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ABSTRACT 

Multiple-description coding is one way to gain robustness 
against lossy channels.  We extend the multiple-description 
scalar quantizer (MDSQ) to a channel-optimized MDSQ 
(COMDSQ) that minimizes mean-squared error for a given 
channel environment.  We discuss necessary and sufficient 
conditions for the optimality of M-channel COMDSQ’s and 
provide procedures for the design of 2-channel COMDSQ’s.  
We provide example results including audio files from 
waveform and transform coders that employ COMDSQ’s. 

1. INTRODUCTION 

It is often necessary to transmit signals over lossy channels.  
Important examples of lossy channels include noisy and fading 
radio channels and congested packet data networks.  Error 
correcting codes can be used to gain robustness to channel 
losses.  Multiple-description coding (MDC) offers another way 
to gain robustness.  The theory of MDC is set out in [1] and [2] 
and an example audio MDC application can be found in [3].  In 
MDC an encoder forms multiple partial descriptions of a signal 
and these descriptions are sent over different physical or virtual 
channels.  If all descriptions arrive at the decoder intact, a 
higher-quality reconstruction is possible.  If channel losses cause 
any of the descriptions to be lost, then a lower-quality 
reconstruction of the original signal is still possible. 

Increasing the number of descriptions and the number of 
channels increases the robustness to the failure of any single 
channel or group of channels.  Consider a set of identical 
independent channels each with failure probability µ.  If a signal 
is sent by single-description coding the entire description will be 
lost with probability µ.  If the signal is decomposed into M 
different partial descriptions and sent on M different channels, 
the probability of losing the entire description drops to µM.  If 
the situation is such that the loss of the entire description is to be 
avoided at all costs, then one would pick the largest practical 
value of M.  

One approach to MDC is multiple description quantization 
(MDQ).  In MDQ, a sample is quantized and mapped to a set of 
codewords.  If all codewords arrive at the decoder, the net effect 
is higher-resolution quantization.  If any of the codewords are 
lost, the net effect is lower-resolution quantization.  A multiple 
description scalar quantizer (MDSQ) was described by 
Vaishampayan in [4].  This work was extended and applied in 
[5]-[12]. 

In this paper we extend the MDSQ to the channel-optimized 
MDSQ (COMDSQ).  The COMDSQ minimizes mean-squared 

error (MSE) for a given channel environment.  We discuss 
necessary and sufficient conditions for the optimality of 
M-channel COMDSQ’s.  We present procedures for designing 
2-channel COMDSQ’s and show example results.  Finally, we 
apply COMDSQ’s to waveform and transform audio coding and 
provide example results.  

2. M-CHANNEL COMDSQ THEORY 

Figure 1 summarizes the operation of the M-channel, b-bit 
COMDSQ.  The input scalar variable x has probability density 
function fx(x).  The quantizer Q uses the thresholds { } 1
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+
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N
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partition the support of fx(x) into N=2b disjoint quantization cells 
{ }N

iiC 1=
.  The quantization rule is 
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A total of b bits are used to point to the appropriate cell, and a 
subset of those bits, bl are sent into the lth channel.  The inverse 
quantizer Q-1 uses all received bits to select one representation 
point j

kr from a predetermined set of representation points.  The 
selected representation point becomes the output x̂ . 
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 Figure 1. Block diagram of the M-channel, b-bit COMDSQ. 
 

We assume that Q does not know the state of the channels, 
but Q-1 does know which channels have delivered their bits and 
which channels have not.  Each channel can either deliver all its 
bits or deliver none of its bits, so the group of M channels will 
always be in one of 2M possible states.  Let log2(Nj) be the 
number of bits received by Q-1 when the channels are in state j.  
Then Q-1 can choose between Nj distinct representation points 

{ } jN
k

j
kr 1=

 when the channels are in state j.  We define state j=1 to 
be the state where all channels deliver and j=2M to be the state 
where no channel delivers. 

