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[1] Developments in analysis and modeling of continental water and energy balances are
hindered by the limited availability and quality of observational data. The lack of
information on error characteristics of basin water supply is an especially serious
limitation. Here we describe the development and testing of methods for quantifying
several errors in basin mean precipitation, both in the long-term mean and in the monthly
and annual anomalies. To quantify errors in the long-term mean, two error indices are
developed and tested with positive results. The first provides an estimate of the variance of
the spatial sampling error of long-term basin mean precipitation obtained from a gauge
network, in the absence of orographic effects; this estimate is obtained by use only of the
gauge records. The second gives a simple estimate of the basin mean orographic bias as a
function of the topographic structure of the basin and the locations of gauges therein.
Neither index requires restrictive statistical assumptions (such as spatial homogeneity)
about the precipitation process. Adjustments of precipitation for gauge bias and estimates
of the adjustment errors are made by applying results of a previous study. Additionally,
standard correlation-based methods are applied for the quantification of spatial sampling
errors in the estimation of monthly and annual values of basin mean precipitation. These
methods also perform well, as indicated by network subsampling tests in densely gauged
basins. The methods are developed and applied with data for 175 large (median area of
51,000 km?) river basins of the world for which contemporaneous, continuous (missing
fewer than 2% of data values), long-term (median record length of 54 years) river
discharge records are also available. Spatial coverage of the resulting river basin data set is
greatest in the middle latitudes, though many basins are located in the tropics and the high
latitudes, and the data set spans the major climatic and vegetation zones of the world. This
new data set can be applied in diagnostic and theoretical studies of water balance of large
basins and in the evaluation of performance of global models of land water
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processes, and that the weak scientific link is the use of
observational data as a constraint on theory and model
development. And while it is indeed important, even cru-
cial, to continue efforts to enhance global observational
capabilities [U.S. National Research Council, 1998], it is
equally important to integrate available observational data
into ongoing theoretical research and model development.
This is especially true in the case of long-term (spanning
decades to a century) observational data sets, whose retro-
spective value cannot be challenged by nascent technolo-
gies. In hydrology, the foremost of such data sets are the
global records of point precipitation (input) and measure-
ments of river discharge (output) for basins of widely
varying spatial scales. These conventional data contain a
wealth of long-term information on the response of river
basins to atmospheric variability.

1. Introduction

1.1. Ciritical Role of Observations in
Large-Scale Hydrology

[2] Regional- to global-scale fluxes of water and energy
at the land surface couple the land to the global climate
system [Eagleson, 1994; U.S. National Research Council,
1991]. To what extent, then, and by what processes might
spatial and temporal variations, including long-term trends,
in terrestrial water fluxes reveal, modulate, or even drive
variability in the climate system? It has been recognized that
a balanced research portfolio of observation, theory, and
modeling is the key to development of improved descrip-
tion, understanding and prediction of the global water cycle
and its connection with the global climate system [U.S.
National Research Council, 1990, 1998].

[3] It sometimes seems, however, that we have no short-
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[4] Meaningful use of observational data in tests of
hydrologic hypotheses and in assessments of model per-
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formance requires an understanding of uncertainties in the
data used. Accuracy increases the probability that the data
will enable us to distinguish between competing hypotheses
or, equivalently, to detect errors in models. For example,
errors in atmospheric forcing can seriously impede the
process of hypothesis testing with respect to physical
processes in a land model; errors in the precipitation
estimates used to drive a water balance model can produce
errors in runoff as large as those caused by conceptual errors
in the model itself [Milly, 1994]. Failure to recognize data
inaccuracy can lead to inappropriate conclusions, because
errors in the data can easily be misinterpreted as indicators
of real physical processes.

[s] One approach to control of errors in forcing is to
screen out data sets judged to have unacceptable errors. Oki
et al. [1999], in evaluating the performance of 11 global
models of land water and energy balance, suggested use of a
critical precipitation-gauge density as an index of error.
Using flow records for more than 200 river basins, they
examined the dependence of model runoff error statistics on
the choice of the critical density. They found that the
standard deviation of error was maximum at zero density
and asymptotically approached a minimum at a density of
about 30—50 gauges/10° km?. They concluded that this
density of rain gauges was sufficient “to prevent the effect
of poor forcing precipitation.” However, no direct, quanti-
tative estimates of the precipitation error or its contribution
to model runoff error were made.

[6] The introduction of simple data screening rules is a
step forward in the evaluation of macroscale land models.
The use of more rigorous, objective methods would pre-
sumably increase the efficiency of model evaluation. The
most efficient screening criteria will filter out data with
unacceptable errors (which could be mistaken for model
errors) and will accept data with sufficiently small errors (in
order to maximize the power of the evaluation data set). Of
course, descriptors of error may be useless or even mis-
leading if they are not accurate. Overestimation of data
errors can cause missed opportunities to reject invalid
hypotheses or models. For error estimates to be acceptable,
the methods of their estimation must be shown to be
reliable.

1.3. Objectives of These Papers

[7] This is the first in a series of three papers analyzing
controls on water balances of large land areas. This first
paper (part 1) describes the development of the data set upon
which the subsequent papers are based, with special attention
to assessment of errors in estimates of precipitation. In part 2
[Milly and Dunne, 2002], these data are employed to analyze
the control of interannual water balance variations by fluc-
tuations in supplies of water (precipitation) and energy
(surface net radiation). In part 3 [Milly and Wetherald,
2002], the data of part 1 and the results of part 2 are used
to develop and quantify a conceptual picture of land-process
controls of monthly stream flow variability. In a related series
of papers [Milly and Shmakin, 2002a, 2002b; Shmakin et al.,
2002], this paper’s estimates of precipitation and, crucially,
associated errors are used to evaluate the performance of a
new global model of land water and energy balances.

[8] More specifically, the objectives of this first paper are
(1) to develop methods for precipitation error estimation

MILLY AND DUNNE: ERRORS IN BASIN MEAN PRECIPITATION ESTIMATES

and (2) to create a river basin data set of precipitation and
discharge for use in analyses of large-scale water and
energy balances. Our analysis of errors focuses on precip-
itation; this is presumably the more uncertain of the two
variables, because it is derived by spatial averaging of
(sometimes sparse) point samples of a spatially variable
process. The data set is global in scope, and contains
information on precipitation and basin discharge at a
monthly timescale. Basins considered are those with hori-
zontal length scale on the order of 100 to 1000 km. Record
length varies from basin to basin, ranging from about 20 to
200 years.

