
A Bottom-Up Algorithm for Estimating Time-Varying Delays in Coded Speech
Stephen D. Voran

Institute for Telecommunication Sciences
325 Broadway

Boulder, Colorado 80305, USA
 svoran@its.bldrdoc.gov 303-497-3839 Voice 303-497-5969 Fax

ABSTRACT
In packetized speech transmission, end-to-end delay can

vary, even over short timescales. Estimating the resulting
speech delay histories is critical to diagnostic and quality
estimation efforts. We present a new bottom-up algorithm
for estimating time-varying speech delays. The bottom-up
approach is well-suited to real-time implementation. The
algorithm works with very low-rate codecs as well as the
higher-rate codecs that are more common in VoIP
applications. We describe the new algorithm in some detail
and provide descriptions of the databases and techniques
used to develop and test the new algorithm.

Keywords: speech delay estimation, speech quality
estimation, temporal discontinuity, VoIP

1. INTRODUCTION
The packetized transmission of telephone bandwidth

speech is gaining prominence in the telecommunications
industry. A significant driver of this trend is Voice over
Internet Protocol (VoIP) services. In circuit-switched speech
transmission, end-to-end transmission delay is nearly always
constant, but in packetized speech transmission, end-to-end
delay can vary, even over short timescales. The mechanisms
that cause this delay variation are well-documented. See [1]
and [2] for examples.

There are two main motivations for estimating the delay
history of a packetized speech transmission. First, an
estimated delay history is required before one can make
meaningful input-output based objective estimates of
perceived speech quality. (Output-only based estimates of
speech quality can enjoy great immunity to delay issues.)
Second, knowing the delay history can help to guide the
design and optimization of the entire speech transmission
system, including the jitter buffer playout algorithm at the
receiver.

The delay estimation problem can be described as
follows. Given a pair of vectors of speech samples x (system
input) and y (system output), for each sample in y find the
offset (in samples) to the corresponding sample in x. In most
practical applications the result is a partition of y into
multiple intervals of samples with a single offset value for
each interval. The sample rate associated with x and y can

be used to convert the offsets in samples to relative delays.
The timing relationship between the recording of x and the
recording of y can be used to convert these relative delays to
absolute delays.

One solution is described in [3] and was first mentioned
in [4]. This can be described as a top-down solution since it
starts with a single estimate for all of the samples in y and
then uses a set of rules to recursively subdivide y into smaller
and smaller segments, with the goal of terminating when
each of the final segments has a single constant delay. In
this paper we propose a bottom-up solution. Here a fixed
length delay-estimation window is swept across y, resulting
in a series of delay estimates at regular intervals across y.
These estimates are then processed by a median filter which
again uses a fixed window that is swept across y. When a
real-time implementation is desired, data-flow issues make a
bottom-up solution more practical than a top-down solution.

We are aware of emerging systems that employ
packetized transmission of very low-rate encoded speech.
One scenario involves Internet-based interconnection of
land-mobile radio systems that use very low-rate speech
codecs. This can result in received speech that has both
significant codec distortions and non-constant delay.
Reference [5] indicates that the solution given in [4] (at least
as realized in conjunction with the quality estimation
algorithm given in [5]) has not been verified as applicable to
this scenario. The algorithm described in this paper was
developed to provide reliable delay estimates for very low-
rate speech codecs, as well as the more typical VoIP
scenario.

The algorithm described here follows from the delay
estimation technique that is described in [6] and [7]. In
particular, it first uses low resolution techniques to search
wide ranges of possible delays, then uses high resolution
techniques to search narrower ranges of possible delays, and
finally uses a set of rules to combine these results only when
advantageous. Matching low resolution with wide searches
and high resolution with narrow searches is an inherently
efficient approach. The three stage approach also allows for
the fact that some systems have a well-defined delay down to
the speech sample level, while others simply do not.

In the next section we describe the speech database that
was used to develop the algorithm. Then we address the
issue of how to realistically measure the performance of a
delay estimation algorithm. Next we provide a description

of the new delay estimation algorithm, followed by
assessments of its performance.

2. DEVELOPMENT DATABASE
The development and testing of a delay estimation

algorithm requires a database of input and output speech files
that cover the range of speech, codecs, and network
conditions of interest. This database must be accompanied
by a corresponding database that holds the true delay history
for each of the output speech files. One could build a speech
file database by recording real VoIP traffic. This would
ensure that the data would be realistic, but there is no way to
build a corresponding set of true delay histories. Even if the
network were probed and packet delays were measured,
there would be no way to account for the operation of the
jitter buffer playout algorithm. In addition, one might
question whether or not the recordings contain traffic and
network conditions that are “typical.”

We chose to generate a database using software and
hardware tools that allow us to have complete control and
knowledge of the true delay history. We start with 72 speech
files; 12 files from each of 3 female and 3 male talkers. Each
file contains two sentences from the Harvard Phonetically
Balanced Sentence Lists [8], is about 7 seconds in length,
and is normalized to 26 dB below overload. No intermediate
reference system (IRS) [9] filtering is used.

We then pass the 72 files through 7 different speech
codecs: 64 kbps G.711 PCM [10], 8 kbps G.729 CS-ACELP
[11], 5.3 kbps G.723.1 ACELP [12], 4.6 kbps TETRA
ACELP [13], 4.4 kbps IMBE [14], and 2.4 and 1.2 kbps
MELP [15]. The IMBE codec is implemented in hardware
and uses analog speech input and output. The other six
codecs are implemented in software.

