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Abstract. Most combination equations for evaporation rely on 4 linear cxpansion of the saturation
vapor-pressure curve around the air temperature. Beeause the temperature at the surface may differ from
this temperature by several degrees. and because the saturation vapor-pressure curve is nonlinear, this
approximation leads to a certain degree of error in those evaporation equations. It is possible, however,
to introduce higher-order polynomal approximations for the saturation vapor-pressure curve and to
derive a family of explicit equations for evaporation, having any desired degree of accuracy. Under the
lincar approximation, the new family of equations for evaporation reduces, in particular cases. to the
combination equations of H. L. Penman (Naltural evaporation from open water, bare soil and grass,
Proc. R. Soc. London, Ser. A 193, 120 145, 1948) and of subsequent workers. Companson ol the linear
and quadratic approximations leads to a simple approximate expression for the error associated with the
lincat case. Equations based on the conventional linear approximation consistently underestimate
evaporation, sometimes by a substantial amount.

Introduction

The ‘combination method’ for estimation of evaporation refers to the simultancous
solution of the equations of surface energy balance and turbulent transport of heat
and water vapor, sometimes with allowance for internal plant resistance o transpi-
ration. This approach was initiated by Penman (1948), who used several approxi-
mations to arrive at an explicit ‘combination equation’ for the evaporation rate as
a function of several casily measured quantities. The empirical components and
some of the physical limitations of Penman’s original equation were later removed
by him and a series of other investigators (Penman and Schoficld, 1951; Businger.
1956; Tanner and Pelton, 1960; Monteith, 1965; Van Bavel, 1966; Thom, 1972:
Thom and Oliver, 1972). Brutsaert (1982) provides a sound overview.

One approximation (in fact the critical step), introduced by Penman to obtain an
explicit evaporation equation, has peristed to this day. To eliminate the effective
surface temperature from the system of equations, he introduced a linear relation
between temperature and saturation vapor pressure, with the slope A of the relation
determined at the air temperature. An exact solution would instead use the
chord-slope evaluated between the air temperature and the surface temperature.
The latter is not known a priori, so the approximation is necessary to avoid
iteration.

Some investigators have made estimates of the error induced by ignoring the
temperature diflerence between air and underlying surface in applications of
Penman's combination equation. Tanner and Pelton (1960) used data for Madison,
Wisconsin, to show that the relative error in evaporation rate was less than
one-tenth of the relative error in A for March through September. Temperature
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measurements made for 8 days above and at an alfalfa-brome surface suggested
that the relative error of A averaged about 10%, so they concluded that relative
error in computed evaporation rate would be negligible.

Van Bavel (1966) considered three widely differing climatic situations, and
leaf-air temperature differences reported in the literature, in an assessment of
the error induced by ignoring the temperature difference. He acknowledged that
the analysis was artificial, because the temperature differences were specified inde-
pendently of the other climatic conditions. He concluded that the approximation
was an adequate working assumption, because the errors were less than instrumen-
tal errors, “and the utility of an iterative solution to the problem” was then
‘questionable’,

Slatyer and Mcllroy (1961, Chapter 3, p. 70) stated that the approximation led
to as much as 10% error in calculated evaporation rates, citing unpublished data of
Mcllroy.

Paw U and Gao (1988) considered hypothetical situations in which the conven-
tional linearization of the saturation vapor pressure curve led to relative errors in
evaporation as high as 10% or more. Almost all the errors were negative.

The possibility of iterating for a mathematically exact solution of the combina-
tion problem has been recognized. This is the approach taken by Budyko (1951),
and several others. However. this approach is not universally applied, despite the
obvious benefits in accuracy. Undoubtedly the operational simplicity of a closed-
form, explicit equation for evaporation is one of the main reasons for this, though
this advantage is probably more apparent than real; the iteration procedure itself is
computationally trivial. Additionally, there is a certain theoretical appeal to an
expression that directly reveals the dependence of the evaporation rate upon the
various related variables. It has also been argued (somewhat unconvincingly) that
if the measurement errors are as large as the errors introduced by the mathematical
approximation, then there is no reason to improve the computations.