2. Data
2.1.

[9] We used precipitation gauge data from the beta
release of the Global Historical Climatology Network
(GHCN) version 2 data set, produced jointly by the National
Climatic Data Center and the Carbon Dioxide Information
Analysis Center. GHCN version 2 includes monthly pre-
cipitation data from 20,790 stations. All GHCN data have
been subjected to several simple quality control procedures.
Where such procedures identified duplicate records for a
single site, we have used the longest record.

[10] Because it is based on surface observations, the
coverage of global land area by GHCN is not uniform in
space. Major regions with lowest densities of gauges
include not only the Sahara, Australian, and central Asian
deserts, but also wetter (but sparsely populated and less
developed) regions of northern Asia and North America, as
well as much of South America.

[11] Precipitation data were analyzed separately for each
month of the year. For a given month of the year, a
precipitation gauge was used in our analyses only if it had
data in at least half of the years of a common time period
(1951—-1980) for that month of the year. This constraint was
applied, in conjunction with our analysis method, in order to
avoid spurious generation of trends in basin mean precip-
itation due to changes in the network over time. Of the
20,790 stations in the data set, 3864 stations are within our
chosen set of river basins (described later). This number is
reduced to 3212 when those stations with insufficient data
during 19511980 are excluded.

[12] The GHCN data are raw precipitation data, unad-
justed for gauge bias. Gauge bias is associated with several
processes, including wind-induced catch errors, especially
for snow, and evaporative losses from gauges. In the annual
mean, such errors typically require an upward adjustment of
measurements by 2% to 20%, with significantly larger
values in some cold regions [Legates and Willmott,
1990]. Legates and Willmott adjusted gauge data for
estimated biases, considering catch error (as function of
wind speed and precipitation form) and wetting and evap-
oration errors. They interpolated the raw and adjusted
estimates of long-term precipitation at gauges, for each
month of the year, to a global 0.5° by 0.5° grid. Herein we
employ the monthly ratios, f,, of basin means of their
adjusted fields to basin means of their raw fields as bias-
adjustment factors for our precipitation estimates. Legates
and Willmott also produced monthly and annual global
fields of estimated standard error of the gauge adjustments,
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and we use these to characterize that component of precip-
itation uncertainty.

2.2. River Discharge

[13] Most discharge time series were selected from the
databases of the U. S. Geological Survey (USGS) for
gauges in the United States and the Global Runoff Data
Centre (GRDC) for gauges outside the United States. USGS
data inventories and station information were obtained from
Earthinfo, Inc. [1995a, 1995b, 1995¢c, 1995d], and daily
flow data were obtained directly from USGS; flow time
series from more than 20,000 sites were available for
consideration. The GRDC data set contains several thou-
sand daily and monthly time series from gauges worldwide,
along with pertinent station information [Global Runoff
Data Center, 1998]. The sources of data for a few additional
rivers are listed in the acknowledgments.

[14] Regrettably, we are unable to characterize errors in
the discharge data systematically. Where rating curves are
stable but poorly known, systematic bias is possible. Where
channels are unstable and detailed channel surveys are
infrequent, significant random errors may arise. As is
apparent from our analyses here and in subsequent papers,
we believe discharge errors are generally small in compar-
ison with precipitation errors. This belief is supported by
analyses of Milly and Shmakin [2002a], in which our
indices of precipitation error are found to be predictive of
differences between modeled and measured river dis-
charges, suggesting relatively minimal bias in discharge.

2.3. Radiation

[15] To aid in evaluation of our precipitation estimates, we
also estimated energy availability at basin scale, using the
surface radiation budget (SRB) data set of the NASA Langley
Research Center. The SRB data set is based on satellite
observations and parameterized broadband radiative transfer
model calculations, with approximate inclusion of the effects
of acrosols [Darnell et al., 1988; Gupta et al., 1992]. Satellite
data include top of atmosphere radiances, atmospheric sound-
ings, and cloud information from the International Satellite
Cloud Climatology Project, and top of atmosphere clear-sky
albedo from the Earth Radiation Budget Experiment. The
SRB data set includes monthly, global fields of the compo-
nents of the surface radiation balance for the period July 1983
through June 1991. An evaluation of the SRB data set has
been presented by Garratt et al. [1998] in the context of an
assessment of various global estimates of the surface radia-
tion balance. All estimates evaluated in that study appeared to
have a positive bias in surface net radiation over land. This
bias was among the smallest (about 10% on average) for the
SRB data set; the bias should not present a serious problem
for the particular application of the data herein.

3. River Basin Selection and Discharge Data
Analysis
3.1.

[16] From the extensive data sets of river discharge data,
monthly or daily time series were chosen for possible use in
this study only if they satisfied the following criteria: (1) at
least 30 years in length (occasionally relaxed to 19 years,
mainly north of 55°N. due to dearth of data for high-latitude
regions), (2) no more than 2% of records missing, and (3)
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drainage area greater than 10,000 km?. The set of records so
identified was further reduced. For the most part, nesting of
basins was not permitted, in order to minimize redundancy.
Some exceptions were made, however, as described here. A
drainage area of 200,000 km? was used to divide the basins
into two sets, “small” and “large.” Inside either of these
sets, no nesting of basins was permitted; drainage areas
were nonoverlapping. Nesting of small basins within large
basins was permitted, however. Where the no-overlap con-
dition required exclusion of gauges, the time series retained
usually were those with the longest and most complete
record or the largest drainage area. An attempt was also
made in the selection process to favor those basins whose
flows would be least affected by reservoirs or other water
resource projects that were apparent in The Times Atlas of
the World [Times Books, 1988]. Discharge records were
inspected both visually and automatically for overt errors,
and suspect time series were excluded. This selection
process led to a set of 186 basins.

3.2. Filling of Missing Values

[17] Missing discharge values were filled through an
interpolation scheme that provided continuity in time with
the measured discharges, and that relaxed toward an esti-
mated mean seasonal cycle on a timescale of 2 months. Let
¢ denote the normalized flow anomaly (difference between
actual flow and expected flow for that time of year, divided
by expected flow for that time of year). When data were
missing between times ¢#; and #,, we filled the time series by
means of the relation

£(t) = cre /T 4 CZef(rz—t)/: (1)

in which 7 is 2 months, and ¢; and ¢, are determined to
match observations at both ends of the data gap. The form of
(1) reduces to linear interpolation for data gaps much shorter
than 7, and reduces to use of the long-term means at times far
from the endpoints if the gap is much longer than T. The
estimated mean seasonal cycle was based on the unfilled
time series. The timescale of 2 months is an average based on
preliminary analyses of stream flow persistence. Filling was
performed at either the daily or the monthly timescale,
depending on the timescale of the original data. Subse-
quently, all daily time series were time-averaged to produce a
uniform data set of continuous monthly time series.

