NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl's home page > gfdl on-line bibliography > 1993: Journal of the Atmospheric Sciences, 50(23), 3909-3927

Radiative-convective equilibrium with explicit two-dimensional moist convection

Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. Journal of the Atmospheric Sciences, 50(23), 3909-3927.
Abstract: Radiative-convective statistical equilibria are obtained using a two-dimensional model in which radiative transfer is interactive with the predicted moisture and cloud fields. The domain is periodic in x, with a width of 640 km, and extends from the ground to 26 km. The lower boundary is a fixed-temperature water-saturated surface. The model produces a temperature profile resembling the mean profile observed in the tropics. A number of integrations of several months' duration are described in this preliminary examination of the model's qualitative behavior.
The model generates a QBO-like oscillation in the x-averaged winds with an apparent period of ~60 days. This oscillation extends into the troposphere and influences the convective organization. In order to avoid the associated large vertical wind shears, calculations are also performed in which the x-averaged winds are constrained to vanish. The convection then evolves into a pattern in which rain falls only within a small part of the domain. The moisture field appears to provide the memory that localizes the convection. If the vertical shears are fixed in a modest nonzero value, this localization is avoided. Comparing calculations with surface temperatures of 25°C and 30°C, the planetary albedo is found to decrease with increasing temperature, primarily due to a reduction in low-level cloudiness.
smaller bigger reset
last modified: April 15 2004.