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ABSTRACT 
In packetized speech transmission, end-to-end delay can 

vary, even over short timescales.  Estimating the resulting 
speech delay histories is critical to diagnostic and quality 
estimation efforts.  We present a new bottom-up algorithm 
for estimating time-varying speech delays.  The bottom-up 
approach is well-suited to real-time implementation.  The 
algorithm works with very low-rate codecs as well as the 
higher-rate codecs that are more common in VoIP 
applications.  We describe the new algorithm in some detail 
and provide descriptions of the databases and techniques 
used to develop and test the new algorithm. 

  
Keywords:  speech delay estimation, speech quality 
estimation, temporal discontinuity, VoIP  

 

1.  INTRODUCTION 
The packetized transmission of telephone bandwidth 

speech is gaining prominence in the telecommunications 
industry.  A significant driver of this trend is Voice over 
Internet Protocol (VoIP) services.  In circuit-switched speech 
transmission, end-to-end transmission delay is nearly always 
constant, but in packetized speech transmission, end-to-end 
delay can vary, even over short timescales.  The mechanisms 
that cause this delay variation are well-documented.  See [1] 
and [2] for examples. 

There are two main motivations for estimating the delay 
history of a packetized speech transmission.  First, an 
estimated delay history is required before one can make 
meaningful input-output based objective estimates of 
perceived speech quality.  (Output-only based estimates of 
speech quality can enjoy great immunity to delay issues.)  
Second, knowing the delay history can help to guide the 
design and optimization of the entire speech transmission 
system, including the jitter buffer playout algorithm at the 
receiver. 

The delay estimation problem can be described as 
follows. Given a pair of vectors of speech samples x (system 
input) and y (system output), for each sample in y find the 
offset (in samples) to the corresponding sample in x.  In most 
practical applications the result is a partition of y into 
multiple intervals of samples with a single offset value for 
each interval.  The sample rate associated with x and y can 

be used to convert the offsets in samples to relative delays.   
The timing relationship between the recording of x and the 
recording of y can be used to convert these relative delays to 
absolute delays. 

One solution is described in [3] and was first mentioned 
in [4].  This can be described as a top-down solution since it 
starts with a single estimate for all of the samples in y and 
then uses a set of rules to recursively subdivide y into smaller 
and smaller segments, with the goal of terminating when 
each of the final segments has a single constant delay.  In 
this paper we propose a bottom-up solution.  Here a fixed 
length delay-estimation window is swept across y, resulting 
in a series of delay estimates at regular intervals across y.  
These estimates are then processed by a median filter which 
again uses a fixed window that is swept across y.  When a 
real-time implementation is desired, data-flow issues make a 
bottom-up solution more practical than a top-down solution.   

We are aware of emerging systems that employ 
packetized transmission of very low-rate encoded speech.  
One scenario involves Internet-based interconnection of 
land-mobile radio systems that use very low-rate speech 
codecs.  This can result in received speech that has both 
significant codec distortions and non-constant delay.  
Reference [5] indicates that the solution given in [4] (at least 
as realized in conjunction with the quality estimation 
algorithm given in [5]) has not been verified as applicable to 
this scenario.  The algorithm described in this paper was 
developed to provide reliable delay estimates for very low-
rate speech codecs, as well as the more typical VoIP 
scenario. 

The algorithm described here follows from the delay 
estimation technique that is described in [6] and [7].  In 
particular, it first uses low resolution techniques to search 
wide ranges of possible delays, then uses high resolution 
techniques to search narrower ranges of possible delays, and 
finally uses a set of rules to combine these results only when 
advantageous.  Matching low resolution with wide searches 
and high resolution with narrow searches is an inherently 
efficient approach.  The three stage approach also allows for 
the fact that some systems have a well-defined delay down to 
the speech sample level, while others simply do not. 

In the next section we describe the speech database that 
was used to develop the algorithm.  Then we address the 
issue of how to realistically measure the performance of a 
delay estimation algorithm.  Next we provide a description 



of the new delay estimation algorithm, followed by 
assessments of its performance. 

 

2.   DEVELOPMENT DATABASE  
The development and testing of a delay estimation 

algorithm requires a database of input and output speech files 
that cover the range of speech, codecs, and network 
conditions of interest.  This database must be accompanied 
by a corresponding database that holds the true delay history 
for each of the output speech files.  One could build a speech 
file database by recording real VoIP traffic.  This would 
ensure that the data would be realistic, but there is no way to 
build a corresponding set of true delay histories.  Even if the 
network were probed and packet delays were measured, 
there would be no way to account for the operation of the 
jitter buffer playout algorithm.  In addition, one might 
question whether or not the recordings contain traffic and 
network conditions that are “typical.” 

We chose to generate a database using software and 
hardware tools that allow us to have complete control and 
knowledge of the true delay history.  We start with 72 speech 
files; 12 files from each of 3 female and 3 male talkers.  Each 
file contains two sentences from the Harvard Phonetically 
Balanced Sentence Lists [8], is about 7 seconds in length, 
and is normalized to 26 dB below overload.  No intermediate 
reference system (IRS) [9] filtering is used. 