When the channels are in state j>1, one or more channels 
have failed to deliver their bits, Nj is less than N, and at Q-1 there 
is ambiguity regarding which quantization cell x is in.  The exact 
ambiguities associated with each state depend on both the binary 
representation chosen to express the cell numbers (cell coding) 
and the chosen assignment of the b bits to the M channels 



 

(channel packing).  The compound effect of these two choices 
can be described by an index assignment or by an ambiguity 
function aj(i) that maps {1, 2, …, N} to {1, 2, …, Nj} when the 
channels are in state j.  When the channels are in state j, if the 
received bits allow for differentiation of two quantizer cells Cu 
and Cv, then aj(u) ≠ aj(v).  If the received bits do not allow for 
differentiation of Cu and Cv, then aj(u) = aj(v).   

We now present the M-channel, b-bit COMDSQ design 
problem.  Let αj be the probability that the channels are in state 
j, j=1 to 2M.  Then given the situation described in Figure 1, 
select an ambiguity function, a set of thresholds { } 1
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sets of representation points { } jN
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, j=1 to 2M to minimize the 
mean-squared quantization error ε2, 
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where εj
2 is the mean-squared quantization error when the 

channels are in state j: 
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The joint optimization of ambiguity function (or index 
assignment), thresholds, and representation points remains an 
open question.  However, once an ambiguity function (or index 
assignment) has been picked, it is possible to find thresholds and 
representation points that minimize ε2. 

 Good index assignments minimize the additional 
quantization noise power (ambiguity noise power) that results 
when one or more channels fail to deliver.  Examples of good 
index assignments are given in [4] and [13].  The ambiguity 
noise power is directly related to the index assignment spread.  
When the input data is in quantizer cell Ci and the channels are 
in state j, the index assignment spread is given by  

( ){ } ( ){ }max : min : 1j j
j jk kkk

r a k i r a k i= − = + .  In [4] it is 

demonstrated that spread is an asymptotically good measure of 
ambiguity noise power.  We use the index assignments in [13] 
because they attain the minimum spread that is theoretically 
possible.  We are not aware of any other MDSQ design work 
using these index assignments. 

Necessary conditions for the minimization of ε2 with respect 
to the thresholds and representation points can be found by 
forcing 
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The thresholds t1 and tN+1 are determined by the support of fx(x). 
Equation (4) yields 
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and equation (5) gives 
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Equation (7) says that when the channels are in state j, the ith 
representation point is located at the conditional mean of x, 
given that x is in one of the cells associated (via the ambiguity 
function) with the ith representation point.  As expected, when 
α1=1, (6) and (7) reduce to the conventional Lloyd-Max 
Quantizer (LMQ) design equations [14],[15].  As in the LMQ 
case, (6) and (7) do not provide a closed form solution, but they 
do suggest iterative quantizer design procedures.  We start with 
uniformly distributed thresholds and alternately use (7) to 
update the representation points and (6) to update the thresholds 
until both equations are satisfied simultaneously. 

We use (7) in (3) to get an expression for ε2 that is 
independent of the representation points.  This expression for ε2 
depends only on the thresholds (once a data probability density 
function and an ambiguity function are chosen).  We then form 
the N-1 by N-1 Hessian matrix H with elements hij, 
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Additional details on calculating the COMDSQ Hessian matrix 
are provided in Appendix A. 

When the Hessian is non-negative definite, then equations 
(6) and (7) are both necessary and sufficient for a local 
minimum in ε2.  We have used (6) and (7) to design an 
assortment of 2-channel COMDSQ’s for uniform, Gaussian, 
Laplacian, Rayleigh, and chi-squared distributions with b=2, 4, 
6, and 8.  In all cases we found the resulting Hessian to be non-
negative definite, indicating that in these cases, (6) and (7) are 
both necessary and sufficient for a local minimum in ε2.  