3.3. Test for Homogeneity of Time Series

[18] As already mentioned, some attempt was made to
exclude time series where human intervention may have
caused direct, substantial modification of the flow regime.
To provide an additional check against inhomogeneities
during the period of record, we analyzed normalized flow
duration curves (plots of flow normalized by decadal
median flow against the fraction of time that flow is
exceeded) for each basin. For each decade of record, a
normalized flow-duration curve was constructed, and the set
of curves for each basin was inspected visually for signifi-
cant changes. Systematic long-term changes in the shape of
the flow-duration curve were interpreted as evidence of
significant artificial disturbance within the basin. When a
disturbance was identified, the record was either discarded
or trimmed to include only the inferred predisturbance
record. For basins in the United States, we found that most
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Figure 1. Scatterplot of discharge record length against
basin area. Each symbol represents one of the 175 basins in
the final data set. Type of symbol indicates latitude range
that contains the center of the basin.

inferred inhomogeneities in the record were attributable to
known overt hydrologic disturbances documented by Ruddy
and Hitt [1990] and by Slack et al. [1993].

[19] Elimination of those basins with identified distur-
bances to the flow regime reduced the set of stations to 175.
The distribution of basin area and record length is shown in
Figure 1. Basin drainage areas range from 10,200 to 3.5 x
10° km?, with a median value of about 51,000 km?, and
periods of record range from 19 to 182 years, with a median
value of about 54 years. The large basins are relatively well
distributed across the latitude zones. The largest number of
small basins is found in the middle latitudes. As noted
carlier, the constraint on minimum record length was
relaxed in high latitudes, and this explains the concentration
of small high-latitude basins with only about 20 years of
record. The number and length of records from small
tropical basins are not as great as for the middle latitudes,
but are nevertheless substantial.

3.4. River Basin Delineation

[20] For each discharge record, the corresponding drain-
age basin was identified, at 1°-by-1° resolution, by use of
information from Oki and Sud [1998] and from Times Books
[1988]. Oki and Sud produced a global grid of river drain-
age directions. We used longitude-latitude information pro-
vided by USGS or GRDC for each discharge site to locate
the gauge on the grid. The basin was then defined as the set
of Oki-Sud grid cells draining through the cell containing
the gauge. The implied river basins were checked against
those shown in the atlas and against basin areas reported by
USGS or GRDC for the gauge. In some cases, it was
necessary to relocate the gauge to a neighboring cell on
the Oki-Sud grid in order to capture the right basin. The
resulting basin domains are mapped in Figure 2.

4. Precipitation: Analytic Framework
4.1.

[21] We view precipitation as a random spatial process
and attempt to infer properties of the process from the finite

Conceptual Model of the Precipitation Process
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set of measurements made available by the precipitation
gauge network [Rodriguez-Iturbe and Mejia, 1974]. At any
point in the basin, the precipitation amount P, (mass of
water per unit area) during any month m of any year n is
expressed as the sum of a long-term mean p,, for that month
of the year and a monthly anomaly 6P, for that particular
year,

Pmn:pm+6pmn~ (2)

The time mean p,,, is defined over the fixed time period; here
we use the period 1951—80. The anomaly can be expressed
as the product of a standard deviation of precipitation over
this reference time period s,, and a normalized anomaly T,,,,

6Pmn = SmTmn- (3)

We shall assume that m,,, is uncorrelated in time (i.e.,
negligible autocorrelation at the monthly timescale) and has
spatial correlation between two points that depends only on
distance between points. In contrast, both the precipitation
mean p,, and standard deviation s,, are allowed to vary
spatially, and no assumptions are made regarding the
statistical structure of those variations.

[22] The neglect of monthly autocorrelation of w,,, is
clearly an approximation. Precipitation statistics can be
sensitive to persistent anomalies in the state of the climate
system, though generally a large component of monthly
precipitation will be uncorrelated in time. The acceptability
of our approximation can most readily be judged in terms of
the success of the resultant error indices.

[23] It will be helpful to introduce additional notation for
annual mean values. The precipitation amount in year 7 is
denoted by P, the long-term annual precipitation is denoted
by p., and the annual anomaly of precipitation in year n is
denoted by 6P,. Thus

P, :pa+6Pn7 (4)
12

Pa= Y Pm (5)
m=1
12

8P, = 8Py (6)
m=1

4.2. Interpolation, Basin Areal Averaging, and Gauge
Bias Adjustment

[24] We use angle brackets to denote the areal average of
any variable over a basin (the basin mean). From (2),

(Pon) = <pm> + (8Ppn)- (7)

We use “hats” to denote our gauge-derived estimates of any
variable. In view of (7), we shall require

(Pun) = (D) + (6Pmn). (8)

Furthermore,
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Figure 2. Maps showing basins used in this study. The top panel shows large basins (area greater than
200,000 km?); the bottom panel shows small basins, with insets for central North America and Europe.

where

(10)

(11)

We describe first the computation of (p,,), and then the
similar computation of (8P,,,).

[25] Our spatial analyses are based on the approximation
of continuous spatial fields by a uniform longitude-latitude
grid of small cells; values are assumed to be constant in
space within a cell. In this sense, our approach is similar to
that of Morrissey et al. [1995]. For results presented here,
we used a 0.25° longitude-latitude cell size; sensitivity
studies indicated that results were essentially unchanged
when finer grids were used. (Uniform longitude-latitude
spacing may not be the most efficient approach at high
latitudes, but it is convenient and presumably converges
when sufficiently small cells are used.) To estimate the
basin mean of any variable, we first interpolate from
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observations at gauges to cells on the grid, and then
compute area-weighted means of the grid-cell values. Our
chosen interpolation scheme assigns to each cell the value
of the interpolated variable at the nearest available gauge.
Thus the estimated value p,,, of p,, at cell k is given by

Dok :pfﬁzk)v (12)

where the superscript index function i(k) specifies the index
i of the gauge nearest to the center of cell k; p denotes the
estimated precipitation at that gauge. If our gauge observa-
tions were unbiased, the basin mean precipitation could then
be found by areal averaging,

K
<ﬁm> - Zakpi,(,k), (13)
k=1

in which ay, is the fraction of basin area contained in cell k,
and K is the number of cells in the basin. This approach is
equivalent to the well-known use of Thiessen polygons for
areal averaging when the grid cells are sufficiently small. To
account for gauge bias, though, we modify (13) by
introducing estimated values of the monthly, basin-specific
gauge-adjustment factors, f,,, mentioned in the Data section,

K
() = > . (14)
k=1

Implicit in this application of quantitative results from
Legates and Willmott [1990] is the assumption that bias
characteristics of gauges included in our analysis are
similar, on average within a given basin, to those included
in the former analysis.

