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[1] The global and tropical means of clear-sky outgoing longwave radiation (hereinafter
OLRc) simulated by the new GFDL atmospheric general circulation model, AM2, tend to
be systematically lower than ERBE observations by about 4 W m�2, even though the
AM2 total-sky radiation budget is tuned to be consistent with these observations. Here we
quantify the source of errors in AM2-simulated OLRc over the tropical oceans by
comparing the synthetic outgoing IR spectra at the top of the atmosphere on the basis of
AM2 simulations to observed IRIS spectra. After the sampling disparity between IRIS and
AM2 is reduced, AM2 still shows considerable negative bias in the simulated monthly
mean OLRc over the tropical oceans. Together with other evidence, this suggests that
the influence of spatial sampling disparity, although present, does not account for the
majority of the bias. Decomposition of OLRc shows that the negative bias comes mainly
from the H2O bands and can be explained by a too humid layer around 6–9 km in the
model. Meanwhile, a positive bias exists in channels sensitive to near-surface
humidity and temperature, which implies that the boundary layer in the model might be
too dry. These facts suggest that the negative bias in the simulated OLRc can be
attributed to model deficiencies, especially the large-scale water vapor transport. We also
find that AM2-simulated OLRc has �1 W m�2 positive bias originating from the
stratosphere; this positive bias should exist in simulated total-sky OLR as well.
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1. Introduction

[2] The total-sky radiative fluxes observed by Earth
Radiation Budget Experiment (ERBE) [Barkstrom, 1984]
are widely used in the climate modeling community to
validate general circulation models (GCMs). Some cloud-
related parameters in GCMs that are not well constrained by
observations and theories are adjusted within acceptable
ranges to achieve a net balance of total-sky radiative fluxes
at the top of the atmosphere and maximize the agreements
of total-sky radiation budgets between GCM simulations
and ERBE observations. This is known as ‘‘tuning’’ in the
climate modeling community. Typical parameters used in
such tuning include the threshold of conversion from cloud
droplet to raindroplet, cloud erosion parameter, and the
precipitation efficiency. Such tuning, however, does not
guarantee a satisfactory agreement between simulated and
observed clear-sky radiative fluxes at the same time because
it might improve model performance for the wrong reason.
For example, the long-term global annual mean of clear-sky
outgoing longwave radiation (hereinafter OLRc) simulated

by AM2, the new GFDL AGCM, is 4.8 W m�2 lower than
ERBE observations [GFDL Global Atmospheric Model
Development Team, 2004] even though the total-sky global
radiation budget is in good balance and in good agreement
with ERBE observations.
[3] Figure 1a shows the time series of the global monthly

mean OLRc from ERBE observations and AM2 simulation
from 1985–1989. It can be seen that the difference between
the simulated and observed OLRc is systematically negative
with a mean of �4.03 W m�2 and a standard deviation of
0.99 W m�2. The tropical monthly mean OLRc simulated
by AM2 (Figure 1b) has a similar negative bias (mean:
�4.86 W m�2, standard deviation: 0.88 W m�2). Such a
bias is not small and could influence the longwave cloud
radiative forcing estimated from the model simulation.
Therefore it is necessary to understand the causes of such
negative bias in greater detail.
[4] Part of the negative bias can be attributed to the

different ways used by the model and ERBE to obtain the
monthly mean OLRc. In model simulations, OLRc is
computed from temperature and humidity profiles at each
grid box no matter whether the grid box is cloud-free or not.
The monthly mean OLRc over a geographical region is
obtained by averaging over all grid boxes inside this region
and then averaging over the whole month. For ERBE,
monthly mean OLRc is estimated from measurements over
cloud-free pixels only. Neither spatial nor temporal distri-
butions of these cloud-free pixels are guaranteed to be
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uniform. Moreover, a typical tropical grid box in GCM is
about 200 km by 200 km while the field of view (hereinafter
FOV) of ERBE measurements is only about 40 km in
diameter. Therefore, when an area comparable to a GCM
grid box is partly covered by cloud, a cloud-free ERBE
pixel inside this area could be drier than the average of the
whole area. As a result, the OLRc derived from this cloud-
free pixel is expected to be higher than the OLRc averaged
over the whole area. In other words, monthly mean OLRc
estimated from satellite could have a potential positive bias
(dry bias) compared to the monthly mean OLRc computed
by models, especially over the regions of active convection.
[5] This potential dry bias in satellite estimated OLRc has

long been recognized [Cess and Potter, 1987; Kiehl and
Briegleb, 1992; Collins and Inamdar, 1995; Slingo et al.,
1998; Allan and Ringer, 2003; Allan et al., 2004]. For
example, Kiehl and Briegleb [1992] calculated OLRc over
the tropical oceans on the basis of temperature and humidity
fields from ECMWF analyses and found the monthly mean
ERBE OLRc is higher than calculated by 10–15 W m�2 in
the tropical convective regions. Allan and Ringer [2003]
compared CERES OLRc with OLRc on the basis of the
ECMWF ERA-40 reanalysis and found 6–8 W m�2 differ-
ences between CERES and ERA-40 OLRc over regions of
warm sea surface temperature (SST) and strong ascent. The
potential dry bias in ERBE OLRc means that the difference
between simulated OLRc and ERBE OLRc can be system-
atically negative even if the model is perfect, and can
definitely contribute to the negative bias shown in
Figure 1. However, the magnitude of this contribution to
the total negative bias remains to be understood. Recently

