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[1] The satellite Gravity Recovery and Climate Experiment (GRACE) provides data
describing monthly changes in the geoid, which are closely related to changes in vertically
integrated terrestrial water storage. Unlike conventional point or gridded hydrologic
measurements, such as those from rain gauges, stream gauges, rain radars, and radiometric
satellite images, GRACE data are sets of Stokes coefficients in a truncated spherical
harmonic expansion of the geoid. Swenson and Wahr [2002] describe techniques for
constructing spatial averaging kernels, with which the average change in vertically
integrated water storage within a given region can be extracted from a set of Stokes
coefficients. This study extends that work by applying averaging kernels to a realistic
synthetic GRACE gravity signal derived in part from a large-scale hydrologic model.
By comparing the water storage estimates inferred from the synthetic GRACE data with
the water storage estimates predicted by the same hydrologic model, we are able to assess
the accuracy of the GRACE estimates and to compare the performance of different
averaging kernels. We focus specifically on recovering monthly water storage variations
within North American river basins. We conclude that GRACE will be capable of
estimating monthly changes in water storage to accuracies of better than 1 cm of water
thickness for regions having areas of 4.0 � 105 km2 or larger. Accuracies are better for
larger regions. The water storage signal of the Mississippi river basin (area = 3.9 �
106 km2), for example, can be obtained to better than 5 mm. For regional- to global-scale
water balance analyses, this result indicates that GRACE will provide a useful, direct
measure of seasonal water storage for river-basin water balance analyses; such data are
without precedent in hydrologic analysis. INDEX TERMS: 1214 Geodesy and Gravity:

Geopotential theory and determination; 1223 Geodesy and Gravity: Ocean/Earth/atmosphere interactions

(3339); 1645 Global Change: Solid Earth; 1655 Global Change: Water cycles (1836); 1829 Hydrology:

Groundwater hydrology; KEYWORDS: GRACE, time-variable gravity, groundwater, soil moisture, water

storage, water budget
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1. Introduction

[2] The NASA/DLR (Deutsches Zentrum fur Luft und
Raumfahrt) satellite mission GRACE (Gravity Recovery
and Climate Experiment), launched in March, 2002, is
intended to provide highly accurate monthly solutions for
the Earth’s gravity field at scales of a few hundred km and
larger. The mission, which has a 5-year lifetime, consists of
two identical satellites in identical Earth orbits, one follow-
ing the other at a distance of about 220 km. The satellites
use microwaves to continually monitor their separation
distance. As the satellites pass through gravity highs or

lows, that distance changes. Thus, after removing the effects
of nongravitational accelerations as detected by on-board
accelerometers, the distance measurements can be used to
solve for the gravity field.
[3] The month-to-month gravity variations obtained by

differencing the GRACE gravity fields provide information
about changes in the distribution of mass within the Earth
and at its surface. There are a surprisingly large number of
Earth-based processes likely to produce a time-variable
gravity signal detectable by GRACE, including mass varia-
tions in the oceans, the atmosphere, the polar ice sheets, and
the solid Earth. In general, the largest time-variable gravity
signals observable in the GRACE data are expected to come
from changes in the distribution of water and snow stored on
land [Wahr et al., 1998]. As a result, GRACE promises to
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provide a wealth of new and useful hydrologic information:
namely, estimates of monthly changes in continental water
storage, averaged over scales of several hundred km or larger
anywhere in the world [Dickey et al., 1997; Wahr et al.,
1998; Rodell and Famiglietti, 1999, 2001, 2002; Swenson
and Wahr, 2002]. The primary purpose of this paper is to
describe optimal methods for constructing those estimates,
and to determine their probable accuracy.
[4] To determine whether GRACE is able to detect water

storage variability within a particular region, two issues
must be addressed. One is whether the gravitational effects
are greater than the GRACE observational errors. Because
of the decreased sensitivity of GRACE at short wave-
lengths, accurate estimates can be obtained only for regions
that are several hundred km or more in scale. The other
issue is whether the gravitational signal from the region of
interest can be separated from all the other time-varying
gravitational signals acting on GRACE.
[5] There are two types of separation problems. One is

when the contaminating signal comes from a different
region on the surface, such as from the water storage
variability in a neighboring region, or from the ocean. In
principle, GRACE could remove the effects of any such
signals if it had perfect spatial resolution. One of the main
concerns raised in this paper, and in an earlier paper
[Swenson and Wahr, 2002] extended here, is to find a
method of analysis that can optimally resolve the competing
criteria of needing short scales to minimize the separation
problem, but preferring longer scales to reduce the effects of
GRACE measurement errors.
[6] The other separation problem arises when there are

mass variations either in the atmosphere above the region, or
in the solid Earth below it. Gravity has no vertical resolving
power. If there is unmodeled mass variability in the atmo-
sphere or solid Earth, its effects will be mapped directly into
the water storage estimates. The GRACE Project is removing
the effects of the atmospheric signal from the GRACE
measurements prior to constructing each gravity field, using
6-hourly global surface pressure and geopotential height
fields provided by the European Center for Medium Range
Weather Forecasts (ECMWF). However, there are errors in
the ECMWF fields, and those errors will affect the water
storage estimates. The atmospheric errors are likely to be the
limiting error source at scales of about 700 km and larger, but
their effects on the regionally averagedwater storage recovery
are generally not apt to be larger than a few mm of equivalent
water thickness [Velicogna et al., 2001].
[7] In the solid Earth, by far the largest inadequately