The final step is the addition of simulated network
impairments to the codec output speech files. One might
attempt to use models of network behavior to drive this step.
This would require some assumptions to arrive at a relevant
set of model parameters. Further, the mapping from network
impairments to impairments in coded speech is a function of
multiple system parameters including codec type, packet
size, packet loss concealment technique, and jitter buffer
playout algorithm. The calculation of a true delay history
through all these factors would be very complicated. Rather
than make a large number of approximations and simplifying
assumptions to model networks and then map network
impairment parameters to speech impairments, we simply
apply impairments directly to the speech signal.

 The impairments are applied directly to the output
speech signal at four different levels: zero, two, four, or eight
impairments per speech file. The intent is to simulate a
range of network conditions from perfect to very bad.

The locations of the impairments are randomly chosen
for each output file. Thus they may appear in segments of
active speech or in silences. The duration of each
impairment is randomly chosen to be either 10, 20, or 40 ms,

consistent with the values one might typically expect to
observe in a packetized speech transmission system. Finally,
the type of impairment is randomly chosen from three
options: loss, pause, and jump.

For the loss impairment, T =10, 20, or 40 ms of speech
is muted, and the Reverse Ordered Replicated Pitch Period
(RORPP) packet loss concealment (PLC) algorithm given in
[16] is used to form an approximate replacement for the
deleted speech. This simulates the situation where one or
more packets are lost, concealment is applied, but there is no
interruption of the time axis, and no change in the end-to-end
delay.

In the pause impairment, T =10, 20, or 40 ms of silence
is inserted (just as if a tape player pause button were
depressed for only T ms), and the RORPP PLC algorithm is
used to extrapolate the speech before the silence in order to
cover the silence. This simulates jitter buffer underflow with
PLC applied to hide the underflow. The time axis is dilated
by T ms, and the end-to-end delay increases by T ms.

The jump impairment requires that T =10, 20, or 40 ms
of speech be deleted and the time axis is contracted
accordingly. Some smoothing is applied at the discontinuity
to minimize audible clicks. This simulates jitter buffer
overflow. Since the time axis is contracted by T ms, the end-
to-end delay decreases by T ms.

 The structure of the development database is
summarized in the first 3 columns of Table 1. The database
contains a total of 28 conditions (7 codecs × 4 impairment
levels/codec), 2016 output speech files (28 conditions × 72
output speech files/condition) and about 4 hours (2016
output speech files × 7 seconds/output speech file) of output
speech.

3. COST FUNCTIONS
To develop and test a delay estimation algorithm, one

must employ some measure of merit. A measure based
solely on the delay estimation error (estimated delay – true
delay) may seem to be the obvious initial choice. In our
application such measures are not sufficient because they
ignore the fundamental uncertainty in the true delay. They
also ignore the closely related issue of the variable sensitivity
of objective speech quality estimation algorithms to delay
estimation errors for different codecs. Figures 1 and 2
provide an example of these two issues and a discussion
follows.

The solid lines in the Figures 1 and 2 show estimated
speech quality vs. input-output shift in samples for speech
that has been passed through a G.711 PCM codec and a 2.4
kbps MELP codec (Codecs 1 and 6 respectively). The
speech quality estimates are generated by the MNB speech
quality estimation algorithm [6]. A shift of 0 samples
provides the highest estimated speech quality for codec 1 and
speech quality estimates drop fairly dramatically in that
neighborhood. (Secondary peaks appear near shifts of ±60
samples. These shifts correspond to an input-output

misalignment of one average pitch period.) For codec 6, the
situation is less clear. There is a range of about 40 samples in
the neighborhood of shift=286 that provide approximately
equivalent quality estimates. Immediately outside this
interval, the estimates drop off slowly compared to codec 1.

The dashed lines in these two figures show simple,
smooth, symmetric fits to this data. The data in these figures
is slightly asymmetric overall, but the neighborhoods of the
peaks are very close to symmetric. In light of this, it seems
most appropriate to require the fits to be symmetric, and we
fit for a good match near the peak (the most important area
for this application) and accept some fitting error on the tails
(which are much less important to this work). It is
advantageous for the fits to decrease monotonically as one
moves away from a peak. Thus the fits do not attempt to
model the minor secondary peaks in the data.

The centers of the fits provide a definition of the delay
of the codec. We invert and center these fits to form the
corresponding cost functions as shown in Figure 3. These
cost functions tell approximately how much reduction in
estimated speech quality we can expect when we use
estimated delays that differ from the true delays as defined
above. These approximations are slightly lower than the
data in some areas and slightly higher than the data in other
areas, but they are close enough to provide the information
that we need.

For codec 1 the true delay τ is 0 samples and the cost
function ()1 τ̂ τ−c provides the cost (in terms of reduction of
estimated speech quality) associated with using the estimated
delay τ̂ in place of the true delay τ. Similarly, for codec 6
the true delay τ is 286 samples and the cost function

()6 τ̂ τ−c provides the cost of using τ̂ in place of τ. Note
that for codec 6 when the estimated delay is close to the true
delay, the cost is zero. This is consistent with the uncertain
nature of the true delay. We can say that codec 1 has little
delay uncertainty and high delay sensitivity in the
neighborhood of the true delay. Codec 6 has greater delay
uncertainty, and lower delay sensitivity in the neighborhood
of the true delay.