Allan et al. [2005] have conducted a near real-time com-
parison between Geostationary Earth Radiation Budget
(GERB) data and output from a numerical weather predic-
tion (NWP) model initialized with analyses from a 3-D
variational assimilation. Their results showed agreements
between modeled and observed OLRc over the oceans
within the expected uncertainty.
[6] Systematic biases in the AM2 model and calibration

uncertainties of ERBE instruments can also contribute to the
bias in the AM2 versus ERBE comparison. Limited by the
information contained in the broadband outgoing longwave
radiation (OLR) measurement, it is difficult to further assess
the relative importance of these factors from a model versus
ERBE comparison alone. On the other hand, the outgoing
infrared spectrum has much more information content than
OLR and therefore can help us further understand this
problem. There are two straightforward ways to make use
of the rich information contained in the outgoing infrared
spectra: (1) We can decompose the OLRc differences
between model and observation into different absorption
bands and study the differences band by band and (2) given
that different infrared channels are sensitive to emissions
from different vertical layers [Goody and Yung, 1989], we
can also group channels according to the vertical layers that
they are most sensitive to and study the differences group by
group. By doing this, we can quantitatively understand the
error budgets in each individual absorption bands and the
contributions from groups of channels sensitive to different
altitudes. Moreover, if the footprint of the instrument which
measured the outgoing IR spectra is significantly different
from that of ERBE, the dry bias due to the spatial sampling

Figure 1. (a) Time series of the globally averaged monthly mean of clear-sky OLR from ERBE
observations (the dashed line with circles) and AM2 simulations (the solid line with diamonds). (b) Same
as Figure 1a except for the tropically averaged monthly mean. The spatial average for both AM2 and
ERBE is done by averaging over the area with valid ERBE clear-sky measurements. No attempt is made
to fill the missing values in the ERBE data set. Given that most missing values were at high latitudes, the
globally averaged monthly means shown in Figure 1a are higher than the corresponding real global
means.
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disparity would be different from the case of ERBE mea-
surements. This could help us evaluate the importance of
the potential dry bias due to the spatial sampling disparity.
Therefore, by using measurements of outgoing IR spectra,
we can gain more insights about the causes of the discrep-
ancies between simulated and observed OLRc as shown in
Figure 1.
[7] In this study, we use the outgoing IR spectra mea-

sured by IRIS (Infrared Interferometer Spectrometer) in
1970 [Hanel et al., 1972] to study the bias in AM2
simulated OLRc. For comparison, we also simulate OLRc
on the basis of six-hourly meteorological fields from the
ECMWF ERA-40 reanalysis [Uppala et al., 2005]. In
section 2, we describe the model and data used in this study
as well as the data manipulation. Comparisons among AM2
simulated OLRc, OLRc inferred from IRIS observations,
and OLRc based on the ECWMF reanalysis are presented in
section 3. Section 3 also presents the AM2-IRIS and
ECMWF-IRIS flux differences band by band. In section
4, IRIS channels are categorized into several groups accord-
ing to the peaks of their weighting functions and the flux
difference in each group is examined. Conclusions are given
in section 5.

2. Model and Data Manipulation

2.1. IRIS Observations

[8] IRIS-D (hereinafter IRIS) was aboard Nimbus-7 and
collected data from April 1970 to January 1971 [Hanel et
al., 1972], a moderate La Niña period. It was a Michelson
FTIR spectrometer covering 400–1600 cm�1 with an

apodized spectral resolution of 2.8 cm�1. The signal-to-
noise ratio was higher than 100 at the midpoint of the
spectrum and gradually degraded to about 20 at the fre-
quency endpoints. The estimated in-flight calibration un-
certainty was about 0.5 K in brightness temperature [Hanel
et al., 1972; Harries et al., 2001]. The FOV of IRIS was a
circle with a diameter of 95 km, 6.25 times larger than the
FOVof ERBE and about 15% of a typical AM2 grid box in
the tropics. In total IRIS collected about 700,000 good-
quality spectra during its 10-month operation. Its excellent
instrument performance and rich information content made
it a valuable data set that has been studied for more than
three decades [for example, Kunde et al., 1974; Prabhakara
et al., 1976, 1988; Iacono and Clough, 1996; Haskins et al.,
1997; Harries et al., 2001; Huang et al., 2002; Anderson et
al., 2004]. This study, to our knowledge, is the first study to
use IRIS to help understand the biases in model-simulated
broadband OLR. Given the complicated spectral depen-
dence of land surface emissivity and the consistency be-
tween observed SSTs and SSTs prescribed in the model, in
this study we focus on the tropical oceans (30�S–30�N)
only. Because of a signal-to-noise consideration [Haskins et
al., 1997], we only use IRIS spectra over 400–1400 cm�1