modeled contributions come from postglacial rebound
(PGR), the ongoing, viscoelastic response of the solid Earth
to the deglaciation at the end of the last ice age (for recent
reviews, see Wu [1998] and Mitrovica and Vermeersen
[2002]). This signal is linear in time, and is concentrated
under Canada, Scandinavia, Antarctica, and Greenland.
Thus it will contaminate GRACE estimates of the linearly
varying water storage signals in those regions. Its effects
will spill over somewhat into neighboring regions, and this
issue is addressed in section 5.2. PGR should have no effect
on the recovery of nonlinear temporal variability.
[8] The remainder of the gravity anomaly signal can then

be attributed to changes in continental water storage, snow,
and ice. Because water storage variability occurs in a thin

layer at the surface of the Earth, GRACE is insensitive to
the vertical distribution of mass [Swenson and Wahr, 2002].
GRACE thus senses changes in vertically integrated water
storage, i.e., the total change in groundwater, soil moisture,
surface water, snow and ice.
[9] The GRACE data set, which is provided to users

every month, is not a set of point measurements. Instead, it
is a finite set of spherical harmonic (Stokes) coefficients.
These coefficients can be used to construct water storage
averages over regions of any size and shape anywhere on
the globe. However, the problem of constructing these
averages is complicated by the competing requirements of
reducing the effects of GRACE measurement errors (caused
by such things as system-noise error in the inter-satellite
range-rate, accelerometer error, error in the ultrastable
oscillator, and error in the orbits) while minimizing the
contaminating signal from adjacent regions.
[10] Swenson and Wahr [2002] developed a method of

estimating water storage variability in an arbitrary region
that minimizes the combined effects of satellite measure-
ment errors and unwanted signals from nearby regions
(referred to as ‘‘leakage’’). This method uses measurement
error covariance matrices provided by the GRACE Project
to construct averaging kernels for the region of interest. The
errors in these water storage results due to leakage from
surrounding regions can be reliably estimated only if there
is a priori knowledge of certain characteristics of mass
variability within those regions, such as the amplitude of
monthly variability, the temporal correlation between the
region of interest and neighboring regions, and the rate at
which temporal correlations change with distance.
[11] One way of estimating the uncertainty in GRACE

water storage estimates is to simulate GRACE data by
combining large-scale (preferably global), gridded models
of the expected monthly water storage signal with models of
errors in the meteorological fields used to remove atmo-
spheric effects and GRACE measurement errors. Regional
water storage estimates can be constructed from those
simulated data, and those estimates can be compared with
the true regional averages obtained from the hydrology
model alone. The differences are a measure of the error in
the GRACE estimates. We construct such simulations in this
paper.
[12] Our objectives are as follows: (1) to demonstrate how

the methods developed by Swenson and Wahr [2002] can be
applied and optimized when dealing with the signals
expected in actual GRACE data and (2) to illustrate how
simulations can be used to estimate the uncertainties in the
water storage estimates. Our simulations assume a specific
global hydrology model and adopt the prelaunch estimates of
the GRACE measurement errors. Although users will cer-
tainly use other hydrology models, and the error covariance
matrices for real GRACE data are likely to differ, perhaps
substantially, from the prelaunch estimates, the simulation
methods described here will still be appropriate. In addition,
preliminary predictions are presented of GRACE water
storage accuracies for specific North American river basins.

2. Synthetic GRACE Data

[13] The process of creating synthetic GRACE gravity
data is described in detail by Wahr et al. [1998]. Here we
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summarize this procedure. Five years of synthetic, monthly
GRACE gravity solutions, represented in the form of
monthly Stokes coefficients (see section 3, below), were
constructed from models of surface-mass variability. Mod-
elled quantities include terrestrial water storage (soil mois-
ture, groundwater, surface water, and snowpack),
oceanographic processes, errors resulting from the removal
of the contribution from atmospheric mass redistribution,
and expected GRACE measurement errors.
[14] Continental storage of root-zone soil water, ground-

water, and snowpack were simulated on a 1-degree longi-
tude/latitude grid by the water and energy balance model of
Milly and Shmakin [2002]. The model was driven by
observed precipitation for the period 1979–1998 as given
by the Climate Prediction Center (CPC) Merged Analysis of
Precipitation (CMAP); further details of the methodology
and an evaluation of the model accuracy are given by
Shmakin et al. [2002]. The five-year period from 1994–
1998 was used in this analysis. Output from the ocean
model, a derivative of the Los Alamos Parallel Ocean
Program ocean general circulation model [Dukowicz and
Smith, 1994] run at the National Center for Atmospheric
Research (NCAR), was provided by M. Molenaar and
F. Bryan (personal communication, 1999). Errors in atmo-
spheric mass corrections were estimated as the de-meaned
difference between the ECMWF and NCEP (National
Centers for Environmental Prediction) global gridded sur-
face pressure fields, divided by

ffiffiffi
2

p
. The variance of the

satellite measurement errors as a function of wavelength,
consistent with the GRACE Science and Mission Require-
ments Document [Jet Propulsion Laboratory, 2001], was
provided by B. Thomas and M. Watkins at JPL (personal
communication, 2001). A random number generator was
used to create a representation of satellite measurement
errors for individual Stokes coefficients corresponding to
the given variances.
[15] One source of surface-mass variability, postglacial

rebound, was excluded from our simulated data. The results
shown below should therefore not be used to assess
GRACE’s ability to recover linearly varying water storage
signals at high northern latitudes, particularly in Canada and
Scandinavia. This issue is discussed in more detail in
section 5.2.