3. TWO-CHANNEL COMDSQ RESULTS 

We have designed COMDSQ’s for the balanced 2-channel case, 
221
bbb == .  Unlike other 2-channel MDSQ work, these 

quantizers are channel optimized.  We model the channels by 
extracting alternate samples from a single Gilbert channel model 
[16].  The Gilbert model can be tuned to approximate a variety 
of real channel loss processes, including Internet packet loss 
[17].  Our procedure of extracting alternate samples is analogous 
to the time-division multiplexing or packet interleaving 
procedures used to create two virtual channels from one physical 
Gilbert channel. The Gilbert channel is characterized by a 2-
state Markov model with the transition probabilities p = 
P(sample i+1 lost | sample i received) and q = P(sample i+1 lost 
| sample i lost).  We require 0 <  p  ≤ 1 and 0 ≤ q < 1.  The 
average loss rate for the physical and virtual channels is 

   .1µ0,
1

µ <<
−+

=
qp

p                         (9) 

As a pair, the two channels will be in one of four possible 
states.  The probabilities of these states are: 
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State 4 corresponds to the loss of all bits and thus cannot affect 
the design of the COMDSQ.  Since (6) is invariant to a common 
scaling of all α values, we can divide all α values by α2, leaving 
the COMDSQ design problem parameterized by the single 
parameter β: 
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When p=q, the physical channel becomes memoryless, the two 
virtual channels become independent, and 

     .
µ

µ1β −
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In the 2-channel COMDSQ design procedure outlined 
below, we assume the physical channel is memoryless and move 
µ through the range (0,1). This moves β through its entire range. 
Thus, in this particular case, the memoryless channel assumption 
is not a restriction.  One can use (11) to calculate β for arbitrary 
µ and q (or equivalently p and q) and then use (12) to find the 
corresponding value of “memoryless µ.” 

Figure 2 shows a typical evolution of COMDSQ thresholds 
as µ increases. When µ=0 we have the conventional b-bit LMQ 
design problem, and this is our starting place.  After iterating to 
satisfy (6) and (7) we increase µ slightly and iterate to satisfy (6) 
and (7) again.  As µ increases, some cells begin to shrink.  
Eventually the thresholds defining certain cells converge, 
reducing the cell to an empty one.  This indicates that the cell 
has become a liability and should be removed from the 
COMDSQ design.  (In Figure 2, the termination of ti indicates 
that the cell Ci has been removed.)  Each quantization cell 
reduces the granular quantization noise when all bits are 
received but each cell also increases distortion due to ambiguity 
when bits are not delivered (ambiguity noise).  As the 
probability of channel failures increases, the importance of 
granular quantization noise decreases, the importance of 
ambiguity noise increases, and these two trends eventually tip 
the balance as to whether a given cell is an overall asset or 
liability.  When the thresholds of a cell converge we remove that 
cell from the COMDSQ design and iterate until (6) and (7) are 
satisfied.  We then increase µ slightly and continue on.  As µ 
approaches 1, the COMDSQ reduces to a pair of identical 

2
b - bit 

LMQ’s.   This is intuitive; when the probability that all b bits 
will be delivered is very small, and the probability that 

2
b bits 

will be delivered is slightly larger, then the best strategy is to 
send two identical 

2
b - bit representations of x. 

For a given channel environment, the COMDSQ minimizes 
MSE with respect to the thresholds and the representation 
points.  The cell elimination procedure described above is 
heuristic and intuitive but not necessarily optimal.  For smaller 
values of b, searches over all of the approximately ( )b22 possible 
cell configurations at fixed µ are practical.  For b = 2 and 4, 
these exhaustive searches have shown that the cell elimination 
procedure described above is very close to optimal.  We are not 

aware of any other MDSQ work that addresses the selection of 
an optimal set of quantization cells for a given channel situation.  
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Figure 2.  Example threshold evolution:  4-bit, 2-channel 

COMDSQ for Gaussian data. 
 