(720 channels in total) from April to December 1970.
[9] Since we are interested in using IRIS observations to

study OLRc, two issues have to be addressed: (1) identify-
ing clear-sky spectra and (2) estimating OLRc from an
individual IRIS spectrum which does not cover the whole
range of longwave emission. Our approaches are described
in the following two paragraphs.
[10] For issue 1, clear-sky spectra are identified on the

basis of the following two criteria: (1) The 11 mm brightness
temperature must be close to the climatological SST (within
±6 K) at the sampling location [Haskins et al., 1997;
Harries et al., 2001] and (2) no fingerprints of ice or water
clouds are apparent upon examination of the brightness
temperature difference between 8 mm and 11 mm bands
(DBT8–11) as well as the brightness temperature difference
between 11 mm and 12 mm bands (DBT11–12) [Ackerman et
al., 1990]. As pointed out by Ackerman et al. [1990], there
is a weak water vapor absorption line in the 8 mm band
(8.3–8.4 mm). 11 mm (11.06–11.25 mm) and 12 mm (11.93–
12.06 mm) bands are between H2O absorption lines. The
absorption coefficient of ice increases from 11 mm to 12 mm
more rapidly than that of liquid water. Therefore, by this
trispectral approach, clear-sky and ice and water clouds can
be distinguished. After applying these two criteria, an
average of 4415 spectra (30% of the total tropical spectra)
sampled over the tropical oceans per month are identified as
clear-sky spectra. Figure 2 shows the number of clear-sky
spectra in each month identified by this algorithm and the
spatial distribution of these clear-sky spectra. It can be seen
that the spatial coverage of these clear-sky spectra is fairly
good except for areas with frequent convection such as the
maritime continent in the western Pacific.
[11] As for issue 2, estimating OLRc from an IRIS

spectrum, we use the radiance (Rv) at each IRIS channel
to estimate the spectral flux (Fv) at the same channel by
assuming a linear relation between Rv and Fv

Fv ¼ s1vRv þ s2v: ð1Þ

Figure 2. (a) Number of clear-sky IRIS spectra over
the tropical oceans in each month. Clear-sky IRIS spectra
are identified using the algorithm described in section 2.1.
(b) Number of clear-sky IRIS spectra in each 2.5� longitude
by 2� latitude grid box of the tropical oceans. A white grid
box means that there is no IRIS spectrum inside that grid
box identified as clear-sky spectrum.
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Two IR spectral regions, <400 cm�1 and >1400 cm�1, are
not covered by IRIS spectra used in this study. Given that
both regions are primarily sensitive to mid and upper
tropospheric water vapor, we estimate the fluxes over these
regions (Funcovered) by a linear combination of the fluxes in
the H2O v2 band (Fv2) covered by IRIS (1320–400 cm�1)
and in a narrow window region (Fwin) transparent to
atmospheric absorption (889–904 cm�1):

Funcovered ¼ aFv2 þ bFwin þ c: ð2Þ

The coefficients, s1v, s2v, a, b, and c, are obtained in the
following way: first �40,000 tropical vertical profiles of
temperature and humidity from the AM2 simulation
described in the following subsection (section 2.2) are
randomly chosen. These profiles are then fed into a radiative
transfer model, MODTRAN, to compute synthetic IRIS
spectra and OLRc. The synthetic IRIS spectra and OLRc are
used to first estimate s1v and s2v by linear regression of
equation (1) and then to estimate a, b, and c by linear
regression of equation (2). To test how good this estimate of
OLRc is, we randomly choose another set of �40,000
tropical profiles and use MODTRAN to compute another
set of synthetic IRIS spectra and OLRc (hereinafter the
‘‘computed’’ OLRc). Then we use each synthetic IRIS
spectrum to estimate Funcovered as described above and, in
this manner, we obtain a ‘‘predicted’’ OLRc based on each
individual synthetic IRIS spectrum. This predicted OLRc is
then compared to the ‘‘computed’’ OLRc directly obtained
from MODTRAN. The comparison between the ‘‘pre-
dicted’’ OLRc and ‘‘computed’’ OLRc is shown in Figure 3.
It can be seen that for all �40,000 randomly chosen
profiles, the maximum difference between predicted and
computed OLRc is less than ±9 W m�2. For each month,

the standard deviation of the differences is about 1.8 W m�2.
For monthly averaged OLRc, the difference is about
�0.17 W m�2. These facts give us confidence to use this
prediction scheme to estimate OLRc from IRIS spectra, and
then compare the estimated monthly mean OLRc with the
counterpart simulated by AM2.

2.2. Model

[12] In this study, we use AM2, an atmospheric GCM
(AGCM) recently developed at Geophysical Fluid Dynam-
ics Lab (GFDL). In brief, AM2 employs a hydrostatic, finite
difference dynamical core using the staggered Arakawa B-
grid with 2.5� longitude by 2� latitude resolution. The
standard configuration of AM2 has 24 vertical levels with
the lowest model level about 30 meters above the surface
and five levels in the stratosphere, the top level being at
�3 hPa. Cloud liquid water, cloud ice amount, and cloud
fraction are treated as prognostic variables. The relaxed
Arakawa-Schubert scheme is used for cumulus parameter-
ization with several modifications. The longwave and
shortwave radiation parameterizations follow Schwarzkopf
and Ramaswamy [1999] and Freidenreich and Ramaswamy
[1999], respectively. The detailed description of AM2 can
be found in GFDL GAMDT [2004].
[13] Four-member AM2 ensemble runs are forced by

observed monthly SSTs from 1966 to 1971 [Rayner et al.,
2003]. Results reported here are averages over the four
members. Observed CO2 and other greenhouse gas concen-
trations appropriate for the IRIS period are used in the runs.
Three-hourly instantaneous outputs over the IRIS period
(April–December 1970) are archived. To minimize the
temporal sampling disparity between IRIS and the model,
these 3-hourly instantaneous outputs are further sampled to
the same time and location as those IRIS clear-sky spectra