We then pass the 72 files through 7 different speech 
codecs: 64 kbps G.711 PCM [10], 8 kbps G.729 CS-ACELP 
[11], 5.3 kbps G.723.1 ACELP [12], 4.6 kbps TETRA 
ACELP [13], 4.4 kbps IMBE [14], and 2.4 and 1.2 kbps 
MELP [15].  The IMBE codec is implemented in hardware 
and uses analog speech input and output.  The other six 
codecs are implemented in software. 

The final step is the addition of simulated network 
impairments to the codec output speech files.  One might 
attempt to use models of network behavior to drive this step.  
This would require some assumptions to arrive at a relevant 
set of model parameters.  Further, the mapping from network 
impairments to impairments in coded speech is a function of 
multiple system parameters including codec type, packet 
size, packet loss concealment technique, and jitter buffer 
playout algorithm.  The calculation of a true delay history 
through all these factors would be very complicated.  Rather 
than make a large number of approximations and simplifying 
assumptions to model networks and then map network 
impairment parameters to speech impairments, we simply 
apply impairments directly to the speech signal. 

  The impairments are applied directly to the output 
speech signal at four different levels: zero, two, four, or eight 
impairments per speech file.  The intent is to simulate a 
range of network conditions from perfect to very bad. 

The locations of the impairments are randomly chosen 
for each output file. Thus they may appear in segments of 
active speech or in silences.  The duration of each 
impairment is randomly chosen to be either 10, 20, or 40 ms, 

consistent with the values one might typically expect to 
observe in a packetized speech transmission system.  Finally, 
the type of impairment is randomly chosen from three 
options:  loss, pause, and jump. 

For the loss impairment, T =10, 20, or 40 ms of speech 
is muted, and the Reverse Ordered Replicated Pitch Period 
(RORPP) packet loss concealment (PLC) algorithm given in 
[16] is used to form an approximate replacement for the 
deleted speech.  This simulates the situation where one or 
more packets are lost, concealment is applied, but there is no 
interruption of the time axis, and no change in the end-to-end 
delay. 

In the pause impairment, T =10, 20, or 40 ms of silence 
is inserted (just as if a tape player pause button were 
depressed for only T ms), and the RORPP PLC algorithm is 
used to extrapolate the speech before the silence in order to 
cover the silence.  This simulates jitter buffer underflow with 
PLC applied to hide the underflow.  The time axis is dilated 
by T ms, and the end-to-end delay increases by T ms. 

The jump impairment requires that T =10, 20, or 40 ms 
of speech be deleted and the time axis is contracted 
accordingly.  Some smoothing is applied at the discontinuity 
to minimize audible clicks. This simulates jitter buffer 
overflow.  Since the time axis is contracted by T ms, the end-
to-end delay decreases by T ms. 

  The structure of the development database is 
summarized in the first 3 columns of Table 1.  The database 
contains a total of 28 conditions (7 codecs × 4 impairment 
levels/codec), 2016 output speech files (28 conditions × 72 
output speech files/condition) and about 4 hours (2016 
output speech files × 7 seconds/output speech file) of output 
speech.   

 

3.  COST FUNCTIONS 
To develop and test a delay estimation algorithm, one 

must employ some measure of merit.  A measure based 
solely on the delay estimation error (estimated delay – true 
delay) may seem to be the obvious initial choice.  In our 
application such measures are not sufficient because they 
ignore the fundamental uncertainty in the true delay.  They 
also ignore the closely related issue of the variable sensitivity 
of objective speech quality estimation algorithms to delay 
estimation errors for different codecs.  Figures 1 and 2 
provide an example of these two issues and a discussion 
follows. 

The solid lines in the Figures 1 and 2 show estimated 
speech quality vs. input-output shift in samples for speech 
that has been passed through a G.711 PCM codec and a 2.4 
kbps MELP codec (Codecs 1 and 6 respectively).  The 
speech quality estimates are generated by the MNB speech 
quality estimation algorithm [6].  A shift of 0 samples 
provides the highest estimated speech quality for codec 1 and 
speech quality estimates drop fairly dramatically in that 
neighborhood.  (Secondary peaks appear near shifts of ±60 
samples.  These shifts correspond to an input-output 



misalignment of one average pitch period.)   For codec 6, the 
situation is less clear. There is a range of about 40 samples in 
the neighborhood of shift=286 that provide approximately 
equivalent quality estimates.  Immediately outside this 
interval, the estimates drop off slowly compared to codec 1.   

The dashed lines in these two figures show simple, 
smooth, symmetric fits to this data.  The data in these figures 
is slightly asymmetric overall, but the neighborhoods of the 
peaks are very close to symmetric.  In light of this, it seems 
most appropriate to require the fits to be symmetric, and we 
fit for a good match near the peak (the most important area 
for this application) and accept some fitting error on the tails 
(which are much less important to this work). It is 
advantageous for the fits to decrease monotonically as one 
moves away from a peak.  Thus the fits do not attempt to 
model the minor secondary peaks in the data. 

