
ABSTRACT: Region-of-influence (RoI) approaches for estimating
streamflow characteristics at ungaged sites were applied and eval-
uated in a case study of the 50-year peak discharge in the Gulf-
Atlantic Rolling Plains of the southeastern United States. Linear
regression against basin characteristics was performed for each
ungaged site considered based on data from a region of influence
containing the n closest gages in predictor variable (PRoI) or geo-
graphic (GRoI) space. Augmentation of this count based cutoff by a
distance based cutoff also was considered. Prediction errors were
evaluated for an independent (split-sampled) dataset. For the
dataset and metrics considered here: (1) for either PRoI or GRoI,
optimal results were found when the simpler count based cutoff,
rather than the distance augmented cutoff, was used; (2) GRoI pro-
duced lower error than PRoI when applied indiscriminately over
the entire study region; (3) PRoI performance improved consider-
ably when RoI was restricted to predefined geographic subregions.
(KEY TERMS: floods; regional regression; region of influence; sta-
tistical analysis; surface water hydrology; streamflow characteris-
tics.)
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INTRODUCTION

Hydrologists often need to estimate flood frequen-
cies at sites with little or no flow information. One
approach to calculate streamflow characteristics at
ungaged sites is to use regional regression models.
These models relate the basin characteristics, such as
drainage area, to flows, such as the 50-year return
peak discharge observed at a network of gaging sta-
tions in a region of interest. The 50-year return peak

discharge is the annual peak flow that is expected to
be exceeded on average in 1 out of 50 years, which is
equivalent to the 0.2 percentile of the distribution of
annual peak streamflows. Commonly, a region of
interest is delimited by state boundaries or by physio-
graphic boundaries within states. Such regions also
can be identified by use of a variety of criteria, such
as residuals from an overall regression (Wandle, 1977)
or watershed boundaries (Neely, 1986). An alternative
to defining subregions in geographic space is to define
them in predictor variable space; the regression is
performed on a subset of stations for which the basin
characteristics are, by some overall measure, closest
to those at the ungaged site of interest. In the typical
application of this “region-of-influence” approach, fur-
thermore, a unique “region” is defined for each
ungaged site (Burn, 1990; Tasker and Slade, 1994;
Tasker et al., 1996; Pope et al., 2001; Berenbrock,
2002; Feaster and Tasker, 2002). Until now, the
region-of-influence approach has been applied to sub-
divisions contained within the boundaries of a State
(i.e., Feaster and Tasker, 2002). This practice of per-
forming a unique regression for each ungaged site of
interest, however, need not be restricted to approach-
es that use predictor variable space to define hydro-
logic similarity. This practice can just as readily be
applied to approaches where the domain is defined
purely on a geographic basis. Herein, the term “region
of influence” (RoI) is used generally to refer to any
approach where a unique regression is developed for
each ungaged site based on proximal gage sites. Fur-
ther such approaches are qualified as predictor vari-
able (PRoI) or geographic (GRoI), depending on which
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space (predictor variable or geographic) is used to
establish proximity.

When implementation of these general concepts is
considered, a chain of questions naturally arises.

1. How should the region of influence be defined in
practice? Burn (1990) defines the region of influence
as containing a set of all stations closer than R
(defined only in predictor variable space). In various
more recent studies (i.e., Tasker and Slade, 1994;
Tasker et al., 1996; Pope et al., 2001; Berenbrock,
2002; Feaster and Tasker, 2002), the RoI was defined
as a set containing the n closest stations. In the most
general case considered here, the RoI is defined as the
set of all stations closer than a distance R (in predic-
tor variable or geographic space) from the site or, if
the number of stations in that set is smaller than
some minimum allowable number n, the n closest sta-
tions. The inclusion of a minimum number of stations
is motivated by the need for a sufficient number of
degrees of freedom and for statistical robustness in
the regression process. Note that the definition of the
RoI reduces to that of Burn (1990) when n is set to 0
and to that of subsequent investigators when R is set
to 0.