Figure 3. Difference between predicted OLR based on synthetic IRIS spectra and directly computed
OLR from MODTRAN. About 40,000 random tropical profiles are used. Refer to section 2.1 for further
details. The dash-dotted lines are the maximum and minimum differences for all random profiles in a
given month. The solid line with open circles is the monthly mean difference averaged over these random
profiles. The dashed lines show the monthly mean ± standard deviation of each month.
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identified in section 2.1. Then the subsampled outputs are
fed into a very narrow band radiative transfer model,
MODTRAN v4.1 [Bernstein et al., 1996], to compute
OLRc and IRIS-like clear-sky spectra. MODTRAN (Mod-
erate transmission code) was developed by the Air Force
Research Laboratory with a high computational efficiency
and satisfactory performance compared to line-by-line radi-
ative transfer code [Bernstein et al., 1996].
[14] For comparison, 6-hourly outputs over the same

period from the ECMWF ERA-40 reanalysis [Uppala et
al., 2005] are sampled and fed into MODTRAN in the same
way to generate OLRc and synthetic clear-sky spectra. No
IRIS observations were assimilated by ECMWF ERA-40.
Therefore IRIS and ECMWF ERA-40 are two independent
data sets. The spatial resolution of the ECMWF ERA-40
reanalysis data is 2.5� by 2.5�, comparable to the spatial
resolution of AM2.

3. Differences in the Clear-Sky OLR and
Different Absorption Bands

[15] In this section, we first present the comparisons of
OLRc among the AM2, IRIS and ECMWF. Then the
flux differences in each individual absorption bands are
discussed.

3.1. Differences in the Clear-Sky OLR (OLRc)

[16] Figure 4 shows the monthly averaged OLRc over the
tropical oceans inferred from IRIS clear-sky spectra and
computed from the corresponding AM2 simulation and
ECMWF reanalysis data, respectively. As mentioned in
section 2, AM2 output (ECWMF reanalysis product) are
sampled to the same location and the same time as IRIS

clear-sky spectra used in this study and then the AM2
(ECMWF) monthly mean OLRc is derived only from those
subsampled data sets. It can be seen that, for all 9 months,
AM2 has a consistent negative bias in OLRc compared to
IRIS observation (�4.02 ± 1.14 W m�2). This bias is larger
than the instrumental calibration uncertainty of IRIS. More-
over, this bias is comparable to the negative bias shown in
the AM2 versus ERBE comparison (Figure 1b, �4.86 ±
0.88 W m�2). On the other hand, ECMWF has a generally
good agreement with the IRIS observations: the mean
difference over 9 months is �0.72 W m�2 with a standard
deviation of 1.07 W m�2. The largest difference between
ECMWF and IRIS occurs in December. Figure 4 also shows
that the OLRc computed by MODTRAN has a good

Table 1. List of Eight Spectral Bands Used to Decompose Clear-

Sky OLRa

Spectral Range, cm�1 Major Absorber Flux, W m�2

1 <400 or >1400 H2O
b 60.2

2 400–560 H2O 52.2
3 560–800 CO2, N2O

c 58.0
4 800–985 H2O continuum 59.7
5 985–1080 O3 18.0
6 1080–1200 H2O continuum 23.5
7 1200–1320 H2O, N2O, CH4

c 12.4
8 1320–1400 H2O 4.5

aThe flux in each band observed by or inferred from IRIS measurements
is also listed (averages of 9-month IRIS clear-sky spectra over the tropical
oceans).

bNot covered by IRIS observations, flux is inferred as described in
section 2.

cN2O has two bands centered at 589 cm�1 and 1285 cm�1 and CH4 has a
strong band centered at 1306 cm�1.

Figure 4. Monthly mean of clear-sky OLR inferred from IRIS clear-sky spectra over the tropical oceans
(the red solid line with open circles), computed from ECMWF ERA-40 reanalysis (the green dash-dotted
line with solid diamonds), and obtained from MODTRAN calculation based on the corresponding AM2
simulation (the blue solid line with stars). The clear-sky OLR computed by the AM2 radiation scheme is
shown as the dash-dotted line with open triangles. The two dashed lines show the range of uncertainty in
the IRIS clear-sky OLR due to IRIS calibration uncertainties.
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agreement with the OLRc calculated from the AM2 radia-
tion scheme, which confirms the robustness of the clear-sky
longwave parameterizations used in AM2.
[17] As described in section 2, the IRIS FOV is about six

times larger than that of ERBE. As a result, the bias caused
by the spatial sampling disparity between GCM and satellite
observations should be different for AM2-IRIS and AM2-
ERBE. If the spatial sampling disparity were a major
contributor to the negative bias in the simulated OLRc,
the amplitude of the bias in the AM2-IRIS comparison
would be notably different for that in the AM2-ERBE

comparison. Moreover, such bias would be prominent in
the ECMWF-IRIS comparison as well. Yet the comparable
biases from the AM2-IRIS and AM2-ERBE comparisons
(Figures 4 and 1b) and the good agreement between
ECMWF and IRIS (Figure 4) imply that this is not the
case. These results indicate that, although the spatial sam-
pling disparity between the model and satellite can definitely
contribute to the negative bias in the AM2-simulated OLRc,
it cannot account for the majority of the negative bias seen in
the simulated OLRc.