The centers of the fits provide a definition of the delay 
of the codec.  We invert and center these fits to form the 
corresponding cost functions as shown in Figure 3.  These 
cost functions tell approximately how much reduction in 
estimated speech quality we can expect when we use 
estimated delays that differ from the true delays as defined 
above.  These approximations are slightly lower than the 
data in some areas and slightly higher than the data in other 
areas, but they are close enough to provide the information 
that we need. 

For codec 1 the true delay τ is 0 samples and the cost 
function ( )1 τ̂ τ−c  provides the cost (in terms of reduction of 
estimated speech quality) associated with using the estimated 
delay τ̂  in place of the true delay τ.  Similarly, for codec 6 
the true delay τ is 286 samples and the cost function 

( )6 τ̂ τ−c  provides the cost of using τ̂  in place of τ.  Note 
that for codec 6 when the estimated delay is close to the true 
delay, the cost is zero.  This is consistent with the uncertain 
nature of the true delay.  We can say that codec 1 has little 
delay uncertainty and high delay sensitivity in the 
neighborhood of the true delay.  Codec 6 has greater delay 
uncertainty, and lower delay sensitivity in the neighborhood 
of the true delay. 

For each of the 7 codecs in the development database we 
use the method outlined above to find a true delay and a cost 
function  ( )ˆic τ τ− , i=1 to 7.  Cost can be a weak function of 
talker and speech material and our technique generates cost 
functions that have been averaged across these variables.  
The MNB output is a logistic function applied to an auditory 
distance (L(AD)).  This L(AD) speech quality scale ranges 
from zero to one.  Thus ( )ˆ 0.01ic τ τ− =  indicates that for 
codec i, using the delay  τ̂   instead of the true delay τ will 
cause a drop in estimated speech quality that is 1% of the full 
quality scale.  More generally, we can interpret ( )ˆic τ τ−  as 
the fraction of the full quality scale that estimated quality 
will drop when the delay τ̂  is used instead of the true delay 
τ. 

These cost functions are used to assess the merit of 
estimated delay histories.  Assume that the kth file pair has 
been passed through the ith codec and is then further 
impaired as described in Section 2.  We can calculate the 
true delay history ( )k jτ  for this file by combining the true 
codec delay with the known random locations and durations 
of the impairments.  An estimated delay history ( )ˆk jτ  
results in an average cost k∆  of 

  
 ( ) ( )( )1 τ̂ τ

∈

∆ = −∑k i k kN
j A

c j j , (1) 

where A is the set of all active speech samples in the system 
output speech vector y and N is the number of samples in A.  
We then average this result over all of the M speech files in a 
given condition to find the per-condition average cost 

 1

1=

∆ = ∆∑
M

c kM
k

. (2) 

  

4.  ALGORITHM FOR ESTIMATING 
VARIABLE DELAYS 

A fundamental trade-off permeates time delay 
estimation:  longer delay estimation windows generally 
provide more robust delay estimates, but longer windows 
also make it more difficult to respond quickly to changes in 
delay.  Shorter delay estimation windows generally provide 
less robust delay estimates, but shorter windows also make it 
easier to respond quickly to changes in delay.  A second 
trade-off involves implementations of cross-correlations:  
compared to direct-form cross correlations, FFT-based cross 
correlations can be more efficient, but they also require 
longer windows in order to robustly search a given range of 
delays.  An additional trade-off is often seen:  the selection 
of an algorithm parameter value (e.g., processing window 
size, correlation threshold) is often a compromise between a 
value that favors the higher rate codecs and a value that 
favors the lower rate codecs.  The specific values we report 
here are the result of optimization over the 28 conditions in 
the development database. 

Developing an effective, robust, efficient delay 
estimation algorithm requires successful resolution of these 
trade-offs along with many others.  To insure broad 
applicability, we monitor the average cost of delay 
estimation error for each of the 28 conditions throughout the 
algorithm development process. 

Figure 4 provides a summary of the core components of 
the new algorithm for estimating time-varying delays in 
coded speech.  A single coarse average delay is first 
calculated for the entire signal vector y using smoothed 
speech envelopes.  A delay tracking stage then uses higher 
resolution envelopes and seeks to follow variations about the 
average delay value. Median filtering is then used to improve 
the accuracy of these results, and a refinement stage refines 



each delay estimate where possible.  The final output is a 
vector containing delay estimates spaced at 40 ms intervals 
across the entire duration of the output speech signal y.  Each 
estimate has full resolution, i.e., it is to the nearest sample. 

 
4.1 Level Normalization 

The two input vectors to the algorithm described in 
Figure 4 contain samples of system input speech and system 
output speech. The sample rate is 8000 samples/second.  The 
level normalization stages normalize these vectors of speech 
samples to an active speech level of 26 dB below overload 
using a technique motivated by that given in [17].  The 
resulting level-normalized system input and output speech 
vectors are x and y respectively. 