3. Estimating Changes in Regional Averages of
Continental Water Storage

[16] The gravitational equipotential surface most closely
coinciding with mean sea level over the ocean is known as
the geoid. Changes in the distribution of mass in the Earth,
e.g., continental water storage variation, are responsible for
spatiotemporal changes in observations of the geoid, N.
Typically, the geoid is expressed as a sum of normalized
associated Legendre functions, ~Plm, [see, e.g., Chao and
Gross, 1987]:

N q;fð Þ ¼ a
Xlmax
l¼0

Xl

m¼0

~Plm cos qð Þ Clm cosmfþ Slm sinmff g; ð1Þ

where q is co-latitude, f is longitude, a is the mean radius of
the Earth, and the Clm and Slm are dimensionless Stokes
coefficients. The spatial scale (half-wavelength) of a Legen-

dre function is roughly (20,000/l) km. GRACE Project
personnel will use the GRACE measurements to solve for
the Stokes coefficients up to degree l 	 100 every 30 days,
and these coefficients will be made available to users.
[17] Swenson and Wahr [2002] showed that changes in

the GRACE Stokes coefficients, �Clm and �Slm, can be
used to estimate �esregion, the water storage anomaly within
a region, as:

�esregion ¼ Xlmax
l¼0

Xl

m¼0

1

�region

a rE
3

2l þ 1ð Þ
1þ klð Þ

�
Wc

lm�Clm þWs
lm�Slm

�
:

ð2Þ

where rE is the average density of the Earth, �region is the
angular area of the region (the area divided by a2), lmax =
100 is the largest angular degree in the GRACE gravity
solution, and kl are load Love numbers representing the
effects of the Earth’s response to surface loads. Values of the
Love numbers are given in Wahr et al. [1998]. Wlm

c and
Wlm

s , the averaging kernel coefficients, are specifically
constructed for the region to be isolated, and they determine
the relative amounts of satellite and leakage errors. Swenson
and Wahr [2002] outlined four methods of creating averag-
ing kernels: choosing an exact (or block) average, Gaussian
convolution, the use of Lagrange multipliers, and minimi-
zation of the sum of satellite and leakage errors.

3.1. Examples

3.1.1. Exact Averaging Kernel
[18] For the first of two examples, we use the exact

averaging kernels of the Mississippi and Ohio river basins
to recover monthly basin averages from the synthetic
GRACE Stokes coefficients described in section 2. The
weighting coefficients of an exact averaging kernel consist
of the spherical harmonic coefficients of the basin function,
which is defined such that it takes values of 1 inside the
basin and 0 outside. The term ‘‘exact’’ is applied to this
averaging kernel because it would provide the exact value
of the basin average in the absence of satellite measurement
errors. It will be shown in section 3.1.3 that measurement
errors lead to inaccurate water storage estimates when the
exact averaging kernel is employed (see Swenson and Wahr
[2002] for a detailed explanation of this result).
3.1.2. Fixed Satellite Measurement Error
Averaging Kernel
[19] Swenson and Wahr [2002] described alternative

averaging kernels constructed using the method of Lagrange
multipliers. This technique creates an averaging kernel that
minimizes the contribution of either the measurement error
or the leakage error, while constraining the other error
(leakage or measurement, respectively) to some desired
value. In this case, Swenson and Wahr used a measure of
leakage error based solely on the difference in shape
between the exact and smoothed averaging kernel, and
therefore required no a priori knowledge of the signal. As
a second example, an a priori model for the satellite
measurement error is used to construct an averaging kernel
such that the variance of the expected measurement error is
constrained to a value of 0.5 cm.
3.1.3. Comparison
[20] The monthly basin average recovered with the exact

averaging kernel for each basin (dashed line) is compared to
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the true basin average (solid line) for each basin in Figures 1a
and 1c. Table 1 (under the heading ‘‘Exact’’) gives RMS
values of the recovered water storage signal, total recovery
error, i.e., the differences between the two time series
shown in Figure 1, as well as the RMS contributions from
each of the individual error sources that comprise the total
error: satellite measurement error, leakage from water
storage signals outside the basin, error resulting from the
removal of the atmospheric signal, and leakage from mass
variation in the oceans. Note that in any column of Table 1,
the squares of the individual errors do not necessarily sum
to the square of the total error, because individual errors
may be correlated.
[21] Satellite measurement error is the largest error com-

ponent when an exact averaging kernel is used (Table 1).
The error is significantly larger for the Ohio Basin than for
the Mississippi Basin, because the Ohio Basin is smaller,
and the errors in the Stokes coefficients are larger at smaller
scales (i.e., at larger angular degrees). The satellite mea-
surement error would continue to increase if the basin size

were decreased further. The ocean and water storage
leakage errors are not exactly zero, because the sum over
l in (2) is truncated at l = lmax, rather than going to infinity.
This truncation causes the equivalent averaging kernel in
the spatial domain to differ slightly from the true basin
function.

Figure 1. Recovered monthly anomalies of basin-averaged continental water storage for the Mississippi
and Ohio river basins. (a) The results for the exact averaging kernel of the Mississippi basin. (b) The
results for an averaging kernel designed to include no more than 0.5 cm of satellite measurement error.
(c and d) The same as Figures 2a and 2b except that they are for the Ohio basin. The y axis is in units of
centimeters of equivalent water thickness, and the x axis is in units of months. Solid line represents the
true change, and dashed line represents the value estimated from synthetic GRACE data.

