NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl on-line bibliography > 2004 citations

A method for obtaining pre-twentieth century initial conditions for use in climate change studies

Stouffer, R. J., A. J. Weaver, and M. Eby, 2004: A method for obtaining pre-twentieth century initial conditions for use in climate change studies. Climate Dynamics, 23, 327-339.

Abstract: A method is proposed to initialise coupled atmosphere-ocean general circulation models (AOGCMs) developed to study climate change on multicentury time scales. The method assumes that current generation AOGCMs are developed and evaluated using present-day radiative forcing and near present day oceanic initial conditions. To find pre-twentieth century initial conditions, we propose that the radiative forcing be run backwards in time from the present to the desired starting date. The model should then be run for 3–5 centuries with the radiative forcing held constant at the desired date. In our tests, instantaneously switching to pre-twentieth century radiative forcing did not save computational time. When a sufficiently stable pretwentieth century condition is achieved, the coupled system can be integrated forward to the present and into the future. This method is a first step toward the standardization of AOGCM initialization and suggests a framework for AOGCM initialization for the first time. It provides an internally consistent set of pre-twentieth century initial conditions, although they will vary from model to model. Furthermore, it is likely that this method will yield a fairly realistic present-day climate in transient climate change experiments of the twentieth century, if the model biases are not too large. The main disadvantage of the method is that it is fairly computationally expensive in that it requires an additional 4–6 centuries of model integration before starting historical twentieth century integrations. However, the relative cost of this technique diminishes as more simulations are conducted using the oceanic initial condition obtained using our method.

smaller bigger reset
last modified: September 13 2004.