 
4.2 Coarse Average Delay Estimation 

Next, a coarse estimate of average delay is calculated 
from speech envelopes.  To create the envelopes, x and y are 
rectified and low pass filtered. The filter is an order 400 FIR 
low-pass filter with 48 dB of attenuation at 62.5 Hz. This 
filter largely eliminates pitch information, leaving a very 
smooth temporal speech amplitude envelope.  The resulting 
signals are then sub-sampled by a factor of 64, resulting in 
speech envelopes sampled at 125 samples/second.  These 
envelopes are then passed to the coarse average delay 
estimation stage which applies an FFT-based cross 
correlation to estimate the average delay τ0 between the two 
speech envelopes.  The resolution of this delay is ±64 
samples in the original (8000 samples/second) speech 
domain.  The corresponding peak correlation value is ρ0. 

 
4.3 Speech Activity Detection 

The speech activity detection stage classifies each 
sample of y as either active speech or inactive so that 
samples in each class can be treated appropriately.  To make 
this classification, the speech envelope of y described above 
is compared with a fixed threshold of 56.  Regions above this 
threshold are classified as active and those regions are then 
extended 100 ms forward and backward in time to create the 
final activity classification. 

 
4.4 Delay Tracking 

The delay tracking stage estimates the actual delay of 
the samples in y as that delay varies about the average delay 
τ0.  This stage uses speech envelopes with 250 Hz 
bandwidths.  To create the envelopes, x and y are rectified 
and low pass filtered. The filter is an order 128 FIR low-pass 
filter with 51 dB of attenuation at 250 Hz.  This filter 
preserves much of the pitch information in the speech signal, 
thus allowing for its potential use in delay estimation.  The 
resulting signals are then sub-sampled by a factor of 16, 
resulting in speech envelopes sampled at 500 
samples/second.  These envelopes are then passed to the 
delay tracking stage.  This stage applies a direct-form (non 
FFT-based) cross correlation algorithm that uses 150 ms 
segments of the envelope of y.  This window is swept across 

the envelope of y in 40 ms steps.  This step size was selected 
as a good compromise between algorithm speed and 
algorithm accuracy.  The cross-correlation is calculated 
when at least 10% of the samples in the window are 
classified as active.  The corresponding search window in the 
envelope of x is centered on τ0  (the delay value produced by 
the coarse average delay estimation stage) and extends 200 
ms to either side of τ0, allowing for the tracking of delay 
deviations as great as 200 ms.  The result of the delay 
tracking stage is a vector τ1 of delay estimates spaced at 40 
ms intervals in the active portions of the speech signal.  Each 
estimate has a resolution of ±16 samples in the original 
domain. 

The median filtering stage sweeps a 500 ms window 
across τ1.  It calculates the median value of all valid delay 
estimates in the window that have a correlation of at least 
0.8.  This thresholding helps to minimize the effect that 
lower quality delay estimates can have on the filter output.  
This window is advanced in 40 ms steps.  The median filter 
tends to reject small groups of markedly different delay 
estimates which are often erroneous.  It also tends to 
generate a more piecewise-constant delay estimation history 
and this is consistent with the piecewise-constant nature of 
the true delay histories in packet speech transmission 
systems.  The result of the median filtering stage is a vector 
τ2 containing delay estimates spaced at 40 ms intervals.  
These estimates are available only in active areas of speech 
where at least some of the correlations exceed 0.8.  Each 
estimate has a resolution of ±16 samples in the original 
domain. 

 
4.5 Refinement of Delay Estimates 

The delay refinement stage seeks to refine the delay 
estimates available in τ2 to the sample level where possible.  
This stage uses the absolute values of the samples in x and y 
and applies a correlation operation to each segment of 
constant delay in τ2 that contains at least 10 ms of active 
speech.  The use of the absolute value function makes the 
algorithm completely robust to 180 degree phase changes in 
the speech signals.  The correlation operation searches a 
range of ±72 samples about the delay given in τ2.  When a 
segment is at least 200 ms in length, an FFT-based cross 
correlation is used.  Otherwise a direct-form correlation is 
used.  If the segment is one second in length or greater, the 
refinement is very likely to be reliable and it is used without 
further testing.  For shorter length segments, only those with 
a correlation of 0.7 or greater are retained.  The result of the 
delay refinement stage is a vector τ3 containing delay 
estimates spaced at 40 ms intervals.  Valid estimates are 
available consistent with the rules described above, and each 
estimate has full resolution, i.e., it is to the nearest sample in 
the original (8000 samples/second) domain. 

 
 
 
 



4.6 Short Segment Correction 
The next stage seeks to correct shorter segments of 

constant delay that may be erroneous.  The rules of this stage 
are driven by the knowledge that the true delay history is 
piecewise constant.  Three different types of short segments 
are treated and examples of each are shown in Figure 5. 

A “pulse” is a segment  with estimated delay τp that has 
two valid immediate neighbors (left and right) that share a 
common delay estimate τn ≠ τp.  Figure 5 shows a 200 ms 
pulse where τp=30 ms and τn=40 ms.  When a pulse is 280 
ms or shorter it is likely that the estimated delay change from 
τn to τp and back to τn again is erroneous, so the pulse and its 
two neighbors are replaced with a single segment with a 
constant estimated delay of τn.  