Figure 5. (a) Solid line with solid circles is the AM2-IRIS difference of monthly mean clear-sky flux in
band 1 as listed in Table 1. Solid line with open diamonds is the corresponding ECMWF-IRIS difference
in band 1. The spectral range of band 1 is labeled. The clear-sky OLR difference between AM2 and IRIS
(dashed line) and between ECMWF and IRIS (dash-dotted line) are also shown. (b–h) Same as Figure 5a
except for bands 2–8 as listed in Table 1. The spectral range of each band is labeled.
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3.2. Flux Differences at Different Absorption Bands

[18] In this subsection, we decompose the OLRc differ-
ences into eight bands as listed in Table 1. The monthly
mean of the AM2-IRIS difference in each band is shown in
Figure 5. The corresponding difference between ECMWF
and IRIS is also shown in Figure 5. Some features to be
noted in Figure 5 are the following:
[19] 1. For the CO2 band and two window regions

(Figures 5c, 5d, and 5f), the AM2-IRIS flux differences
are positive, as are the ECMWF-IRIS flux differences in
these bands. For these three bands, the difference between
AM2 and ECMWF flux is small (�0.2 W m�2).
[20] 2. For all H2O bands (Figures 5a, 5b, 5g, and 5h), the

AM2-IRIS flux differences are negative and they are about
twice the magnitude of the ECMWF-IRIS flux differences.
For the water vapor v2 band (1200–2000 cm�1) which does
not contribute much to OLRc (Figures 5g and 5h and a
small portion in Figure 5a), the AM2 flux is about
0.52 W m�2 smaller than the ECWMF flux and 1.2 W m�2

smaller than the IRIS flux. However, for the water vapor
rotation band (<560 cm�1) (Figure 5b and the majority in
Figure 5a), a band contributing �37% to OLRc flux, the
AM2 flux is about 2.51 W m�2 smaller than the ECMWF
flux and 4.99 W m�2 smaller than the IRIS flux.
[21] For ECMWF-IRIS, the positive differences in feature

1 are, to a very large extent, offset by the negative differ-
ences in feature 2. As a result, the OLRc difference between

the ECMWF reanalysis and IRIS is small. For AM2-IRIS,
the positive differences in feature 1 can only offset part
of the negative differences in feature 2 and, therefore, the
OLRc differences between AM2 and IRIS are still notably
negative. The water vapor rotation and v2 band are both
primarily sensitive to the mid and upper tropospheric
humidity. Therefore the discrepancies between AM2-IRIS
and ECMWF-IRIS suggest that, for all nine months exam-
ined here, the tropical middle and upper troposphere in
AM2 is more humid than both the real atmosphere and the
ECMWF reanalysis. This point is further supported by
looking at the difference in tropical mean relative humidity
between AM2 and ECMWF for the IRIS period as shown in
Figure 6. It can be seen that, above 780 mb, AM2 is more
humid than ECMWF all through the troposphere with a
maximum about 12% around 650 mb.
[22] Given that the observed SST is used in the simulation

and that we only compare the spectral sampling over the
tropical oceans, the surface temperature difference between
model and observations is too small to explain the positive
biases in the two window regions (Figures 5d and 5f).
Possible candidates for such positive biases are (1) the
algorithm that we use to identify clear-sky spectra and (2) a
drier lower part of the troposphere (<3 km) in the model than
in the observations. For candidate 1, when a very small cloud
fraction was present inside a FOV, an IRIS spectrum
sampled at this FOV might pass both the brightness tem-

Figure 6. AM2-ECMWF difference of the tropical monthly mean of relative humidity from April to
December 1970. The unit of relative humidity is percentage. Contour interval is 2%.

Table 2a. Properties of Groups of IRIS T-Channels (CO2 Band and Two Window Regions) Used in This Studya

T1 T2 T3 T4 T5 T6 T7 T8

Range of zmax in km <1 [1, 3] [3, 5] [5, 7] [7, 9] [9, 11] [11, 13] >13
Number of channels 216 73 13 19 7 12 6 46
Nadir flux, W m�2 86.7 31.1 5.8 7.2 2.2 3.1 1.2 8.8

aThe nadir flux, which is the nadir-view radiance multiplied by p, is derived from 9-month IRIS clear-sky observations over
the tropical oceans. zmax is the altitude at which the nadir-view weighting function of a IRIS channel has its maximum.
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perature threshold test and the water/ice spectral fingerprint
test. Because of the attenuation caused by clouds, such an
observed spectrum would have less radiance in the CO2 band
and the two window regions than a corresponding clear-sky
spectrum. So even if the simulated spectrum is perfect, this
would still lead to positive biases in differences between
simulated and observed fluxes in these three bands.
[23] For candidate 2, the major clear-sky absorption in the

window regions is due to H2O continuum, which is only
important in the boundary layer and the bottom part of the
free troposphere (<3 km). H2O continuum absorption is also
not negligible in the CO2 band. Therefore a dry bias in the
model’s boundary layer and the bottom part of the free
troposphere could also produce positive biases in these
bands. Indeed, the relative humidity difference between
AM2 and ECMWF ERA-40 (Figure 6) does show that,

from 1000 mb to 780 mb, AM2 is drier than ECMWF ERA-
40. The two factors discussed here are not exclusive to each
other; it is impossible to unambiguously distinguish them
from the flux differences presented here. In the next section,
we will discuss further the positive biases in the window
regions.