Paw U and Gao (1988) have recently presented a method that has higher
accuracy than the usual linearization approach and does not require iteration. They
represented the saturation vapor-pressure curve using a second-order Taylor
series, and arrived at a quadratic equation for the evaporation rate, with coefficients
dependent on the various atmospheric and surface factors. Taking their work
one step further. one can obtain an explicit, second-order equation for evaporation.
Paw U and Gao also presented a quartic solution procedure corresponding to
a fourth-order approximation to the saturation vapor pressure curve. However,
the explicit evaporation equation that could result from this method is ex-
tremely complex and would have little theoretical appeal for purposes other than
computation.

The current work was performed independently of that of Paw U and Gao
(1988). It is generally similar in thrust, but results in a family of evaporation
equations that are considerably simpler in form. while vielding any desired degree
of accuracy.
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This paper provides a new solution of the coupled system of equations governing
the turbulent transfer of heat and water vapor from the land surface, the energy
balance of the surface. and stomatal control of transpiration. The saturation
vapor-pressure relation is not linearized in the solution procedure. but is instead
represented by a higher-order Taylor series. The solution is compared to previous
solutions, and some general conclusions are made regarding the systematic error in
the classical first-order solutions.

Derivation

The development presented here is conceptually similar to those of Monteith (1965)
and Thom (1972). It is assumed that the absorption and emission of radiation and
the vaporization of water occur only at leaf surfaces. and that all such sites of
energy exchange are characterized at any time by a single temperature. Collectively,
these sites are termed the ‘surface” in this paper. The development also applies to a
free surface of water, as in the case considered by Penman (1948), and (o a moist
soil surface, if the stomatal resistance is taken to be zero.

The statement of energy conservation at the surface is

R,—G=LE+H. (1
or
R, — G = LE(1 + Bo), (2)

in which R, is the net radiation, G is the rate of heat storage bencath the surface
(i.e., in the vegetation and soil), H, is the sensible heat flux into the atmosphere, L
is the latent heat of vaporization ol water, E is the evaporation rate. and Bo is the
Bowen ratio (the ratio of sensible to latent heat flux).

Resistance formulations for H and LE are ol the form

H=pc,(T; —T,)[lws (3)
LE = f-“.ﬂ(‘}f — €, ) 7Y s {4]

in which the subscripts @ and / refer to conditions at an arbitrary level in the
atmosphere above the surface and at a point in the air immediately adjacent to a
leal (or other active surface), p is the density and ¢, the specific heat at constant
pressurc of the air, T is temperature, ¢ is vapor pressure, r,, is the aerodynamic
resistance to heat transport, r,, 1s the acrodynamic resistance to vapor transport,
and 3 is the psychrometric constant, given by

7 = ¢,p/0.622L, (5)

in which p is the air pressure.
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To relate the surface temperatue to the surface vapor pressure. the usual stomatal
resistance parameterization is used,

LE = p"p(en — & .""I}'rﬂ' {6]
in which e,, i1s the vapor pressure inside the plant stomata and r,, is the bulk
stomatal resistance. In addition, there may be a vapor pressure deficit 4, within the
stomatal cavities.

Lj.u = ["{ 7}} N “’.if' (7)

in which e*(7') is the saturation vapor pressure of water vapor. It is convenient to
combine (4), (6). and (7) to obtain
€ —e,= ["‘{Tf } == d.u]ru:.- ."Il{rn.- g P L (8)

If the quantities R, — G. r,.. I I, and d,, are all known or otherwise modeled
in terms of the other variables. then the coupled system of Equations (1), (3). (4)
and (8) can be solved for T,, ¢,, H, and LE. Because of the nonlincarity of ¢*(T),
this solution cannot be performed exactly except by iterative techniques. In the
scarch for convenient solutions of various simplified versions of this set of equa-
tions, previous investigators have linearized ¢*(7T'). by expanding it in a first-order
Taylor series. usually around the (easily measured) air temperature T,,. To improve
upon this approximation, a higher-order expansion is introduced here,