[26] The areal averaging of monthly anomalies over the
basin follows a similar procedure. Because values of stand-
ard deviation are computed from raw gauge precipitation
values, they also require adjustment for gauge bias. Thus

K
(0P} =S Y asiwlh), (15)
k=1

in which s/© and ©'® are defined in analogy to pf,(lk). The
gridded estimates of s,, and w,,, are analyzed separately.
The s,, field is time-invariant and is estimated here over the
1951-1980 period. In general, the s,, field is based on a
larger set of gauges than the =, field in any given year,
because some gauges used in the analysis do not have data
in every month and year. In this sense, the index functions
i(k) generally differ between these two variables (and vary
over time, in the case of =,,,), but, for simplicity, we have
avoided including this in the notation. Also, as a result of
the variations in the observational network over time, the
(6Py,) defined by (15) have a time mean that differs slightly
from zero, so the (6P,,,) series is subsequently adjusted by
subtracting that mean after application of (15).

4.3. Characterization of Errors in
Precipitation Estimates

[27] Errors in our estimates of long-term monthly means
and individual monthly anomalies are defined, respectively,
by

em = (Pn) = (Pm); (16)
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Emn = (6P} — (6P,,), (17)

and the error in the estimate of monthly precipitation is the
sum of these two errors,

Em + Emn = <Pmn> - <Pmn>~ (18)
We define errors in annual totals by

12
€q = Z Em, (19)

m=1

12
€ = ZE”’”' (20)

m=1

Together, these relations quantify the overall error in
estimates of annual total precipitation,
€u+€n:<i)n>_<Pn>~ (21)
[28] In the next two sections, we present methods for
characterizing the magnitudes of ¢, and ¢,. We do not treat
€n, but instead work directly with e,. Having made no
statistical assumptions about the nature of spatial variations
in long-term mean fields, we employ heuristic methods for
characterization of €,. For ¢,, we first work at the monthly
timescale to characterize ¢,,, statistically by means of stand-

ard correlation-based techniques, and then use (20) to
characterize error in the annual totals.

5. Errors in Estimates of Long-Term Mean
Precipitation

5.1.

[29] Errors in long-term basin mean annual precipitation
estimates (g,) arise as a result of imperfect adjustments for
measurement errors at the gauges and of inadequate spatial
sampling of the field by the gauge network. We distinguish
two types of spatial sampling error. Because it is widely
recognized that orographic precipitation influences are the
source of major systematic errors in precipitation networks,
we give special attention to them. Even in the absence of
orographic effects, however, sampling errors are present.
Herein we develop separate models for nonorographic and
orographic sampling errors, denoted by ¢, and €, respec-
tively, and we assume that these errors are additive and
independent. Furthermore, we make the additional approx-
imation that both are independent of the error associated
with adjustment for gauge measurement errors, which we
denote by ¢,,. Thus

Identification of Components

€4 = €as t+ E€ao + €ag- (22)

Generally, one can think of ¢,, and ¢, as random constant
errors that could be of either sign, while ¢,,, if significant,
typically reflects a negative bias due to insufficient
sampling of precipitation at higher elevations, where forced
lifting and cooling of air masses tends to enhance
precipitation.

5.2. Gauge Error

[30] Because we use the gauge adjustment factors of
Legates and Willmott [1990], we base our estimates of the



MILLY AND DUNNE: ERRORS IN BASIN MEAN PRECIPITATION ESTIMATES

residual measurement error (i.e., that remaining after adjust-
ment) on the standard errors of adjustments that were also
provided as monthly grids by Legates and Willmott. We
represent €,, as a variable having zero expected value and
variance equal to cﬁg. Under the approximation that gauge
bias and, hence, error in its estimation are highly correlated
regionally (i.e., within a basin), we estimate o§g as the basin
mean value of the squares of standard errors of adjustment
reported by Legates and Willmott.

5.3. Nonorographic Spatial Sampling Error

[31] We expect ¢,, to be small in a basin with a dense
gauge network and large in a basin with a sparse network.
The relation between the statistics of ¢, and network
density, however, is expected to depend on the size of the
basin and the nature of (nonorographic) heterogeneity of
climate within the basin, which will depend on a variety
of geographic factors. Rather than try to identify these and
their influences on heterogeneity, we instead use precip-
itation observations from the existing network to develop a
heuristic estimate of ¢,,. We hypothesize that the sensi-
tivity of the computed basin mean to the removal of
stations from the existing network is an indicator of the
variance of the sampling error ¢,; associated with that
network. For example, if removal of a few stations from
the network would change the estimate of the mean, then
chances are that the existing network is inadequate. On the
other hand, if the estimate does not change when many of
the stations are removed, then the estimate is probably a
good one.

[32] Quantitative expression of this idea requires addi-
tional notation. To make explicit the dependence of the
basin mean estimate on any precipitation gauge network N,
we now write (p,) as (p,(N)). Let N, denote the full
available network, and let N}/> be a network generated by
randomly choosing half of the stations from the full net-
work. We define a characteristic sampling error S(N,,) of the
network N, by

0= £{ [ (2, (%7)) - ()]}

in which E{ } denotes the expectation operator. This
measure can be estimated directly from the available
observations.

[33] We hypothesize that €, is a random variable of mean
zero and standard deviation proportional to S(N,). To test
the hypothesis, and to estimate the hypothesized constant of
proportionality, we performed numerical experiments on a
few of the basins with the best gauge networks. Quality of
the gauge network was assessed subjectively on the basis of
gauge density, perceived freedom from orographic effects,
and other factors. (Orography-related sampling errors are
analyzed separately, as discussed in the next section.) The
basin mean precipitation estimated from the full available
network was assumed to have negligible error. Then the
network was repeatedly degraded by random sampling to a
series of subnetworks, with varying numbers of gauges. For
each basin, 200 subnetworks having half the total number of
gauges were generated randomly and independently. Then
200 additional subnetworks having only a quarter of the

(23)
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Figure 3. Scatterplot of root-mean-square value of the
variate z defined by (24) against the number of gauges
retained in the subnetwork N for seven selected river basins
believed to have minimal orographic errors. Each symbol
represents the root-mean-square value across 200 realiza-
tions of a subnetwork of given size. Near-constancy of this
statistic supports use of the index S(V) to estimate
nonorographic standard error of long-term basin mean
annual precipitation.

total available gauges were created. This process of subnet-
work generation was repeated (with rounding of the number
of stations to the lower integer) to as many levels as
possible. For each subnetwork N at any of these levels,
our procedure for estimation of annual-total long-term basin
mean precipitation (p,(N)) was applied, and S(N) was
computed. (To evaluate S(N), we created 200 independent
subsubnetworks N' of N and found S(V) as the root-mean-
square difference between the subsubnetwork means and
the full subnetwork mean.) Finally, for each subnetwork N,
we formed the ratio

(24)

If the full network N, is sufficiently dense, the numerator of
(24) is the sampling error associated with subnetwork N. It
would follow from our hypothesis that the variate z is
randomly distributed with a mean of zero and a standard
deviation that is independent of the basin and the subnet-
work.

