NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl on-line bibliography > 1998 citations

Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere

Liang, J., L. W. Horowitz, D. J. Jacob, Y. Wang, and A. M. Fiore, et al., 1998: Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. Journal of Geophysical Research, 103(D11), 13,435-13,450.
Abstract: A three-dimensional, continental-scale photochemical model is used to investigate seasonal budgets of O3 and NO y species (including NO x and its oxidation products) in the boundary layer over the United States and to estimate the export of these species from the U.S. boundary layer to the global atmosphere. Model results are evaluated with year-round observations for OO3, CO, and NO y species at nonurban sites. A seasonal transition from NO x to hydrocarbon-limited conditions for O3 production over the eastern United States is found to take place in the fall, with the reverse transition taking place in the spring. The mean NO x /NO y molar ratio in the U.S. boundary layer in the model ranges from 0.2 in summer to 0.6 in winter, in accord with observations, and reflecting largely the seasonal variation in the chemical lifetime of NO x . Formation of hydroxy organic nitrates during oxidation of isoprene, followed by decomposition of these nitrates to HNO 3, is estimated to account for 30% of the chemical sink of NO x in the U.S. boundary layer in summer. Model results indicate that peroxyacylnitrates (PANs) are most abundant in the U.S. boundary layer in spring (25% of total NO y .), reflecting a combination of active photochemistry and low temperatures. About 20% of the NO x emitted from fossil fuel combustion in the United States in the model is exported out of the U.S. boundary layer as NO x or PANs (15% in summer, 25% in winter). This export responds less than proportionally to changes in NO x emissions in summer, but more than proportionally in winter. The annual mean export of NO x and PANs from the U.S. boundary layer is estimated to be 1.4 Tg N yr-1, representing an important source of NO x on the scale of the northern hemisphere troposphere. The eventual O3 production in the global troposphere due to the exported NO x and PANs is estimated to be twice as large, on an annual basis, as the direct export of O3 pollution from the U.S. boundary layer. Fossil fuel combustion in the United States is estimated to account for about 10% of the total source of O3 in the northern hemisphere troposphere on an annual basis.

smaller bigger reset
last modified: August 05 2008.