			-				-		
OCRWM	DESIG	GN CA	ALCUL	ATION OR A	NALYSIS CO	VER SHEET		QA: QA Page 1 of 58	3
							EN	G.2003072	3.0001
3. System	10.1				4. Document Id				
5. Title	ored Geolog	gic Repo	ository		0	00-00C-MGR0-0	0200-	000-00A	
BWR Source Term Genera	ation and E	valuatio							
6. Group	ation and E	valuatio							
Analysis & Component De	sign/Waste	Packag	e Desig	n					
7. Document Status Designation								3921	
	\boxtimes	Prelimi	inary	Final	Cancelled	1			
8. Notes/Comments					1.	and the second of the			The second
disks as Attachment VII. The compact disks. Reference comply with current proceed one change bar for the head completed on 07/17/2003. by other organizations outs	nces have b dures. All c der line. Th No interdia	een upd changes herefore sciplina	lated an are man , individ ry revie	d specific referent rked with change dual page number w is needed becau	ces added where bars. Since the D s with changes ar	appropriate. Char DI# changed, every re not listed here.	nges h y page An ir	ave been ma will have a npact review	ade to t least v was
A total of 14 other hands	Theresh	6		chments				Total Numbe	r of Pages
A total of 14 attachments.									
14 pages, Att. III 11 pages									
Att. VIII 10 pages, Att. IX	12 pages, A	Att. X 6	pages,	Att. XI I page, At	t. XII 16 pages, A	Att. XIII 10 page	s,		
and Att. XIV, 1 page.									
		11	10	RECORD OF REV			_		
9. 10. No. Reason For Revis	ion	11. Total # of Pgs.	12. Last Pg. #	13. Originator (Print/Sign/Date)	14. Checker (Print/Sign/Date)	15. QER (Print/Sign/Date)	Appro (F	16. ved/Accepted Print/Sign)	17. Date
00A See Block 8		178	XIV-1	Jeffrey C. Ryman	Jabo S. Tang	Dan Tunney	Mich	ael Anderson	aline -
				Jetter Tyma	Aduk.r.	Durshail	ni	- ad	1,17/02
				1/17/2003	(7/17/2003	71112003			

CONTENTS

P	age

1	PURPOSE	. 6
2	METHOD	. 6
3	ASSUMPTIONS	. 6
4	USE OF COMPUTER SOFTWARE AND MODELS	. 8 . 8 . 8
5	CALCULATION	. 9 10 11 12 12 15 19 21 22 22 35 45
6	RESULTS	47 48 50 52 52
7	REFERENCES	55
8	ATTACHMENTS	58

FIGURES

Page

1.	BWR Assembly Drawing	14
2.	Path B for SAS2H Calculations, Descriptions 4, 6, and 8	24
3.	Path B for SAS2H Calculations, Descriptions 1 and 2	24
4.	Percentage Results for the Gamma Sources for the Various Path B Descriptions	34
5.	Percentage Results for the Neutron Sources for the Various Path B Descriptions	35
6.	Axial Peaking Factor versus Assembly Average Burnup	47
7.	Normalized Gamma Source per MTU for Thermal DBF at 11 and 311 Years	49
8.	Normalized Neutron Source per MTU for Thermal DBF at 11 and 311 Years	49
9.	³⁶ Cl and ¹⁴ C Activities per Unit Impurity Per Assembly at Discharge as a Function of	
	Burnup for Waste Stream Assembly with 3.74 wt% ²³⁵ U Enrichment	51

TABLES

Page

1.	Script Files9
2.	BWR Enrichments, Burnups, and IHMLs for Source Terms are Calculated
3.	GE 2/3 8X8 BWR General Assembly Data
4.	GE 2/3 8X8 BWR Assembly Dimensions
5.	BWR Assembly Hardware
6.	Typical Assembly/Core Operating Parameters for the GE 8X8 Assembly
7.	Steam Table Information
8.	Moderator Density, Fuel Temperature, and Burnup Profiles
9.	Updated Fuel Temperature Profiles
10.	Node Heights
11.	Data Point and State Point Information
12.	Chemical Compositions of Materials Used in SAS2H Calculations
13.	Atomic Weights and Abundances Used in Fuel Material Calculations
14.	Nonactinide Composition of UO ₂
15.	Radioisotope Activity Densities and Half Lives Used in Crud Source Calculations 22
16.	SAS2H PATH A Description for Parameter Study
17.	SAS2H PATH B Descriptions for Parameter Study
18.	Moderator Densities Used for Parameter Study
19.	Weight Percentages of Isotopes for Materials Defined in SAS2H for the Parameter
	Study
20.	Average Fuel Temperature and Moderator Densities for Parameter Study
21.	Moderator Temperature Calculation
22.	SAS2H Assembly Input for Parameter Study
23.	Burnup Information for Parameter Study
24.	Parameter Study Comparison of Fission Product Masses
25.	Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
	Moderator Density 1
26.	Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
	Moderator Density 2
27.	Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
	Moderator Density 3
28.	Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
	Moderator Density 4
29.	Percentage of Surface Dose Due to Neutrons for the 21 PWR Waste Package 34
30.	Weight Percents for Fuel Rods and GDRs for All Enrichments
31.	Calculation of WR and Channel Mass in Different Assembly Regions
32.	Light Element Masses Used for the Thermal DBF and One-Node Comparison Case
33.	Light Element Masses Used for the Waste Stream and SS Assemblies
34.	Calculation of Node Fraction of Whole Active Fuel Height

TABLES

Page

35.	Light Element Masses for Ten-Node Representation of the Active Fuel Region	n 40
36.	Average Values of Thermal Hydraulic Parameters for Thermal DBF and One-	Node
	Comparison Case	
37.	Average Values of Thermal Hydraulic Parameters for Waste Stream and SS C	
	Assemblies	
38.	Values of Thermal Hydraulic Parameters for Ten-Node Calculation	
39.	SAS2H Input for the Assembly Depletion/Decay Parameters	
40.	Ten-Node Burn Histories for 10, 20, and 30 GWd/MTU	
41.	Ten-Node Burn Histories for 40 - 75 GWd/MTU	44
42.	SAS2H Assembly Input	44
43.	Time Steps Used for Decay Calculation of Thermal DBF (years)	45
44.	Time Steps Used for Decay Calculation of Waste Stream and SS Clad Assemb	
	(years)	45
45.	BWR Surface Area for Crud Calculation	46
46 [.]	36 Cl and 14 C Activities for the Waste Stream Assembly with 3.74 wt% 235 U	
	Enrichment	50
47.	Crud Sources	53
48.	Stated and Actual Values of Burnup Associated with '*.cut' Files	
49.	Attachments Supporting Documentation of Source Term Generation and Eval	uation

1 PURPOSE

This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-00006 REV 01. The purpose of this revision is to remove TBV (to-be-verified) -4110 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operating conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated.

The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 7.28). The performance of the calculation and development of this document are carried out in accordance with AP-3.12Q, *Design Calculation and Analyses* (Ref. 7.29).

2 METHOD

The SAS2H sequence in SCALE 4.3 is used to calculate the thermal and radiation source terms for selected fuel assemblies as a function of assembly average burnup and cooling time. The prime functional module of the SAS2H code sequence utilized is the ORIGEN-S code. This code performs a point depletion and decay calculation of a selected fuel type with user-specified irradiation conditions and decay times. The crud (activated corrosion products) source terms are determined via a simple spreadsheet calculation in Excel.

3 ASSUMPTIONS

3.1. It is assumed that a single assembly can approximate various BWR assembly types, and that the source terms generated will not be greatly affected by this approximation in geometry. This assumption results in the path A and B representations for all assemblies in this calculation being identical to a representative assembly. Information for a General Electric (GE) 2/3 8X8 assembly is assumed to generate conservative source terms. This assumption is based on the fact that the assembly has a high initial heavy metal loading

(IHML), available operating data, and assembly hardware information. In the cases where the data on the hardware is lacking in sufficient detail to model it in SAS2H, data from other BWR assemblies are used to fill in a conservative manner. Different IHMLs can be accounted for by adjusting the fuel length, which is calculated from the IHML and the fuel density. The basis for this adjustment is that source terms are known to be sensitive to initial uranium loading and burnup (Ref. 7.3), but they are expected to be much less sensitive to variations in fuel transverse dimensions. This assumption is to be confirmed during a future sensitivity calculation concerning geometric representations in SAS2H. This assumption is used throughout Section 5.

- 3.2. The channel of the stainless steel (SS) clad assemblies is assumed to be Zircaloy-4. This assumption is corroborated by Ref. 7.2, which states that only the earliest versions of BWR assemblies used SS channels (those for Dresden-1, Humboldt Bay, and Big Rock Point), and that Zircaloy-4 became the standard material. Therefore, the SS clad assemblies calculated in this report use a Zircaloy-4 channel. This assumption is used throughout Section 5.
- 3.3. It is assumed that the flux scaling factors for the assembly hardware regions (bottom endfitting, plenum, and top end-fitting) are 1.5 times the values (Ref. 7.6, Table S.1, p. vi) recommended by the U.S. Nuclear Regulatory Commission (NRC). The rationale is that this assumption provides about 50% margin for the neutron-activated sources in the hardware regions. This assumption is used in Section 5.2.
- 3.4. The clad/water rod (WR) material for SS assemblies is assumed to be SS348H. This assumption is corroborated by information in Ref. 7.15, p. 2A-16. This assumption is used in Section 5, Table 4.
- 3.5. The hardware parts of the BWR assembly described in Ref. 7.15, p. 2A-158, and used in Table 5 (see footnote 5), are assumed. The rationale for this assumption is that fuel assembly data are proprietary information and that the information in Ref. 7.15 is the best available. Since a 50% margin is applied to the neutron flux scaling factors (Assumption 3.3) to account for the uncertainty in the information, this assumption will result in conservative activation in the hardware regions. This assumption is used in Section 5, Table 5.
- 3.6. It is assumed that the ANF 9x9 JP-4 assembly will generate the bounding crud (activated corrosion products) source term and that the physical characteristics of the ANF 9x9 JP-4 assembly can be obtained from Ref. 7.2, p. 2A-24. Again, the rationale is that fuel assembly data are proprietary and the information in Ref. 7.15 is the best available technical data for this assembly. The rationale for using this assembly is that the crud source is proportional to the surface area that is exposed to coolant. Since the ANF 9x9 JP-4 assembly has a larger surface area than the GE 8x8 assembly, it will generate a more conservative (higher) crud source that will serve as the bounding crud source for the representative BWR assembly. This assumption is used in Sections 5.2 and 5.4.4, and in Attachment VI.

4 USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

- Program Name: SCALE
- Version/Revision Number: 4.3 Hewlett Packard (HP) 9000 Version, HP-UX V10.20
- Computer Software Configuration Identifier (CSCI) Number: 30011 V4.3 (Ref. 7.1)
- Computer Type: Hewlett Packard 9000 Series
- Computer Processing Unit Name and Civilian Radioactive Waste Management System (CRWMS) Management and Operating (M&O) Contractor Tag Number: 'Bloom,' CRWMS-M&O Tag 700887

The SAS2H computer code sequence of the SCALE V4.3 code system was developed to perform depletion analyses to obtain radiation and heat generation sources of spent fuel to be used in subsequent analyses. It is appropriate for this application, has been validated over the range it is used, and was obtained from Software Configuration Management in accordance with the appropriate procedures. The echo of the input files is contained in the *.cut files, which are listed in Attachment XII and available in the CDs of Attachment VII. The *.cut files, which consist of the input echoes and the final ORIGEN-S output, are sufficient to independently repeat the calculation.

4.2 EXEMPT SOFTWARE

4.2.1 Excel

The Microsoft Excel 97 spreadsheet program is used to perform simple calculations as documented in Section 5 of this calculation. The user-defined formulas, input, and results are documented in sufficient detail in Section 5 to allow for independent repetition of the various computations without recourse to the originator. This software is considered exempt from the requirements of AP-SI.1Q, Software Management (Ref. 7.31, Section 2.1.6).

4.2.2 Script Files

- Titles: neutrons, gammas, curies, watts
- Version/Revision Number: All are version 00

• Computer Type: HP 9000 Series

The specific task of each script is noted in Table 1. The script files are provided in Attachments VII and XI. They are executed with the 'awk' command by typing 'awk –f (script file) (input *.cut file name) > (output file name). These files are intended for use only with the appropriate *.cut SAS2H/ORIGEN-S output files listed in Attachment XII. The output of the script files has been verified by visual inspection. This software is considered exempt from the requirements of AP-SI.1Q, Software Management (Ref. 7.31, Section 2.1.1).

File Name	Function
neutrons	Extracts the total (alpha-n plus spontaneous fission) neutron source table from a *.cut file
gammas	Extracts the gamma source from the light element, actinide, and fission product contributions from a *.cu
	Extracts the total thermal output from the light element, actinide, and fission product contributions from a
watts curies	Extracts the tables of nuclide curies from a *.cut file for the light element, actinide, and fission product co

5 CALCULATION

5.1 REVISION HISTORY

Several calculations have been performed to provide BWR SNF source terms for shielding and thermal calculations. Ref. 7.3 was the first in a series of calculations to provide source terms, but was limited to a handful of burnups and enrichments that represented the anticipated average and bounding waste stream assemblies. The source terms represented only the first twenty-five years after discharge from the reactor. In addition, only the ORIGEN-S module was used to burn and decay the assembly. Ref. 7.4 replaced Ref. 7.3, and used the SAS2H/ORIGEN-S sequence to calculate the burnup and decay of the assembly to 1 million years. Ref. 7.4 included a wide range of burnups and enrichments, and the inclusion of a crud source. Reference 7.5 was a revision of Ref. 7.4, and was intended to provide the most complete set of conservative source terms for the SS clad and representative BWR assemblies in the expected waste stream. This calculation is a revision of Ref. 7.5 to clear TBV-4110.

The last two revisions incorporate several changes. While it had been assumed in the previous revision that increasing the fuel density slightly would have a negligible impact on the source terms, this result was not verified by the calculations in Ref. 7.4, pp. 46 and 47. Therefore, in the last two revisions, the fuel density for the waste stream is constant, and the fuel length is calculated from the heavy metal loading (see Section 5.5.2.1). Secondly, SS clad assemblies are included in this calculation. In addition, impurities are accounted for in the fuel, and the material definitions are modified slightly to increase the amounts of those elements that contribute to the source terms (particularly cobalt in steel). The number of enrichments and burnups (see Table 2) were increased, as well as the number of time steps out to 1 million years (see Table 44). The sources provided are expanded to include the inventory in curies of 61 radionuclides of interest (see Section 6.5). Calculations are performed to evaluate the effects of impurities in the fuel, and

the discussion of the ten axial node calculations is revised. Additional calculations are performed to provide radionuclide inventories for screening purposes.

5.2 SELECTION OF CONSERVATIVE PARAMETERS

The inputs for this calculation are chosen to lead to conservative source terms. This section discusses the main inputs and the reasons they are used. It covers several different parameters. The first of these is the geometry for the waste stream and SS clad assemblies.

In this calculation, the geometry used to model the assemblies in SAS2H corresponds to a GE 2/3 fuel assembly. The GE 2/3 has a high uranium loading and a large amount of assembly hardware, supporting more fission product generation and hardware activation. Therefore, this assembly provides a conservative basis for the BWR waste stream. The GE 2/3 assembly IHML is increased to 200 kg for the waste stream and SS clad assemblies to provide slightly higher source intensities.

As mentioned in Section 5.1, additional heavy metal mass is accounted for by increasing the fuel length, rather than the fuel density. A longer active fuel length and a lower density rather than a shorter fuel length and higher density decreases the fuel self-shielding. This results in a higher flux and consequently to a higher source intensity. In this calculation the IHML of the waste stream and SS clad assemblies is accounted for by the fuel length rather than the fuel density (see Section 5.5.2.1).

The irradiation of the assembly hardware is calculated by inputting the desired amount of light element material into the fuel region in SAS2H. When the sources are calculated, only the light elements are included. The SS clad assemblies use waste stream files for the bottom and top assembly regions. The hardware sources are calculated by irradiating the material in the fuel region; scaling factors (SF) are used to account for the lower flux seen in the non-fuel regions of the reactor. The SFs for the neutron flux, provided in Ref. 7.6, Table S.1, have an uncertainty of \pm 50%. To generate conservative source terms for the non-fuel regions of the BWR assembly, the SFs used in this calculation represent 150% of those listed in Ref. 7.6, Table S.1, p.vi (Assumption 3.3).

Consideration has also been given to the material definitions. The compositions of Inconel X-750, Zircaloy-2 and -4, SS 304, and SS 348H are representative of materials used in the manufacture of nuclear fuel assemblies. These compositions use the maximum amounts of cobalt given by the references and a 0.08 wt% cobalt impurity (Ref. 7.7, p. 45) for the steels. The composition for SS 348H given by Ref. 7.9, Table 1, includes a 0.2 wt% cobalt content. The balance of the remaining elements are representative of the material compositions for each material, but are biased towards the maximum amount of Sn, Ni, and Nb. Impurities are also included in the fuel itself, and the concentrations are given in Table 13.

Not all the activation sources can be calculated with SAS2H. The source due to corrosion material that accumulates on the surfaces of the assembly from the flow of coolant (crud) is also calculated. A bounding crud source term is based on the Exxon ANF 9X9 JP-4 assembly

(Assumption 3.6). This representation of the ANF 9X9 JP-4 does not use GE 2/3 dimensions. The ANF 9X9 JP-4 has a greater surface area exposed to coolant, and the crud source is heavily dependent on the available surface area. This dependence comes from the source being calculated with a radioisotope activity density (Ci/cm²). Three estimates for radioisotope densities are used, from three different sources (Ref. 7.10, 7.11, and 7.12). This calculation is discussed in detail in Section 5.5.3.

The enrichments calculated range from 0.711 wt% (natural) to 5.5 wt% (the complete list is shown in Table 2). This is done to cover the wide range seen in the waste stream and avoid the need to extrapolate for information on assemblies currently being developed. The number of time steps is increased to 180, providing more detailed information for the first 100 years after SNF is discharged from the reactors.

5.3 CALCULATION DESCRIPTION

This calculation uses SAS2H/ORIGEN-S to generate source terms for the BWR SNF. Due to the variations between BWR assembly types, calculations are performed to justify a conservative configuration in SAS2H with which to represent all BWR assemblies in the waste stream. Sections 5.5.1.1 - 5.5.1.4 develop source terms for several variations of BWR assemblies - covering a range of water rods (WRs), moderator density, and gadolinium doped rods (GDRs). Section 5.5.1.5 presents the results of this parametric study. The configuration representing a conservative combination of the number of WRs, GDRs, and thermal-hydraulic information is used in Section 5.5.2 to generate two different representations of the assembly.

The first representation determined in Section 5.5.2 uses one node to describe the fuel region. This is done for the waste stream, SS clad, and the thermal design basis fuel (DBF - the 3.74%, 48 GWd/MTU case) assemblies. The combinations for which source terms are calculated are shown in Table 2. The second representation divides the active fuel region into ten axial nodes. The ten-node calculation covers only one assembly with a 5.05% initial enrichment, all the burnups shown, and a 200 kg IHML. This is done to justify modeling a BWR assembly with one axial region; large variations in moderator density with core height require some representative density to be used for the whole core. An axial peaking factor (APF) is calculated from information in Ref. 7.13, pp. 290-544, and is intended to be applied to the one-node calculation results to compensate for under-predictions. Since the nodal burnup data from pp. 290-544 of Ref. 7.19 (a revision of Ref. 7.13) are essentially identical to the data from Ref. 7.13 (differing generally only in the 5th significant digit), APFs based on either Ref. 7.13 or Ref. 7.19 will be identical for design purposes. Section 6.1 shows a comparison of the ten-node and one-node calculation with an APF. This demonstrates the use of the APF, and addresses concerns about using a one-node representation of a BWR assembly to develop source terms.

The thermal DBF is used to illustrate the effect of fuel density on source terms. The waste stream and SS clad assembly cases are calculated with a 200 kg IHML. The thermal DBF is calculated with both 170 and 200 kg IHML. For the thermal DBF, the extra metal is accounted for by increasing the fuel density. As is seen in Section 6.2, the increased fuel density results in a less conservative source. As mentioned in Section 5.2, the waste stream and SS clad assemblies

account for the higher IHML by increasing the fuel length rather than the density. It should be noted that the cases comparing the one- and ten-node calculation, and the thermal DBF calculations (see notes in Table 2) are unchanged from Ref. 7.4, and include none of the revisions noted in Section 5.1. These cases are not to be compared directly to the waste stream and SS clad assemblies in this calculation.

Table 2.BWR Enrichments, Burnups, and IHMLs for Source Terms are Calculated¹

Initial ²³⁵ U (wt%)	0.711, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5*, 3.74 , 4.0*, 4.5, 5.0, 5.05, 5.5
Initial Heavy Metal Mass (kg)	200*, 170
Final Assembly Average Burnup	
(GWd/MTU)	0.001, 0.01, 0.1, 1*, 10*, 20*, 30*, 40*, <i>49</i> , 50, 60, 70, 75

5.4 CALCULATION INPUTS

This section outlines the information used in the calculation of the source terms. Several parameters are listed as calculated; the calculations of these parameters are shown in the tables or in Section 5.5.

5.4.1 Physical Description of BWR Fuel Assembly

The physical characteristics of a GE 2/3 8X8 BWR fuel assembly are provided in Tables 3, 4, and 5. Figure 1 presents a general drawing of a BWR assembly. This is the information required to generate the SAS2H input files needed to create the BWR source terms. The number of digits cited herein may be a result of a calculation or may reflect the input from another source; consequently, the number of digits should not be interpreted as an indication of accuracy.

Assembly Parameter	Value	Units	Reference	
Total Number of Rod Positions	64	/assembly	Ref. 7.19, p. 5	
Number of WRs	1, 2, or 4	/assembly	Ref. 7.19, pp. 5, 11	
Number of Fueled Burnable Poison Rods	0-9	/assembly	Ref. 7.19, p. 13	
Gadolinium Enrichment in the Burnable Poison Rod	3.0-4.0	wt%		
Channel Material	Zircaloy-4	NA ²	Ref. 7.14, p. A-1	٦

Table 3.GE 2/3 8X8 BWR General Assembly Data

The parameters shown with an asterix are used for the SS clad assemblies. The entries in bold italics are used only for the thermal DBF. The 5.05 wt% enrichment is used only for the comparison between the one- and ten-node calculations. The *.cut files for the 5.05 wt% are part of Ref. 7.26.
 Not applicable.

Assembly Parameter	Value	Units	Value	Units	Reference	
Clad/WR Material	Zircaloy-2	NA	NA	NA		٦
WR Outer Diameter (OD)	1.031	inches	2.6187	cm]	
WR Inner Diameter (ID)	0.967	inches	2.4561	cm		
Channel Thickness	0.08-0.10	Inches	0.2032-0.254	cm		
Cladding ID	0.419	inches	1.06426	cm	Def 740 m 5	
Cladding OD	0.483	inches	1.2268	cm	Ref. 7.19, p. 5	
Fuel Pellet OD	0.41	inches	1.0414	cm		
Fuel Rod Pitch	0.64	inches	1.6256	cm		
Channel Inner Dimension	5.278	inches	13.4061	cm	-	
Fuel Assembly Pitch	6.0	inches	15.24	cm		
Fuel Active Height	144	inches	365.76	cm	Ref. 7.14, p. C-12	
Fuel Channel Height ³	166.906	inches	423.941	cm	Ref. 7.14, p. C-14	
Bottom End Fitting Length ⁴	5.28+1.48+0.625=7.385	inches	18.7579	cm		
Fuel Rod Plenum Length	11.24	inches	28.5496	cm		
Top End Fitting Length ⁵	6.65+0.85+0.84+0.435= 8.775	inches	22.2885	cm	Ref. 7.14, p. C-12	
Total Assembly Length	171.40	inches	435.356	cm		
Clad/WR Material ⁶	SS 348H	NA	NA	NA	Assumption 3.4	

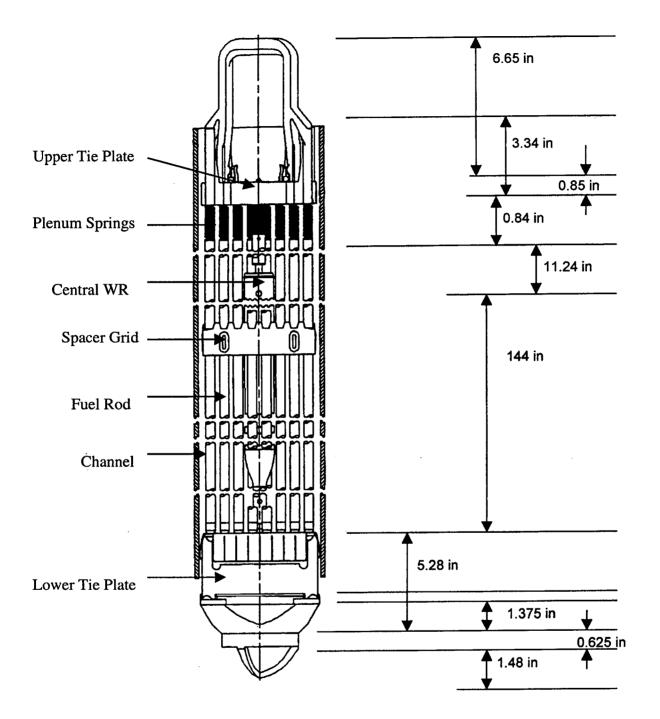
Table 4.GE 2/3 8X8 BWR Assembly Dimensions

Table 5.BWR Assembly Hardware

Region	Reference	Part Name	lb/Assembly	kg/Assembly	Material
	Ref. 7.14, p. A-8	Tie plate	4.409	2.000	SS 304
Тор	Assumption 3.5	Compression spring	1.279	0.580	Inconel X-750
		Channel	calculated	calculated	Zirc-4
	Ref. 7.14, p. A-8	Tie plate	10.516	4.770	SS 304
Rottom F	Calculated	Channel	calculated	calculated	calculated
	1 · · · · · · · · · · · · · · · · · · ·	Channel	calculated	calculated	Zirc-4
		Water rod	calculated	calculated	Zirc-2 / SS 348H
Plenum		Getters	1.360	0.617	SS 304
	Ref. 7.14, p. A-8	Plenum springs	3.748	1.700	SS 304 (Inconel X-750) ⁸
		Channel	calculated	calculated	Zirc-4
Fuel	Ref. 7.14, p. A-8	Spacer grids ⁹	4.299 / 0.717	1.950 / 0.325	Zirc-4 / Inconel X-750
		Water rod	calculated	calculated	Zirc-2 / SS 348H

^{3.} Channel length for part 2 is used.

^{4.} Axial dimensions are taken from a drawing in Ref. 7.14. Note that the plenum spring hardware is replaced with a more conservative material, Inconel (Table 5, footnote 8).


^{5.} The extra 0.435 inches is taken from the fact that the dimensions on the drawing do not add up to 171.40 inches; to compensate for this, the top end fitting is adjusted to take on the extra length; because of the location, this will have negligible impact.

^{6.} Information is used for the SS clad assemblies.

^{7.} Information for the compression springs is taken from Ref. 7.15, p. 2A-158, and is originally given in kg.

^{8.} Since SS304 was not the most stressing material, Inconel X-750 was substituted.

^{9.} There are seven incore spacers total. Spacer placement is noted on the bottom of Ref. 7.14, p. A-8.

5.4.2 Operating Parameters

The parameters in this section, presented in Tables 6, 7, and 8 represent operating conditions for a Quad Cities, Unit 2 assembly (C3 is used, however, the choice of assembly is arbitrary). Table 6 provides general information. Information in Table 7 is required to determine the moderator temperature in Sections 5.5.1.3 and 5.5.2.2. The data in Table 8 (Ref. 7.13, pp. 333-334) are used to determine moderator density profiles, power profiles, and burnups for the parameter study, one- and ten-node comparison cases, and the thermal DBF calculations. The fuel temperatures shown in Table 9 (Ref. 7.19, pp. 333-334) are an update of those given in Table 8 (Ref. 7.13, pp. 333-334). The newer fuel temperatures are used to calculate the average fuel temperature (as done for the one-node calculations) for the waste stream and SS clad calculations. Reference 7.19 is Revision 01 of Ref. 7.13 (Revision 00). It should be noted that the ten-node water density data for assembly C3 from Ref. 7.19 are identical to the data from 7.13, and the ten-node burnup data for assembly C3 differ at most by one in the 5th significant digit. Since the temperature data from Ref. 7.13 in Table 8 are not used for the waste stream and SS clad source term calculations whose results may be used for other calculations such as waste package shielding and thermal studies, the information from Ref. 7.13 can be considered "reference only" in accordance with AP-3.15Q, Managing Technical Product Inputs (Ref. 7.33). The results of calculations using information available only from Ref. 7.13 are used solely internally to this document.

Table 6.Typical Assembly/Core Operating Parameters for the GE 8X8 Assembly

Parameter	Value	Units	Reference
Number of Assemblies In Core	724	NA	Ref. 7.19, p. 4
Total Core Thermal Power	2511	MWth	Ref. 7.19, p. 3
Average Assembly Power	2511/724=3.468	MW/assembly	Calculated
Cladding Temperature	620	К	Ref. 7.16, p. S2.6.12, Table S2.6.4
Operating Pressure	1020	psia	Ref. 7.19, p.5

Table 7.Steam Table Information

Temperature (°C)	Temperature (K)	Pressure (bar)	Pressure (psia)	Reference	
270	543.15	55.052	798.4617		٦.
280	553.15	64.191	931.0117		
290	563.15	74.449	1079.7915	Ref. 7.18, p. 81	
300	573.15	85.917	1246.1207		

Data			_						10	10
Point	4	5	6	7	8	9.	10	11	12	13
Node ¹⁰		Water Density (g/cm ³)								
1	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396
2	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396	0.7396
3	0.6949	0.6926	0.6930	0.6914	0.6934	0.6957	0.6959	0.6983	0.6999	0.7004
4	0.5607	0.5634	0.5658	0.5714	0.5776	0.5838	0.5845	0.5904	0.5941	0.5957
5	0.4559	0.4610	0.4587	0.4700	0.4776	0.4852	0.4860	0.4935	0.4975	0.4993
6	0.3883	0.3901	0.3851	0.3982	0.4053	0.4127	0.4134	0.4202	0.4235	0.4253
7	0.3341	0.3290	0.3242	0.3362	0.3424	0.3498	0.3504	0.3560	0.3587	0.3602
8	0.2976	0.2858	0.2827	0.2919	0.2971	0.3046	0.3051	0.3098	0.3121	0.3134
9	0.2701	0.2525	0.2509	0.2566	0.2610	0.2668	0.2672	0.2712	0.2735	0.2749
10	0.2595	0.2392	0.2383	0.2421	0.2461	0.2512	0.2516	0.2552	0.2576	0.2590
Data point	4	5	6	7	8	9	10	11	12	13
Node	Fuel Temp. (K)									
1	672.5	680.2	654.9	678.8	674.0	647.9	637.4	641.4	663.9	687.1
2	1050.0	1061.0	968.2	996.3	934.6	852.9	813.3	821.3	890.9	949.6
3	1248.3	1157.9	1141.4	1081.9	1006.6	945.0	890.7	900.5	993.7	1040.0
4	1258.2	1143.8	1252.1	1099.3	1035.0	987.4	958.1	966.6	1054.4	1058.9
5	1211.5	1142.8	1276.3	1133.7	1059.2	1006.2	1011.9	1018.5	1078.7	1065.3
6	1149.3	1151.8	1228.1	1171.9	1078.4	1019.6	1023.7	1030.9	1069.7	1067.2
7	1086.0	1152.4	1132.4	1192.7	1091.6	1052.9	1004.3	1014.0	1030.3	1050.1
8	1027.3	1130.5	1023.9	1166.2	1069.8	1095.1	963.0	969.7	960.5	995.8
9	884.2	986.1	885.8	1013.0	933.4	955.4	829.3	831.4	811.9	843.1
10	659.9	693.0	641.9	679.1	660.7	668.0	628.3	628.0	623.7	634.1
Data Point	4	5	6	7	8	9	10	11	12	13
Node	Burnup (GWd/MTU)									
1	1.371	2.983	3.922	5.898	6.786	7.372	7.415	7.875	8.51	9.208
2	5.934	12.616	16.625	23.845	26.747	28.687	28.826	30.292	32.301	34.43
3	8.332	16.304	22.009	30.642	34.1	36.647	36.829	38.738	41.37	43.992
4	8.451	16.235	23.025	31.945	35.622	38.45	38.669	40.946	43.946	46.671
5	7.887	15.657	22.684	32.173	36.037	38.99	39.238	41.805	44.952	47.712
6	7.135	15.025	21.58	31.700	35.713	38.753	39.008	41.644	44.737	47.502
7	6.369	14.268	19.885	30.347	34.462	37.722	37.966	40.509	43.363	46.039
8	5.66	13.267	17.821	27.846	31.792	35.331	35.553	37.848	40.279	42.659
9	3.929	9.611	12.811	20.304	23.195	25.81	25.959	27.48	29.01	30.558
10	1.219	3.001	3.812	5.793	6.578	7.297	7.335	7.72	8.111	8.52

Table 8.Moderator Density, Fuel Temperature, and Burnup Profiles

Additional information regarding the final nodal burnup for all the assemblies included in Ref. 7.13 (pp. 290-544) is also used in this calculation. Due to the amount of information, it is presented in Attachment III. This information is used to generate Figure 6.

^{10.} Node 1 is at the bottom of the assembly; 10 is the top.

Data Point	4	5	6	7	8	9	10	11	12	13
Node					Fuel	Temp. (K)				
1	634.9	640.3	622.7	639.3	636	617.8	610.7	613.4	628.9	645.3
2	954.1	963.5	873.9	899.6	842.6	772.5	740.3	746.8	804.5	856.2
3	1116.6	982.1	967.5	914.8	853	805.8	766.4	773.4	843	879.9
4	1079	969.2	1073	929.7	875.8	838	815.7	822.1	891.8	895.5
5	1032.7	968.2	1097.5	960.1	895.7	852.7	857.2	862.5	912.1	900.8
6	974.3	976.4	1049.1	995.1	911.8	863.4	866.7	872.4	904.5	902.4
7	918.4	977	959.3	1014.5	923.1	890.7	851.2	858.9	872.1	888.2
8	869.7	957.2	867.1	989.8	904.6	926.2	819.4	824.5	817.6	844.7
9	763.3	839.7	764.2	860.8	798.9	815.5	725.1	726.6	713.5	734.7
10	618.8	638.1	608.3	629.9	619.2	623.5	600.6	600.4	598	603.9

Table 9.Updated Fuel Temperature Profiles

Also required for this calculation is the height of each node in the active fuel region. This information is shown in Table 10.

Node	1	2	3	4	5	6	7	8	9	10
Height (cm)	15.24	30.48	30.48	45.72	30.48	45.72	45.72	45.72	64.11	15.24

^{11.} The dimensions of the nodes shown in Table 10 (Ref. 7.13, p. 15, Fuel Type 9) do not represent all of the assembly types listed in Ref. 7.13. Fuel assemblies E-M use a slightly different node description, with nodes 9 and 10 measuring 48.87 and 30.48 cm, respectively.

Table 11 details information taken from Ref. 7.13, Table 3-8, p. 18 or from Ref. 7.19, Table 3-8, p. 18. This table lists the information on the data points (DP) and state points (SP) for which thermal hydraulic data are given in Ref. 7.13 and Ref. 7.19. The effective full power days (EFPD) are used along with the thermal hydraulic information to determine average values for the SAS2H input.

DP	Cycle	Cycle Position	Burnup	EFPD
DP1	9	BOC ¹²	0	0
DP2	9	MOC ¹³	2985.9 MWd/STU ¹⁴	167.47
	9	EOC ¹⁵	6212.4 MWd/STU	348.44
DP3	10	BOC	0	0
DP4	10	MOC	3985.1 MWd/STU	222.47
	10	EOC	8374.1 MWd/STU	467.48
DP5	11	BOC	0	0
DP6	11	MOC	3554.16 MWd/MTU ¹⁶	180.3
	11	EOC	9544.11 MWd/MTU	484.2
DP7	12	BOC	0	0
DP8	12	MOC	2820.04 MWd/MTU	142.2
	12	EOC	5229.25 MWd/MTU	263.7
SP9	13	BOC	0	0
SP10	13	MOC	201.61 MWd/MTU	10.1
SP11	13	MOC	2257.20 MWd/MTU	112.94
DP12	13	MOC	4484.31 MWd/MTU	224.4
SP13	13	MOC	6489.46 MWd/MTU	324.73
	13	EOC	7735.18 MWd/MTU	387.07
SP14	14	BOC	0	0
DP15	14	MOC	1878.65 MWd/MTU	93.56
SP16	14	MOC	4238.45 MWd/MTU	211.09

	Table 11.	Data Point and State	Point Information
--	-----------	----------------------	--------------------------

- 13. MOC Middle of cycle
- 14. STU Short ton uranium
- 15. EOC End of cycle
- 16. MTU Metric ton uranium

^{12.} BOC - Beginning of cycle

5.4.3 Material Specifications

Table 12 describes the hardware materials used in this analysis. The atomic weights and isotopic abundances required to specify the fuel are given in Table 13. Table 14 provides a list of impurities that are included in the fuel composition. The compositions of the fuel rods and the GDRs are calculated in Sections 5.5.1.2 and 5.5.2.1.

Material	Element	Sy	/mbol	wt%	Reference
· · · ·	Oxygen	0		0.12	
	Chromium	Cr		0.1	
	Iron	Fe	· · · · · ·	0.2	
Zircaloy-2	Nickel	Ni		0.08	Ref. 7.8, Table 2
	Tin	Sn		1.7	
	Zirconium	Zr		97.8	
	Density	•	6.56 g/cn	n ³	· · · ·
	Oxygen	0		0.12	
	Chromium	Cr		0.1	
7	Iron	Fe		0.2	
Zircaloy-4	Tin	Sn		1.7	Ref. 7.8, Table 2
	Zirconium	Zr		97.88	
	Density		6.56 g/cn	n ³	· · · · ·
	Nickel	Ni		70.23	· -
	Chromium	Cr		15	
	Iron	Fe		8	
	Niobium	Nb		1	
	Titanium	Ti		2.4	•
	Aluminum	Al		0.7	
Inconel X-750	Cobalt	Co		1	Ref. 7.20, p. 11
	Manganese	Mn		0.8	
	Silicon	Si		0.4	
	Copper	Cu		0.4	
	Carbon	C		0.06	
	Sulfur	S		0.01	
<u></u>	Carbon	С		0.08	
	Manganese	Mn		2	
	Phosphorus	Р		0.045	
	Sulfur	S	••	0.03	
SS 204	Silicon	Si		0.75	Ref. 7.32, SEC IIA, SA -240, Ta
SS 304	Chromium	Cr		19	
	Nickel	Ni		10.42	
	Cobalt ¹⁷	Co		0.08	
	Nitrogen	N		0.1	
	Iron	Fe		67.495	

Table 12. Chemical Compositions of Materials Used in SAS2H Calculations	Table 12.	Chemical Compositions of Materials Used in SAS2H Calculations
---	-----------	---

^{17.} This cobalt impurity is not taken from the reference, but is added for this calculation.

1

Table 12. Chemical Compositions of Materials Used in SAS2H Calculations (Continued)

Material	Element	Symbol	wt%	Reference
	Carbon	С	0.07	
	Manganese	Mn	2	
	Silicon	Si	1	
	Chromium	Cr	18	
	Nickel	Ni	13	
SS 348H	Phosphorus	P	0.045	Ref. 7.9, Table 1
	Sulfur	S	0.03	
	Cobalt	Co	0.2	
	Niobium	Nb	1	
	Tantalum	Та	0.1	
	Iron	Fe	64.555	

Table 13. Atomic Weights and Abundances Used in Fuel Material Calculations¹⁸

Element/Isotope	Atomic Weight	Abundance (%)
Oxygen	15.9994	•
234U	234.0409	-
²³⁵ U	235.0439	•
²³⁶ U	236.0456	•
²³⁸ U	238.0508	-
¹⁵² Gd	151.9197	0.2
¹⁵⁴ Gd	153.9208	2.18
¹⁵⁵ Gd	154.9226	14.8
¹⁵⁸ Gd	155.9221	20.47
¹⁵⁷ Gd	156.9239	15.65
¹⁵⁸ Gd	157.9241	24.84
160Gd	159.9270	21.86

The concentrations of element impurities in fresh light water reactor fuel, in parts of element per million parts of heavy metal (ppm), are provided in Table 14. These values are provided by Ref. 7.7, Table 5.4, and reflect actual measured concentrations instead of the maximum allowable concentrations given in purity specifications.

^{18.} The abundance percents for Gd used in this calculation are taken from Ref. 7.23, pp. 36-37.

Element	Concentration (ppm)	Element	Concentration (ppm)	
Li	1.0	Mn	1.7	
B	1.0	Fe	18.0	
С	89.4	Co	1.0	
N	25.0	Ni	24.0	
F	10.7	Cu	1.0	
Na	15.0	Zn	40.3	
Mg	2.0	Мо	10.0	
Al	16.7	Ag	0.1	
Si	12.1	Cd	25.0	
P	35.0	In	2.0	
CI	5.3	Sn	4.0	
Ca	2.0	W	2.0	
Ті	1.0	Pb	1.0	
V	3.0	Bi	0.4	
Cr	4.0			

Table 14.	Nonactinide	Composition of UO ₂	
	110110.011110.0		

5.4.4 Crud Source Inputs

In addition to the source terms for an assembly based on the actinides, fission products, and activated light elements, it is also necessary to estimate the source due to the activated corrosion products from the coolant deposited on the surfaces of the assembly (crud). These surfaces include all the areas of the assembly exposed to the flow of coolant. A bounding estimate of the BWR assembly surface area is based on an ANF 9x9 JP-4 assembly (Assumption 3.6), which has 79 fuel rods and two WRs. The information for this assembly is used due to the large array size and fuel rod size that provides a more conservative estimate of the surface area. The fuel rods for this assembly have a 0.424-inch (1.077-cm) outside diameter (OD) and a length of 163.84 inches (416.15 cm) (Ref. 7.2, p. 2A-24). Information on the size of the WRs is not included in this reference, so they are conservatively estimated to have an OD equivalent to the fuel rod pitch. Both the inner and outer surface areas of the WRs are included in the estimation of the surface area of the assembly (the WR clad is assumed to have a negligible thickness to ensure conservatism). The inner surface area of the assembly channel is also included. The channel dimensions used for calculating the surface area for crud buildup are a width of 5.44 inches (13.8176 cm) (Ref. 7.2, p. 2A-24) and a 0.08-inch (0.2032-cm) thickness (see Table 4).

Three estimates are used for the radioisotope activity density used in calculating crud sources. These are summarized in Table 15. The first estimate is from the Nuclear Regulatory Commission (NRC) NUREG-1567 (Ref. 7.10, Table 9.2) and is due solely to ⁶⁰Co. The second estimate from Ref. 7.11, p. 15, is also for ⁶⁰Co and agrees with the NRC value. The third estimate is from Ref. 7.12, Table 2. This estimate has activities for eight radionuclides and is included in this calculation for information purposes only. It is recommended that the NRC value be used for crud activity. The reason is that the ⁶⁰Co activity from the NRC agrees with that from Ref. 7.11 and is nearly three times that from Ref. 7.12. Emitting two very energetic photons and some beta particles, ⁶⁰Co is the most dominant isotope for crud. Since other radionuclides in Table 15 either have shorter half-lives or emit much lower intensity radiation, they become insignificant by the time the SNF arrives at the potential repository.

Radioisotopes	Half Life (years)	Activity Density (Ci/cm ²)	Reference	
⁶⁰ Co	5.2710	1.254E-03	7.10, Table 9.2	
⁶⁰ Co	5.2710	1.25E-03	7.11, p 15	
⁵¹ Cr	0.0758	3.50E-05		
⁵⁴ Mn	0.8545	1.72E-04		
⁵⁵ Fe	2.7300	7.42E-03		1
⁵⁸ Co	0.1941	4.50E-05	1	
⁵⁹ Fe	0.1219	7.20E-05	7.12, Table 2	
⁶⁰ Co	5.2710	4.77E-04		
⁶³ Ni	100.00	0.00E+00		
⁶⁵ Zn	0.6675	7.30E-05		
⁹⁵ Zr	0.1753	5.80E-05		

Table 15. Radioisotope Activity Densities and Half Lives Used in Crud Source Calculations

5.5 CALCULATION

5.5.1 Parameter Study

Calculations are done to compare the possible combinations of WRs and GDRs in order to quantify the differences between the assembly types. For the purpose of determining a conservative configuration, one node of the active fuel region is modeled, and assembly hardware other than the WR and the channel is not included. The 44groupndf5 cross section library is used. The 'skipcellwt' and 'skipshipdata' shielding calculation options are skipped because the shielding sequence of SAS2H is unqualified. The latticecell option is used.

5.5.1.1 Path A and B Descriptions

SAS2H requires two geometric descriptions to be input. The path A description represents the fuel and moderator cell, and is used to generate cross sections that represent the fuel, clad, and moderator. The dimensions used for the path A geometry are shown in Table 16.

Variable Name	Value Used		
Lattice type	Square pitch		
Pitch	1.6256 cm		
Fuel OD	1.0643 cm		
Mfuel	1		
Nmod	3		
Clad OD	1.2268 cm		
Mclad	2		

Table 16.	SAS2H PATH A	Description ⁻	for Parameter Study

The second geometry description required is known as the path B and represents the entire assembly. For this, parts of the assembly are represented with equivalent area concentric circles. Because there are several possibilities for the number of WR, GDRs, and moderator densities for

each assembly, comparison cases are examined in order to determine a conservative combination to use for the source term generation. The combinations examined in this calculation are taken from Ref. 7.17, pp. 50-55. The path B descriptions for these combinations are listed in Table 17. Since these descriptions are used solely internally to this calculation to determine a conservative configuration, the information taken from Ref. 7.17, can be used as "reference only."

				Value Used				
Variable Name		0 GDRs, 4 WRs	Comment	7 GDRs, 2 WRs	7 GDRs, 4 WRs	10 GDRs, 4 WRs	Comment	
	Path B #1	Path B #2		Path B #4	Path B #6	Path B #8		
Mixes	7	7		6	6	6	CDD	
Radius, cm	1.06426	1.22805	WR	0.53213	0.53213	0.53213	GDR	
Mixes	4	4	WD ale d	2	2	2	Cladding	
Radius, cm	1.2268	1.30935	WR clad	0.61340	0.61340	0.613340	Cladding	
Mixes	3	3		3	3	3	In-cell moderator	
Radius, cm	1.29704	1.83429	In-channel moder	0.91715	0.91715	0.91715		
Mixes	500	500		500	500	500		
Radius, cm	7.33716	7.33716	Homogenized fue	2.72951	2.68513	2.24654	Homogenized fuel	
Mixes	4	4	Ohannal	4	4	4		
Radius, cm	7.57331	7.57331	Channel	2.82015	2.77721	2.32358	Channel material	
Mixes	7	7	Durana madavata	7	7	7	Rimees in channel	
Radius, cm	8.59824	8.59824	Bypass moderato	3.24983	3.24983	2.71900	Bypass, in-chann	

Table 17.	SAS2H PATH B Descriptions for Parameter Study ¹⁹
-----------	---

These path B geometries are also shown in Figures 2 and 3. In addition to the above variations, several moderator densities are examined. These are summarized in Table 18.

Table 18. Moderator Densities Used for Parameter Study

Density	Description	
1	Determined from core follow data from Ref. 7.13, for node 5. These cases use multiple cycles that vary the moderator of see Table 20 for this calculation.)	
2	Full reference density - 0.7396 g/cm ³ (Ref. 7.13, Table 2-2, p. 5 or Ref. 7.19, Table 2-2, p.5)	
3	Low density (similar to the outlet) - 0.2 g/cm ³	
4	Average density for all nodes and cycles (see Table 37) - 0.4435 g/cm ³	

19. Information is taken from Ref. 7.17, pp. 50-55.

The path B descriptions for the assemblies containing GDRs use the scheme shown in Figure 2. The assemblies with WRs only are described by the scheme in Figure 3.

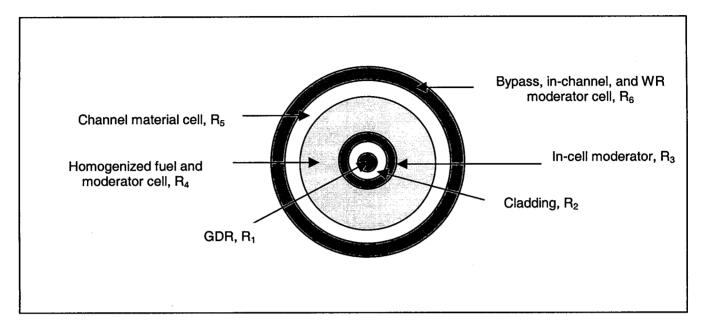



Figure 2. Path B for SAS2H Calculations, Descriptions 4, 6, and 8

5.5.1.2 Fuel Material Specifications

This calculation requires the description of six materials: regular fuel (with no gadolinium), GDRs, cladding, in-channel moderator, bypass moderator, and channel material. The equations used to determine the isotopic wt%s of these materials are shown below. The regular fuel rods are specified with the standard composition UO_2 ; only the breakdown of the uranium by isotope is required as input (see Equations 1 through 3). For the GDRs, the wt%s of all the isotopes are specified. This is done by first using the information calculated with Equations 1 through 3 (Ref. 7.34, p. 20), and then determining the molecular weights of gadolinium oxide (Gd₂O₃) and UO₂ with Equation 6 (by using the values determined with Equations 4 and 5). Equations 7 and 8 determine the weight fractions of uranium, gadolinium, and oxygen. From these weight fractions, the isotopic wt% of the required isotopes of uranium and gadolinium are calculated with Equations 9 - 11.

$$wt\% U_{236} = 0.0046*(wt\% U_{235})$$
 (Eq. 1)

$$wt\% U_{234} = 0.007731 * (wt\% U_{235})^{1.0837}$$
 (Eq. 2)

$$wt\% U_{238} = 100 - (wt\% U_{234} + wt\% U_{235} + wt\% U_{236})$$
(Eq. 3)

$$(1/molecular weight)^{uranium} = 0.01 * \sum_{i} \left(\frac{wt\%}{atomic weight} \right)_{i}$$
 (Eq. 4)

$$(1/molecular weight)^{gadolinium} = 0.01 * \sum_{i} \left(\frac{wt\%}{atomic weight}\right)_{i}$$
(Eq. 5)

 $(molecular \ weight)_{UO_2 \ or \ Gd_2O_3} =$ $(\# of \ U \ or \ Gd \ atoms) * (molecular \ weight) + (\# of \ O \ atoms) * (atomic \ weight)_{oxygen}$ (Eq. 6)

$$(weight fraction)_{U \text{ or } Gd \text{ term}} = (\# U \text{ or } Gd \text{ atoms}) * \left(\frac{molecular \text{ weight}_{U \text{ or } Gd \text{ term}}}{molecular \text{ weight}_{UO_2 \text{ or } Gd_2O_3}}\right)$$
(Eq. 7)

$$(weight fraction)_{Oxygen} = 1 - (weight fraction)_{U \text{ or } Gd \text{ term}}$$
(Eq. 8)

$$(wt\% Gd)_i^{GDR} = enrichment^{GDR} * (wt\% Gd)_i * (weight fraction)_{gadolinium}$$
(Eq. 9)

$$(wt\% U)_i^{GDR} = (1 - enrichment^{GDR}) * (wt\% U)_i * (weight fraction)_U$$
(Eq. 10)

$$(wt\% O)^{GDR} = 100 - \sum_{i} [(wt\% U)_{i} + (wt\% Gd)_{i}]$$
(Eq. 11)

These calculations are shown in Attachment I, Worksheet 'parameter study.' The atomic weights and isotopic abundances used in this calculation are summarized in Table 13. Node 5 of assembly C3 (Ref. 7.13, Tables 3-3, 3-4, and 3-6 or Ref. 7.19, Tables 3-3, 3-4, and 3-6) is used in the study of different combinations of GDRs and WRs. For this node, the fuel is 3.2 wt% initially enriched in ²³⁵U. The GDRs are 3.0 wt% enriched with gadolinium. Table 19 shows the weight percentages of the isotopes as they are described in the SAS2H files.