Let us define the dewpoint function 7*(e) as the inverse of the function ¢*(T).
We expand T*(e) in a Taylor series around the state of the air at the measurement
level, and evaluate T, using that expansion,

%. I dHFT*
T,=T,+ —| =— e*(T,) —e™(T,)™. (9)
! o ML_-| n'! dt’m I.![ ! o ]

The first derivative may be expressed in terms of conventional notation as the
reciprocal of A,, which is the slope of the saturation vapor pressure curve,
evaluated using the air temperature at measurement level. The function ¢¥(T) is
approximately exponential, so it will be convenient to write

{f{’ m

By definition, f#, is unity. The motivation for the form of (10) is the fact that, for
e*(T) exactly exponential, all other fi,, would also be unity. In fact, the fi,
(m=2,3,....) depart somewhat from unity and vary slightly with temperature;
values computed on the basis of Lowe's (1977) polynomial for ¢*(7), together with
some basic calculus, are given in Table [. (The accuracy of the higher-order
derivatives based on this polynomial is suspect). Substitution of (10) into (9) yields

w _I m o1
T,-T,=8;'le"T)—eXT,) ¥ P07

m=1 m

0" ok m— |
§ [{e (r;mﬂ] (11

(Ll o
{"’ T] — (=) Yo — 1) AT . (10)
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TABLE I
Values of B,,(T,)

Air temperature (deg C) B e Ba Bs

0 0.889 0844 0.817 1.077

5 0.884 0.837 0.808 1.059
10 ().882 0.835 (.806 1.053
15 0.8479 0.830 0.801 1.043
20 0878 0.826 0.796 1.033
25 0.872 0.822 0.791 1.023
30 (.869 0817 0.787 1.013
s 0.867 0.814 0.782 1.005
40 (.864 0810 0,788 0.997

When (11) and (8) are substituted into (3) and (4), the resulting Bowen ratio
15

o ¥ — e* o —pym -1
Bo = (}"_-':A“} {_[f_ LT:{_}_E__E_TEJL]} Z &n_(_ 1)

[" * T{} — 8y dw] o= m
2 ¥( T, — p Tu = | )
X P‘ ( :a}'(}"‘,)( _).]] _ (12)

in which we have introduced the new quantity
‘1'* e '.!"(rm L }'u);!‘“h X ( IJ]
We next introduce two dimensionless parameters.

B e™(T;)— C —_tﬁ B (ro. +ro)yLE

= ; 14
! d« o d\‘; p{‘p{du o d.vr) { )
in which , is the vapor pressure deficit of the air, and
a=(d,—d,)e*T,). (15)
Algebraic manipulation of (2), (12), (14), and (15) then leads to
:‘I(rm + r.u)( Ru = G] *
= P*IA -1
.‘“‘."{‘ld o ("u) ':'I + (/ o }(rll }
c fMl( o I)W l e I m ]
xm):_:l = np—=1"'la ) (16)

At this point we seck a solution of (16) for y as a power series in the parameter o.

n=1+ % ne' (17)

=10
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Substitution of (17) into (16) and subsequent collection of like powers of ¢ lead to
the following relations:
l’(R o G}(rur + r.u} = p{'p{du

i " T du)
Ho = \ ! 15
I pcpt(fd o d\'( }[] + :"‘ *-'!AH] [ )

"=a ;f: oy 212 (19)
= ;" w3 - B3N 7% + (8312 = By 3)) (20)
m=0F g oy ‘[(ﬂ ANA, 7%+ (B4)2 — 5B, B3 /6K A, [1*)

+(SPIB —5F.5:/6 + B /4. (21)
Ny = ﬁ;f =B /SNAL M) + (3B B+ B33 — 3B/5NA, 12 %)?

+(3B.84/2 — TB3Bs 4+ 23 /3 — 3P5ISNA, /7*) (22)
+ (35,04 + 71“:!.-"3 T ?ﬂ::ﬁaM + 1{;:‘:1 - 35:_-'5_]]‘

These yield the evaporation rate as

AR, —G)/L AA, /7*)?