4. Flux Differences in Different Groups of IR
Channels

[24] We classify IRIS infrared channels into two catego-
ries: channels sensitive to temperature (hereinafter T-chan-
nels) and channels sensitive to relative humidity (hereinafter
RH-channels). Spectral regions not covered by IRIS spectra
(band 1 in Table 1) are not included. To facilitate the
comparison and interpretation, the 9.6 mm ozone band is

Table 2b. Properties of Groups of IRIS RH-Channels (Water Vapor Bands Covered by IRIS Measurement)

Used in This Studya

RH1 RH2 RH3 RH4 RH5 RH6

Range of zmax in km <1 [1, 3] [3, 5] [5, 7] [7, 9] >9
Number of channels 26 56 55 85 29 7
Nadir flux, W m�2 5.6 14.2 18.8 25.9 5.9 1.8

aThe nadir flux, which is the nadir-view radiance multiplied by p, is derived from 9-month IRIS clear-sky observations over
the tropical oceans. zmax is the altitude at which the nadir-view weighting function of a IRIS channel has its maximum.

Figure 7. (a) AM2-IRIS nadir flux differences in eight groups of T-channels (channels sensitive to
temperature) as defined in Table 2a. Refer to the context for the definition of nadir flux. Each bar
represents the flux difference of one month. The T1–T8 groups are defined in Table 2a. (b) Same as
Figure 7a except for ECWMF-IRIS. (c) Same as Figure 7a except for six groups of RH-channels
(channels sensitive to relative humidity) as defined in Table 2b. (d) Same as Figure 7c except for
ECMWF-IRIS.
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not included here because of the complexity and uncertainty
of ozone profiles. Several channels dominated by CH4 and
N2O absorption are also excluded. T-channels include
channels in the CO2 band and two window regions (bands
3, 4 and 6 in Table 1) while RH-channels consist of those in
the H2O bands (bands 2, 7 and 8 in Table 1). This
classification is based on the most important contributor
to each channel. Inevitably, it is a crude classification in
several aspects. For example, T-channels in the window
regions are actually also sensitive to humidity in the
boundary layer and the bottom part of the free troposphere
because of H2O continuum absorption.
[25] For each channel in these two categories, the nadir-

view weighting function, w(z) (also known as the kernel
function), is calculated using a typical tropical sounding
profile [Anderson et al., 1986] and zmax—the altitude where
w(z) reaches its maximum—is identified. Then channels
with similar zmax are grouped together as listed in Table 2:
T-channels are divided into 8 groups and RH-channels are
divided into 6 groups. The weighting function changes with
respect to the zenith angle and so does zmax. In order to
avoid errors introduced in the mapping from nadir-view
radiance to angle-integrated flux, here we only examine the
‘‘nadir flux,’’ which is simply the nadir-view radiance
multiplied by p.

4.1. Temperature Channels

[26] Figure 7a shows the differences between AM2 and
IRIS in the T-channel groups (T1–T8, as defined in
Table 2a). In terms of the absolute value, the two largest
contributors to the AM2-IRIS OLRc difference are the T1
(zmax < 1 km) and T8 (zmax > 13 km) groups, each
contributing about +1 W m�2. However, as shown in
Table 2a, the total nadir flux of the T1 group is about
86.7 W m�2 and that of the T8 group is only 8.8 W m�2.
Therefore the relative difference in the T8 group (12.5%) is

much larger than that in the T1 group (1.1%). Channels
in the T8 group are primarily sensitive to stratospheric
temperature and less affected by tropospheric variations.
A 9-month composite map of the differences in the T8 group
is shown in Figure 8a. It can be seen that the differences are
fairly uniform over the whole tropical oceans, which further
suggests that tropospheric contributions to the differences in
this group are unimportant. Because the channels in the T8
group are predominantly sensitive to the stratosphere and the
variation in the stratosphere is not sensitive to cloud varia-
tions in the troposphere, a similar positive bias in the T8
group should also exist in the simulated total-sky OLR. This
means that, when cloud-related parameters are tuned to
match simulated total-sky OLR with the ERBE observations,
these parameters might have been ‘‘overtuned’’ to compen-
sate for the bias originating from the stratosphere.
[27] As discussed in section 2, sea surface temperature is

prescribed with observed values, so the positive AM2-IRIS
difference in the T1 group reflects either a drier boundary
layer in the model or a failure of our algorithm to exclude
some cloudy spectra. The AM2-IRIS differences in the T2–
T4 groups are negative. These two facts suggest that, if
cloud contamination is responsible for the AM2-IRIS differ-
ences seen in the window regions (Figures 5d and 5f), the
major contamination should be boundary layer clouds rather
than high clouds. Otherwise, the differences in the T2–T4
group should be positive as well.
[28] The ECMWF-IRIS difference in each group is

shown in Figure 7b. The difference in the T1 group is
comparable to that of AM2-IRIS. The difference in the T8
group is about half of the AM2-IRIS counterpart. For both
AM2-IRIS and ECMWF-IRIS differences, monthly varia-
tions in all groups are small.