A “step” is a segment with estimated delay τs that has 
two valid immediate neighbors (left and right) with different 
delay estimates τl ≠ τr, both of which differ from τs. Figure 5 
shows a step with 80 ms duration where τl=40 ms, τs=70 ms, 
and τr=80 ms.  When a step is 80 ms or shorter it is likely 
that the true delay actually changes directly from τl to τr 
without passing through τs. To test this, the rectified speech 
in y corresponding to the step segment is correlated with the 
corresponding rectified speech in x using delays τl ,τr , and τs.  
If the delay τl produces the highest correlation, then the step 
segment is combined with its left neighbor and the entire 
new segment is assigned a delay estimate of τl. If the delay τr 
produces the highest correlation, then the step segment is 
combined with its right neighbor and the entire new segment 
is assigned a delay estimate of τr.  If the delay τs produces the 
highest correlation, then the step segment is left unchanged.   

A “tail” is a segment with an estimated delay τt that has 
only one valid immediate neighbor.  This neighbor has a 
delay estimate of τn ≠ τt.  This situation most often happens 
at the start or end of an active speech interval.  Figure 5 
shows a tail with duration 160 ms at the end of an active 
speech interval where τn =80 ms and τt =75 ms.  When a tail 
segment is 160 ms or shorter it is likely to be erroneous so it 
is combined with its valid neighbor and the entire new 
segment is assigned a delay estimate of τn. 

The result of the short segment correction stage is a 
vector τ4 containing delay estimates spaced at 40 ms 
intervals. Valid estimates are available consistent with the 
rules described above and each estimate has full resolution in 
the original domain. 

 
4.7 Extension of Valid Estimates 

The vector τ4 contains delay estimates that cover almost 
all active portions of the speech signal, with the possible 
exception of locations where severe localized impairments 
have corrupted the speech signal in y to the extent that delay 
estimation is simply not possible.  As a practical matter, it is 
sometimes desirable to have a delay estimate for every single 
sample in the speech vector y, including samples in silent 
intervals where there is no speech signal upon which to base 
an estimate.  The final stage of the algorithm extends valid 
delay estimates to cover segments where no valid estimate 

has yet been calculated.  When such a segment has two 
neighbors (left and right) with valid delay estimates, then 
that segment is divided into a left half and a right half.  The 
valid delay estimate for the left neighboring segment is 
extended to cover the left half.  The valid delay estimate for 
the right neighboring segment is extended to cover the right 
half.  This stage generates the final output of the variable 
delay estimation algorithm.  This output is a vector  τv  
containing delay estimates spaced at 40 ms intervals across 
the entire duration of the output speech signal y.  Each 
estimate has full resolution, i.e., it is to the nearest sample. 

 
4.8 Real-Time Implementation 

In a real-time implementation x and y would contain the 
most recent block of samples from continuing system input 
and system output speech streams.  Once the current delay 
has been established, the coarse average delay estimation 
stage is not needed; the delay tracking stage can center its 
delay search window using previous outputs of the 
algorithm.  The other core components of the algorithm 
would remain largely unchanged. 

 

5.  ALGORITHM FOR ESTIMATING FIXED 
DELAYS 

Since longer delay estimation windows provide more 
robust delay estimates, it is advantageous to use the longest 
appropriate window.  When it is known a priori that there is 
a single fixed time delay between the speech samples in x 
and y, we use a specialized algorithm.  This algorithm 
performs the level normalization described in 4.1 above, and 
then the coarse average delay estimation described in 4.2 
above.  This stage results in a delay estimate with a 
resolution of ±64 samples. 

The next stage performs an FFT-based cross correlation 
on rectified versions of x and y to create the correlation 
waveform ρ(τ).  In some cases the peak of this waveform 
provides useful information, but in other cases, ρ(τ) must be 
smoothed before a useful peak can be extracted.  In the 
development of this stage we consider ρ(τ) and 3 smoothed 
versions of ρ(τ) with nominal bandwidths of 125, 62.5, and 
31.25 Hz.  We consider how the peak value of ρ(τ) might be 
used to select between these four versions in an optimal way. 

In the following, only delays that are within 128 samples 
of τ0 (the coarse average delay estimate) are considered.  If 
the peak value in ρ(τ) is 0.73 or greater, that peak location 
provides the final delay estimate.  Otherwise, the system that 
produced y is not one that preserves waveforms and a more 
robust peak finding algorithm is desirable.  If the peak 
correlation value in ρ(τ) is in the interval [0.67, 0.73) then 
ρ(τ) is smoothed (using an order 192 FIR low-pass filter with 
6 dB of attenuation at 62.5 Hz and 40 dB of attenuation at 
125 Hz) and the location of the resulting peak provides the 
final delay estimate.  If the peak correlation value in ρ(τ) is 
less than 0.67, then ρ(τ) is smoothed more dramatically 
(using an order 384 FIR low-pass filter with 6 dB of 



attenuation at 31.25 Hz and 40 dB of attenuation at 62.5 Hz) 
and the location of the resulting peak provides the final delay 
estimate.  This stage results in a single scalar delay estimate 
τf.  The resolution of τf depends on the rules described above, 
and it can be as high as full resolution. 