Table 1. Recovery RMS Water Storage Signal and Errorsa

Basin Kernel Type

Mississippi Ohio

Exact

Fixed Satellite
Error Exact

Fixed Satellite
Error

Water Storage Signal 1.82 1.69 5.60 3.34
Total Error 1.27 0.50 4.23 0.59
Satellite Measurement Error 1.24 0.42 4.19 0.56
Water Storage Leakage 0.02 0.02 0.06 0.11
Atmospheric Removal Error 0.26 0.26 0.20 0.21
Ocean Leakage 0.02 0.02 0.01 0.01

aIn centimeters of equivalent water thickness.
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[22] The results of using an averaging kernel constrained
to give 0.5 cm of measurement error for the Mississippi and
Ohio river Basins are shown in Figures 1b and 1d. The
RMS contributions from the individual error sources are
shown in Table 1, in the columns labeled ‘‘Fixed Satellite
Error’’. In each case, the satellite measurement errors
account for about 0.5 cm of the total error, as they should,
because that was the contribution specified when construct-
ing the averaging kernels. (The satellite measurement error
contributions are not exactly 0.5 cm, because the synthetic
data were constructed using a statistical realization of the
expected satellite errors, while the 0.5 cm requirement refers
to the ensemble average of all possible statistical realiza-
tions). The leakage errors remain small and are not much
different than they were for the exact averaging kernel. The
RMS of the total error has thus decreased dramatically for
each basin: from 1.27 cm to 0.50 cm for the Mississippi,
and from 4.23 to 0.59 for the Ohio.
[23] These total errors, however, and the total errors

obtained with the other variation of the Lagrange multiplier
approach (not shown here) where the leakage is specified
and the effects of satellite measurement errors are mini-
mized, are larger than those we will obtain in the next
section by minimizing the total error. Our rationale for
showing the Lagrange multiplier method is to offer an
alternative to the total error minimization method, described
below, that is independent of assumptions about the specific
nature of the temporal and spatial characteristics of the
signal. In regimes where the spatial and/or temporal char-
acteristics of the expected signal are poorly known, or
where the assumption of an azimuthally symmetric covari-
ance function is invalid, these methods may be preferable to
the technique of minimizing an a priori estimate of the total
error. However, it will be shown that for the purpose of
recovering continental water storage variability, the method
described in section 3.2 provides more accurate results.

3.2. Minimizing the Total Error: Azimuthally
Symmetric Covariance Function Assumption

[24] When a priori signal information is available, it
becomes possible to construct an averaging kernel that
minimizes the sum of the variance of the satellite and
leakage errors. To minimize these contributions, one
requires a priori estimates of the satellite measurement error
and of the signal to be measured. Satellite error covariance
matrices will be made available concurrently with GRACE
Stokes coefficients. Estimates of the signal may be obtained
from models, observations, or some combination of the two.
Constructing an averaging kernel with this method is
simplified if one assumes the signal covariance function
(CF) is azimuthally symmetric. Here we assess the accuracy
of this approximation, and outline an iterative approach for
creating an optimal averaging kernel.
[25] We will use two models for our azimuthally sym-

metric CF: a Gaussian and a decaying exponential. In both
cases, the CF has the form:

covs q;f; q0;f0ð Þ ¼ s20 G g; dð Þ ð3Þ

where g is the angular distance between two points (q, f) and
(q0, f0), i.e., cos g = cos q cos q0 + sin q sin q0 cos(f � f0), s0

2

is the local signal variance, and d is the function half-width,

which we use as a measure of the correlation length. We
assume that both s0

2 and d are spatially uniform.
[26] The angular dependence of a Gaussian CF can be

expressed as

G g; dð Þ ¼ exp �b 1� cosgð Þ½ ; ð4Þ

where

b ¼ ln 2ð Þ
1� cos d=að Þð Þ ; ð5Þ

and an exponential CF can be expressed as

G g; dð Þ ¼ exp �bg½ ; ð6Þ

where

b ¼ ln 2ð Þ
d=að Þ : ð7Þ

[27] With the azimuthally symmetric CF approximation,
the optimal averaging kernel coefficients become [see
Swenson and Wahr, 2002]:

Wc
lm

Ws
lm

8<:
9=; ¼ 1þ 2K 2l þ 1ð ÞB2

l

s20 Gl 1þ klð Þ2

" #�1 Jc
lm

Js
lm

8<:
9=;: ð8Þ

Here K = arE/3, Bl are degree amplitudes of the satellite
measurement errors, and Gl are the Legendre coefficients of
G(g, d ): G(g, d ) = �lGlPl(g), where Pl are Legendre
polynomials. For a Gaussian CF, a recursion relation for Gl

can be obtained from equation (34) of Swenson and Wahr
[2002]. Note, however, that the Gaussian used by Swenson
and Wahr [2002] is normalized so that its global integral is 1.
The coefficients describing G(g, d ) may be produced by
dividing those in Equation (34) by the normalization factor
b
2p

1
1�e�2b from Equation (30). The Legendre coefficients of

an exponential must be computed numerically.
[28] The competing influences of satellite measurement

error and leakage error can be understood by examining (8).
When the satellite measurement errors at some specified
value of l are large compared to the water storage signal in
and around the region of interest, the inverse of the
bracketed quantity in (8) becomes small, thereby reducing
the effects of satellite error for that value of l. This reduction
typically increases as l increases, i.e., at short wavelengths,
because Bl increases at large l. On the other hand, when the
signal is large compared to measurement errors, the brack-
eted quantity approaches 1. The result is an averaging
kernel that looks more like the exact averaging kernel,
and therefore reduces leakage error.
[29] Wlm

c and Wlm
s from (8) can be used in (2) to estimate

�esregion from GRACE data. A problem, though, is that
numerical values must first be chosen for s0