[34] Figure 3 shows that the root-mean-square value of z
(defined for a given network size on a given basin) is
relatively constant, except for networks containing very few
gauges. The increase in variance of z for small networks is
associated with the resulting poor characterization of error
by S(&V) in the denominator of (24). The expected value of z
differs slightly from zero for any given network size on any
given basin. We found mean values of z ranging from —0.22
to 0.33, considering all cases tested with five or more
gauges. Additionally, for a given basin and network size,
the distribution of z differs from the normal distribution by
having higher density in the tails, particularly when the
number of gauges is small. Overall, however, the constancy
of the root-mean-square value of z seen for sufficiently large
n supports our hypothesis that S(V) is a measure of network
error, except when the network consists of very few gauges.
As a crude approximation, we shall assume that the non-
orographic spatial sampling error for a given network has a
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mean of zero and a standard deviation equal to 0.8S(N) for
networks with five or more gauges; the coefficient 0.8 is
representative of the root-mean-square value of z, as illus-
trated by Figure 3. Thus

oas = 0.85(N,), (25)
where o, is the standard deviation of .

[35] This analysis clearly has limitations. When the siting
of gauges in a network N is biased toward those locations
having only low (or high) precipitation, for example, the
index S(N) cannot reflect conditions in the unsampled
locations, and error in analyzed precipitation will be under-
estimated. The one common example of such a situation is
the case of orographic precipitation, which is treated next.

5.4. Orographic Spatial Sampling Error

[36] Typically, high-elevation locations, which tend to be
associated with elevated precipitation amounts, are under-
sampled in precipitation networks. Given the failure of the
network to capture the small-scale features of orographi-
cally induced precipitation, it is anticipated that basin means
computed by normal interpolation methods will be subject
to substantial negative bias. To examine this problem, we
assume, as a gross approximation, that precipitation within a
given basin is linearly related to elevation. Thus

Pa = <pa>[1 =+ (Z - <Z>)/Zp}7 (26)

in which Z is elevation and Zp is an elevation scale defining
the relative sensitivity of precipitation to elevation. If the
random errors in the gauge bias adjustments are ignored, it
can be shown to follow that

(Pa(No)) = (pa)[1 + ((Z(No)) = (2))/2), (27)

in which (Z(N,)) is the estimate of (Z) obtained by
interpolation of gauge elevations (included in the GHCN
data set), by means of the same scheme as that used for
precipitation. Rearrangement of (27) leads to
[(PaNo)) = (Pa)l/(Pa) = [(Z(No)) = (D)2, (28)
For convenience in application, however, we scale the error
by the estimated mean rather than the true mean, obtaining

[(Ba(No)) = (pa)]/ (Pa(No)) = [{(Z(No)) = (2)]/ 2, (29)

[37] Equation (29) expresses our hypothesis that the
relative error in precipitation associated with failure of the
network to capture orographic precipitation can be assessed
using information about basin mean elevation. For testing
(29), we did not feel that the gauge networks were suffi-
ciently dense to evaluate (p,) accurately even in the best
gauged of our orographically influenced basins, so the
subsampling approach of the previous section was not used.
Rather, we obtained an independent estimate of ( p,) using
the semiempirical water balance theory of Budyko [1974].
According to this theory, the evaporation ratio (ratio of
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long-term basin mean annual evaporation, (E,), to long-
term basin mean annual precipitation, (p,)) is a unique
function of the radiative index of dryness. The index of
dryness is the ratio of long-term mean net surface radiation,
expressed as an equivalent annual evaporation amount,
(R,), to {p,). Thus the value of (p,) predicted by Budyko’s
theory, (p,)p, obeys the relation

o= (o)

in which [Budyko, 1974]

(30)

op(x) = [x(tanhx™")(1 — coshx + sinhx)] 12 (31)

In application of (30), we evaluate (E,) as the difference
between (p,)s and long-term mean gauged discharge per
unit basin area at the basin outlet. Values of (R,) are
obtained as 8-year averages of net radiation from the SRB
radiation data set, averaged over the basin area and divided
by the latent heat of vaporization of water. We recognize
that substantial error is possible when (30) is used to
estimate precipitation, but we expect that any associated
bias is small compared to the orographic error under
investigation.

[38] Figure 4 is a scatterplot of estimated precipitation
error against basin mean elevation error. The few outlier
points can be explained readily in terms of the previous
analysis of spatial sampling error in the absence of oro-
graphic effects. All but one of the outliers represent basins
having either a very small number of gauges (fewer than
five) or a relatively large value of the index S(&,). (The
exception is one basin that by chance, has a very large
value of (Z(N,)) — (Z) but for which the apparent precip-
itation error is not remarkably large.) This provides addi-
tional support for the hypothesis that the magnitude of S(V,)
is indicative of standard error in basin mean precipitation.

[39] Figure 4 also shows a significant correlation within
the central cloud of points. To develop a relation, we
performed a regression, excluding those basins expected
to have large error even in the absence of orographic effects
and the single basin with (Z(N,)) — (Z) less than —2500 m.
Results of the regression suggest that a precipitation-gauge
network will tend to underestimate basin mean precipitation
by about 10% on average, for every (—105 m £+ 10 m) of
elevation error , for elevation error in the range of —1200 m
to 200 m. The strength of the correlation (r = 0.65) is
indicative of the power of this index as a measure of
orographic bias of a precipitation network. The failure of
the excluded basin with (Z(N,)) — (Z) less than —2500 m
to fit on this line is not surprising; it is not reasonable to
expect a linear regression to hold over such a large range in
elevation, because humidity generally decreases exponen-
tially with height. The scatter around the line presumably
reflects random errors in both (p,(N,)) and (p,)s-

[40] We use Figure 4 as the basis for our estimate of ¢,

cao = (Pa(No)) ((Z(N,)) — (2)) /(1050m). (32)

Note that this model differs fundamentally from our models
of €, and €, which describe random errors having zero
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expected value. In the case of €,,, we focus instead on the
expected value of the error, which we know is large, and
ignore the random component, which we cannot character-
ize well.