For each of the 7 codecs in the development database we
use the method outlined above to find a true delay and a cost
function ()ˆic τ τ− , i=1 to 7. Cost can be a weak function of
talker and speech material and our technique generates cost
functions that have been averaged across these variables.
The MNB output is a logistic function applied to an auditory
distance (L(AD)). This L(AD) speech quality scale ranges
from zero to one. Thus ()ˆ 0.01ic τ τ− = indicates that for
codec i, using the delay τ̂ instead of the true delay τ will
cause a drop in estimated speech quality that is 1% of the full
quality scale. More generally, we can interpret ()ˆic τ τ− as
the fraction of the full quality scale that estimated quality
will drop when the delay τ̂ is used instead of the true delay
τ.

These cost functions are used to assess the merit of
estimated delay histories. Assume that the kth file pair has
been passed through the ith codec and is then further
impaired as described in Section 2. We can calculate the
true delay history ()k jτ for this file by combining the true
codec delay with the known random locations and durations
of the impairments. An estimated delay history ()ˆk jτ
results in an average cost k∆ of

 () ()()1 τ̂ τ

∈

∆ = −∑k i k kN
j A

c j j , (1)

where A is the set of all active speech samples in the system
output speech vector y and N is the number of samples in A.
We then average this result over all of the M speech files in a
given condition to find the per-condition average cost

 1

1=

∆ = ∆∑
M

c kM
k

. (2)

4. ALGORITHM FOR ESTIMATING
VARIABLE DELAYS

A fundamental trade-off permeates time delay
estimation: longer delay estimation windows generally
provide more robust delay estimates, but longer windows
also make it more difficult to respond quickly to changes in
delay. Shorter delay estimation windows generally provide
less robust delay estimates, but shorter windows also make it
easier to respond quickly to changes in delay. A second
trade-off involves implementations of cross-correlations:
compared to direct-form cross correlations, FFT-based cross
correlations can be more efficient, but they also require
longer windows in order to robustly search a given range of
delays. An additional trade-off is often seen: the selection
of an algorithm parameter value (e.g., processing window
size, correlation threshold) is often a compromise between a
value that favors the higher rate codecs and a value that
favors the lower rate codecs. The specific values we report
here are the result of optimization over the 28 conditions in
the development database.

Developing an effective, robust, efficient delay
estimation algorithm requires successful resolution of these
trade-offs along with many others. To insure broad
applicability, we monitor the average cost of delay
estimation error for each of the 28 conditions throughout the
algorithm development process.

Figure 4 provides a summary of the core components of
the new algorithm for estimating time-varying delays in
coded speech. A single coarse average delay is first
calculated for the entire signal vector y using smoothed
speech envelopes. A delay tracking stage then uses higher
resolution envelopes and seeks to follow variations about the
average delay value. Median filtering is then used to improve
the accuracy of these results, and a refinement stage refines

each delay estimate where possible. The final output is a
vector containing delay estimates spaced at 40 ms intervals
across the entire duration of the output speech signal y. Each
estimate has full resolution, i.e., it is to the nearest sample.

4.1 Level Normalization

The two input vectors to the algorithm described in
Figure 4 contain samples of system input speech and system
output speech. The sample rate is 8000 samples/second. The
level normalization stages normalize these vectors of speech
samples to an active speech level of 26 dB below overload
using a technique motivated by that given in [17]. The
resulting level-normalized system input and output speech
vectors are x and y respectively.

4.2 Coarse Average Delay Estimation

Next, a coarse estimate of average delay is calculated
from speech envelopes. To create the envelopes, x and y are
rectified and low pass filtered. The filter is an order 400 FIR
low-pass filter with 48 dB of attenuation at 62.5 Hz. This
filter largely eliminates pitch information, leaving a very
smooth temporal speech amplitude envelope. The resulting
signals are then sub-sampled by a factor of 64, resulting in
speech envelopes sampled at 125 samples/second. These
envelopes are then passed to the coarse average delay
estimation stage which applies an FFT-based cross
correlation to estimate the average delay τ0 between the two
speech envelopes. The resolution of this delay is ±64
samples in the original (8000 samples/second) speech
domain. The corresponding peak correlation value is ρ0.

4.3 Speech Activity Detection

The speech activity detection stage classifies each
sample of y as either active speech or inactive so that
samples in each class can be treated appropriately. To make
this classification, the speech envelope of y described above
is compared with a fixed threshold of 56. Regions above this
threshold are classified as active and those regions are then
extended 100 ms forward and backward in time to create the
final activity classification.

4.4 Delay Tracking

The delay tracking stage estimates the actual delay of
the samples in y as that delay varies about the average delay
τ0. This stage uses speech envelopes with 250 Hz
bandwidths. To create the envelopes, x and y are rectified
and low pass filtered. The filter is an order 128 FIR low-pass
filter with 51 dB of attenuation at 250 Hz. This filter
preserves much of the pitch information in the speech signal,
thus allowing for its potential use in delay estimation. The
resulting signals are then sub-sampled by a factor of 16,
resulting in speech envelopes sampled at 500
samples/second. These envelopes are then passed to the
delay tracking stage. This stage applies a direct-form (non
FFT-based) cross correlation algorithm that uses 150 ms
segments of the envelope of y. This window is swept across

the envelope of y in 40 ms steps. This step size was selected
as a good compromise between algorithm speed and
algorithm accuracy. The cross-correlation is calculated
when at least 10% of the samples in the window are
classified as active. The corresponding search window in the
envelope of x is centered on τ0 (the delay value produced by
the coarse average delay estimation stage) and extends 200
ms to either side of τ0, allowing for the tracking of delay
deviations as great as 200 ms. The result of the delay
tracking stage is a vector τ1 of delay estimates spaced at 40
ms intervals in the active portions of the speech signal. Each
estimate has a resolution of ±16 samples in the original
domain.