Table 19.	Weight Percentages of Isotopes for Materials Defined in SAS2H for the Parameter
	Study

Isotope	SAS2H Isotope Identifier	Material						
isotope		Fuel	GDR	Cladding	Channel	In-channel Moderator	Bypass Moderator	
0	8016	11.8536	11.8952	0.12	0.12	0.8888	0.8888	
²³⁴ U	92234	0.0240	0.0233	-	-	-	•	
²³⁵ U	92235	2.8207	2.7361	-	-	-	• .	
²³⁶ U	92236	0.0130	0.0126	-	-	-	-	
²³⁸ U	92238	85.2887	82.7301	-	•	-	-	
¹⁵² Gd	64152	-	0.0052	-	-	-	-	
¹⁵⁴ Gd	64154	-	0.0567	-	-	-	-	
¹⁵⁵ Gd	64155	-	0.3852	-	•	-	-	
¹⁵⁶ Gd	64156	-	0.5328	-	-	-	-	
¹⁵⁷ Gd	64157	-	0.4073	-	-	-	-	
¹⁵⁸ Gd	64158	-	0.6465	-	-	-	-	
¹⁶⁰ Gd	64160	-	0.5690	-	-	-	-	
н	1001	-	-	-	-	0.1111	0.1111	
Cr	24000	-	-	0.10	0.10	-	•	
Fe	26000	-	-	0.10	0.20	-	-	
Ni	28000	-	-	0.05	•	-	-	
Sn	50000	-	-	1.40	1.40	-	-	
Zr	40000	-	-	98.23	98.18	-	-	
Density (g/cn	n ³) ²⁰	9.9695	9.9695	6.56	6.56	Varied with cyc	0.7396	

Because SAS2H does not permit the modeling of the gas gap between the fuel and the cladding for a central GDR, a smeared fuel density is used (the same approximation is made for the regular fuel rods as well). This has a negligible effect on the calculation, and is a common approximation. The smeared density is calculated from Equation 12:

$$\rho_{smeared} = (\% \ theoretical \ density * \rho_{theoretical}) * \left(\frac{pellet \ radius^2}{clad \ inside \ radius^2}\right)$$
(Eq. 12)

Yielding:

$$\rho_{smeared} = (0.95) * (10.96 g / cm^3) * \left(\frac{0.5207^2}{0.53213^2}\right) = 9.9695 g / cm^3$$

5.5.1.3 Fuel Temperatures and Moderator Densities

The temperature of the cladding and channel is taken to be that of the cladding described in Table 6. This temperature is in the sample calculations for SAS2H in the SCALE manual. The fuel temperature used for all parameter study cases is a cycle weighted average (see Table 20), and is determined from the operating information presented in Tables 8 and 11. The EFPD used as a weighting factor corresponds to the MOC. For BOC data points, the difference between the EFPD given in Table 11 and the EFPD shown in Table 20 is simply the previous MOC value subtracted from the BOC value.

It is also necessary to calculate a cycle weighted moderator density (referred to as 'density 4' in Table 18), as well as moderator densities for each cycle (described as the 'density 1' case in Table 18). For the 'density 1' case, MOC values are used if possible; for cycle 13 an average is taken over the MOC values.

DP	EFPD from Table 11 (days)	EFPD (days)	Fuel Temperature (K)	Moderator Density (g/cm ³)	Moderator Densities for Each Cycle (g/cm ³) ²²
4	222.47	222.47	1211.5	0.4559	0.4559
5	467.48	245.01	1142.8	0.4610	0.4559
6	180.3	180.3	1276.3	0.4587	0.4507
7	484.2	303.9	1133.7	0.4700	0.4587
8	142.2	142.2	1059.2	0.4776	0.4776
9	263.7	121.5	1006.2	0.4852	0.4776
10	10.1	10.1	1011.9	0.4860	
11	112.94	102.84	1018.5	0.4935	
12	224.4	111.46	1078.7	0.4975	0.4964 (average over the values for the
13	324.73	100.33	1065.3	0.4993	
Total		1540.11			
Straigh	nt average		1100.4	0.4785	
Weigh	ted average over	all cycles	1129.2	0.4727	
	weighted	d average	= data point	Temperature or density) _i) Total EFPD	(Eq. 13)

Table 20. Average	el Temperature and Moderator Densities for Parameter S	Study ²¹
-------------------	--	---------------------

^{21.} The fuel temperature and moderator density information in Table 20 correspond to node 5 of the C3 assembly of the Quad Cities reactor (Ref. 7.13, Table 4-141, pp. 333-334).

^{22.} See Table 18.

The moderator temperatures are determined from the operating pressure given in Table 6 and the steam table information given in Table 7. The calculation is shown in Table 21.

Temperature (K)	Pressure (psia)
553.15	931.0117
563.15	1079.7915
$moderator\ temperture = temperature_1$	+ $\left(\frac{\Delta Temperature}{\Delta Pressure}\right)$ *(operating pressure - pressure_1)
	(Eq. 14)
$moderator\ temperature = 553.1$	$.5 + \left(\frac{563.15 - 553.15}{1079.7915 - 931.0117}\right) * (1020 - 931.0117)$
moderator temperature = 559.1	3 K

Table 21. Moderator Temperature Calculation

5.5.1.4 Overall Assembly Input

As previously stated, for the purposes of this parameter study, one node is examined. The selection of this node is arbitrary, and serves only to use uniform values for all the calculations. Node 5 information is used. The overall assembly information for each geometry examined is given in Table 22.

Variable Name	Path B #1	Path B #2	Path B #4	Path B #6	Path B #8	
Npin/assm 62		60	62	60	60	
Fueingth	30.48	30.48	30.48	30.48	30.48	
Ncycles			4	4	4	
Nlib/cyc	3	3	3	3	3	
Printlevel	5	5	5	5	5	
Inplevel	2	2	2	2	2	
Asmpitch	15.24	15.24	15.24	15.24	15.24	
Numxtotal	6	6	6	6	6	
Mxrepeats	1	1	1	1	1	
Mixmod	3	3	3	3	3	
Facmesh	1.0	1.0	1.0	1.0	1.0	

Table 22.	SAS2H Assembly Input for Parameter Study
	SASZITASSembly input for Farameter Olday

The parameter study cases use a similar irradiation history as node 5 of assembly C3 of the Quad Cities reactor. The choice of this assembly is arbitrary, but is chosen because this assembly reached a high burnup. The burnup information for this node is given below in Table 23. The thermal-hydraulic information for this node is detailed in Tables 18, 20, and 21.

Uranium mass in node: 14.144 kg				
	BOC 11	BOC 12	BOC 13	EOC 13
Cumulative Node Burnup (GWd/MTU) ²³	15.657	32.173	38.990	49.301
Burnup for Cycle (MWd/MTU)	15657	16516	6817	10311
EFPD for Cycle	467.48	484.2	263.7	387.07
Nodal Power (MW)	0.4737	0.4825	0.3656	0.3768

Table 23.

Burnup Information for Parameter Study

5.5.1.5 Parameter Study Results

As noted in Ref. 7.21, p. 119, it is important to "obtain a good estimate of the time-averaged moderator density at an axial location to best calculate spent fuel composition." Ref. 7.21 makes the following conclusions:

- Sensitivity to moderator changes appears to be close to linear for most of the nuclides.
- The actinides are most sensitive to changes in moderator density. Decreased moderator density results in increased quantities of actinides, and vice versa. The density decrease results in spectral hardening which in turn results in increased Pu production, and decreased ²³⁵U depletion due to increased Pu fission.
- Of the fission products, only ¹⁴⁹Sm, ¹⁵¹Sm, and ¹³⁵Cs are sensitive to moderator density, increasing quantities with decreasing moderator density, as the spectral hardening increases Pu fission, which produces the Sm nuclides more rapidly than U fission.

This last conclusion is demonstrated in the results of the SAS2H calculations where the grams of the mentioned isotopes are printed. This is shown in Table 24.

					Gr	ams			
Path B Density ²	Density ²⁴	Isotope	1 day	10 years	100 years	1000 years	10,000 years	100,000 years	
		Sm ¹⁴⁹	0.0217	0.0339	0.0339	0.0339	0.0339	0.0339	
	2	Sm ¹⁵⁰	6.19	6.19	6.19	6.19	6.19	6.19	
		Cs ¹³⁵	6.26	6.27	6.27	6.26	6.25	6.08	
1	3		Sm ¹⁴⁹	0.0316	0.0437	0.0437	0.0437	0.0437	0.0437
		Sm ¹⁵⁰	6.72	6.72	6.72	6.72	6.72	6.72	
		Cs ¹³⁵	7.83	7.84	7.84	7.84	7.81	7.60	
		Sm ¹⁴⁹	0.0205	0.0330	0.0330	0.0330	0.0330	0.0330	
	2	Sm ¹⁵⁰	6.17	6.17	6.17	6.17	6.17	6.17	
•		Cs ¹³⁵	6.19	6.19	6.19	6.19	6.17	6.00	
8		Sm ¹⁴⁹	0.0303	0.0427	0.0427	0.0427	0.0427	0.0427	
	3	Sm ¹⁵⁰	6.75	6.75	6.75	6.75	6.75	6.75	
		Cs ¹³⁵	7.83	7.83	7.83	7.83	7.81	7.60	

Table 24. Parameter Study Comparison of Fission Product Masses

^{23.} From Table 4-141, pp. 333-334 of Ref. 7.13 (essentially identical to Table 4-141, pp. 333-334 of Ref. 7.19).

^{24.} As noted in Table 18. Density 2 is the full density, while density 3 refers to an outlet (low) density.

These conclusions are also shown in the results of the sample cases in this calculation, with the lower outlet moderator density (at the top of the core) generating the highest source.

Tables 25 - 28 present the total gamma and neutron sources for the five BWR path B descriptions with the moderator densities described in Table 18 and at different time steps. A normalization of radiation sources to that obtained with density 1 of the moderator is provided in these tables to address the influence of moderator density on the source terms provided by the different BWR assemblies (or path B descriptions). There is little variation between the geometric models for a given moderator density as is seen from the normalized results. The information in these tables is calculated in Attachment V, Worksheet 'total.report(density)'.

		Total Gamma	a Sources Over Tim	ne	
Path B		2	4	6	8
Time (years)		2	4	Ŭ	
0.00274	2.31E+16	2.33E+16	2.31E+16	2.33E+16	2.32E+16
10	1.14E+14	1.14E+14	1.14E+14	1.14E+14	1.14E+14
100	1.24E+13	1.23E+13	1.24E+13	1.23E+13	1.23E+13
1000	2.68E+11	2.56E+11	2.74E+11	2.59E+11	2.62E+11
10000	3.57E+10	3.63E+10	3.63E+10	3.66E+10	3.68E+10
100000	00 5.69E+09		5.80E+09	5.56E+09	5.62E+09
		Total Neutro	n Sources Over Tim	1e	
Path B	4	2	4	6	8
Time (years)		2	4	0	0
0.00274	2.56E+07	2.70E+07	2.69E+07	2.79E+07	2.83E+07
10	1.26E+07	1.37E+07	· 1.33E+07	1.42E+07	1.43E+07
100	6.85E+05	7.35E+05	7.21E+05	7.60E+05	7.70E+05
1000	2.03E+05	2.19E+05	2.14E+05	2.27E+05	2.31E+05
10000	7.86E+04	8.40E+04	8.18E+04	8.65E+04	8.74E+04
100000	2.40E+04	2.52E+04	2.45E+04	2.56E+04	2.57E+04

Table 25.Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
Moderator Density 1

		Total Gamma	Sources Over Time		
Path B Time (years)	1	2	4	6	8
0.00274	2.33E+16	2.35E+16	2.33E+16	2.35E+16	2.35E+16
10	1.14E+14	1.13E+14	1.13E+14	1.13E+14	1.13E+14
100	1.24E+13	1.23E+13	1.23E+13	1.23E+13	1.23E+13
1000	2.38E+11	2.29E+11	2.41E+11	2.31E+11	2.33E+11
10000	3.37E+10	3.45E+10	3.41E+10	3.47E+10	3.49E+10
100000	5.20E+09	5.05E+09	5.25E+09	5.09E+09	5.12E+09
Time (years)		Percentage of Mo	derator Density 1 R	esults for Gammas	
0.00274	101%	101%	101%	101%	101%
10	100%	100%	100%	100%	100%
100	99%	99%	99%	100%	99%
1000	89%	89%	88%	89%	89%
10000	95%	95%	94%	95%	95%
100000	91%	92%	90%	91%	91%
		Total	Neutron Sources Ov	er Time	
Path B Time (years)	1	2	4	6	8
0.00274	2.27E+07	2.41E+07	2.34E+07	2.46E+07	2.49E+07
10	1.11E+07	1.22E+07	1.15E+07	1.25E+07	1.26E+07
100	6.01E+05	6.47E+05	6.19E+05	6.63E+05	6.69E+05
1000	1.77E+05	1.91E+05	1.82E+05	1.96E+05	1.98E+05
10000	7.20E+04	7.67E+04	7.35E+04	7.81E+04	7.86E+04
100000	2.44E+04	2.55E+04	2.47E+04	2.58E+04	2.58E+04
		and a second			
Time (years)		Percentage of Mo	oderator Density 1 R	esults for Neutrons	
Time (years) 0.00274	89%	Percentage of Mo 89%	oderator Density 1 R 87%	esults for Neutrons 88%	88%
	89% 88%		1	1	88% 88%
0.00274		89%	87%	88%	
0.00274 10	88%	89% 89%	87% 86%	88% 88%	88%
0.00274 10 100	88% 88%	89% 89% 88%	87% 86% 86%	88% 88% 87%	88% 87%

Table 26.Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
Moderator Density 2

		Total Gamma S	Sources Over Time		
Path B		0		6	8
Time (years)	- 1	2	4	0	o
0.00274	2.32E+16	2.33E+16	2.33E+16	2.33E+16	2.33E+16
10	1.15E+14	1.15E+14	1.15E+14	1.15E+14	1.15E+14
100	1.25E+13	1.24E+13	1.25E+13	1.24E+13	1.24E+13
1000	3.08E+11	2.95E+11	3.26E+11	2.99E+11	3.05E+11
10000	3.79E+10	3.84E+10	3.90E+10	3.87E+10	3.91E+10
100000	6.35E+09	6.17E+09	6.68E+09	6.27E+09	6.38E+09
Time (years)		Percentage of Mo	derator Density 1 R	esults for Gammas	
0.00274	100%	100%	101%	100%	100%
10	101%	101%	101%	101%	101%
100	101%	101%	101%	101%	101%
1000	115%	115%	119%	115%	116%
10000	106%	106%	108%	106%	106%
100000	112%	112%	115%	113%	114%
		Total Neutron S	Sources Over Time		-
Path B	1	2	4	6	8
Time (years)		6	7	0	0
0.00274	2.97E+07	3.15E+07	3.23E+07	3.29E+07	3.35E+07
10	1.49E+07	1.61E+07	1.62E+07	1.69E+07	1.72E+07
100	8.17E+05	8.76E+05	8.96E+05	9.25E+05	9.42E+05
1000	2.45E+05	2.67E+05	2.72E+05	2.86E+05	2.93E+05
10000	9.00E+04	9.69E+04	9.79E+04	1.03E+05	1.05E+05
100000	2.36E+04	2.49E+04	2.45E+04	2.57E+04	2.59E+04
Time (years)		Percentage of Mo	derator Density 1 R	esults for Neutrons	
0.00274	116%	116%	120%	118%	118%
10	118%	118%	122%	119%	120%
100	119%	119%	124%	122%	122%
1000	121%	122%	128%	126%	127%
10000	115%	115%	120%	119%	120%
100000	98%	99%	100%	101%	101%

Table 27.Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
Moderator Density 3

		Total Gamma So	ources Over Time		
Path B	1 1	2	4	6	8
Time (years)		2	4	0	0
0.00274	2.32E+16	2.33E+16	2.32E+16	2.33E+16	2.33E+16
10	1.14E+14	1.14E+14	1.14E+14	1.14E+14	1.14E+14
100	1.24E+13	1.24E+13	1.24E+13	1.23E+13	1.23E+13
1000	2.74E+11	2.63E+11	2.82E+11	2.65E+11	2.69E+11
10000	3.61E+10	3.67E+10	3.67E+10	3.70E+10	3.72E+10
100000	5.77E+09	5.60E+09	5.90E+09	5.65E+09	5.71E+09
Time (years)		Percentage of Mo	derator Density 1 F	lesults for Gammas	;
0.00274	100%	100%	100%	100%	100%
10	100%	100%	100%	100%	100%
100	100%	100%	100%	100%	100%
1000	102%	102%	103%	102%	103%
10000	101%	101%	101%	101%	101%
100000	102%	102%	102%	102%	102%
		Total Neutron So	ources Over Time		
Path B	- 1	2	4	6	8
Time (years)		2	4		.
0.00274	2.60E+07	2.75E+07	2.74E+07	2.84E+07	2.88E+07
10	1.29E+07	1.40E+07	1.36E+07	1.45E+07	1.47E+07
100	6.99E+05	7.50E+05	7.39E+05	7.77E+05	7.87E+05
1000	2.06E+05	2.23E+05	2.18E+05	2.32E+05	2.35E+05
10000	7.93E+04	8.48E+04	8.29E+04	8.75E+04	8.85E+04
100000	2.39E+04	2.51E+04	2.44E+04	2.55E+04	2.56E+04
Time (years)		Percentage of Mo	derator Density 1 P	lesults for Neutrons	
0.00274	102%	102%	102%	102%	102%
10	102%	102%	103%	102%	102%
100	102%	102%	102%	102%	102%
1000	102%	102%	102%	102%	102%
10000	101%	101%	101%	101%	101%
100000	99%	100%	100%	100%	100%

Table 28.Comparison of Total Neutron and Gamma Sources for Different BWR Assemblies,
Moderator Density 4

As shown in Table 29, the results from shielding calculations (Ref. 7.22, p. 19) for the dose on the outside radial surface of a waste package indicate the neutron dose dominates on the 300 - 1000+ year time frame. At these times it represents 79 - 98% of the dose. At times greater than 30,000 years, the neutron dose on the surface of the waste package represents 5 - 6% of the total.

Region of the Waste Package Surface	5 years	10 years	50 years	100 years	300 years	1000 years	10,000 years	30,000 years
Top section of the active fuel region	5%	8%	11%	9%	79%	96%	18%	5%
Middle section of the active fuel region	6%	9%	12%	10%	80%	97%	20%	6%
Bottom section of the active fuel region	5%	8%	11%	9%	79%	97%	18%	5%

 Table 29.
 Percentage of Surface Dose Due to Neutrons for the 21 PWR Waste Package²⁵

Figure 4 and Figure 5 (generated in Attachment V, Worksheet 'Den4.%ofmod1.g') show the neutron and gamma sources over time for the five path B descriptions (at density 4). The results are shown relative to path B #1.

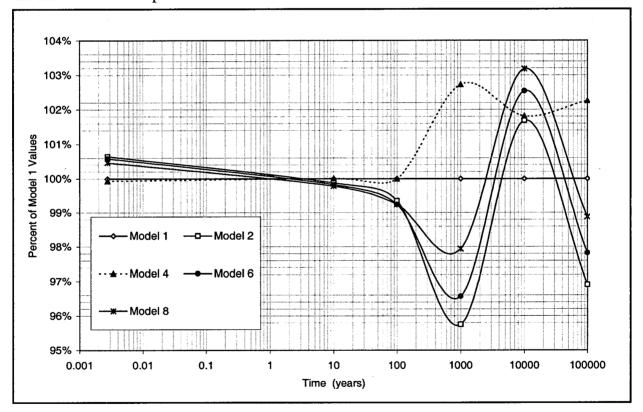


Figure 4. Percentage Results for the Gamma Sources for the Various Path B Descriptions

^{25.} The waste package referred to has an Alloy 22 inner barrier and a 516 carbon steel outer barrier.

As seen in the Figure 4, all the assemblies are close to each other at early times, with those containing the GDRs becoming less conservative in the 300 - 1000+ years time frame. However, as time progresses, the GDR bearing assemblies again become more conservative. In all cases, the results of all the assemblies are within a few percent of each other. The graph of the neutron results (Figure 5; generated in Attachment V, Worksheet 'den4.%mod1n') is much more straight forward, with path B #8 yielding more conservative results, sometimes by as much as 14%. For these reasons, path B #8 is used in the subsequent calculations.

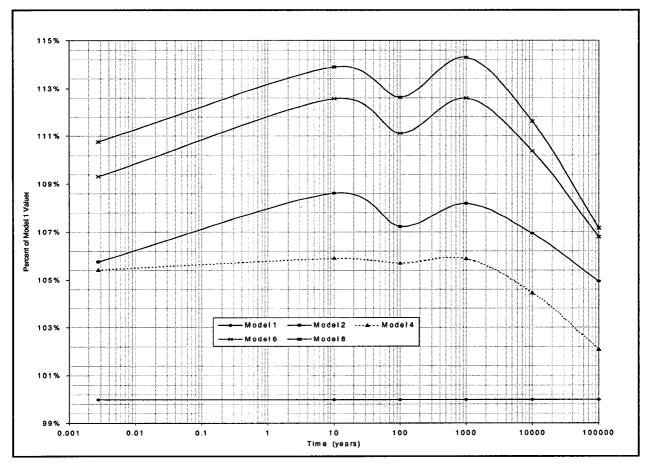


Figure 5. Percentage Results for the Neutron Sources for the Various Path B Descriptions

5.5.2 One- and Ten-Node Calculations

5.5.2.1 Material Specifications

The thermal DBF calculations use a fuel density determined from the IHML (200 or 170 kg) and the total fuel volume. This results in a density of 11.64 g/cm³ for the 200 kg loading and 9.89 g/cm³ for the 170 kg loading. These calculations are shown in Attachment I, worksheet 'density'. The lower density yields a higher per MTU normalized source for both gammas and neutrons, as shown in Section 6.2. Based on these results, the source terms for the waste stream calculations

of this calculation use a fuel length that has been increased to account for any additional loading desired, with the fuel density kept at 9.9695 g/cm³ for all cases (see Attachment I, Worksheet 'length calculation'). As done in Section 5.5.1.2, the fuel specifications are determined from Equations 1 - 11. The calculations are performed in Attachment I, in Worksheets '5.5' through 'natural.' The results are summarized in Table 30.

					Weight	% of All I	sotopes i	n GDRs					
Isotope or Element	5.5	5.05	5.0	4.5	4.0	3.7	3.5	3.0	2.5	2.0	1.5	1.0	Natural
0	11.8983	11.8977	11.8976	11.8969	11.8963	11.8959	11.8956	11.8950	11.8943	11.8937	11.8930	11.8923	11.8920
²³⁴ U	0.0419	0.0382	0.0378	0.0337	0.0297	0.0276	0.0257	0.0217	0.0178	0.0140	0.0103	0.0066	0.0046
²³⁵ U	4.7024	4.3177	4.2750	3.8475	3.4200	3.1977	2.9926	2.5651	2.1376	1.7101	1.2826	0.8550	0.6079
²³⁶ U	0.0216	0.0199	0.0197	0.0177	0.0157	0.0147	0.0138	0.0118	0.0098	0.0079	0.0059	0.0039	0.0028
²³⁸ U	80.7330	81.1238	81.1672	81.6014	82.0355	82.2613	82.4696	82.9037	83.3377	83.7717	84.2056	84.6393	84.8900
¹⁵² Gd	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052
¹⁵⁴ Gd	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567	0.0567
¹⁵⁵ Gd	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852	0.3852
¹⁵⁶ Gd	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328	0.5328
¹⁵⁷ Gd	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073	0.4073
158Gd	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465	0.6465
¹⁶⁰ Gd	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690	0.5690
	1		L	Wei	ght % of	Uranium	Isotopes	in Fuel F	Rods				•
Isotope	5.5	5.05	5.0	4.5	4.0	3.7	3.5	3.0	2.5	2.0	1.5	1.0	Natural
234U	0.04904	0.04471	0.04423	0.03946	0.03473	0.03229	0.03005	0.02543	0.02087	0.01639	0.012	0.00773	0.00534
235U	5.5	5.05	5	4.5	4	3.74	3.5	3	2.5	2	1.5	1	0.711
236U	0.0253	0.02323	0.023	0.0207	0.0184	0.0172	0.0161	0.0138	0.0115	0.0092	0.0069	0.0046	0.00327
238U	94.4257	94.8821	94.9328	95.4398	95.9469	96.2105	96.4539	96.9608	97.4676	97.9744	98.4811	98.9877	99.2804

Table 30.	Weight Percents for Fuel Rods and GDRs for All Enrichments
	Weight refeetts for ruer flous and GDHS for All Enholmento

The next parameters calculated are the light element masses to be irradiated by SAS2H, representing the assembly hardware. The first step is to determine the channel mass using Equation 15 and the information from Tables 4 and 5.

(channel outside width² - channel inside width²)* channel density (Eq. 15) = 38.597 kg

The calculated channel mass is higher than any of the available reference values, and is therefore used. This is done to include as much tin, a gamma source for shorter cooling times, in the model as possible. Using this value, and the information in Table 4, the mass of channel in each region is calculated, as shown in Table 31, along with the mass of WR in the fuel and plenum regions. These calculations are shown in Attachment II, Worksheet 'compositions', cells F9, H9, 19, N9, P9, and J9.

Description	(Eq. 16)	Result: Mass (kg)
Mass of channel in top end fitting	$mass = \left(\frac{length \ in \ top \ region}{channel \ length}\right) * channel \ mass$	0.9949
Mass of channel in bottom end fi	$mass = \left(\frac{length \ in \ bottom \ region}{channel \ length}\right) * channel \ mass$	0.6512
Mass of channel in plenum regio	$mass = \left(\frac{length in plenum region}{channel length}\right) * channel mass$	2.6754
Mass of channel in fuel region	$mass = \left(\frac{length in fuel region}{channel length}\right) * channel mass$	34.276
Mass of WR in fuel region ²⁶	$mass = \left(\frac{length in fuel region}{water rod length}\right) * WR mass$	3.1099
Mass of water rod in plenum regi	$mass = \left(\frac{length in plenum region}{water rod length}\right) * WR mass$	0.2428

Table 31.	Calculation of WR and Channel Mass in Different Assembly Regions
-----------	--

The masses of the hardware shown in Tables 5 and 31 are multiplied by the weight fractions of the constituent elements that compose the material. The calculation for the thermal DBF is performed in Attachment II, Worksheet 'compositions'. The light element calculations for the waste stream and the SS clad assemblies are performed in Worksheets '811.compositions' and '811.ssclad.compositions,' respectively. The resultant elemental mass is then multiplied by the appropriate scaling factor for a GE assembly (Ref. 7.6, Table S.1, p. vi) to account for the hardware's location in the assembly. These results are shown in Tables 32 and 33. The calculations are performed in Attachment II, Worksheet 'Table 5.3.2.1-2' for the thermal DBF, '811.lite.el.tables' for the waste stream, and '811.ssclad.lite.el.tables' for the stainless steel clad assemblies, using results taken from the '*compositions' Worksheets mentioned earlier.

^{26.} The fractions of WR in the fuel and plenum regions are also used to describe the fraction of cladding in the fuel and plenum regions.

Element	Top End Fitting Region Masses (kg) SF: 0.150		Masse	Region es (kg)).300	(k	on Masses g) I.000	Bottom End Fitting Region Masses (kg) SF: 0.225		
	Thermal DBF	One-Node Case	Thermal DBF	One-Node Case	Thermal DBF	One-Node Case	Thermal DBF	One-Node Case	
0	0.0002	0.0002	0.0022	0.0022	0.0977	0.0977	0.0002	0.0002	
Al	0.0006	0.0006	0.0036	0.0036	0.0023	0.0023	0.0000	0.0000	
С	0.0003	0.0003	0.0005	0.0005	0.0002	0.0002	0.0009	0.0009	
Со	0.0009	0.0011	0.0051	0.0053	0.0033	0.0033	0.0000	0.0009	
Cr	0.0702	0.0702	0.1135	0.1135	0.1302	0.1302	0.2041	0.2041	
Cu	0.0003	0.0003	0.0020	0.0020	0.0013	0.0013	0.0000	0.0000	
Fe	0.2135	0.2135	0.1708	0.1707	0.1468	0.1437	0.7381	0.7381	
Mn	0.0067	0.0067	0.0078	0.0078	0.0026	0.0026	0.0215	0.0215	
Nb	0.0009	0.0009	0.0051	0.0051	0.0033	0.0033	0.0000	0.0000	
N	0.0003	0.0003	0.0002	0.0002	0.0000	0.0000	0.0011	0.0011	
Ni	0.0888	0.0886	0.3758	0.3757	0.2495	0.2510	0.0993	0.0984	
Ρ	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0005	0.0005	
S	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0003	0.0003	
Si	0.0026	0.0026	0.0034	0.0034	0.0013	0.0013	0.0080	0.0080	
Sn	0.0021	0.0021	0.0261	0.0261	1.1402	1.1402	0.0021	0.0021	
Ti	0.0021	0.0021	0.0122	0.0122	0.0078	0.0078	0.0000	0.0000	
Zr	0.1465	0.1465	1.8280	1.8281	79.9798	79.9814	0.1439	0.1439	

Table 32. Light Element Masses Used for the Thermal DBF and One-Node Comparison Case²⁷

^{27.} These are the light element masses calculated in Ref. 7.4, Table 5.3.2.1-1.2. They do not contain any fuel impurities or extra cobalt impurities mentioned in Section 5.1. The one-node case refered to is that is used to compare against the ten-node case. This calculation is also unchanged from Ref. 7.4.

Table 33.	Light Element Masses Used for the Waste Stream and SS Assemblies ²⁸	
-----------	--	--

	Τ	Waste	Stream		ss	Clad
			Top End Fitting	Bottom End		1
	Fuel Region	Plenum Region	Region Masses	Fitting Region	Fuel Region	Plenum Region
	Masses (kg)	Masses (kg)	(kg)	Masses (kg)	Masses (kg)	Masses (kg)
Element	SF: 1.000	SF: 0.300	SF: 0.150	SF: 0.225	SF: 1.000	SF: 0.300
Âg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Al	0.0056	0.0036	0.0006	0.0000	0.0056	0.0036
B	0.0002	0.0000	0.0000	0.0000	0.0002	0.0000
Bi	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000
C	0.0181	0.0005	0.0003	0.0009	0.0569	0.0014
Ca	0.0004	0.0000	0.0000	0.0000	0.0004	0.0000
Cd	0.0050	0.0000	0.0000	0.0000	0.0050	0.0000
	0.0011	0.0000	0.0000	0.0000	0.0011	0.0000
Co	0.0035	0.0053	0.0011	0.0009	0.1142	0.0078
Cr	0.1310	0.1135	0.0702	0.2041	10.0483	0.3458
Cu	0.0015	0.0020	0.0003	0.0000	0.0015	0.0020
F	0.0021	0.0000	0.0000	0.0000	0.0021	0.0000
, Fe	0.1925	0.1695	0.2097	0.7247	35.8316	1.0040
In	0.0004	0.0000	0.0000	0.0000	0.0004	0.0000
Li	0.0002	0.0000	0.0000	0.0000	0.0002	0.0000
Ma	0.0004	0.0000	0.0000	0.0000	0.0004	0.0000
Mn	0.0029	0.0078	0.0067	0.0215	1.1098	0.0337
Мо	0.0020	0.0000	0.0000	0.0000	0.0020	0.0000
N	0.0050	0.0002	0.0003	0.0011	0.0050	0.0002
Na	0.0030	0.0000	0.0000	0.0000	0.0030	0.0000
Nb	0.0033	0.0051	0.0009	0.0000	0.5568	0.0181
Ni	0.2694	0.3783	0.0924	0.1118	7.4284	0.5459
0	27.3704	0.0022	0.0002	0.0002	27.3135	0.0010
P	0.0070	0.0001	0.0001	0.0005	0.0319	0.0007
Pb	0.0002	0.0000	0.0000	0.0000	0.0002	0.0000
S	0.0000	0.0001	0.0001	0.0003	0.0166	0.0005
Si	0.0037	0.0034	0.0026	0.0080	0.5572	0.0164
Sn	1.3853	0.0317	0.0025	0.0025	0.6166	0.0137
Ta	0.0000	0.0000	0.0000	0.0000	0.0553	0.0013
Ti	0.0080	0.0122	0.0021	0.0000	0.0080	0.0122
v	0.0006	0.0000	0.0000	0.0000	0.0006	0.0000
Ŵ	0.0004	0.0000	0.0000	0.0000	0.0004	0.0000
Zn	0.0081	0.0000	0.0000	0.0000	0.0081	0.0000
Zr	79.6784	1.8211	0.1461	0.1434	35.4577	0.7856

As noted previously, there are seven spacer grids in the core. To evaluate the effect of these grids on the peaking factor determined in this calculation, the spacer grids are accounted for in the ten-node representation. This is done by determining which nodes the grids fall into (from the locations given in Ref. 7.14, p. A-8 and the node heights given in Table 10), and irradiating the material via the light element option in SAS2H, along with the channel and cladding material. The node fraction information is calculated in Attachment II, Worksheet 'ten node', cells I1 - S6, and is shown in Table 34. The fuel region light elements are shown on this worksheet in cells A4 - H25, with the final light element calculations performed in cells A26 - S120. The results are summarized in Table 35.

^{28.} These light elements contain the impurities for the fuel and hardware mentioned in Section 5.1. They are used for the final source term calculations.

Node:	1	2	3	4	5	6	7	8	9	10
Height (inches)	6	18	30	48	60	78	96	114	139.24	145.24
Percentage of Spacer Gr	0	69.231	30.769	100	100	61.538	38.46 +6	30.769	200	0
Percentage of Channel a	4.14	8.28	8.28	12.4	8.28	12.4	12.4	12.4	17.4	4.14

Table 34. Calculation of Node Fraction of Whole Active Fuel Height

Table 35.

Light Element Masses for Ten-Node Representation of the Active Fuel Region

Element				Lig	ght Elemer	t Masses (kg)			
	node 1	node 2	node 3	node 4	node 5	node 6	node 7	node 8	node 9	node 10
0	0.0039	0.0081	0.0080	0.0122	0.0082	0.0120	0.0122	0.0119	0.0173	0.0039
Al	0.0000	0.0002	0.0001	0.0003	0.0003	0.0002	0.0004	0.0001	0.0007	0.0000
С	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000
Co	0.0000	0.0003	0.0001	0.0005	0.0005	0.0003	0.0005	0.0001	0.0009	0.0000
Cr	0.0033	0.0116	0.0088	0.0171	0.0138	0.0143	0.0177	0.0121	0.0283	0.0033
Cu	0.0000	0.0001	0.0001	0.0002	0.0002	0.0001	0.0002	0.0001	0.0004	0.0000
Fe	0.0048	0.0126	0.0110	0.0188	0.0139	0.0171	0.0191	0.0158	0.0289	0.0048
Mn	0.0000	0.0003	0.0001	0.0004	0.0004	0.0002	0.0004	0.0001	0.0007	0.0000
Nb	0.0000	0.0003	0.0001	0.0005	0.0005	0.0003	0.0005	0.0001	0.0009	0.0000
N	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ni	0.0009	0.0243	0.0118	0.0352	0.0344	0.0227	0.0378	0.0127	0.0689	0.0009
Ρ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Si	0.0000	0.0001	0.0001	0.0002	0.0002	0.0001	0.0002	0.0001	0.0004	0.0000
Sn	0.0461	0.0948	0.0933	0.1420	0.0960	0.1405	0.1423	0.1394	0.2015	0.0461
TI	0.0000	0.0008	0.0003	0.0011	0.0011	0.0007	0.0012	0.0003	0.0022	0.0000
Zr	3.2303	6.6499	6.5447	9.9644	6.7341	9.8592	9.9854	9.7750	14.1357	3.2303

5.5.2.2 Fuel Temperatures and Moderator Densities

Weighted moderator densities and fuel temperatures are used for all one-node calculations. The weighted averages are calculated with Equation 13 as was done in Section 5.5.1.3. These calculations are shown in Attachment III, Worksheet 'C3 Average Values', cells D15 - W15, and A29 - F42. The results are summarized in Tables 36 and 37.

Table 36.Average Values of Thermal Hydraulic Parameters for Thermal DBF and One-Node
Comparison Case

DP	EFPD from Table 11 (days)	EFPD (days)	Moderator Density (g/cm ³)	Fuel Temperature (K)
4	222.47	222.47	0.4403	1059.0
5	467.48	245.01	0.4351	1073.3
6	180.3	180.3	0.4333	1061.9
7	484.2	303.9	0.4402	1071.3
8	142.2	142.2	0.4450	995.0
9	263.7	121.5	0.4506	967.0
10	10.1	10.1	0.4510	910.2
11	112.94	102.84	0.4556	916.7
12	224.4	111.46	0.4580	949.1
13	324.73	100.33	0.4593	970.5
	• • • • • • • • • • • • • • • • • • • •	Total EFPD (days)	Weighted Average (g/cm ³)	Weighted Average (K)
		1540.11	0.4435	1026.7

Table 37. Average Values of Thermal Hydraulic Parameters for Waste Stream and SS Clad Assemblies²⁹

DP	EFPD from Table 11 (days)	EFPD (days)	Moderator Density (g/cm ³) ³⁰	Fuel Temperature (K)
4	222.47	222.47	0.4403	916.9
5	467.48	245.01	0.4351	920.3
6	180.3	180.3	0.4333	915.8
7	484.2	303.9	0.4402	918.2
8	142.2	142.2	0.4450	852.8
9	263.7	121.5	0.4506	829.9
10	10.1	10.1	0.4510	786.9
11	112.94	102.84	0.4556	791.9
12	224.4	111.46	0.4580	818.2
13	324.73	100.33	0.4593	834.7
	······································	Total EFPD (days)	Weighted Average (g/cm ³)	Weighted Average (K)
		1540.11	0.4435	883.1

For the ten-node representation, cycle averaged values are used for the nodal fuel temperatures, and the moderator density is adjusted through the H_2O fraction option in SAS2H. The cycle average fuel temperatures are determined from Equation 13, except that the formula is applied to each node, rather than a weighted average over the nodes. These calculations are shown in Attachment III, Worksheet 'C3 Average Values', cells A16 - N27, and are summarized in Table 38.

^{29.} These values are based on the updated fuel temperatures from Ref. 7.19. The calculation is shown in Worksheet '812-c3average values.'

^{30.} The densities and temperatures shown in this table are weighted averages over node height.

1

Node	Cycle Averaged		Fraction of Cycle 1 Moderator Density for DPs 4 - 13								
Noue	Fuel Temp. (K)	4	5	6	7	8	9	10	11	12	13
1	669.1	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	970.5	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1084.8	1.0	0.9967	0.9973	0.9950	0.9978	1.0012	1.0014	1.0049	1.0072	1.0079
4	1116.8	1.0	1.0048	1.0091	1.0191	1.0301	1.0412	1.0424	1.0530	1.0596	1.0624
5	1129.2	1.0	1.0112	1.0061	1.0309	1.0476	1.0643	1.0660	1.0825	1.0912	1.0952
6	1126.8	1.0	1.0046	0.9918	1.0255	1.0438	1.0628	1.0646	1.0822	1.0907	1.0953
7	1109.2	1.0	0.9847	0.9704	1.0063	1.0248	1.0470	1.0488	1.0655	1.0736	1.0781
8	1068.8	1.0	0.9603	0.9499	0.9808	0.9983	1.0235	1.0252	1.0410	1.0487	1.0531
9	924.4	1.0	0.9348	0.9289	0.9500	0.9663	0.9878	0.9893	1.0041	1.0126	1.0178
10	660.9	1.0	0.9218	0.9183	0.9329	0.9484	0.9680	0.9696	0.9834	0.9927	0.9981
Data P	oint:	4	5	6	7	8	9	10	11	12	13
EFPD ((days)	222.47	245.01	180.3	303.9	142.2	121.5	10.1	102.84	111.46	100.33

 Table 38.
 Values of Thermal Hydraulic Parameters for Ten-Node Calculation³¹

5.5.2.3 Assembly Parameters

For each enrichment listed in Table 2, source terms for all burnups listed are calculated (with the exceptions previously noted). These combinations provide a sampling of the BWR waste stream for later analysis. Each combination of enrichment and burnup is then decayed with the time steps shown in Section 5.5.2.4. The average assembly power is determined in Table 39 by dividing the total MWth of the reactor by the number of assemblies in the core. The relation for determining the EFPD for the selected fuel burnups is shown by Equation 17:

$$Burnup (MWd / MTU) = \frac{EFPD * Assembly power (MW / assembly)}{Uranium Loading (MTU / assembly)}$$
(Eq. 17)

Table 39. SAS2H Input for the Assembly Depletion/Decay Parameters

		Po	wer = 3.468 M	W, IHML = 200	kg	• •	
Burnup (GWd/MTU)	EFPD (days)	Ncycles	Length of Last Cycle (days)	Burnup (GWd/MTU)	EFPD (days)	Ncycles	Length of Last Cycle (days)
0.001	0.057	1	0.057	50	2838.0	15	38.0
0.01	0.568	1	0.568	60	3405.6	18	5.6
0.1	5.676	1	5.676	70	3973.1	20	173.1
1	56.759	1	56.759	75	4256.9	22	56.9
10	567.6	3	167.6				
20	1135.2	6	135.2				
30	1702.8	9	102.8				· · · · ·
40	2270.4	12	70.4				
49	2781.2	14	181.2				

Due to the error that can be incurred by using too large of a cycle time, for the one-node representations of the assemblies, the EFPD days are broken down into steps of 200 days per cycle or less. Therefore, all cycle lengths are 200 EFPD with the exception of the final cycle, which is listed in Table 39.

^{31.} These values are based on the same fuel temperatures used for the thermal DBF and the one-node comparison case- those from Ref. 7.13, Table 4-141, pp. 333-334.

For the ten-node representation of the assembly, the EFPD and burnup data for assembly C3 are used to determine the burn history (Attachment IV, Worksheets 'burnup, pass1' and 'burnup, pass2', columns G, J, M, P, S, V, Y, AB, AE, and AH, rows 6 - 16). From this data, the power generated in each node is determined (columns E, H, K, N, Q, T, W, Z, AC, and AF, rows 6 - 16). These powers are then used to calculate the desired burnups (columns F, I, L, O, R, U, X, AA, AD, and AG, rows 6 - 16). For burnups greater than 30 GWd/MTU, the life of assembly C3 is repeated until the desired burnup is reached (the Worksheet 'burnup, pass1' is used for the 10 - 30 GWd/MTU calculations, and Worksheet 'burnup, pass2' is for the higher burnups). The final results are shown in Tables 40 and 41. Due to the difficulty in changing the fuel temperatures from cycle to cycle, the cycle averaged values are used, and maintained throughout the calculations.

DP 5		DP 7		DP 9	
MW per Node	Calculated Burnup (GWd/MTU)	MW per Node	Calculated Burnup (GWd/MTU)	MW per Node	Calculated Burnup (GWd/MTU)
0.0544	2.2921	0.0537	4.44	0.0398	6.86
0.4507	9.7521	0.3926	18.53	0.2638	26.99
0.5377	12.8872	0.4694	24.28	0.3464	34.41
0.7875	12.8988	0.7275	25.37	0.5769	35.97
0.5240	12.3268	0.5160	25.18	0.4016	36.40
0.7982	11.6434	0.8254	24.24	0.6202	36.09
0.7991	10.8825	0.8533	22.64	0.6651	34.86
0.7696	10.0067	0.8177	20.46	0.7220	32.23
0.8060	7.1757	0.8570	14.78	0.7481	23.52
0.0601	2.2372	0.0539	4.33	0.0489	6.67
	10.0		20.0		30.0
EFPD	140	EFPD	80	EFPD	15

Table 40.Ten-Node Burn Histories for 10, 20, and 30 GWd/MTU

As previously stated, after one full lifetime, the cycles are repeated until the desired burnup is reached. For these extra cycles, the power at which the nodes are burned is the same as for the previous cycles, but the length of the burn is adjusted to reach the desired assembly averaged burnup. The nodal burnup is shown in the following table along with the EFPD for the respective cycle.

DP 4	DP 5	DP 7	DP 9	DP 12
Calculated Burnup (GWd/MTU)				
39.3034	41.6224	43.74	46.15	47.35
39.9802	49.8067	58.34	66.73	70.56
40.3359	53.1261	64.23	74.35	79.37
40.3536	53.1108	65.35	76.00	81.80
40.2699	52.5368	65.22	76.47	82.74
40.1584	51.8705	64.34	76.19	82.55
40.0447	51.1109	62.77	75.04	81.27
39.9396	50.1933	60.55	72.49	78.37
39.6828	47.0874	54.62	63.48	67.47
39.2808	41.5918	43.63	46.00	47.05
40.0	50.0	60.0	70.0	75.0
EFPD=33	EFPD=175	EFPD=110	EFPD=55	EFPD=65

Table 41.Ten-Node Burn Histories for 40 - 75 GWd/MTU

Table 42 summarizes the remaining information required by SAS2H.

Table 42. SAS2H Assembly Input

Variable Name	Value Used for Thermal DBF and One-Node Comparison Case	Value Used for Ten-Node Calculation	Value used for Waste Stream and SS Clad Calculations
Npin/assm	60	60	60
Fueingth	368.91	Node height	427.11 ³²
Ncycles	1 cycle	10 cycles	1 cycle
Nlib/cyc	16 libraries per cycle	3 libraries per cycle	16 libraries per cycle
Lightel	17	17	33
Printlevel	5	5	5
Inplevel	2	2	2
Asmpitch	15.24 cm	15.24 cm	15.24 cm
Numxtotal	6	6	6
Mxrepeats	1	1	1
Mixmod	3	3	3
Facmesh	1.0	1.0	1.0

5.5.2.4 Time Steps for ORIGEN-S Decay Calculations

The ten-node representation is decayed to the following times: 5, 6, 7, 8, 9, 10, 11, 15, and 20 years after discharge.³³ Table 43 lists the time steps used for the thermal DBF cases. The time steps chosen are based on the time the assembly is expected to reach a total thermal output of 400 watts, or the time when the assembly can be loaded into the waste package and are shown in Table 43.

^{32.} Due to the results of the density comparison in Ref. 7.4 of this calculation, the fuel length is increased rather then the fuel density to account for an increased IHML. The calculation is performed in Attachment I, Worksheet 'length calculation'.

^{33.} Other time steps were included in the ORIGEN-S case for the ten-node representation, but are unusable due to an error in the input.

1 day	5	6		7	8	9	10		11
11.01	11.02	11.03	11.04	11.05	11.06	11.07	11.08	11.09	11.1
11.15	11.2	11.25	11.3	11.35	11.4	11.45	11.5	11.55	11.6
11.65	11.7	11.75	11.8	11.85	11.9	11.95	12	12.5	13
13.5	14	14.5	15	15.5	16	16.5	17	17.5	18 .
18.5	19	19.5	20	20.5	21	26	31	36	41
46	51	56	61	66	71	76	81	86	91
96	101	106	111	161	211	261	311	361	411
461	511	561	611	661	711	761	811	861	911
961	1011	1511	2011	2511	3011	3511	4011	4511	5011
5511	6011	6511	7011	7511	8011	8511	9011	9511	10011
15011	20011	25011	30011	35011	40011	45011	50011	55011	60011
65011	70011	75011	80011	85011	90011	95011	100011	150011	200011
250011	300011	350011	400011	450011	500011	550011	600011	650011	700011
750011	8	300011	85001	1	900011	9	50011	1000	011

Table 43. Time Steps Used for Decay Calculation of Thermal DBF (years)

For the waste stream and SS clad assembly calculations, the determination of the assembly loading time is left for subsequent analysis. In order to provide adequate data for future use, 180 time steps are used in the ORIGEN-S input files. These time steps are shown in Table 44.

Time Steps Used for Decay Calculation of Waste Stream and SS Clad Assemblies (years)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
110	120	130	140	150	160	170	180	190	200
250	300	350	400	450	500	550	600	650	700
750	800	850	900	950	1000	1500	2000	2500	3000
3500	4000	4500	5000	5500	6000	6500	7000	7500	8000
8500	9000	9500	1.00E+04	1.50E+04	2.00E+04	2.50E+04	3.00E+04	3.50E+04	4.00E+04
4.50E+04	5.00E+04	5.50E+04	6.00E+04	6.50E+04	7.00E+04	7.50E+04	8.00E+04	8.50E+04	9.00E+04
9.50E+04	1.00E+05	1.50E+05	2.00E+05	2.50E+05	3.00E+05	3.50E+05	4.00E+05	4.50E+05	5.00E+05
5.50E+05	6.00E+05	6.50E+05	7.00E+05	7.50E+05	8.00E+05	8.50E+05	9.00E+05	9.50E+05	1.00E+06

5.5.3 Radionuclide Inventories for Performance Assessment

Several separate SAS2H/ORIGEN-S cases are provided in this calculation to determine average and bounding radionuclide inventories for specific years. The average and bounding BWR assemblies are derived from the results of Ref. 7.24 and listed below. The characteristics of the average BWR assembly are estimated based on the average BWR assembly of Case A with full inventory (83,800 MTU) in Table 5 of Ref. 7.24. For that case, the characteristics of the average BWR assembly are 3.02 wt%, 33.6 GWd/MTU, and 25.3 years old with an initial uranium loading of 177 kg. A comparison study, based on the data base in Ref. 7.2 (Appendix 1C),

indicates that per initial MTU loading the average BWR assembly selected in this calculation is more conservative than any average BWR assembly for the scenarios in Table 5 of Ref. 7.24 (see Attachment XIV). The characteristics of the bounding BWR assembly are also derived from Ref. 7.24 (Attachment III, bin.dat files). From those files the following bounding BWR SNF characteristics are noted: initial uranium loading of 197 kg, burnup of 65.55 GWd/MTU, initial uranium enrichment of 4.28 wt%, and cooling time of 5 years. It should be noted that there is no single assembly in the waste stream with these combined characteristics. Rather, these are the bounding characteristics of each parameter in the entire waste stream. Compared to these SNF characteristics, the bounding BWR assembly selected here is more conservative. The characteristics of the average and bounding BWR SNF assemblies for this calculation are:

Average BWR assembly:	3.5%, 40 GWd/MTU, 25 years old
Maximum BWR assembly:	5.0%, 75 GWd/MTU, 5 years old

The source terms for these assemblies are generated for the years 2033, 2133, 2233, 2333, 2433, 2533, 3033, 4033, 5033, 12,033, 22,033, 32,030, 102,033, 302,033, and 1,002,033. The age mentioned above is the age at 2033. The light elements from the hardware regions are included in the fuel region, as it is not necessary to keep the assembly region separate to determine overall radionuclide inventories. The *.cut files for these cases are included in the CDs of Attachment VII. The radionuclide inventories are provided in Attachment XIII.

5.5.4 Calculation of Crud Source Terms

The activity of the crud on the surface of the BWR assemblies at time zero is determined simply by multiplying the calculated surface area by the corrosion product activity (given in per unit area of surface). The surface area is calculated in Attachment VI, and is shown in Table 45.

	Value	Units
Rod OD	1.07696	cm
WR OD (rod pitch)	1.45288	
# of Rods	79	(2 WRs)
Rod Length	416.1536	cm
Channel ID	13.4112	cm
Channel OD	13.8176	
Channel Length	447.548	cm
WR outside area + inside area (estimated from rod pitch)	8171.07563	
rod pitch* PI * 4; WR ID and OD conservatively approximated as fuel rod pitch		
(Data from ANF 9x9 JP-4,5 assembly)		
BWR Assembly Surf. Area	168147.97	Cm ²
(Rod surface + channel inner surface + WR's inside and outside surfaces)		

Table 45. BWR Surface Area for Crud Calculat
--

The crud activity is then decayed using Equation 18.

$$N(t) = N(0)e^{\frac{-t+m-2}{t_{1/2}}}$$
(Eq. 18)

where t_2 is the half-life and t is the decay time in years. The crud source terms are calculated in Attachment VI, and the results are shown in Section 6.4.

6 RESULTS

This section presents the results of this calculation. The outputs of this calculation are reasonable compared to the inputs, and the results are suitable for the intended use. The uncertainties are taken into account by consistently using the most conservative approach; the calculations, therefore, yield a conservatively bounding set of results. Results of the parameter study are presented in Section 5.5.1.5. More information on these results is available in Attachment V.

6.1 AXIAL PEAKING FACTOR

One task of this calculation is to examine an APF to be used in future shielding calculations. The axial effects can be of great concern, for the reasons mentioned in Section 5.5.1.5. Figure 6 shows a plot of APF versus burnup for the measured data from Ref. 7.13, pp. 290-544. Since the nodal burnup data from pp. 290-544 of Ref. 7.19 (a revision of Ref. 7.13) are essentially identical to the data from Ref. 7.13 (differing generally only in the 5^{th} significant digit), APF versus burnup data based on Ref. 7.19 would be identical for design purposes to that in Figure 6. Therefore, the conclusions about APFs are still valid.