2 and d (Gl

depends on d ). In principle, the values of these parameters
can be estimated from GRACE data, using an iterative
approach. We will adopt such an approach for estimating
s0
2. First, a plausible value of d, which will be kept constant

throughout the analysis, and an initial value for s0
2 are

chosen. Using (8) in (2), �esregion is estimated from GRACE
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data for each month’s set of Stokes coefficients. It is
straightforward to show that, with the assumption of an
azimuthally symmetric CF, the variance of the basin-aver-
aged surface-mass anomaly can be related to s0

2 and Gl by

var esð Þ ¼ s20
�2

region

X1
l¼0

Xl

m¼0

Gl

2

h
Jc 2
lm þ Js 2

lm

i
: ð9Þ

The variance of the basin averages is computed as
var esð Þ ¼ 1

N

PN
ti¼1

�
�es tið Þregion

�2
, where ti is the time index,

and N is the number of estimates of �esregion in the time
series. After putting var esð Þ in (9), the resulting equation can
be used to solve for an improved estimate of s02, which is
then used in (8) to obtain a better estimate of Wlm

c and Wlm
s .

These steps are repeated until we obtain convergence. A
similar iterative approach could be constructed to find d,
but the inversion is nonlinear and so is more difficult. As
shown below, we have obtained good results by iterating
only on s0

2.

4. Results

[30] To determine what a ‘‘plausible’’ correlation length
might be, we first examine the dependence of the total
estimation error on d, the correlation length used to create
the averaging kernel. We choose a region and compute
var esð Þ for that region directly from the hydrologic model;
this value of var esð Þ will be taken as the ‘‘correct’’ value.
For each value of d, we use (9), together with our value of
var esð Þ, to solve for s0

2. Thus we are effectively param-
eterizing each averaging kernel by d, which is allowed to
vary, and var esð Þ, which is held constant at its correct value.
We apply each averaging kernel to the synthetic GRACE
data set, and compare the resulting estimates of �es with the
correct values. The 10 basins for which averaging kernels
were constructed in this manner, and the area of each basin
in km2 are shown in Figure 2. Note that basin 1, the
Mississippi river basin (outlined with a thick shaded line),
includes the Upper Mississippi, Ohio, Arkansas, and Red
river basins.
4.1. Gaussian Covariance Function

[31] The total error in the estimate of the basin-averaged
surface-mass anomaly, and the relative contributions of
satellite measurement error, leakage error, and pressure
errors, when a Gaussian CF (4) is used to determine Gl

in (8), are shown in Figure 3. The general characteristics of
each plot are as follows. As the correlation length increases,
total error (solid line) initially decreases to a minimum
value, after which it increases. The minimum total error
generally occurs at values of d between 200 and 600 km.
Satellite measurement error (dashed line) decreases as d
increases. Leakage error (dotted-dashed line) increases as d
increases. Pressure error (dotted line) is relatively constant
as a function of d. For this reason, pressure errors are not
included in the minimization procedure.
[32] Note that the pressure error is the limiting source of

error for all but the smallest river basins considered here. In
some cases, certain error components are anti-correlated; the
variance of the total error is therefore less than the sum of
the variances of its constituents. The variance of the total
error in the Colorado basin recovery, for example, is less

than the variance of the pressure error for values of d
between 500 and 1000 km.
[33] Because this technique for constructing the averaging

kernel is based on minimizing the variance of the leakage
and measurement errors, an averaging kernel derived
from the correlation length that most closely represents
the true covariance function should produce leakage and
measurement errors that are nearly equal. Averaging kernels
based on correlation lengths that poorly approximate the
real covariance function will produce unequal amounts of
leakage and measurement error. However, in cases such as
the Colorado basin, anti-correlation between pressure errors
and the water storage signal will cause the minimum error to
occur at a correlation length that does not best represent the
true covariance function.

4.2. Decaying Exponential Covariance Function

[34] The relative error contributions when averaging
kernels constructed using a decaying exponential CF, (6),
are used to recover the basin-averaged surface-mass anom-
aly (Figure 4). The general behavior of the error compo-
nents as a function of d is the same as that in the Gaussian
case. However, the error components change less rapidly
with d than do those in the case of a Gaussian CF, resulting

Figure 2. (top) Boundaries of North American basins for
which averaging kernels were created. Note that the
Mississippi River basin, (basin 1, thick shaded outline),
includes basins 5, 6, 8, and 10. (bottom) Areas of basins,
ranked largest to smallest by area.
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Figure 3. Recovery errors as a function of correlation length for North American basins. Solid line is
total error; dotted line is error from removing the atmospheric signal; dashed line is measurement error;
dotted-dashed line is leakage error. Note that the y axis is not the same for all plots.
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Figure 4. This plot is the same as Figure 3 except that the covariance function model used to construct
the averaging kernels is a decaying exponential. Note that the y axis is not the same for all plots.
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in total error curves that are generally much shallower than
those for the Gaussian case.