2. How might performance of the RoI approach
depend on the values of R and n chosen? If either R or
n is too large, hydrologically dissimilar stations will
be used in the regression and the approach accuracy
will decrease. If both R and n are too small, the
dataset will be too small to perform a regression. An
optimum pair of values must be located between these
two extremes.

3. How can the optimum (R, n) be determined?
Here, the optimum is defined as that set that yields
the minimum error of prediction within an exhaustive
search based on numerous combinations of these vari-
ables in conjunction with a test dataset. This is a gen-
eralized analog of the approach used in previous
studies (i.e., Tasker and Slade, 1994; Tasker et al.,
1996; Pope et al., 2001; Berenbrock, 2002; Feaster and
Tasker, 2002), where R was set to zero a priori and n
alone was optimized.

4. Can any generalizations be made about the opti-
mal values of (R, n)? Undoubtedly, the results will
depend on the dataset used. In the past studies,
where R was held to 0, optimal values of n typically
were in the range of 10 to 20.

5. Is either GRoI or PRoI superior to the other?

6. How does performance of PRoI depend upon the
spatial scale of the analysis? (The spatial scale of

GRoI is internalized within the approach and an anal-
ogous question does not arise.)

The purpose of this paper is to address Questions
4, 5, and 6.

STUDY AREA AND DATA

Estimates of the 50-year peak discharge (Q50) and
basin characteristics at 1,091 streamflow gaging sta-
tions in the southeastern United States were used in
the regional regression models considered in this
study (Figure 1). The period of records for the 1,091
gaged sites ranged from 10 to 103 years. These sta-
tions were selected because they were contained with-
in the boundaries of a single physiographic region, the
Gulf-Atlantic Rolling Plains (Hammond, 1964). Q50
values were estimated by the standard methods
described in Bulletin 17B of the Hydrology Subcom-
mittee of the Interagency Advisory Committee on
Water Data (1982). Eight basin characteristics were
available for this study: drainage area, main channel
slope, main stream channel length, mean basin eleva-
tion, forested area, area of surface water bodies, mean
minimum January temperature, and mean annual
precipitation. A best subsets regression analysis was
used to identify drainage area (A), main channel slope
(S), and mean annual precipitation (P) as the most
significant predictor variables. The A and S values
were estimated from U.S. Geological Survey 1:24,000
scale topographic maps. S was calculated as the aver-
age channel slope (elevation difference divided by dis-
tance along the main channel) between points located
10 and 85 percent of the distance from the gaging sta-
tion to the basin divide. Isohyetal maps (NOAA, 1976-
1978) were used to obtain P.

METHODOLOGY

The regression model was based on a power law
relation between the 50-year peak discharge (m3/s)
and the various basin characteristics given as

where ε is the random error (mean equal to zero and
variance equal to σ2). This model permits use of lin-
ear equations based on the logarithms (base 10) for
the regression
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where b0, b1, b2, and b3 are the constants to be deter-
mined with the regression. The variance inflation fac-
tor (VIF) is a metric that can be used to check for
multicollinearity among predictor variables. The VIF
is given as

where R2
VIF is the coefficient of determination

obtained when the predictor variable of interest is
regressed on the remaining predictor variables. A
high correlation among the predictor variable of inter-
est and the other variables indicate a large R2

VIF value
resulting in a large VIF value, and vice versa for low
correlations. A value of the VIF greater than 5 to 10
would be indicative of significant multicollinearity
(Montgomery et al., 2001). The average VIF values for
log(A), log(S), and log(P) were 4.6, 4.6, and 1.2,
respectively, so the multicollinearity was determined
not to be significant.

For any site where streamflow characteristics were
to be estimated, the constants in Equation (1) were

determined by regression over all stations within the
RoI of the site. The RoI was defined in terms of R and
n as follows. The RoI includes the larger of two sets:
(1) all stations at a distance smaller than R from the
estimation site or (2) the n closest stations. For GRoI,
distance was defined simply as geographic distance.
For PRoI, the distance from an estimation site i to a
station j was defined as

where M = 3 is the total number of basin characteris-
tics being analyzed, xim and xjm are the values of the
logarithm of basin characteristics m at sites i and j,
and σm is the sample standard deviation (over the
entire dataset) of the logarithm of basin characteristic
m. The selection of R and n is explained below.