The median filtering stage sweeps a 500 ms window
across τ1. It calculates the median value of all valid delay
estimates in the window that have a correlation of at least
0.8. This thresholding helps to minimize the effect that
lower quality delay estimates can have on the filter output.
This window is advanced in 40 ms steps. The median filter
tends to reject small groups of markedly different delay
estimates which are often erroneous. It also tends to
generate a more piecewise-constant delay estimation history
and this is consistent with the piecewise-constant nature of
the true delay histories in packet speech transmission
systems. The result of the median filtering stage is a vector
τ2 containing delay estimates spaced at 40 ms intervals.
These estimates are available only in active areas of speech
where at least some of the correlations exceed 0.8. Each
estimate has a resolution of ±16 samples in the original
domain.

4.5 Refinement of Delay Estimates

The delay refinement stage seeks to refine the delay
estimates available in τ2 to the sample level where possible.
This stage uses the absolute values of the samples in x and y
and applies a correlation operation to each segment of
constant delay in τ2 that contains at least 10 ms of active
speech. The use of the absolute value function makes the
algorithm completely robust to 180 degree phase changes in
the speech signals. The correlation operation searches a
range of ±72 samples about the delay given in τ2. When a
segment is at least 200 ms in length, an FFT-based cross
correlation is used. Otherwise a direct-form correlation is
used. If the segment is one second in length or greater, the
refinement is very likely to be reliable and it is used without
further testing. For shorter length segments, only those with
a correlation of 0.7 or greater are retained. The result of the
delay refinement stage is a vector τ3 containing delay
estimates spaced at 40 ms intervals. Valid estimates are
available consistent with the rules described above, and each
estimate has full resolution, i.e., it is to the nearest sample in
the original (8000 samples/second) domain.

4.6 Short Segment Correction
The next stage seeks to correct shorter segments of

constant delay that may be erroneous. The rules of this stage
are driven by the knowledge that the true delay history is
piecewise constant. Three different types of short segments
are treated and examples of each are shown in Figure 5.

A “pulse” is a segment with estimated delay τp that has
two valid immediate neighbors (left and right) that share a
common delay estimate τn ≠ τp. Figure 5 shows a 200 ms
pulse where τp=30 ms and τn=40 ms. When a pulse is 280
ms or shorter it is likely that the estimated delay change from
τn to τp and back to τn again is erroneous, so the pulse and its
two neighbors are replaced with a single segment with a
constant estimated delay of τn.

A “step” is a segment with estimated delay τs that has
two valid immediate neighbors (left and right) with different
delay estimates τl ≠ τr, both of which differ from τs. Figure 5
shows a step with 80 ms duration where τl=40 ms, τs=70 ms,
and τr=80 ms. When a step is 80 ms or shorter it is likely
that the true delay actually changes directly from τl to τr
without passing through τs. To test this, the rectified speech
in y corresponding to the step segment is correlated with the
corresponding rectified speech in x using delays τl ,τr , and τs.
If the delay τl produces the highest correlation, then the step
segment is combined with its left neighbor and the entire
new segment is assigned a delay estimate of τl. If the delay τr
produces the highest correlation, then the step segment is
combined with its right neighbor and the entire new segment
is assigned a delay estimate of τr. If the delay τs produces the
highest correlation, then the step segment is left unchanged.

A “tail” is a segment with an estimated delay τt that has
only one valid immediate neighbor. This neighbor has a
delay estimate of τn ≠ τt. This situation most often happens
at the start or end of an active speech interval. Figure 5
shows a tail with duration 160 ms at the end of an active
speech interval where τn =80 ms and τt =75 ms. When a tail
segment is 160 ms or shorter it is likely to be erroneous so it
is combined with its valid neighbor and the entire new
segment is assigned a delay estimate of τn.

The result of the short segment correction stage is a
vector τ4 containing delay estimates spaced at 40 ms
intervals. Valid estimates are available consistent with the
rules described above and each estimate has full resolution in
the original domain.

4.7 Extension of Valid Estimates

The vector τ4 contains delay estimates that cover almost
all active portions of the speech signal, with the possible
exception of locations where severe localized impairments
have corrupted the speech signal in y to the extent that delay
estimation is simply not possible. As a practical matter, it is
sometimes desirable to have a delay estimate for every single
sample in the speech vector y, including samples in silent
intervals where there is no speech signal upon which to base
an estimate. The final stage of the algorithm extends valid
delay estimates to cover segments where no valid estimate

has yet been calculated. When such a segment has two
neighbors (left and right) with valid delay estimates, then
that segment is divided into a left half and a right half. The
valid delay estimate for the left neighboring segment is
extended to cover the left half. The valid delay estimate for
the right neighboring segment is extended to cover the right
half. This stage generates the final output of the variable
delay estimation algorithm. This output is a vector τv
containing delay estimates spaced at 40 ms intervals across
the entire duration of the output speech signal y. Each
estimate has full resolution, i.e., it is to the nearest sample.

4.8 Real-Time Implementation

In a real-time implementation x and y would contain the
most recent block of samples from continuing system input
and system output speech streams. Once the current delay
has been established, the coarse average delay estimation
stage is not needed; the delay tracking stage can center its
delay search window using previous outputs of the
algorithm. The other core components of the algorithm
would remain largely unchanged.

5. ALGORITHM FOR ESTIMATING FIXED
DELAYS

Since longer delay estimation windows provide more
robust delay estimates, it is advantageous to use the longest
appropriate window. When it is known a priori that there is
a single fixed time delay between the speech samples in x
and y, we use a specialized algorithm. This algorithm
performs the level normalization described in 4.1 above, and
then the coarse average delay estimation described in 4.2
above. This stage results in a delay estimate with a
resolution of ±64 samples.