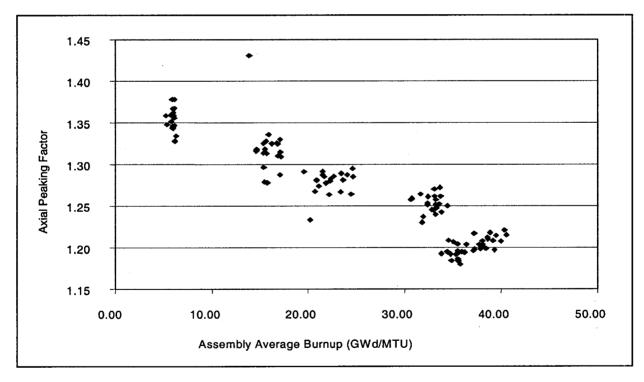
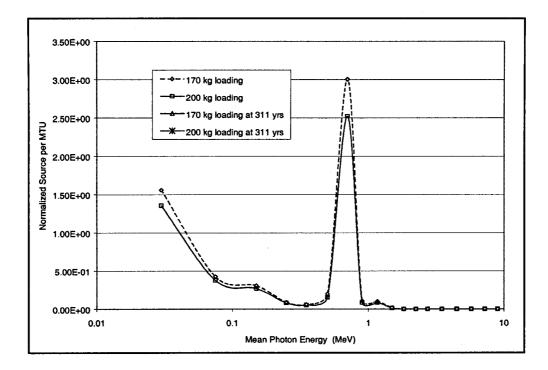


Figure 6. Axial Peaking Factor versus Assembly Average Burnup


This graph (generated in Attachment III, worksheet 'APF.vs.Burnup') indicates the maximum value of the nodal burnup divided by the average assembly burnup. The purpose of using an APF in shielding calculations is to obtain a peak surface dose without having to model many different source regions; rather, the peak can be reached by modeling one region. In order to do

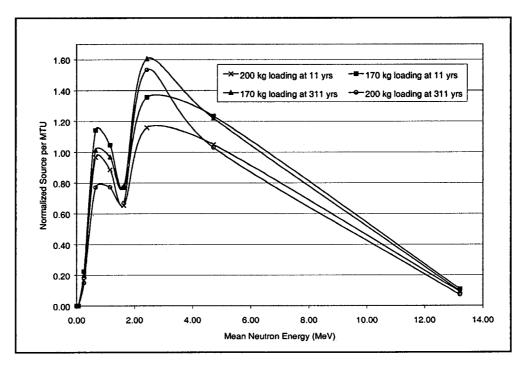
this, the source used must encompass all the peak sources in the problem. When the one-node source is multiplied by the APF and smeared over the problem volume, it should still bound the smaller sources in the multi-node description of the problem.

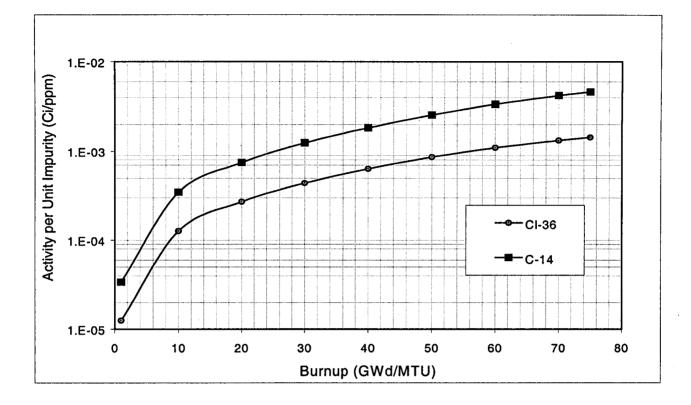
The main purpose of the APF calculation is to demonstrate that a one-node model of a BWR can be used to generate source terms such that when used with an APF it will provide conservative or comparable results with a more detailed ten-node representation of the assembly. In order to compare the one- and ten-node representations of the assembly, total neutron and gamma sources from both are specified on a particle per second per unit height basis. The one-node value is multiplied by the APF, and the difference between the increased one node value and the maximum ten-node value is then divided by the one node value. These comparisons can be seen in Attachments VIII and IX in their entirety. The APF used in this comparison is 1.4 and is based on Figure 6. The results favor the one-node representation for the gamma sources, for decay times greater than five years (and are within a few percent for the five year decay time), but indicate that the ten-node model used in this calculation is more conservative for the total neutron source. Attachment IX shows the comparison of the neutron sources. It is apparent from these results that a larger APF should be considered for any analysis where the neutron dose is expected to dominate. The calculations in Attachment IX indicate that an APF of 2.0 would have been sufficient to favor the one-node representation for neutron sources.

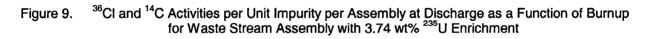
6.2 INITIAL HEAVY METAL LOADING

The results of using different IHMLs are shown below for the thermal DBF. The data shown are for a normalized source on a per MTU basis. The calculations that generate Figures 7 and 8 are shown in Attachment X.

Figure 7. Normalized Gamma Source per MTU for Thermal DBF at 11 and 311 Years




Figure 8. Normalized Neutron Source per MTU for Thermal DBF at 11 and 311 Years


6.3 EFFECTS OF FUEL IMPURITIES

Source terms for one of the cases (waste stream assembly with 3.74 wt% ²³⁵U initial enrichment) are generated with and without impurities (see Table 13) in the fuel. Negligible differences in radiation spectra and thermal powers are observed. However, the results for ³⁶Cl and ¹⁴C are summarized in this section. Attention is given to ³⁶Cl and ¹⁴C, long-lived radionuclides with half-lives of 3.01E+05 and 5,715 years (Ref. 7.23), respectively, because of their very high solubility-limit in aqueous concentrations (Ref. 7.25, p. 6 - 7). ³⁶Cl and ¹⁴C activities at discharge as a function of burnup are presented in Table 46 and are plotted in Figure 9. ³⁶Cl and ¹⁴C activities vary with initial fuel enrichment, fuel burnup, and impurity content. For a given fuel enrichment and impurity content, the activities of these two radionuclides increase with fuel burnup. For a given burnup and impurity content, the activities decrease with increasing fuel enrichment. Bounding ³⁶Cl and ¹⁴C activities of 1.09E-02 and 6.62E-01 Ci/assembly, respectively, are obtained for an assembly with natural uranium and 75 GWd/MTU burnup at discharge.

Table 46. ³⁶Cl and ¹⁴C Activities for the Waste Stream Assembly with 3.74 wt% ²³⁵U Enrichment

Bumup (GWd/MTU)	³⁶ CI (Ci/assembly)	³⁶ C (Ci/ppm/assembly)	¹⁴ C (Ci/assembly)	14C (Ci/ppm/assembly)
1	6.61E-05	1.25E-05	3.03E-03	3.39E-05
10	6.74E-04	1.27E-04	3.11E-02	3.48E-04
20	1.44E-03	2.72E-04	6.70E-02	7.49E-04
30	2.33E-03	4.40E-04	1.11E-01	1.24E-03
40	3.38E-03	6.38E-04	1.64E-01	1.83E-03
50	4.57E-03	8.62E-04	2.28E-01	2.55E-03
60	5.82E-03	1.10E-03	3.00E-01	3.36E-03
70	7.03E-03	1.33E-03	3.76E-01	4.21E-03
75	7.62E-03	1.44E-03	4.14E-01	4.63E-03

6.4 CRUD SOURCES

The results of the crud source calculations are shown in Table 47. The NRC values are recommended.

6.5 WASTE STREAM AND SS CLAD SOURCE TERMS

Due to the large amount of information generated by this calculation, the results are provided as electronic files on three compact discs (CDs) (Attachment VII). These results are identical to the output files of the previous revision of this calculation (Ref. 7.30).

Page: 53 of 58

Table 47. Crud Sources

Fuel Age (years)	Ref. 7.11 [∞] Co Values (Ci)	NRC (Ref. 7.10) ⁶⁰ Co Values (Ci)			Ref. 7.12 V						
			⁵¹Cr	⁵⁴Mn	⁵⁵ Fe	⁵⁸ Co	⁵⁹ Fe	⁶⁰ Co	⁶³ Ni	⁶⁵ Zn	⁹⁵ Zr
0	2.102E+02	2.109E+02	5.885E+00	2.892E+01	1.247E+03	7.567E+00	1.211E+01	8.021E+01	0.000E+00	1.227E+01	9.753E+00
5	1.089E+02	1.093E+02	8.402E-20	5.009E-01	3.503E+02	1.327E-07	5.392E-12	4.156E+01	0.000E+00	6.824E-02	2.523E-08
6	9.549E+01	9.579E+01	0.000E+00	2.226E-01	2.718E+02	3.728E-09	1.826E-14	3.644E+01	0.000E+00	2.416E-02	4.835E-10
7	8.372E+01	8.399E+01	0.000E+00	9.889E-02	2.108E+02	1.048E-10	6.183E-17	3.195E+01	0.000E+00	8.552E-03	9.268E-12
8	7.340E+01	7.364E+01	0.000E+00	4.394E-02	1.636E+02	2.945E-12	2.094E-19	2.801E+01	0.000E+00	3.028E-03	1.776E-13
9	6.436E+01	6.456E+01	0.000E+00	1.952E-02	1.269E+02	8.276E-14	0.000E+00	2.456E+01	0.000E+00	1.072E-03	3.405E-15
10	5.643E+01	5.661E+01	0.000E+00	8.675E-03	9.843E+01	2.326E-15	0.000E+00	2.153E+01	0.000E+00	3.794E-04	6.525E-17
11	4.947E+01	4.963E+01	0.000E+00	3.855E-03	7.636E+01	6.537E-17	0.000E+00	1.888E+01	0.000E+00	1.343E-04	1.251E-18
15	2.924E+01	2.933E+01	0.000E+00	1.502E-04	2.766E+01	0.000E+00	0.000E+00	1.116E+01	0.000E+00	2.109E-06	0.000E+00
20	1.515E+01	1.520E+01	0.000E+00	2.602E-06	7.771E+00	0.000E+00	0.000E+00	5.781E+00	0.000E+00	1.173E-08	0.000E+00
25	7.849E+00	7.875E+00	0.000E+00	4.507E-08	2.183E+00	0.000E+00	0.000E+00	2.995E+00	0.000E+00	6.520E-11	0.000E+00
30	4.067E+00	4.080E+00	0.000E+00	7.805E-10	6.135E-01	0.000E+00	0.000E+00	1.552E+00	0.000E+00	3.625E-13	0.000E+00
35	2.107E+00	2.114E+00	0.000E+00	1.352E-11	1.724E-01	0.000E+00	0.000E+00	8.042E-01	0.000E+00	2.016E-15	0.000E+00
40	1.092E+00	1.095E+00	0.000E+00	2.341E-13	4.843E-02	0.000E+00	0.000E+00	4.167E-01	0.000E+00	1.121E-17	0.000E+00
45	5.657E-01	5.676E-01	0.000E+00	4.055E-15	1.361E-02	0.000E+00	0.000E+00	2.159E-01	0.000E+00	6.230E-20	0.000E+00
50	2.931E-01	2.941E-01	0.000E+00	7.022E-17	3.823E-03	0.000E+00	0.000E+00	1.119E-01	0.000E+00	0.000E+00	0.000E+00
55	1.519E-01	1.524E-01	0.000E+00	1.216E-18	1.074E-03	0.000E+00	0.000E+00	5.796E-02	0.000E+00	0.000E+00	0.000E+00
60	7.870E-02	7.895E-02	0.000E+00	0.000E+00	3.018E-04	0.000E+00	0.000E+00	3.003E-02	0.000E+00	0.000E+00	0.000E+00
65	4.078E-02	4.091E-02	0.000E+00	0.000E+00	8.481E-05	0.000E+00	0.000E+00	1.556E-02	0.000E+00	0.000E+00	0.000E+00
70	2.113E-02	2.120E-02	0.000E+00	0.000E+00	2.383E-05	0.000E+00	0.000E+00	8.062E-03	0.000E+00	0.000E+00	0.000E+00
75	1.095E-02	1.098E-02	0.000E+00	0.000E+00	6.695E-06	0.000E+00	0.000E+00	4.177E-03	0.000E+00	0.000E+00	0.000E+00
80	5.672E-03	5.690E-03	0.000E+00	0.000E+00	1.881E-06	0.000E+00	0.000E+00	2.165E-03	0.000E+00	0.000E+00	0.000E+00
85	2.939E-03	2.948E-03	0.000E+00	0.000E+00	5.285E-07	0.000E+00	0.000E+00	1.122E-03	0.000E+00	0.000E+00	0.000E+00
90	1.523E-03	1.528E-03	0.000E+00	0.000E+00	1.485E-07	0.000E+00	0.000E+00	5.811E-04	0.000E+00	0.000E+00	0.000E+00
95	7.890E-04	7.916E-04	0.000E+00	0.000E+00	4.173E-08	0.000E+00	0.000E+00	3.011E-04	0.000E+00	0.000E+00	0.000E+00
100	4.088E-04	4.101E-04	0.000E+00	0.000E+00	1.172E-08	0.000E+00	0.000E+00	1.560E-04	0.000E+00	0.000E+00	0.000E+00
200	7.952E-10	7.978E-10	0.000E+00	0.000E+00	1.102E-19	0.000E+00	0.000E+00	3.035E-10	0.000E+00	0.000E+00	0.000E+00
300	1.547E-15	1.552E-15	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.902E-16	0.000E+00	0.000E+00	0.000E+00

6.6 USE OF SOURCE TERMS

During the revision and checking of this calculation, it was discovered that the actual values of burnup, based on the input for the SAS2H/ORIGEN-S runs, were about 1.7% less than the nominal values of burnup stated in Table 2. The SAS2H/ORIGEN-S runs are valid, but the source term information (e.g., radionuclide masses and activities; decay heat generation rates; and neutron and gamma sources) contained in the '*.cut' files on the compact discs of Appendix VII should be taken to correspond to the actual burnups from the SAS2H/ORIGEN-S cases, rather than the stated, or nominal, burnups. To use the source term information, determine the stated, or nominal, burnup from the first part of the '*.cut' file name as explained in Attachment XII. Then, associate the information from that '*.cut' file with the actual burnup in Table 48 before using the source term information.

Burnup (GWd/MTU)						
Stated	Actual					
0.001	0.0009876					
0.01	0.009841					
0.1	0.09834					
1	0.9834					
10	9.834					
20	19.67					
30	29.50					
40	39.34					
50	49.17					
60	59.00					
70	68.84					
75	73.75					

 Table 48.
 Stated and Actual Values of Burnup Associated with ".cut" Files

Source term information from the '*.cut' and '*.output' files of the SAS2H/ORIGEN-S runs in the folders "Impurity_study," "parameter_study_output," "ten_node_output," and "THERMAL_DBF_output" on compact disc one of Attachment VII should not be used for assemblies expected to be received at a potential repository. Those cases were run solely to form the basis for deciding what kinds of cases to be run for BWR assemblies in an expected waste stream. Furthermore, the '*.cut' files in folder "ten_node_output" and the '*.output' files in folder "parameter_study_output" on compact disc one of Attachment VII cannot be considered product output in accordance with AP-3.15Q, *Managing Technical Product Inputs* (Ref. 7.33), since some information (Table 8 and Table 17) for those runs was taken from Ref. 7.13, pp. 333-334, and Ref. 7.17, pp. 50-55, which are "reference only." <u>Therefore, the information in the '*.cut' files of folder "ten_node_output" and the '*.output' files of folder</u> "parameter_study_output" on compact disc one of Attachment VII should not be used for any other calculations or analyses.

7 REFERENCES

- 7.1 CRWMS M&O 1997. Software Code: SCALE. V4.3. HP. 30011 V4.3.
- DOE (U.S. Department of Energy) 1992. Characteristics of Potential Repository Wastes. DOE/RW-0184-R1. Four volumes. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: <u>HQO.19920827.0001</u>; HQO.19920827.0002; HQO.19920827.0003; HQO.19920827.0004.
- 7.3 CRWMS M&O 1997. BWR Assembly Source Terms for Waste Package Design. BBA000000-01717-0200-00024 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19970710.0078.
- 7.4 CRWMS M&O 1999. BWR Source Term Generation and Evaluation. BBAC00000-01717-0210-00006 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990309.0351.
- 7.5 CRWMS M&O 1999. BWR Source Term Generation and Evaluation. BBAC00000-01717-0210-00006 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000113.0334.
- 7.6 Luksic, A. 1989. Activation Measurements and Comparison with Calculations for Spent Fuel Assembly Hardware. Volume 1 of Spent Fuel Assembly Hardware: Characterization and 10 CFR 61 Classification for Waste Disposal. PNL-6906. Richland, Washington: Pacific Northwest Laboratory. ACC: NNA.19890926.0124.
- 7.7 Ludwig, S. B. and Renier, J. P. 1989. *Standard- and Extended-Burnup PWR and BWR Reactor Models for the ORIGEN2 Computer Code*. ORNL/TM-11018. Oak Ridge, Tennessee: Oak Ridge National Laboratory. TIC: 203557.
- 7.8 ASTM B 811-90. 1991. Standard Specification for Wrought Zirconium Alloy Seamless Tubes for Nuclear Reactor Fuel Cladding. Philadelphia, Pennsylvania: American Society for Testing and Materials. TIC: 239780.
- 7.9 ASTM A 240/A 240M-97a. 1997. Standard Specification for Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels. West Conshohocken, Pennsylvania: American Society for Testing and Materials. TIC: 239431.
- 7.10 NRC (U.S. Nuclear Regulatory Commission) 2000. *Standard Review Plan for Spent Fuel Dry Storage Facilities*. NUREG-1567. Washington, D.C.: NRC. TIC: 247929.

- 7.11 Sandoval, R.P.; Einziger, R.E.; Jordan, H.; Malinauskas, A.P.; and Mings, W.J. 1991.
 Estimate of CRUD Contribution to Shipping Cask Containment Requirements. SAND88-1358. Albuquerque, New Mexico: Sandia National Laboratories. ACC: MOV.19960802.0114.
- 7.12 Jones, R.H. 1992. Spent Fuel Corrosion Product and Fuel Cleaning Assessment. Los Gatos, California: Robert H. Jones, P.E., Consultant. ACC: HQX.19920825.0007.
- 7.13 CRWMS M&O 1998. Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2. B0000000-01717-5705-00096 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980730.0509.
- 7.14 Larsen, N.H.; Parkos, G.R.; and Raza, O. 1976. Core Design and Operating Data for Cycles 1 and 2 of Quad Cities 1. EPRI NP-240. Palo Alto, California: Electric Power Research Institute. TIC: 237267.
- 7.15 DOE (U.S. Department of Energy) 1987. Appendix 2A: Physical Descriptions of LWR Fuel Assemblies. Volume 3 of Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation. DOE/RW-0184.
 Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: HQX.19880405.0024.
- 7.16 NRC (U.S. Nuclear Regulatory Commission) 1997. SCALE, RSIC Computer Code Collection (CCC-545). NUREG/CR-0200 Rev. 5. Washington, D.C.: U.S. Nuclear Regulatory Commission. TIC: 235920.
- 7.17 CRWMS M&O 1999. CRC Depletion Calculations for Quad Cities Unit 2. B00000000-01717-0210-00009 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990929.0121.
- 7.18 ASME (American Society of Mechanical Engineers) 1993. *Steam Tables, Thermodynamic and Transport Properties of Steam.* 6th Edition. New York, New York: American Society of Mechanical Engineers. TIC: 103243.
- 7.19 CRWMS M&O 1999. Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2. B0000000-01717-5705-00096 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990917.0184.
- 7.20 INCO Alloy International 1988. *Product Handbook INCO Alloys*. Huntington, West Virginia: INCO Alloys International, Inc. TIC: 239397.
- 7.21 Hermann, O.W. and DeHart, M.D. 1998. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel. ORNL/TM-13315. Oak Ridge, Tennessee: Oak Ridge National Laboratory. TIC: 245042.

- 7.22 CRWMS M&O 1998. Time-Dependent Shielding Analysis for Commercial SNF in the 21 PWR Waste Package. BBAC00000-01717-0210-00003 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19981109.0382.
- Parrington, J.R.; Knox, H.D.; Breneman, S.L.; Baum, E.M.; and Feiner, F. 1996.
 Nuclides and Isotopes, Chart of the Nuclides. 15th Edition. San Jose, California: GE. TIC: 233705.
- 7.24 CRWMS M&O 2000. Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams. CAL-MGR-MD-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20000214.0479.
- 7.25 CRWMS M&O 1995. Total System Performance Assessment 1995: An Evaluation of the Potential Yucca Mountain Repository. B0000000-01717-2200-00136 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19960724.0188.
- 7.26 CRWMS M&O 1999. BWR Source Term Generation and Evaluation. BBAC00000-01717-0210-00006 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19981106.0117.
- 7.27 CRWMS M&O 1999. Classification of the MGR Uncanistered Spent Nuclear Fuel Disposal Container System. ANL-UDC-SE-000001 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990928.0216.
- 7.28 DOE (U.S. Department of Energy) 2003. Quality Assurance Requirements and Description. DOE/RW-00333P, Rev. 13. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030422.0003.
- 7.29 AP-3.12Q, Rev. 2, ICN 0. *Design Calculations and Analyses*. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030403.0003.
- 7.30 CRWMS M&O 1999. Output Files for BWR Source Term Generation and Evaluation. BBAC00000-01717-0210-00006 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19991111.0701.
- 7.31 AP-SI.1Q, Rev. 5, ICN 1. *Software Management*. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030708.0001.
- 7.32 ASME (American Society of Mechanical Engineers) 2001. 2001 ASME Boiler and Pressure Vessel Code (includes 2002 addenda). New York, New York: American Society of Mechanical Engineers. TIC: 251425.

1

- 7.33 AP-3.12Q, Rev. 4, ICN 2. *Managing Technical Product Inputs*. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. ACC: DOC.20030627.0002.
- 7.34 Bowman, S.M.; Hermann, O.W.; and Brady, M.C. 1995. Sequoyah Unit2 Cycle 3.
 Volume 2 of SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations.
 ORNL/TM-12294/V2. Oak Ridge, Tennessee: Oak Ridge National Laboratory. TIC: 244397.

8 ATTACHMENTS

The hardcopy attachments are listed in Table 49. Attachment VII is a CD containing output files, '*.cut' files, and script files. The contents of Attachment VII are listed in Attachment XII.

 Table 49.
 Attachments Supporting Documentation of Source Term Generation and Evaluation

Description	Attachment Number	No. of Pages
Wt% calculations for fuel	1	16
Light element mass calculations	11	14
Operating conditions		11
Burnup history calculation	IV	10
Parameter study results	V	10
Crud source term calculations	VI	3
Electronic copies of files, including ".cut" files and script files	VII	3 CDs
10-node gamma source vs. 1-node gamma source calculations	VIII	10
10-node neutron source vs. 1-node neutron source calculations	IX	12
Initial heavy metal loading comparison calculations, and ³⁶ Cl and ¹⁴ C fuel impurity graph	X	6
Script files	XI	1
SAS2H/ORIGEN-S *.cut files and output files	XII	16
Radionuclide inventories for Performance Assessment	XIII	10
Comparison of Source Terms per MTU of 4 Average BWR SNF Assemblies	XIV	1

Calculations for length of fuel region to obtain desired heavy metal loading Want to get the smear density- modify the fuel length to model assemblies with extra UO2 in them

	Atomic weight (Ref. 7.23, pp. 48-			
Element/Isotope Oxygen	49) 15.9994	WT% 100	15.9994	Note for 000-00C-MGR0-00200-000-00A:
U-234	234.0409	0.04423	1.88981E-06	Corrected formula for U weight fraction in UO2;
U-235	235.0439	5	0.000212726	No effect on final length estimates.
U-236	236.0456	0.023	9.74388E-07	······································
U-238	238.0508	94.9328	0.003987921	
			237.8963629	U weight fraction in UO2 0.881439891
		n stander van de servier Servier of de servier of de s Servier of de servier of de	and a second second Second second	
Fuel rod area (using clad inner diameter) 0.889580717	smear density 9.9695	10.96	theoretical density	
total fuel cross sectional area in assembly	9.9090		007 0707070	ke IIO2 required for 200 ke II loading
53.37484304	ne ne ne de la marte		227.2727273 227272.7273	kg UO2 required for 200 kg U loading
			227272.7273	In grams cubic centimeters required
			22730.00230	cubic centimeters required
uel length required =	427.1076349	cm		
Fuel rod volume (using clad inner diameter) 0.889580717 total fuel cross sectional area in assembly	smear density 9.9695	10.96	theoretical density	
53.37484304	9.9030		193.1818182	kg UO2 required for 170 kg U loading
00.07			193181.8182	in grams
			19377.28253	cubic centimeters required
uel length required =	363.0414897	cm		
		1		

Calculations for Fuel Density. Calculation of wt%'s for SAS2H input.

Element/Isotope Oxygen U-234 U-235 U-236 U-238	Atomic weight (Ref. 7.23, pp. 48- 49) 15.9994 234.0409 235.0439 236.0456 238.0508	WT% 100 0.04423 5 0.023 94.9328	15.9994 1.88981E-06 0.000212726 9.74388E-07 0.003987921 237.8963629	Note for 000-00C-MGR0-00200-000-00A: Corrected formula for U weight fraction in UO2; No effect on final density estimates. U weight fraction in UO2 0.881439891
Fuel rod volume (using clad inner diameter) 325.3730432 total fuel volume in assembly	smear density 9.9695	10.96	theoretical density	
19522.38259	mass in assembly] [227.2727273	kg UO2 required for 200 kg U loading
	194628.3932 in kg 194.6283932		227.2727273 227272.7273 11.64164908	For regular fuel rods: density required to yield a 200 kg loading or U for model 8
				for model 8
Fuel rod volume (using clad inner diameter) 325.3730432 total fuel volume in assembly	smear density 9.9695	10.96	theoretical density	
19522.38259	mass in assembly		193.1818182	kg UO2 required for 170 kg U loading
	194628.3932 in kg 194.6284			
			193.1818182 193181.8182	For regular fuel rada
		[9.895401715	For regular fuel rods: density required to yield a 170 kg loading of U for model 8

Calculation of wt%'s for SAS2H input for Parameter Study

	Atomic weight (Ref. 7.23, pp. 36	i-			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202529
Oxygen	15.9994	100	-	•	237.9519793
U-234 (From Eq. 2)	234.0409	0.02726884	0.000116513		
U-235	235.0439	3.2	0.013614478		
U-236 (From Eq. 1)	236.0456	0.01472	6.23608E-05		
U-238 (From Eq. 3)	238,0508	96.7580112	0.406459509		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	•	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		·

Calculations for parametric study: 3.2 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:	· · · · · · · · · · · · · · · · · · ·			WITHOUT GADOLINIUM:		
Molecular weight of uranium oxide	e and gadolinium ox	ide		Isotope/Element	Value	Eq. Used
Eq. 6: (uranium oxide)	269.9507793			Oxygen	11.8536	13
Eq. 6: (gadolinium oxide)	362.4622855			U-234	0.0240	7
Weight fraction of uranium or gade	olinium in uranium	or gadolinium oxi	de	U-235	2.8207	7
Eq. 7 (uranium)	0.881464317			U-236	0.0130	7
Eq. 7 (gadolinium)	0.867577395			U-238	85.2887	7
Weight fraction of oxygen in urani	um and gadolinium	oxide			100.0000	_
Eq. 8 (uranium oxide)	0.118535683					
Eq. 8 (gadolinium oxide)	0.132422605					
Weight recents of all isotopes in g	ad doped fuel rods					
Isotope/Element	Value	Eq. Used				
Oxygen	11.8952	11				
U-234	0.0233	10				
U-235	2.7361	10				
U-236	0.0126	10	· ·			
U-238	82.7301	10				
Gd-152	0.0052	9				
Gd-154	0.0567	9				
Gd-155	0.3852	9				
Gd-156	0.5328	9				
Gd-157	0.4073	9				
Gd-158	0.6465	9				
Gd-160	0.5690	9	,			

	Atomic weight (Ref. 7.23, pp. 36)-			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004203784
Oxygen	15.9994	100	-		237.8809143
U-234 (From Eq. 2)	234.0409	0.04904184	0.000209544		
U-235	235.0439	5.5	0.023399884		
U-236 (From Eq. 1)	236.0456	0.0253	0.000107183		
U-238 (From Eq. 3)	238.0508	94.4256582	0.396661797		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

5.5 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:		
Molecular weight of uranium oxide	and gadolinium oxi	ide
	269.8797143	
Eq. 6: (gadolinium oxide)	362.4622855	
Weight fraction of uranium or gado	linium in uranium o	or gadolinium oxide
Eq. 7 (uranium)	0.881433104	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in uraniu	m and gadolinium	oxide
Eq. 8 (uranium oxide)	0.118566896	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad dop	ed fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	11.8983	11
U-234	0.0419	10
U-235	4.7024	10
U-236	0.0216	10
U-238	80.7330	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

	Atomic weight (Ref. 7.23, pp. 36-			•	
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004203538
Oxygen	15.9994	100	-		237.894818
U-234 (From Eq. 2)	234.0409	0.04470875	0.00019103		
U-235	235.0439	5.05	0.021485348		
U-236 (From Eq. 1)	236.0456	0.02323	9.84132E-05		
U-238 (From Eq. 3)	238.0508	94.8820612	0.398579048		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

Calculations for one- and ten-node comparison cases: 5.05 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium WITH GADOLINIUM:

Molecular weight of uranium oxide and gadolinium oxide					
Eq. 6: (uranium oxide)	269.893618				
Eq. 6: (gadolinium oxide)	362.4622855				
Weight fraction of uranium or gadolin	nium in uranium o	or gadolinium oxide			
Eq. 7 (uranium)	0.881439212				
Eq. 7 (gadolinium)	0.867577395				
Weight fraction of oxygen in uranium	and gadolinium	oxide			
Eq. 8 (uranium oxide)	0.118560788				
Eq. 8 (gadolinium oxide)	0.132422605				
Weight % of all isotopes in gad doped	d fuel rods				
Isotope/Element	Value	Eq. Used			
Öxygen	11.8977	11			
U-234	0.0382	10			
U-235	4.3177	10			
U-236	0.0199	10			
U-238	81.1238	10			
Gd-152	0.0052	9			
Gd-154	0.0567	9			
Gd-155	0.3852	9			
Gd-156	0.5328	9			
Gd-157	0.4073	9			
Gd-158	0.6465	9			
Gd-160	0.5690	9			

	Atomic weight (Ref. 7.23, pp. 36	-			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004203511
Oxygen	15.9994	100	-		237.8963629
U-234 (From Eq. 2)	234.0409	0.04422924	0.000188981		
U-235	235.0439	5	0.021272622		
U-236 (From Eq. 1)	236.0456	0.023	9.74388E-05		
U-238 (From Eq. 3)	238.0508	94.9327708	0.398792068		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	·	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

Calculations for one- and ten-node comparison cases: 5.05 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:						
Molecular weight of uranium oxide and gadolinium oxide						
Eq. 6: (uranium oxide)	269.8951629					
Eq. 6: (gadolinium oxide)	362.4622855					
Weight fraction of uranium or gadoli	nium in uranium o	or gadolinium oxide				
Eq. 7 (uranium)	0.881439891					
Eq. 7 (gadolinium)	0.867577395					
Weight fraction of oxygen in uranium	n and gadolinium	oxide				
Eq. 8 (uranium oxide)	0.118560109					
Eq. 8 (gadolinium oxide)	0.132422605					
Weight % of all isotopes in gad dope	d fuel rods					
Isotope/Element	Value	Eq. Used				
Oxygen	11.8976	11				
U-234	0.0378	10				
U-235	4.2750	10				
U-236	0.0197	10				
U-238	81.1672	10				
Gd-152	0.0052	9				
Gd-154	0.0567	9.				
Gd-155	0.3852	9				
Gd-156	0.5328	9 -				
Gd-157	0.4073	9				
Gd-158	0.6465	9				
Gd-160	0.5690	9				

	Atomic weight (Ref. 7.23, pp. 36	- -			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004203238
Oxygen	15.9994	100	-	•	237.9118118
U-234 (From Eq. 2)	234.0409	0.03945682	0.000168589		
U-235	235.0439	4.5	0.01914536		
U-236 (From Eq. 1)	236.0456	0.0207	8.76949E-05		
U-238 (From Eq. 3)	238.0508	95.4398432	0.400922169		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	•	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

4.5 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:						
Molecular weight of uranium oxide and gadolinium oxide						
Eq. 6: (uranium oxide)	269.9106118					
Eq. 6: (gadolinium oxide)	362.4622855					
Weight fraction of uranium or gado	linium in uranium o	or gadolinium oxide				
Eq. 7 (uranium)	0.881446677					
Eq. 7 (gadolinium)	0.867577395	· · · · ·				
Weight fraction of oxygen in uraniu	m and gadolinium	oxide				
Eq. 8 (uranium oxide)	0.118553323					
Eq. 8 (gadolinium oxide)	0.132422605					
Weight % of all isotopes in gad dop	ed fuel rods					
Isotope/Element	Value	Eq. Used				
Oxygen	11.8969	11				
U-234	0.0337	10				
U-235	3.8475	10				
U-236	0.0177	10				
U-238	81.6014	10				
Gd-152	0.0052	9				
Gd-154	0.0567	9				
Gd-155	0.3852	9				
Gd-156	0.5328	9				
Gd-157	0.4073	9				
Gd-158	0.6465	9				
Gd-160	0.5690	9				

.

Calculation of wt%'s for SAS2H input.

	Atomic weight				
	(Ref. 7.23, pp. 36	-			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202965
Oxygen	15.9994	100	-		237.9272609
U-234 (From Eq. 2)	234.0409	0.03472866	0.000148387		
U-235	235.0439	4	0.017018097		
U-236 (From Eq. 1)	236.0456	0.0184	7.7951E-05		
U-238 (From Eq. 3)	238.0508	95.9468713	0.403052085		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		
nitial U-235 enrichment and g	ad rods with 3.0 wt%	6 initial enrichm	ent of gadolinium		
I GADOLINIUM:	· · · · · · · · · · · · · · · · · · ·				
cular weight of uranium oxid	e and gadolinium ox	ide			
Eq. 6: (uranium oxide)	269.9260609		· · ·		
En C. (madalinium avida)	200 4000055				

Eq. of (analitation office)		
Eq. 6: (gadolinium oxide)	362.4622855	
Weight fraction of uranium or gade	olinium in uranium o	r gadolinium oxid
Eq. 7 (uranium)	0.881453462	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in urania	um and gadolinium o	oxide
Eq. 8 (uranium oxide)	0.118546538	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad do	ped fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	11.8963	11
U-234	0.0297	10
U-235	3.4200	10
U-236	0.0157	10
U-238	82.0355	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

Gd-160

	Atomic weight (Ref. 7.23, pp. 36	-			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202823
Oxygen	15.9994	100	-	-	237.9352945
U-234 (From Eq. 2)	234.0409	0.03228915	0.000137964		
U-235	235.0439	3.74	0.015911921		
U-236 (From Eq. 1)	236.0456	0.017204	7.28842E-05		
U-238 (From Eq. 3)	238.0508	96.2105068	0.404159561		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

3.74 Initial U-235 enrichment and	gad rods with 3.0 wt% initial enrichment of	gadoiinium
2 74 initial II 225 antiahment and	and rade with 2.0 wt% initial enrichment of	andolinium

WITH GADOLINIUM:			<u></u>
Molecular weight of uranium oxide	and gadolinium oxid	le	
Eq. 6: (uranium oxide)	269.9340945		
Eq. 6: (gadolinium oxide)	362.4622855		
Weight fraction of uranium or gado	dinium in uranium o	r gadolinium oxide	
Eq. 7 (uranium)	0.88145699		
Eq. 7 (gadolinium)	0.867577395		
Weight fraction of oxygen in uraniu	im and gadolinium o	xide	
Eq. 8 (uranium oxide)	0.11854301		
Eq. 8 (gadolinium oxide)	0.132422605	•	
Weight % of all isotopes in gad dop	bed fuel rods		
Isotope/Element	Value	Eq. Used	
Oxygen	11.8959	11	
U-234	0.0276	10	
U-235	3.1977	10	
U-236	0.0147	10	
U-238	82.2613	10	
Gd-152	0.0052	9	
Gd-154	0.0567	9	
Gd-155	0.3852	9	
Gd-156	0.5328	9	
Gd-157	0.4073	9	
Gd-158	0.6465	9	

0.5690

9

Worksheet '3.5'

Calculation of wt%'s for SAS2H input.

	Atomic weight (Ref. 7.23, pp. 36	3 _			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202692
Oxygen	15.9994	100	-	·	237.9427101
U-234 (From Eq. 2)	234.0409	0.03004984	0.000128396		
U-235	235.0439	3.5	0.014890835		
U-236 (From Eq. 1)	236.0456	0.0161	6.82072E-05		
U-238 (From Eq. 3)	238.0508	96.4538502	0.405181794		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

3.5 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:			
Molecular weight of uranium oxide a	nd gadolinium oxid	ie	
Eq. 6: (uranium oxide)	269.9415101		
Eq. 6: (gadolinium oxide)	362.4622855		
Weight fraction of uranium or gadoli	nium in uranium oi	r gadolinium oxide	
Eq. 7 (uranium)	0.881460247		
Eq. 7 (gadolinium)	0.867577395		
Weight fraction of oxygen in uranium	n and gadolinium o	xide	
Eq. 8 (uranium oxide)	0.118539753		
Eq. 8 (gadolinium oxide)	0.132422605		
Weight % of all isotopes in gad dope	d fuel rods		
Isotope/Element	Value	Eq. Used	
Oxygen	11.8956	11	
U-234	0.0257	10	
U-235	2.9926	10	
U-236	0.0138	10	
U-238	82.4696	10	
Gd-152	0.0052	9	
Gd-154	0.0567	9	
Gd-155	0.3852	9	
Gd-156	0.5328	9	
Gd-157	0.4073	. 9	
Gd-158	0.6465	9	
Gd-160	0.5690	9	

Worksheet '3.0'

Calculation of wt%'s for SAS2H input.

	Atomic weight (Ref. 7.23, pp. 36-	•			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202419
Oxygen	15.9994	100	-		237.9581589
U-234 (From Eq. 2)	234.0409	0.02542682	0.000108643		
Ú-235	235.0439	3	0.012763573		
U-236 (From Eq. 1)	236.0456	0.0138	5.84633E-05		
U-238 (From Eq. 3)	238.0508	96.9607732	0.407311268		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

WITH GADULINIUM:		
Molecular weight of uranium oxide a	and gadolinium oxi	de
Eq. 6: (uranium oxide)	269.9569589	
Eq. 6: (gadolinium oxide)	362.4622855	•
Weight fraction of uranium or gadol	inium in uranium o	r gadolinium oxide
Eq. 7 (uranium)	0.88146703	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in uraniur	m and gadolinium o	oxide
Eq. 8 (uranium oxide)	0.11853297	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad dope	ed fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	11.8950	11
U-234	0.0217	10
U-235	2.5651	10
U-236	0.0118	10
U-238	82.9037	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	. 9

.1

1

Calculation of wt%'s for SAS2H input.

.

	Atomic weight (Ref. 7.23, pp. 36-				
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004202147
Oxygen	15.9994	100	-	•	237.9736072
U-234 (From Eq. 2)	234.0409	0.02086812	8.91644E-05		
U-235	235.0439	2.5	0.010636311		
U-236 (From Eq. 1)	236.0456	0.0115	4.87194E-05		
U-238 (From Eq. 3)	238.0508	97.4676319	0.409440472		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	•	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

2.5 Initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:		
Molecular weight of uranium oxide and	d gadolinium oxi	de
Eq. 6: (uranium oxide)	269.9724072	
Eq. 6: (gadolinium oxide)	362.4622855	
Weight fraction of uranium or gadolini	ium in uranium o	r gadolinium oxide
Eq. 7 (uranium)	0.881473813	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in uranium	and gadolinium c	oxide ·
Eq. 8 (uranium oxide)	0.118526187	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad doped	fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	11.8943	11
U-234	0.0178	10
U-235	2.1376	10
U-236	0.0098	10
U-238	83.3377	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

	Atomic weight (Ref. 7.23, pp. 36	j_			
Element/isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004201874
Oxygen	15.9994	100	-	•	237.9890543
U-234 (From Eq. 2)	234.0409	0.01638558	7.00116E-05		
U-235	235.0439	2	0.008509049		
U-236 (From Eq. 1)	236.0456	0.0092	3.89755E-05		
U-238 (From Eq. 3)	238.0508	97.9744144	0.411569356		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	-	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

2.0 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:			
Molecular weight of uranium oxide	and gadolinium oxi	de	
Eq. 6: (uranium oxide)	269.9878543		
Eq. 6: (gadolinium oxide)	362.4622855		
Weight fraction of uranium or gade	olinium in uranium o	r gadolinium oxide	
Eq. 7 (uranium)	0.881480594		
Eq. 7 (gadolinium)	0.867577395		
Weight fraction of oxygen in urani	um and gadolinium o	xide	
Eq. 8 (uranium oxide)	0.118519406		
Eq. 8 (gadolinium oxide)	0.132422605		
Weight % of all isotopes in gad do	ped fuel rods		
Isotope/Element	Value	Eq. Used	
Oxygen	11.8937	11	
U-234	0.0140	10	
U-235	1.7101	10	
U-236	0.0079	10	
U-238	83.7717	10	
Gd-152	0.0052	9	
Gd-154	0.0567	9	
Gd-155	0.3852	9	
Gd-156	0.5328	9	
Gd-157	0.4073	9	
Gd-158	0.6465	9	
Gd-160	0.5690	9	

	Atomic weight				
Element/Isotope	(Ref. 7.23, pp. 36 37; 48-49)	- WT%	wt%/atomic wt%	Eq. 4:	0.004201601
Oxygen	15.9994	100	-	•	238.0044997
U-234 (From Eq. 2)	234.0409	0.01199681	5.12595E-05		
U-235	235.0439	1.5	0.006381787		
U-236 (From Eq. 1)	236.0456	0.0069	2.92316E-05		
U-238 (From Eq. 3)	238.0508	98.4811032	0.413697846		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

1.5 initial U-235 enrichment and gad rods with 3.0 wt% initial enrichment of gadolinium

WITH GADOLINIUM:		
Molecular weight of uranium oxide	and gadolinium oxid	de
Eq. 6: (uranium oxide)	270.0032997	
Eq. 6: (gadolinium oxide)	362.4622855	,
Weight fraction of uranium or gade	olinium in uranium o	r gadolinium oxide
Eq. 7 (uranium)	0.881487374	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in urani	um and gadolinium c	xide
Eq. 8 (uranium oxide)	0.118512626	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad do	ped fuel rods	
Isotope/Element	Value	Eq. Used
Öxygen	11.8930	11
U-234	0.0103	10
U-235	1.2826	10
U-236	0.0059	10
U-238	84.2056	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

Calculation of wt%'s for SAS2H input.

	Atomic weight (Ref. 7.23, pp. 36	_			
Element/Isotope	(nei: 7.23, pp. 30 37; 48-49)	- WT%	wt%/atomic wt%	Eq. 4:	0.004201329
Oxygen	15.9994	100	-		238.019942
U-234 (From Eq. 2)	234.0409	0.007731	3.30327E-05		
U-235	235.0439	1	0.004254524		
U-236 (From Eq. 1)	236.0456	0.0046	1.94878E-05		
U-238 (From Eq. 3)	238.0508	98.987669	0.41582582		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128		157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

1.0 initial U-235 enrichment and	gad rods with 3.0 wt% initia	l enrichment of gadolinium

WITH GADOLINIUM:		
Molecular weight of uranium oxide a	nd gadolinium oxi	de
Eq. 6: (uranium oxide)	270.018742	
Eq. 6: (gadolinium oxide)	362.4622855	
Weight fraction of uranium or gadoli	nium in uranium o	or gadolinium oxide
Eq. 7 (uranium)	0.881494152	
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in uranium	n and gadolinium	oxide
Eq. 8 (uranium oxide)	0.118505848	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad dope	d fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	. 11.8923	11
U-234	0.0066	10
U-235	0.8550	10
U-236	0.0039	10
U-238	84.6393	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

Calculation of wt%'s for SAS2H input.

	Atomic weight (Ref. 7.23, pp. 36	j -			
Element/Isotope	37; 48-49)	WT%	wt%/atomic wt%	Eq. 4:	0.004201171
Oxygen	15.9994	100	-	•	238.0288654
U-234 (From Eq. 2)	234.0409	0.00534204	2.28252E-05		
U-235	235.0439	0.711	0.003024967		
U-236 (From Eq. 1)	236.0456	0.0032706	1.38558E-05		
U-238 (From Eq. 3)	238.0508	99.2803874	0.417055466		
Gd-152	151.9197	0.2	0.001316485	Eq. 5:	0.006360027
Gd-154	153.9208	2.18	0.014163128	•	157.2320428
Gd-155	154.9226	14.8	0.095531575		
Gd-156	155.9221	20.47	0.131283506		
Gd-157	156.9239	15.65	0.099729869		
Gd-158	157.9241	24.84	0.157290749		
Gd-160	159.927	21.86	0.136687364		

		-
Molecular weight of uranium oxide	and gadolinium oxi	de
Eq. 6: (uranium oxide)	270.0276654	
Eq. 6: (gadolinium oxide)	362.4622855	
Weight fraction of uranium or gado	linium in uranium o	r gadolinium oxide
Eq. 7 (uranium)	0.881498068	-
Eq. 7 (gadolinium)	0.867577395	
Weight fraction of oxygen in uraniu	m and gadolinium o	oxide
Eq. 8 (uranium oxide)	0.118501932	
Eq. 8 (gadolinium oxide)	0.132422605	
Weight % of all isotopes in gad dop	ed fuel rods	
Isotope/Element	Value	Eq. Used
Oxygen	11.8920	11
U-234	0.0046	10
U-235	0.6079	10
U-236	0.0028	10
U-238	84.8900	10
Gd-152	0.0052	9
Gd-154	0.0567	9
Gd-155	0.3852	9
Gd-156	0.5328	9
Gd-157	0.4073	9
Gd-158	0.6465	9
Gd-160	0.5690	9

A. Salar

a,

Service Service

2.2

r <u></u>							Channel fractions in the various regions	top	0.0258				cladding fractions in the various regions		;	
Channel volume (cm^3) channel mass (kg)	5883.737 38.597		Water rod volume (2 water rods) Water rods mass	511.089 3.353	Cladding volume Cladding mass	6919.51 45.392		plenum fuel	0.0693 0.8880				fuel	0.928 0.072		
Given channel mass	29.937 kg							bottom	0.0169			-				
				Тор			Bottom	Plenum				nlonum	Fuet			
		hardware	Tie plate	compression spring	channel	tie plate	channel	channel	water rods	getters	cladding	plenum springs	channel	spacer grids	water rods	cladding
		material	ss304	Inconel	zirc4	ss 304	zirc4	zirc 4	zirc 4	ss 304	zirc2	inconel	zirc 4	zirc 4/inconel 1.9499 /	zirc 4	zirc 2
		mass	1.99989	0.58	0.9949	4.7700	0.6512	2.6754	0.2428	0.616886	3.286561	1.7	34.276	0.32523	3.110	42.105
Material Zircaloy-2	Symbol O Cr Fe Ni Sn Zr 6.56 Mg/m3	Wt% 0.12 0.1 0.1 0.05 1.4 98.23									0.0039 0.0033 0.0033 0.0016 0.0460 3.2284					0.0505 0.0421 0.0421 0.0211 0.5895 41.3601
Zircaloy-4	O Cr Fe Sn Zr 6.56 Mg/m3	0.12 0.1 0.2 1.4 98.18			0.0012 0.0010 0.0020 0.0139 0.9768		0.0008 0.0007 0.0013 0.0091 0.6394	0.0032 0.0027 0.0054 0.0375 2.6267	0.0003 0.0002 0.0005 0.0034 0.2383				0.0411 0.0343 0.0686 0.4799 33.6519	0.0023 0.0019 0.0039 0.0273 1.9144	0.0031 0.0062 0.0435	
Inconel X-750	Ni Cr Nb Ti Al CMn Si Cu CS	70.23 15 8 1 2.4 0.7 1 0.8 0.4 0.4 0.4 0.06 0.01		0.4073 0.0870 0.0464 0.0058 0.0139 0.0041 0.0058 0.0046 0.0023 0.0023 0.0003 0.0001								1.1939 0.2550 0.1360 0.0170 0.0408 0.0119 0.0136 0.0068 0.0068 0.0068		0.2284 0.0488 0.0260 0.0033 0.0078 0.0023 0.0026 0.0013 0.0013 0.0002 0.0000		
ss 304	C Mn P Si Cr Ni Fe	0.08 2 0.045 0.03 0.75 19 9.25 0.1 68.745	0.0016 0.0400 0.0009 0.0006 0.0150 0.3800 0.1850 0.0020 1.3748			0.0038 0.0954 0.0021 0.0014 0.0358 0.9063 0.4412 0.0048 3.2791				0.0005 0.0123 0.0003 0.0002 0.0046 0.1172 0.0571 0.0006 0.4241						

top end	fitting regions		0.15		
		compression			
	channel	spring	tie plate	raw	scaled
0	0.0012			0.0012	0.0002
AI		0.0041	1	0.0041	0.0006
C		0.0003	0.0016	0.0019	0.0003
Co		0.0058		0.0058	0.0009
Cr	0.0010	0.087	0.38	0.4680	0.0702
Cu		0.0023		0.0023	0.0003
Fe	0.0020	0.0464	1.3748	1.4232	0.2135
Mn		0.0046	0.04	0.0446	0.0067
Nb		0.0058		0.0058	0.0009
N			0.002	0.0020	0.0003
Ni		0.4073	0.185	0.5923	0.0888
Р			0.0009	0.0009	0.0001
S		0.0001	0.0006	0.0007	0.0001
Si		0.0023	0.015	0.0173	0.0026
Sn	0.0139			0.0139	0.0021
Ti		0.0139		0.0139	0.0021
Zr	0.9768			0.9768	0.1465

bottom e	end fitting	Scale factor =		0.225
	channel	tie plate	raw	scaled
0	0.000781486		0.0008	0.0002
Al			0.0000	0.0000
С		0.003815984	0.0038	0.0009
Co			0.0000	0.0000
Cr	0.000651239	0.9062962	0.9069	0.2041
Cu			0.0000	0.0000
Fe	0.001302477	3.279122751	3.2804	0.7381
Mn		0.0953996	0.0954	0.0215
Nb			0.0000	0.0000
N		0.00476998	0.0048	0.0011
Ni		0.44122315	0.4412	0.0993
Р		0.002146491	0.0021	0.0005
S		0.001430994	0.0014	0.0003
Si		0.03577485	0.0358	0.0080
Sn	0.009117341		0.0091	0.0021
Ti			0.0000	0.0000
Zr	0.639386099		0.6394	0.1439

				plenum	Scale fact	or =	0.3
					plenum		
	cladding	channel	getters	water rods	springs	raw	scaled
0	0.003944	0.00321		0.000291		0.0074	0.0022
AI					0.0119	0.0119	0.0036
С			0.0005		0.0010	0.0015	0.0005
Со					0.0170	0.0170	0.0051
Cr	0.003287	0.002675	0.1172	0.000243	0.2550	0.3784	0.1135
Cu					0.0068	0.0068	0.0020
Fe	0.003287	0.005351	0.4241	0.000486	0.1360	0.5692	0.1708
Mn			0.0123		0.0136	0.0259	0.0078
Nb					0.0170	0.0170	0.0051
Ν			0.0006			0.0006	0.0002
Ni	0.001643		0.0571		1.1939	1.2527	0.3758
Р			0.0003			0.0003	0.0001
S			0.0002		0.0002	0.0004	0.0001
Si			0.0046		0.0068	0.0114	0.0034
Sn	0.046012	0.037456		0.003399		0.0869	0.0261
Ti					0.0408	0.0408	0.0122
Zr	3.228389	2.626718		0.238334		6.0934	1.8280

		fuel reale	-			
		fuel regio		one node		
	cladding	channel	spacers	water rods	spacers	raw
0	0.050526	0.041131	0.00234	0.003732		0.0977
Al					0.002277	0.0023
С					0.000195	0.0002
Co					0.003252	0.0033
Cr	0.042105	0.034276	0.00195	0.00311	0.048785	0.1302
Cu					0.001301	0.0013
Fe	0.042105	0.068551	0.0039	0.00622	0.026018	0.1468
Mn					0.002602	0.0026
Nb					0.003252	0.0033
Ν						0.0000
Ni	0.021053				0.228409	0.2495
Р						0.0000
S					3.25E-05	0.0000
Si					0.001301	0.0013
Sn	0.589476	0.47986	0.027299	0.04354		1.1402
Ti					0.007806	0.0078
Zr	41.36014	33.6519	1.914412	3.053391		79.9798

É.