The log space metrics for performance evaluation
were the root mean square error (RMSE) (Aitchison
and Brown, 1957), expressed, in percent, as
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Figure 1. Southeastern United States. Triangles represent individual gaged sites.
Groups A, B, and C are used for PRoI(0s) and RoI(∞s) analyses.

log log( ) log( ) log( )Q b b A b S b P50 0 1 2 3= + + + + ε (2)

VIF RVIF= −( )−
1 2 1

(3)

R
x x

ij
im jm

mm

M
=

−















=

∑ σ

2

1

1 2/

(4)

RMSE = ×( ) −





100 20 074 10 1
2 1 2

.
/

σε (5)



where

and the average error (BIAS) as

where Q50,i is the estimated 50-year peak flow at site
i based on streamflow records, Q̂50,i is the regional
regression estimate of the 50-year peak flow at site i,
and N is the total number of sites in either the opti-
mization or evaluation dataset. 

Performance was evaluated by split sampling
(Snee, 1977). The set of 1,091 stations was split into
three equally sized subsets with similar statistical
properties (Figure 2). Two of the three subsets then
were combined and used in an optimization step to
calculate RMSE values for various combinations of R
and n, and the lowest resulting values of RMSE and
the corresponding R and n values were noted. The
third subset then was used to evaluate model perfor-
mance by calculating the RMSE value associated with
the optimal R and n determined in the previous step.
All three possible combinations of subsets for this
optimization evaluation procedure were applied, and
an overall RMSE value then was computed as the
root mean square value of the three individual values.

Some limiting cases of PRoI and GRoI also were
considered, consistent with previous implementations
of PRoI in the literature. Specifically, the PRoI(0) and
GRoI(0) approaches were defined as special cases of
PRoI and GRoI where the RoI always was defined
simply to include the n closest stations, and these two
cases were represented on Figures 3 and 4 as R equal
to zero. Optimization and performance evaluation
were carried out as described previously, with the
exception that R was constrained to be zero.

A single, common limiting case of both PRoI and
GRoI, here denoted as RoI(∞), was obtained when R
was made arbitrarily large. In this case, all stations
fall within the RoI of any ungaged site, so a single 
regression was formed on the basis of all data (for
each optimization evaluation dataset). No optimiza-
tion was done because the value of n was irrelevant
when R was infinite.

Because the available predictor variables were not
a complete description of the hydrologic character of a
basin, it should not be expected that the PRoI
approaches will perform well when applied over an
area that is too large. For example, basin mean annu-
al precipitation may not give a complete picture of the
climatic conditions conducive to flood generation in
the basin. For this reason, the PRoI(0) approach was
applied not only to the entire study area, but also sep-
arately to each of three groups of gages associated
with three subregions (Figure 1), with RMSE results
aggregated to the entire region. This “subregional”
variation of PRoI(0) was denoted by PRoI(0s). For
comparison, the RoI(∞) approach also was carried out
on the basis of the same subregions, and this case was
denoted by RoI(∞s). An additional special analysis for
the State of Georgia extended this analysis to a scale
even smaller than the subregions. This analysis is
explained in the RESULTS section.

Table 1 is presented to summarize all the different
RoI approaches examined in this study.

RESULTS

Examples of the dependence of RMSE on R and n
during the optimization step are shown in Figures 3
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Figure 2. Box and Whisker Plots of the Three Split Sampled Data
Subsets. For each box the middle horizontal lines represents the

median, the upper line is the 75th percentile, and the lower
line is the 25th percentile. The ‘*’ represent the outliers.

Each value was subtracted from the mean and
normalized by the standard deviation.



and 4. Generally, such surfaces were smooth, and an
unambiguous global minimum was found easily. For
the PRoI example (Figure 3), RMSE was largest when
R was large and smallest when R was zero and n was
20. For the GRoI example (Figure 4), the minimum
error was found when n was 10 and R was 100 km.