The next stage performs an FFT-based cross correlation
on rectified versions of x and y to create the correlation
waveform ρ(τ). In some cases the peak of this waveform
provides useful information, but in other cases, ρ(τ) must be
smoothed before a useful peak can be extracted. In the
development of this stage we consider ρ(τ) and 3 smoothed
versions of ρ(τ) with nominal bandwidths of 125, 62.5, and
31.25 Hz. We consider how the peak value of ρ(τ) might be
used to select between these four versions in an optimal way.

In the following, only delays that are within 128 samples
of τ0 (the coarse average delay estimate) are considered. If
the peak value in ρ(τ) is 0.73 or greater, that peak location
provides the final delay estimate. Otherwise, the system that
produced y is not one that preserves waveforms and a more
robust peak finding algorithm is desirable. If the peak
correlation value in ρ(τ) is in the interval [0.67, 0.73) then
ρ(τ) is smoothed (using an order 192 FIR low-pass filter with
6 dB of attenuation at 62.5 Hz and 40 dB of attenuation at
125 Hz) and the location of the resulting peak provides the
final delay estimate. If the peak correlation value in ρ(τ) is
less than 0.67, then ρ(τ) is smoothed more dramatically
(using an order 384 FIR low-pass filter with 6 dB of

attenuation at 31.25 Hz and 40 dB of attenuation at 62.5 Hz)
and the location of the resulting peak provides the final delay
estimate. This stage results in a single scalar delay estimate
τf. The resolution of τf depends on the rules described above,
and it can be as high as full resolution.

6. COMPLETE ALGORITHM
If a priori information regarding the variable or fixed

nature of the delay between x and y is available, one can
select and apply the variable delay estimation of section 4 or
the fixed delay estimation algorithm of section 5
appropriately. In many situations such information is
available, but in others it is not. Several options are
available when it is not known if the delay is fixed or
variable.

Since fixed delay is a special case of variable delay, one
can simply apply the variable delay estimation algorithm.
But since the variable delay estimation algorithm does not
maximize the time delay estimation window, the results may
not always be as robust as desired, especially for lower rate
codecs. The development database includes 7 fixed delay
conditions. Conditions 1, 5, 9, and 13 are treated equally
well by the variable and the fixed delay estimation
algorithms. Conditions 17, 21, and 25, however, show about
0.004 higher average cost when treated with the variable
delay estimation algorithm rather than the fixed delay
estimation algorithm. Note that these three conditions are
lower rate codecs that do not tend to preserve waveforms as
well as the higher rate codecs.

A second option would be to apply both algorithms and
then apply additional tests to determine which is most
reasonable. One could apply an objective estimator of
speech quality and select the delay estimation result that
gives the highest estimated quality.

We simplify and augment this second option to integrate
the two algorithms into a single complete algorithm. The
complete algorithm is summarized in Figure 6. When no
prior information is available, the complete algorithm
switches appropriately between the fixed and variable delay
estimation algorithms. This switching is driven by speech
envelope correlations and log spectral error (LSE)
measurements.

When the average coarse delay estimation stage
produces a correlation value ρ0 that is less than 0.96, there is
a very high probability that the true delay is variable and the
complete algorithm pursues the variable delay path only.
When this correlation value is 0.96 or greater, the true delay
may be fixed or variable, and both the fixed and variable
delay estimation paths are pursued.

The resulting fixed and variable delay estimates are used
to create two delay-compensated versions of x called xf and
xv respectively. If the test () ()LSE , < LSE ,v fx y x y is

satisfied, then the variable delay estimate is selected,
otherwise the fixed delay estimate is selected. Here LSE

denotes a conventional log spectral error that uses a 16 ms
periodic Hanning window. LSE windows are adjacent, but
are not overlapped.

7. ALGORITHM PERFORMANCE
The performance of the new delay estimation algorithm

on the development data is summarized in Table 1 using the
per-condition average cost values defined in (2). Since the
algorithm does not perfectly estimate every change in delay,
the average cost associated with the delay estimates increases
with the number of impairments. In other words, as we add
additional changes in delay and additional packet losses, it
gets harder to estimate the delay properly. The highest
average cost found on the development data is 0.0265,
corresponding to an average drop of 2.65% of the full quality
scale. The average cost of error across all 28 conditions in
the development database is 0.0101, corresponding to an
average drop of 1.01% of the full quality scale. If a fixed
estimate of delay is used for each speech file, the average
cost of error across all 28 conditions in the development
database is 0.1074, and this is about 10 times higher than
what is achieved with the new algorithm.

The development database is used throughout the
development and optimization of the algorithm so one might
expect that it represents a best-case scenario. To test the
generality of this algorithm we employ a testing database.
This database starts with 128 speech files, 16 files from each
of 4 female and 4 male talkers. None of these talkers was
used in the development database. For each talker, 8 files
are filtered with the IRS transmit filter [9] and the other 8 are
filtered with a bandpass filter with approximately flat
passband extending from 200 to 3400 Hz. The use of both
IRS and flat filtered speech gives the testing database
additional breadth of applicability. Each file contains two
sentences from the Harvard Phonetically Balanced Sentence
Lists [8], is about 7.2 seconds in length, and is normalized to
26 dB below overload.