Spacer?	no		yes	yes	yes	yes	yes	yes	yes	yes -	no
% of 1 spacer		0.000%	69.231%	30.769%	100.000%	100.000%	61.538%	107.691%	30.769%	200.000%	0.000%
NODE:		1	2	3	4	5	6	7	8	9	10
dimension		6	12	12	18	12	18	18	18	25.24	6

light elements are determined by multiplying the hardware by the percent in the fuel region

fuel regio one node						
				water		· · · · · ·
	cladding	channel	spacers	rods	spacers	raw
0	0.050526	0.041131	0.00234	0.003732		0.0977
AI					0.00227661	0.0023
С					0.00019514	0.0002
Co					0.0032523	0.0033
Cr	0.042105	0.034276	0.00195	0.00311	0.0487845	0.1302
Cu					0.00130092	0.0013
Fe	0.042105	0.068551	0.0039	0.00622	0.0260184	0.1468
Mn					0.00260184	0.0026
Nb					0.0032523	0.0033
N						0.0000
Ni	0.021053				0.22840903	0.2495
P						0.0000
S					3.2523E-05	0.0000
Si					0.00130092	0.0013
Sn	0.589476	0.47986	0.027299	0.04354		1.1402
Ti					0.00780552	0.0078
Zr	41.36014	33.6519	1.914412	3.053391		79.9798

			water		nodal
node 1	cladding	channel	rods	raw	adjustment
0	0.050526	0.041131	0.003732	0.0954	0.00394715
AI				0.0000	0
С				0.0000	0
Co				0.0000	0
Cr	0.042105	0.034276	0.00311	0.0795	0.00328929
Cu				0.0000	0
Fe	0.042105	0.068551	0.00622	0.1169	0.00483628
Mn				0.0000	0
Nb				0.0000	0
N				0.0000	0
Ni	0.021053			0.0211	0.00087115
Р				0.0000	0
S				0.0000	0
Si				0.0000	0
Sn	0.589476	0.47986	0.04354	1.1129	0.04605003
Ti				0.0000	0
Zr	41.36014	33.6519	3.053391	78.0654	3.23029386

nada 0	cladding	channel	spacers	water rods	engoare	clad, wr, and channel	0000070	total
node 2			Contraction of the local division of the loc	the state of the s	spacers	· ··		
0	0.050526492	0.041130862	0.00234	0.003732		0.0079	0.000231	0.0081
AI					0.0022766	0.0000	0.000225	0.0002
С					0.0001951	0.0000	1.93E-05	0.0000
Co					0.0032523	0.0000	0.000322	0.0003
Cr	0.04210541	0.034275718	0.00195	0.00311	0.0487845	0.0066	0.005018	0.0116
Cu					0.0013009	0.0000	0.000129	0.0001
Fe	0.04210541	0.068551436	0.0039	0.00622	0.0260184	0.0097	0.002959	0.0126
Mn					0.0026018	0.0000	0.000257	0.0003
Nb					0.0032523	0.0000	0.000322	0.0003
N						0.0000	0	0.0000
Ni	0.021052705				0.228409	0.0017	0.02259	0.0243
Р						0.0000	0	0.0000
S					3.252E-05	0.0000	3.22E-06	0.0000
Si					0.0013009	0.0000	0.000129	0.0001
Sn	0.589475737	0.479860052	0.027299	0.04354		0.0921	0.0027	0.0948
Ti					0.0078055	0.0000	0.000772	0.0008
Zr	41.36014401	33.65189993	1.914412	3.053391	0.0070000	6.4606	0.189338	6.6499

ingrit elements are determined by multiplying the hardware by the percent in the rule region
takining the spacer material, dividing by the number of spacers
and thenmultipling by the percentage of one spacer in that node

,

						clad, wr,		
						and		
node 4	cladding	channel	spacers	water rods	spacers	channel	spacers	total
0	0.050526	0.0411309	0.00233988	0.003732		0.0118	0.0003343	0.0122
AI					0.0022766	0.0000	0.0003252	0.0003
С					0.0001951	0.0000	2.788E-05	0.0000
Co					0.0032523	0.0000	0.0004646	0.0005
Cr	0.042105	0.0342757	0.0019499	0.00311	0.0487845	0.0099	0.0072478	0.0171
Cu					0.0013009	0.0000	0.0001858	0.0002
Fe	0.042105	0.0685514	0.0038998	0.00622	0.0260184	0.0145	0.004274	0.0188
Mn					0.0026018	0.0000	0.0003717	0.0004
Nb					0.0032523	0.0000	0.0004646	0.0005
N						0.0000	0	0.0000
Ni	0.021053				0.228409	0.0026	0.0326299	0.0352
P						0.0000	0	0.0000
s					3.252E-05	0.0000	4.646E-06	0.0000
Si					0.0013009	0.0000	0.0001858	0.0002
Sn	0.589476	0.4798601	0.0272986	0.04354		0.1382	0.0038998	0.1420
Ti					0.0078055	0.0000	0.0011151	0.0011
Zr	41.36014	33.6519	1.91441182	3.053391		9.6909	0.2734874	9.9644

						clad, wr,		
						and		
node 6	cladding	channel	spacers	water rods	spacers	channel	spacers	total
0	0.050526	0.0411309	0.00233988	0.003732		0.0118	0.0002057	0.0120
Ał					0.0022766	0.0000	0.0002001	0.0002
С					0.0001951	0.0000	1.715E-05	0.0000
Co					0.0032523	0.0000	0.0002859	0.0003
Cr	0.042105	0.0342757	0.0019499	0.00311	0.0487845	0.0099	0.0044601	0.0143
Cu					0.0013009	0.0000	0.0001144	0.0001
Fe	0.042105	0.0685514	0.0038998	0.00622	0.0260184	0.0145	0.0026302	0.0171
Mn					0.0026018	0.0000	0.0002287	0.0002
Nb					0.0032523	0.0000	0.0002859	0.0003
N						0.0000	0	0.0000
Ni	0.021053				0.228409	0.0026	0.0200798	0.0227
Р						0.0000	0	0.0000
s					3.252E-05	0.0000	2.859E-06	0.0000
Si					0.0013009	0.0000	0.0001144	0.0001
Sn	0.589476	0.4798601	0.0272986	0.04354		0.1382	0.0023999	0.1405
Ti					0.0078055	0.0000	0.0006862	0.0007
Zr	41.36014	33.6519	1.91441182	3.053391		9.6909	0.1682987	9.8592

						clad, wr,					
				water		and					
node 3	cladding	channel	spacers	rods	spacers	channel	spacers	total			
0	0.050526	0.041131	0.00234	0.003732		0.0079	0.000103	0.0080			
Al					0.00227661	0.0000	0.0001	0.0001			
С					0.00019514	0.0000	8.58E-06	0.0000			
Co					0.0032523	0.0000	0.000143	0.0001			
Cr	0.042105	0.034276	0.00195	0.00311	0.0487845	0.0066	0.00223	0.0088			
Cu					0.00130092	0.0000	5.72E-05	0.0001			
Fe	0.042105	0.068551	0.0039	0.00622	0.0260184	0.0097	0.001315	0.0110			
Mn					0.00260184	0.0000	0.000114	0.0001			
Nb					0.0032523	0.0000	0.000143	0.0001			
N						0.0000	0	0.0000			
Ni	0.021053				0.22840903	0.0017	0.01004	0.0118			
P						0.0000	0	0.0000			
s					3.2523E-05	0.0000	1.43E-06	0.0000			
Si					0.00130092	0.0000	5.72E-05	0.0001			
Sn	0.589476	0.47986	0.027299	0.04354		0.0921	0.0012	0.0933			
Tì					0.00780552	0.0000	0.000343	0.0003			
Zr	41.36014	33.6519	1.914412	3.053391		6.4606	0.084149	6.5447			

_									
							clad, wr,		
					water		and		
no	de 5	cladding	channel	spacers	rods	spacers	channel	spacers	total
	0	0.050526	0.041131	0.00234	0.003732		0.0079	0.000334	0.0082
	AI					0.00227661	0.0000	0.000325	0.0003
	С					0.00019514	0.0000	2.79E-05	0.0000
	Co					0.0032523	0.0000	0.000465	0.0005
	Cr	0.042105	0.034276	0.00195	0.00311	0.0487845	0.0066	0.007248	0.0138
	Cu					0.00130092	0.0000	0.000186	0.0002
	Fe	0.042105	0.068551	0.0039	0.00622	0.0260184	0.0097	0.004274	0.0139
1	Mn					0.00260184	0.0000	0.000372	0.0004
	Nb					0.0032523	0.0000	0.000465	0.0005
	N						0.0000	0	0.0000
1	Ni	0.021053				0.22840903	0.0017	0.03263	0.0344
	Р						0.0000	0	0.0000
	s					3.2523E-05	0.0000	4.65E-06	0.0000
	Si					0.00130092	0.0000	0.000186	0.0002
	Sn	0.589476	0.47986	0.027299	0.04354		0.0921	0.0039	0.0960
	Ti					0.00780552	0.0000	0.001115	0.0011
	Zr	41.36014	33.6519	1.914412	3.053391		6.4606	0.273487	6.7341

		-						
						and		
node 8	cladding	channel	spacers	water rods	spacers	channel	spacers	total
0	0.050526	0.0411309	0.00233988	0.003732		0.0118	0.0001029	0.0119
A					0.0022766	0.0000	0.0001001	0.0001
C					0.0001951	0.0000	8.577E-06	0.0000
Co					0.0032523	0.0000	0.000143	0.0001
Cr	0.042105	0.0342757	0.0019499	0.00311	0.0487845	0.0099	0.0022301	0.0121
Cu					0.0013009	0.0000	5.718E-05	0.0001
Fe	0.042105	0.0685514	0.0038998	0.00622	0.0260184	0.0145	0.0013151	0.0158
Mn					0.0026018	0.0000	0.0001144	0.0001
Nb					0.0032523	0.0000	0.000143	0.0001
N	•					0.0000	0	0.0000
Ni .	0.021053				0.228409	0.0026	0.0100399	0.0127
Р						0.0000	0	0.0000
s					3.252E-05	0.0000	1.43E-06	0.0000
Si					0.0013009	0.0000	5.718E-05	0.0001
Sn	0.589476	0.4798601	0.0272986	0.04354		0.1382	0.0011999	0.1394
Π					0.0078055	0.0000	0.0003431	0.0003
Zr	41.36014	33.6519	1.91441182	3.053391		9.6909	0.0841493	9.7750

	· ··· · ·					clad, wr,		
						and		
node 10	cladding	channel	spacers	water rods	spacers	channel	spacers	total
0	0.050526	0.0411309	0.00233988	0.003732		0.0039	0	0.0039
Ai					0.0022766	0.0000	0	0.0000
C					0.0001951	0.0000	0	0.0000
Co					0.0032523	0.0000	0	0.0000
Cr	0.042105	0.0342757	0.0019499	0.00311	0.0487845	0.0033	0	0.0033
Cu					0.0013009	0.0000	0	0.0000
Fe	0.042105	0.0685514	0.0038998	0.00622	0.0260184	0.0048	0	0.0048
Mn					0.0026018	0.0000	0	0.0000
Nb					0.0032523	0.0000	0	0.0000
N						0.0000	0	0.0000
Ni	0.021053				0.228409	0.0009	0	0.0009
Р						0.0000	0	0.0000
S					3.252E-05	0.0000	0	0.0000
Si					0.0013009	0.0000	0	0.0000
Sn	0.589476	0.4798601	0.0272986	0.04354		0.0461	0	0.0461
Ti					0.0078055	0.0000	0	0.0000
Zr	41.36014	33.6519	1.91441182	3.053391		3.2303	0	3.2303

						clad, wr,		
				water		and		
node 7	cladding	channel	spacers	rods	spacers	channel	spacers	total
0	0.050526	0.041131	0.00234	0.003732		0.0118	0.00036	0.0122
A					0.00227661	0.0000	0.00035	0.0004
C					0.00019514	0.0000	3E-05	0.0000
Co					0.0032523	0.0000	0.0005	0.0005
Cr	0.042105	0.034276	0.00195	0.00311	0.0487845	0.0099	0.007805	0.0177
Cu					0.00130092	0.0000	0.0002	0.0002
Fe	0.042105	0.068551	0.0039	0.00622	0.0260184	0.0145	0.004603	0.0191
Mn					0.00260184	0.0000	0.0004	0.0004
Nb					0.0032523	0.0000	0.0005	0.0005
N						0.0000	0	0.0000
Ni	0.021053				0.22840903	0.0026	0.035139	0.0378
P						0.0000	0	0.0000
S					3.2523E-05	0.0000	5E-06	0.0000
Si					0.00130092	0.0000	0.0002	0.0002
Sn	0.589476	0.47986	0.027299	0.04354		0.1382	0.0042	0.1423
Ti					0.00780552	0.0000	0.001201	0.0012
Zr	41.36014	33.6519	1.914412	3.053391		9.6909	0.294521	9.9854

						clad, wr,		
				water		and		
node 9	cladding	channel	spacers	rods	spacers	channel	spacers	total
0	0.050526	0.041131	0.00234	0.003732		0.0166	0.000669	0.0173
AI					0.00227661	0.0000	0.00065	0.0007
C					0.00019514	0.0000	5.58E-05	0.0001
Co					0.0032523	0.0000	0.000929	0.0009
Cr	0.042105	0.034276	0.00195	0.00311	0.0487845	0.0138	0.014496	0.0283
Cu					0.00130092	0.0000	0.000372	0.0004
Fe	0.042105	0.068551	0.0039	0.00622	0.0260184	0.0203	0.008548	0.0289
Mn					0.00260184	0.0000	0.000743	0.0007
Nb					0.0032523	0.0000	0.000929	0.0009
N						0.0000	0	0.0000
Ni	0.021053				0.22840903	0.0037	0.06526	0.0689
Р						0.0000	0	0.0000
S					3.2523E-05	0.0000	9.29E-06	0.0000
Si					0.00130092	0.0000	0.000372	0.0004
Sn	0.589476	0.47986	0.027299	0.04354		0.1937	0.0078	0.2015
Т					0.00780552	0.0000	0.00223	0.0022
Zr	41.36014	33.6519	1.914412	3.053391		13.5888	0.546975	14.1357

Table 5.3.2.1. Specification of materials used in SAS2H and MCNP calculations

TEXT in red indicates those elements that have been modified in REV01.			Water rod				Channel fractions in the various regions	łop	0.0258				cladding fractions in the various regions				
Channel volume (cm^3) channel mass (kg) Given channel mass	5883.737 38.597 29.937 kg	w	volume (2 water rods) ater rods m	511.0892 3.353	Cladding volume ladding mas	6919.5078 45.392		plenum fuel bottom	0.0693 0.8880 0.0169				fuel plenum	0.928 0.072			
		hardware	Tie plate	Top pression sp	channel	tie plate	Bottom channel	Plenum channel	water rods	getters	cladding	lenum spring	Fuel channel	spacer grids	water rods	cladding	Oxygen (rom fuel
		material mass	ss304 1.99989	Inconel 0.58	zirc4 0.9949479	ss 304 4.76998	zirc4 0.6512386	zirc 4 2.67541021	zirc 2 0.24275222	ss 304 0.616886	zirc2 3.286561	inconel 1.7	zirc 4 34.275718	zirc 4/inconel 9499 / 0.3252	zirc 2 3.109993	zirc 2 42.10541	Oxygen from fuel 27.2727273
Material Zircaloy-2	Symbol O Cr Fe Ni Sn Zr 6.55 g/cm3	Wt% 0.12 0.2 0.08 1.7 97.8							0.00029 0.00024 0.00049 0.00019 0.00019 0.00413 0.23741		0.0039 0.0033 0.0066 0.0026 0.0559 3.2143		-		0.00373 0.00311 0.00622 0.00249 0.05287 3.04157	0.0505 0.0421 0.0842 0.0337 0.7158 41.1791	27.2727273
Zircaloy-4	0 Cr Fe Sn Zr 6.56 Mg/m3	0.12 0.1 0.2 1.7 97.88	· .		0.0012 0.0010 0.0020 0.0169 0.9739		0.0008 0.0007 0.0013 0.0111 0.6374	0.0032 0.0027 0.0054 0.0455 2.6187					0.0411 0.0343 0.0686 0.5827 33.5491	0.0023 0.0019 0.0039 0.0331 1.9086			
Inconel X-750	NI Cr Fe N⊅ Fa Co Si C C S	70.23 15 8 1 2.4 0.7 1 0.8 0.4 0.4 0.4 0.06 _0.01		0.4073 0.0870 0.0464 0.0058 0.0139 0.0041 0.0058 0.0046 0.0023 0.0023 0.0003 0.0001								1.1939 0.2550 0.1360 0.0170 0.0408 0.0119 0.0170 0.0136 0.0068 0.0068 0.0068 0.0010 0.0002		0.2284 0.0488 0.0260 0.0033 0.0078 0.0023 0.0023 0.0026 0.0013 0.0013 0.0013 0.0012			
ss 304	C MA P S Si C' N Si C' N Fe	0.08 2 0.045 0.03 0.75 19 10.42 0.08 0.1 67.495	0.0016 0.0400 0.0009 0.0006 0.0150 0.3800 0.2084 0.0016 0.0020 1.3498			0.0038 0.0954 0.0021 0.0014 0.0358 0.9063 0.4970 0.0038 0.0048 3.2195				0.0005 0.0123 0.0003 0.0002 0.0046 0.1172 0.0643 0.0005 0.0006 0.4164							

The following section has be	en added to acc	count for the	a innurities in	the fuel me	at itself				
PWR U mass (g)		475000		WR mass (k					1
BWR U mass (g)		200000							
PWR assembly volume (cc)			54194.05						
BWR assembly volume (cc)			19522.38						
·····							-		
Impurities in the fuel:									
			PWR		BWR				
	atomic mass								
	(g/g-atom)								
	(Ref. 7.23, p.		[
Impurities	60)	ppm/U	mass (kg)	at dens	mass (kg)	at dens			
Li	6.941	1		7.604E-07	0.0002	8.888E-07		L	0.0002
8	10.811	1	0.000475	4.882E-07	0.0002	5.707E-07		В	0.0002
C	12.0107	89.4		3.929E-05	0.01788	4.592E-05		С	0.01788
N	14.00674	25		9.421E-06	0.005	1.101E-05		N	0.005
F	18.9984032	10.7		2.973E-06		3.475E-06		F	0.00214
Na	22.98977	15	0.007125		0.003	4.025E-06		Na	0.003
Mg	24.305	2	0.00095	4.343E-07	0.0004	5.077E-07		Mg	0.0004
Al	26.981538	16.7	0.007933			3.818E-06		Al	0.00334
Si	28.0855	12.1	0.005748			2.658E-06		Si	0.00242
P	30.973761	35	0.016625		0.007	6.971E-06		P	0.007
CI	35.4527	5.3		7.891E-07	0.00106	9.223E-07		CI	0.00106
Ca	40.078	2	0.00095	2.634E-07	0.0004	3.079E-07		Ca	0.0004
Ti	47.867	1		1.103E-07	0.0002	1.289E-07		Ti	0.0002
V	50.9415	3	0.001425		0.0006	3.633E-07		V	0.0006
Cr	51.9961	4	0.0019	4.06E-07	0.0008	4.746E-07		Cr	0.0008
Mn	54.938049	1.7	0.000808	1.633E-07		1.909E-07		Mn	0.00034
Fe	55.845	18	0.00855	1.701E-06		1.989E-06		Fe	0.0036
Co	58.9332	1		8.956E-08	0.0002	1.047E-07		Co	0.0002
Ni	58.6934	24	0.0114	2.158E-06	0.0048	2.523E-06		Ni	0.0048
Cu	63.546	1	0.000475		0.0002	9.708E-08		Cu	0.0002
Zn	65.39	40.3	0.019143	3.253E-06	0.00806	3.802E-06		Zn	0.00806
Mo	95.94	10	0.00475	5.502E-07	0.002	6.43E-07		Mo	0.002
Ag	107.8682	0.1	4.75E-05			5.719E-09		Ag	0.00002
Cd	112.411	25		1.174E-06	0.005	1.372E-06		Cd	0.005
In	114.818	2	0.00095	9.194E-08	0.0004	1.075E-07		<u>In</u>	0.0004
Sn	118.71	4	0.0019	1.779E-07	0.0008	2.079E-07		Sn	0.0008
W	183.84	2	0.00095	5.742E-08	0.0004	6.712E-08		<u>W</u>	0.0004
Pb	207.2	1	0.000475		0.0002	2.977E-08		Pb	0.0002
Bi	208.98038	0.4	0.00019	1.01E-08	0.00008	1.181E-08	1	Bi	0.00008
Total			0.168008		0.07074				
					1				<u> </u>

R light elements (kg)							
	From hardware	dd impurities	Zn mass (g)	8.06	<u>.</u>		
element	mass (kg)	mass (kg)		at mass (g)	wt fr	at dens	
0	0.097729225	27.370456	Zn-64	63.929146	0.4751	1.848E-06	
Al	0.00227661	0.0056166	Zn-66	65.926036	0.28126	1.061E-06	
С	0.000195138		Zn-67	66.927131	0.04196	1.559E-07	
Co	0.0032523	0.0034523	Zn-68	67.924847	0.19527	7.147E-07	
Cr	0.130225521	0.1310255	Zn-70	69.925325	0.00642	2.283E-08	
Cu	0.0013	0.0015			1.00001	3.802E-06	
Fe	0.146795032	0.150395	Ag mass (g)	0.02			
Mn	0.00260184	0.0029418		at mass (g)	wt fr	1	
Nb	0.0032523	0.0032523	Ag-107	106.90509	0.51377	2.965E-09	
N	0	0.005	Ag-109	108.90476	0.48623	2.754E-09	-
Ni	0.249461734	0.2542617			1	5.719E-09	
Р	0	0.007	In mass (g)	0.4			_
S	0.000032523	3.252E-05		at mass (g)	wt fr		
Si	0.00130092	0.0037209	In-113	112.90406	0.04228	4.621E-09	
Sn	1.140174289	1.1409743	In-115	114.90388	0.95772	1.028E-07	
Ti	0.00780552	0.0080055			1	1.075E-07	
Zr	79.97984679	79.979847	Sn mass (g)	0.8			
li		0.0002		at mass (g)	wt fr		
b		0.0002	Sn-112	111.90482	0.00914	2.016E-09	
f	1	0.00214	Sn-114	113.90278	0.00624	1.352E-09	
na		0.003	Sn-115	114.90335	0.00348	7.474E-10	
mg		0.0004	Sn-116	115.90175	0.14186	3.02E-08	
cl		0.00106	Sn-117	116.90296	0.07563	1.596E-08	
ca		0.0004	Sn-118	117.90161	0.24055	5.035E-08	
v		0.0006	Sn-119	118.90331	0.08594	1.784E-08	
zn		0.00806	Sn-120	119.9022	0.32917	6.775E-08	
mo		0.002	Sn-122	121.90344	0.04755	9.626E-09	
ag		0.00002	Sn-124	123.90527	0.06043	1.204E-08	
cd		0.005			0.99999	2.079E-07	
in		0.0004					
sn		0.0008	B mass (g)	0.2			
w		0.0004		at mass (g)	wt fr		
pb		0.0002	b-10	10.012937	0.18431	1.136E-07	
bi		0.00008	b-11	11.009306	0.81569	4.571E-07	
						5.707E-07	_
			Li mass (g)	0.2			
				at mass (g)	wt fr		
			li-6	6.015122	0.065	6.667E-08	
			li-7	7.016004	0.935	8.222E-07	
						8.888E-07	

Table 5.3.2.1. Specification of											
materials used in SAS2H and						d as some line i fi		ragion only			
MCNP calculations					Stainless Steel Cla	d assemblies : it	lei anu pienun	riegion only	<u> </u>	F	
Other Hardware is the same as											1
for the Waste Stream cases.											
That information is taken from							Channel			cladding	
the 811.compositions worksheet-							fractions in			fractions in	
only the water rods and cladding							the various			the various	
are calculated here							regions	top	0.0258	regions	
			Water rod								
			volume (2 water								
Channel volume (cm^3)	5883.737		rods)	511.0891957	Cladding volume	6919.507762		plenum	0.0693	fuel	0.928
channel mass (kg)	38.597		Water rods mass	4.104	Cladding mass	55.564		fuel	0.8880	plenum	0.072
Given channel mass	29.937 kg		PLENUM		FUEL			bottom	0.0169		
		hardware	water rods	cladding	water rods	cladding	1				
		material	ss 348H	ss 348H	ss 348H	ss 348H					
		mass	0.297149444	4.023031409	3.806896797	51.54061592	59.66769	59.668			
Material	Symbol	Wt%					4				
ss 348H	C	0.07	0.00021	0.00282	0.0027	0.0361					
density=8.03	mn	2	0.00594	0.08046	0.0761	1.0308					
	si		0.00297	0.04023	0.0381	0.5154					
	cr	18	0.05349	0.72415	0.6852	9.2773 6.7003					
	ni	13	0.03863	0.52299	0.4949 0.0017	0.0232					
	р	0.045	0.00013	0.00181 0.00121	0.0017	0.0232					
l	S	0.03	0.00009	0.00121	0.0076	0.1031					
	CO	0.2	0.00059 0.00297	0.00805	0.0381	0.5154	1				
4	nb 1-		0.00030	0.00402	0.0038	0.0515					
	ta fe	0.1 64,555	0.19182	2.59707	2.4575	33.2720					
	ie	04,555	V. 10102	2.00107	2.4010	L	4				

top end	fitting regions		0.15		
		compression			
	channel	spring	tie plate	raw	scaled
0	0.0012			0.0012	0.0002
AI		0.0041		0.0041	0.0006
C		0.0003	0.0016	0.0019	0.0003
Co		0.0058	0.0016	0.0074	0.0011
Cr	0.0010	0.087	0.38	0.4680	0.0702
Cu		0.0023		0.0023	0.0003
Fe	0.0020	0.0464	1.3748	1.4232	0.2135
Mn		0.0046	0.04	0.0446	0.0067
Nb		0.0058		0.0058	0.0009
N			0.002	0.0020	0.0003
Ni		0.4073	0.1834	0.5907	0.0886
Р			0.0009	0.0009	0.0001
S		0.0001	0.0006	0.0007	0.0001
Si		0.0023	0.015	0.0173	0.0026
Sn	0.0139			0.0139	0.0021
Ti		0.0139		0.0139	0.0021
Zr	0.9768			0.9768	0.1465

bottom	end fitting	Scale factor =	•	0.225
	channel	tie plate	raw	scaled
0	0.000781486		0.0008	0.0002
AI			0.0000	0.0000
C		0.0038	0.0038	0.0009
Co	지수 없는 사람을 줄을	0.0038	0.0038	0.0009
Cr	0.000651239	0.9062962	0.9069	0.2041
Cu			0.0000	0.0000
Fe	0.001302477	3.279122751	3.2804	0.7381
Mn		0.0953996	0.0954	0.0215
Nb			0.0000	0.0000
N		0.00476998	0.0048	0.0011
Ni		0.4374	0.4374	0.0984
Р		0.002146491	0.0021	0.0005
S		0.001430994	0.0014	0.0003
Si		0.03577485	0.0358	0.0080
Sn	0.009117341		0.0091	0.0021
Ti			0.0000	0.0000
Zr	0.639386099		0.6394	0.1439

				plenum	Scale fact	or =	0.3
					plenum		
	cladding	channel	getters	water rods	springs	raw	scaled
0	0.003944	0.00321		0.000291		0.0074	0.0022
Al					0.0119	0.0119	0.0036
С			0.0005		0.0010	0.0015	0.0005
Со			0.0005		0.0170	0.0175	0.0053
Cr	0.003287	0.002675	0.1172	0.000243	0.2550	0.3784	0.1135
Cu					0.0068	0.0068	0.0020
Fe	0.003287	0.005351	0.4241	0.000243	0.1360	0.5690	0.1707
Mn			0.0123		0.0136	0.0259	0.0078
Nb					0.0170	0.0170	0.0051
N			0.0006			0.0006	0.0002
Ni	0.001643	Kala aktiva tera s	0.0566	0.00012	1.1939	1.2523	0.3757
Р			0.0003			0.0003	0.0001
S			0.0002		0.0002	0.0004	0.0001
Si			0.0046		0.0068	0.0114	0.0034
Sn	0.046012	0.037456		0.003399		0.0869	0.0261
Ti		···	and the second second		0.0408	0.0408	0.0122
Zr	3.228389	2.626718		0.23846		6.0936	1.8281

		fuel regio	n	one node		
	cladding	channel	spacers	water rods	spacers	raw
0	0.050526	0.041131	0.00234	0.003732		0.0977
Al					0.002277	0.0023
С					0.000195	0.0002
Co					0.003252	0.0033
Cr	0.042105	0.034276	0.00195	0.00311	0.048785	0.1302
Cu					0.001301	0.0013
Fe	0.042105	0.068551	0.0039	0.00311	0.026018	0.1437
Mn		1 man - I have			0.002602	0.0026
Nb					0.003252	0.0033
Ν						0.0000
Ni	0.021053		<u>Ó</u> let 1967	0.00155	0.228409	0.2510
Ρ.						0.0000
S					3.25E-05	0.0000
Si					0.001301	0.0013
Sn	0.589476	0.47986	0.027299	0.04354		1.1402
Ti					0.007806	0.0078
Zr	41.36014	33.6519	1.914412	3.05495	이 가는 것을 같이 많이	79.9814

ł

top end	fitting regions		Scale fact	or =		0.15					plenum \$	Scale facto	or =		0.3
		compression									1	plenum			
	channel	spring	tie plate	raw		scaled		cladding	channel	getters	water rods	springs	raw		scaled
0	0.0012			0.0012	0	0.0002	0	0.0039	0.0032		0.000291		0.0074	0	0.0022
AI		0.0041		0.0041	AI	0.0006	Al		-			0.0119	0.0119	Al	0.0036
С		0.0003	0.0016	0.0019	С	0.0003	С			0.0005		0.0010	0.0015	C	0.0005
Co		0.0058	0.0016	0.0074	Co	0.0011	Co			0.0005		0.0170	0.0175	Co	0.0053
Cr	0.0010	0.087	0.38	0.4680	Cr	0.0702	Cr	0.0033	0.0027	0.1172	0.000243	0.2550	0.3784	Cr	0.1135
Cu		0.0023		0.0023	Cu	0.0003	Cu					0.0068	0.0068	Cu	0.0020
Fe	0.0020	0.0464	1.3498	1.3982	Fe	0.2097	Fe	0.0066	0.0054	0.4164	0.00049	0.1360	0.5649	Fe	0.1695
Mn		0.0046	0.04	0.0446	Mn	0.0067	Mn			0.0123		0.0136	0.0259	Mn	0.0078
Nb		0.0058		0.0058	Nb	0.0009	Nb					0.0170	0.0170	Nb	0.0051
N			0.002	0.0020	N	0.0003	N			0.0006	i		0.0006	N	0.0002
Ni		0.4073	0.2084	0.6157	Ni	0.0924	Ni	0.0026		0.0643	0.00019	1.1939	1.2610	Ni	0.3783
P			0.0009	0.0009	Р	0.0001	Ρ			0.0003			0.0003	P	0.0001
s		0.0001	0.0006	0.0007	S	0.0001	S			0.0002		0.0002	0.0004	S	0.0001
Si		0.0023	0.015	0.0173	Si	0.0026	Si			0.0046		0.0068	0.0114	Si	0.0034
Sn	0.0169			0.0169	Sn	0.0025	Sn	0.0559	0.0455	i de Ca	0.00413		0.1055	Sn	0.0317
Ti		0.0139		0.0139	Ti	0.0021	Ti					0.0408	0.0408	TI	0.0122
Zr	0.9739			0.9739	Zr	0.1461	Zr	3.2143	2.6187		0.23741	trina, policiales poli- de la constante de la constante	6.0704	Zr	1.8211

bottom e	end fitting	Scale factor =			0.225
	channel	tie plate	raw		scaled
0	0.0008		0.0008	0	0.0002
Al			0.0000	Ai	0.0000
С		0.0038	0.0038	С	0.0009
Co		0.0038	0.0038	Co	0.0009
Cr	0.0007	0.9063	0.9069	Cr	0.2041
Cu			0.0000	Cu	0.0000
Fe	0.0013	3.2195	3.2208	Fe	0.7247
Mn		0.0954	0.0954	Mn	0.0215
Nb			0.0000	Nb	0.0000
N		0.0048	0.0048	N	0.0011
Ni		0.4970	0.4970	Ni	0.1118
Р		0.0021	0.0021	Р	0.0005
S		0.0014	0.0014	S	0.0003
Si		0.0358	0.0358	Si	0.0080
Sn	0.0111		0.0111	Sn	0.0025
Ti			0.0000	Ti	0.0000
Zr	0.6374		0.6374	Zr	0.1434

	fuel regio	n	one node				
	fuel pellets cladding	channel	spacers	water rods	spacers	impurities	raw
0	27.2727 0.050526	0.041131	0.00234	0.003732			27.3704
Al	THE CONTRACTOR OF A DATA STREET				0.002277		0.0023
С					0.000195	1	0.0002
Co					0.003252		0.0033
Cr	0.042105	0.034276	0.00195	0.00311	0.048785		0.1302
Cu			100 C D A BH C. Y. L C C M H	and do not in the flow	0.001301		0.0013
Fe	0.0842	0.068551	0.0039	0.00622	0.026018		0.1889
Mn	la gen selen e 1 al 2 a mei en a 2000 dans oor se se selen het de generalen.	(4) 1/4000 10 10 10 10 10 10 10 10 10 10 10 10			0.002602	1000 (CAR), 64 (CAR)	0.0026
Nb					0.003252		0.0033
N							0.0000
Ni	0.0337	ll after an der der		0.00249	0.228409	的物理研究	0.2646
Ρ						a training and a second second	0.0000
S					3.25E-05		0.0000
Si					0.001301		0.0013
Sn	0.7158	0.5827	0.0331	0.05287			1.3845
Ti	nne weer is de wernskersteller is der stilderighert Mission i	(3×2×5×13×13) 0(1493006562	and other and the problem on	- 2 - 7 - 7 - 7 - 7 - 189 - T 7 7 9 - 1 - 7	0.007806	and the second	0.0078
Zr	41.1791	33.5491	1.9086	3.04157			79.6784

Adding the	e fuel region	hardware and	impurities:				
	impurities:	Hardware	total	FUEL	PLENUM	top	bottom
Ag	0.00002		Ag	0.0000	0.0000	0.0000	0.0000
Al	0.00334	0.00227661	Al	0.0056	0.0036	0.0006	0.0000
В	0.0002		В	0.0002	0.0000	0.0000	0.0000
Bi	0.00008		Bi	0.0001	0.0000	0.0000	0.0000
C	0.01788	0.00019514	С	0.0181	0.0005	0.0003	0.0009
Ca	0.0004		Ca	0.0004	0.0000	0.0000	0.0000
Cd	0.005		Cd	0.0050	0.0000	0.0000	0.0000
CI	0.00106		CI	0.0011	0.0000	0.0000	0.0000
Co	0.0002	0.0032523	Co	0.0035	0.0053	0.0011	0.0009
Cr	0.0008	0.13022552		0.1310	0.1135	0.0702	0.2041
Cu	0.0002	0.00130092	Cu	0.0015	0.0020	0.0003	0.0000
F	0.00214		F	0.0021	0.0000	0.0000	0.0000
Fe	0.0036	0.1889	Fe	0.1925	0.1695	0.2097	0.7247
In	0.0004		In	0.0004	0.0000	0.0000	0.0000
Li	0.0002		Li	0.0002	0.0000	0.0000	0.0000
Mg	0.0004		Mg	0.0004	0.0000	0.0000	0.0000
Mn	0.00034	0.00260184	Mn	0.0029	0.0078	0.0067	0.0215
Mo	0.002		Mo	0.0020	0.0000	0.0000	0.0000
N	0.005	0	N	0.0050	0.0002	0.0003	0.0011
Na	0.003		Na	0.0030	0.0000	0.0000	0.0000
nb	1	0.0032523	Nb	0.0033	0.0051	0.0009	0.0000
Ni	0.0048	0.2646	Ni	0.2694	0.3783	0.0924	0.1118
0		27.3704292	0	27.3704	0.0022	0.0002	0.0002
Р	0.007	0	Р	0.0070	0.0001	0.0001	0.0005
Pb	0.0002		Pb	0.0002	0.0000	0.0000	0.0000
S		3.2523E-05	S	0.0000	0.0001	0.0001	0.0003
Si	0.00242	0.00130092	Si	0.0037	0.0034	0.0026	0.0080
Sn	0.0008	1.3845		1.3853	0.0317	0.0025	0.0025
Ti	0.0002	0.00780552	Ti	0.0080	0.0122	0.0021	0.0000
V	0.0006		V	0.0006	0.0000	0.0000	0.0000
W	0.0004		W	0.0004	0.0000	0.0000	0.0000
Zn	0.00806		Zn	0.0081	0.0000	0.0000	0.0000
Zr		79.6784	Zr	79.6784	1.8211	0.1461	0.1434

	top	bottom
AI	0.0006	0
С	0.0003	0.000855
Со	0.0011	0.000855
Cr	0.0702	0.204063
Cu	0.0003	0
Fe	0.2097	0.724681
Mn	0.0067	0.021465
N	0.0003	0.001073
Nb	0.0009	0
Ni	0.0924	0.111825
0	0.0002	0.000176
P	0.0001	0.000483
S	0.0001	0.000322
Si	0.0026	0.008049
Sn	0.0025	0.002498
Ti	0.0021	0
Zr	0.1461	0.143415

			plenum	Scale facto	or =	0.3
	water rods channel	getters	cladding	plenum springs	raw	scaled
0	0.0032*]			0.0032	0.0010
Al	그는 그는 물건을 받았다.			0.0119	0.0119	0.0036
С	0.00021	0.0005	0.00282	0.0010	0.0046	0.0014
Co	0.00059	0.0005	0.00805	0.0170	0.0261	0.0078
Cr	0.05349 0.002675	5 0.1172	0.72415	0.2550	1.1525	0.3458
Cu		大学学校学习	r, i izgen baietik Stori Stere steretati	0.0068	0.0068	0.0020
Fe	0.19182 0.00535	0.4164	2.59707	0.1360	3.3466	1.0040
Mn	0.00594	0.0123	• 0.08046	0.0136	0.1123	0.0337
Nb	0.00297		0.04023	0.0170	0.0602	0.0181
Ν		0.0006			0.0006	0.0002
Ni	0.03863	0.0643	0.52299	1.1939	1.8198	0.5459
P	0.00013	0.0003	0.00181		0.0022	0.0007
S	0.00009	0.0002	0.00121	0.0002	0.0017	0.0005
Si	0.00297	0.0046	0.04023	0.0068	0.0546	0.0164
Sn	0.045	5			0.0455	0.0137
Ti				0.0408	0.0408	0.0122
Zr	2.618	7			2.6187	0.7856
Та	0.0003		0.00402		0.0043	0.0013

		fuel regio	n	one node	ł		
	water rods	channel	spacers	cladding	spacers	raw]
0	27.27	0.041131	0.00234			27.3135	****Heav oxygen content
A				이 이 이 이 방송하였다. 이 아이 이 가장 않을까?	0.002277	0.0023	in water rods actually for
С	0.0027			0.0361	0.000195	0.0390	the oxygen in the fuel
Co	0.0076			0.1031	0.003252	0.1140	
Cr	0.6852	0.034276	0.00195	9.2773	0.048785	10.0475	
Cu			a dentes da tra		0.001301	0.0013	
Fe	2.4575	0.068551	0.0039	33.272	0.026018	35.8280	
Mn	0.0761			1.0308	0.002602	1.1095	
Nb	0.0381			0.5154	0.003252	0.5568	-
Ň					지방문문	0.0000	
Ni	0.4949		TTP Party Proving and	6.7003	0.228409	7.4236	~-
P. –	0.0017			0.0232	HADING.	0.0249	
S	0.0011			0.0155	3.25E-05	0.0166	
Si	0.0381		소나다는 문어	0.5154	0.001301	0.5548	
Sn		0.5827	0.0331	and the report of developments of		0.6158	
i Ti		는 11년 11년 12월 11월 12일 - 11월 12일 11월 11월 11월 11월 11월 11월 11월 11월 11월 11월			0.007806	0.0078	
Zr	an a	33.5491	1.9086	er o naver and set shows a fisk o		35.4577	
Та	0.0038	TAP TONIN		0.0515	n de la company	0.0553	

.

	plenum	fuel	hardware	Impurities		total fuel	plenum
	0	Ag		0.00002	Ag	0.0000	0.0000
AI	0.0036	Al	0.0023	0.00334	AÌ	0.0056	0.0036
	0	В		0.0002	В	0.0002	0.0000
	0	Bi		0.00008	Bi	0.0001	0.0000
С	0.0014		0.0390	0.01788	С	0.0569	0.0014
	0	Ca		0.0004	Ca	0.0004	0.0000
	0	Cd		0.005	Cd	0.0050	0.0000
	0	CI		0.00106	CI	0.0011	0.0000
Co	0.0078		0.1140	0.0002	Co	0.1142	0.0078
Cr	0.3458	-	10.0475	0.0008	Cr	10.0483	0.3458
Cu	0.0020		0.0013	0.0002	Cu	0.0015	0.0020
	0	F		0.00214	F	0.0021	0.0000
Fe	1.0040	Fe	35.8280	0.0036	Fe	35.8316	1.0040
	0	In		0.0004	In	0.0004	0.0000
	0	Li		0.0002	Li	0.0002	0.0000
	0	Mg		0.0004	Mg	0.0004	0.0000
Mn	0.0337	Mn	1.1095	0.00034	Mn	1.1098	0.0337
	0	Мо		0.002	Мо	0.0020	0.0000
N	0.0002		0.0000	0.005	N	0.0050	0.0002
	0	Na		0.003	Na	0.0030	0.0000
Nb	0.0181	nb	0.5568		nb	0.5568	0.0181
Ni	0.5459	Ni	7.4236	0.0048	Ni	7.4284	0.5459
0	0.0010		27.3135		0	27.3135	0.0010
Р	0.0007	Р	0.0249	0.007	Р	0.0319	0.0007
	0			0.0002	Pb	0.0002	0.0000
S	0.0005		0.0166		S	0.0166	0.0005
Si	0.0164		0.5548	0.00242	Si	0.5572	0.0164
Sn	0.0137	Sn	0.6158	0.0008	Sn	0.6166	0.0137
Та	0.0013		0.0553		Та	0.0553	0.0013
Ti	0.0122		0.0078	0.0002	Ti	0.0080	0.0122
	0	V		0.0006	V	0.0006	0.0000
Į.	0	w		0.0004	w	0.0004	0.0000
	0	Zn		0.00806	Zn	0.0081	0.0000
Zr	0.7856	Zr	35.4577		Zr	35.4577	0.7856

.

•

Thermal H	ydraulic i	nformatio	n for asse	mbly C3							}					1						··
																1						
		Data				Data		Data		Data		Data		Data		Data		Data		Data		
	L	point 4		Data point 5		point 6		point 7		point 8		point 9		point 10		point 11		point 12	-	point 13		
		Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	Water	Fuel	
	Node	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	
15.24	1	0.7396	672.5	0.7396	680.2	0.7396	654.9	0.7396	678.8	0.7396	674	0.7396	647.9	0.7396	637.4						-	
30.48	2	0.7396	1050	0.7396	1061	0.7396	968.2	0.7396	996.3	0.7396	934.6	0.7396	852.9	0.7396	813.3	0.7396	641.4	0.7396	663.9	0.7396	687.1	
30.48	3	0.6949	1248.3	0.6926	1157.9	0.693	1141.4	0.6914	1081.9	0.6934	1006.6	0.7396					821.3	0.7396	890.9	0.7396	949.6	
45.72	4	0.5607	1258.2	0.5634	1143.8	0.5658	1252.1	0.5714	1099.3	0.5776	1008.6	0.5838	945	0.6959	890.7	0.6983	900.5	0.6999	993.7	0.7004	1040	
30.48	5	0.4559	1211.5	0.3634	1143.8	0.3658	1252.1						987.4	0.5845	958.1	0.5904	966.6	0.5941	1054.4	0.5957	1058.9	
45.72	6	0.4559	1149.3	0.461				0.47	1133.7	0.4776	1059.2	0.4852	1006.2	0.486	1011.9	0.4935	1018.5	0.4975	1078.7	0.4993	1065.3	
45.72	7	0.3341	1086	0.3901	1151.8	0.3851	1228.1	0.3982	1171.9	0.4053	1078.4	0.4127	1019.6	0.4134	1023.7	0.4202	1030.9	0.4235	1069.7	0.4253	1067.2	
45.72	8				1152.4	0.3242	1132.4	0.3362	1192.7	0.3424	1091.6	0.3498	1052.9	0.3504	1004.3	0.356	1014	0.3587	1030.3	0.3602	1050.1	
		0.2976	1027.3	0.2858	1130.5	0.2827	1023.9	0.2919	1166.2	0.2971	1069.8	0.3046	1095.1	0.3051	963	0.3098	969.7	0.3121	960.5	0.3134	995.8	
64.11	9	0.2701	884.2	0.2525	986.1	0.2509	885.8	0.2566	1013	0.261	933.4	0.2668	955.4	0.2672	829.3	0.2712	831.4	0.2735	811.9	0.2749	843.1	
15.24	10	0.2595	659.9	0.2392	693	0.2383	641.9	0.2421	679.1	0.2461	660.7	0.2512	668	0.2516	628.3	0.2552	628	0.2576	623.7	0.259	634.1	
	Averages:		0.4403	1059.0	0.4351	1073.3	0.4333	1061.9	0.4402	1071.3	0.4450	995.0	0.4506	967.0	0.4510	910.2	0.4556	916.7	0.4580	949.1	0.4593	970.5
			Cycle																			
	NODE N		averaged	H2Ofrac								1. A.										
Data point	EFPD	Node	Fuel temps	4	5	6	7	8	9	10	11	12	13									
4	222.47	1	669.1	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000									
5	245.01	2	970.5	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000						-			
6	180.3	3	1084.8	1.0	0.9967	0.9973	0.9950	0.9978	1.0012	1.0014	1.0049	1.0072	1.0079									
7	303.9	4	1116.8	1.0	1.0048	1.0091	1.0191	1.0301	1.0412	1.0424	1.0530	1.0596	1.0624									
8	142.2	5 ·	1129.2	1.0	1.0112	1.0061	1.0309	1.0476	1.0643	1.0660	1.0825	1.0912	1.0952									
9	121.5	6	1126.8	1.0	1.0046	0.9918	1.0255	1.0438	1.0628	1.0646	1.0822	1.0907	1.0953									
10	10.1	7	1109.2	1.0	0.9847	0.9704	1.0063	1.0248	1.0470	1.0488	1.0655	1.0736	1.0933									
11	102.84	8	1068.8	1.0	0.9603	0.9499	0.9808	0.9983	1.0235	1.0252	1.0410	1.0487	1.0531									
12	111.46	9	924.4	1.0	0.9348	0.9289	0.9500	0.9663	0.9878	0.9893	1.0410	1.0467	1.0531									
13	100.33	10	660.9	1.0	0.9218	0.9183	0.9329	0.9484	0.9680	0.9696	0.9834	0.9927										
	1540.11	10	000.3	1.0	0.3210	0.9103	0.9329	0.9404	0.9000	0.9696	0.9834	0.9927	0.9981									
															<u> </u>							
		C STUDIE	S AND																			
0	NE NODE	EMODEL		Averages:																		
				Moderator	Fuel			Node 5														
	Data point		EFPD	densities	temp			only		5												
	4	222.47	222.47	0.4403	1059.0			1211.5	1211.5	0.4559	0.4559											
	5	467.48	245.01	0.4351	1073.3			1142.8		0.461												
	6	180.3	180.3	0.4333	1061.9			1276.3	1276.3	0.4587	0.4587											
	7	484.2	303.9	0.4402	1071.3			1133.7		0.47												
	8	142.2	142.2	0.4450	995.0			1059.2	1059.2	0.4776	0.4776											
	9	263.7	121.5	0.4506	967.0			1006.2		0.4852												
	10	10.1	10.1	0.4510	910.2	324.73		1011.9	1053.42	0.486	0.49643											
	11	112.94	102.84	0.4556	916.7			1018.5		0.4935	0.10010											· · ·_·
	12	224.4	111.46	0.4580	949.1			1078.7		0.4975												
	13	324.73	100.33	0.4593	970.5		v	1065.3		0.4993												
		2432.52	1540.11	0.4468	997.4			1100.4		0.4993												
	wted	L-706.06		0.4435	1026.7			1129.2														
1	WIGU			0.4435	1020.7			1129.2		0.47268											1	

Fs:		A1	A2	A3	A4	A5 _	A6	A7	<u>A8</u>						
1	15.24	7.68	7.99	7.52	7.43	8.10	8.26	7.02	7.73						
2	30.48	29.24	30.37	28.85	28.60	30.88	30.82	27.39	29.42						
3	30.48	36.82	38.34	36.83	36.47	39.22	38.31	34.99	37.42						
4	45.72	39.44	40.65	39.91	40,15	41.63	40.37	37.66	40.29						
5	30.48	40.72	41.84	41.03	42.02	42.83	41.46	39.29	41.68						
6	45.72	41.31	42.14	41.48	42.50	43.01	42.14	40.06	42.14						
7	45.72	41.13	41.69	41.20	42.03	42.21	42.24	40.37	41.79						
8	45.72	39.50	40.36	39.37	40.82	40.08	40.67	39.71	40.15						
9	64.11	31.03	30.77	30.25	31.71	30.50	31.44	30.39	30.86						
10	15.24	8.55	8.33	8.32	8.58	8.15	8.66	7.92	8.20						
	average	34.88	35.58	34.80	35.53	35.99	35.80	33.85	35.36						
	max apf	1.18	1.18	1.19	1.20	1.20	1.18		1.19						
		61	82	B3	B4	B5									
1	15.24	7.78	7.85	7.23	8.20	7.70	1								
2	30.48	29.49	29.64	28.67	30.96	29.33									
3	30.48	37.53	37.42	37.06	39.16	37.45									
4	45.72	40.47	39.63	40.19	41.29	40.72									
5	30.48	42.09	40.66	42.13	42.09	41.91									
6	45.72	43.17	41.50	42.32	42.17	42.15									
7	45.72	43.26	42.45	41.58	41.51	41.68									
ė	45.72	41.40	41.31	39.43	39.41	40.58									
9	64.11	32.54	31.89	30.19	30.12	31.53									
10	15.24	9.18	8.92	8.26	8.19	8.80									
<u> </u>	average	36.23	35.57	35.06	35.55	35.61									
	max apf	1.19	1.19	1.21	1,19	1,18									
	max apr	1.13	1.14	1 . <i>4</i> 1	1,13	1.10									
		<u>C1</u>	C2	<u>C3</u>	C4	<u>C5</u>	C6	<u> </u>	C8	<u>C9</u>	C10	C11	C12	C13	
1	15.24	9.50	9.08	9.62	8.58	8.39	9.01	8.86	7.53	8.55	8.74	7.16	8.01	8.35	
2	30.48	35.28	33.92	35.62	32.29	32.01	33.55	33.66	28.89	32.77	32.95	28.04	30.43	31.44	
3	30.48	45.18	43.26	45.39	41,44	41.01	42.73	43.44	36.97	42.06	42.27	36.37	38.77	39.71	
4	45.72	48.02	46.32	48.14	44.69	44.04	45.67	46.22	39.95	44.36	45.27	39.32	41.65	42.20	
5	30.48	49.28	47.79	49.30	46.54	45.63	47.01	47.36	41.47	45.25	46.79	41.01	43.30	43.56	
6	45.72	49.22	47.99	49.23	46.79	46.01	47.34	47.26	42.16	45.11	46.71	41.73	43.85	44,44	
7	45.72	47.87	46.96	47.87	46.73	45.41	46.61	46.08	42.75	43.75	46.32	41.77	43.45	44.65	
8	45.72	44.15	43.64	44.46	43.69	42.79	43.67	42.82	41.55	40.53	43.00	39.76	41.21	42.55	
9	64.11	31.31	31.78	31.82	31.55	31.57	31.89	30.46	30.77	29.15	30.70	29.26	30.80	31.86	
10	15.24	8.65	9.01	8.86	8.68	8.78	8.99	8.28	8.44	7.84	8.47	7.87	8.67	9.09	_
	average	40.37	39.51	40.57	38.67	38.09	39.19	38.89	35.50	37.20	38.59	34.56	36.42	37.28	_