 

6.  COMPLETE ALGORITHM 
If a priori information regarding the variable or fixed 

nature of the delay between x and y is available, one can 
select and apply the variable delay estimation of section 4 or 
the fixed delay estimation algorithm of section 5 
appropriately.  In many situations such information is 
available, but in others it is not.  Several options are 
available when it is not known if the delay is fixed or 
variable.   

Since fixed delay is a special case of variable delay, one 
can simply apply the variable delay estimation algorithm.  
But since the variable delay estimation algorithm does not 
maximize the time delay estimation window, the results may 
not always be as robust as desired, especially for lower rate 
codecs.  The development database includes 7 fixed delay 
conditions.  Conditions 1, 5, 9, and 13 are treated equally 
well by the variable and the fixed delay estimation 
algorithms.  Conditions 17, 21, and 25, however, show about 
0.004 higher average cost when treated with the variable 
delay estimation algorithm rather than the fixed delay 
estimation algorithm.  Note that these three conditions are 
lower rate codecs that do not tend to preserve waveforms as 
well as the higher rate codecs. 

A second option would be to apply both algorithms and 
then apply additional tests to determine which is most 
reasonable.  One could apply an objective estimator of 
speech quality and select the delay estimation result that 
gives the highest estimated quality. 

We simplify and augment this second option to integrate 
the two algorithms into a single complete algorithm.  The 
complete algorithm is summarized in Figure 6.  When no 
prior information is available, the complete algorithm 
switches appropriately between the fixed and variable delay 
estimation algorithms.  This switching is driven by speech 
envelope correlations and log spectral error (LSE) 
measurements. 

When the average coarse delay estimation stage 
produces a correlation value ρ0 that is less than 0.96, there is 
a very high probability that the true delay is variable and the 
complete algorithm pursues the variable delay path only.  
When this correlation value is 0.96 or greater, the true delay 
may be fixed or variable, and both the fixed and variable 
delay estimation paths are pursued. 

The resulting fixed and variable delay estimates are used 
to create two delay-compensated versions of x called xf  and 
xv respectively.  If the test ( ) ( )LSE ,  < LSE ,v fx y x y  is 

satisfied, then the variable delay estimate is selected, 
otherwise the fixed delay estimate is selected.  Here LSE 

denotes a conventional log spectral error that uses a 16 ms 
periodic Hanning window.  LSE windows are adjacent, but 
are not overlapped.   

 

7.  ALGORITHM PERFORMANCE 
The performance of the new delay estimation algorithm 

on the development data is summarized in Table 1 using the 
per-condition average cost values defined in (2).  Since the 
algorithm does not perfectly estimate every change in delay, 
the average cost associated with the delay estimates increases 
with the number of impairments.  In other words, as we add 
additional changes in delay and additional packet losses, it 
gets harder to estimate the delay properly.  The highest 
average cost found on the development data is 0.0265, 
corresponding to an average drop of 2.65% of the full quality 
scale.  The average cost of error across all 28 conditions in 
the development database is 0.0101, corresponding to an 
average drop of 1.01% of the full quality scale.  If a fixed 
estimate of delay is used for each speech file, the average 
cost of error across all 28 conditions in the development 
database is 0.1074, and this is about 10 times higher than 
what is achieved with the new algorithm. 

The development database is used throughout the 
development and optimization of the algorithm so one might 
expect that it represents a best-case scenario.  To test the 
generality of this algorithm we employ a testing database.  
This database starts with 128 speech files, 16 files from each 
of 4 female and 4 male talkers.  None of these talkers was 
used in the development database.  For each talker, 8 files 
are filtered with the IRS transmit filter [9] and the other 8 are 
filtered with a bandpass filter with approximately flat 
passband extending from 200 to 3400 Hz.  The use of both 
IRS and flat filtered speech gives the testing database 
additional breadth of applicability.  Each file contains two 
sentences from the Harvard Phonetically Balanced Sentence 
Lists [8], is about 7.2 seconds in length, and is normalized to 
26 dB below overload. 

We then pass the 128 files through twelve codecs that 
are summarized in column 1 of Table 2.  These include the 
seven codecs used in the development database and five 
additional codecs.  The five additional codecs are 64 kbps 
G.711 PCM [10], 32 kbps G.726 ADPCM [18], 16 kbps 
G.728 LD-CELP [19], 8 kbps IS-54 VSELP [20], and 2.45 
kbps AMBE which is a “half-rate version” of [14].  All five 
of these are hardware implementations, and all but the 
AMBE codec use analog speech input and output.  Analog 
interfaces can introduce additional impairments beyond those 
of the digital speech codec, thus adding additional challenges 
to the delay estimation problem.  By including four codecs 
with analog interfaces, we create a more challenging and 
more realistic testing database.   