We then pass the 128 files through twelve codecs that
are summarized in column 1 of Table 2. These include the
seven codecs used in the development database and five
additional codecs. The five additional codecs are 64 kbps
G.711 PCM [10], 32 kbps G.726 ADPCM [18], 16 kbps
G.728 LD-CELP [19], 8 kbps IS-54 VSELP [20], and 2.45
kbps AMBE which is a “half-rate version” of [14]. All five
of these are hardware implementations, and all but the
AMBE codec use analog speech input and output. Analog
interfaces can introduce additional impairments beyond those
of the digital speech codec, thus adding additional challenges
to the delay estimation problem. By including four codecs
with analog interfaces, we create a more challenging and
more realistic testing database.

The testing database uses a new set of random
impairment locations. The impairment types are again loss,
pause and jump, but are selected according to a new random
sequence. The impairment durations are again 10, 20, or 40

ms, but are selected according to a new random sequence.
(We consider these values to be most relevant in light of
typical VoIP system design. However, they are also the
values used in the development database. Thus, in order to
most fully test the robustness of the new algorithm, we create
a second version of the testing database. In this second
version, impairment durations are randomly drawn from the
uniform distribution on the interval [1,400] samples, which
corresponds to approximately 0 to 50 ms. When 8
impairments are used in a speech file, 50 ms impairment
durations can lead to a total delay range of up to 8 × 50 =
400 ms. This is a good match to the delay tracking stage
which searches 200 ms on either side of τ0, for a total search
range of 400 ms.)

The testing database contains over 12 hours of speech in
6144 output speech files. In order to evaluate the algorithm
performance on the testing database, we first generate per-
codec cost functions ()ˆic τ τ− , i=1 to 12.

Table 2 contains per-condition average cost values
defined in (2) for the testing database and these are shown in
Figure 7 as well. As before, the average cost associated with
the estimated delay history rises for each codec as the
number of impairments is increased. The highest average
cost is 0.0214. This worst-case situation is found when 8
impairments are added to each 7.2 second file of 4.4 kbps
IMBE (with analog input and output) coded speech. The
average cost of error across all 48 conditions in the testing
database is 0.0079, corresponding to an average drop of only
0.8% of the full MNB L(AD) speech quality estimation
scale. (The results for the second testing database with
impairment durations uniformly distributed on (0,50] ms are
very similar. The average cost of error across all 48
conditions in the second testing database is 0.0081.)

The results for the three databases are rather similar,
indicating that the new delay estimation algorithm is not
overly specific to the development database, and that the
algorithm is applicable to a very wide range of telephone-
bandwidth speech codecs. We consider these results to be
satisfactory. The average (0.8%) and even the worst-case
(2.1%) perturbations in estimated speech quality for the
testing data seem acceptable in light of the fact that the most
carefully controlled subjective speech quality tests may
attain 95% confidence intervals on the order of ±0.1 units of
a 4 unit scale. In other words, experimental results may
differ from the underlying true quality value by ±2.5% of the
full quality scale. When one considers the additional error
inherent in objectively estimating speech quality, it seems
likely that the errors attributable to this delay estimation
algorithm will make up only a very small portion of the
typical total error in objective speech quality estimates.

Comparison of results for codecs 1 (G.711 PCM
software implementation) and 8 (G.711 hardware
implementation with analog speech input and output)
demonstrates that the addition of analog interfaces does
make the variable delay estimation problem more
challenging. For the three conditions with varying delay,

codec 8 shows a modest increase in average cost relative to
codec 1.

 Figure 8 provides a worse-than-average example of a
true delay history and the corresponding estimated delay
history for condition 48 of the testing database. Condition 48
is a challenging one; it uses the 2.45 kbps AMBE codec with
8 added impairments per speech file. One sentence is
shown, and four delay-change impairments are visible in the
true delay history. The estimated delay history generally
tracks the true delay history but deviations are clearly
visible. The average cost associated with these deviations is

k∆ =0.0351, which is more than twice the average for this
condition (0.0154) given in Table 2. Thus our description of
this example as a “worse-than-average” example.

The present implementation of the new delay estimation
algorithm is via unoptimized Matlab® code. On average,
this implementation of the complete algorithm shown in
Figure 6 requires a processing time that is only about 0.18 ×
real time on a PC using a 3.2 GHz Pentium® 4 processor.
That is, on average it takes about 1.26 seconds for this
implementation to process a pair of 7 second speech files. If
it is known a priori that the delay is fixed, the algorithm
requires about 0.07 × real time. If it is known a priori that
the delay is variable, the algorithm requires about 0.16 × real
time. The LSE calculation runs in about 0.01 × real time.

8. CONCLUSION
We have described the development and testing of a

bottom-up algorithm for estimating time-varying delays in
coded speech. Consistent with the goal, the algorithm is
applicable to lower-rate codecs that are used in land mobile
radio communication systems as well as to typical VoIP
codecs. This breadth of applicability is an improvement over
the current state of the art. Because the algorithm takes a
bottom-up approach, it is suitable for real time
implementation and we consider this to be an additional
contribution.

Measuring delay estimation error in samples holds little
relevance when such a wide range of codecs is considered.
Thus our development and testing is carried out in the
context of cost functions. These functions relate errors in
delay estimation to reductions in objective estimates of
perceived speech quality. To maximize relevancy to actual
testing environments, our testing includes 12 codecs with bit
rates ranging from 1.2 to 64 kbps and 5 of these codecs use
analog speech inputs and outputs. In addition, we employ a
wide range of simulated network conditions and a
standardized packet loss concealment algorithm.

 When there are no variations in delay over the course
of a 7 second speech file (simulating good network
conditions), we find that delay estimation error from the new
algorithm will reduce objective speech quality estimates by
as little as zero and as much as 0.5% of the full quality scale,
depending on the speech codec. When 8 impairments are
added to each file (simulating very bad network conditions),

this range becomes 1.1% to 2.0%. The average across the
entire testing database is a drop of 0.8% of the full quality
scale. We argue that reductions like these are not likely to be
significant in light of the other sources of error in the
objective estimation of perceived speech quality.