[41] It is desirable to have an independent check on the
usefulness of (Z(N,)) — (Z) as a predictor of basin mean
orographic precipitation bias. For this purpose, we obtained
a high-resolution analysis of precipitation during 1961-90
over part of the United States from the Oregon Climate
Service; the analysis was conducted by use of the expert
system of Daly et al. [1994] for estimation of climate
variables in mountainous terrain. Let {p,)» denote the basin
mean precipitation determined from this data set. We now
substitute (p,)p for (p,)p in the test of the (Z(N,)) — (Z)
index. Figure 5 shows that (p,)s implies a significantly
larger sensitivity of the bias to the elevation index than does
(pa)p; note that the same subset of basins is used for both
relations in Figure 5 for consistency. The difference in
sensitivities could be explained by elevation-dependent
systematic errors in (p,)p and/or {p,)p. Errors in (p,)ps

RalNo) - (paYal / {pale))

3t m Fewer than 5 gauges or | |
0,5> 0.2(p,(Np))
4} - © All other basins
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Figure 4. Scatterplots of apparent relative orographic error
in precipitation [(pa(N,)) — (pa) ] /(Pa(No)) against error
in basin mean interpolated elevation (Z(N,)) — (Z). Top
panel shows full data set, with solid symbols representing
those basins with fewer than five precipitation gauges or
with o, > 0.2(p,(N,)); these and the point for which
(Z(N,)) — (Z) is less than —2500 m are excluded to produce
the bottom panel, which shows regression line fitted to the
restricted set of points. The true basin mean elevation (Z) is
evaluated using the ETOPOS5 5-min global elevation data
set, obtained from the National Geophysical Data Center.
The regression equation (with standard errors of estimation)
is [, (Vo)) — (pa) 5] (Pu(No)) = (0.139 = 0.024) + ((Z(N,))—
(Z))/(1050m £ 105m).

- 0.5F

<]

fin]

5

S o0.0f

=3

3

o

he)

& .05}

:

s -7 —o— [BoNo)) = padal / (PalNy)
1.0t - = KpatNo) = p ol / (PatNo) |7

-1 2IOO -860 -400 0 400
N - (2ym)

Figure 5. Same as bottom panel of Figure 4 but for the
subset of basins for which a detailed expert system analysis of
precipitation is available from the Oregon Climate Service.
Also shown are similar results obtained using results from the
expert system analysis (p,)p rather than the estimate from
Budyko’s [1974] equation (p,) 5. Slopes are (810 m =+ 140 m)
for ( po)s and (1430 m = 100 m) " for { p,)p.

could arise from the Budyko equation’s neglect of non-
climatic factors controlling runoff, such as a possible
reduction in soil water holding capacity with elevation,
leading to increased tendency for runoff [Milly, 1994].
Errors in (p,)p could arise from the insufficiency of
observations at high elevations.

[42] By ignoring orography in our interpolation proce-
dure, we have obtained substantial orographic errors in
some basins. One could argue for inclusion of topographic
information in the interpolation procedure [e.g., Daly et al.,
1994] to develop more accurate precipitation estimates. We
believe, however, that such an approach might be ill posed
for our global-scale application, because many of our basins
presumably lack a sufficient gauge network for the analysis.
Furthermore, such an approach would considerably compli-
cate some of our error analyses. As a less ambitious
alternative, we could have used a relation such as (32) to
adjust our estimates for orographic errors. Given the sim-
plistic nature of (32), however, we are more comfortable
applying it to characterize precipitation errors in a gross
sense than to remove those errors.

6. Errors in Precipitation Anomalies
6.1.

[43] We now turn to estimation of the characteristics of
the random error in (6P,,) associated with inadequate
sampling of T,,,. This error is a random variable, defined
by (17) as the difference between estimated and actual
values of the basin mean anomaly. We can express the
actual basin mean anomaly as

Estimation of Sampling Error

K
<6Pmn> :fm Z aksiﬁlk)ﬁmnh (33)
k=1

in which 7,,,; designates the (unknown) actual normalized
anomaly at cell k. Implicit in this expression are errors of
discretization and errors of interpolation of the standard
deviation field, both of which will henceforth be ignored.
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The factor f,, is included in recognition of the fact that
gauge values of standard deviation are computed without
adjustment for gauge bias. Combination of (15), (17), and
(33) yields

mn = Jm E aps ) i) fmg a5
f § a/csm < mn 7ﬁmnk>7

(34)

We can now derive the variance 0.2, of €,,, as its expected
squared value,

2
[Z as, ( “mnk>:| ; (35)

which leads to

K K
2 2 i(k) (1 i(k) (1
Onn :/m E Zakalsrfz )Sng) [E{ﬁrfm)ﬂn(m)}

—2E 'Kl(/,c,)ﬁmnl} + E{ﬁmnkﬁmnl}} (36)
or
K K ) )
02 =123 D a5 [, (die )
k=1 I=1
= 20, (1) + P (i) |, (37)

in which p,,(d) is the correlation of 7, as a function of
distance d during month m of the year. The three distances
in (37) denote, respectively, the distance from the gauge
nearest cell k£ to the gauge nearest cell /, the distance from
the gauge nearest cell k& to cell /, and the distance from cell £
to cell /. Under our assumptlon of neghglble intermonthly
correlation, the variance of the error in <6P ) can be
computed as the sum of the monthly error variances,

(38)

12
2=3 2,
m=1
Finally, we note that the monthly and annual variances of
basin mean precipitation are given by

K

K
= > wasyt

k=1 I=1

Z Var[(Ppmn)

Var mn pm dk l) (39)

Var[(P, (40)

[44] The application of (37) and (39) requires knowledge
of the spatial correlation function p,,(d) of monthly precip-
itation for each month of the year. The conventional
approach is to estimate it on the basis of precipitation
records from the basin in question. In our application, many
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basins do not have an adequate network and period of
record to support such computations. Instead, we have
adopted an alternate approach. Using the GHCN data set,
we performed a global correlation analysis with the function

P (d) = exp[—(d/dom)"] (41)

and developed a 2°-by-2° global grid of the two parameters
d,m and p, for each month, filling missing 2° cells by
nearest-neighbor interpolation. Subsequently, the values of
the parameters were area-averaged over each basin, and the
basin mean values were used in conjunction with (41) to
carry out the computations in (37) and (39).