		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10				
1	15.24	8.86	8.89	8.43	7.53	8.38	8.48	9.03	7.96	8.13	7.87				
2	30.48	33.83	34.21	32.26	29.67	32.38	32.45	34.33	30.90	31.68	30.96				
3	30.48	42.67	43.56	40.58	37.63	41.12	40.73	43.25	39.35	40.37	39.80				
4	45,72	45.05	46.22	43.47	39.64	43.51	42.98	45.71	42.60	43.09	42.42				
5	30.48	45.97	47.80	45.18	40.77	44.97	44.10	46.76	44.42	44.36	43.73				
6	45.72	46.16	48.29	46.00	41.14	45.84	44.44	47.09	45.36	45.13	44.57				
7	45.72	45.45	47.63	46.02	40.78	45.61	43.88	46.54	45.61	45.39	45.43				
8	45.72	42.71	44.81	43.72	38.78	43.04	41.54	43.93	43.78	43.33	44.14				
9	64.11	31.31	32.88	32.78	28.85	31.85	30.86	32.34	33.35	32.43	32.85				
10	15.24	8.56	8.83	9.05	7.51	8.57	8.23	8.80	9.16	8.81	8.90				
	average	38.51	39.99	38.38	34.44	38.08	37.16	39.34	37.96	37.88	37.74				
	max apf	1.20	1.21	1.20	1.19	1.20	1.20	1.20	1.20	1.20	1.20				
		E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14
1	15.24	7.74	7.66	7.54	7.62	7.26	7.48	7.13	7.02	7.38	7.28	6.97	7.74	7.32	6.90
2	30.48	30.56	30.28	29.85	30.04	28.63	29.33	28.73	28.33	29.37	28.92	28.25	30.59	29.26	27.71
3	30.48	38.98	38.71	38.06	38.32	36.10	37.16	37.45	37.18	37.68	37.12	36.68	39.26	38.15	35.97
4	45.72	40.61	40.50	39.96	40.02	37.73	39.19	39.81	39.89	39.88	39.32	38.78	41.32	40.60	38.64
5	30.48	42.09	42.04	41.63	41.60	39.50	41.21	41.82	42.04	41.79	41.22	40.59	43.09	42.59	40.93
6	45.72	41.69	41.86	41.28	41.35	39.51	41.26	41.69	41.87	41.53	41.05	40.40	42.91	42.43	40.91
7	45.72	40.26	40.92	39.92	40.11	38.55	40.10	40.81	40.50	40.11	39.93	39.56	41.92	41.23	39.58
8	45.72	36.63	37.42	36.63	36.65	35.52	36.78	37.03	36.48	36.32	37.11	36.02	38.19	37.32	36.03
9	48.97	27.67	28.25	27.73	27.77	27.27	28.00	27.47	27.10	27.29	28.21	26.94	28.48	27.71	27.42
10	30.48	7.98	8.21	7.94	8.03	7.84	8.16	7.71	7.80	7.75	8.10	7.50	8.11	8.02	7.90
	average	33.60	33.83	33.25	33.35	31.93	33.10	33.25	33.09	33.12	33.08	32.38	34.47	33.76	32.45
	max apf	1.25	1.24	1.25	1.25	1.24	1.25	1.26	1,27	1.26	1.25	1.25	1.25	1.26	1.26
		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10				
1	15.24	7.01	7.62	7.22	6.68	6.88	7.48	6.69	7.52	7.45	6.90				
2	30.48	27.33	29.39	28.04	26.45	27.02	28.84	26.53	29.20	28.76	27.10				
3	30.48	35.45	37.93	36.42	34.34	35.17	37.12	34.53	38.06	37.22	35.42				
4	45.72	37.99	40.05	38.92	36.56	37.28	39.33	36.77	40.74	39.32	38.00				
5	30.48	40.25	41.87	40.90	38.54	39.06	41.19	38.73	42.86	41.07	40.02				
6	45.72	40.52	41.91	40.91	38.57	39.16	41.15	38.72	42.64	41.06	40.00				
7	45.72	40.00	40.88	39.93	37.38	38.48	40.15	37.47	40.87	40.13	38.63				
8	45.72	36.69	36.99	36.83	33.91	36.28	37.41	33.95	36.78	36.71	34.63				
9	48.97	27.69	27.60	28.15	25.76	28.15	28.42	25.74	27.51	27.64	26.20				
10	30.48	8.13	8.18	8.47	7.44	8.45	8.43	7.44	8.11	8.28	7,75	_			
	average	32.38	33.48	32.85	30.66	31.82	33.22	30.76	33.69	32.99	31.65	•			
	max apt	1.25	1.25	1.25	1.26		1.24	1.28	+ + +	1.24	1.26				

average 16.85

15.51

max apf 1.31 1.32 1.34 1.30

15.89

15.38

16.23

		G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11			
1	15.24	4.65	4.85	3.95	4.88	4.66	4.80	4.58	5.43	5.24	4.88	4.33			
2	30.48	19.13	19.70	16.67	19.90	19.16	19.48	18.97	22.02	21.08	19.73	17.78			
3	30.48	25.08	25.83	22.65	26.13	25.10	25.50	25.22	29.05	27.53	25.51	23.21			
4	45.72	25.99	27.50	24.11	27.48	25.99	27.16	26.68	30.20	28.99	26.71	23.97			
5	30.48	26.77	28.77	25.27	28.67	26.78	28.51	27.86	31.01	30.25	27.94	24.95			
6	45.72	26.22	28.45	24.89	28.29	26.23	28.27	27.46	30.30	29.81	27.66	24.90			
7	45.72	25.05	27.34	23.82	27.17	25.09	27.24	26.44	28.85	28.38	26.55	24.60			
8	45.72	22.38	24.51	21.34	24.27	22.42	24.46	23.64	25.60	25.20	23.72	22.73			
9	48.97	16.10	17.59	15.52	17.38	16.12	17.58	16.90	18.16	18.02	17.12	17.24			
10	30.48	4.18	4.73	4.04	4.63	4.19	4.73	4.45	5.01	4.92	4.58	4.73			
-	average	20.89	22.42	19.56	22.35	20.91	22.27	21.67	24.08	23.46	21.87	20.23			
	max apf	1.28	1.28	1.29	1.28	1.28	1.28	1.29	1.29	1.29	1.28	1.23			
		H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11			
1	15.24	4.57	5.02	5.18	5.36	5.59	5.51	4.90	4.71	4.26	5.70	4.58			
2	30.48	18.89	20.60	21.09	21.83	22.64	22.34	20.01	19.19	17.65	22.80	18.94			
3	30.48	25.41	27.22	27.61	28.71	29.65	29.73	26.22	24.85	23.68	29.93	25.46			
4	45.72	26.76	28.36	28.69	29.67	30.44	31.07	27.25	25.85	25.06	31.01	26.73			
5	30.48	27.78	29.17	29.67	30.33	30.98	31.93	28.04	26.91	26.27	31.75	27.72			
6	45.72	27.22	28.54	29.26	29.65	30.25	31.15	27.44	26.56	26.04	31.01	27.21			
7	45.72	25.93	27.33	28.36	28.53	29.22	29.58	26.32	25.48	25.27	29.53	26.00			
8	45.72	23.40	24.54	25.86	25.54	26.84	26.37	24.50	23.14	23.28	26.42	23.46			
9	48.97	16.56	17.06	18.22	17.53	18.86	18.25	17.85	16.46	16.82	18.41	16.59			
10	30.48	4.38	4.50	4.90	4.62	5.14	5.02	4.83	4.35	4.57	5.11	4.39			
-	average	21.51	22.68	23.41	23.67	24.51	24.65	22.18	21.12	20.72	24.70	21.53			
	max apr	1.29	1.29	1.27	1.28	1.26	1.30	1.26	1.27	1.27	1.29	1.29			
		J1	J2	J3		J5	J6	J7	<u></u>	. J9	J10	J11		J13	J14
1	15.24	3.70	3.35	3.30	3.17	3.51	3.73	3.03	2.90	3.61	3.64	3.13	3.69	3.31	3.28
2	30.48	15.63	14.03	13.84	13.18	14.65	15.55	12.53	12.12	14.99	15.10	13.02	15.42	13.86	13.73
3	30.48	21.33	19.31	19.18	18.22	20.01	21.21	17.42	17.29	20.46	20.59	18.22	21.21	19.13	19.07
4	45.72	21.85	19.95	20.46	19.22	20.92	22.01	18.49	18.45	21.46	21.57	19.46	22.17	20.08	20.03
5	30.48	22.09	20.44	21.23	19.94	21.50	22.49	19.30	19.20	22.19	22.29	20.33	22.73	20.77	20.58
6	45.72	21.28	19.90	20.69	19.58	20.87	21.79	18.93	18.82	21.64	21.73	19.86	22.03	20.27	19.93
7	45.72	20.06	18.68	19.34	18.86	19.58	20.56	17.92	17.85	20.29	20.38	18.71	20.61	18.99	18.83
8	45.72	17.82	16.39	16.88	17.00	17.12	18.14	15.89	15.78	17.67	17.76	16.61	17.90	16.55	16.95
9	48.97	11.61	10.66	10.97	11.38	11.13	11.85	10.50	10.77	11.55	11.62	11.03	11.58	10.75	11.30
10	30.48	2.95	2.72	2.80	2.93	2.86	3.07	2.74	2.87	3.03	3.05	2.91	3.01	2.77	2.90

17.10 14.64

14.59

1.32 1.31 1.32 1.33 1.32 1.33

16.74

16.83

15.34

17.09

15.64

1.33

15.67

1.31

J15

3.23

13.57

18.58

19.27

19.77

19.26

18.61

17.56

11.60

2.91

15.46

1.28

J16

3.03

12.56

17.57

18.88

19.83

19.41

18.19

15.92

10.44

2.73

13.86

1.43

ł

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

		_	K1	K2	КЗ	K4		
	1	15.24	3.71	3.11	3.74	3.22		
	2	30.48	16.30	13.76	16.37	14.23		
	3	30.48	21.44	18.57	21.67	18.98		
	4	45.72	21.76	19.50	22.16	19.65		
	5	30.48	22.01	20.15	22.50	20.15		
	6	45.72	21.31	19.66	21.75	19.59		
	7	45.72	20.18	18.54	20.37	18.76		
	8	45.72	18.21	16.41	17.96	17.70		
	9	48.97	12.48	11.06	12.00	12.03		
	10		3.05	2.72	2.93	2.92		
		average	17.09	15.34	17.18	15.76		
		max apf	1.29	1.31	`` 1. 31```	1.28		
			<u>L1</u>	L2				
	1	15.24	1.13	1.22				
	2	30.48	5.05	5.64				
	3	30.48	7.29	8.08				
	4	45.72	7.94	8.21				
	5	30.48	8.37	8.20				
	6	45.72	8.04	7.67				
	7	45.72	7.38	7.02				
	8	45.72	6.37	6.12				
	9	48.97	4.15	3.93				
	10	30.48	0.98	0.92				
1		average	6.07	6.06	-			
		max apf	1.38	1.36				
			<u>M1</u>	M2	M3	M4	M5	M6
	1	15.24	1.08	1.34	1.05	1.01	1.19	1.24
	2	30.48	4.58	5.74	4.47	4.25	5.05	5.30
	3	30.48	6.57	7.92	6.39	5.98	7.04	7.42
	4	45.72	7.37	8.09	7.19	6.65	7.56	7.83
	5	30.48	7.96	8.14	7.80	7.18	7.90	8.04
	8	45 72	7 87	7 75	7 71	7 09	7 69	7 71

		M1	M2	мз	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M18
1	15.24	1.08	1.34	1.05	1.01	1.19	1.24	0.94	1.10	1.13	1.33	1.21	1.11	1.20	1.22	1.17	1.20
2	30.48	4.58	5.74	4.47	4.25	5.05	5.30	3.99	4.67	4.87	5.83	5.45	4.81	5.41	5.32	5.14	5.35
3	30.48	6.57	7.92	6.39	5.98	7.04	7.42	5.70	6.64	7.01	8.19	7.91	6.94	7.91	7.65	7.49	7.81
4	45.72	7.37	8.09	7.19	6.65	7.56	7.83	6.48	7.31	7.66	8.36	8.22	7.65	8.18	8.12	7.95	8.13
5	30.48	7.96	8.14	7.80	7.18	7.90	8.04	7.08	7.78	8.00	8.36	8.23	8.05	8.14	8.30	8.09	8.14
6	45.72	7.87	7.75	7.71	7.09	7.68	7.71	7.02	7.59	7.71	7.91	7.76	7.76	7.64	7.90	7.68	7.66
7	45.72	7.42	7.17	7.24	6.65	7.15	7.14	6.58	7.05	7.13	7.30	7.14	7.11	7.01	7.21	7.02	6.99
8	45.72	6.51	6.27	6.34	5.83	6.23	6.23	5.75	6.12	6.20	6.41	6.27	6.11	6.13	6.18	6.04	6.03
9	48.97	4.39	4.20	4.27	3.90	4.14	4.15	3.84	4.06	4.12	4.25	4.13	4.00	3.99	4.02	3.94	3.91
10	30.48	1.10	1.03	1.05	0.94	1.01	1.01	0.93	0.99	1.00	1.04	1.00	0.97	0.96	0.98	0.96	0.94
	average	5.91	6.13	5.77	5.33	5.88	5.98	5.21	5.72	5.88	6.27	6.11	5.84	6.02	6.07	5.92	5.98
	max apf	1.35	1.33	1.35	1.35	1.34	1.34	1.36	1.36	1.38	1.33	1.35	1.3B	1.36	1.37	1.37	1.36

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

Thermal Hydraulic information for assembly C3

180.3

484.2

142.2

263.7

10.1

112.94

224.4

324.73

2432.52 1540.11

6

7

8

9

10

11

12

13

wted

180.3

303.9

142.2

121.5

10.1

102.84

111.46

100.33

0.4333

0.4402

0.4450

0.4506

0.4510

0.4556

0.4580

0.4593

0.4468

0.4435

1061.9

1071.3

995.0

967.0

910.2

916.7

949.1

970.5

997.4

1026.7

324.73

1276.3

1133.7

1059.2

1006.2

1011.9

1018.5

1078.7

1065.3

1100.4

1129.2

		Data point 4		Data point 5		Data point 6		Data point 7		Data point 8		Data point 9		Data point 10		Data point 11		Data point 12		Data	
		water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	point 13 water	Fuel
	Node	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp
15.24	1	0.7396	672.5	0.7396	680.2	0.7396	654.9	0.7396	678.8	0.7396	674	0.7396	647.9	0.7396	637.4	0.7396	641.4	0.7396	663.9	0.7396	687.1
30.48	2	0.7396	1050	0.7396	1061	0.7396	968.2	0.7396	996.3	0.7396	934.6	0.7396	852.9	0.7396	813.3	0.7396	821.3	0.7396	890.9	0.7396	949.6
30.48	3	0.6949	1248.3	0.6926	1157.9	0.693	1141.4	0.6914	1081.9	0.6934	1006.6	0.6957	945	0.6959	890.7	0.6983	900.5	0.6999	993.7	0.7004	1040
45.72	4	0.5607	1258.2	0.5634	1143.8	0.5658	1252.1	0.5714	1099.3	0.5776	1035	0.5838	987.4	0.5845	958.1	0.5904	966.6	0.5941	1054.4	0.5957	1058.9
30.48	5	0.4559	1211.5	0.461	1142.8	0.4587	1276.3	0.47	1133.7	0.4776	1059.2	0.4852	1006.2	0.486	1011.9	0.4935	1018.5	0.4975	1078.7	0.4993	1065.3
45.72	6	0.3883	1149.3	0.3901	1151.8	0.3851	1228.1	0.3982	1171.9	0.4053	1078.4	0.4127	1019.6	0.4134	1023.7	0.4202	1030.9	0.4235	1069.7	0.4253	1067.2
45.72	7	0.3341	1086	0.329	1152.4	0.3242	1132.4	0.3362	1192.7	0.3424	1091.6	0.3498	1052.9	0.3504	1004.3	0.356	1014	0.3587	1030.3	0.3602	1050.1
45.72	8	0.2976	1027.3	0.2858	1130.5	0.2827	1023.9	0.2919	1166.2	0.2971	1069.8	0.3046	1095.1	0.3051	963	0.3098	969.7	0.3121	960.5	0.3134	995.8
64.11	9	0.2701	884.2	0.2525	986.1	0.2509	885.8	0.2566	1013 _	0.261	933.4	0.2668	955.4	0.2672	829.3	0.2712	831.4	0.2735	811.9	0.2749	843.1
15.24	10	0.2595	659.9	0.2392	693	0.2383	641.9	0.2421	679.1	0.2461	660.7	0.2512	668	0.2516	628.3	0.2552	628	0.2576	623.7	0.259	634.1
Averages:		0.4403	1059.0	0.4351	1073.3	0.4333	1061.9	0.4402	1071.3	0.4450	995.0	0.4506	967.0	0.4510	910.2	0.4556	916.7	0.4580	949.1	0.4593	970.5
			Cycle														Data		Data		Data
			averaged	H2Ofrac	_	_	_										point 11		point 12		point 13
DP	EFPD	Node	Fuel temps	4	5	6	7	8	9	10	11	12	13								
4	222.47	1	669.1	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000								
5	245.01	2	970.5	1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000								
6	180.3	3	1084.8	1.0	0.9967	0.9973	0.9950	0.9978	1.0012	1.0014	1.0049	1.0072	1.0079								
	303.9	4	1116.8	1.0	1.0048	1.0091	1.0191	1.0301	1.0412	1.0424	1.0530	1.0596	1.0624								
8	142.2 121.5	5 6	1129.2 1126.8	1.0	1.0112	1.0061	1.0309	1.0476	1.0643	1.0660	1.0825	1.0912	1.0952								
10	121.5	7	1120.8	1.0 1.0	1.0046 0.9847	0.9918 0.9704	1.0255 1.0063	1.0438 1.0248	1.0628 1.0470	1.0646 1.0488	1.0822	1.0907 1.0736	1.0953 1.0781								
11	102.84	8	1068.8	1.0	0.9647	0.9704	0.9808	0.9983	1.0470	1.0466	1.0655	1.0736	1.0531								
12	111.46	9	924.4	1.0	0.9348	0.9289	0.9500	0.9663	0.9878	0.9893	1.0410	1.0407	1.0178								
13	100.33	10	660.9	1.0	0.9218	0.9183	0.9329	0.9484	0.9680	0.9696	0.9834	0.9927	0.9981								
	1540.11																				
·				Averages						· · · ·											
	I																				
1				:																	
				: water	Fuel			8													
	Data point		EFPD	: water density	Fuel temp			Node 5 onl	v	5											
	Data point	222.47	EFPD 222.47		Fuel temp 1059.0		:	Node 5 onl	<u>y</u> 1211.5	5 0.4559	0.4559										

0.4587

0.47

0.4776

0.4852

0.486

0.4935

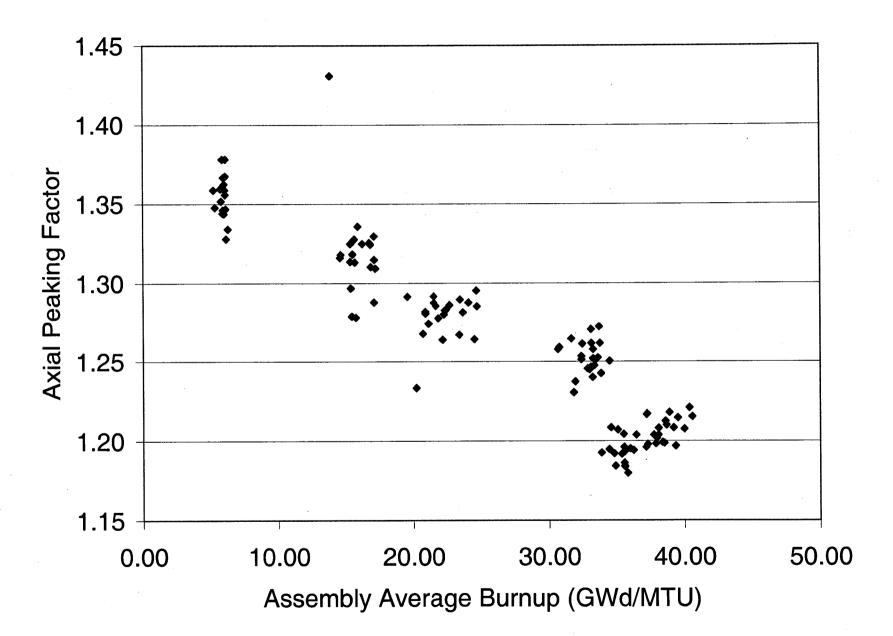
0.4975

0.4993

0.47847

0.47268

1276.3


1059.2

1053.42

0.4587

0.4776

0.49643

Title: BWR Source Term Generation and Evaluation **Document Identifier:** 000-00C-MGR0-00200-000-00A

Average Burnup	APF	Assembly
34.88	1.18	A1
35.58	1.18	A2
34.80	1.19	A3
35.53	1.20	A4
35.99	1.20	A5
35.80	1.18	A6
33.85	1.19	A7
35.36	1.19	A8
36.23	1.19	B1
35.57	1.19	B2
35.06	1.21	B3
35.55	1.19	B4
35.61	1.18	B5
40.37	1.22	C1
39.51	1.21	C2
40.57	1.22	C3
38.67	1.21	C4
38.09	1.21	C5
39.19	1.21	C6
38.89	1.22	C7
35.50	1.20	C8
37.20	1.22	C9
38.59	1.22	C10
34.56	1.21	C10 C11
36.42	1.21	C12
37.28	1.20	C12 C13
37.23	1.22	C14
38.51	1.20	D1
39.99	1.21	D2
38.38	1.20	D3
34.44	1.19	D4
38.08	1.20	D5
37.16	1.20	D6
39.34	1.20	D7
37.96	1.20	D8
37.88	1.20	D9
37.74	1.20	D10
33.60	1.25	E1
33.83	1.24	E2
33.25	1.25	E3
33.35	1.25	E4
31.93	1.24	E5
33.10	1.25	E6
33.25	1.26	E7
33.09	1.27	E8
33.12	1.26	E9
33.08	1.25	E10
32.38	1.25	E11
34.47	1.25	E12
33.76	1.26	E13

Title: BWR Source Term Generation and Evaluation **Document Identifier:** 000-00C-MGR0-00200-000-00A

32.45 32.38 33.48 32.85 30.66 31.82 33.22 30.76 33.69 32.99 31.65 20.89 22.42 19.56 22.35 20.91 22.27 21.67 24.08 23.46 21.87 20.23 21.51 22.68 23.41 23.67 24.51 24.65 22.18 23.47 24.51 24.65 22.18 21.12 20.72 24.70 21.53 16.85 15.51 15.89 15.38 16.23 17.10 14.64 14.59 16.74 16.74 16.83	$\begin{array}{c} 1.26\\ 1.25\\ 1.25\\ 1.25\\ 1.26\\ 1.23\\ 1.24\\ 1.26\\ 1.27\\ 1.24\\ 1.26\\ 1.28\\ 1.28\\ 1.28\\ 1.29\\ 1.28\\ 1.29\\$	E14 F1 F2 F3 F5 F6 F7 F8 F9 10 11 22 33 45 56 57 88 99 10 11 11 22 34 45 66 57 88 99 10 11 11 12 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10
16.23	1.32	
14.64	1.32	J7
15.34 17.09	1.32 1.33	J11 J12
15.64	1.33	J13
15.67 15.46	1.31 1.28	J14 J15
13.86	1.43	J16
17.09	1.29	K1
15.34 17.18	1.31 1.31	K2 K3

Title: BWR Source Term Generation and Evaluation **Document Identifier:** 000-00C-MGR0-00200-000-00A

15.76	1.28	K4
6.07	1.38	L1
6.06	1.36	L2
5.91	1.35	M1
6.13	1.33	M2
5.77	1.35	M3
5.33	1.35	M4
5.88	1.34	M5
5.98	1.34	M6
5.21	1.36	M7
5.72	1.36	M8
5.88	1.36	M9
6.27	1.33	M10
6.11	1.35	M11
5.84	1.38	M12
6.02	1.36	M13
6.07	1.37	M14
5.92	1.37	M15
5.98	1.36	M16

1.1

Thermal Hydraulic Information for assembly C3 THIS INFORMATION IS THE UPDATE FROM THE QUAD CITIES SUMMARY OF REACTOR CRITICALS: REF. 7.19, PP. 333-334

「「「「「「ない」」をいた。「「「「」」というないではないです。

1110 114	- Vring i	Data	LUIUNIL	Data		Data		Data		Data	,	Data		Data		Data		Data		Data	
				point 5		point 6		point 7	-	point 8		point 9		point 10		point 11		point 12		point 13	
		point 4		•			E		Fuel	• · ·	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel	water	Fuel
		water	_	water	Fuel	water	Fuel	water	Fuel	water						density	temp	density	temp	density	temp
	Node	density	Fuel temp	density	temp	density	temp	density	temp	density	temp	density	temp	density	temp	<u> </u>	-				
15.24	1	0.7396	634.9	0.7396	640.3	0.7396	622.7	0.7396	639.3	0.7396	636.0	0.7396	617.8	0.7396	610.7	0.7396	613.4	0.7396	628.9	0.7396	645.3
30.48	2	0.7396	954.1	0.7396	963.5	0.7396	873.9	0.7396	899.6	0.7396	842.6	0.7396	772.5	0.7396	740.3	0.7396	746.8	0.7396	804.5	0.7396	856.2
30.48	3	0.6949	1116.6	0.6926	982.1	0.6930	967.5	0.6914	914.8	0.6934	853.0	0.6957	805.8	0.6959	766.4	0.6983	773.4	0.6999	843.0	0.7004	879.9
45.72	4	0.5607	1079.0	0.5634	969.2	0.5658	1073.0	0.5714	929.7	0.5776	875.8	0.5838	838.0	0.5845	815.7	0.5904	822.1	0.5941	891.8	0.5957	895.5
30.48	5	0.4559	1032.7	0.4610	968.2	0.4587	1097.5	0.4700	960.1	0.4776	895.7	0.4852	852.7	0.4860	857.2	0.4935	862.5	0.4975	912.1	0.4993	900.8
45.72	6	0.3883	974.3	0.3901	976.4	0.3851	1049.1	0.3982	995.1	0.4053	911.8	0.4127	863.4	0.4134	866.7	0.4202	872.4	0.4235	904.5	0.4253	902.4
45.72	7	0.3341	918.4	0.3290	977.0	0.3242	959.3	0.3362	1014.5	0.3424	923.1	0.3498	890.7	0.3504	851.2	0.3560	858.9	0.3587	872.1	0.3602	888.2
45.72	0	0.2976	869.7	0.2858	957.2	0.2827	867.1	0.2919	989.8	0.2971	904.6	0.3046	926.2	0.3051	819.4	0.3098	824.5	0.3121	817.6	0.3134	844.7
							764.2	0.2566	860.8	0.2610	798.9	0.2668	815.5	0.2672	725.1	0.2712	726.6	0.2735	713.5	0.2749	734.7
64.11	9	0.2701	763.3	0.2525	839.7	0.2509								0.2516	600.6	0.2552	600.4	0.2576	598.0	0.2590	603.9
15.24	10	0.2595	618.8	0.2392	638.1	0.2383	608.3	0.2421	629.9	0.2461	619.2	0.2512	623.5								
werages	3:	0.4403	916.9	0.4351	920.3	0.4333	915.8	0.4402	918.2	0.4450	852.8	0.4506	829.9	0.4510	786.9	0.4556	791.9	0.4580	818.2	0.4593	834.7

FORO	NE NODE	MODEL	Averages:		
			Moderator	Fuel	
DP		EFPD	densities	temp	
4	222.47	222.47	0.4403	916.9	
5	467.48	245.01	0.4351	920.3	
6	180.3	180.3	0.4333	915.8	
7	484.2	303.9	0.4402	918.2	
8	142.2	142.2	0.4450	852.8	
9	263.7	121.5	0.4506	829.9	
10	10.1	10.1	0.4510	786.9	324.73
11	112.94	102.84	0.4556	791.9	
12	224.4	111.46	0.4580	818.2	
13	324.73	100.3 <u>3</u>	0.4593	834.7	
sum	2432.52	1540.11	0.4468	858.6	averages
weighte	d average	s	0.4435	883.1	

Determination of burn histories Thermal Hydraulic information for assembly C3

for the original forms, see spreadsheet operatinng.conditiond.xls

368.91	0.542137649	kg U per cm height				Data point 4			Data point 5
Node height in cm	node mass- determined by height*mass U per cm height	height in the reactor	Node	MW per node; determined from C3 data and calculated node mass	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTL
15.24	8.262	15.24	1	0.0509	1.1401	1.371	0.0544	2.2921	2,983
30.48	16.524	45.72	2	0.4408	4.9346	5.934	0.4507	9.7521	12.616
30.48	16.524	76.2	3	0.6189	6.9287	8.332	0.5377	12.8872	16.304
45.72	24.787	121.92	4	0.9416	7.0276	8.451	0.7875	12.8988	16.235
30.48	16.524	152.4	5	0.5858	6.5586	7.887	0.5240	12.3268	15.657
45.72	24.787	198.12	6	0.7949	5.9333	7.135	0.7982	11.6434	15.025
45.72	24.787	243.84	7	0.7096	5.2963	6.369	0.7991	10.8825	14.268
45.72	24.787	289.56	8	0.6306	4.7067	5.66	0.7696	10.0067	13.267
64.11	34.756	353.67	9	0.6138	3.2672	3.929	0.8060	7.1757	9.611
15.24	8.262	368.91	10	0.0453	1.0137	1.219	0.0601	2.2372	3.001
Averages:				5.4322	5.0	6.04	5.5872	10.0	12.89
from dictionary=	1 ton	1016 kg	200kg=0.1968	41		Note for 000-00C-		00A: Use of 1016 kg	

from dictionary= Assembly power used for

Note for 000-00C-MGR0-00200-000-00A: Use of 1016 kg (long ton) instead of 1000 kg (metric tonne) is the main cause of the discrepancy in burnups

70

75

one node calcs:	2.469			•	1000 kg (metric	tonne) is the main ca	use of the discrepancy	in burnups
une noue caics.	3.468	0.001	200kg=0.196	0.196850394	discussed in Se	ction 6.6.		-
			Average					
			burnups					
	EFPD used for calculated	EFPD from Quad Cities	assemblies			Burnup calculated		
Data point	burnups shown above	data	need to see	EFPD for one node model	Cycle	from C3 data	Desired burnups	
4	185	222.47	10	567.6	4	6.04		6.04
5	140	245.01	20	1135.2	5	12.9	10	6.86
6	180.3	180.3	30	1702.8	6	17.8		4.9
7	80	303.9	40	2270.4	7	26.3	20	8.5
8	142.2	142.2	50	2838.0	8	29.6		3.3
9	15	121.5	60	3405.6	9	32.3	30	2.7
10	10.1	10.1	70	3973.1	10	32.5		0.2
11	102.84	102.84	75	4256.9	11	34.5		2
12	111.46	111.46	0.001	0.057	12	36.9		2.4
13	100.33	100.33	0.01	0.568	13	39.1		2.2
	sum:	1540.11	0.1	5.676 Pass 2	4	45.14	40	0.9
			1	56:759	5	52	50	4.86
			· · · · · · · · · · · · · · · · · · ·		6	56.9		1.00
					7	65.4	60	
					i :	56.1		

8

9

10

11

12

13

68.7

71.4

71.6

73.6

76

78.2

		Data point 6			Data point 7			Data point 8			Data point 9
					•						
		Burnup		Calculated	Burnup			Burnup		Calculated	Burnup
MW per node	Calculated burnup	(GWd/MTU)	MW per node	burnup	(GWd/MTU)	MW per node	Calculated burnup	(GWd/MTU)	MW per node	bumup	(GWd/MTU)
0.0430	3.9220	3.922	0.0537	4.4422	5.898	0.0516	6.7860	6.786	0.0398	6.8583	7.372
0.3674	16.6250	16.625	0.3926	18.5256	23.845	0.3372	26.7470	26.747	0.2638	26.9865	28.687
0.5229	22.0090	22.009	0.4694	24.2816	30.642	0.4018	34.1000	34.1	0.3464	34.4144	36.647
0.9334	23.0250	23.025	0.7275	25.3731	31.945	0.6409	35.6220	35.622	0.5769	35.9711	38.45
0.6440	22.6840	22.684	0.5160	25.1819	32.173	0.4490	36.0370	36.037	0.4016	36.4016	38.99
0.9011	21.5800	21.58	0.8254	24.2440	31.7	0.6995	35.7130	35.713	0.6202	36.0883	38.753
0.7722	19.8850	19.885	0.8533	22.6391	30.347	0.7173	34.4620	34.462	0.6651	34.8645	37.722
0.6261	17.8210	17.821	0.8177	20.4600	27.846	0.6878	31.7920	31.792	0.7220	32.2289	35.331
0.6169	12.8110	12.811	0.8570	14.7835	20.304	0.7066	23.1950	23.195	0.7481	23.5178	25.81
0.0372	3.8120	3.812	0.0539	4.3335	5.793	0.0456	6.5780	6.578	0.0489	6.6668	7.297
5.4642	17.8	17.81	5.5664	20.0	26.27	4.7374	29.6	29.64	4.3929	30.0	32.33

		Data point 10			Data point 11			Data point 12			Data point 13
MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Bumup (GWd/MTU)
· · · · · · · · · · · · · · · · · · ·				7.8750	7.875	0.0471	8.5100	8.51	0.0575	9.2080	9.208
0.0352	7.4150	7.415	0.0370								
0.2274	28.8260	28.826	0.2356	30.2920	30.292	0.2978	32.3010	32.301	0.3506	34.4300	34.43
0.2978	36.8290	36.829	0.3067	38.7380	38.738	0.3902	41.3700	41.37	0.4318	43.9920	43.992
0.5375	38,6690	38.669	0.5488	40.9460	40.946	0.6671	43.9460	43.946	0.6732	46.6710	46.671
0.4057	39,2380	39.238	0.4125	41.8050	41.805	0.4666	44.9520	44.952	0.4546	47.7120	47.712
0.6258	39.0080	39.008	0.6353	41.6440	41.644	0.6878	44.7370	44.737	0.6831	47.5020	47.502
0.5988	37.9660	37.966	0.6129	40.5090	40.509	0.6347	43.3630	43.363	0.6611	46.0390	46.039
0.5448	35.5530	35.553	0.5531	37.8480	37.848	0.5406	40.2790	40.279	0.5880	42.6590	42.659
0.5127	25.9590	25.959	0.5140	27,4800	27.48	0.4771	29.0100	29.01	0.5363	30.5580	30.558
0.0311	7.3350	7.335	0.0309	7.7200	7.72	0.0290	8.1110	8.111	0.0337	8.5200	8.52
3.7816	32.5	32.53	3.8869	34.5	34.52	4.2380	36.9	36.89	4.4699	39.1	39.13

Determination of burn histories

Assembly power used for

1. A. S.

Thermal Hydraulic information for assembly C3 for the original forms, see spreadsheet operating conditiond xls

368.91	0.542137649	kg U per cm height	1			Data point 4			Data point 5
Node height in cm	node mass- determined by height*mass U per cm height	height in the reactor	Node	MW per node; determined from C3 data and calculated node mass	Calculated burnup	Bumup (GWd/MTU)	MW per node	Calculated burmup	Burnup (GWd/MT
15.24	8.262	15.24	1	0.0509	1.1401	1.371	0.0544	2.2921	2.983
30.48	16.524	45.72	2	0.4408	4.9346	5.934	0.4507	9.7521	12.616
30.48	16.524	76.2	3	0.6189	6.9287	8.332	0.5377	12.8872	16.304
45.72	24.787	121.92	4	0.9416	7.0276	8.451	0.7875	12.8988	16.235
30.48	16.524	152.4	5	0.5858	6.5586	7.887	0.5240	12.3268	15.657
45.72	24.787	198.12	6	0,7949	5.9333	7.135	0.7982	11.6434	15.025
45.72	24.787	243.84	7	0.7096	5.2963	6.369	0.7991	10.8825	14.268
45.72	24.787	289.56	8	0.6306	4.7067	5.66	0.7696	10.0067	13.267
64.11	34.756	353.67	9	0.6138	3.2672	3.929	0.8060	7.1757	9.611
15.24	8.262	368.91	10	0.0453	1.0137	1.219	0.0601	2.2372	3.001
Averages:				5.4322	5.0	6.04	5.5872	10.0	12.89
from dictionary=	1 ton	1016 kg	200kg=0.1968	341		Note for 000-00C-	MGR0-00200-000-	00A: Use of 1016 kg	(long ton) instead

1000 kg (metric tonne) is the main cause of the discrepancy in burnups

10

11

12

13

71.6

73.6

76

78.2

semply power used to						1000 kg (meanc	torney is the main car	use of the disoreputor	
one node calcs:	3.468	0.001	200kg=0.196	6841 0.196	850394	discussed in Sec	tion 6.6.		
			Average						
			bumups						
	EFPD used for calculated	EFPD from Quad Cities	assemblies				Burnup calculated		
Data point	burnups shown above	data	need to see	EFPD for one node mo	odel	Cycle	from C3 data	Desired burnups	
4	185	222.47	10	567.6		4	6.04		6
5	140	245.01	20	1135.2		5	12.9	10	
6	180.3	180.3	30	1702.8		6	17.8		
7	80	303.9	40	2270.4		7	26.3	20	
8	142.2	142.2	50	2838.0		8	29.6		
9	15	121.5	60	3405.6		9	32.3	30	
10	10.1	10.1	70	3973.1		10	32.5		
11	102.84	102.84	75	4256.9		11	34.5		
12	111.46	111.46				12	36.9		
13	100.33	100.33				13	39.1		
	sum:	1540.11		Pa	ass 2	4	45.14	40	
			**	see pass 2 worksheet		5	52	50	· 4
				•		6	56.9		
		•				7	65.4	60	
						8	68.7		
						9	71.4	70	

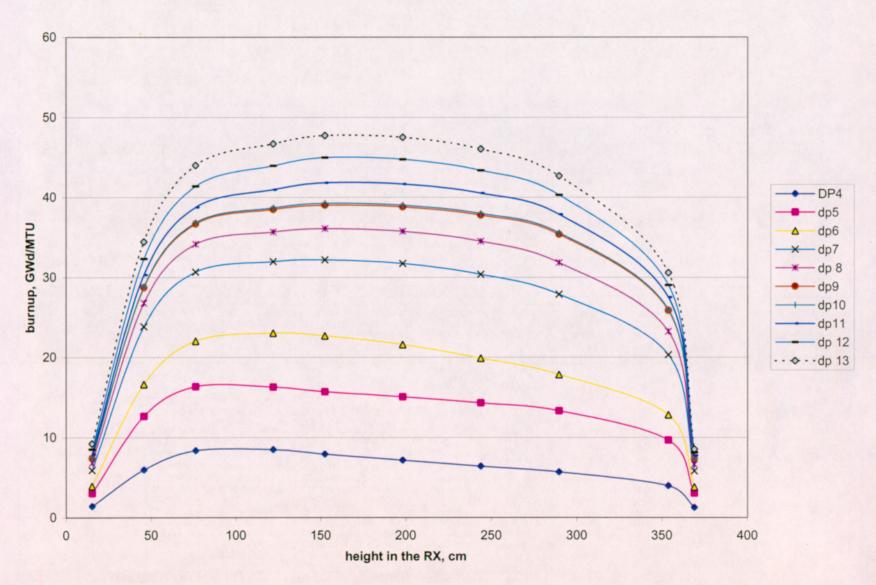
		Data point 6			Data point 7			Data point 8			Data point 9
		Burnup		Calculated	Burnup			Burner		0.1	_
MW per node	Calculated burnup	(GWd/MTU)			•		a	Burnup		Calculated	Burnup
			MW per node	burnup	(GWd/MTU)	MW per node	Calculated burnup	(GWd/MTU)	MW per node	bumup	(GWd/MTU)
0.0430	3.9220	3.922	0.0537	4.4422	5.898	0.0516	6.7860	6.786	0.0398	6.8583	7.372
0.3674	16.6250	16.625	0.3926	18.5256	23.845	0.3372	26.7470	26.747	0.2638	26.9865	28.687
0.5229	22.0090	22.009	0.4694	24.2816	30.642	0.4018	34.1000	34.1	0.3464	34.4144	36.647
0.9334	23.0250	23.025	0.7275	25.3731	31.945	0.6409	35.6220	35.622	0.5769	35.9711	38.45
0.6440	22.6840	22.684	0.5160	25.1819	32.173	0.4490	36.0370	36.037	0.4016	36.4016	38.99
0.9011	21.5800	21.58	0.8254	24.2440	31.7	0.6995	35.7130	35.713	0.6202	36.0883	38.753
0.7722	19.8850	19.885	0.8533	22.6391	30.347	0.7173	34.4620	34.462	0.6651	34.8645	37.722
0.6261	17.8210	17.821	0.8177	20.4600	27.846	0.6878	31,7920	31.792	0.7220	32.2289	35.331
0.6169	12.8110	12.811	0.8570	14.7835	20.304	0.7066	23,1950	23,195	0.7481	23.5178	25.81
0.0372	3.8120	3.812	0.0539	4.3335	5.793	0.0456	6.5780	6.578	0.0489	6.6668	7.297
5.4642	17.8	17.81	5.5664	20.0	26.27	4.7374	29.6	29.64	4.3929	30.0	32.33

		Data point 10			Data point 11			Data point 12			Data point 13
	Calculated	Burnup		Calculated	Burnup		Calculated	Burnup			Burnup
MW per node	burnup	(GWd/MTU)	MW per node	bumup	(GWd/MTU)	MW per node	burnup	(GWd/MTU)	MW per node	Calculated burnup	(GWd/MTU)
0.0352	7.4150	7.415	0.0370	7.8750	7.875	0.0471	8.5100	8.51	0.0575	9.2080	9.208
0.2274	28.8260	28.826	0.2356	30.2920	30.292	0.2978	32.3010	32.301	0.3506	34.4300	34.43
0.2978	36.8290	36.829	0.3067	38.7380	38.738	0.3902	41.3700	41.37	0.4318	43.9920	43.992
0.5375	38.6690	38.669	0.5488	40.9460	40.946	0.6671	43.9460	43.946	0.6732	46.6710	46.671
0.4057	39.2380	39.238	0.4125	41.8050	41.805	0.4666	44.9520	44.952	0.4546	47.7120	47.712
0.6258	39.0080	39.008	0.6353	41.6440	41.644	0.6878	44.7370	44.737	0.6831	47.5020	47.502
0.5988	37.9660	37.966	0.6129	40.5090	40.509	0.6347	43.3630	43.363	0.6611	46.0390	46.039
0.5448	35.5530	35.553	0.5531	37.8480	37.848	0.5406	40.2790	40.279	0.5880	42.6590	42.659
0.5127	25.9590	25.959	0.5140	27.4800	27.48	0.4771	29.0100	29.01	0.5363	30.5580	30.558
0.0311	7.3350	7.335	0.0309	7.7200	7.72	0.0290	8.1110	8.111	0.0337	8.5200	8.52
3.7816	32.5	32.53	3.8869	34.5	34.52	4,2380	36.9	36.89	4.4699	39.1	39.13

ł

Determination of burn histories for long burns Thermal Hydraulic information for assembly C3

	BURNUPS FOR 2nd PASS				Data point 4			Data point 5	
	node mass- determined by			1					
	height*mass U per cm				Calculated	Burnup			
	height	height in the reactor	Node	MW per node	burnup	(GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU
15.2400	8.2622	15.24	1.0000	0.0509	39.3034	1.371	0.0544	41.6224	2.983
30.4800	16.5244	45.72	2.0000	0.4408	39.9802	5.934	0.4507	49.8067	12.616
30.4800	16.5244	76.2	3.0000	0.6189	40.3359	8.332	0.5377	53.1261	16.304
45.7200	24.7865	121.92	4.0000	0.9416	40.3536	8.451	0.7875	53.1108	16.235
30.4800	16.5244	152.4	5.0000	0.5858	40.2699	7.887	0.5240	52.5368	15.657
45.7200	24.7865	198.12	6.0000	0.7949	40.1584	7.135	0.7982	51.8705	15.025
45.7200	24.7865	243.84	7.0000	0.7096	40.0447	6.369	0.7991	51.1109	14.268
45.7200	24.7865	289.56	8.0000	0.6306	39.9396	5.66	0.7696	50,1933	13.267
64.1100	34.7564	353.67	9.0000	0.6138	39.6828	3.929	0.8060	47.0874	9.611
15.2400	8.2622	368.91	10.0000	0.0453	39.2808	1.219	0.0601	41.5918	3.001
Averages:				5.4322	40.0	6.04	5.5872	50.0	12.89
from dictionary=	1 ton	1000kg	200kg=0.196841						
Assembly power used for			-	Note for 000-000	C-MGR0-00200-	000-00A: Use of :	1016 ka (lona ton) i	nstead of 1000 kg (m	etric tonne) is the
one node calcs:	3.468	0.001	200kg=0.196841	main cause of th	e discrepancy in	burnups discusse	d in Section 6.6.		
	EFPD used for calculated		Average burnups	EFPD for one					
Data point	burnup	ORIGINALEFPD	assemblies need to see	node model		Cycle	Burnup	Desired burnups	
4	33	222.47	10	567.6		4	6.04		6.04
5	175	245.01	20	1135.2		5	12.9	10	6.86
6	180.3	180.3	30	1702.8		6	17.8		
									4.9
7	110	303.9	40	2270.4		7		20	4.9 8.5
7 8				2270.4 2838.0		7 8	26.3 29.6	20	8.5
7 8 9	110 142.2 55	303.9	40			7	26.3 29.6		8.5 3.3
10	110 142.2	303.9 142.2	40 50	2838.0		7 8	26.3	20 30	8.5 3.3 2.7
10 11	110 142.2 55 10.1 102.84	303.9 142.2 121.5	40 50 60	2838.0 3405.6	·	7 8 9	26.3 29.6 32.3		8.5 3.3 2.7 0.2
10 11 12	110 142.2 55 10.1	303.9 142.2 121.5 10.1	40 50 60 70	2838.0 3405.6 3973.1	·	7 8 9 10	26.3 29.6 32.3 32.5		8.5 3.3 2.7 0.2 2
10 11	110 142.2 55 10.1 102.84	303.9 142.2 121.5 10.1 102.84	40 50 60 70	2838.0 3405.6 3973.1		7 8 9 10 11	26.3 29.6 32.3 32.5 34.5		8.5 3.3 2.7 0.2 2 2.4
10 11 12	110 142.2 55 10.1 102.84 65	303.9 142.2 121.5 10.1 102.84 111.46	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12	26.3 29.6 32.3 32.5 34.5 36.9		8.5 3.3 2.7 0.2 2
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13	26.3 29.6 32.3 32.5 34.5 36.9 39.1	30	8.5 3.3 2.7 0.2 2 2.4 2.2
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4	26.3 29.6 32.3 32.5 34.5 36.9 39.1 45.14	30	8.5 3.3 2.7 0.2 2 2.4 2.4 2.2 0.9
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4 5	26.3 29.6 32.3 32.5 34.5 36.9 39.1 45.14 52	30	8.5 3.3 2.7 0.2 2 2.4 2.4 2.2 0.9
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4 5	26.3 29.6 32.3 32.5 34.5 36.9 <u>39.1</u> 45.14 52 56.9	30 40 50	8.5 3.3 2.7 0.2 2 2.4 2.2 0.9 4.86
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4 5	26.3 29.6 32.3 32.5 34.5 36.9 <u>39.1</u> 45.14 52 56.9 65.4	30 40 50	8.5 3.3 2.7 0.2 2 2.4 2.2 0.9 4.86
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2 -	7 8 9 10 11 12 13 4 5 6 7 8	26.3 29.6 32.3 34.5 36.9 39.1 45.14 52 56.9 65.4 68.7	30 40 50 60	8.5 3.3 2.7 0.2 2 2.4 2.2 0.9 4.86 3.1
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4 5 6 7 8 9	26.3 29.6 32.3 34.5 36.9 <u>39.1</u> 45.14 52 56.9 65.4 68.7 71.4	30 40 50 60	8.5 3.3 2.7 0.2 2 2.4 2.2 0.9 4.86 3.1
10 11 12	110 142.2 55 10.1 102.84 65 100.33	303.9 142.2 121.5 10.1 102.84 111.46 100.33	40 50 60 70	2838.0 3405.6 3973.1	Pass 2	7 8 9 10 11 12 13 4 5 6 7 8 9 10	26.3 29.6 32.3 32.5 34.5 36.9 <u>39.1</u> 45.14 52 56.9 65.4 68.7 71.4 71.6	30 40 50 60	8.5 3.3 2.7 0.2 2 2.4 2.2 0.9 4.86 3.1

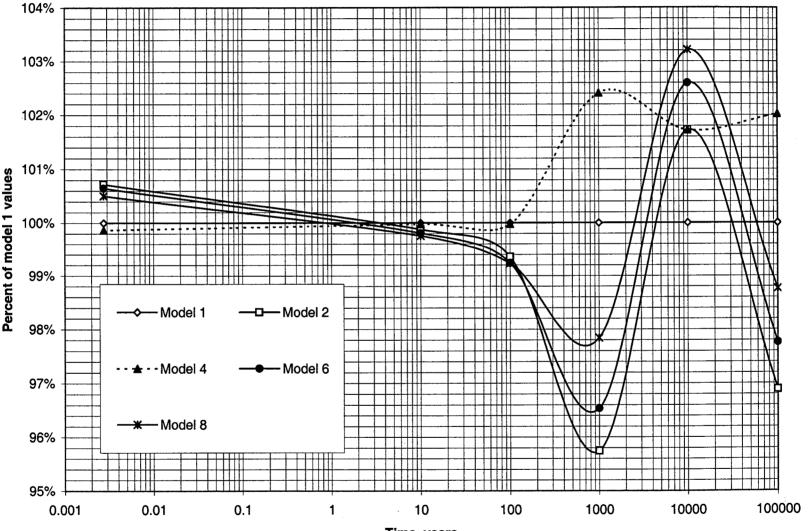

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

Data point 6			Data point 7			Data point 8			Data point 9		
MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated bumup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)
0.0430	43.0220	3.922	0.0537	43.7372	5.898	0.0516	45.8860	6.786	0.0398	46.1513	7.372
0.3674	55.7250	16.625	0.3926	58.3384	23.845	0.3372	65.8470	26.747	0.2638	66.7252	28.687
0.5229	61.1090	22.009	0.4694	64.2338	30.642	0.4018	73.2000	34.1	0.3464	74.3530	36.647
0.9334	62.1250	23.025	0.7275	65.3537	31.945	0.6409	74.7220	35.622	0.5769	76.0022	38.45
0.6440	61.7840	22.684	0.5160	65.2186	32.173	0.4490	75.1370	36.037	0.4016	76.4737	38.99
0.9011	60.6800	21.58	0.8254	64.3430	31.7	0.6995	74.8130	35.713	0.6202	76.1891	38.753
0.7722	58.9850	19.885	0.8533	62.7718	30.347	0.7173	73.5620	34.462	0.6651	75.0377	37.722
0.6261	56.9210	17.821	0.8177	60.5497	27.846	0.6878	70.8920	31.792	0.7220	72.4940	35.331
0.6169	51.9110	12.811	0.8570	54.6232	20.304	0.7066	62.2950	23.195	0.7481	63.4787	25.81
0.0372	42.9120	3.812	0.0539	43.6290	5.793	0.0456	45.6780	6.578	0.0489	46.0035	7.297
5.4642	56.9	17.81	5.5664	60.0	26.27	4.7374	68.7	29.64	4.3929	70.0	32.33

.