REFERENCES
[1] M. Hassan and A. Nayandoro, “Internet telephony:

services, technical challenges, and products,” IEEE
Communications Magazine, vol. 38, no. 4, pp. 96-103,
Apr. 2000.

[2] S. Voran, “Perception of Temporal Discontinuity
Impairments in Coded Speech - A Proposal for
Objective Estimators and Some Subjective Test
Results,” Proceedings of the 2nd International
Conference on Measurement of Speech and Audio
Quality in Networks, Prague, Czech Republic, May
2003.

[3] J.G. Beerends, A.W. Rix, M.P. Hollier, and A.P
Hekstra, “Perceptual evaluation of speech quality
(PESQ) The new ITU standard for end-to-end speech
quality assessment, Part I – Time-Delay Compensation,”
J. Audio Eng. Soc., vol. 50, no. 10, pp. 755-764, Oct.
2002.

[4] A.W. Rix and M.P. Hollier, “The perceptual analysis
measurement system for robust end-to-end speech
quality assessment,” Proc. 2000 IEEE International
Conference on Acoustics, Speech and Signal
Processing, Istanbul, June 2000.

[5] ITU-T Recommendation P.862, “Perceptual evaluation
of speech quality (PESQ), an objective method for end-
to-end speech quality assessment of narrowband
telephone networks and speech codecs,” Geneva, 2001.

[6] S. Voran, "Objective Estimation of Perceived Speech
Quality, Part I: Development of the Measuring
Normalizing Block Technique," IEEE Transactions on
Speech and Audio Processing, July 1999.

[7] ITU-T Recommendation P.931, “Multimedia
communications delay, synchronization and frame rate
measurement,” Geneva, 1998.

[8] IEEE Recommended practice for speech quality
measurements, IEEE Trans. Audio and Electroacoustics,
vol. AU-17, no. 3, pp. 225-246, Sep. 1969.

[9] ITU-T Recommendation P.48, “Specification for an
Intermediate Reference System,” Geneva, 1988

[10] ITU-T Recommendation G.711, “Pulse code modulation
(PCM) of voice frequencies,” Geneva, 1988.

[11] ITU-T Recommendation G.729, “Coding of speech at 8
kbit/s using conjugate-structure algebraic-code-excited
linear-prediction (CS-ACELP),” Geneva, 1996.

[12] ITU-T Recommendation G.723.1, “Dual rate speech
coder for multimedia communications transmitting at
5.3 and 6.3 kbit/s,” Geneva, 1996.

[13] ETSI European Telecommunication Standard 300 395-
2, “Radio Equipment and Systems (RES); Trans-
European Trunked Radio (TETRA); Speech codec for
full-rate traffic channel; Part 2: TETRA codec,” Sophia
Antipolis – Valbonne, France, 1996.

[14] ANSI/TIA-102.BABA, “APCO Project 25 Vocoder
Description,” 1998.

[15] T. Wang, K. Koishida, V. Cuperman, A. Gersho, J.
Collura, “A 1200/2400 bps coding suite based on
MELP,” Proceedings of the 2002 IEEE Speech Coding
Workshop, Ibaraki, Japan, October, 2002.

[16] ITU-T Recommendation G.711 Appendix I, “A high
quality low-complexity algorithm for packet loss
concealment with G.711,” Geneva, 1999.

[17] ITU-T Recommendation P.56, “Objective measurement
of active speech level,” Geneva, 1993.

[18] ITU-T Recommendation G.726, “40, 32, 24, 16 kbit/s
adaptive differential pulse code modulation (ADPCM),”
Geneva, 1990.

[19] ITU-T Recommendation G.728, “Coding of speech at
16 kbit/s using low-delay code excited linear
prediction,” Geneva, 1992.

[20] I.A. Gerson and M.A. Jasiuk, “Vector sum excited
linear prediction (VSELP) speech coding at 8 kbps,”
Proc. 1990 IEEE International Conference on Acoustics,
Speech and Signal Processing, Albuquerque, April
1990.

Note:
Certain commercial equipment and materials are identified in
this paper to specify adequately the technical aspects of the
reported results. In no case does such identification imply
recommendations or endorsement by the National
Telecommunications and Information Administration, nor
does it imply that the material or equipment identified is the
best available for this purpose.

Condition
Number

Codec Number and Description Impairments
per File

Average Cost, c∆ (fraction of
quality scale)

1 1 - G.711 PCM, 64 kbps 0 0.0000
2 " 2 0.0034
3 " 4 0.0068
4 " 8 0.0137
5 2 - G.729 CS-ACELP, 8 kbps 0 0.0019
6 " 2 0.0072
7 " 4 0.0117
8 " 8 0.0173
9 3 - G.723.1 ACELP, 5.3 kbps 0 0.0001

10 " 2 0.0020
11 " 4 0.0042
12 " 8 0.0092
13 4 - TETRA ACELP, 4.6 kbps 0 0.0001
14 " 2 0.0027
15 " 4 0.0063
16 " 8 0.0109
17 5 - IMBE, 4.4 kbps, w/ analog I/0 0 0.0043
18 " 2 0.0119
19 " 4 0.0144
20 " 8 0.0196
21 6 - MELP, 2.4 kbps 0 0.0097
22 " 2 0.0170
23 " 4 0.0213
24 " 8 0.0265
25 7 - MELP, 1.2 kbps 0 0.0064
26 " 2 0.0134
27 " 4 0.0179
28 " 8 0.0218

Condition
Number

Codec Number and Description Impairments
per File

Average Cost, c∆ (fraction
of full quality scale)

1 1 - G.711 PCM, 64 kbps 0 0.0000
2 " 2 0.0036
3 " 4 0.0078
4 " 8 0.0159
5 2 - G.729 CS-ACELP, 8 kbps 0 0.0011
6 " 2 0.0040
7 " 4 0.0088
8 " 8 0.0136
9 3 - G.723.1 ACELP, 5.3 kbps 0 0.0000

10 " 2 0.0024
11 " 4 0.0050
12 " 8 0.0119

Table 1. Conditions in development database and average cost of the delay estimation error for each condition.