Figure 3 shows a signal-to-quantization noise ratio (SQR) 
example for the 8-bit, 2-channel COMDSQ designed for the 
uniform distribution.  For comparison, the SQR’s for a single 
8-bit LMQ and a pair of 4-bit LMQ’s are shown as well.  Note 
that the COMDSQ SQR approaches the former as µ → 0 and the 
latter as µ → 1.  Between these extremes the COMDSQ 
outperforms both of these alternatives.  The maximal 
improvement is 10.0 dB. (This increases with b.)  The location 
of this maximal improvement is µ = 0.0035 (this decreases with 
b).  For consistency we assume that the COMDSQ and the 8-bit 
LMQ use the same cell coding and channel packing and hence 
have the same ambiguity functions. 
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Figure 3.  Example signal-to-quantization noise ratios:  8-bit, 2-

channel COMDSQ and LMQ’s for uniform data. 
 

The COMDSQ is fairly robust to channel mismatch.  In 
Figure 3 the performance of the COMDSQ has been optimized 
for the channels at every value of µ.  For this particular case we 
can divide the entire µ range into just four intervals and design a 
single COMDSQ for each interval (design at µ = 10-5, 10-4, 10-3, 
and 10-2).  Across the entire µ range, the SQR of the resulting 



 

“coarsely optimized” COMDSQ falls below the SQR of the 
“finely optimized” COMDSQ by no more than 1 dB.  We have 
observed similar robustness to channel mismatch in each of the 
COMDSQ’s we have designed. 

We have also developed an alternative procedure for 
approximately determining the optimal number of cells for a 
given 2-channel environment.  We start with the case of a 2-
channel MDSQ with uniform cell widths operating on input data 
that is uniformly distributed on the interval [0,1].  Each channel 
carries 2

b  bits, a maximum of N=2b cells can be represented, 

and the number of cells used by the quantizer is n, where 
22 2
b bN n N= ≤ ≤ = . 

When both channels are working the quantization error is 
just the granular quantization noise 

 2
1 2

1 .
12n

ε =   (13) 

When a single channel fails, ambiguity noise is added to this 
granular noise.  (We make the very reasonable assumption that 
granular noise and ambiguity noise are independent.)  When 
channel 1 fails, and the input data falls into the quantizer cell Ci, 
the ambiguity noise is 

2

1 2
( )i a ir r− .  When channel 2 fails it is 

3
1 3

( )i a ir r− .    We have empirically determined that for the index 

assignments given in [13], and the uniform data and cell-width 
assumptions given above, the ambiguity noise variance is 
closely modeled by, 
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When 64≤N, this model fits well when either channel fails.  
Thus we have 
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We can find a necessary and sufficient condition for a minimum 
in (16) by taking first and second derivatives.  The result is 
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Result (17) gives the number of quantization cells to use in 

order to minimize total quantization error (granular quantization 
noise plus ambiguity noise) under the conditions described 
above.  Figure 4 shows (17) limited to a maximum value of N 
vs. µ.  This figure also includes empirical results for 
COMDSQ’s designed as described above for the uniform, 
Gaussian and Rayleigh data distributions with b=6.  Result (17) 

generally forms a lower bound for the empirical results and is 
closest to the uniform results since they most nearly conform to 
the uniform data and cell-width assumptions behind (17).  
However, (17) is not much farther from the results for Gaussian 
or Rayleigh data, even though they clearly violate those 
assumptions.  Given this observation, we suggest that (17) might 
be used with some caution for COMDSQ design for data from 
arbitrary distributions. 

 
 

Figure 4.  Number of quantizer cells vs. channel loss ratio for 
equation (17) and for three 6-bit COMDSQ’s designed using the 

procedure given above. 
 
Result (17) leads to an alternate COMDSQ design 

procedure.   In this procedure, we start with N cells and slowly 
move µ from 0 to 1.  Whenever (17) indicates that n<N, we 
select and remove a cell.  There are several ways to select a cell 
for removal.  We can remove the cell that holds the smallest 
probability mass, or we can remove the cell that reduces the 
mean-squared spread the most.  (The mean-squared spread is 
directly related to the ambiguity noise variance.)  The second 
approach has worked best in the cases we have tried.  One might 
also select a cell for removal by stepping along the diagonals of 
the index assignment table defined by aj(i) as described in [4]. 