In general, the PRoI approach and its PRoI(0) vari-
ation gave identical results (Table 2). That is, the
PRoI optimum in the optimization step always was
found with R equal to zero. Thus, no additional bene-
fit was obtained by introducing the R parameter. In
contrast, the GRoI approach generally produced best
results in the optimization step when both R and 
n were nonzero. Counterintuitively, however, the
GRoI(0) approach produced better overall results in
the evaluation step than the GRoI approach (Figure
5).

Among the five approaches where predefined sub-
regions were not used to produce the regression equa-
tions, the lowest RMSE was produced with GRoI(0)
(Figure 5), followed by the general GRoI approach, the
(equivalent) PRoI and PRoI(0) approaches, and the
RoI(∞) approach. This ordering also was found when
RMSE was evaluated separately across the three sub-
regions. In the two subregional regression approach-
es, results were better than in the corresponding
whole region approaches. RoI(∞s) results were
approximately equal to the best results (GRoI) from
the whole region approaches. PRoI(0s) results were

improved over PRoI(0), but not as good as those from
GRoI or RoI(∞s). In Figures 5 and 6, the bars for
RoI(∞) and PRoI in Groups A, B, and C represent the
errors for the stations contained in the corresponding
group.

The whole region approaches were unbiased
regionally (Figure 6). On a subregional basis, the low-
est BIAS among the whole region approaches was
associated with GRoI, followed by GRoI(0), the (equiv-
alent) PRoI and PRoI(0) approaches, and the RoI(∞)
approach. The subregional approaches were unbiased
over individual subregions. 

Until recently, PRoI only has been applied on phys-
iographic regions contained within the boundary of a
State. The performance of the PRoI approaches
depends on the geographic scope of the analysis (Fig-
ures 5 and 6). To explore this dependence further and
to provide a basis for comparison with past analyses
(e.g., Tasker et al., 1996), the PRoI(0) approach was
applied also using only data from the portion of the
Gulf-Atlantic Rolling Plains physiographic region in
Georgia (one of the states with an especially high den-
sity of gaging stations). The resulting RMSE and
BIAS were compared with those (for the same physio-
graphic region in Georgia) from the same approach
applied on subregions and the entire region. Results
also were compared with those for the RoI(0)
approach applied only to the Georgia gaging stations
(Figures 7 and 8). Application of PRoI(0) over the 
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TABLE 1. Summary of Region-of-Influence Approaches Analyzed in This Study.

Set From Which Stations Selected From Set,
Approach Stations Are Selected Distance Measure, Rij as a Function of R and n Approach

GRoI All in study area Ordinary Geographic Distance All with Rij < R, plus as many additional GRoI
stations, closest first, as needed to obtain
at least n stations

GRoI(0) Same as for GRoI. Because R = 0, this GRoI(0)
simply results in selection of the n closest
stations

RoI(∞) All in study area Either of above All stations in set, because R = ∞ RoI(∞)
RoI(∞s) All in subregion of study area (makes no difference) All stations in set, because R = ∞ RoI(∞s)

Notes: A parenthetic 0 or ∞ in the identifier of the approach refers to the cutoff value R. Note that there is no GRoI(0s), because the use of
geographic distance to define the RoI obviates the need for subregionalization. The choice of distance measure is irrelevant for RoI(∞) and
RoI(∞s), because with either measure, all stations in the set will be included, since Rij is always finite, regardless of the definition of Rij. In
the rule for selection of station, “closest” means closest with respect to the distance measure in use, predictor variable (for the PRoI approach-
es) or geographic (for GRoI approaches).
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portion of the physiographic region within Georgia
produced the lowest RMSE and BIAS, comparable to
those from larger study areas such as RoI(∞s). These
results indicate that PRoI approach performs better
when optimization is limited to small geographic
scales, such as the size of a state, than when it is not.
This is consistent with satisfactory performance hav-
ing been found in other studies when optimization
was limited to physiographic provinces within states.

DISCUSSION

When the simple RoI(∞) approach was applied over
subjectively chosen groups of States within the Gulf-
Atlantic Rolling Plains, the resulting accuracy essen-
tially equaled or exceeded that of all other approaches
applied to the regional dataset. However, the GRoI 
approach may provide a competitive, objective alter-
native to the subjective definition of subregions for
regression. When applied to the regional dataset, the 

GRoI approach performed about as well as the
RoI(∞s) approach.