Table 2. Conditions in testing database and average cost of the delay estimation error for each condition.

Condition
Number

Codec Number and Description Impairments
per File

Average Cost, c∆ (fraction
of full quality scale)

13 4 - TETRA ACELP, 4.6 kbps 0 0.0000
14 " 2 0.0034
15 " 4 0.0054
16 " 8 0.0114
17 5 - IMBE, 4.4 kbps, w/ analog I/0 0 0.0053
18 " 2 0.0105
19 " 4 0.0143
20 " 8 0.0214
21 6 - MELP, 2.4 kbps 0 0.0028
22 " 2 0.0091
23 " 4 0.0111
24 " 8 0.0167
25 7 - MELP, 1.2 kbps 0 0.0030
26 " 2 0.0088
27 " 4 0.0125
28 " 8 0.0178
29 8 - G.711 PCM, 64 kbps, w/ analog I/0 0 0.0000
30 " 2 0.0042
31 " 4 0.0083
32 " 8 0.0192
33 9 - G.726 ADPCM, 32 kbps, w/ analog I/0 0 0.0000
34 " 2 0.0038
35 " 4 0.0081
36 " 8 0.0187
37 10 - G.728 LD-CELP, 16 kbps, w/ analog I/0 0 0.0000
38 " 2 0.0036
39 " 4 0.0070
40 " 8 0.0152
41 11 - VSELP, 8 kbps, w/ analog I/0 0 0.0002
42 " 2 0.0037
43 " 4 0.0067
44 " 8 0.0138
45 12 - AMBE, 2.45 kbps 0 0.0027
46 " 2 0.0079
47 " 4 0.0111
48 " 8 0.0154

Table 2 continued.

 Figure 1. Estimated speech quality versus input-output speech signal shift for two codecs. Raw data (solid line) and
simple, smooth, symmetric fit (dashed line).

Figure 2. Detail of Figure 1.

−1000 −500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shift (samples)

E
st

im
at

ed
 Q

ua
lti

ty
 (L

(A
D

))

Codec 1

Codec 6

−100 0 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Shift (samples)

E
st

im
at

ed
 Q

ua
lti

ty
 (L

(A
D

))

Codec 1

Codec 6

−200 −100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Delay Estimation Error (samples)

C
os

t (
R

ed
uc

tio
n

of
 L

(A
D

))

Codec 1

Codec 6

Figure 3. Detail of cost functions for two codecs, derived by inverting and centering the fitted curves in Figure 2.

Level
Normalization

System Input
Speech Vector

τv

Level
Normalization

Speech
Activity

Detection

62.5 Hz LP
Envelope

62.5 Hz LP
Envelope

Coarse Average Delay
Estimation

64:1 64:1

Delay Tracking

250 Hz LP
Envelope

16:1

250 Hz LP
Envelope

16:1

Median Filtering

Delay Refinement

τ2

τ1

System Output
Speech Vector

Short Segment Correction

Extension of Valid
Results

Rectification
Rectification

τ0

ρ0

τ3

τ4

Estimated Delay History

x y

ρ1

Figure 4. Conceptual block diagram for a bottom-up estimator of time varying delays in coded speech.

Level
Normalization

τf

Level
Normalization

Algorithm for
Estimating Variable

Delays
(Section 4.2-4.7)

LSE

≥ 0.96 ?

System Output
Speech Vector

() ()LSE , < LSE ,v f

out v

x y x y

τ τ

⇒

=

Delay
Compensation

x

τ0

ρ0

Estimated Delay Value
or Delay History

System Input
Speech Vector

Final Portion of
Algorithm for

Estimating Fixed
Delays:

FFT-Based Cross
Correlation plus

Optional
Smoothing
 (Section 5,

Paragraph 2)

ρ0

τ0

vx
Delay

Compensation

τv

x
fx

LSE

y

x y

τv τf

τout

Enable

Figure 5. Example of a pulse, a step, and a tail in an estimated delay history.

Figure 6. Conceptual block diagram for complete algorithm for estimating fixed or time varying delays in coded speech.

0 500 1000 1500 2000 2500 3000 3500 4000
20

30

40

50

60

70

80

90

De
lay

 (m
s)

Time (ms)

Active Speech

Pulse

Step

Tail

Figure 7. Per-condition average cost of error for the 48 conditions in the testing database.

Figure 8. Example true (solid line) and estimated (dashed-line) delay histories for one sentence passed through
2.45 kbps AMBE codec with 8 added impairments per file.

10 20 30 40 10 20 30 40 10
0

0.005

0.01

0.015

0.02

0.025

Condition Number

A
ve

ra
ge

 C
os

t (
R

ed
uc

tio
n

in
 L

(A
D

))

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−80

−60

−40

−20

0

20

40

60

80

D
el

ay
 (

m
s)

Time (sec)