4.2. Relative Humidity Channels

[29] Figure 7c shows the differences between AM2 and
IRIS in RH-channel groups (RH1-RH6, as defined in
Table 2b). The AM2-IRIS difference is only positive in
the RH1 group, a group sensitive to boundary layer humid-
ity. This is consistent with the explanation given in
section 4.1 about the flux differences in the T1 groups.
The positive differences of AM2-IRIS in the RH1 and T1
groups and the window regions (Figures 5d and 5f) are also
consistent with the discussion of the spatial sampling
disparity between satellite and AM2 in section 3.1. In a
mostly cloudy region with an area comparable to that of a
GCM grid box, the boundary layer humidity of cloud-free
pixels is expected to be less than that averaged over the
whole area. If the contribution of sampling disparity over-
shadowed other contributions, AM2-IRIS difference would
be negative in the RH1 and T1 groups and the window
regions. Therefore the positive differences at these channels
are consistent with the argument that the spatial sampling
disparity is not the dominant contributor to the bias in OLRc
comparison.
[30] The largest absolute difference shown in Figure 7c is

�1.2 W m�2 from the RH4 group, a group which also has
the largest flux among all RH-channel groups. The negative
differences in the humidity channels sensitive to the free
troposphere (the RH2–RH6 groups) suggest that the simu-
lated troposphere is wetter than observed, especially the
middle and upper troposphere. The difference between

Figure 8. (a) Nine-month composite of AM2-IRIS nadir
flux difference in the T8 group (sensitive to the temperature
above 13 km). Each grid box is 2.5� longitude by 2�
latitude. The unit is W m�2. (b) Same as Figure 8a except
for the RH4 group (sensitive to the relative humidity at 5–
7 km). White pixels over the oceans are grid boxes with no
single clear-sky spectrum identified during the IRIS period.
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ECMWF and IRIS in the RH1 group (Figure 7d) is
comparable to that between AM2 and IRIS. For all the
other groups, the amplitudes of ECMWF-IRIS differences
are systemically smaller than those of AM2-IRIS differ-
ences by about a factor of two. The differences between
ECMWF and IRIS in the RH3–RH6 groups are negative,
implying that ECMWF is more humid than the observations
in the middle and upper troposphere. Given that AM2 is
more humid than ECMWF in these regions by about 6–
12% (as shown in Figure 6), AM2 should be even more
humid than the real atmosphere in these regions.
[31] If we normalize the monthly nadir flux differences in

the RH2–RH6 groups with respect to the difference in the
RH4 group as shown in Table 3, the ratio of the differences
between any pair of RH2–RH6 groups changes little from
month to month. In addition, if we perturb a typical tropical
sounding profile by changing its relative humidity within a
vertical layer from 6.5 km to 8.5 km, the corresponding
normalized flux changes (Pert in Table 3) due to this

perturbation are similar to the normalized monthly flux
differences of AM2-IRIS. This suggests that a more humid
layer around 6.5–8.5 km (about 500–350 mb) in the model
could explain most of the AM2-IRIS flux differences in the
RH2–RH6 groups.
[32] The 9-month spatial composite of the AM2-IRIS

nadir flux differences in the RH4 group (sensitive to relative
humidity at 5–7 km) is shown in Figure 8b. Although the
monthly mean difference averaged over the tropical oceans
is always negative, the difference is actually positive over
many regions with subsidence such as the coasts off Peru
and Namibia. Regions with large negative differences, on
the other hand, are overlapped with the ITCZ (Intertropical
convergence zone) and the SPCZ (Southern Pacific conver-
gence zone) in the model. The correlation between the
difference in the RH4 group and large-scale vertical move-
ment can also be found by examining the difference with
respect to the corresponding 500 mb vertical velocity
(500 mb w) simulated by AM2. Figure 9 shows the mean

Figure 9. AM2 –IRIS nadir flux difference in the RH4 group (sensitive to the relative humidity at 5–
7 km) with respect to the corresponding 500 mb vertical velocity simulated by AM2. The vertical
velocity is grouped into 18 bins from �0.095 Pa/s to 0.075 Pa/s with a width of 0.01 Pa/s. For each bin,
the shaded bar represents the average of flux differences for all samplings falling into that bin, and the
mean ± standard deviation is shown as the ticked solid line.

Table 3. Normalized Dimensionless Monthly AM2-IRIS Nadir Flux Differences in the Different RH

Groupsa

RH1 RH2 RH3 RH4 RH5 RH6

Mean �0.043 0.28 0.57 1.00 0.27 0.05
Std 0.017 0.024 0.016 0.0 0.008 0.004
Pert 0.031 0.26 0.54 1.00 0.26 0.05
Real diff, W m�2 0.0476 �0.3253 �0.6627 �1.1703 �0.3105 �0.0602

aThe normalization is done with respect to the monthly nadir flux difference in the RH4 groups. The mean and
standard deviation for each RH group are listed as Mean and Std, respectively. Pert shows the normalized flux
differences caused by a uniform perturbation to relative humidity from 6.5 to 8.5 km in a typical tropical profile
[Anderson et al., 1986]. The real 9-month mean flux differences before normalization are shown as ‘‘Real diff’’ in
W m�2.
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flux differences in the RH4 group and the corresponding
standard deviations for 18 bins of 500 mb w (from
�0.095 Pa/s to 0.075 Pa/s). It can be seen that, for strong
ascending motion (large negative w), the corresponding
AM2-IRIS flux differences in the RH4 group tend to be
negative and have large magnitudes. Only for strong
descending motion (large positive w) do the differences
tend to be positive, but the magnitudes are smaller than
those associated with strong ascending motion. Regions
with strong descending motion tend to have high occurrence
of marine stratus and, as discussed in section 3 and 4.1,
some IRIS spectra contaminated by low clouds might pass
our clear-sky screening procedure. However, our criteria to
identify clear-sky spectra guarantee that, for any significant
low-cloud contamination, the cloud tops should be quite
low (around or less than 1 km). Therefore the impact of
this kind of low-cloud contamination to channels in the
RH4 group should be limited since these channels are
sensitive to relative humidity around 5–7 km. Meanwhile,
in some regions with high occurrence of low clouds, such as
the Arabian Sea and the Indian Ocean west of Australia,
w500 tends to be largely positive but the AM2-IRIS flux
difference is actually negative, as shown in Figure 8b. On
the basis of these facts, we believe the impact of low-cloud
contamination to Figures 8b and 9 should be limited.
[33] These results suggest that, compared to the observa-