4.3. Model Comparison/Analysis

[35] The minimum errors, as well as dmin, the correlation
length at which the total error is a minimum, obtainable
under the assumption of an exponential CF are shown in
Table 2. The minimum errors in the Gaussian case are all
within 1% of those in the exponential case. In both cases,
dmin is typically between 200 and 800 km. This range of
length scales is consistent with studies of the spatial
coherence of soil moisture [Entin et al., 2000; Vinnikov et
al., 1996]. However, the error curves in the Gaussian case
change more rapidly with d than those in the exponential
case. Thus estimates of �es produced using averaging
kernels constructed with d 6¼ dmin will typically be less
accurate in the Gaussian case than those produced under the
assumption of an exponential CF.
[36] The difference between the rates of change of total

error for the two CFs can be understood by examining the
averaging kernel coefficients. The dependence of Wlm

c and
Wlm

s on d comes from the spectrum of the CF, Gl. The
Legendre expansion, Gl, for each model of the covariance
function is shown in Figure 5. The CF correlation length
ranges from 200 km (darkest line) to 1000 km (lightest
line). For l greater than about 20, Gl for the exponential
model (Figure 5, top) varies as a function of d relatively less
than Gl does for the Gaussian (Figure 5, bottom). For
example, the ratio of G21 for d = 200 km to G21 for d =
1000 km in the exponential case is about 1.8, although the
ratio in the Gaussian case is about 1.9. The same ratios for
G40 are 3.4 and 3.7 � 104, respectively.
[37] Wlm

c and Wlm
s computed using an exponential CF

therefore vary more slowly with d than do those computed
from a Gaussian model of the CF, meaning that the basin-
averaged surface-mass anomalies computed with averaging
kernels derived from the exponential CF will also vary
relatively slowly with d compared to those derived from the
Gaussian CF.
[38] From a practical standpoint, this means that an

inaccurately determined value of d will lead to greater
errors when using a Gaussian CF averaging kernel. How-
ever, it should be noted that the better accuracies obtainable

with an exponential CF averaging kernel for d 6¼ dmin are
the result of the slowly varying nature of the Legendre
spectrum as a function of correlation length, and not an
indication that a decaying exponential is a better model for
the true water storage signal than a Gaussian. If that were
the case, the estimates obtained when d = dmin would be
more accurate for the exponential case than the Gaussian
case.

4.4. Estimating varðeSeSÞÞð
[39] In the previous section, we examined the accuracies

of simulated GRACE recoveries for two models of the
covariance function over a range of correlation lengths.
var esð Þ was set to its ‘‘true’’ value, and (9) was used to solve
for a value of s0

2 consistent with both var esð Þ and d. In
practice, one will not know var esð Þ. However, once d is
chosen, we will show that var esð Þ can be obtained through
the iterative procedure described at the end of section 3.2.
This is especially promising for the exponential CF aver-
aging kernel because of its relative insensitivity to correla-
tion length; choosing a value of d 6¼ dmin will not
significantly degrade the recovery.
[40] For each basin, we created three exponential CF

averaging kernels based on correlation lengths, d, of 200,
400, and 800 km, respectively. Legendre coefficients, Gl,
were computed for each value of d. var esð Þ was given an
initial value of 400 cm2 (20 cm rms). Equation (9) was then
used to calculate a value of s0

2 that was consistent with the
specified values of d and var esð Þ. Wlm

c and Wlm
s were

computed from these values of Gl and s0
2 using (8). The

averaging kernel described by Wlm
c and Wlm

s was then
applied to the synthetic GRACE data set to estimate a
new value of var esð Þ. After each iteration, s0

2 was reset to
a value determined by the new value of var esð Þ, and a new
averaging kernel was constructed. The solution converged
after five iterations; successive values of var esð Þ differed by
less than 0.01 cm2. The true value of the RMS of the basin-
averaged change in water storage, denoted as ‘‘Water
Storage Amplitude’’, and the final RMS values of the total
error obtained after five iterations, for each value of d, are
shown in Figure 6. The total error in all cases is less than
0.75 cm. The minimum total error possible using an
exponential CF averaging kernel is represented by an arrow
to the right of the column. The RMS total error and the
RMS of the true signal are shown in Table 3. Fractional
errors range from roughly 40% for the Colorado basin, to
roughly 10% for basins such as the Columbia, California,
and Ohio. For the remainder of the basins, the total error is
approximately 15 to 25% of the amplitude of water storage
variation.

5. Caveats

5.1. Basin Size Limits

[41] The synthetic GRACE data used in this study were
derived from a global-gridded hydrologic model, at a
resolution of 1 degree, which corresponds to about 110 km
at the equator. Correlations at shorter length scales, which
may occur in the true water storage signal, cannot be
resolved with this model. For this reason, we have shown
results only for basins having areas 1 to 2 orders of
magnitude greater than this resolution. Small-scale correla-
tions then can be ignored, because their contribution to the

Table 2. Minimum RMS Basin Average Water Storage and

Recovery Errorsa

Basin dmin

Water
Storage

Errors

Total Atmosphere

WS
Leakage Satellite Ocean

Mississippi 200 1.63 0.27 0.25 0.08 0.04 0.01
Colorado 1100 1.29 0.48 0.55 0.12 0.21 0.01
Columbia 675 4.91 0.52 0.38 0.19 0.38 0.00
East Coast 125 2.69 0.63 0.45 0.29 0.26 0.24
Arkansas 350 2.43 0.43 0.35 0.22 0.16 0.01
Ohio 225 3.17 0.36 0.21 0.26 0.16 0.02
California 225 4.51 0.42 0.42 0.31 0.32 0.08
Upper
Mississippi

150 1.62 0.32 0.23 0.22 0.16 0.00

Great Basin 125 2.96 0.59 0.49 0.26 0.17 0.01
Red 600 4.08 0.53 0.22 0.34 0.34 0.04

aExponential covariance function. In centimeters of equivalent water
thickness, except dmin, which is in kilometers.
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average approaches zero for large areas. It may be possible
to recover changes in water storage for smaller basins;
however, accuracy assessments must include models having
sufficiently fine resolutions to adequately represent possible
small-scale spatial variability.