4. AUDIO CODING EXAMPLES 

We built simple waveform and transform coders to demonstrate 
COMDSQ’s and quantization effects.  The waveform coder uses 
the µ-law compressor and expander functions defined in [18] in 
conjunction with a 10-bit, 2-channel COMDSQ designed for the 
uniform distribution.  For comparison purposes, we also used a 
uniform-distribution 10-bit LMQ with the same ambiguity 
function.  Table 1 defines the contents of example audio files 
from the waveform coder.  All audio files and a table that links 
to them are available in the file voran_demo.zip included in the 
workshop proceedings.  These files are also available at 
www.its.bldrdoc.gov/home/programs/audio/comdsq/demo.htm. 
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Quantizer Both Channels Channel 1 Channel 2 

Lloyd-Max WLb.wav WL1.wav WL2.wav 
COMDSQ 
µ=2x10-5 WC1b.wav WC11.wav WC12.wav 

COMDSQ 
µ=1x10-3 WC2b.wav WC21.wav WC22.wav 

Table 1. COMDSQ waveform coder examples. 
 

The transform coder generates modified discrete cosine 
transform (MDCT) coefficients that are compressed by a power 
law (0.75) and then quantized by COMDSQ’s at 0, 2, 4, 6, 
8, or 10 bits/sample according to a perception-based bit-
allocation algorithm.  For comparison purposes, we also used 
LMQ’s with the same bit allocation and ambiguity function.  All 
quantizers were designed for the uniform distribution.  Table 2 
defines the contents of example audio files from the transform 
coder.  For these examples we used a fixed MDCT length of 256 
samples (5.8 ms) and a 50% window overlap. 

 
Quantizer Both Channels Channel 1 Channel 2 

Lloyd-
Max XLb.wav XL1.wav XL2.wav 

COMDSQ 
µ=1x10-3 XC1b.wav XC11.wav XC12.wav 

COMDSQ 
µ=3x10-2 XC2b.wav XC21.wav XC22.wav 

Table 2. COMDSQ transform coder examples. 
 

It is clear that the LMQ would not be used in channel 
environments where only half the bits might arrive, unless 
additional layers of protection or redundancy were in place.  The 
2-channel COMDSQ has much better robustness to the loss of 
either channel.  On the other hand, since it generally has fewer 
cells, the COMDSQ often induces more quantization noise than 
the LMQ when both channels are received.  As µ gets larger, the 
COMDSQ 2-channel performance continues to drop, its single-
channel performance continues to improve, and the two 
converge as µ → 1.  Increasing µ increases the redundancy 
between the two channels and thus lets us trade robustness 
against channel failures for increased quantization noise when 
there is no channel failure. 

Given estimates of the channel parameters p and q we can 
design 2-channel COMDSQ’s that minimize MSE for those 
channels.  But minimizing MSE is not necessarily equivalent to 
maximizing perceived audio quality.  Subjective and objective 
assessment of audio quality with significant temporal variations 
remain open research areas, and auditory perception, audio 
content, and numerous coding parameters will influence the 
optimal 2-channel COMDSQ operating point. 

 
 
 
 
 
 
 

APPENDIX A 
COMDSQ HESSIAN DERIVATION 

  The N-1 by N-1 Hessian matrix H contains the elements hkl, 
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To calculate these elements, we first write the mean-squared 
quantization error in terms of the thresholds only: 
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For notational simplicity, from this point forward we will not 
explicitly show the functional dependence of representation 
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 on the quantization thresholds. 

Next we find several partial derivatives necessary for (A.1).  
Each of these results is valid for , 2 to .k l N=   We use ( ),i jδ  

to denote the Kronicker delta. 
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Finally, we calculate (A.1) as 
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Note that (A.10) gives five terms for each entry in the 

Hessian matrix.  The first term can be evaluated using (A.8), 
(A.5), and (A.6).  The second and third terms are similar to each 
other and can be evaluated using (A.7) and (A.5).  The final two 
terms are similar and can be evaluated using (A.9) and (A.5). 
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