=" 1 2 ———2=

E= A {” LAa JAu+r.\.. )"
—AA Y}

+[—(B/3NA, Iv*) + (P32 — ﬂq,“’.)l

A {l +A "‘)"
+[(Ba/ANA, 7% + (Baf2— Sﬁq B /OXA,[1*)

— A%
A (1+A 1%)8

F[(=Bs/SHA ™+ (3,844 + B3/3 — 3B /SNA, [4%)?
+(3B2B4/2 = TB3B /4 + 203/3 — 3Bs/SNALI7*)
+ (3PP /4 + P38 —TB3 By /4 + B3/3 — Bs/5)]

(1= A8, %° TU—AANY°
A A, O A A [

+(5B3/8 — 5B.B/6 + :'1'4;4}]

in which A is given by

o ;)('_,,(d" - d.\f)
Au( Rn -G )rmh )

(24)

The quantity A may be recognized as the ratio between the two terms in Penman’s
(1948) combination equation, i.c.. the ratio of the wind term to the radiation term.
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Equation (23) is. in fact, a family of combination equations. It may be truncated
to any order in . yielding equations of varying degrees of accuracy. In principle,
the coefficients of even higher order could be derived, but their practical significance
is questionable. If we truncate the expansion to first order in o and approximate f5,
by a constant, (23) becomes

AIJ(RH = (J:'L [ ] s _){ &" -"I‘j'*l)' .
A {I+A 08 A, (25)

The conditions for convergence of the series (23) may be readily established by
examination of the ratios of successive terms. For reasonable combinations of A,
A, /y*, and o. it appears that (23) will indeed converge. This is certainly consistent
with the general experience that the linear approach usually provides a good
approximation.

Relation to Previous Combination Equations

Equations (23) and (25) both encompass several other previously published com-
bination equations. If £, (m > 1) is set to zero, corresponding to linearization of
¢*(T), and if d,, is set to zero, they reduce to the expression of Thom (1972),

o éi‘_‘_R" ~ G )__L )_ﬂ_(‘_;_a_du -"Jrr.:h L

I

(26)

Thom did not specify a temperature for the evaluation of A,

With the additional assumption that r,, and r,, are identical, the combination
equation reduces to one that is formally equivalent to that of Monteith (1965, p.
210). (In fact, Monteith reduced the truncation error in the first-order form of (9)
by expanding not around air temperature, but around a more central temperature.
A strict reading of his paper suggests that A is to be evaluated at the mean of the
surface temperature and the wet-bulb temperature of the air. In any case, the whole
point of combination equations is to eliminate the need for knowledge of the
surface temperature, so, in practice, A, is used.)

Penman’s ( 1948) form of the equation results when the stomatal resistance is also
ignored,

AR, —G)/L pc,d,/r,L
P b i e ptallah= 27
A, +7 A+ e
Penman clearly intended that (27) should be used with A,. Monteith (1980) notes
that A should be evaluated at a temperature ‘between’ 7, and T,, but that “in
practice, A must be cvaluated at 7,,”. He further notes that the resultant error in
computed £ is usually small.
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If the vapor pressure deficit at the surface is retained and the stomatal resistance
Is neglected, an equation similar to that of Slatyer and Mcllroy (1961. Ch. 3, p. 61)
is obtained.
- A( Rn . G)L +Prﬂdu - dnf)n"fru.ﬁL

B
A+y A4y

. (28)

(In this case, d, simply represents the vapor pressure deficit of the air at the
surface.) Slatyer amd Mcllroy recognized the importance of using a more represen-
tative temperature than 7, to evaluate A, and they suggested using an average of
the wet-bulb temperatures of the air at and above the surface. The disadvantage of
such an approach. of course, lies in the necessity of measuring air properties at the
surface.