6.2. Test of Error Estimates

[45] To assess the accuracy of our error estimates, we
again used subsampling techniques on basins having dense
gauge networks and minimal orographic errors. We used the
same seven basins that were selected earlier for the evalua-
tion of S(NV). For each basin, we estimated the time series of
basin mean anomalies and their standard errors, using the
full network N, and using subnetworks N composed of one-
half, one-quarter, and one-eighth of the full network. For
each subnetwork, we formed the monthly and annual time
series w,,, and w,, defined as normalized errors in the
estimates of the monthly and annual time series,

Winn = 6m,, N) , (42)
_ <6P'1(N)> — <6PU(N0)>
Wp = 6,, N) (43)

If N, is sufficiently dense to give a good estimate of the true
anomaly, and if our expressions for o2, and o2 are
sufficiently good estimates of the variances of estimation
errors, then the measures w,,, and w,, should have means of
zero and standard deviations of unity. For each of the three
(1/2, 1/4, and 1/8) subnetworks on each of the seven basins
considered, we computed the mean and standard deviation
of these measures over the period of record. For w,,,, the
extreme values of the 21 standard deviations were 0.74 and
1.24, and 14 of the values were in the range from 0.9 to 1.1.
For w,, the extreme values were 0.80 and 1.15, and 14
values were in the range from 0.9 to 1.1. These results
suggest that o,, and o, provide accurate measures of
sampling errors in our estimated anomalies.

[46] As a second, less direct, test of our correlation-based
method for estimating ¢,,, we tested the ability of the same
method to estimate the variance of basin mean precipitation.
To do this, we compared two estimates of the standard
deviation of basin mean annual precipitation. The first
estimate was computed as the standard deviation of the
estimated time series P,. The second estimate was com-
puted as [Var((P,))]"? from (40). Note that the latter
quantity depends only on the estimated correlation structure,
and not on any specific observations. The comparison is
presented in Figure 6. The two measures of variability are
very well correlated, although there is a consistent tendency
for the values derived from time series of P, to exceed the
theoretical values [Var((P,))]"?. This bias could result from
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Figure 6. Scatterplot of [Var ((P,))]"? estimated from (40)
against the standard deviation of the time series (P,).

a systematic error in the procedure for estimation of
[Var((P,))]"?, but it seems more likely that it may result
from excessive variance in the P, time series caused by
allowing the variability at any gauge point to extend
coherently to all of its nearest-neighbor cells.

7. Data Set Overview and Sample Results
7.1.

[47] An overview of time series length and basin area
dependent on major latitude zones has already been pre-
sented in Figure 1, and the geographical distribution of
basins was shown in Figure 2. Here we present the
distribution of basins in climate space, using precipitation
and net radiation as the two main climatic factors (Figure 7).
Also shown in Figure 7 are approximate climatic boundaries
of major world biomes, following definitions of Budyko
[1974]. The data set spans climate space and associated
biomes reasonably well. The very small number of points in
tundra environment is consistent with the small areal cover-
age of global land by tundra. The heaviest concentration of
basins is, appropriately, in the forest and steppe (grassland,
savanna) biomes, which are the major participants in the
global water cycle. Fewer basins are located in the more arid
desert and semidesert biomes.

[48] To provide an overview of precipitation errors in our
data set, we use two parameters. The first (y,) is a
dimensionless measure of the typical size of €, relative to
the basin mean precipitation,

Overview of Data Set

v, = [E{2}]'7/(ha). (44)

This characteristic relative error in the mean, evaluated by
use of the various assumptions and models that have been
developed herein, can be expressed as

e | ) () )

The second error parameter used in presentation of the
results is the mean over the period of discharge record
(denoted by overbar) of the variance of errors in annual

23 - 11

= 2000 — — -
& o Semi-desert ] -
g .
=] L] [ ] L . L] "
g 15001 desert = o -
€ . "o . .
L}
£ oalo b steppe . Qé .
S 1000t o %8
© 0o o0 000 orest
S 28 0 3.5 Py OO %)O
c 88 °
3 500 i, ;o
z "‘":,, + 550N - 90°N
] + o 30°N - 55°N, 30°S - 55°S
= + tundra = 3008 - 30°N
< 0 + . . . .
0 500 1000 1500 2000 2500 3000

Annual Precipitation (mm)

Figure 7. Scatterplot of annual net radiation (expressed as
equivalent evaporative flux) against annual precipitation
estimated by (30). Each symbol represents one basin in the
data set. Type of symbol indicates latitude range that
contains the center of the basin. Biome boundaries are
defined as by Budyko [1974].

anomalies of basin mean precipitation, normalized by the
variance of basin mean precipitation,

v, = 05/ Var((Py)) (46)
this index characterizes the accuracy of estimates of
interannual variability of precipitation. Figure 8 provides
an overview of estimated basin mean precipitation errors in
the data set, showing the distribution of v, and ,,, stratified
by three latitude zones. Median values of these measures are
0.11 for the characteristic relative error in the mean (y,,) and
0.076 for the normalized anomaly error variance (V).
Characteristic relative errors in the mean are greater than
32% for one quarter of the basins. Most of the basins having
the most accurate precipitation estimates are located in the
middle latitudes, although a midlatitude location is in no
way a guarantee of high accuracy. High-latitude basins
generally have the largest errors.

[49] Relative magnitudes of individual terms in (45)
indicate relative importance of various types of errors. In
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Figure 8. Scatterplot characterizing errors in estimates of
annual, basin mean precipitation in the data set. Each symbol
represents one basin. Type of symbol indicates latitude range
that contains the center of the basin. The characteristic
relative error in the mean is defined by (44), and the
normalized anomaly error variance is defined by (46).
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the basins with the larger errors (i.e., y,, above the median),
the orographic error is almost always the dominant term,
and the spatial sampling error generally is also significant,
while the error in gauge bias adjustment is relatively small.
In the basins with the smaller errors, any one of the three
types of error may dominate or all three may be of the same
order of magnitude. Across the data set, therefore, oro-
graphic sampling bias is the source of the largest errors in
long-term mean precipitation estimates.

7.2. Gauge Density as an Index of Precipitation Error

[s0] Gauge density is often used as an indirect measure of
the quality of precipitation estimates obtained from a gauge
network. Figure 9 shows the relation of characteristic rela-
tive error in annual basin mean precipitation to gauge density
for the basins considered here. The large scatter implies that
gauge density is very poorly correlated with error in the
mean. It does appear, however, that the errors tend to
decrease, on average, as gauge density increases from 100
gauges/10° km? to 1000 gauges/10° km?. If gauge density is
the only available measure of error, and if a characteristic
error of 10% is considered acceptable, Figure 9 implies that a
network of 600—1000 gauges/10° km? will usually be
sufficient. Such a density is very high, however, and is
found only in a very small fraction of the global land area.