tion, the middle and upper troposphere in the model tends to
be more humid in the tropical convective regions but drier
in the subsidence regions. This could be further related to
deficiencies in simulating moisture transport in the tropical
meridional and zonal circulations.

5. Conclusion

[34] In this study we use IRIS observations to quantify
the bias in AM2-simulated OLRc over the tropical oceans.
The spectrally resolved radiances recorded by IRIS and the
wide FOV of IRIS make IRIS a valuable data set to study
this problem. After the temporal sampling disparity between
model and observation is minimized, there is still consider-
able negative bias in the simulated monthly mean OLRc
over the tropical oceans. The amplitude of such negative
bias (Figure 4) is out of the range of IRIS calibration
uncertainties and comparable to the bias seen from the
AM2 versus ERBE comparison (Figure 1b). This suggests
that the spatial sampling disparity due to different fields of
view between model and satellite, which does contribute to
the clear-sky OLR difference between model and satellite,
does not account for the majority of the negative bias in
AM2 simulated tropical OLRc. The good agreement be-
tween IRIS and ECMWF and the positive AM2-IRIS
differences in channels sensitive to boundary layer moisture
are consistent with this argument. The quantitative under-
standing of this spatial sampling disparity and how this bias
varies with instrument footprint, might be important for
evaluating simulated clear-sky radiation budget and cloud
forcing against counterparts from satellite observations.
Such an investigation would require long enough model
output with spatial resolution comparable to or smaller than
the satellite footprint (e.g., mesoscale model output for at
least 1 month), which is beyond the scope of this study.

[35] Spectral decomposition of OLRc into different ab-
sorption bands shows that the negative bias comes mainly
from water vapor rotation bands while the biases from
window regions and from the CO2 band are actually
positive. When IRIS channels are grouped according to
the altitudes that their weighting functions peak at, and
OLRc is decomposed into these groups, the major findings
are the following: (1) The AM2 mean profiles over the
tropical oceans are more humid than observations in the
middle and upper troposphere (at least > 8% in relative
humidity over 300–500 mb) and this humid layer could
explain most differences in the RH-channels sensitive to
the free troposphere; (2) to a large extent, the spatial
distribution of the AM2-IRIS difference in midtropospheric
humidity channels is correlated with the large-scale circu-
lation—large negative differences in ascending regions and
positive differences in strong descending regions; (3) the
differences in the T1 and RH1 groups suggest a possible
drier planetary boundary layer in the model; and (4) there is
a �1 W m�2 bias in the simulated OLRc which originates
from the stratosphere. Findings 1, 2, and 3 together imply
that the majority of the negative bias in OLRc can be
attributed to model deficiencies, especially the vertical and
large-scale transport of moisture which further relates to the
strength of the circulation. For finding 4, it is conceivable
that because of the insensitivity of the stratospheric channels
to the presence of tropospheric clouds, a similar positive
bias in the stratospheric channels (the T8 group) should
exist in the total-sky OLR comparison as well. This implies
a potential ‘‘overtuning’’ when only parameters related to
the tropospheric physics are adjusted in the tuning proce-
dure. Given that the channels in the T8 group are all in the
CO2 fundamental band centered at 667 cm�1 and that most
modern GCMs parameterize flux in this band, perhaps
future tuning procedures could omit this band and only
use the total fluxes from other bands. This would eliminate
the potential overtuning problem.
[36] IRIS recorded outgoing infrared spectra with a high

spectral resolution in a period much earlier than the current
era of satellite observations which began in the late 1970s.
This fact makes IRIS a unique data set to evaluate GCMs.
The high spectral resolution ensures rich information of
thermodynamic variables, such as temperature, humidity,
and clouds, contained in the spectra. Besides the approach
adopted in this study, IRIS and other data sets of spectrally
resolved infrared radiances can be used to validate models
in other ways [Haskins et al., 1997; Huang et al., 2002;
Huang and Yung, 2005]. As demonstrated in this study, the
observation of spectrally resolved radiances like IRIS can
help us understand the discrepancies between broadband
measurements and model simulation in more detail so that
we can further narrow down the cause of such discrep-
ancies. Limited by the data availability, this study is
confined to the seasonal scale. With AIRS in operation
and IASI to be launched in the future, spectrally resolved
radiances can be used to test climate models over a variety
of timescales. Moreover, the collocation of AIRS, MODIS
and CERES measurements on NASA EOS platforms makes
it possible for the first time to simultaneously use such
collocated broadband, narrowband and spectrally resolved
radiances to validate climate models. With a careful treat-
ment of the sampling issues between satellite and climate
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models, such hierarchy of diagnostic analyses will bring
more insight to the deficiencies in the models and eventu-
ally help the improvement of climate simulation.
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