NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

Wigley, T. M. L., V. Ramaswamy, J. R. Christy, J. R. Lanzante, C. A. Mears, B. D. Santer, and C. K. Folland, 2006: Executive Summary. In, Temperature Trends in the Lower Atmosphere: Steps for understanding and reconciling differences, T. R. Karl, S. J. Hassol, C. D. Miller, W. L. Murray, eds., A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, 1-14.
Abstract: Previously reported discrepancies between the amount of warming near the surface and higher in the atmosphere have been used to challenge the reliability of climate models and the reality of human-induced global warming. Specifically, surface data showed substantial global-average warming, while early versions of satellite and radiosonde data showed little or no warming above the surface. This significant discrepancy no longer exists because errors in the satellite and radiosonde data have been identified and corrected. New data sets have also been developed that do not show such discrepancies.
This Synthesis and Assessment Product is an important revision to the conclusions of earlier reports from the U.S. National Research Council and the Intergovernmental Panel on Climate Change. For recent decades, all current atmospheric data sets now show global-average warming that is similar to the surface warming. While these data are consistent with the results from climate models at the global scale, discrepancies in the tropics remain to be resolved. Nevertheless, the most recent observational and model evidence has increased confidence in our understanding of observed climatic changes and their causes.

smaller bigger reset
last modified: June 30 2006.