[5s1] Gauge density, when combined with basin area, does
provide a measure of anomaly error variance, as can be seen
in Figure 10. Indeed, such a result is expected theoretically
if interbasin differences in such additional factors as basin
shape, distribution of gauges in the network, and precip-
itation spatial correlation structure among basins are ignored
[Rodriguez-Iturbe and Mejia, 1974].

7.3. Sample Time Series

[52] Sample time series of precipitation and discharge
data are presented in Figure 11. The Tanana River in Alaska
has a drainage area of about 66,000 km* above the gauge at
Nenana. Estimation errors of the anomalies are rather large,
but are sufficiently small that the precipitation anomalies
correlate fairly well with the discharge anomalies, especially
on the interdecadal timescale. The correlation between
precipitation and discharge provides credibility for both
records, and also suggests the possibility of estimating
stream flow that occurred before the stream gauge record
began in the 1960s. The anomaly estimation errors, how-
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Figure 9. Scatterplot of characteristic relative error in
annual basin mean precipitation against gauge density.
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Figure 10. Scatterplot of normalized mean annual anom-
aly error variance against gauge density, stratified by basin
area A.

ever, are greater for the first half of the century than for
more recent years, as a result of the absence of critical
precipitation gauges before about 1940.

[s3] The Apalachicola River in the southeastern United
States drains an area of about 45,000 km? above the gauge
at Chattahoochee. As a result of the high density of
precipitation measurements in this region, the anomaly
errors are much smaller than the variance of annual anoma-
lies. Interdecadal changes in precipitation correlate very
strongly with discharge, though the two variables may
diverge greatly in any given year. The flow estimation
errors imply that these departures are real physical events,
rather than artifacts of sampling error. The joint precipita-
tion-discharge record suggests, by correlation, that stream
flow during the first third of the century may have been
lower than would be expected from the available stream
flow record alone.

[54] The Niger River in western Africa drains an area of
about 340,000 km” above the gauge at Dire in Mali. The
peak flow during the 1950s and subsequent multidecadal
drop in flow are confirmed by the precipitation record. Any
backward extension of the stream flow record on the basis of
the precipitation record is hindered by the smaller number of
precipitation gauges (hence, larger anomaly error variances)
prior to 1920, but would apparently support the occurrence
of a high-flow regime back to the start of the century.

8. Summary and Discussion
8.1.

[s5] Progress in understanding and modeling of large-
scale land water and energy balances might be accelerated
by increased integration of observations into modeling
studies. Such integration must be done with the recognition
that observational errors in precipitation are typically large
enough to mask model errors. Optimal use of observations
therefore requires that precipitation errors be quantified
accurately. Here we have developed, tested, and applied
methods for the characterization of various types of basin
mean precipitation errors. Our main focus has been on
spatial sampling errors in the long-term mean and in
temporal anomalies. With these methods, along with results
of Legates and Willmott [1990] to characterize gauge bias,
we have synthesized a set of long-term, monthly precipita-

Summary
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Figure 11. (left) Basin maps and (right) time series of annual precipitation and discharge anomalies for
(top) Tanana River at Nenana, Alaska; (middle)Apalachicola River at Chattahoochee, Florida; and
(bottom) Niger River at Dire, Mali. Symbols on maps show location of stations used in the analysis.
Symbols on time series graphs represent water year anomalies (departures from means over period of
discharge record), which were smoothed by a 21-point binomial filter to create the curves. The error bars
on precipitation anomaly values correspond to +20,, uncertainty. Water years begin with November for
the Tanana River basin, June for the Apalachicola River basin, and May for the Niger River basin. Scales
for precipitation and discharge are defined so that one standard deviation corresponds to the same vertical

displacement for both variables.

tion and discharge data for 175 large basins distributed
across the major climatic and vegetation zones of the world.
The authors may be contacted for information on access to
the data set.

8.2. Precipitation Errors as a Factor in Model Testing

[s6] The large magnitude of errors in data for many of the
basins underlines the importance of error assessment in any
application of observational data to diagnostic and modeling
analyses of land water balances at large-basin scale. Figure
8 shows that a 10% to 20% bias in precipitation is typical
among the basins we selected; had we not adjusted for
gauge bias, these values would be even larger. When we
consider that runoff from humid basins can be approximated
as the difference between precipitation and evaporative

potential, we see that a 10% to 20% error in precipitation
can easily become a 100% error in runoff. Clearly, some
selectivity is required in choosing basins for quantitative
testing of land models. In part 2 of this series, we explore
the consequences of using estimated precipitation errors in
selecting observational data for application in theoretical
and modeling analyses.

8.3. Precipitation Error, Model Calibration, and
Energy Balance Modeling

[s7] Historically, hydrologic modeling studies have had a
central focus on fluxes of water mass, giving much less
attention to fluxes of energy and the critical mass-energy
linkage through evaporation. Because evaporation is rarely
measured, and energetic processes are typically represented
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by empirical loss functions or demand functions rather than
observable energy fluxes, there is a tendency to use model
calibration to avoid the reality of serious bias in precipita-
tion estimates. Perhaps this is one factor explaining a
general lack of attention by modelers to biases in precip-
itation estimates, despite the fact that they have been well
documented [e.g., Dawdy and Langbein, 1960; Larson and
Peck, 1974; Legates and Willmott, 1990]. With the advent
of independent, quantitative, physically based estimates of
energy forcing, it is possible that precipitation errors will be
recognized more frequently. Perhaps recognition of the
considerable undersampling of precipitation, especially in
mountainous and cold environments, will lead to renewed
attention to this problem by the hydrologic community.

8.4. Orographic Precipitation Sampling Error

[s8] Orographic precipitation sampling errors appear to
be the source of the largest errors in our data set. At the
same time, such errors are probably the most poorly
quantified by our analysis. The error estimates are based
mainly on indirect techniques, and the comparison of
inferred errors with those based on more detailed analyses
in the United States pointed out significant differences in
magnitude. Our index probably gives a reasonable guess as
to the order of magnitude of the orographic error, but better
methods are needed if quantitatively accurate analyses are to
be performed for mountainous basins. Improvements may
be achieved through a combination of increased gauging,
more representative distribution of gauges, and more
advanced treatments of the spatial estimation problem.
The latter should include statistical and/or dynamic methods
incorporating detailed information (including model-
derived and remotely sensed data) on topographic structure,
atmospheric motion, and atmospheric thermodynamics.
Many such methods have been under development in recent
years; their rigorous evaluation and increasing entrainment
into global water balance analyses seems advisable.
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