5.2. Postglacial Rebound

[42] Because GRACE has no vertical resolving power, any
unmodeled time-variable gravity signal originating within
the solid Earth could be mistakenly interpreted as a surface
mass signal, and so could contaminate continental water
storage estimates. The solid Earth signal likely to cause the
most serious problems is postglacial rebound (PGR), which
is the ongoing, viscoelastic response of the solid Earth to the

deglaciation that occurred at the end of the last ice age (for
recent reviews, seeWu [1998] andMitrovica and Vermeersen
[2002]). A great deal is known about the PGR process, but
the signal cannot yet be modeled well enough to allow it to be
adequately removed from GRACE data. PGR deformation
depends on the Earth’s viscosity profile and the deglaciation
history, and there are simply not enough PGR observations to
constrain these quantities with complete confidence. More-
over, even the level of uncertainty in the PGR models is not
well understood.
[43] PGR signals were not included in our simulated

GRACE data, so their effects were not considered in the
results described above. Here we try to quantify those
effects. We note that because the PGR process has charac-

Figure 5. Comparison of the Legendre spectrum, Gl, for a decaying exponential CF and a Gaussian CF,
for different values of d, the correlation length.
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teristic timescales of several centuries and longer, its gravity
signal will appear as a linear trend over the 5-year lifetime
of GRACE. It will thus contaminate GRACE estimates of
the linearly varying components of water storage, but will
have no impact on the recovery of seasonal or other non-
secular signals.
[44] To estimate the possible effects on GRACE estimates

of the linearly varying water storage, we modeled the PGR
contributions to the Stokes coefficients using a collocation
technique described by Wahr et al. [2001]. We used the
ICE-3G deglaciation model of Tushingham and Peltier
[1991] and assumed a viscosity profile for the Earth of
1022 Pa s in the lower mantle (below 670 km depth) and
1021 Pa s in the upper mantle (between 670 km depth and
the base of the elastic lithosphere), with a lithospheric
thickness of 120 km.
[45] Suppose no attempt were made to remove a PGR

model from the GRACE data, prior to determining the water
storage variability. The resulting contamination of a regional
water storage estimate can be estimated by setting�Clm and
�Slm in (2) equal to our predicted PGR Stokes coefficients.
Rather than looking at specific basins, we have elected to
estimate surface mass anomalies at every point on the globe,
without spatial averaging. Thus we have computed surface

mass anomalies at every point (q, f), using [see Swenson and
Wahr, 2002]:

�s q;fð Þ ¼ a rE
3

X1
l¼0

Xl

m¼0

2l þ 1ð Þ
1þ klð Þ

~Plm cos qð Þ

� �Clm cosmfþ�Slm sinmff g; ð10Þ

[46] The resulting linear trends in surface mass in cm/yr
of equivalent water thickness, over the entire Northern
Hemisphere and over just North America, are shown in
Figures 7a and 7b, respectively. These trends can be up to a
few cm/yr in the vicinity of Hudson Bay and in Scandinavia,
but are smaller than 0.5 cm/yr over most of the globe,
including over most of the US. The trends over land in the
Southern Hemisphere (not shown) are on the order of
±0.25 cm/yr or smaller everywhere except on Antarctica
where they can be much larger. This is the level of PGR
error a user must be prepared to accept, if no PGR model is
removed prior to solving for the water storage. Because this
error varies linearly with time, it can be fit and removed but
this would also remove any real linear trend in the true water
storage signal.
[47] Suppose a PGR model is removed from the GRACE

gravity data prior to the construction of a water storage
estimate. How much improvement could be expected? To
address this question, we constructed a second PGR model
for the Stokes coefficients, using a different deglaciation
history (ICE-4G from Peltier [1994]), and a different lower
mantle viscosity (5 � 1022 Pa s). We subtracted this second
model from the first model, and used those differenced
Stokes coefficients in (10). The results over North America
are shown in Figure 7c. We interpret these results as a crude
measure of the errors that might remain in the linearly
varying GRACE water storage estimates after a PGR model
has been removed. It appears as though the removal of a
PGR model might reduce the water storage errors by about a
factor of two.
[48] This combination of ice sheet and viscosity param-

eters was chosen to maximize the difference between
models, in the sense that the trends in the Stokes coefficients
are larger for ICE-3G than for ICE-4G, and are also larger
for a lower mantle viscosity of 1 � 1022 Pa s than for 5 �
1022 Pa s. We certainly can not claim that these two models
are end-members of the set of all plausible models. On the

Figure 6. Plot showing amplitude of water storage
variation and total error for averaging kernels based on
decaying exponential CFs having correlation lengths of 200,
400, 800 km, respectively.

Table 3. RMS Basin Average Water Storage and Total Recovery

Errora

Basin Water Storage

Correlation Length

d = 200 km d = 400 km d = 800 km

Mississippi 1.63 0.27 0.27 0.28
Colorado 1.29 0.54 0.52 0.49
Columbia 4.91 0.55 0.53 0.52
East Coast 2.69 0.64 0.67 0.72
Arkansas 2.43 0.44 0.43 0.45
Ohio 3.17 0.36 0.36 0.39
California 4.51 0.41 0.49 0.68
Upper Mississippi 1.62 0.33 0.34 0.39
Great Basin 2.96 0.60 0.62 0.66
Red 4.08 0.61 0.53 0.53

aIn centimeters of water.
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other hand, it is possible that this difference could overes-
timate the errors because the ICE-3G and ICE-4G models
were constructed to be consistent with specific viscosity
profiles, which differ from the profiles we have somewhat
arbitrarily chosen for this comparison. Furthermore, the
secular Stokes coefficients determined from GRACE by
the end of its five-year lifetime should help considerably in
improving the PGR models [Velicogna and Wahr, 2002].