The testing database uses a new set of random 
impairment locations.  The impairment types are again loss, 
pause and jump, but are selected according to a new random 
sequence.   The impairment durations are again 10, 20, or 40 



ms, but are selected according to a new random sequence.  
(We consider these values to be most relevant in light of 
typical VoIP system design.  However, they are also the 
values used in the development database.  Thus, in order to 
most fully test the robustness of the new algorithm, we create 
a second version of the testing database.  In this second 
version, impairment durations are randomly drawn from the 
uniform distribution on the interval [1,400] samples, which 
corresponds to approximately 0 to 50 ms.  When 8 
impairments are used in a speech file, 50 ms impairment 
durations can lead to a total delay range of up to 8 × 50 = 
400 ms.  This is a good match to the delay tracking stage 
which searches 200 ms on either side of τ0, for a total search 
range of 400 ms.) 

The testing database contains over 12 hours of speech in 
6144 output speech files.  In order to evaluate the algorithm 
performance on the testing database, we first generate per-
codec cost functions ( )ˆic τ τ− , i=1 to 12. 

Table 2 contains per-condition average cost values 
defined in (2) for the testing database and these are shown in 
Figure 7 as well.  As before, the average cost associated with 
the estimated delay history rises for each codec as the 
number of impairments is increased.  The highest average 
cost is 0.0214.  This worst-case situation is found when 8 
impairments are added to each 7.2 second file of 4.4 kbps 
IMBE (with analog input and output) coded speech.  The 
average cost of error across all 48 conditions in the testing 
database is 0.0079, corresponding to an average drop of only 
0.8% of the full MNB L(AD) speech quality estimation 
scale.  (The results for the second testing database with 
impairment durations uniformly distributed on (0,50] ms are 
very similar.  The average cost of error across all 48 
conditions in the second testing database is 0.0081.) 

The results for the three databases are rather similar, 
indicating that the new delay estimation algorithm is not 
overly specific to the development database, and that the 
algorithm is applicable to a very wide range of telephone-
bandwidth speech codecs.  We consider these results to be 
satisfactory.  The average (0.8%) and even the worst-case 
(2.1%) perturbations in estimated speech quality for the 
testing data seem acceptable in light of the fact that the most 
carefully controlled subjective speech quality tests may 
attain 95% confidence intervals on the order of ±0.1 units of 
a 4 unit scale.  In other words, experimental results may 
differ from the underlying true quality value by ±2.5% of the 
full quality scale.  When one considers the additional error 
inherent in objectively estimating speech quality, it seems 
likely that the errors attributable to this delay estimation 
algorithm will make up only a very small portion of the 
typical total error in objective speech quality estimates. 

Comparison of results for codecs 1 (G.711 PCM 
software implementation) and 8 (G.711 hardware 
implementation with analog speech input and output) 
demonstrates that the addition of analog interfaces does 
make the variable delay estimation problem more 
challenging.  For the three conditions with varying delay, 

codec 8 shows a modest increase in average cost relative to 
codec 1. 

 Figure 8 provides a worse-than-average example of a 
true delay history and the corresponding estimated delay 
history for condition 48 of the testing database. Condition 48 
is a challenging one; it uses the 2.45 kbps AMBE codec with 
8 added impairments per speech file.  One sentence is 
shown, and four delay-change impairments are visible in the 
true delay history.  The estimated delay history generally 
tracks the true delay history but deviations are clearly 
visible.  The average cost associated with these deviations is 

k∆ =0.0351, which is more than twice the average for this 
condition (0.0154) given in Table 2.  Thus our description of 
this example as a “worse-than-average” example. 

The present implementation of the new delay estimation 
algorithm is via unoptimized Matlab® code.  On average, 
this implementation of the complete algorithm shown in 
Figure 6 requires a processing time that is only about 0.18 × 
real time on a PC using a 3.2 GHz Pentium® 4 processor.  
That is, on average it takes about 1.26 seconds for this 
implementation to process a pair of 7 second speech files.  If 
it is known a priori that the delay is fixed, the algorithm 
requires about 0.07 × real time.   If it is known a priori that 
the delay is variable, the algorithm requires about 0.16 × real 
time.  The LSE calculation runs in about 0.01 × real time.   

 

8.  CONCLUSION 
We have described the development and testing of a 

bottom-up algorithm for estimating time-varying delays in 
coded speech.  Consistent with the goal, the algorithm is 
applicable to lower-rate codecs that are used in land mobile 
radio communication systems as well as to typical VoIP 
codecs.  This breadth of applicability is an improvement over 
the current state of the art.  Because the algorithm takes a 
bottom-up approach, it is suitable for real time 
implementation and we consider this to be an additional 
contribution. 

Measuring delay estimation error in samples holds little 
relevance when such a wide range of codecs is considered.  
Thus our development and testing is carried out in the 
context of cost functions.  These functions relate errors in 
delay estimation to reductions in objective estimates of 
perceived speech quality. To maximize relevancy to actual 
testing environments, our testing includes 12 codecs with bit 
rates ranging from 1.2 to 64 kbps and 5 of these codecs use 
analog speech inputs and outputs.  In addition, we employ a 
wide range of simulated network conditions and a 
standardized packet loss concealment algorithm. 

