, background noise, or silence) may be 
advantageous. 
A.4.  Perceived Loudness Approximation 

Each of the frequency domain samples in X and Y is then logarithmically transformed to an 
approximation of perceived loudness: 

X X Y Y( , ) log ( ( , )) , ( , ) log ( ( , )) , , .i j i j i j i j i j N3= ⋅ = ⋅ ≤ ≤ ≤ ≤10 10 1 65 110 10
  

A.5.  Frequency Measuring Normalizing Block 
An FMNB is applied to X and Y at the longest available time scale, defined by the length (N1) of 

the input vectors.  Four measurements are extracted and stored in the measurement vector m.  These 
measurements cover the lower and upper band edges of telephone band speech.  Positive and negative 
portions of the measurements are not separated.  Temporary vectors f1,  f2, and  f3 are used for clarity. 
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A.6.  Structure 1 Time Measuring Normalizing Blocks 
In MNB structure 1, a TMNB is applied to X and Y at the largest frequency scale (approximately 

15 Bark).  Six additional TMNBs are then applied at a smaller scale (approximately 2-3 Bark).  Finally a 
residual measurement is made.  The result is eight additional measurements that are stored in the length 12 
column vector m.  Temporary variables t0,  t1, and t2 are used for clarity. A graphical representation of 
MNB structure 1 is given in Figure 8. 
a. Largest Scale TMNB (14.9 Bark wide) 
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b. Define the vector of band limits g = [2  7  12  19  29  43  66]T.  Then the six small-scale TMNBs are 
implemented by the following pseudocode. 

for = 1 to 6

(measure)

(normalize

(save positive portion of measurement )

end
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c. Residual Measurement 
t Y X

m t
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A.7.  Structure 2 Time Measuring Normalizing Blocks 
In MNB structure 2,  the middle portion of the band undergoes two levels of binary band splitting, 

resulting in bands that are approximately 2-3 Bark wide.  The extreme top and bottom portions of the band 
are each treated once by a separate TMNB.  Finally, a residual measurement is made. The result is seven 
additional measurements that are stored in the length 11 column vector m.  A graphical representation of 
MNB structure 2 is given in Figure 9. Temporary variables t0, t1, and m0, are used for clarity. 
a. Define the vectors of band limits u = [2  7 43  7  19  7  12  19 29]T and 
v = [6 42 65 18 42 11 18 28 42]T .  Then all TMNBs are implemented by the following pseudocode. 



for = 1 to 9
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end
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A.8.  Linear Combinations and Logistic Functions 
 The 12 or 11 measurements from MNB structures 1 and 2, respectively, are next combined 
linearly to generate an AD value: 

AD =  Tw  m .  

Finally the AD value is passed through the logistic function to generate the final algorithm output, L(AD): 

L AD =
1

1+ e AD( ) .a b⋅ +  

The weights and logistic parameters used in these steps are given in Table A-I. 
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Figure 1.  High-level block diagram of the objective estimation approach.
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Figure 2.  Hertz to Bark transformation.
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Figure 3.  Distance measure invariance example 1. 
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Figure 4.  Distance measure invariance example 2. 



 

 
Figure 5.  A time measuring normalizing block (TMNB). 
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Figure 6.  A frequency measuring normalizing block (FMNB).
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Figure 7.  Generalized measuring normalizing block (MNB) structure. 
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Figure 8.  MNB structure 1. 
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Figure 9.  MNB structure 2.
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TABLE A-I 
LINEAR COMBINATION WEIGHTS AND LOGISTIC PARAMETERS FOR MNB STRUCTURES 1 

AND 2 
 

 Structure 1 Structure 2 
w(1)  0.0034  0.0000 
w(2) -0.0650 -0.0837 
w(3) -0.1304 -0.1199 
w(4)  0.1352  0.1260 
w(5)  0.5931  0.1660 
w(6)  0.2040  0.6387 
w(7)  0.5577  0.2195 
w(8)  0.1008  0.0122 
w(9)  0.0627  1.5544 
w(10)  0.0052  0.0954 
w(11)  0.0107  0.1720 
w(12)  1.1037  

a  1.0000  1.0000 
b -4.6877 -3.0613 

 
 