The GRoI approach is an automated way of defin-
ing geographic subregions. The estimated streamflow
characteristics have spatial correlation as a result of
correlation in the underlying basin and climate char-
acteristics. This correlation is exploited in the GRoI
approach.

The PRoI approach potentially is more powerful
than the GRoI approach because the PRoI approach
makes more explicit the dependence of streamflow
characteristics on basin and climatic characteristics.
If the full set of relevant basin and climatic character-
istics could be known and measured, then PRoI might
outperform GRoI on a regional scale. The set of basin
and climatic characteristics considered here was lim-
ited, and it can be expected that performance of PRoI
may improve relative to that of GRoI if a more com-
plete set of predictands is used. These results should
not be seen as a failure of the PRoI approach. Results 
from the present study may be considered a baseline
to use for comparison of future results.
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Figure 3. Optimization Set RMSE, in Percent, as a Function of R and n for the PRoI Approach, for One of the Three Optimization
Evaluation Sets. The combination of R and n that result in the lowest RMSE values are associated with the black region.

Results are interpolated from computations with R and n increments of 0.25 and 5, respectively.



An attempted generalization of the PRoI approach
to consider not only using the closest n gaging sta-
tions, but also seeking to maintain a constant value of

similarity (as measured by R) across all basins, failed
to produce any improvement in performance when the
approach was applied over the whole study region.
That is, the PRoI approach, as defined here, per-
formed no better than the PRoI(0) approach, which
was equivalent to the implementations of Tasker and
Slade (1994), Tasker et al. (1996), Pope et al. (2001),
and Feaster and Tasker (2002).

Analogously, the more general GRoI approach
introduced here can be considered inferior to the sim-
pler GRoI(0) approach. When selecting stations for
regression on the basis of geographic distance, it
appeared advantageous simply to choose the n closest
stations, rather than to consider any expansion of the
estimation set when nearby stations are available.

Results presented here may be biased by the
neglect of cross-correlation of flow records among
nearby stations. This model bias could result in
deceptively low error statistics. The size of this bias
might tend to be larger for GRoI than for PRoI, 
because stations used for regression with GRoI tend
to be closer to the estimation site, on average, than
stations used with PRoI. The use of a generalized 
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Figure 4. Optimization Set RMSE, in Percent, as a Function of R and n for the GRoI Approach, for One of the Three Optimization
Evaluation Sets. The combination of R and n that result in the lowest RMSE values are associated with the black region.

Results are interpolated from computations with R and n increments of 25,000 meters and 5, respectively.

TABLE 2. Optimized Values of n and R.

Approach n R

PRoI 20, 10, 15 0, 0, 0

GRoI 20, 20, 10 100, 100, 100

PRoI(0) 20, 10, 15 (0, 0, 0)

GRoI(0) 45, 45, 45 (0, 0, 0)

PRoI(0s) – Subregion (Group) A 50, 50, 60 (0, 0, 0)

PRoI(0s) – Subregion (Group) B 50, 50, 50 (0, 0, 0)

PRoI(0s) – Subregion (Group) C 60, 30, 10 (0, 0, 0)

Notes: In each entry, the three values pertain to estimation predic-
tion sets 1, 2, and 3, respectively. Parenthetic values are assigned
a priori with the approach. For GRoI, R is given in km; PRoI, R is
dimensionless.
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Figure 5. RMSE, in Percent, Evaluated Over the Evaluation Dataset. ‘A,’ ‘B,’ and ‘C’
represent the groups on Figure 1, and ‘A+B+C’ is for the entire study area.

Figure 6. The Average Differences (BIAS) Evaluated Over the Evaluation Dataset. ‘A,’ ‘B,’ and ‘C’
represent the groups on Figure 1, and ‘A+B+C’ is for the entire study area.



least squares regression would remove this bias 
(Stedinger and Tasker, 1985). However, the data for
such an analysis were not available at the time of this
study.