6. Summary

[49] The accuracy of GRACE estimates of water storage
variability within a region depends on the GRACE mea-
surement errors, and the degree to which the gravity signal

from the water storage can be separated from other time-
variable gravity signals. The signal separation problem can
be severe. Gravity measurements made outside the Earth,
whether from satellites or surface gravimeters, provide no
information about the vertical distribution of mass. Using
GRACE gravity data alone, there is no way to tell whether a
time-variable gravity signal is caused by mass variability at
the Earth’s surface, in the atmosphere, or deep within the
mantle. Thus GRACE data can be used to constrain only the
vertically integrated water storage variability, and cannot
separate soil moisture from surface water or from water
deeper underground. For this reason, the GRACE Project
will use ECMWF pressure and geopotential height fields to
remove the effects of atmospheric mass from the data before
releasing those data to the public. In our simulated data we
have included estimates of the errors likely to be present in
those atmospheric corrections.
[50] Gravity data are capable of separating mass signals

from different horizontal positions. If GRACE could pro-
vide error-free Stokes coefficients to arbitrarily large angu-
lar degree, a linear combination of those coefficients could
be constructed that could perfectly separate the water
storage signal in the region of interest from water storage
signals in surrounding regions. GRACE data do have errors,
however, and those errors increase rapidly with decreasing
length scale. As shown in section 3.1.1, a regional average
made with the exact averaging kernel will display the effects
of these measurement errors, and those effects can rapidly
become cripplingly large as the size of the region decreases.
[51] Several methods for analyzing GRACE data to

obtain regional averages of water storage variability, while
reducing the effects of measurement errors and contamina-
tion from mass variability in surrounding regions, are
described by Swenson and Wahr [2002]. Section 3.1.2
shows an example of an averaging kernel constructed in
the absence of a priori assumptions regarding the water
storage signal. The leakage definition used to construct the
averaging kernel in this example is geometric; it measures
the departure of the shape of the smoothed averaging kernel
from that of the exact averaging kernel [see Swenson and
Wahr, 2002, equation 42]. However, unless the leakage
error can be expressed in terms of the physical variable
being measured (in this case, the vertically integrated water
storage), the accuracy of the GRACE recovery cannot be
directly assessed. In this study, for example, we use global-
gridded models of surface-mass variability and error sources
to construct synthetic GRACE data. Comparing the esti-
mates of changes in water storage, recovered from this
synthetic data set using an approximate averaging kernel, to
the value derived directly from the model allows one to
estimate the leakage error, as well as the satellite measure-
ment error.
[52] When independent hydrologic information, such as

the modeled data used in this study, is available, it is
possible to construct an averaging kernel that is optimized
to minimize the total error in the recovery. Swenson and
Wahr [2002] showed how to create an optimal averaging
kernel with an azimuthally symmetric model of the signal
covariance function. The use of this model is encouraged by
studies such as Rodell and Famiglietti [2001], who deter-
mined that the largest component of variability in the
American Midwest is soil moisture, and Entin et al.

Figure 7. The predicted error in the linearly varying,
GRACE water storage signal, due to postglacial rebound.
(a and b) The error predicted using the rebound model
described in the text. (c) An estimate of how large the error
over North America might be if a rebound model is first
removed from the GRACE data. In each panel, the contour
interval is 1 cm/yr of water thickness, although contours at
±0.25 and ±0.5 cm/yr are also included.
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[2000], who showed that spatial correlation functions made
from midlatitude observations of soil moisture may be
approximated by an exponential function that decays with
distance. Although water storage in the intermediate/unsat-
urated zone and groundwater are both included in the LaD
model, we know of no observations with which to compare
the large-scale spatial correlation properties of these deeper
regions. An additional reason for using the azimuthally
symmetric covariance function is that the functional form
may be described by just two parameters: the correlation
length, d, and the local signal variance, s0

2.
[53] In this study, we have applied averaging kernels

based on the azimuthally symmetric covariance function
model to simulated GRACE data to extract the water
storage signal in various North American river basins.
Our objective is to assess the ability of GRACE to recover
the water storage variability in those regions. Averaging
kernels based on two models of the covariance function, one
a Gaussian and the other a decaying exponential, were able
to recover the water storage signal with nearly equal
accuracies. However, results obtained using the Gaussian
model varied relatively more rapidly as a function of the
assumed correlation length than did results obtained with
the exponential model. The relative insensitivity of the
exponential model to correlation length implies that aver-
aging kernels based on this model are more robust with
inaccurately determined values of d.
[54] After the correlation length is specified, the local

signal variance, s0
2, and the basin-averaged water storage

anomaly, es, can be determined concurrently using an
iterative approach. Thus d is the only model parameter that
must be determined from independent information. Our
results indicate that with this approach, GRACE will be
able to provide estimates of water storage change to an
accuracy of about 0.7 cm equivalent water thickness for a
basin with an area of 4.0 � 105 km2, and an accuracy of
about 0.3 cm equivalent water thickness for a basin with an
area of 3.9 � 106 km2.
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