  When there are no variations in delay over the course 
of a 7 second speech file (simulating good network 
conditions), we find that delay estimation error from the new 
algorithm will reduce objective speech quality estimates by 
as little as zero and as much as 0.5% of the full quality scale, 
depending on the speech codec.  When 8 impairments are 
added to each file (simulating very bad network conditions), 



this range becomes 1.1% to 2.0%.  The average across the 
entire testing database is a drop of 0.8% of the full quality 
scale.  We argue that reductions like these are not likely to be 
significant in light of the other sources of error in the 
objective estimation of perceived speech quality. 
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Condition 
Number 

Codec Number and Description Impairments 
per File 

Average Cost, c∆  (fraction of 
quality scale)  

1 1 - G.711 PCM, 64 kbps 0 0.0000 
2 " 2 0.0034 
3 " 4 0.0068 
4 " 8 0.0137 
5 2 - G.729 CS-ACELP, 8 kbps 0 0.0019 
6 " 2 0.0072 
7 " 4 0.0117 
8 " 8 0.0173 
9 3 - G.723.1 ACELP, 5.3 kbps 0 0.0001 

10 " 2 0.0020 
11 " 4 0.0042 
12 " 8 0.0092 
13 4 - TETRA ACELP, 4.6 kbps 0 0.0001 
14 " 2 0.0027 
15 " 4 0.0063 
16 " 8 0.0109 
17 5 - IMBE, 4.4 kbps, w/ analog I/0 0 0.0043 
18 " 2 0.0119 
19 " 4 0.0144 
20 " 8 0.0196 
21 6 - MELP, 2.4 kbps 0 0.0097 
22 " 2 0.0170 
23 " 4 0.0213 
24 " 8 0.0265 
25 7 - MELP, 1.2 kbps 0 0.0064 
26 " 2 0.0134 
27 " 4 0.0179 
28 " 8 0.0218 

Condition 
Number 

Codec Number and Description Impairments 
per File 

Average Cost, c∆  (fraction 
of full quality scale)  

1 1 - G.711 PCM, 64 kbps 0 0.0000 
2 " 2 0.0036 
3 " 4 0.0078 
4 " 8 0.0159 
5 2 - G.729 CS-ACELP, 8 kbps 0 0.0011 
6 " 2 0.0040 
7 " 4 0.0088 
8 " 8 0.0136 
9 3 - G.723.1 ACELP, 5.3 kbps 0 0.0000 

10 " 2 0.0024 
11 " 4 0.0050 
12 " 8 0.0119 

Table 1.  Conditions in development database and average cost of the delay estimation error for each condition. 

Table 2.  Conditions in testing database and average cost of the delay estimation error for each condition. 



 

Condition 
Number 

Codec Number and Description Impairments 
per File 

Average Cost, c∆  (fraction 
of full quality scale)  

13 4 - TETRA ACELP, 4.6 kbps 0 0.0000 
14 " 2 0.0034 
15 " 4 0.0054 
16 " 8 0.0114 
17 5 - IMBE, 4.4 kbps, w/ analog I/0 0 0.0053 
18 " 2 0.0105 
19 " 4 0.0143 
20 " 8 0.0214 
21 6 - MELP, 2.4 kbps 0 0.0028 
22 " 2 0.0091 
23 " 4 0.0111 
24 " 8 0.0167 
25 7 - MELP, 1.2 kbps 0 0.0030 
26 " 2 0.0088 
27 " 4 0.0125 
28 " 8 0.0178 
29 8 - G.711 PCM, 64 kbps,  w/ analog I/0 0 0.0000 
30 " 2 0.0042 
31 " 4 0.0083 
32 " 8 0.0192 
33 9 - G.726 ADPCM, 32 kbps,  w/ analog I/0 0 0.0000 
34 " 2 0.0038 
35 " 4 0.0081 
36 " 8 0.0187 
37 10 - G.728 LD-CELP, 16 kbps,  w/ analog I/0 0 0.0000 
38 " 2 0.0036 
39 " 4 0.0070 
40 " 8 0.0152 
41 11 - VSELP, 8 kbps,  w/ analog I/0 0 0.0002 
42 " 2 0.0037 
43 " 4 0.0067 
44 " 8 0.0138 
45 12 - AMBE, 2.45 kbps 0 0.0027 
46 " 2 0.0079 
47 " 4 0.0111 
48 " 8 0.0154 

Table 2 continued. 



 Figure 1.  Estimated speech quality versus input-output speech signal shift for two codecs.  Raw data (solid line) and 
simple, smooth, symmetric fit (dashed line). 

Figure 2.  Detail of Figure 1. 
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Figure 3.  Detail of cost functions for two codecs, derived by inverting and centering the fitted curves in Figure 2. 
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Figure 4.  Conceptual block diagram for a bottom-up estimator of time varying delays in coded speech. 
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Figure 6.  Conceptual block diagram for complete algorithm for estimating fixed or time varying delays in coded speech. 
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Figure 7.  Per-condition average cost of error for the 48 conditions in the testing database. 

Figure 8.  Example true (solid line) and estimated (dashed-line) delay histories for one sentence passed through 
2.45 kbps AMBE codec with 8 added impairments per file. 
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