ACKNOWLEDGMENTS

The authors wish to thank Wladmir Guimaraes, U.S. Geological
Survey, Columbia South Carolina, for providing the estimates of 50-
year flood peaks and basin characteristics. The authors also thank
Krista Dunne, U.S. Geological Survey, Princeton New Jersey, for
providing geographic datasets used in this study.

LITERATURE CITED

Aitchison, J. and J.A.C. Brown, 1957. The Lognormal Distribution.
Cambridge University Press, Cambridge, Massachusetts, 176
pp.

Berenbrock, C., 2002. Estimating the Magnitude of Peak Flows at
Selected Recurrence Intervals for Streams in Idaho. U.S. Geolog-
ical Survey Water-Resources Investigations Report 02-4170, 59
pp.

Burn, D.H., 1990. Evaluation of Regional Flood Frequency Analysis
With a Region of Influence Approach. Water Resour. Res.
26(10):2257-2265.

Feaster, T.D. and G.D. Tasker, 2002. Techniques for Estimating the
Magnitude and Frequency of Floods in Rural Basins of South
Carolina, 1999. U.S. Geological Survey Water Resources Investi-
gations Report 02-4140, 41 pp.

Hammond, E.H., 1964. Analysis of Properties in Land Form Geog-
raphy: An Application to Broad-Scale Land Form Mapping.
Annals Assoc. American Geophys. 54:11-23.

Hydrology Subcommittee of the Interagency Advisory Committee
on Water Data, 1982. Guidelines for Determining Flood Flow
Frequency. Bulletin 17B of the Hydrology Subcommittee, Office
of Water Data Coordination, U.S. Geological Survey, Reston, Vir-
ginia, 99 pp.

Montgomery, D.C., E.A. Peck, and G.G. Vining, 2001. Introduction
to Linear Regression Analysis (Third Edition). John Wiley and
Sons, Inc., New York, New York, 641 pp.

Neely, B., 1986. Magnitude and Frequency of Floods in Arkansas.
U.S. Geological Survey Water Resources Investigations Report
86-4335, 51 pp.

Pope, B.F., G.D. Tasker, and J.C. Robbins, 2001. Estimating the
Magnitude and Frequency of Floods in Rural Basins of North
Carolina – Revised. U.S. Geological Survey Water Resources
Investigations Report 01-4207, 44 pp.

Snee, R.D., 1977. Validation of Regression Models: Models and
Examples. Technometrics 19:415-428.

Stedinger, J.R. and G.D. Tasker, 1985. Regional Hydrologic Analysis
1 – Ordinary, Weighted, and Generalized Least Squares Com-
pared. Water Resour. Res. 21(9):1421-1432.

Tasker, G.D., S.A. Hodge, and C.S. Barks, 1996. Region of Influence
Regression for Estimating the 50-year Flood at Ungaged Sites.
Water Resources Bulletin 32(1):163-170.

Tasker, G.D. and R.M. Slade, Jr., 1994. An Interactive Regional
Regression Approach to Estimating Flood Quantiles. In: Water
Policy and Management: Solving the Problems, D.G. Fontane
and H.N. Tuvel (Editors). ASCE Proceedings of the 21st Annual
Conference of the Water Resources Planning and Management
Division, pp. 782-785.

NOAA (National Oceanic and Atmospheric Administration), 1976-
1978. Climates of the United States, Climatology of the United
States. No. 60, Parts 1-52, U.S. Department of Commerce, Wash-
ington, D.C.

Wandle, S.W., 1977. Estimating the Magnitude and Frequency of
Floods on Natural-Flow Streams in Massachusetts. U.S. Geolog-
ical Survey Water Resources Investigations Reports 77-39, 27
pp.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 143 JAWRA

AN ANALYSIS OF REGION-OF-INFLUENCE METHODS FOR FLOOD REGIONALIZATION IN THE GULF-ATLANTIC ROLLING PLAINS

Figure 7. RMSE, in Percent, Comparison of Predictor Variable
Region-of-Influence (PRoI) Approaches in Georgia.

Figure 8. BIAS Comparison of Predictor Variable
Region-of-Influence (PRoI) Approaches in Georgia.