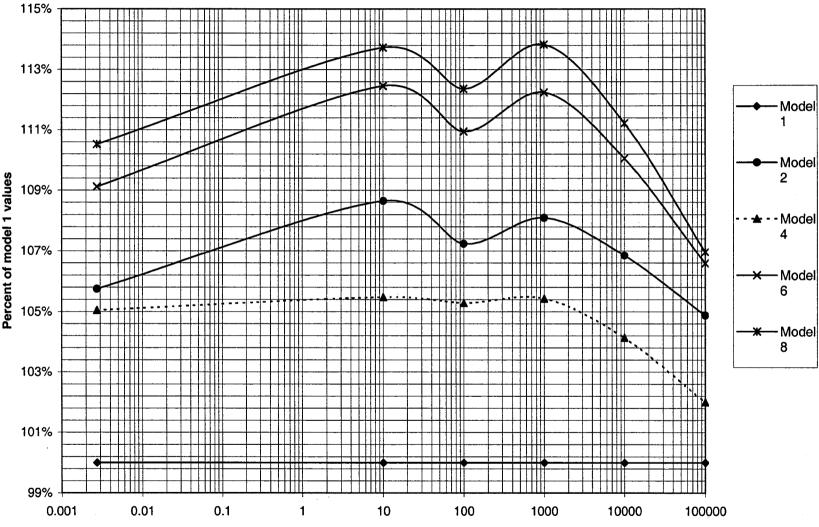
Data point 10			Data point 11			Data point 12			Data point 13		
MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)	MW per node	Calculated burnup	Burnup (GWd/MTU)
0.0352	46.5150	7.415	0.0370	46.9750	7.875	0.0471	47.3453	8.51	0.0575	9.2080	9.208
0.2274	67.9260	28.826	0.2356	69.3920	30.292	0.2978	70.5636	32.301	0.3506	34.4300	34.43
0.2978	75.9290	36.829	0.3067	77.8380	38.738	0.3902	79.3729	41.37	0.4318	43.9920	43.992
0.5375	77.7690	38.669	0.5488	80.0460	40.946	0.6671	81.7955	43.946	0.6732	46.6710	46.671
0.4057	78.3380	39.238	0.4125	80.9050	41.805	0.4666	82.7402	44.952	0.4546	47.7120	47.712
0.6258	78.1080	39.008	0.6353	80.7440	41.644	0.6878	82.5477	44.737	0.6831	47.5020	47.502
0.5988	77.0660	37.966	0.6129	79.6090	40.509	0.6347	81.2734	43.363	0.6611	46.0390	46.039
0.5448	74.6530	35.553	0.5531	76.9480	37.848	0.5406	78.3657	40.279	0.5880	42.6590	42.659
0.5127	65.0590	25.959	0.5140	66.5800	27.48	0.4771	67.4722	29.01	0.5363	30.5580	30.558
0.0311	46.4350	7.335	0.0309	46.8200	7.72	0.0290	47.0480	8.111	0.0337	8.5200	8.52
3.7816	71.6	32.53	3.8869	73.6	34.52	4.2380	75.0	36.89	4.4699	39.1	39.13

Worksheet 'burnup chart'

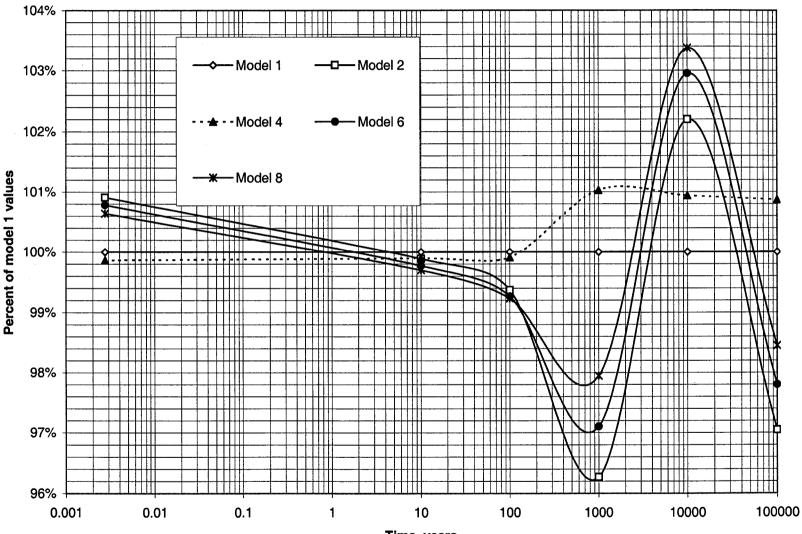


Burnup Profile for C3

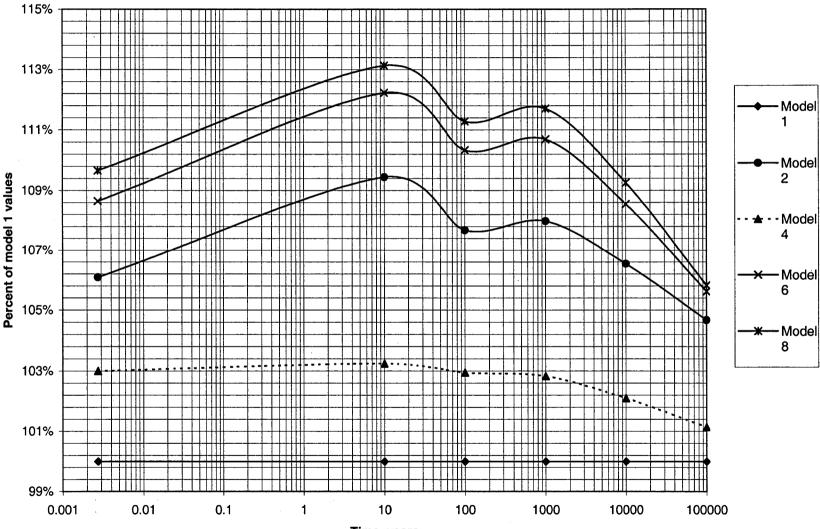
Worksheet 'total.report'


Density 1	time, years	model: 1	model: 2	model: 4	model: 6	model: 8	7	Percentages of	of model 1 values	;		
Gamma	0.002739726	2.3119E+16	2.3286E+16	2.3088E+16	2.3269E+16	2.3236E+16	0.00274	100%	101%	100%	101%	101%
	10	1.1393E+14	1.1379E+14	1.1390E+14	1.1371E+14	1.1365E+14	10	100%	100%	100%	100%	100%
	100	1.2421E+13	1.2341E+13	1.2418E+13	1.2327E+13	1.2326E+13	100	100%	99%	100%	99%	99%
	1000	2.6785E+11	2.5645E+11	2.7431E+11	2.5857E+11	2.6206E+11	1000	100%	96%	102%	97%	98%
	10000	3.5656E+10	3.6271E+10	3.6270E+10	3.6582E+10	3.6802E+10	10000	100%	102%	102%	103%	103%
	100000	5.6873E+09	5.5105E+09	5.8024E+09	5.5600E+09	5.6169E+09	100000	100%	97%	102%	98%	99%
Neutron	1	2.5560E+07	2.7030E+07	2.6850E+07	2.7890E+07	2.8250E+07	0.00274	100%	106%	105%	109%	111%
	10	1.2600E+07	1.3690E+07	1.3290E+07	1.4170E+07	1.4330E+07	10	100%	109%	105%	112%	114%
	100	6.8500E+05	7.3460E+05	7.2120E+05	7.6000E+05	7.6970E+05	100	100%	107%	105%	111%	112%
	1000	2.0250E+05	2.1890E+05	2.1350E+05	2.2730E+05	2.3050E+05	1000	100%	108%	105%	112%	114%
	10000	7.8580E+04	8.3960E+04	8.1830E+04	8.6480E+04	8.7400E+04	10000	100%	107%	104%	110%	111%
	100000	2.4000E+04	2.5170E+04	2.4480E+04	2.5580E+04	2.5670E+04	100000	100%	105%	102%	107%	107%
Density 2		model: 1	model : 2	model: 4	model: 6	model: 8	100000	10070	100 10			
Gamma	0.002739726	2.3331E+16	2.3543E+16	2.3299E+16	2.3514E+16	2.3481E+16	0.00274	100%	101%	100%	101%	101%
	10	1.1359E+14	1.1346E+14	1.1347E+14	1.1333E+14	1.1325E+14	10	100%	100%	100%	100%	100%
	100	1.2357E+13	1.2279E+13	1.2346E+13	1.2266E+13	1.2262E+13	100	100%	99%	100%	99%	99%
	1000	2.3810E+11	2.2922E+11	2.4055E+11	2.3120E+11	2.3321E+11	1000	100%	96%	101%	97%	98%
	10000	3.3733E+10	3.4474E+10	3.4050E+10	3.4729E+10	3.4871E+10	10000	100%	102%	101%	103%	103%
	100000	5.1999E+09	5.0462E+09	5.2451E+09	5.0855E+09	5.1191E+09	100000	100%	97%	101%	98%	98%
Neutron	0.002739726	2.2670E+07	2.4050E+07	2.3350E+07	2.4630E+07	2.4860E+07	0.00274	100%	106%	103%	109%	110%
(Goli on	10	1.1120E+07	1.2170E+07	1.1480E+07	1.2480E+07	1.2580E+07	10	100%	109%	103%	112%	113%
	100	6.0080E+05	6.4690E+05	6.1850E+05	6.6290E+05	6.6860E+05	100	100%	108%	103%	110%	111%
	1000	1.7680E+05	1.9090E+05	1.8180E+05	1.9570E+05	1.9750E+05	1000	100%	108%	103%	111%	112%
	10000	7.1960E+04	7.6670E+04	7.3470E+04	7.8110E+04	7.8620E+04	10000	100%	107%	102%	109%	109%
	100000	2.4380E+04	2.5520E+04	2.4660E+04	2.5750E+04	2.5800E+04	100000	100%	105%	101%	105%	105%
Density 3	100000	model: 1	model : 2	model: 4	model: 6	model: 8	100000	10070	10570	10170	10078	10078
Gamma	0.002739726	2.3198E+16	2.3280E+16	2.3267E+16	2.3301E+16	2.3296E+16	0.00274	100%	100%	100%	100%	100%
	10	1.1489E+14	1.1475E+14	1.1530E+14	1.1489E+14	1.1491E+14	10	100%	100%	100%	100%	100%
	100	1.2511E+13	1.2433E+13	1.2540E+13	1.2423E+13	1.2429E+13	100	100%	99%	100%	99%	99%
	1000	3.0765E+11	2.9505E+11	3.2571E+11	2.9852E+11	3.0485E+11	1000	100%	96%	106%	97%	99%
	10000	3.7919E+10	3.8410E+10	3.8995E+10	3.8731E+10	3.9052E+10	10000	100%	101%	103%	102%	103%
	100000	6.3520E+09	6.1696E+09	6.6753E+09	6.2712E+09	6.3759E+09	100000	100%	97%	105%	99%	100%
Neutron	0.002739726	2.9720E+07	3.1480E+07	3.2250E+07	3.2900E+07	3.3470E+07	0.00274	100%	106%	109%	111%	113%
10200/	10	1.4900E+07	1.6090E+07	1.6240E+07	1.6900E+07	1.7170E+07	10	100%	108%	109%	113%	115%
	100	8.1720E+05	8.7550E+05	8.9590E+05	9.2450E+05	9.4190E+05	100	100%	107%	110%	113%	115%
	1000	2.4530E+05	2.6690E+05	2.7240E+05	2.8620E+05	2.9260E+05	1000	100%	109%	111%	117%	119%
	10000	9.0020E+04	9.6940E+04	9.7880E+04	1.0260E+05	1.0450E+05	10000	100%	108%	109%	114%	116%
	100000	2.3560E+04	2.4940E+04	2.4540E+04	2.5740E+04	2.5940E+04	100000	100%	106%	104%	109%	110%
Density 4		model: 1	model : 2	model: 4	model: 6	model: 8	1					
Gamma	0.002739726	2.3189E+16	2.3339E+16	2.3173E+16	2.3325E+16	2.3297E+16	0.00274	100%	101%	100%	101%	100%
	10	1.1410E+14	1.1396E+14	1.1411E+14	1.1390E+14	1.1385E+14	10	100%	100%	100%	100%	100%
	100	1.2440E+13	1.2359E+13	1.2440E+13	1.2345E+13	1.2345E+13	100	100%	99%	100%	99%	99%
	1000	2.7428E+11	2.6263E+11	2.8176E+11	2.6487E+11	2.6864E+11	1000	100%	96%	103%	97%	98%
	10000	3.6092E+10	3.6701E+10	3.6748E+10	3.7009E+10	3.7239E+10	10000	100%	102%	102%	103%	103%
ł	100000	5.7740E+09	5.5953E+09	5.9044E+09	5.6482E+09	5.7091E+09	100000	100%	97%	102%	98%	99%
Neutron	0.002739726	2.6020E+07	2.7520E+07	2.7430E+07	2.8440E+07	2.8820E+07	0.00274	100%	106%	105%	109%	111%
110001011	10	1.2880E+07	1.3990E+07	1.3640E+07	1.4500E+07	1.4670E+07	10	100%	109%	106%	113%	114%
	100	6.9910E+05	7.4950E+05	7.3900E+05	7.7680E+05	7.8730E+05	100	100%	107%	106%	111%	113%
	1000	2.0570E+05	2.2250E+05	2.1780E+05	2.3160E+05	2.3510E+05	1000	100%	108%	106%	113%	114%
	10000	7.9320E+04	8.4810E+04	8.2860E+04	8.7540E+04	8.8530E+04	10000	100%	107%	104%	110%	112%
	100000	2.3870E+04	2.5050E+04	2.4370E+04	2.5490E+04	2.5580E+04	100000	100%	105%	104%	107%	107%
	100000	2.30/05/04	2.000000704	2.43/00-104	2.04900-104	2.00000704	1,100000	1 10076	10376	10276	107%	107%

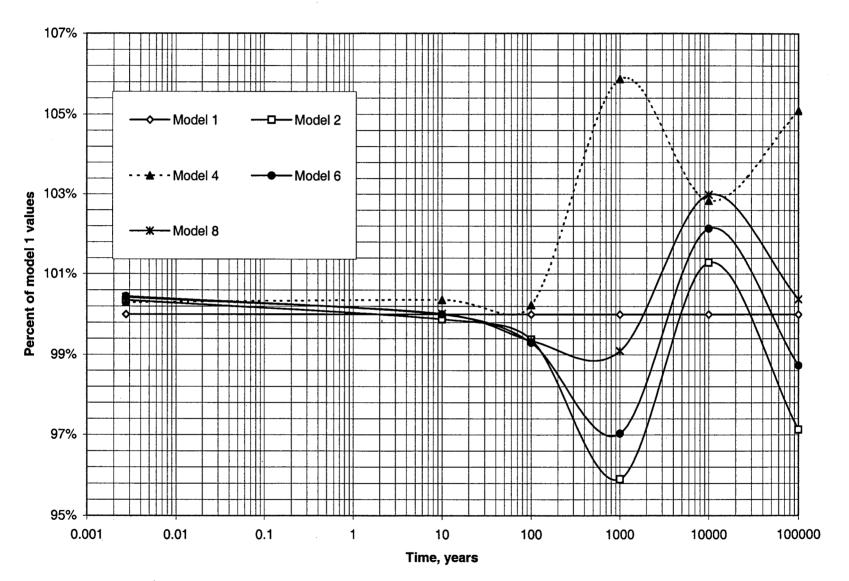
Density 1	time, years	model: 1	model : 2	model: 4	model: 6	model: 8	T 1, 224 5.77		·	a spanne		
Gamma	0.002739726	2.3119E+16	2.3286E+16	2.3088E+16	2.3269E+16	2.3236E+16	0.00274	n in in the second in the same in		An Charlense and	na hin ann n	a a la la agradamenta
	10	1.1393E+14	1.1379E+14	1.1390E+14	1.1371E+14	1.1365E+14	10					
	100	1.2421E+13	1.2341E+13	1.2418E+13	1.2327E+13	1.2326E+13	100					
	1000	2.6785E+11	2.5645E+11	2.7431E+11	2.5857E+11	2.6206E+11	1000					
	10000	3.5656E+10	3.6271E+10	3.6270E+10	3.6582E+10	3.6802E+10	10000					
	100000	5.6873E+09	5.5105E+09	5.8024E+09	5.5600E+09	5.6169E+09	100000					
Neutron	1	2.5560E+07	2.7030E+07	2.6850E+07	2.7890E+07	2.8250E+07	0.00274				-	
	10	1.2600E+07	1.3690E+07	1.3290E+07	1.4170E+07	1.4330E+07	10					
	100	6.8500E+05	7.3460E+05	7.2120E+05	7.6000E+05	7.6970E+05	100					
	1000	2.0250E+05	2.1890E+05	2.1350E+05	2.2730E+05	2.3050E+05	1000					
	10000	7.8580E+04	8.3960E+04	8.1830E+04	8.6480E+04	8.7400E+04	10000					
	100000	2.4000E+04	2.5170E+04	2.4480E+04	2.5580E+04	2.5670E+04	100000					
Dénsity 2	and the second state	model: 1			model: 6	model: 8	and the features	Percentage of c	lensity 1 values	a de la tradição de la compositiva	网络科学学会 机合	per la la se
Gamma	0.002739726	2.3331E+16	2.3543E+16	2.3299E+16	2.3514E+16	2.3481E+16	0.00274	101%	101%	101%	101%	101%
	10	1.1359E+14	1.1346E+14	1.1347E+14	1.1333E+14	1.1325E+14	10	100%	100%	100%	100%	100%
	100	1.2357E+13	1.2279E+13	1.2346E+13	1.2266E+13	1.2262E+13	100	99%	99%	99%	100%	99%
	1000	2.3810E+11	2.2922E+11	2.4055E+11	2.3120E+11	2.3321E+11	1000	89%	89%	88%	89%	89%
	10000	3.3733E+10	3.4474E+10	3.4050E+10	3.4729E+10	3.4871E+10	10000	95%	95%	94%	95%	95%
	100000	5.1999E+09	5.0462E+09	5.2451E+09	5.0855E+09	5.1191E+09	100000	91%	92%	90%	91%	91%
Neutron	0.002739726	2.2670E+07	2.4050E+07	2.3350E+07	2.4630E+07	2.4860E+07	0.00274	89%	89%	87%	88%	88%
	10	1.1120E+07	1.2170E+07	1.1480E+07	1.2480E+07	1.2580E+07	10	88%	89%	86%	88%	88%
	100	6.0080E+05	6.4690E+05	6.1850E+05	6.6290E+05	6.6860E+05	100	88%	88%	86%	87%	87%
	1000	1.7680E+05	1.9090E+05	1.8180E+05	1.9570E+05	1.9750E+05	1000	87%	87%	85%	86%	86%
	10000	7.1960E+04	7.6670E+04	7.3470E+04	7.8110E+04	7.8620E+04	10000	92%	91%	90%	90%	90%
	100000	2.4380E+04	2.5520E+04	2.4660E+04	2.5750E+04	2.5800E+04	100000	102%	101%	101%	101%	101%
Density 3	بالأفا فاستحقوه بالمراجع	model: 1988	model : 2 K	model: 4	model: 6	model: 8	Same and the	and the second sec	s den se Mass	an an sharan an san san san san san san san san sa	n a sa sa sa sa	લા તેમ નિવસ્થિત (૧૯
Gamma	0.002739726	2.3198E+16	2.3280E+16	2.3267E+16	2.3301E+16	2.3296E+16	0.00274	100%	100%	101%	100%	100%
	10	1.1489E+14	1.1475E+14	1.1530E+14	1.1489E+14	1.1491E+14	10	101%	101%	101%	101%	101%
	100	1.2511E+13	1.2433E+13	1.2540E+13	1.2423E+13	1.2429E+13	100	101%	101%	101%	101%	101%
	1000	3.0765E+11	2.9505E+11	3.2571E+11	2.9852E+11	3.0485E+11	1000	115%	115%	119%	115%	116%
	10000	3.7919E+10	3.8410E+10	3.8995E+10	3.8731E+10	3.9052E+10	10000	106%	106%	108%	106%	106%
	100000	6.3520E+09	6.1696E+09	6.6753E+09	6.2712E+09	6.3759E+09	100000	112%	112%	115%	113%	114%
Neutron	0.002739726	2.9720E+07	3.1480E+07	3.2250E+07	3.2900E+07	3.3470E+07	1.0 Martin	116%	116%	120%	118%	118%
	10	1.4900E+07	1.6090E+07	1.6240E+07	1.6900E+07	1.7170E+07		118%	118%	122%	119%	120%
	100	8.1720E+05	8.7550E+05	8.9590E+05	9.2450E+05	9.4190E+05		119%	119%	124%	122%	122%
	1000	2.4530E+05	2.6690E+05	. 2.7240E+05	2.8620E+05	2.9260E+05		121%	122%	128%	126%	127%
	10000	9.0020E+04	9.6940E+04	9.7880E+04	1.0260E+05	1.0450E+05	THE NOTING	115%	115%	120%	119%	120%
	100000	2.3560E+04	2.4940E+04	2.4540E+04	2.5740E+04	2.5940E+04		98%	99%	100%	101%	101%
Density 4	the second se	teste model: 1 , 5%	a in 1977, which was an a start of the start	en in Saadh an Shineya awaa adda ah	model: 6	model: 8		general de la composición de		V 방안되는 유민이 가지? 	n sel la literit page	Notes de la company
Gamma	0.002739726	2.3189E+16	2.3339E+16	2.3173E+16	2.3325E+16	2.3297E+16	0.00274	100%	100%	100%	100%	100%
	10	1.1410E+14	1.1396E+14	1.1411E+14	1.1390E+14	1.1385E+14	10 C	100%	100%	100%	100%	100%
	100	1.2440E+13	1.2359E+13	1.2440E+13	1.2345E+13	1.2345E+13	10 0	100%	100%	100%	100%	100%
	1000	2.7428E+11	2.6263E+11	2.8176E+11	2.6487E+11	2.6864E+11	1000	102%	102%	103%	102%	103%
	10000	3.6092E+10	3.6701E+10	3.6748E+10	3.7009E+10	3.7239E+10	10000	101%	101%	101%	101%	101%
	100000	5.7740E+09	5.5953E+09	5.9044E+09	5.6482E+09	5.7091E+09	100000	102%	102%	102%	102%	102%
Neutron	0.002739726	2.6020E+07	2.7520E+07	2.7430E+07	2.8440E+07	2.8820E+07	0.00274	102%	102%	102%	102%	102%
	10	1.2880E+07	1.3990E+07	1.3640E+07	1.4500E+07	1.4670E+07	10	102%	102%	103%	102%	102%
	100	6.9910E+05	7.4950E+05	7.3900E+05	7.7680E+05	7.8730E+05	100	102%	102%	102%	102%	102%
	1000	2.0570E+05	2.2250E+05	2.1780E+05	2.3160E+05	2.3510E+05	1000	102%	102%	102%	102%	102%
	10000	7.9320E+04	8.4810E+04	8.2860E+04	8.7540E+04	8.8530E+04	10000	101%	101%	101%	101%	101%
	100000	2.3870E+04	2.5050E+04	2.4370E+04	2.5490E+04	2.5580E+04	100000	99%	100%	100%	100%	100%



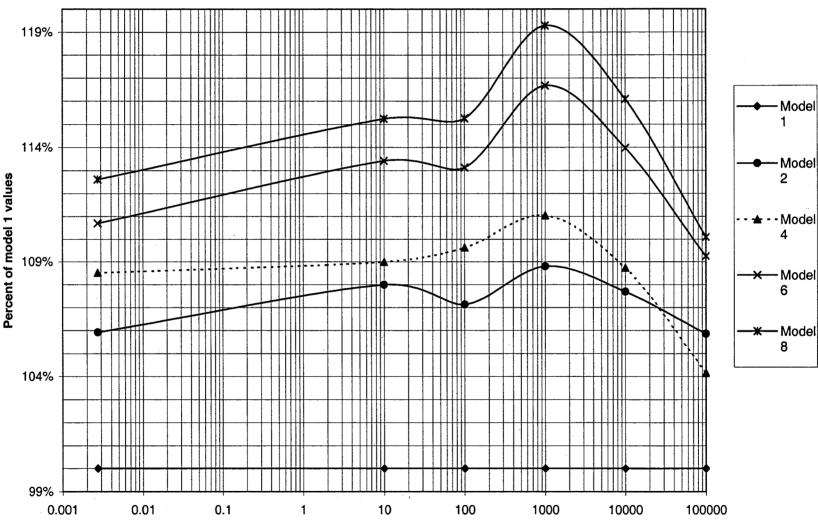
Density 1: Percent of model 1 values for gamma sources


Worksheet 'Den1.%of mod1.g'

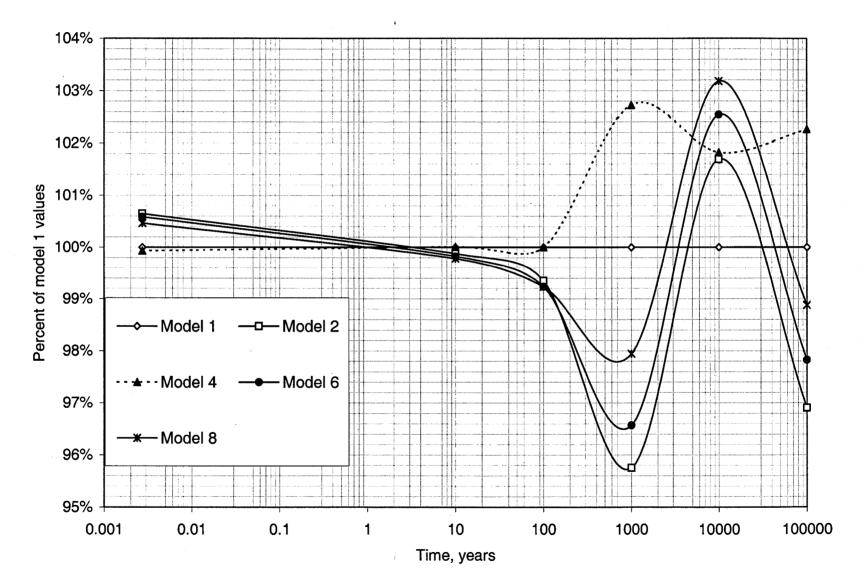
Density 1: Percent of model 1 values for neutron sources



Density 2: Percent of model 1 values for gamma sources

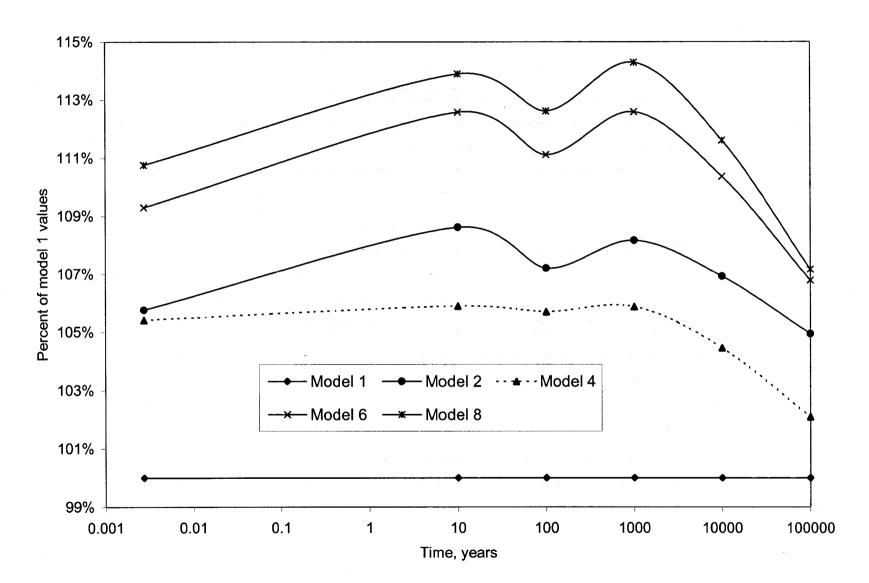

Density 2: Percent of model 1 values for neutron sources

Worksheet 'den2.%mod1n'



Density 3: Percent of model 1 values for gamma sources

Worksheet 'den3.%mod1n'



Density 3: Percent of model 1 values for neutron sources

Density 4: Percent of model 1 values for gamma sources

Worksheet 'den4.%mod1n'

Density 4: Percent of model 1 values for neutron sources

.

Rod OD	1.07696	cm
Water rod OD (rod pitch)	1.45288	
# of Rods	79	(2 Water rods)
Rod Length	416.1536	cm
Channel ID	13.4112	cm
Channel OD	13.8176	
Channel Length	447.548	cm
Water rod outside area+ inside area (estimated from rod pitch	8171.075627	,
rod pitch* PI * 4; WR inside and outside diameters conservatively ap (Data from ANF 9x9 JP-4.5 assembly	proximated as fuel	rod pitcl
BWR Assembly Surf. Area	168147.97	cm^2
WR Assembly Surf. Area Rod surface + channel inner surface + WR's inside and outside surf		cm^2

			-	
Crud per unit area				
Co-60	1.25E-03	Ci/cm^2	1	
(from SAND88-1358, Ref. 7.11, p. 15)				
NRC recommended value:	1.25E-03	Ci/cm^2		
From Jones report, Table 2, p. 7				
Cr 51	3.50E-05	Ci/cm^2		
Mn 54	1.72E-04	Ci/cm^2		
Fe 55	7.42E-03	Ci/cm^2		
Co 58	4.50E-05	Ci/cm^2		
Fe 59	7.20E-05	Ci/cm^2		
Co 60	4.77E-04	Ci/cm^2		
Ni 63	0.00E+00	Ci/cm^2		
Zn 65	7.30E-05	Ci/cm^2		
Zr 95	5.80E-05	Ci/cm^2		
Half Life information (Ref. 7.23, pp. 24, 25, 28				
Cr 51	27.70	days	0.0758	years
Mn 54	312.10	days	0.8545	years
Fe 55	2.73	years	2.7300	years
Co 58	70.88	days	0.1941	years
Fe 59	44.51	days	0.1219	years
Co 60	5.27	years	5.2710	years
Ni 63	100.00	years	100.00	years
Zn 65	243.80	days	0.6675	years
Zr 95	64.02	days	0.1753	years

	Crud (Ci) for regular assembly,	Crud (Ci) for regular assembly, using
Fuel Age, years since	using SAND88-1358 Co 60 value	NRC Co 60 values (Ref. 7.10, Table
reactor discharge	(Ref. 7.11, p.15)	9.2)
0	210.18	210.86
5	108.91	109.25
6	95.49	95.79
7	83.72	83.99
8	73.40	73.64
.9	64.36	64.56
10	56.43	56.61
11	49.47	49.63
15	29.24	29.33
20	15.15	15.20
25	7.85	7.87
30	4.07	4.08
35	2.11	2.11
40	1.09	1.10
45	0.57	0.57
50.	0.29	0.29
55	0.15	0.15
60	0.08	0.08
65	0.04	0.04
70	0.02	0.02
75	0.01	0.01
80	0.01	0.01
85	0.00	0.00
90	0.00	0.00
95	0.00	0.00
100	0.00	0.00
200	0.00	0.00
300	0.00	0.00

Crud (Ci) for assembly, using Jones values (Ref. 7.12, Table 2)										
Fuel Age, years since reactor										
discharge	Cr 51	Mn 54	Fe 55	Co 58	Fe 59	Co 60	Ni 63	Zn 65	Zr 95	
0	5.89	28.92	1246.82	7.57	12.11	80.21	0.00	12.27	9.75	
5	0.00	0.50	350.32	0.00	0.00	41.56	0.00	0.07	0.00	
6	0.00	0.22	271.77	0.00	0.00	36.44	0.00	0.02	0.00	
7	0.00	0.10	210.83	0.00	0.00	31.95	0.00	0.01	0.00	
8	0.00	0.04	163.55	0.00	0.00	28.01	0.00	0.00	0.00	
9	0.00	0.02	126.88	0.00	0.00	24.56	0.00	0.00	0.00	
10	0.00	0.01	98.43	0.00	0.00	21.53	0.00	0.00	0.00	
11	0.00	0.00	76.36	0.00	0.00	18.88	0.00	0.00	0.00	
15	0.00	0.00	27.66	0.00	0.00	11.16	0.00	0.00	0.00	
20	0.00	0.00	7.77	0.00	0.00	5.78	0.00	0.00	0.00	
25	0.00	0.00	2.18	0.00	0.00	3.00	0.00	0.00	0.00	
30	0.00	0.00	0.61	0.00	0.00	1.55	0.00	0.00	0.00	
35	0.00	0.00	0.17	0.00	0.00	0.80	0.00	0.00	0.00	
40	0.00	0.00	0.05	0.00	0.00	0.42	0.00	0.00	0.00	
45	0.00	0.00	0.01	0.00	0.00	0.22	0.00	0.00	0.00	
50	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	
55	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	
60	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	
65	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	
70	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	
75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

,

ł

l

Worksheet 'all.burns.10node.gam.totals '

ł

		Raw 6 Node 1	Data 18 Node 2	30 Node 3	48 Node 4	60 Node 5	78 Node 6	96 Node 7	114 Node 8	139.24 Node 9	145.24 Node10
	Time, years	6	12	12	18	12	18	18	18	25.24	6
10 GWd/MTU	0.002739726	3.33E+15	2.09E+16	2.53E+16	3.77E+16	2.53E+16	3.86E+16	3.88E+16	3.75E+16	3.93E+16	3.81E+15
	5	4.94E+12	4.36E+13	5.85E+13	8.88E+13	5.70E+13	8.02E+13	7.53E+13	6.85E+13	6.79E+13	4.88E+12
	6	4.08E+12	3.66E+13	4.90E+13	7.43E+13	4.76E+13	6.69E+13	6.28E+13	5.71E+13	5.69E+13	4.00E+12
	7	3.63E+12	3.29E+13	4.37E+13	6.63E+13	4.24E+13	5.96E+13	5.59E+13	5.09E+13	5.10E+13	3.54E+12
	8	3.36E+12	3.06E+13	4.06E+13	6.13E+13	3.92E+13	5.52E+13	5.17E+13	4.71E+13	4.74E+13	3.27E+12
	9	3.18E+12	2.90E+13	3.84E+13	5.79E+13	3.71E+13	5.21E+13	4.88E+13	4.45E+13	4.49E+13	3.09E+12
	10	3.06E+12	2.78E+13	3.67E+13	5.54E+13	3.54E+13	4.98E+13	4.67E+13	4.26E+13	4.30E+13	2.96E+12
	11	2.95E+12	2.69E+13	3.54E+13	5.33E+13	3.41E+13	4.79E+13	4.49E+13	4.10E+13	4.15E+13	2.86E+12
	15	2.63E+12	2.39E+13	3.14E+13	4.72E+13	3.01E+13	4.24E+13	3.97E+13	3.64E+13	3.68E+13	2.55E+12
	20	2.32E+12	2.10E+13	2.76E+13	4.14E+13	2.64E+13	3.73E+13	3.49E+13	3.20E+13	3.24E+13	2.24E+12
		Raw	Data								
		6	18	30	48	60	78	96	114	139.24	145.24
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
									_		
	Time, years	6	12	12	18	12	18	18	18	25.24	6
20 GWd/MTU	0.002739726	3.28E+15	1.89E+16	2.40E+16	3.74E+16	2.67E+16	4.23E+16	4.32E+16	4.09E+16	4.21E+16	3.39E+15
	5	9.12E+12	8.11E+13	1.39E+14	1.77E+14	1.19E+14	1.71E+14	1.60E+14	1.41E+14	1.39E+14	8.97E+12
data for node 3	6	7.66E+12	6.93E+13	1.18E+14	1.49E+14	1.00E+14	1.44E+14	1.34E+14	1.19E+14	1.18E+14	7.50E+12
of this burn	7	6.84E+12	6.25E+13	1.06E+14	1.33E+14	8.89E+13	1.26E+14	1.19E+14	1.06E+14	1.06E+14	6.68E+12
is incorrect	8	6.33E+12	5.81E+13	9.72E+13	1.22E+14	8.16E+13	1.17E+14	1.09E+14	9.76E+13	9.81E+13	6.17E+12
(see	9	5.99E+12	5.50E+13	9.13E+13	1.15E+14	7.64E+13	1.10E+14	1.03E+14	9.17E+13	9.26E+13	5.82E+12
highlighted	10	5.73E+12	5.25E+13	8.67E+13	1.09E+14	7.25E+13	1.04E+14	9.74E+13	8.72E+13	8.84E+13	5.56E+12
information);	11	5.53E+12	5.05E+13	8.29E+13	1.04E+14	6.93E+13	9.96E+13	9.32E+13	8.36E+13	8.49E+13	5.36E+12
it is not used	15	4.91E+12	4.46E+13	7.24E+13	9.11E+13	6.04E+13	8.69E+13	8.13E+13	7.32E+13	7.47E+13	4.75E+12
for the comparison	20	4.32E+12 Raw	3.91E+13 Data	6.33E+13	7.96E+13	5.27E+13	7.59E+13	7.10E+13	6.41E+13	6.54E+13	4.18E+12
		6	18	30	48	60	78	96	114	139.24	145.24
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
	Time, years	6	12	12	18	12	18	18	18	25.24	6
30 GWd/MTU	0.002739726	2.64E+15	1.44E+16	1.89E+16	3.15E+16	2.22E+16	3.46E+16	3.66E+16	3.82E+16	3.86E+16	3.10E+15
	5	1.37E+13	1.17E+14	1.54E+14	2.48E+14	1.71E+14	2.56E+14	2.50E+14	2.27E+14	2.22E+14	1.34E+13
	6	1.16E+13	1.01E+14	1.32E+14	2.11E+14	1.45E+14	2.16E+14	2.11E+14	1.92E+14	1.90E+14	1.13E+13
	7	1.04E+13	9.09E+13	1.18E+14	1.88E+14	1.29E+14	1.92E+14	1.86E+14	1.70E+14	1.70E+14	1.01E+13
	8	9.58E+12	8.43E+13	1.09E+14	1.73E+14	1.18E+14	1.75E+14	1.70E+14	1.56E+14	1.57E+14	9.32E+12
	9	9.04E+12	7.95E+13	1.02E+14	1.61E+14	1.10E+14	1.63E+14	1.58E+14	1.45E+14	1.48E+14	8.78E+12
	10	8.63E+12	7.58E+13	9.67E+13	1.53E+14	1.04E+14	1.54E+14	1.49E+14	1.37E+14	1.40E+14	8.37E+12
	11	8.30E+12	7.27E+13	9.25E+13	1.46E+14	9.89E+13	1.47E+14	1.42E+14	1.31E+14	1.34E+14	8.04E+12
	15	7.34E+12	6.38E+13	8.06E+13	1.26E+14	8.55E+13	1.27E+14	1.23E+14	1.13E+14	1.17E+14	7.09E+12

Worksheet 'all.burns.10node.gam.totals '

		Raw	Data								
		6	18	30	48	60	78	96	114	139.24	145.24
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
	Time, years	6	12	12	18	12	18	18	18	25.24	6
40 GWd/MTU	0.002739726	3.22E+15	2.18E+16	3.17E+16	4.97E+16	3.18E+16	4.40E+16	3.97E+16	3.50E+16	3.24E+16	2.81E+15
	5	1.80E+13	1.49E+14	2.01E+14	3.30E+14	2.29E+14	3.41E+14	3.31E+14	3.00E+14	2.82E+14	1.63E+13
	6	1.54E+13	1.30E+14	1.73E+14	2.81E+14	1.95E+14	2.90E+14	2.81E+14	2.56E+14	2.45E+14	1.41E+13
	7	1.38E+13	1.17E+14	1.54E+14	2.50E+14	1.72E+14	2.56E+14	2.49E+14	2.27E+14	2.21E+14	1.27E+13
	8	1.28E+13	1.09E+14	1.41E+14	2.28E+14	1.57E+14	2.33E+14	2.27E+14	2.08E+14	2.04E+14	1.18E+13
	9	1.21E+13	1.02E+14	1.32E+14	2.12E+14	1.46E+14	2.16E+14	2.10E+14	1.93E+14	1.92E+14	1.11E+13
	10	1.15E+13	9.74E+13	1.25E+14	2.00E+14	1.37E+14	2.03E+14	1.98E+14	1.82E+14	1.82E+14	1.06E+13
	11	1.11E+13	9.33E+13	1.19E+14	1.90E+14	1.30E+14	1.93E+14	1.88E+14	1.73E+14	1.74E+14	1.02E+13
	15	9.75E+12	8.14E+13	1.03E+14	1.64E+14	1.11E+14	1.66E+14	1.61E+14	1.49E+14	1.51E+14	8.98E+12
	20	8.56E+12	7.11E+13	8.96E+13	1.42E+14	9.64E+13	1.43E+14	1.39E+14	1.29E+14	1.32E+14	7.88E+12
		Raw	Data								
		6	18	30	48	60	78	96	114	139.24	145.24
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
	Time, years	6	12	12	18	12	18	18	18	25.24	6
50 GWd/MTU	0.002739726	3.44E+15	2.44E+16	3.13E+16	4.68E+16	3.12E+16	4.73E+16	4.69E+16	4.45E+16	4.41E+16	3.83E+15
	5	2.21E+13	1.98E+14	2.71E+14	4.35E+14	2.95E+14	4.33E+14	4.17E+14	3.78E+14	3.56E+14	2.09E+13
	6	1.90E+13	1.71E+14	2.30E+14	3.67E+14	2.49E+14	3.65E+14	3.52E+14	3.21E+14	3.07E+14	1.79E+13
	7	1.70E+13	1.53E+14	2.02E+14	3.22E+14	2.18E+14	3.21E+14	3.10E+14	2.83E+14	2.76E+14	1.61E+13
	8	1.57E+13	1.40E+14	1.83E+14	2.91E+14	1.97E+14	2.90E+14	2.80E+14	2.57E+14	2.53E+14	1.48E+13
	9	1.48E+13	1.31E+14	1.70E+14	2.69E+14	1.82E+14	2.67E+14	2.58E+14	2.38E+14	2.37E+14	1.39E+13
	10	1.41E+13	1.24E+14	1.59E+14	2.51E+14	1.70E+14	2.50E+14	2.42E+14	2.23E+14	2.24E+14	1.33E+13
	11	1.35E+13	1.18E+14	1.51E+14	2.38E+14	1.60E+14	2.36E+14	2.29E+14	2.11E+14	2.13E+14	1.27E+13
	15	1.19E+13	1.02E+14	1.29E+14	2.02E+14	1.36E+14	2.01E+14	1.94E+14	1.80E+14	1.84E+14	1.12E+13
	20	1.04E+13	8.89E+13	1.12E+14	1.74E+14	1.17E+14	1.73E+14	1.67E+14	1.56E+14	1.60E+14	9.77E+12
		Raw	Data								
		6	18	30	48	60	78	96	114	139.24	145.24
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
	Time, years	6	12	12	18	12	18	18	18	25.24	6
60 GWd/MTU	0.002739726	3.40E+15	2.25E+16	2.93E+16	4.61E+16	3.26E+16	5.13E+16	5.20E+16	4.87E+16	4.79E+16	3.44E+15
	5	2.54E+13	2.37E+14	3.25E+14	5.28E+14	3.61E+14	5.31E+14	5.07E+14	4.54E+14	4.29E+14	2.42E+13
	6	2.19E+13	2.03E+14	2.74E+14	4.43E+14	3.03E+14	4.45E+14	4.26E+14	3.84E+14	3.69E+14	2.09E+13
	7	1.97E+13	1.81E+14	2.40E+14	3.86E+14	2.64E+14	3.88E+14	3.72E+14	3.37E+14	3.30E+14	1.88E+13
	8	1.83E+13	1.66E+14	2.16E+14	3.47E+14	2.36E+14	3.48E+14	3.34E+14	3.04E+14	3.02E+14	1.73E+13
	9	1.72E+13	1.54E+14	1.99E+14	3.18E+14	2.17E+14	3.19E+14	3.07E+14	2.80E+14	2.81E+14	1.63E+13
	10	1.63E+13	1.45E+14	1.86E+14	2.97E+14	2.02E+14	2.97E+14	2.86E+14	2.62E+14	2.65E+14	1.55E+13
	11	1.57E+13	1.38E+14	1.76E+14	2.79E+14	1.90E+14	2.79E+14	2.70E+14	2.47E+14	2.52E+14	1.48E+13
	15	1.37E+13	1.19E+14	1.49E+14	2.36E+14	1.59E+14	2.35E+14	2.27E+14	2.10E+14	2.17E+14	1.30E+13

Worksheet 'all.burns.10node.gam.totals '

Attachment VIII; Page VIII-3 of VIII-10

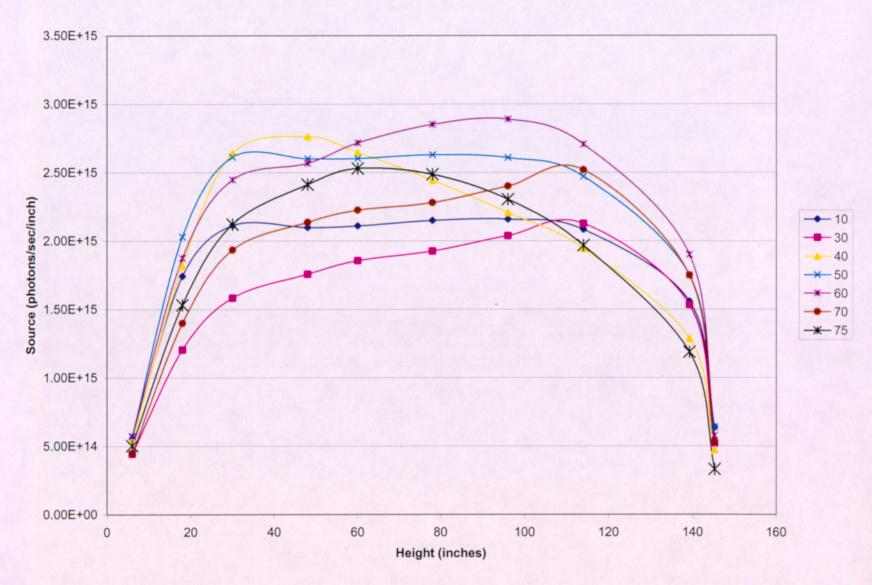
		Raw 6 Node 1	Data 18 Node 2	30 Node 3	48 Node 4	60 Node 5	78 Node 6	96 Node 7	114 Node 8	139.24 Node 9	145.24 Node10
70 00000000	Time, years	6	12	12	18	12	18	18	18	25.24	6
70 GWd/MTU	0.002739726	2.66E+15	1.67E+16	2.32E+16	3.84E+16	2.67E+16	4.10E+16	4.32E+16	4.53E+16	4.41E+16	3.17E+15
	5	2.93E+13	2.70E+14	3.62E+14	5.84E+14	4.03E+14	6.02E+14	5.88E+14	5.39E+14	5.16E+14	2.82E+13
	6 7	2.53E+13	2.32E+14	3.06E+14	4.92E+14	3.39E+14	5.05E+14	4.94E+14	4.54E+14	4.42E+14	2.43E+13 2.19E+13
	8	2.28E+13	2.06E+14	2.68E+14	4.30E+14	2.95E+14	4.40E+14	4.30E+14	3.97E+14	3.93E+14	2.02E+13
	8 9	2.11E+13 1.98E+13	1.88E+14 1.75E+14	2.41E+14 2.22E+14	3.86E+14 3.54E+14	2.65E+14 2.42E+14	3.94E+14 3.61E+14	3.86E+14 3.53E+14	3.56E+14 3.27E+14	3.58E+14 3.32E+14	1.90E+13
		1.88E+13	1.64E+14	2.22E+14 2.07E+14	3.30E+14	2.42E+14 2.25E+14	3.35E+14	3.28E+14	3.04E+14	3.12E+14	1.80E+13
	10	1.80E+13	1.56E+14	2.07E+14 1.95E+14	3.30E+14 3.10E+14	2.25E+14 2.12E+14	3.35E+14 3.15E+14	3.28E+14 3.09E+14	2.87E+14	2.96E+14	1.72E+13
•	11 15						2.65E+14	2.59E+14	2.87E+14 2.42E+14	2.53E+14	1.50E+13
		1.58E+13	1.34E+14	1.65E+14	2.61E+14	1.78E+14					
	20	1.38E+13	1.16E+14	1.43E+14	2.24E+14	1.52E+14	2.27E+14	2.22E+14	2.08E+14	2.18E+14	1.31E+13
		Raw	Data 18	20	48	60	78	96	114	139.24	145.24
		6 Node 1	Node 2	30 Node 3	40 Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10
		NOUET	NOUG 2	NODE 3	NOUE 4	NOUB 5	NODE D	NODB /	NODE 6	1008 3	NOGETO
	Time, years	6	12	12	18	12	18	18	18	25.24	6
75 GWd/MTU	0.002739726	3.02E+15	1.84E+16	2.54E+16	4.34E+16	3.03E+16	4.47E+16	4.14E+16	3.54E+16	2.99E+16	1.98E+15
	5	3.06E+13	2.79E+14	3.73E+14	6.08E+14	4.22E+14	6.30E+14	6.16E+14	5.65E+14	5.38E+14	2.90E+13
	6	2.66E+13	2.41E+14	3.17E+14	5.14E+14	3.56E+14	5.31E+14	5.19E+14	4.77E+14	4.64E+14	2.53E+13
	· 7	2.41E+13	2.15E+14	2.78E+14	4.50E+14	3.11E+14	4.63E+14	4.53E+14	4.18E+14	4.13E+14	2.29E+13
	8	2.23E+13	1.96E+14	2.51E+14	4.05E+14	2.79E+14	4.16E+14	4.06E+14	3.76E+14	3.77E+14	2.12E+13
	9	2.10E+13	1.82E+14	2.31E+14	3.71E+14	2.55E+14	3.80E+14	3.72E+14	3.45E+14	3.50E+14	1.99E+13
	10	1.99E+13	1.72E+14	2.16E+14	3.46E+14	2.38E+14	3.54E+14	3.46E+14	3.22E+14	3.29E+14	1.90E+13
	11	1.91E+13	1.63E+14	2.04E+14	3.26E+14	2.23E+14	3.33E+14	3.26E+14	3.03E+14	3.13E+14	1.82E+13
	15	1.67E+13	1.40E+14	1.73E+14	2.74E+14	1.87E+14	2.79E+14	2.73E+14	2.55E+14	2.67E+14	1.59E+13
	20	1.46E+13	1.21E+14	1.49E+14	2.36E+14	1.61E+14	2.40E+14	2.34E+14	2.20E+14	2.31E+14	1.39E+13