In a recent analysis. Paw U and Gao (1988) presented a quadratic equation for
the latent heat flux. correct to second order, under the assumptions of Monteith
cited earlier. An explicit formula for evaporation in terms of the controlling
variables was not given. After various manipulations. it can be shown that the
method of Paw U and Gao, applied to the slightly more general problem considered
in this paper, lcads eventually to

Ay*(1 4 Aufy*
ﬁlaAu

:ﬁ:ﬂA“[l o AAu .l’fl'}'*} 12 o
& [[ [1 ® A1+ A, [3%)? ) (29)

It is not immediately apparent how (29) compares to (23) or (25), nor is it obvious
how (29) differs from the conventional combination equations. However, i we
make the assumption (consistent with the quadratic approximation) that the
innermost term in a is small, it can be shown, still to first order in a, that (29)
reduces to (25). Both (25) and (29) result from the application of the second-order
form of (9). The results differ because (29) comes from an exact solution of the
quadratic equation. whereas (25) comes from an approximate perturbative solution.
However, both formulae have error on the order of ¢-, since the accuracy of both
is limited by the second-order expansion of ¢*(T').

Paw U and Gao (1988) also showed how a fourth-order expansion of ¢*(7T')
vields a quartic equation for £ that can be solved by the usual algorithm for such
equations. In principle, this permits the development of an explicit equation for
evaporation rate as a function of the controlling variables. Presumably the equation
would be equivalent to (23) through the third order in &, but 1 have not attempted
to establish this equivalence.

E =(R, ~(;>;L{| +

Comments on the Error in First-Order Combination Equations

A simple assessment of the error in conventional first-order combination equations
can be obtained from (25), the last term in braces approximating the magnitude of
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the error. The relative error & in evaporation rate computed from the first-order
approximation is
0.44(1 — AA, [y*) o

p=— ) 30
| AL+ A1 +A, %72 (30)

Two important results are immediately apparent. First, the error is always non-pos-
itive, so the first-order equation can underestimate, but cannot overestimate, the
evaporation rate. Second, the error goes to zero when the ratio 4 of the ‘wind term’
to the ‘radiation term’ is equal to $*/A,. It can be shown that this condition is met
if and only if the latent heat flux is identical to the available energy R, — G. This
happens when there is no sensible heat flux, hence when the surface and air
temperatures are identical. In that case, there is of course no need for a higher-order
expansion of the saturation vapor pressure curve.

Some numerical examples of the relative error associated with the lincar ap-
proximation may also be obtained. Taking the typical case 4 =0.3, and using
g = 0.5, we find relative errors of —0.07, —0.01, and —0.001 when A, /y* takes the
values 1, 2, and 4, corresponding to negligible r,, and air temperatures of about 6,
I8, and 32 deg C respectively. For r,, equal in size to the aerodynamic resistances,
the errors at these same air temperatures rise to —0.18, —0.07, and —0.01
respectively.

The adequacy of the quadratic approximation and the convergence of (23) may
be established for these same examples by computing the ratio of the o°-term in
(23) to the o-term. For negligible r,, these ratios are —0.11. —0.07, and 0.03, and
for r, equal to the acrodynamic resistances the ratios are —0.04, —0.11, and
—0.07, at air temperatures of 6, 18, and 32 deg C respectively.

Discussion

We may distinguish between the ‘combination method’. which is the joint solution
of (1), (3), (4) and (8). or some similar set of equations, by some means, and the
‘combination equations’. which are specific solutions of such sets of equations for
evaporation, obtained by introducing some mathematical approximation for ¢*(T).
For maximum computational accuracy, the combination method may be applied in
conjunction with iteration. Very high accuracy can also be obtained by use of onc
of the higher order combination equations (23) or (25). or by application of Paw
U and Gao's (1988) quartic solution; possibly these are also useful as benchmarks
for testing of iterative methods.

For a theoretical interpretation of the functional dependence of evaporation on
the controlling variables, a simple evaporation cquation is desirable. The new
evaporation equations presented here, particularly (25), have a direct relation to
previous first-order equations, and clearly show the dependence of the higher-order
terms on atmospheric conditions.
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