	۷	alues per inc	h									
		0										
		-										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	APF
10 GWd/MTU	0.002739726	5.56E+14	1.74E+15	2.11E+15	2.10E+15	2.11E+15	2.15E+15	2.16E+15	2.08E+15	1.56E+15	6.36E+14	1.25E+00
	5	8.23E+11	3.63E+12	4.88E+12	4.94E+12	4.75E+12	4.46E+12	4.18E+12	3.80E+12	2.69E+12	8.13E+11	1.41E+00
	6	6.80E+11	3.05E+12	4.08E+12	4.13E+12	3.97E+12	3.72E+12	3.49E+12	3.17E+12	2.26E+12	6.67E+11	1.41E+00
	7	6.04E+11	2.74E+12	3.65E+12	3.68E+12	3.54E+12	3.31E+12	3.11E+12	2.83E+12	2.02E+12	5.90E+11	1,41E+00
	8	5.60E+11	2.55E+12	3.38E+12	3.41E+12	3.27E+12	3.06E+12	2.87E+12	2.62E+12	1.88E+12	5.45E+11	1.41E+00
	9	5.31E+11	2.42E+12	3.20E+12	3.22E+12	3.09E+12	2.89E+12	2.71E+12	2.47E+12	1.78E+12	5.15E+11	1.41E+00
	10	5.09E+11	2.32E+12	3.06E+12	3.08E+12	2.95E+12	2.77E+12	2.59E+12	2.37E+12	1.71E+12	4.94E+11	1.41E+00
	11	4.92E+11	2.24E+12	2.95E+12	2.96E+12	2.84E+12	2.66E+12	2.50E+12	2.28E+12	1.64E+12	4.76E+11	1.41E+00
	15	4.39E+11	1.99E+12	2.62E+12	2.62E+12	2.51E+12	2.36E+12	2.21E+12	2.02E+12	1.46E+12	4.24E+11	1.41E+00
	20	3.87E+11	1.75E+12	2.30E+12	2.30E+12	2.20E+12	2.07E+12	1.94E+12	1.78E+12	1.28E+12	3.74E+11	1.40E+00
	\	alues per inc										
		o										
		Ů										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
20 GWd/MTU	0.002739726	5.47E+14	1.58E+15	2.00E+15	2.08E+15	2.22E+15	2.35E+15	2.40E+15	2.27E+15	1.67E+15	5.66E+14	1.38E+00
	5	1.52E+12	6.75E+12	1.16E+13	9.85E+12	9.94E+12	9.52E+12	8.88E+12	7.85E+12	5.49E+12	1.50E+12	1.46E+00
data for node 3	6	1.28E+12	5.78E+12	9.85E+12	8.30E+12	8.35E+12	7.99E+12	7.46E+12	6.62E+12	4.67E+12	1.25E+12	1.45E+00
of this burn	7	1.14E+12	5.21E+12	8.80E+12	7.39E+12	7.41E+12	7.09E+12	6.62E+12	5.89E+12	4.19E+12	1.11E+12	1.45E+00
is incorrect	8	1.06E+12	4.84E+12	8.10E+12	6.79E+12	6.80E+12	6.50E+12	6.08E+12	5.42E+12	3.89E+12	1.03E+12	1.44E+00
(see	9	9.99E+11	4.58E+12	7.60E+12	6.37E+12	6.37E+12	6.09E+12	5.70E+12	5.10E+12	3.67E+12	9.70E+11	1.44E+00
highlighted	10	9.56E+11	4.38E+12	7.22E+12	6.05E+12	6.04E+12	5.78E+12	5.41E+12	4.85E+12	3.50E+12	9.27E+11	1.44E+00
information);	11	9 21E+11	4.21E+12	6.91E+12	5.80E+12	5.78E+12	5.53E+12	5.18E+12	4.64E+12	3.36E+12	8.93E+11	1.44E+00
it is not used	15	8.18E+11	3.72E+12	6.04E+12	5.06E+12	5.03E+12	4.83E+12	4.52E+12	4.07E+12	2.96E+12	7.91E+11	1.43E+00
		0.102711	U.TELTIE	0.096712	J.UULT12	0.000412	4.002412	4.JELT12	4.07 67 12	2.506712	7.312411	1.432400
for the comparison	20	7.21E+11	3.26E+12	5.27E+12	4.42E+12	4.39E+12	4.22E+12	3.94E+12	3.56E+12	2.59E+12	6.97E+11	1.43E+00
	```	/alues per inc 	'n									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
30 GWd/MTU	0.002739726	4.40E+14	1.20E+15	1.58E+15	1.75E+15	1.85E+15	1.92E+15	2.03E+15	2.12E+15	1.53E+15	5.16E+14	1.42E+00
	5	2.28E+12	9.71E+12	1.29E+13	1.38E+13	1.43E+13	1.42E+13	1.39E+13	1.26E+13	8.80E+12	2.23E+12	1.36E+00
	6	1.93E+12	8.39E+12	1.10E+13	1.17E+13	1.21E+13	1.20E+13	1.17E+13	1.07E+13	7.52E+12	1.89E+12	1.36E+00
	7	1.73E+12	7.57E+12	9.84E+12	1.05E+13	1.07E+13	1.06E+13	1.04E+13	9.46E+12	6.74E+12	1.68E+12	1.36E+00
	8	1.60E+12	7.03E+12	9.06E+12	9.60E+12	9.83E+12	9.72E+12	9.45E+12	8.65E+12	6.22E+12	1.55E+12	1.35E+00
	9	1.51E+12	6.63E+12	8.50E+12	8.97E+12	9.16E+12	9.06E+12	8.80E+12	8.07E+12	5.84E+12	1.46E+12	1.35E+00
	10	1.44E+12	6.32E+12	8.06E+12	8.49E+12	8.65E+12	8.55E+12	8.30E+12	7.63E+12	5.55E+12	1.40E+12	1.34E+00
	11	1.38E+12	6.06E+12	7.71E+12	8.10E+12	8.25E+12	8.15E+12	7.91E+12	7.27E+12	5.32E+12	1.34E+12	1.34E+00
	15	1.22E+12	5.32E+12	6.72E+12	7.02E+12	7.12E+12	7.04E+12	6.82E+12	6.30E+12	4.64E+12	1.18E+12	1.33E+00
	20	1.08E+12	4.65E+12	5.86E+12	6.11E+12	6.19E+12	6.12E+12	5.93E+12	5.48E+12	4.05E+12	1.04E+12	1.33E+00
				SIGGET IN		9.10411 <b>6</b>		0.000116	0.1061/6			1.002400

	١	/alues per inc I	:h									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	APF
40 GWd/MTU	0.002739726	5.37E+14	1.82E+15	2.64E+15	2.76E+15	2.65E+15	2.44E+15	2.20E+15	1.94E+15	1.29E+15	4.69E+14	1.47E+00
	5	3.00E+12	1.24E+13	1.68E+13	1.83E+13	1.91E+13	1.89E+13	1.84E+13	1.67E+13	1.12E+13	2.71E+12	1.39E+00
	6	2.57E+12	1.08E+13	1.44E+13	1.56E+13	1.62E+13	1.61E+13	1.56E+13	1.42E+13	9.71E+12	2.34E+12	1.38E+00
	7	2.31E+12	9.79E+12	1.28E+13	1.39E+13	1.44E+13	1.42E+13	1.38E+13	1.26E+13	8.75E+12	2.11E+12	1.37E+00
	8	2.14E+12	9.07E+12	1.18E+13	1.27E+13	1.31E+13	1.30E+13	1.26E+13	1.15E+13	8.09E+12	1.96E+12	1.36E+00
	9	2.01E+12	8.53E+12	1.10E+13	1.18E+13	1.21E+13	1.20E+13	1.17E+13	1.07E+13	7.60E+12	1.85E+12	1.36E+00
	10	1.92E+12	8.12E+12	1.04E+13	1.11E+13	1.14E+13	1.13E+13	1.10E+13	1.01E+13	7.21E+12	1.77E+12	1.35E+00
	11	1.84E+12	7.77E+12	9.92E+12	1.06E+13	1.08E+13	1.07E+13	1.04E+13	9.61E+12	6.89E+12	1.70E+12	1.35E+00
	15	1.63E+12	6.79E+12	8.58E+12	9.09E+12	9.29E+12	9.20E+12	8.93E+12	8.27E+12	6.00E+12	1.50E+12	1.34E+00
	20	1.43E+12	5.92E+12	7.46E+12	7.88E+12	8.03E+12	7.97E+12	7.73E+12	7.17E+12	5.22E+12	1.31E+12	1.34E+00
	١	alues per inc	h									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
50 GWd/MTU	0.002739726	5.73E+14	2.03E+15	2.61E+15	2.60E+15	2.60E+15	2.63E+15	2.61E+15	2.47E+15	1.75E+15	6.38E+14	1.28E+00
	5	3.69E+12	1.65E+13	2.26E+13	2.41E+13	2.46E+13	2.41E+13	2.32E+13	2.10E+13	1.41E+13	3.48E+12	1.39E+00
	6	3.16E+12	1.42E+13	1.91E+13	2.04E+13	2.07E+13	2.03E+13	1.96E+13	1.78E+13	1.22E+13	2.98E+12	1.38E+00
	7	2.84E+12	1.27E+13	1.69E+13	1.79E+13	1.82E+13	1.78E+13	1.72E+13	1.57E+13	1.09E+13	2.68E+12	1.37E+00
	8	2.62E+12	1.17E+13	1.53E+13	1.62E+13	1.64E+13	1.61E+13	1.56E+13	1.43E+13	1.00E+13	2.47E+12	1.36E+00
	9	2.47E+12	1.09E+13	1.41E+13	1.49E+13	1.51E+13	1.48E+13	1.44E+13	1.32E+13	9.38E+12	2.32E+12	1.35E+00
	10	2.35E+12	1.03E+13	1.33E+13	1.40E+13	1.41E+13	1.39E+13	1.34E+13	1.24E+13	8.87E+12	2.21E+12	1.35E+00
	11	2.25E+12	9.85E+12	1.26E+13	1.32E+13	1.34E+13	1.31E+13	1.27E+13	1.17E+13	8.46E+12	2.12E+12	1.35E+00
	15	1.98E+12	8.52E+12	1.07E+13	1.12E+13	1.13E+13	1.11E+13	1.08E+13	1.00E+13	7.31E+12	1.86E+12	1.33E+00
	20	1.74E+12	7.41E+12	9.29E+12	9.68E+12	9.76E+12	9.61E+12	9.30E+12	8.65E+12	6.34E+12	1.63E+12	1.33E+00
	· ·	/alues per inc 	n									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	APF
60 GWd/MTU	0.002739726	5.67E+14	1.87E+15	2.44E+15	2.56E+15	2.71E+15	2.85E+15	2.89E+15	2.70E+15	1.90E+15	5.74E+14	1.37E+00
	5	4.24E+12	1.97E+13	2.71E+13	2.93E+13	3.01E+13	2.95E+13	2.81E+13	2.52E+13	1.70E+13	4.03E+12	1.40E+00
	6	3.66E+12	1.69E+13	2.28E+13	2.46E+13	2.52E+13	2.47E+13	2.37E+13	2.13E+13	1.46E+13	3.48E+12	1.39E+00
	7	3.29E+12	1.51E+13	2.00E+13	2.15E+13	2.20E+13	2.15E+13	2.07E+13	1.87E+13	1.31E+13	3.13E+12	1.38E+00
	8	3.04E+12	1.38E+13	1.80E+13	1.93E+13	1.97E+13	1.93E+13	1.86E+13	1.69E+13	1.20E+13	2.89E+12	1.37E+00
	9	2.86E+12	1.28E+13	1.66E+13	1.77E+13	1.81E+13	1.77E+13	1.70E+13	1.56E+13	1.11E+13	2.71E+12	1.37E+00
	10	2.72E+12	1.21E+13	1.55E+13	1.65E+13	1.68E+13	1.65E+13	1.59E+13	1.45E+13	1.05E+13	2.58E+12	1.36E+00
	11	2.61E+12	1.15E+13	1.46E+13	1.55E+13	1.58E+13	1.55E+13	1.50E+13	1.37E+13	9.99E+12	2.47E+12	1.35E+00
	15	2.29E+12	9.90E+12	1.24E+13	1.31E+13	1.33E+13	1.31E+13	1.26E+13	1.16E+13	8.58E+12	2.16E+12	1.34E+00
	20	2.00E+12	8.59E+12	1.07E+13	1.13E+13	1.14E+13	1.12E+13	1.08E+13	1.00E+13	7.43E+12	1.89E+12	1.34E+00

.

	v	alues per inc	h									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	APF
70 GWd/MTU	0.002739726	4.43E+14	1.40E+15	1.93E+15	2.13E+15	2.22E+15	2.28E+15	2.40E+15	2.52E+15	1.75E+15	5.28E+14	1.43E+00
	5	4.88E+12	2.25E+13	3.01E+13	3.24E+13	3.36E+13	3.34E+13	3.27E+13	3.00E+13	2.04E+13	4.70E+12	1.37E+00
	6	4.22E+12	1.93E+13	2.55E+13	2.73E+13	2.82E+13	2.81E+13	2.74E+13	2.52E+13	1.75E+13	4.06E+12	1.36E+00
	7	3.80E+12	1.72E+13	2.23E+13	2.39E+13	2.46E+13	2.44E+13	2.39E+13	2.20E+13	1.56E+13	3.65E+12	1.36E+00
	8	3.51E+12	1.57E+13	2.01E+13	2.15E+13	2.21E+13	2.19E+13	2.14E+13	1.98E+13	1.42E+13	3.37E+12	1.35E+00
	9	3.30E+12	1.46E+13	1.85E+13	1.97E+13	2.02E+13	2.00E+13	1.96E+13	1.82E+13	1.32E+13	3.16E+12	1.34E+00
	10	3.14E+12	1.37E+13	1.73E+13	1.83E+13	1.88E+13	1.86E+13	1.82E+13	1.69E+13	1.24E+13	3.00E+12	1.34E+00
	11	3.01E+12	1.30E+13	1.63E+13	1.72E+13	1.77E+13	1.75E+13	1.71E+13	1.59E+13	1.17E+13	2.87E+12	1.33E+00
	15	2.63E+12	1.11E+13	1.38E+13	1.45E+13	1.48E+13	1.47E+13	1.44E+13	1.34E+13	1.00E+13	2.51E+12	1.32E+00
	20	2.30E+12	9.64E+12	1.19E+13	1.25E+13	1.27E+13	1.26E+13	1.23E+13	1.15E+13	8.65E+12	2.19E+12	1.32E+00
	Ň	alues per inc	h									
		0										
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
75 GWd/MTU	0.002739726	5.03E+14	1.53E+15	2.12E+15	2.41E+15	2.53E+15	2.49E+15	2.30E+15	1.97E+15	1.19E+15	3.29E+14	1.46E+00
	5	5.10E+12	2.33E+13	3.11E+13	3.38E+13	3.51E+13	3.50E+13	3.42E+13	3.14E+13	2.13E+13	4.84E+12	1.38E+00
	6	4.44E+12	2.01E+13	2.64E+13	2.85E+13	2.96E+13	2.95E+13	2.88E+13	2.65E+13	1.84E+13	4.22E+12	1.37E+00
	7	4.01E+12	1.79E+13	2.32E+13	2.50E+13	2.59E+13	2.57E+13	2.52E+13	2.32E+13	1.64E+13	3.82E+12	1.36E+00
	8	3.72E+12	1.64E+13	2.09E+13	2.25E+13	2.32E+13	2.31E+13	2.26E+13	2.09E+13	1.49E+13	3.53E+12	1.35E+00
	9	3.50E+12	1.52E+13	1.93E+13	2.06E+13	2.13E+13	2.11E+13	2.07E+13	1.92E+13	1.39E+13	3.32E+12	1.35E+00
	10	3.32E+12	1.43E+13	1.80E+13	1.92E+13	1.98E+13	1.97E+13	1.92E+13	1.79E+13	1.31E+13	3.16E+12	1.34E+00
	11	3.18E+12	1.36E+13	1.70E+13	1.81E+13	1.86E+13	1.85E+13	1.81E+13	1.68E+13	1.24E+13	3.03E+12	1.34E+00
	15	2.78E+12	1.16E+13	1.44E+13	1.52E+13	1.56E+13	1.55E+13	1.52E+13	1.42E+13	1.06E+13	2.64E+12	1.33E+00
	20	2.44E+12	1.01E+13	1.24E+13	1.31E+13	1.34E+13	1.33E+13	1.30E+13	1.22E+13	9.13E+12	2.31E+12	1.32E+00


ł

		Source * APF	~				
	Gamma totals			1 node source per unit			
	from 1 node		Source*APF/145.24,	height- max ten node			
	case	1.4	Source per unit height	source per unit height	unit height for 1 node		Time, year
	1.70E+17	2.37E+17	1.63E+15	-5.21E+14	-32%	10 GWd/MTU	0.00273972
	5.14E+14	7.20E+14	4.96E+12	2.29E+10	0%		5
	4.39E+14	6.14E+14	4.23E+12	1.01E+11	2%		6
	3.96E+14	5.55E+14	3.82E+12	1.38E+11	4%		7
	3.70E+14	5.17E+14	3.56E+12	1.56E+11	4%		8
	3.51E+14	4.91E+14	3.38E+12	1.64E+11	5%		9
	3.37E+14	4.71E+14	3.25E+12	1.68E+11	5%		10
	3.25E+14	4.55E+14	3.13E+12	1.68E+11	5%		11
	2.88E+14	4.04E+14	2.78E+12	1.60E+11	6%		15
	2.54E+14	3.55E+14	2.44E+12	1.44E+11	6%		20
		, ·					
		Source * APF					
	Gamma totals			1 node source per unit			
	from 1 node		Source*APF/145.24,	height- max ten node	difference/source per		
	case	1.4	Source per unit height	source per unit height	unit height for 1 node		Time, year
	1.75E+17	2.45E+17	1.69E+15	•7.12E+14	-42%	20 GWd/MTU	0.00273972
	1.01E+15	1.41E+15	9.71E+12	-2.26E+11	-2%		5
	8.73E+14	1.22E+15	8.41E+12	6.03E+10	1%		6
data for node 3	7.91E+14	1.11E+15	7.63E+12	2.13E+11	3%		7
of this burn	7.37E+14	1.03E+15	7.10E+12	2.98E+11	4%		8
is incorrect	6.97E+14	9.75E+14	6.72E+12	3.43E+11	5%		9
see	6.66E+14	9.32E+14	6.42E+12	3.63E+11	6%		10
highlighted	6.40E+14	8.96E+14	6.17E+12	3.73E+11	6%		11
information);	5.64E+14	7.89E+14	5.43E+12	3.70E+11	7%		15
it is not used	4.94E+14	6.92E+14	4.76E+12	3.39E+11	7%		20
for the comparison	4.346414	0.321+14	4.702712	0.032411	170		20
		Source * APF					
	Commo totale			1 nodo opures nor ······			
	Gamma totals		Courset ADE/1 45 04	1 node source per unit			
	from 1 node		Source*APF/145.24,	height- max ten node	•		<b>Ti</b>
	case	1.4	Source per unit height	and the second			Time, year
	1.82E+17	2.55E+17	1.75E+15	-3.69E+14	-21%	30 GWd/MTU	0.0027397
	1.50E+15	2.10E+15	1.45E+13	1.86E+11	1%		5
	1.31E+15	1.83E+15	1.26E+13	4.94E+11	4%		6
	1.18E+15	1.66E+15	1.14E+13	6.62E+11	6%		7
	1.10E+15	1.54E+15	1.06E+13	7.56E+11	7%		8
	1.03E+15	1.45E+15	9.97E+12	8.08E+11	8%		9
	9.85E+14	1.38E+15	9.49E+12	8.37E+11	9%		10
	9.44E+14	1.32E+15	9.09E+12	8.50E+11	9%		11
	8.25E+14	1.16E+15	7.95E+12	8.32E+11	10%		15 20
	7.21E+14	1.01E+15	6.95E+12	7.61E+11	11%		

1						
	Source * APF					
Gamma totals			1 node source per unit			
from 1 node		Source*APF/145.24.	height- max ten node	difference/source per		
case	1.4	Source per unit height	source per unit height	•		Time, years
 1.90E+17	2.66E+17	1.83E+15	-9.32E+14	-51%	40 GWd/MTU	0.002739726
1.99E+15	2.79E+15	1.92E+13	1.14E+11	1%	40 amainto	5
1.74E+15	2.43E+15	1.67E+13	5.11E+11	3%		· 6
1.57E+15	2.19E+15	1.51E+13	7.44E+11	5%		. 7
1.45E+15	2.03E+15	1.40E+13	8.84E+11	6%		8
1.36E+15	1.90E+15	1.31E+13	9.69E+11	7%		9
1.29E+15	1.81E+15	1.24E+13	1.02E+12	8%		10
1.23E+15	1.73E+15	1.19E+13	1.04E+12	9%		11
1.07E+15	1.50E+15	1.03E+13	1.04E+12	10%		15
9.33E+14	1.31E+15	8.99E+12	9.58E+11	11%		20
0.002111		0.002112	0.002111			20
	Source * APF					
Gamma totals			1 node source per unit			
from 1 node		Source*APF/145.24,	height- max ten node	difference/source per		
 case	1.4	Source per unit height	source per unit height	unit height for 1 node		Time, years
1.98E+17	2.78E+17	1.91E+15	-7.15E+14	-37%	50 GWd/MTU	0.002739726
2.48E+15	3.47E+15	2.39E+13	-7.02E+11	-3%		5
2.16E+15	3.02E+15	2.08E+13	5.60E+10	0%		6
1.94E+15	2.72E+15	1.87E+13	5.13E+11	3%		7
1.79E+15	2.50E+15	1.72E+13	7.96E+11	5%		8
1.67E+15	2.34E+15	1.61E+13	9.72E+11	6%		9
1.58E+15	2.21E+15	1.52E+13	1.08E+12	7%		10
1.51E+15	2.11E+15	1.45E+13	1.15E+12	8%		11
1.30E+15	1.82E+15	1.25E+13	1.21E+12	10%		15
1.13E+15	1.58E+15	1.09E+13	1.13E+12	10%		20
	Source * APF					
Gamma totals			1 node source per unit			
from 1 node		Source*APF/145.24,	height- max ten node			
case	1.4	Source per unit height	source per unit height	unit height for 1 node		Time, years
2.06E+17	2.89E+17	1.99E+15	-8.99E+14	-45%	60 GWd/MTU	0.002739720
2.95E+15	4.13E+15	2.84E+13	-1.68E+12	-6%		5
2.56E+15	3.58E+15	2.47E+13	-5.44E+11	-2%		6
2.30E+15	3.21E+15	2.21E+13	1.51E+11	1%		7
2.11E+15	2.95E+15	2.03E+13	5.88E+11	3%		8
1.96E+15	2.75E+15	1.89E+13	8.67E+11	5%		9
1.85E+15	2.59E+15	1.78E+13	1.05E+12	6%		10
1.76E+15	2.47E+15	1.70E+13	1.16E+12	7%		11
1.76E+15 1.51E+15	2.47E+15 2.12E+15	1.70E+13 1.46E+13	1.16E+12 1.30E+12	7% 9%		11

.

	Gamma totals from 1 node case 2.17E+17 3.40E+15 2.94E+15 2.63E+15 2.40E+15 2.23E+15 2.10E+15 2.00E+15 1.71E+15	<u>1.4</u> <u>3.04E+17</u> <u>4.76E+15</u> <u>4.12E+15</u> <u>3.68E+15</u> <u>3.37E+15</u> <u>3.13E+15</u> <u>2.79E+15</u> <u>2.39E+15</u>	Source*APF/145.24, Source per unit height 2.09E+15 3.28E+13 2.84E+13 2.54E+13 2.32E+13 2.15E+13 2.03E+13 1.92E+13 1.65E+13	1 node source per unit height- max ten node source per unit height -4.25E+14 -7.90E+11 1.57E+11 7.41E+11 1.11E+12 1.34E+12 1.49E+12 1.57E+12 1.65E+12	difference/source per unit height for 1 node -20% -2% 1% 3% 5% 6% 7% 8% 10%	70 GWd/MTU	Time, years 0.002739726 5 6 7 8 9 10 11 15
	1.48E+15	2.07E+15	1.42E+13	1.53E+12	11%		20
	Gamma totals from 1 node case	Source * APF	Source*APF/145.24, Source per unit height	1 node source per unit height- max ten node source per unit height	difference/source per unit height for 1 node		Time, years
-	2.21E+17 3.62E+15 3.13E+15 2.79E+15 2.55E+15 2.36E+15 2.22E+15 2.11E+15 1.80E+15 1.55E+15	3.09E+17 5.06E+15 4.38E+15 3.90E+15 3.56E+15 3.31E+15 3.31E+15 2.95E+15 2.52E+15 2.18E+15	2.13E+15 3.49E+13 3.01E+13 2.69E+13 2.45E+13 2.28E+13 2.14E+13 2.03E+13 1.73E+13 1.50E+13	-4.02E+14 -2.92E+11 4.96E+11 9.86E+11 1.30E+12 1.49E+12 1.61E+12 1.68E+12 1.72E+12 1.59E+12	-19% -1% 2% 4% 5% 7% 8% 8% 10% 11%	75 GWd/MTU	0.002739726 5 6 7 8 9 10 11 15 20



## Gamma Source per Unit Height for Various Burnups

Worksheet 'all.burns.10node.neut.totals'

		RAW Node 1	DATA Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	•
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
IO GWd/MTU	0.002739726	8.22E+03	4.79E+04	1.18E+05	2.02E+05	1.29E+05	1.72E+05	1.46E+05	1.16E+05	6.12E+04	9.45E+03	1.01E+06
o an anno	5	3.36E+03	1.33E+04	2.65E+04	4.51E+04	2.93E+04	4.03E+04	3.55E+04	2.97E+04	2.08E+04	3.57E+03	2.47E+05
	6	3.39E+03	1.34E+04	2.65E+04	4.50E+04	2.92E+04	4.02E+04	3.56E+04	2.98E+04	2.10E+04	3.60E+03	2.48E+05
	7	3.41E+03	1.35E+04	2.65E+04	4.49E+04	2.92E+04	4.02E+04	3.56E+04	2.99E+04	2.12E+04	3.63E+03	2.48E+05
	8	3.44E+03	1.36E+04	2.65E+04	4.48E+04	2.91E+04	4.02E+04	3.56E+04	3.00E+04	2.13E+04	3.66E+03	2.48E+05
	9	3.46E+03	1.37E+04	2.64E+04	4.47E+04	2.91E+04	4.01E+04	3.57E+04	3.01E+04	2.15E+04	3.69E+03	2.48E+05
	10	3.49E+03	1.37E+04	2.64E+04	4.46E+04	2.90E+04	4.01E+04	3.57E+04	3.02E+04	2.17E+04	3.71E+03	2.49E+05
	11	3.51E+03	1.38E+04	2.64E+04	4.46E+04	2.90E+04	4.01E+04	3.57E+04	3.02E+04	2.18E+04	3.74E+03	2.49E+05
	15	3.58E+03	1.41E+04	2.63E+04	4.42E+04	2.88E+04	3.99E+04	3.57E+04	3.04E+04	2.23E+04	3.83E+03	2.49E+05
	20	3.66E+03	1.43E+04	2.62E+04	4.36E+04	2.84E+04	3.96E+04	3.56E+04	3.05E+04	2.28E+04	3.91E+03	2.49E+05
	20	RAW	DATA	2.022.01								
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
20 GWd/MTU	0.002739726	7.29E+04	5.01E+05	2.84E+06	2.33E+06	1.65E+06	2.36E+06	2.03E+06	1.56E+06	8.24E+05	8.33E+04	1.42E+07
NOTE:		1.03E+04	8.09E+04	7.75E+05	5.82E+05	4.35E+05	6.14E+05	4.96E+05	3.41E+05	1.38E+05	1.22E+04	3.48E+06
	5			7.49E+05	5.64E+05	4.33E+05	5.95E+05	4.82E+05	3.32E+05	1.36E+05	1.22E+04	3.38E+06
node 3	6 7	1.03E+04	7.95E+04		5.48E+05	4.22E+05 4.09E+05	5.93E+05	4.68E+05	3.24E+05	1.34E+05	1.22E+04	3.29E+06
info		1.03E+04	7.82E+04	7.25E+05	5.32E+05	3.97E+05	5.60E+05	4.55E+05	3.15E+05	1.33E+05	1.22E+04	3.19E+06
is incorrect;	8	1.04E+04	7.70E+04	7.01E+05			5.44E+05	4.55E+05 4.42E+05	3.07E+05	1.31E+05	1.21E+04	3.10E+06
it is not used	9	1.04E+04	7.58E+04	6.79E+05	5.17E+05	3.85E+05	5.44E+05	4.420+00	3.07E+03	1.512+05	1.212704	
in the final	10	1.04E+04	7.47E+04	6.57E+05	5.02E+05	3.74E+05	5.28E+05	4.30E+05	3.00E+05	1.29E+05	1.21E+04	3.02E+06
comparison	11	1.04E+04	7.36E+04	6.36E+05	4.88E+05	3.63E+05	5.13E+05	4.18E+05	2.92E+05	1.27E+05	1.21E+04	2.93E+06
to determine	15	1.05E+04	6.96E+04	5.61E+05	4.36E+05	3.24E+05	4.58E+05	3.75E+05	2.65E+05	1.21E+05	1.20E+04	2.63E+06
% difference from one	20	1.05E+04	6.52E+04	4.80E+05	3.81E+05	2.82E+05	4.00E+05	3.30E+05	2.36E+05	1.15E+05	1.19E+04	2.31E+06
node		RAW	DATA									
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
30 GWd/MTU	0.002739726	2.71E+05	1.84E+06	4.18E+06	8.00E+06	6.02E+06	9.32E+06	8.81E+06	7.13E+06	3.75E+06	2.97E+05	4.96E+07
55 GWWW10	0.002739720	3.28E+04	3.97E+05	1.33E+06	2.87E+06	2.30E+06	3.65E+06	3.38E+06	2.52E+06	8.97E+05	4.37E+04	1.74E+07
	6	3.22E+04	3.85E+05	1.29E+06	2.77E+06	2.22E+06	3.52E+06	3.26E+06	2.43E+06	8.69E+05	4.27E+04	1.68E+07
	8	3.17E+04	3.74E+05	1.24E+06	2.67E+06	2.14E+06	3.39E+06	3.15E+06	2.34E+06	8.44E+05	4.19E+04	1.62E+07
	8	3.13E+04	3.63E+05	1.20E+06	2.58E+06	2.07E+06	3.27E+06	3.04E+06	2.26E+06	8.19E+05	4.11E+04	1.57E+07
	9	· 3.09E+04	3.52E+05	1.16E+06	2.49E+06	2.00E+06	3.16E+06	2.93E+06	2.19E+06	7.95E+05	4.04E+04	1.51E+07
	9 10	3.05E+04	3.42E+05	1.12E+06	2.41E+06	1.93E+06	3.05E+06	2.83E+06	2.11E+06	7.72E+05	3.96E+04	1.46E+07
	11	3.05E+04 3.01E+04	3.32E+05	1.08E+06	2.32E+06	1.86E+06	2.94E+06	2.73E+06	2.04E+06	7.49E+05	3.89E+04	1.41E+07
	15	3.01E+04 2.86E+04	3.32E+05 2.97E+05	9.47E+05	2.02E+06	1.62E+06	2.56E+06	2.38E+06	1.78E+06	6.68E+05	3.63E+04	1.23E+07
	20	2.86E+04 2.70E+04	2.59E+05	9.472+05 8.03E+05	1.71E+06	1.36E+06	2.362+00 2.15E+06	2.00E+06	1.51E+06	5.82E+05	3.35E+04	1.04E+07
		2./UE+04	2.395+03	0.036+03	1.716700	1.005700	2.106700	E.VULTUU	1.016700	0.00.0	0.000.004	

		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
40 GWd/MTU	0.002739726	7.07E+05	5.06E+06	1.19E+07	2.34E+07	1.77E+07	2.71E+07	2.50E+07	1.97E+07	9.31E+06	5.98E+05	1.40E+08
	5	1.02E+05	1.40E+06	4.84E+06	1.07E+07	8.60E+06	1.35E+07	1.24E+07	9.26E+06	3.05E+06	1.13E+05	6.39E+07
	6	9.88E+04	1.35E+06	4.66E+06	1.03E+07	8.29E+06	1.30E+07	1.19E+07	8.93E+06	2.95E+06	1.10E+05	6.16E+07
	7	9.61E+04	1.30E+06	4.50E+06	9.94E+06	7.98E+06	1.25E+07	1.15E+07	8.60E+06	2.85E+06	1.07E+05	5.93E+07
	8	9.36E+04	1.26E+06	4.33E+06	9.58E+06	7.69E+06	1.20E+07	1.11E+07	8.29E+06	2.75E+06	1.04E+05	5.72E+07
	9	9.12E+04	1.21E+06	4.18E+06	9.23E+06	7.41E+06	1.16E+07	1.07E+07	7.99E+06	2.66E+06	1.01E+05	5.51E+07
	10	8.89E+04	1.17E+06	4.03E+06	8.90E+06	7.14E+06	1.12E+07	1.03E+07	7.71E+06	2.57E+06	9.83E+04	5.32E+07
	11	8.67E+04	1.13E+06	3.89E+06	8.58E+06	6.88E+06	1.08E+07	9.91E+06	7.43E+06	2.48E+06	9.57E+04	5.12E+07
	15	7.86E+04	9.90E+05	3.36E+06	7.41E+06	5.94E+06	9.29E+06	8.56E+06	6.42E+06	2.40E+00	8.62E+04	5.12E+07 4.43E+07
	20	6.99E+04	8.39E+05	2.81E+06	6.18E+06	4.95E+06	7.74E+06	7.13E+06	5.36E+06	2.17E+06 1.84E+06	7.62E+04	
		RAW	DATA	2.012400	0.102400	4.032400	1.742400	7.132+00	5.30E+00	1.042+00	7.02E+04	3.70E+07
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
<u></u>	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
50 GWd/MTU	0.002739726	1.25E+06	1.19E+07	2.86E+07	5.38E+07	3.91E+07	5.84E+07	5.35E+07	4.27E+07	2.13E+07	1.36E+06	3.12E+08
	5	2.42E+05	4.55E+06	1.57E+07	3.15E+07	2.32E+07	3.44E+07	3.06E+07	2.29E+07	7.88E+06	2.79E+05	1.71E+08
	6	2.34E+05	4.39E+06	1.51E+07	3.03E+07	2.23E+07	3.31E+07	2.95E+07	2.21E+07	7.60E+06	2.70E+05	1.65E+08
	7	2.26E+05	4.23E+06	1.46E+07	2.92E+07	2.15E+07	3.18E+07	2.83E+07	2.13E+07	7.33E+06	2.61E+05	1.59E+08
	8	2.19E+05	4.08E+06	1.40E+07	2.81E+07	2.07E+07	3.06E+07	2.73E+07	2.05E+07	7.07E+06	2.53E+05	1.53E+08
	9	2.13E+05	3.93E+06	1.35E+07	2.70E+07	1.99E+07	2.95E+07	2.63E+07	1.97E+07	6.82E+06	2.45E+05	1.47E+08
	10	2.06E+05	3.79E+06	1.30E+07	2.60E+07	1.92E+07	2.84E+07	2.53E+07	1.90E+07	6.58E+06	2.37E+05	1.42E+08
	11	2.00E+05	3.66E+06	1.25E+07	2.51E+07	1.85E+07	2.73E+07	2.44E+07	1.83E+07	6.34E+06	2.30E+05	1.36E+08
	15	1.77E+05	3.16E+06	1.08E+07	2.16E+07	1.59E+07	2.35E+07	2.10E+07	1.58E+07	5.50E+06	2.03E+05	1.18E+08
	20	1.53E+05	2.64E+06	8.99E+06	1.79E+07	1.32E+07	1.95E+07	1.74E+07	1.31E+07	4.61E+06	1.74E+05	9.78E+07
		RAW	DATA							4.072700	1.746400	3.702407
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
8	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
60 GWd/MTU	0.002739726	1.83E+06	2.04E+07	5.37E+07	1.07E+08	7.93E+07	1.17E+08	1.03E+08	7.79E+07	3.74E+07	1.91E+06	5.99E+08
	5	4.66E+05	1.04E+07	3.50E+07	7.03E+07	5.16E+07	7.53E+07	6.50E+07	4.73E+07	1.71E+07	5.33E+05	3.73E+08
	6	4.50E+05	1.00E+07	3.36E+07	6.73E+07	4.94E+07	7.20E+07	6.22E+07	4.54E+07	1.65E+07	5.14E+05	3.57E+08
	7	4.35E+05	9.63E+06	3.23E+07	6.46E+07	4.73E+07	6.89E+07	5.97E+07	4.34E+07 4.36E+07	1.59E+07	5.14E+05 4.97E+05	
	8	4.20E+05	9.28E+06	3.11E+07	6.20E+07	4.54E+07	6.61E+07	5.73E+07	4.30E+07 4.19E+07	1.53E+07	4.97E+05 4.80E+05	3.43E+08
	9	4.06E+05	8.94E+06	2.99E+07	5.96E+07	4.36E+07	6.34E+07	5.50E+07	4.19E+07 4.03E+07			3.29E+08
	10	3.93E+05	8.61E+06	2.88E+07	5.73E+07	4.30E+07 4.18E+07	6.09E+07	5.29E+07		1.47E+07	4.64E+05	3.16E+08
	11	3.80E+05	8.30E+06	2.00E+07 2.77E+07	5.51E+07	4.02E+07	5.86E+07		3.88E+07	1.42E+07	4.48E+05	3.04E+08
	15	3.32E+05	7.16E+06	2.38E+07	4.73E+07	4.02E+07 3.45E+07		5.08E+07	3.73E+07	1.37E+07	4.33E+05	2.92E+08
	20	2.82E+05	5.96E+06	2.38E+07 1.98E+07	4.73E+07 3.92E+07		5.02E+07	4.36E+07	3.21E+07	1.18E+07	3.78E+05	2.51E+08
	20	RAW	DATA	1.302+0/	J.92E+U/	2.86E+07	4.16E+07	3.62E+07	2.66E+07	9.86E+06	3.21E+05	2.08E+08

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

×...

		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
	Time, years	6	18	30	48	. 60	78	96	114	139.24	145.24	
70 GWd/MTU	0.002739726	2.67E+06	3.36E+07	9.32E+07	1.89E+08	1.46E+08	2.24E+08	2.01E+08	1.48E+08	6.46E+07	2.85E+06	1.11E+09
/0 01001010	5	8.74E+05	2.05E+07	6.36E+07	1.25E+08	9.30E+07	1.40E+08	1.26E+08	9.37E+07	3.56E+07	9.92E+05	6.98E+08
	6	8.43E+05	1.97E+07	6.08E+07	1.18E+08	8.79E+07	1.32E+08	1.19E+08	8.91E+07	3.42E+07	9.56E+05	6.62E+08
	7	8.13E+05	1.90E+07	5.82E+07	1.13E+08	8.33E+07	1.25E+08	1.13E+08	8.50E+07	3.29E+07	9.22E+05	6.30E+08
	8	7.85E+05	1.83E+07	5.57E+07	1.08E+08	7.93E+07	1.19E+08	1.07E+08	8.13E+07	3.17E+07	8.90E+05	6.01E+08
	9	7.57E+05	1.76E+07	5.35E+07	1.03E+08	7.56E+07	1.13E+08	1.02E+08	7.78E+07	3.05E+07	8.59E+05	5.75E+08
	10	7.31E+05	1.69E+07	5.13E+07	9.85E+07	7.22E+07	1.08E+08	9.76E+07	7.46E+07	2.94E+07	8.29E+05	5.50E+08
	11	7.06E+05	1.63E+07	4.93E+07	9.45E+07	6.91E+07	1.03E+08	9.34E+07	7.15E+07	2.83E+07	8.00E+05	5.27E+08
	15	6.13E+05	1.41E+07	4.22E+07	8.05E+07	5.87E+07	8.76E+07	7.93E+07	6.11E+07	2.44E+07	6.94E+05	4.49E+08
	20	5.16E+05	1.17E+07	3.50E+07	6.66E+07	4.85E+07	7.23E+07	6.55E+07	5.06E+07	2.03E+07	5.83E+05	3.72E+08
		RAW	DATA									
		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node10	
<b></b>	Time, years	6	18	30	48	60	78	96	114	139.24	145.24	
75 GWd/MTU	0.002739726	3.07E+06	4.17E+07	1.23E+08	2.64E+08	2.11E+08	3.26E+08	2.89E+08	2.04E+08	7.77E+07	3.01E+06	1.54E+09
	5	1.15E+06	2.70E+07	8.29E+07	1.66E+08	1.26E+08	1.91E+08	1.71E+08	1.26E+08	4.70E+07	1.25E+06	9.39E+08
	6	1.11E+06	2.60E+07	7.88E+07	1.56E+08	1.18E+08	1.78E+08	1.60E+08	1.19E+08	4.52E+07	1.21E+06	8.83E+08
	7	1.07E+06	2.50E+07	7.51E+07	1.48E+08	1.11E+08	1.67E+08	1.50E+08	1.13E+08	4.35E+07	1.17E+06	8.34E+08
	8	1.03E+06	2.41E+07	7.18E+07	1.40E+08	1.05E+08	1.57E+08	1.42E+08	1.08E+08	4.19E+07	1.12E+06	7.91E+08
	9	9.92E+05	2.32E+07	6.87E+07	1.34E+08	9.91E+07	1.49E+08	1.34E+08	1.03E+08	4.03E+07	1.08E+06	7.52E+08
	10	9.57E+05	2.23E+07	6.58E+07	1.27E+08	9.43E+07	1.41E+08	1.28E+08	9.79E+07	3.88E+07	1.05E+06	7.17E+08
	11	9.24E+05	2.15E+07	6.31E+07	1.22E+08	8.98E+07	1.35E+08	1.22E+08	9.37E+07	3.74E+07	1.01E+06	6.85E+08
	15	8.01E+05	1.85E+07	5.39E+07	1.03E+08	7.55E+07	1.13E+08	1.02E+08	7.95E+07	3.22E+07	8.74E+05	5.79E+08
	20	6.72E+05	1.54E+07	4.46E+07	8.51E+07	6.22E+07	9.27E+07	8.42E+07	6.57E+07	2.67E+07	7.33E+05	4.78E+08

		6 data per inch	18	30	48	60	78	96	114	139.24	145.24	
	Time, years	6	12	12	18	12	18	18	18	25.24	6	APF
10		[										
GWd/MTU	0.002739726	1.37E+03	3.99E+03	9.87E+03	1.12E+04	1.07E+04	9.56E+03	8.12E+03	6.47E+03	2.42E+03	1.57E+03	1.72E+00
	5	5.60E+02	1.11E+03	2.21E+03	2.51E+03	2.44E+03	2.24E+03	1.97E+03	1.65E+03	8.24E+02	5.95E+02	1.56E+00
	6	5.65E+02	1.11E+03	2.20E+03	2.50E+03	2.44E+03	2.23E+03	1.98E+03	1.66E+03	8.31E+02	6.00E+02	1.55E+00
	7	5.69E+02	1.12E+03	2.20E+03	2.49E+03	2.43E+03	2.23E+03	1.98E+03	1.66E+03	8.38E+02	6.05E+02	1.55E+00
	8	5.73E+02	1.13E+03	2.20E+03	2.49E+03	2.43E+03	2.23E+03	1.98E+03	1.67E+03	8.45E+02	6.10E+02	1.54E+00
	9	5.77E+02	1.14E+03	2.20E+03	2.49E+03	2.42E+03	2.23E+03	1.98E+03	1.67E+03	8.52E+02	6.15E+02	1.54E+00
	10	5.81E+02	1.15E+03	2.20E+03	2.48E+03	2.42E+03	2.23E+03	1.98E+03	1.68E+03	8.59E+02	6.19E+02	1.53E+00
	11	5.85E+02	1.15E+03	2.20E+03	2.48E+03	2.42E+03	2.23E+03	1.98E+03	1.68E+03	8.65E+02	6.23E+02	1.53E+00
	15	5.97E+02	1.17E+03	2.20E+03	2.45E+03	2.40E+03	2.22E+03	1.98E+03	1.69E+03	8.85E+02	6.38E+02	1.51E+00
	20	6.09E+02	1.20E+03	2.18E+03	2.42E+03	2.37E+03	2.20E+03	1.98E+03	1.70E+03	9.03E+02	6.52E+02	1.50E+00
		6	18	30	48	60	78	96	114	139.24	145.24	
		data per inch									,	
		•										
	Time, years	6	12	12	18	12	18	18	18	25.24	6	
20									ł			
GWd/MTU	0.002739726	1.22E+04	4.17E+04	2.37E+05	1.29E+05	1.38E+05	1.31E+05	1.13E+05	8.66E+04	3.26E+04	1.39E+04	1.78E+00
	. 5	1.72E+03	6.74E+03	6.46E+04	3.23E+04	3.63E+04	3.41E+04	2.76E+04	1.90E+04	5.48E+03	2.04E+03	1.98E+00
NOTE:	6	1.72E+03	6.62E+03	6.24E+04	3.14E+04	3.52E+04	3.31E+04	2.68E+04	1.85E+04	5.39E+03	2.03E+03	1.97E+00
node 3	7	1.72E+03	6.52E+03	6.04E+04	3.04E+04	3.41E+04	3.21E+04	2.60E+04	1.80E+04	5.32E+03	2.03E+03	1.97E+00
info	8	1.73E+03	6.42E+03	5.84E+04	2.95E+04	3.31E+04	3.11E+04	2.53E+04	1.75E+04	5.25E+03	2.03E+03	1.96E+00
is incorrect;	9	1.73E+03	6.32E+03	5.66E+04	2.87E+04	3.21E+04	3.02E+04	2.46E+04	1.71E+04	5.18E+03	2.02E+03	1.95E+00
it is not used	10	1 705 .00	0.005.00	5 40E .04	0.705.04	0.105.04	0.045.04	0.005.04	1.005.04	E 11E.00	0.005.00	1.05 5.00
in the final	10	1.73E+03 1.74E+03	6.22E+03	5.48E+04 5.30E+04	2.79E+04 2.71E+04	3.12E+04 3.03E+04	2.94E+04	2.39E+04 2.32E+04	1.66E+04 1.62E+04	5.11E+03	2.02E+03 2.02E+03	1.95E+00 1.94E+00
comparison	15	1.74E+03	6.13E+03 5.80E+03	5.30E+04 4.67E+04	2.71E+04 2.42E+04	2.70E+04	2.85E+04 2.55E+04	2.32E+04 2.09E+04	1.62E+04	5.05E+03 4.81E+03	2.02E+03 2.00E+03	1.94E+00 1.92E+00
to determine	20	1.75E+03	5.43E+03	4.00E+04		2.35E+04	2.35E+04 2.22E+04	1.83E+04	1.31E+04	4.54E+03	1.98E+03	1.89E+00
to determine	20	1.79E+03	j 5.43E+03	4.002+04	2.11E+04	2.300+04	2.220+04	1.030+04	1.310+04	4.042+03	1.900+03	1.092+00
% difference		6	18	30	48	60	78	96	114	139.24	145.24	
from one		1										
node		data per inch										
	_											
	Time, years	6	12	12	18	12	18	18	18	25.24	6	······
30 GWd/MTU	0.002739726	4.51E+04	1.53E+05	3.48E+05	4,44E+05	5.02E+05	5.18E+05	4.89E+05	3.96E+05	1,49E+05	4.95E+04	1.67E+00
GWWWIU					f							
	5	5.46E+03	3.31E+04	1.11E+05	1.60E+05	1.92E+05	2.03E+05	1.88E+05	1.40E+05	3.55E+04	7.28E+03	1.89E+00
	6	5.37E+03	3.21E+04	1.07E+05	1.54E+05	1.85E+05	1.95E+05	1.81E+05	1.35E+05	3.44E+04	7.12E+03	1.88E+00
	7	5.29E+03	3.11E+04	1.04E+05	1.49E+05	1.79E+05	1.88E+05	1.75E+05	1.30E+05	3.34E+04	6.99E+03	1.88E+00
	8	5.22E+03	3.02E+04	1.00E+05	1.43E+05	1.72E+05	1.82E+05	1.69E+05	1.26E+05	3.24E+04	6.85E+03	1.88E+00
	9	5.15E+03	2.94E+04	9.67E+04	1.38E+05	1.66E+05	1.76E+05	1.63E+05	1.22E+05	3.15E+04	6.73E+03	1.88E+00
	10	5.08E+03	2.85E+04	9.35E+04	1.34E+05	1.61E+05	1.69E+05	1.57E+05	1.17E+05	3.06E+04	6.61E+03	1.88E+00
	11	5.01E+03	2.77E+04	9.03E+04	1.29E+05	1.55E+05	1.64E+05	1.52E+05	1.13E+05	2.97E+04	6.49E+03	1.88E+00
	15	4.76E+03	2.47E+04	7.90E+04	1.12E+05	1.35E+05	1.42E+05	1.32E+05	9.89E+04	2.65E+04	6.05E+03	1.87E+00
	20	4.50E+03	2.16E+04	6.69E+04	9.48E+04	1.13E+05	1.20E+05	1.11E+05	8.36E+04	2.31E+04	5.59E+03	1.86E+00
		6	18	30	48	60	78	96	114	139.24	145.24	

ł

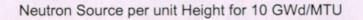
		data per inch										
	Time, years	6	12	12	18	12	18	18	18	25.24	6	APF
40 GWd/MTU	0.002739726	4.405.05	4 005 05	0.005.05	1.30E+06	1.48E+06	4 505 00	4 005 00	1.09E+06	3.69E+05	9.97E+04	1.72E+00
GW0/MTU	0.002739726	1.18E+05 1.69E+04	4.22E+05 1.16E+05	9.92E+05 4.03E+05	1.30E+06 5.95E+05	7.17E+05	1.50E+06 7.47E+05	1.39E+06 6.88E+05	5.15E+05	3.69E+05 1.21E+05	9.97E+04 1.88E+04	1.90E+00
	6	1.65E+04	1.12E+05	4.03E+05 3.89E+05	5.93E+05 5.73E+05	6.90E+05	7.19E+05	6.62E+05	4.96E+05	1.21E+05	1.83E+04	1.90E+00
	7	1.60E+04	1.08E+05	3.75E+05	5.52E+05	6.65E+05	6.93E+05	6.38E+05	4.98E+05	1.13E+05	1.78E+04	1.90E+00
	8	1.56E+04	1.05E+05	3.61E+05	5.32E+05	6.41E+05	6.68E+05	6.15E+05	4.61E+05	1.09E+05	1.73E+04	1.89E+00
	9	1.52E+04	1.01E+05	3.48E+05	5.13E+05	6.18E+05	6.44E+05	5.93E+05	4.44E+05	1.05E+05	1.68E+04	1.89E+00
	10	1.48E+04	9.78E+04	3.36E+05	4.94E+05	5.95E+05	6.21E+05	5.71E+05	4.28E+05	1.02E+05	1.64E+04	1.89E+00
	11	1.44E+04	9.44E+04	3.24E+05	4.76E+05	5.74E+05	5.98E+05	5.51E+05	4.13E+05	9.83E+04	1.60E+04	1.89E+00
	15	1.31E+04	8.25E+04	2.80E+05	4.12E+05	4.95E+05	5.16E+05	4.75E+05	3.57E+05	8.59E+04	1.44E+04	1.89E+00
	20	1.17E+04	6.99E+04	2.34E+05	3.43E+05	4.13E+05	4.30E+05	3.96E+05	2.98E+05	7.28E+04	1.27E+04	1.89E+00
		6	18	30	48	60	78	96	114	139.24	145.24	
		data per inch										
	Time, years	6	12	12	18	12	18	18	18	25.24	6	
50												
GWd/MTU	0.002739726	2.08E+05	9.88E+05	2.38E+06	2.99E+06	3.26E+06	3.25E+06	2.97E+06	2.37E+06	8.42E+05	2.27E+05	1.67E+00
	5	4.03E+04	3.79E+05	1.31E+06	1.75E+06	1.93E+06	1.91E+06	1.700+06	1.27E+06	3.12E+05	4.65E+04	1.81E+00
	6	3.90E+04	3.66E+05	1.26E+06	1.68E+06	1.86E+06	1.84E+06	1.64E+06	1.23E+06	3.01E+05	4.50E+04	1.81E+00
	7	3.77E+04	3.52E+05	1.21E+06	1.62E+06	1.79E+06	1.77E+06	1.57E+06	1.18E+06	2.90E+05	4.35E+04	1.81E+00
	8	3.66E+04	3.40E+05	1.17E+06	1.56E+06	1.72E+06	1.70E+06	1.52E+06	1.14E+06	2.80E+05	4.21E+04	1.81E+00
	9	3.54E+04	3.28E+05	1.13E+06	1.50E+06	1.66E+06	1.64E+06	1.46E+06	1.09E+06	2.70E+05	4.08E+04	1.81E+00
	10	3.43E+04	3.16E+05	1.09E+06	1.45E+06	1.60E+06	1.58E+06	1.41E+06	1.05E+06	2.61E+05	3.95E+04	1.81E+00
	11	3.33E+04	3.05E+05	1.05E+06	1.39E+06	1.54E+06	1.52E+06	1.35E+06	1.02E+06	2.51E+05	3.83E+04	1.81E+00
	15	2.95E+04	2.64E+05	9.01E+05	1.20E+06	1.32E+06	1.31E+06	1.17E+06	8.76E+05	2.18E+05	3.38E+04	1.81E+00
	20	2.54E+04	2.20E+05	7.49E+05	9.97E+05	1.10E+06	1.09E+06	9.69E+05	7.28E+05	1.83E+05	2.90E+04	1.81E+00
		6 data per inch	18	30	48	60	78	96	114	139.24	145.24	
		uata per mon										
	Time, years	6	12	12	18	12	18	18	18	25.24	6	
60 GWd/MTU	0.002739726	3.05E+05	1.70E+06	4.48E+06	5.92E+06	6.61E+06	6.51E+06	5.73E+06	4.33E+06	1.48E+06	3.18E+05	1.77E+00
GWWMTU	0.002739726	7.77E+04	8.65E+05	4.48E+06 2.92E+06	3.91E+06	4.30E+06	4.18E+06	3.61E+06	2.63E+06	6.77E+05	8.88E+04	1.85E+00
	5	7.50E+04	8.33E+05	2.92E+06 2.80E+06	3.91E+06 3.74E+06	4.30E+06	4.182+06 4.00E+06	3.46E+06	2.52E+06	6.53E+05	8.57E+04	1.85E+00
	7	7.25E+04	8.03E+05	2.69E+06	3.59E+06	3.94E+06	3.83E+06	3.32E+06	2.42E+06	6.29E+05	8.28E+04	1.84E+00
	8	7.00E+04	7.73E+05	2.59E+06	3.45E+06	3.78E+06	3.67E+06	3.18E+06	2.33E+06	6.06E+05	8.00E+04	1.84E+00
	9	6.77E+04	7.45E+05	2.49E+06	3.31E+06	3.63E+06	3.52E+06	3.06E+06	2.33E+00	5.84E+05	7.73E+04	1.84E+00
	10	6.54E+04	7.18E+05	2.40E+06	3.18E+06	3.49E+06	3.39E+06	2.94E+06	2.15E+06	5.63E+05	7.47E+04	1.84E+00
	11	6.33E+04	6.92E+05	2.31E+06	3.06E+06	3.35E+06	3.25E+06	2.82E+06	2.07E+06	5.42E+05	7.22E+04	1.84E+00
	15	5.54E+04	5.97E+05	1.98E+06	2.63E+06	2.87E+06	2.79E+06	2.42E+06	1.78E+06	4.69E+05	6.31E+04	1.83E+00
	20	4.70E+04	4.97E+05	1.65E+06	2.18E+06	2.38E+06	2.31E+06	2.01E+06	1.48E+06	3.91E+05	5.34E+04	1.83E+00
		6	18	30	48	60	78	96	114	139.24	145.24	

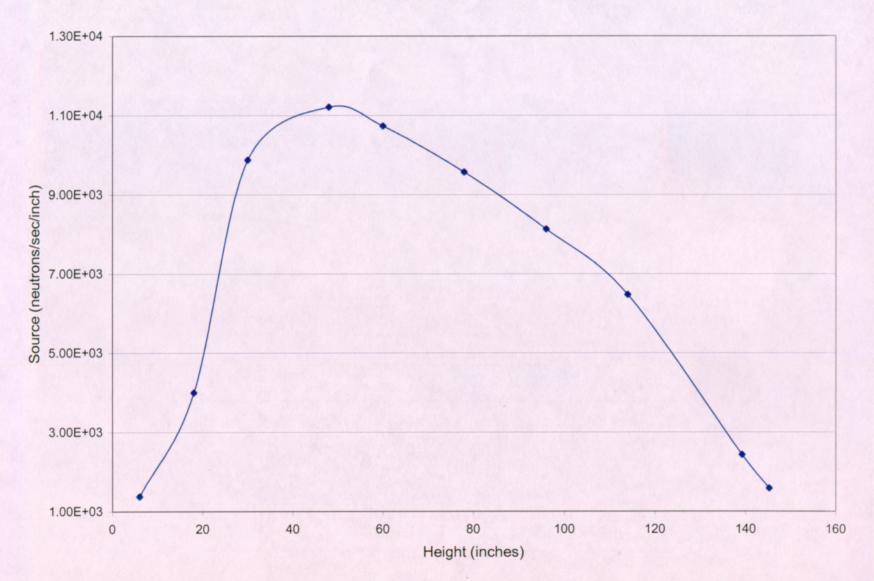
		data per inch										
	Time, years	6	. 12	12	18	12	18	18	18	25.24	6	APF
70												
GWd/MTU	0.002739726	4.45E+05	2.80E+06	7.76E+06	1.05E+07	1.22E+07	1.24E+07	1.12E+07	8.24E+06	2.56E+06	4.74E+05	1.81E+00
	5	1.46E+05	1.71E+06	5.30E+06	6.93E+06	7.75E+06	7.77E+06	6.97E+06	5.21E+06	1.41E+06	1.65E+05	1.79E+00
	6	1.40E+05	1.64E+06	5.07E+06	6.58E+06	7.32E+06	7.33E+06	6.59E+06	4.95E+06	1.35E+06	1.59E+05	1.78E+00
	7	1.36E+05	1.58E+06	4.85E+06	6.27E+06	6.94E+06	6.94E+06	6.25E+06	4.72E+06	1.30E+06	1.54E+05	1.77E+00
	8	1.31E+05	1.52E+06	4.65E+06	5.98E+06	6.61E+06	6.59E+06	5.95E+06	4.51E+06	1.26E+06	1.48E+05	1.77E+00
	9	1.26E+05	1.47E+06	4.46E+06	5.72E+06	6.30E+06	6.28E+06	5.67E+06	4.32E+06	1.21E+06	1.43E+05	1.76E+00
	10	1.22E+05	1.41E+06	4.28E+06	5.47E+06	6.02E+06	6.00E+06	5.42E+06	4.14E+06	1.16E+06	1.38E+05	1.76E+00
	11	1.18E+05	1.36E+06	4.11E+06	5.25E+06	5.76E+06	5.74E+06	5.19E+06	3.97E+06	1.12E+06	1.33E+05	1.76E+00
	15	1.02E+05	1.17E+06	3.52E+06	4.47E+06	4.89E+06	4.87E+06	4.41E+06	3.39E+06	9.67E+05	1.16E+05	1.75E+00
	20	8.60E+04	9.73E+05	2.92E+06	3.70E+06	4.04E+06	4.02E+06	3.64E+06	2.81E+06	8.04E+05	9.72E+04	1.75E+00
		6	18	30	48	60	78	96	114	139.24	145.24	
		data per inch										
	Time, years	6	12	12	18	12	18	18	18	25.24	6	
75												
GWd/MTU	0.002739726	5.11E+05	3.48E+06	1.03E+07	1.47E+07	1.76E+07	1.81E+07	1.60E+07	1.13E+07	3.08E+06	5.02E+05	1.90E+00
	5	1.91E+05	2.25E+06	6.91E+06	9.23E+06	1.05E+07	1.06E+07	9.48E+06	7.02E+06	1.86E+06 /	2.09E+05	1.82E+00
	6	1.84E+05	2.17E+06	6.57E+06	8.69E+06	9.83E+06	9.87E+06	8.86E+06	6.63E+06	1.79E+06	2.01E+05	1.80E+00
	7	1.78E+05	2.08E+06	6.26E+06	8.22E+06	9.23E+06	9.26E+06	8.33E+06	6.28E+06	1.72E+06	1.94E+05	1.79E+00
	8	1.72E+05	2.01E+06	5.98E+06	7.79E+06	8.72E+06	8.73E+06	7.86E+06	5.97E+06	1.66E+06	1.87E+05	1.78E+00
	9	1.65E+05	1.93E+06	5.72E+06	7.42E+06	8.26E+06	8.26E+06	7.46E+06	5.69E+06	1.60E+06	1.81E+05	1.77E+00
	10	1.60E+05	1.86E+06	5.48E+06	7.08E+06	7.85E+06	7.84E+06	7.09E+06	5.44E+06	1.54E+06	1.74E+05	1.76E+00
	11	1.54E+05	1.79E+06	5.26E+06	6.77E+06	7.49E+06	7.47E+06	6.76E+06	5.20E+06	1.48E+06	1.68E+05	1.76E+00
	15	1.34E+05	1.54E+06	4.49E+06	5.73E+06	6.30E+06	6.27E+06	5.68E+06	4.42E+06	1.27E+06	1.46E+05	1.75E+00
	20	1.12E+05	1.28E+06	3.72E+06	4.73E+06	5.18E+06	5.15E+06	4.68E+06	3.65E+06	1.06E+06	1.22E+05	1.75E+00

	6.97E+03 Neutron totals from 1						
	node case	1.400	145.24	Difference	% difference		Time, years
						10	
	1.01E+06	1.42E+06	9.75E+03	-1.45E+03	-15%	GWd/MTU	0.002739726
	2.04E+05	2.85E+05	1.96E+03	-5.42E+02	-28%		5
	2.05E+05	2.87E+05	1.97E+03	-5.26E+02	-27%		6
	2.06E+05	2.88E+05	1.98E+03	-5.11E+02	-26%		7
	2.07E+05	2.90E+05	1.99E+03	-4.96E+02	-25%		8
	2.08E+05	2.91E+05	2.00E+03	-4.82E+02	-24%		9
	2.09E+05	2.92E+05	2.01E+03	-4.68E+02	-23%		10
	2.10E+05	2.93E+05	2.02E+03	-4.56E+02	-23%		11
	2.12E+05	2.97E+05	2.05E+03	-4.07E+02	-20%		15
	2.14E+05	3.00E+05	2.07E+03	-3.56E+02	-17%		20
	7.70E+04						
	Neutron totals from 1						
	node case	1.400	145.24	Difference	% difference		Time, years
						20	
	1.12E+07	1.57E+07	1.08E+05	-2.99E+04	-28%	GWd/MTU	0.002739726
NOTE:	1.82E+06	2.55E+06	1.76E+04	-1.87E+04	-106%		5
node 3	1.78E+06	2.49E+06	1.72E+04	-1.80E+04	-105%		6
info	1.74E+06	2.44E+06	1.68E+04	-1.73E+04	-103%		7
is incorrect;	1.70E+06	2.38E+06	1.64E+04	-1.67E+04	-102%		8
it is not used	1.67E+06	2.33E+06	1.60E+04	-1.61E+04	-100%		9
in the finat	1.63E+06	2.28E+06	1.57E+04	-1.55E+04	-99%		10
comparison	1.60E+06	2.23E+06	1.54E+04	-1.49E+04	-97%		11
to determine	1.47E+06	2.06E+06	1.42E+04	-1.28E+04	-91%		15
% difference	1.33E+06	1.87E+06	1.28E+04	-1.06E+04	-83%		20
from one node							
	2.93E+05						
	Neutron totals from 1						
	node case	1.400	145.24	Difference	% difference		Time, years
		1.400	140.24	Difference	70 uniciende	30	Time, years
	4.25E+07	5.95E+07	4.10E+05	-1.08E+05	-26%	GWd/MTU	0.002739726
	1.07E+07	1.50E+07	1.03E+05	-9.92E+04	-96%		5
	1.04E+07	1.45E+07	9.99E+04	-9.55E+04	-96%		6
	1.00E+07	1.40E+07	9.66E+04	-9.19E+04	-95%		. 7
	9.69E+06	1.36E+07	9.34E+04	-8.84E+04	-95%		8
	9.38E+06	1.30E+07	9.04E+04	-8.51E+04	-93 % -94%		9
	9.08E+06	1.31E+07	9.04E+04 8.75E+04	-8.19E+04	-94%		10 10
	8.79E+06	1.27E+07 1.23E+07	8.47E+04	-7.88E+04	-94% -93%		11
	7.73E+06	1.08E+07	8.47E+04 7.45E+04	-7.88E+04 -6.77E+04	-93% -91%		15
	6.61E+06	9.26E+06	6.37E+04	-5.59E+04	-88%		20

.

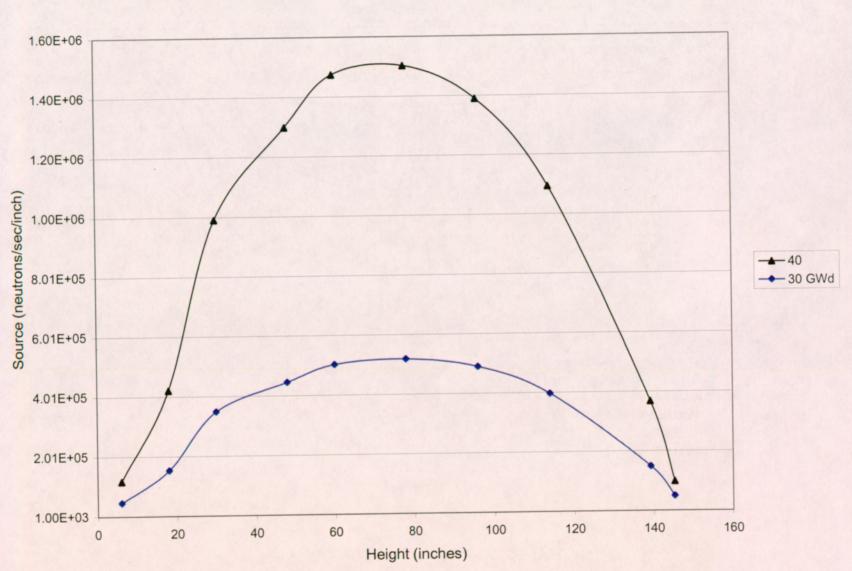
7.44E+05 Neutron totals from 1						
node case	1.400	145.24	Difference	% difference		Time, years
			······································		40	
1.08E+08	1.51E+08	1.04E+06	-4.61E+05	-44%	GWd/MTU	0.002739726
3.95E+07	5.53E+07	3.81E+05	-3.66E+05	-96%		5
3.81E+07	5.33E+07	3.67E+05	-3.52E+05	-96%		6
3.67E+07	5.14E+07	3.54E+05	-3.39E+05	-96%		7
3.54E+07	4.96E+07	3.42E+05	-3.26E+05	-96%		8
3.42E+07	4.79E+07	3.29E+05	-3.14E+05	-95%		9
3.30E+07	4.62E+07	3.18E+05	-3.03E+05	-95%		10
3.18E+07	4.45E+07	3.07E+05	-2.91E+05	-95%		11
2.76E+07	3.87E+07	2.66E+05	-2.50E+05	-94%		15
2.32E+07	3.24E+07	2.23E+05	-2.07E+05	-93%		20
1.55E+06						
Neutron totals from 1						
node case	1.400	145.24	Difference	% difference		Time, years
					50	
2.25E+08	3.14E+08	2.16E+06	-1.09E+06	-50%	GWd/MTU	0.002739726
1.07E+08	1.50E+08	1.03E+06	-9.05E+05	-88%		5
1.03E+08	1.44E+08	9.91E+05	-8.69E+05	-88%		6
9.91E+07	1.39E+08	9.55E+05	-8.35E+05	-87%		7
9.55E+07	1.34E+08	9.20E+05	-8.02E+05	-87%		8
9.20E+07	1.29E+08	8.87E+05	-7.72E+05	-87%		9
8.87E+07	1.24E+08	8.55E+05	-7.42E+05	-87%		10
8.55E+07	1.20E+08	8.24E+05	-7.14E+05	-87%		11
7.38E+07	1.03E+08	7.11E+05	-6.12E+05	-86%		15
6.15E+07	8.61E+07	5.93E+05	-5.07E+05	-86%		20
2.85E+06						
Neutron totals from 1						
 node case	1.400	145.24	Difference	% difference		Time, years
					60	
4.13E+08	5.79E+08	3.98E+06	+2.62E+06	-66%	GWd/MTU	0.002739726
2.35E+08	3.29E+08	2.26E+06	-2.04E+06	-90%		5
2.26E+08	3.16E+08	2.18E+06	-1.94E+06	-89%		6
2.17E+08	3.04E+08	2.10E+06	-1.85E+06	-88%		7
2.09E+08	2.93E+08	2.02E+06	-1.76E+06	-87%		8
2.02E+08	2.82E+08	1.94E+06	-1.69E+06	-87%		9
1.94E+08	2.72E+08	1.87E+06	-1.62E+06	-86%		10
1.87E+08	2.62E+08	1.80E+06	-1.55E+06	-86%		11
1.61E+08	2.26E+08	1.55E+06	-1.32E+06	-85%		15
1.34E+08	1.88E+08	1.29E+06	-1.09E+06	-84%		20


.


ł

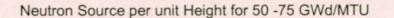
4.88E+06 Neutron totals from 1						
 node case	1.400	145.24	Difference	% difference		Time, years
					70	
7.08E+08	9.91E+08	6.83E+06	-5.61E+06	-82%	GWd/MTU	0.002739726
4.47E+08	6.26E+08	4.31E+06	-3.47E+06	-80%		5
4.29E+08	6.00E+08	4.13E+06	-3.19E+06	-77%		6
4.12E+08	5.77E+08	3.97E+06	-2.97E+06	-75%		7
3.96E+08	5.55E+08	3.82E+06	-2.79E+06	-73%		8
3.81E+08	5.33E+08	3.67E+06	-2.63E+06	-72%		9
3.66E+08	5.13E+08	3.53E+06	-2.49E+06	-70%		10
3.53E+08	4.94E+08	3.40E+06	-2.36E+06	-69%		11
3.03E+08	4.24E+08	2.92E+06	-1.97E+06	-67%		15
2.52E+08	3.53E+08	2.43E+06	-1.61E+06	-66%		20
6.30E+06						
Neutron totals from 1						
 node case	1.400	145.24	Difference	% difference		Time, years
					75	
9.15E+08	1.28E+09	8.82E+06	-9.28E+06	-105%	GWd/MTU	0.002739726
5.93E+08	8.30E+08	5.71E+06	-4.88E+06	-85%		5
5.67E+08	7.94E+08	5.47E+06	-4.40E+06	-81%		6
5.44E+08	7.62E+08	5.24E+06	-4.02E+06	-77%		7
5.22E+08	7.31E+08	5.03E+06	-3.70E+06	-73%		8
5.01E+08	7.02E+08	4.83E+06	-3.43E+06	-71%		9
4.82E+08	6.75E+08	4.65E+06	-3.21E+06	-69%		10
4.63E+08	6.49E+08	4.47E+06	-3.02E+06	-68%		11
		0.005.00	0.405.00	-64%		15
3.98E+08	5.57E+08	3.83E+06	-2.46E+06	-0470		15

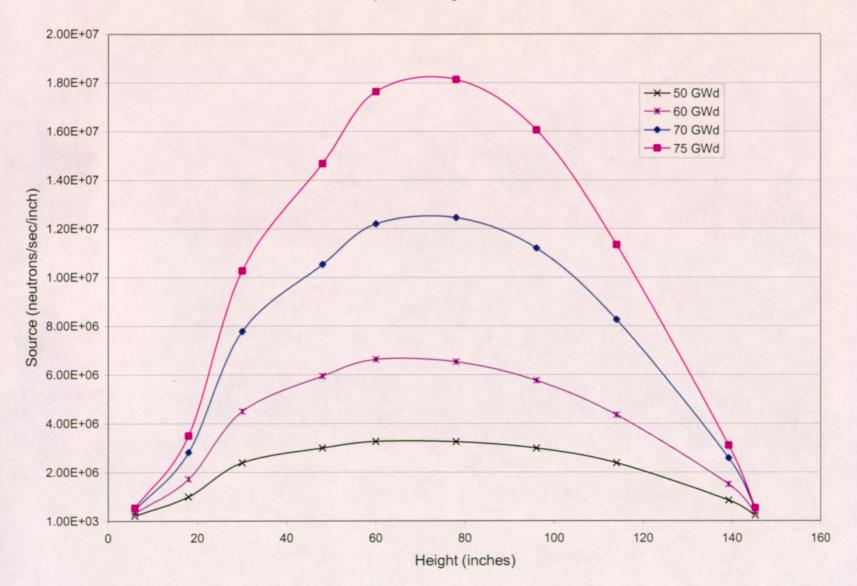
Worksheet '10 GWd'


Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A






Worksheet '40 GWd'


Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A



Neutron Source per unit Height for 30-40 GWd/MTU

Worksheet '50-75 Gwd'





7.50E-08 4.00E-08 2.00E-08

5.01E-09

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00

4.71E+06

		n basis fuel :	after 11 years	s of cooling time.	<u> </u>					
1	Veutrons									
1							Managerad	Normalized,	normalized source/per	normalized source/per
				0 749/ 11.00	3.74%.170kg.11yrs	raw, 200/170	Normalized, 200 kg	170 kg	mtu, 200 kg	mtu, 170 kg
	Min	Max	Mean	3.74%.11yrs 2.71E+06	4.19E+06	65%	1.85E-02	1.86E-02	9.25E-02	1.09E-01
	6.43E+00	2.00E+01 6.43E+00	1.32E+01 4.72E+00	3.08E+07	4.74E+07	65%	2.10E-01	2.10E-01	1.05E+00	1.23E+00
	3.00E+00 1.85E+00	3.00E+00	2.43E+00	3.40E+07	5.20E+07	65%	2.32E-01	2.31E-01	1.16E+00	1.36E+00
	1.40E+00	1.85E+00	1.63E+00	1.92E+07	2.95E+07	65%	1.31E-01	1.31E-01	6.55E-01	7.70E-01
	9.00E-01	1.40E+00	1.15E+00	2.60E+07	4.01E+07	65%	1.77E-01	1.78E-01	8.87E-01	1.05E+00
	4.00E-01	9.00E-01	6.50E-01	2.84E+07	4.38E+07	65%	1.94E-01	1.94E-01	9.68E-01	1.14E+00
	1.00E-01	4.00E-01	2.50E-01	5.55E+06	8.58E+06	65%	3.79E-02	3.80E-02	1.89E-01	2.24E-01
	1.70E-02	1.00E-01	5.85E-02	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
	3.00E-03	1.70E-02	1.00E-02	0.00E+00	0.00E+00		0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00
	5.50E-04	3.00E-03	1.78E-03	0.00E+00	0.00E+00		0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.00E-04	5.50E-04	3.25E-04	0.00E+00	0.00E+00 0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	3.00E-05	1.00E-04	6.50E-05 2.00E-05	0.00E+00 0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.00E-05	3.00E-05 1.00E-05	2.00E-05 6.53E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	3.05E-06 1.77E-06	3.05E-06	2.41E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.30E-06	1.77E-06	1.54E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.13E-06	1.30E-06	1.22E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.00E-06	1.13E-06	1.07E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	8.00E-07	1.00E-06	9.00E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	4.00E-07	8.00E-07	6.00E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	3.25E-07	4.00E-07	3.63E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
			0 755 07	0.005.00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	2.25E-07	3.25E-07	2.75E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.00E-07	2.25E-07	1.63E-07	0.00E+00 0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	5.00E-08	1.00E-07 5.00E-08	7.50E-08 4.00E-08	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	3.00E-08 1.00E-08	3.00E-08	2.00E-08	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.00E-08	1.00E-08	5.01E-09	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.000			1.47E+08	2.26E+08	65%	1.00E+00	1.00E+00		
	Neutrons:	Thermal DBI	F at 311 years	3						
							normalized	normalized	Percentage of	
						raw,	source/per mtu, 170 kg	source/per mtu, 200 kg	170kg loading value	
	Min	Max	Mean	3.74%.170kg.311yrs		200/170		7.14E-02	75%	
			1.32E+01	7.64E+04	4.59E+04	60% 68%	9.53E-02 1.22E+00	1.03E+00	84%	
			4.72E+00	9.77E+05	6.62E+05 9.85E+05	66% 77%	1.60E+00	1.53E+00	96%	
			2.43E+00	1.29E+06 6.25E+05	4.31E+05	69%	7.81E-01	6.71E-01	86%	
			1.63E+00 1.15E+00	7.77E+05	4.97E+05	64%	9.70E-01	7.73E-01	80%	
			6.50E-01	8.12E+05	4.96E+05	61%	1.01E+00	7.72E-01	76%	
			2.50E-01	1.59E+05	9.68E+04	61%	1.98E-01	1.51E-01	76%	
			5.85E-02	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			1.00E-02	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			1.78E-03	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			3.25E-04	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			6.50E-05	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			2.00E-05	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			6.53E-06	0.00E+00	0.00E+00		0.00E+00 0.00E+00	0.00E+00 0.00E+00		
			2.41E-06	0.00E+00	0.00E+00 0.00E+00		0.00E+00	0.00E+00		
			1.54E-06	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			1.22E-06 1.07E-06	0.00E+00 0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			9.00E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			6.00E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			3.63E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			2.75E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00		
			1.63E-07	0.00E+00	0.00E+00		0.00E+00	0.00E+00		

68%

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00

0.00E+00

3.21E+06

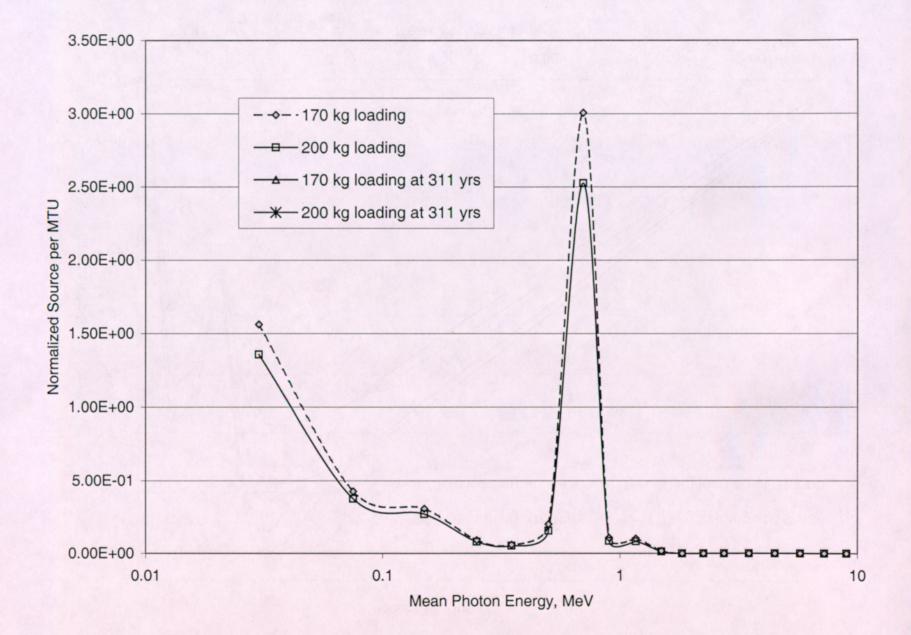
0.00E+00

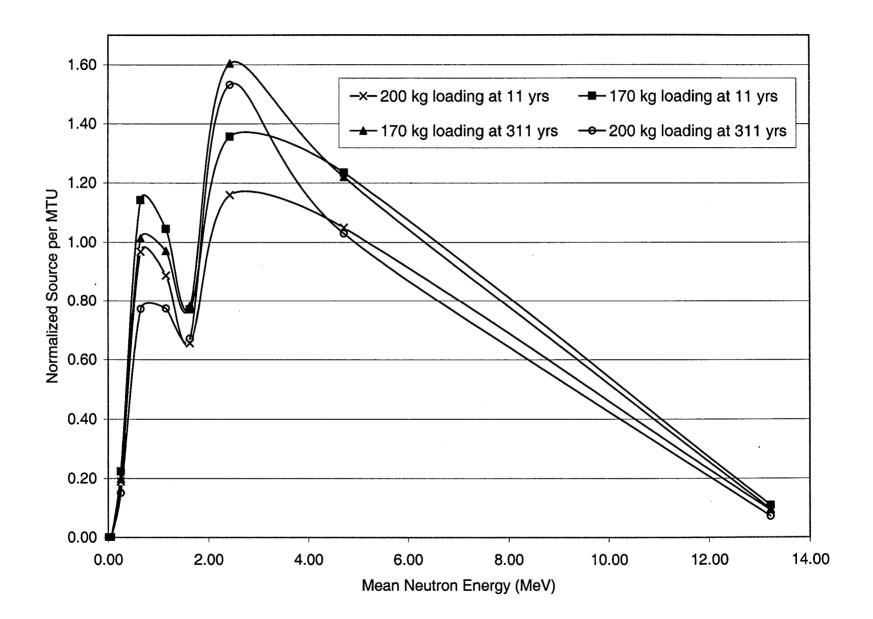
0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00

0.00E+00


I


	Gamma source	s							
				Raw	Normalized		Normalized, per	MTU	
% of 170kg Ioading value	mean energy	3.74%.170kg.49 GWd.11y	) 3.74%.49GWd.1 1y	% of 170kg loading value	3.74%.170kg.49GWd. 11y	3.74%.49GWd.11y		3.74%.49GWd.1 1y	% of 170kg loading value normalized sources per mtu
85%	0.03	3.82E+14	3.93E+14	103%	2.65E-01	2.71E-01	1.56E+00	1.36E+00	
85%	7.50E-02	1.04E+14	1.09E+14	105%	7.25E-02	7.53E-02	4.26E-01	3.77E-01	87% 88%
85%	1.50E-01	7.54E+13	7.85E+13	104%	5.24E-02	5.42E-02	3.08E-01	2.71E-01	88%
85%	2.50E-01	2.23E+13	2.33E+13	104%	1.55E-02	1.61E-02	9.11E-02	8.03E-02	88%
85%	3.50E-01	1.46E+13	1.52E+13	105%	1.01E-02	1.05E-02	5.95E-02	5.26E-02	88%
85%	5.00E-01	4.92E+13	4.53E+13	92%	3.42E-02	3.13E-02	2.01E-01	1.56E-01	78%
85%	7.00E-01	7.36E+14	7.32E+14	99% ·	5.11E-01	5.05E-01	3.01E+00	2.52E+00	84%
	9.00E-01	2.64E+13	2.48E+13	94%	1.83E-02	1.71E-02	1.08E-01	8.57E-02	79%
	1.17E+00	2.50E+13	2.38E+13	95%	1.74E-02	1.65E-02	1.02E-01	8.23E-02	81%
	1.50E+00	4.43E+12	3.85E+12	87%	3.08E-03	2.66E-03	1.81E-02	1.33E-02	73%
	1.83E+00	4.18E+10	4.32E+10	103%	2.91E-05	2.98E-05	1.71E-04	1.49E-04	87%
	2.25E+00	7.13E+09	6.94E+09	97%	4.95E-06	4.79E-06	2.91E-05	2.40E-05	82%
	2.75E+00	5.62E+08	5.12E+08	91%	3.90E-07	3.53E-07	2.29E-06	1.77E-06	77%
	3.50E+00	7.63E+07	6.30E+07	83%	5.30E-08	4.35E-08	3.12E-07	2.18E-07	70%
	4.50E+00	7.67E+06	4.97E+06	65%	5.33E-09	3.43E-09	3.13E-08	1.71E-08	55%
	5.75E+00	3.08E+06	1.99E+06	65%	2.14E-09	1.38E-09	1.26E-08	6.88E-09	55%
	7.25E+00	6.04E+05	3.91E+05	65%	4.19E-10	2.70E-10	2.47E-09	1.35E-09	55%
	9.00E+00	1.28E+05	8.30E+04	65%	8.90E-11	5.73E-11	5.24E-10	2.86E-10	55%
		1.44E+15	1.45E+15	101%	1.00E+00	1.00E+00	5.88E+00	5.00E+00	

Normalized per mtu

			Normalized per m	ntu		
mean energy	3.74%.170kg.49 	3.74%.49GWd.3 11y	3.74%.170kg.490 Wd.311y	3 3.74%.49GWd.311y	% of 170kg loading value (normalized sources per mtu)	Raw % of 170kg loading value
0.03	3.06E+12	3.50E+12	1.69E+00	1.43E+00	85%	114%
7.50E-02	5.90E+12	7.09E+12	3.25E+00	2.90E+00	89%	120%
1.50E-01	2.81E+11	2.42E+11	1.55E-01	9.89E-02	64%	86%
2.50E-01	1.52E+11	1.25E+11	8.37E-02	5.11E-02	61%	82%
3.50E-01	3.37E+10	3.16E+10	1.86E-02	1.29E-02	70%	94%
5.00E-01	1.68E+10	1.70E+10	9.25E-03	6.94E-03	75%	101%
7.00E-01	1.23E+12	1.23E+12	6.78E-01	5.02E-01	74%	100%
9.00E-01	2.98E+09	2.98E+09	1.64E-03	1.22E-03	74%	100%
1.17E+00	1.44E+09	1.51E+09	7.93E-04	6.17E-04	78%	105%
1.50E+00	2.63E+08	2.72E+08	1.45E-04	1.11E-04	77%	103%
1.83E+00	4.51E+07	4.70E+07	2.48E-05	1.92E-05	77%	104%
2.25E+00	3.11E+06	2.95E+06	1.71E-06	1.21E-06	70%	95%
2.75E+00	8.67E+06	8.52E+06	4.78E-06	3.48E-06	73%	98%
3.50E+00	4.12E+05	2.60E+05	2.27E-07	1.06E-07	47%	63%
4.50E+00	1.39E+05	8.69E+04	7.66E-08	3.55E-08	46%	63%
5.75E+00	5.55E+04	3.47E+04	3.06E-08	1.42E-08	46%	63%
7.25E+00	1.09E+04	6.78E+03	6.00E-09	2.77E-09	46%	62%
9.00E+00	2.30E+03 1.07E+13	1.43E+03 1.22E+13	1.27E-09	5.84E-10	46%	62%

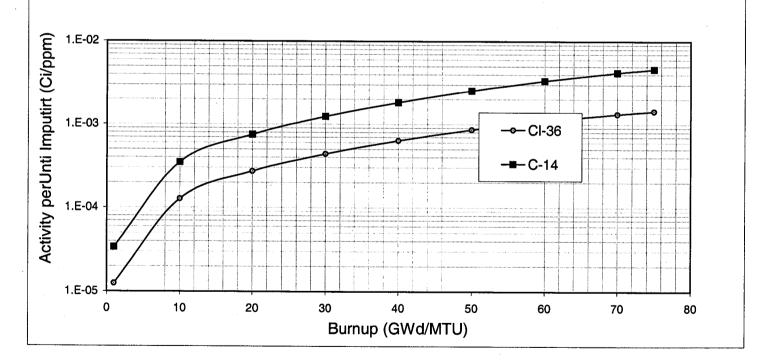
Title: BWR Source Term Generation and Evaluation Worksheet 'Gamma.sources.graph' Document Identifier: 000-00C-MGR0-00200-000-00A





1

neutron REM/HR


neutron REM/HR							
Per source particle							
surface 1				surface 3			
segment:		fuel region		segment:		fuel region	
energy	dose	error	% of total	energy	dose	error	
2.50E-08	0.00E+00	0	0%	2.50E-08	0.00E+00	0	0%
1.00E-07	0.00E+00	0	0%	1.00E-07	1.09E-18	1	0%
1.00E-06	1.70E-15	0.2542	0%	1.00Ë-06	9.37E-16	0.0672	0%
1.00E-05	3.82E-14	0.0816	0%	1.00E-05	2.24E-14	0.0176	0%
1.00E-04	2.91E-13	0.0347	0%	1.00E-04	1.32E-13	0.0103	0%
1.00E-03	2.83E-12	0.0153	0%	1.00E-03	3.28E-13	0.0076	0%
1.00E-02	1.65E-11	0.0076	1%	1.00E-02	7.86E-13	0.0061	0%
1.00E-01	1.77E-10	0.0052	6%	1.00E-01	1.97E-11	0.0042	5%
5.00E-01	9.12E-10	0.0044	31%	5.00E-01	1.59E-10	0.0034	37%
1.00E+00	9.08E-10	0.0051	31%	1.00E+00	1.58E-10	0.0039	37%
2.50E+00	6.40E-10	0.006	22%	2.50E+00	7.14E-11	0.0046	17%
5.00E+00	2.15E-10	0.0093	7%	5.00E+00	1.15E-11	0.0082	3%
7.00E+00	5.63E-11	0.0201	2%	7.00E+00	2.47E-12	0.0171	1%
1.00E+01	5.62E-12	0.0527	0%	1.00E+01	3.57E-13	0.0434	0%
1.40E+01	4.03E-12	0.0811	0%	1.40E+01	2.75E-13	0.0604	0%
2.00E+01	6.52E-12	0.0776	0%	2.00E+01	4.69E-13	0.0583	0%
total	2.94E-09	0.0034	100%	total	4.24E-10	0.003	100%
Gammas for f1o							
surface 1				surface 3			
segment:	-19	-8 -16 15		segment:	-19	8 -16 1	5
energy				energy			
2.00E-02	3.57E+02	0.1731	0%	2.00E-02	4.61E-02	0.6174	0%
3.00E-02	2.29E+01	0.2925	0%	3.00E-02	1.54E-02	0.5331	0%
5.00E-02	3.81E+01	0.1633	0%	5.00E-02	1.50E-02	0.3661	0%
7.00E-02	9.29E+01	0.0804	0%	7.00E-02	2.18Ë-02	0.2334	0%
1.00E-01	9.12E+02	0.0389	1%	1.00E-01	4.77E-01	0.0863	0%
1.50E-01	7.59E+02	0.0353	0%	1.50E-01	4.58E+00	0.0315	2%
3.00E-01	7.44E+03	0.0116	5%	3.00E-01	3.99E+01	0.0158	13%
4.50E-01	1.07E+04	0.0166	7%	4.50E-01	5.85E+01	0.0141	19%
7.00E-01	5.33E+04	0.0105	34%	7.00E-01	8.80E+01	0.0127	29%
1.00E+00	5.68E+04	0.0115	37%	1.00E+00	5.91E+01	0.0174	19%
1.50E+00	2.10E+04	0.0211	14%	1.50E+00	4.54E+01	0.0271	15%
2.00E+00	3.45E+03	0.0586	2%	2.00E+00	7.45E+00	0.0739	2%
2.50E+00	2.25E+02	0.2012	0%	2.50E+00	1.26E+00	0.2796	0%
3.00E+00	2.34E+01	0.737	0%	3.00E+00	0.00E+00	0	0%
4.00E+00	0.00E+00	0	0%	4.00E+00	0.00E+00	0	0%
6.00E+00	0.00E+00	0	0%	6.00E+00	0.00E+00	0	0%
8.00E+00	0.00E+00	0	0%	8.00E+00	0.00E+00	0	0%
1.40E+01	0.00E+00	0	0%	1.40E+01	0.00E+00	0	0%
total	1.55E+05	0.007	100%	total	3.05E+02	0.0119	100%

.

-

BWR Fuel Impurity calculations for CI-36 and C-14

RAW DA	TA					curies per ppm		
				Burnup		Cl36 5.3 ppm		C14 89.4 ppm
Burnup	CI36	6 (5.3 ppm)	C14	(GWd/MTU)	CL36 (5.3ppm)	value/5.3	C-14 (Ci/assembly)	value/89.4
	1	6.61E-05	3.03E-03	1	6.61E-05	1.25E-05	3.03E-03	3.39E-05
1	0	6.74E-04	3.11E-02	10	6.74E-04	1.27E-04	3.11E-02	3.48E-04
2	0	1.44E-03	6.70E-02	20	1.44E-03	2.72E-04	6.70E-02	7.49E-04
3	0	2.33E-03	1.11E-01	30	2.33E-03	4.40E-04	1.11E-01	1.24E-03
4	0	3.38E-03	1.64E-01	40	3.38E-03	6.38E-04	1.64E-01	1.83E-03
5	0	4.57E-03	2.28E-01	50	4.57E-03	8.62E-04	2.28E-01	2.55E-03
6	0	5.82E-03	3.00E-01	60	5.82E-03	1.10E-03	3.00E-01	3.36E-03
7	0	7.03E-03	3.76E-01	70	7.03E-03	1.33E-03	3.76E-01	4.21E-03
7	5	7.62E-03	4.14E-01	75	7.62E-03	1.44E-03	4.14E-01	4.63E-03



Script File: gammas

BEGIN {insas=0 && intable=0}
/halt feature/{insas=1}
/gamma source spectrum/ {if (insas) intable=1; print \$0}
/ to / {if (insas && intable) print \$0}
/totals/ {intable=0}

Script File: neutrons

BEGIN { intable=0}
/alpha-n plus/ {intable=1; print \$0}
/yr/{if (intable) print \$0}
/E/ {if (intable) print \$0}
/ gamma sources determined / {intable=0}

Script File: curies

BEGIN {intable=0 && insas=0 }
/halt feature/ {insas=1}
/nuclide radioactivity/{if (insas) print \$0; intable=1}
/initial/ {if (insas && intable) print \$0}
/charge/ {if (insas && intable) print \$0}
/E/ {if (insas && intable) print \$0}
/total/ {intable=0}

Script File: watts

BEGIN {intable=0 && insas=0 }
/halt feature/ {insas=1}
/nuclide thermal power, watts/{if (insas) print \$0; intable=1}
/charge/ {if (insas && intable) print \$0}
/initial/ {if (insas && intable) print \$0}
/E/ {if (insas && intable) print \$0}
/total/ {intable=0}

## List of Files on Compact Discs

This attachment lists the all the files on Attachment VII, including the '*.cut' files produced by the last revision of this calculation. The '*.cut' files are the sections of the SAS2H/ORIGEN-S output files that contain the input echoes and the final ORIGEN-S output. Other intermediate calculations and information generated by SAS2H and included in the output files have been removed. In the '*.cut' file name, the initial enrichment of the fuel appears first, followed by the '%' symbol. The files listed as 'BWR.max.2.cut', 'BWR.min.2.cut', 'BWR.max.3.cut', and 'BWR.min.3.cut' are used to generate radionuclide inventories for specific years (see Section 5.5). The '*.2.cut' files generate the information for the years up to and including 12033. The '*.3.cut' files generate the information for the years 12033 to 1002033. The files listed as 'bwr_imp_BU#.cut' and 'bwr_cl2_BU#.cut' are the SAS2H/ORIGEN-S output files used to demonstrate the effect of fuel impurities on the source terms. The 'BU#' indicates the burnup for that particular case, with "BU4" being the lowest calculated burnup, and "BU13" being the highest. The files 'outbwr_imp_5.5_75.out' and 'outbwr_imp_bound.out' demonstrate the effect of enrichment on activity from fuel impurities.

Source term information from the '*.cut' and '*.output' files of the SAS2H/ORIGEN-S runs in the folders "Impurity_study," "parameter_study_output," "ten_node_output," and "THERMAL_DBF_output" on compact disc one should not be used for assemblies expected to be received at a potential repository. Those cases were run solely to form the basis for deciding what kinds of cases to be run for BWR assemblies in an expected waste stream. Furthermore, the '*.cut' files in folder "ten_node_output" and the '*.output' files in folder "parameter_study_output" on compact disc one cannot be considered product output in accordance with AP-3.15Q, *Managing Technical Product Inputs* (Ref. 7.33), since some information (Table 8 and Table 17) for those runs was taken from Ref. 7.13, pp. 333-334 and Ref. 7.17, pp. 50-55, which are "reference only." <u>Therefore, the information in the '*.cut' files of folder "ten_node_output" and the '*.output' files of folder "parameter_study_output" on compact disc one should not be used for any other calculations or analyses.</u>

Contractor Contractor

1.6.00

CD 1							
File Size (bytes)	Date of Transfer	Time of Transfer	FILE NAME				
Folder: cut_files_fe	or_0.7%_and_1%						
2,180,169	10/31/2002	11:37a	0.7%.100MWd.bottom.cut				
2,366,251	9/20/1999	07:04a	0.7%.100MWd.fuel.cut				
2,220,219	9/20/1999	07:16a	0.7%.100MWd.plenum.cut				
2,198,825	9/20/1999	07:16a	0.7%.100MWd.top.cut				
2,492,014	9/20/1999	07:02a	0.7%.10GWd.bottom.cut				
2,726,172	9/20/1999	06:21a	0.7%.10GWd.fuel.cut				
2,533,942	9/20/1999	06:59a	0.7%.10GWd.plenum.cut				
2,509,846	9/20/1999	07:00a	0.7%.10GWd.top.cut				
2,058,921	9/20/1999	07:24a	0.7%.10MWd.bottom.cut				
2,235,687	9/20/1999	07:15a	0.7%.10MWd.fuel.cut				
2,084,893	9/20/1999	07:23a	0.7%.10MWd.plenum.cut				
2,075,493	9/20/1999	07:23a	0.7%.10MWd.top.cut				
2,320,930	9/20/1999	07:13a	0.7%.1GWd.bottom.cut				
2,519,406	9/20/1999	06:59a	0.7%.1GWd.fuel.cut				
2,355,206	9/20/1999	07:04a	0.7%.1GWd.plenum.cut				
2,342,904	9/20/1999	07:12a	0.7%.1GWd.top.cut				
1,983,474	9/20/1999	07:27a	0.7%.1MWd.bottom.cut				
2,145,862	9/20/1999	07:20a	0.7%.1MWd.fuel.cut				
2,013,606	9/20/1999	07:26a	0.7%.1MWd.plenum.cut				
2,002,074	9/20/1999	07:26a	0.7%.1MWd.top.cut				
2,586,845	9/20/1999	06:57a	0.7%.20GWd.bottom.cut				
2,826,529	9/20/1999	06:01a	0.7%.20GWd.fuel.cut				
2,635,887	9/20/1999	06:33a	0.7%.20GWd.plenum.cut				
2,606,349	9/20/1999	06:55a	0.7%.20GWd.top.cut				
2,627,525	9/20/1999	06:34a	0.7%.30GWd.bottom.cut				
2,866,187	9/20/1999	06:00a	0.7%.30GWd.fuel.cut				
2,672,409	9/20/1999	06:29a	0.7%.30GWd.plenum.cut				
2,647,417	9/20/1999	06:32a	0.7%.30GWd.top.cut				
2,656,978	9/20/1999	06:31a	0.7%.40GWd.bottom.cut				
2,896,946	9/20/1999	05:59a	0.7%.40GWd.fuel.cut				
2,703,168	9/20/1999	06:25a	0.7%.40GWd.plenum.cut				
2,680,574	9/20/1999	06:29a	0.7%.40GWd.top.cut				
2,684,838	9/20/1999	06:28a	0.7%.50GWd.bottom.cut				
2,930,750	9/20/1999	05:57a	0.7%.50GWd.fuel.cut				
2,730,618	9/20/1999	06:09a	0.7%.50GWd.plenum.cut				
2,707,656	9/20/1999	06:24a	0.7%.50GWd.top.cut				
2,703,487	9/20/1999	06:24a	0.7%.60GWd.bottom.cut				
2,953,347	9/20/1999	05:56a	0.7%.60GWd.fuel.cut				
2,751,385	9/20/1999	06:06a	0.7%.60GWd.plenum.cut				
2,728,423	9/20/1999	06:20a	0.7%.60GWd.top.cut				
2,721,846	9/20/1999	06:22a	0.7%.70GWd.bottom.cut				
2,977,790	9/20/1999	05:55a	0.7%.70GWd.fuel.cut				
2,766,354	9/20/1999	06:05a	0.7%.70GWd.plenum.cut				

CD 1							
File Size (bytes)	Date of Transfer	Time of Transfer	FILE NAME				
2,743,784	9/20/1999	06:08a	0.7%.70GWd.top.cut				
2,733,145	9/20/1999	06:09a	0.7%.75GWd.bottom.cut				
2,986,391	9/20/1999	05:54a	0.7%.75GWd.fuel.cut				
2,779,831	9/20/1999	06:03a	0.7%.75GWd.plenum.cut				
2,754,513	9/20/1999	06:06a	0.7%.75GWd.top.cut				
2,173,888	9/20/1999	07:18a	1.0%.100MWd.bottom.cut				
2,360,922	9/20/1999	07:04a	1.0%.100MWd.fuel.cut				
2,215,118	9/20/1999	07:16a	1.0%.100MWd.plenum.cut				
2,191,090	9/20/1999	07:17a	1.0%.100MWd.top.cut				
2,487,896	9/20/1999	07:02a	1.0%.10GWd.bottom.cut				
2,718,438	9/20/1999	06:22a	1.0%.10GWd.fuel.cut				
2,524,210	9/20/1999	06:59a	1.0%.10GWd.plenum.cut				
2,505,346	9/20/1999	07:01a	1.0%.10GWd.top.cut				
2,054,416	9/20/1999	07:25a	1.0%.10MWd.bottom.cut				
2,231,286	9/20/1999	07:16a	1.0%.10MWd.fuel.cut				
2,080,274	9/20/1999	07:23a	1.0%.10MWd.plenum.cut				
2,071,122	9/20/1999	07:24a	1.0%.10MWd.top.cut				
2,317,422	9/20/1999	07:14a	1.0%.1GWd.bottom.cut				
2,515,020	9/20/1999	07:00a	1.0%.1GWd.fuel.cut				
2,352,338	9/20/1999	07:04a	1.0%.1GWd.plenum.cut				
2,339,510	9/20/1999	07:12a	1.0%.1GWd.top.cut				
1,985,211	9/20/1999	07:27a	1.0%.1MWd.bottom.cut				
2,145,863	9/20/1999	07:20a	1.0%.1MWd.fuel.cut				
2,014,227	9/20/1999	07:26a	1.0%.1MWd.plenum.cut				
2,001,951	9/20/1999	07:26a	1.0%.1MWd.top.cut				
Folder: Impurity_s		07.200	1.0 /0. 11111 d.top.out				
232,600	11/11/1999	03:02a	bwr_imp_BU5.cut				
245,543	11/11/1999	03:02a	bwr_imp_BU6.cut				
255,849	11/11/1999	03:02a	bwr_imp_BU7.cut				
266,109	11/11/1999	03:02a	bwr imp BU8.cut				
275,063	11/11/1999	03:02a	bwr_imp_BU10.cut				
285,312	11/11/1999	03:02a	bwr_imp_BU11.cut				
291,998	11/11/1999	03:02a	bwr_imp_BU12.cut				
298,025	11/11/1999	03:02a	bwr_imp_BU13.cut				
206,934	11/11/1999	03:02a	bwr_imp_BU4.cut				
48,221,732	11/11/1999	03:05a	outpbwr_imp_bound.out				
48,082,956	11/11/1999	03:09a	outpbwr_imp_5.5_75.out				
Folder: parameter		100.000	loubowi_iiiib_0.0_/0.0ut				
10,570,169	2/24/1999	02:01a	1.den1.output				
10,589,423	2/24/1999	02:01a	1.den2.output				
10,464,603	2/24/1999	02:07a	1.den3.output				
10,563,627	2/24/1999	02:02a 02:01a	1.den4.output				
10,660,383	2/24/1999	02:01a					
10,684,741	2/24/1999	02:01a	2.den1.output 2.den2.output				
1.4.447.741	1 61641 1333						

		CD 1	
File Size (bytes)	Date of Transfer	Time of Transfer	FILE NAME
10,660,514	2/24/1999	02:01a	2.den4.output
11,580,632	2/24/1999	01:59a	4.den1.output
11,604,374	2/24/1999	01:58a	4.den2.output
11,487,893	2/24/1999	02:00a	4.den3.output
11,581,115	2/24/1999	01:59a	4.den4.output
11,582,053	2/24/1999	01:59a	6.den1.output
11,605,046	2/24/1999	01:58a	6.den2.output
11,487,183	2/24/1999	02:00a	6.den3.output
11,582,654	2/24/1999	01:59a	6.den4.output
11,510,874	2/24/1999	02:00a	8.den1.output
11,532,190	2/24/1999	01:59a	8.den2.output
11,416,229	2/24/1999	02:00a	8.den3.output
11,511,241	2/24/1999	02:00a	8.den4.output
Folder: Performa		_h	
174,898	11/4/1999	12:49a	BWR.ave.3.cut
233,861	11/4/1999	12:49a	BWR.ave.2.cut
199,861	11/4/1999	12:49a	BWR.max.3.cut
274,606	11/4/1999	12:49a	BWR.max.2.cut
Folder: ten_node			
855,883	2/24/1999	01:52a	node.10.50GWd.cut
865,551	2/24/1999	01:52a	node.10.60GWd.cut
864,541	2/24/1999	01:52a	node.10.75GWd.cut
875,146	2/24/1999	01:52a	node.10.70GWd.cut
786,499	2/24/1999	01:52a	node.10.10GWd.cut
802,903	2/24/1999	01:52a	node.10.20GWd.cut
819,694	2/24/1999	01:52a	node.10.30GWd.cut
844,864	2/24/1999	01:52a	node.10.40GWd.cut
1,520,079	2/24/1999	01:50a	node.1.10GWd.cut
794,333	2/24/1999	01:51a	node.1.20GWd.cut
817,038	2/24/1999	01:51a	node.1.30GWd.cut
843,162	2/24/1999	01:51a	node.1.40GWd.cut
851,435	2/24/1999	01:51a	node.1.50GWd.cut
859,800	2/24/1999	01:51a	node.1.60GWd.cut
867,272	2/24/1999	01:51a	node.1.70GWd.cut
856,667	2/24/1999	01:51a	node.1.75GWd.cut
847,636	2/24/1999	01:51a	node.2.10GWd.cut
869,935	2/24/1999	01:51a	node.2.20GWd.cut
889,794	2/24/1999	01:51a	node.2.30GWd.cut
915,762	2/24/1999	01:51a	node.2.40GWd.cut
928,724	2/24/1999	01:51a	node.2.50GWd.cut
941,769	2/24/1999	01:51a	node.2.60GWd.cut
950,690	2/24/1999	01:51a	node.2.70GWd.cut
942,269	2/24/1999	01:51a	node.2.75GWd.cut
854,033	2/24/1999	01:52a	node.3.10GWd.cut
888,734	2/24/1999	01:52a	node.3.20GWd.cut

CD 1						
File Size (bytes)	Date of Transfer	Time of Transfer	FILE NAME			
898,118	2/24/1999	01:52a	node.3.30GWd.cut			
926,763	2/24/1999	01:52a	node.3.40GWd.cut			
937,885	2/24/1999	01:52a	node.3.50GWd.cut			
950,025	2/24/1999	01:52a	node.3.60GWd.cut			
962,621	2/24/1999	01:52a	node.3.70GWd.cut			
953,338	2/24/1999	01:52a	node.3.75GWd.cut			
862,899	2/24/1999	01:53a	node.4.10GWd.cut			
892,726	2/24/1999	01:53a	node.4.20GWd.cut			
909,014	2/24/1999	01:53a	node.4.30GWd.cut			
938,547	2/24/1999	01:53a	node.4.40GWd.cut			
949,640	2/24/1999	01:53a	node.4.50GWd.cut			
963,179	2/24/1999	01:53a	node.4.60GWd.cut			
973,204	2/24/1999	01:53a	node.4.70GWd.cut			
966,717	2/24/1999	01:53a	node.4.75GWd.cut			
857,072 ′	2/24/1999	01:53a	node.5.10GWd.cut			
887,536	2/24/1999	01:53a	node.5.20GWd.cut			
903,556	2/24/1999	01:53a	node.5.30GWd.cut			
933,880	2/24/1999	01:53a	node.5.40GWd.cut			
943,643	2/24/1999	01:53a	node.5.50GWd.cut			
958,567	2/24/1999	01:53a	node.5.60GWd.cut			
970,720	2/24/1999	01:53a	node.5.70GWd.cut			
963,014	2/24/1999	01:53a	node.5.75GWd.cut			
861,376	2/24/1999	01:54a	node.6.10GWd.cut			
892,929	2/24/1999	01:54a	node.6.20GWd.cut			
910,154	2/24/1999	01:54a	node.6.30GWd.cut			
938,557	2/24/1999	01:54a	node.6.40GWd.cut			
950,087	2/24/1999	01:54a	node.6.50GWd.cut			
964,233	2/24/1999	01:54a	node.6.60GWd.cut			
976,727	2/24/1999	01:54a	node.6.70GWd.cut			
969,255	2/24/1999	01:54a	node.6.75GWd.cut			
361,570	2/24/1999	01:54a	node.7.10GWd.cut			
893,134	2/24/1999	01:54a	node.7.20GWd.cut			
911,809	2/24/1999	01:54a	node.7.30GWd.cut			
939,217	2/24/1999	01:54a	node.7.40GWd.cut			
951,932	2/24/1999	01:54a	node.7.50GWd.cut			
965,350	2/24/1999	01:54a	node.7.60GWd.cut			
977,944	2/24/1999	01:54a	node.7.70GWd.cut			
970,205	2/24/1999	01:54a	node.7.75GWd.cut			
359,348	2/24/1999	01:55a	node.8.10GWd.cut			
388,850	2/24/1999	01:55a	node.8.20GWd.cut			
908,435	2/24/1999	01:55a	node.8.30GWd.cut			
934,373	2/24/1999	01:55a	node.8.40GWd.cut			
946,211		01:55a	node.8.50GWd.cut			
959,797	2/24/1999	01:55a	node.8.60GWd.cut			
971,866	2/24/1999	01:55a	node.8.70GWd.cut			

CD 1							
File Size (bytes)	Date of Transfer	Time of Transfer	FILE NAME				
963,098	2/24/1999	01:55a	node.8.75GWd.cut				
858,462	2/24/1999	01:55a	node.9.10GWd.cut				
886,150	2/24/1999	01:55a	node.9.20GWd.cut				
907,182	2/24/1999	01:55a	node.9.30GWd.cut				
933,402	2/24/1999	01:55a	node.9.40GWd.cut				
944,360	2/24/1999	01:55a	node.9.50GWd.cut				
959,017	2/24/1999	01:55a	node.9.60GWd.cut				
973,525	2/24/1999	01:55a	node.9.70GWd.cut				
962,434	2/24/1999	01:55a	node.9.75GWd.cut				
Folder: THERMA	L DBF output						
2,328,690	2/24/1999	02:08a	3.74%.170kg.60GWd.fuel.cut				
2,142,897	2/24/1999	02:09a	3.74%.no.hardware.50GWd.fuel.cut				
2,122,146	2/24/1999	02:07a	3.74%.10GWd.fuel.cut				
2,121,402	2/24/1999	02:08a	3.74%.170kg.10GWd.fuel.cut				
2,179,387	2/24/1999	02:08a	3.74%.170kg.20GWd.fuel.cut				
2,232,863	2/24/1999	02:08a	3.74%.170kg.30GWd.fuel.cut				
2,294,945	2/24/1999	02:08a	3.74%.170kg.40GWd.fuel.cut				
2,178,921	2/24/1999	02:07a	3.74%.20GWd.fuel.cut				
2,231,407	2/24/1999	02:07a	3.74%.30GWd.fuel.cut				
2,287,590	2/24/1999	02:07a	3.74%.40GWd.fuel.cut				
2,287,590	2/24/1999	06:30a	3.74%.49GWd.fuel.cut				
2,287,590	2/24/1999	02:07a	3.74%.50GWd.fuel.cut				
2,316,609	2/24/1999	02:07a	3.74%.60GWd.fuel.cut				
2,345,584	2/24/1999	02:07a	3.74%.70GWd.fuel.cut				
2,355,307	2/24/1999	02:07a	3.74%.75GWd.fuel.cut				
1,986,076	2/24/1999	02:09a	3.74%.no.hardware.10GWd.fuel.cut				
2,042,577	2/24/1999	02:09a	3.74%.no.hardware.20GWd.fuel.cut				
2,091,463	2/24/1999	02:09a	3.74%.no.hardware.30GWd.fuel.cut				
2,122,067	2/24/1999	02:09a	3.74%.no.hardware.40GWd.fuel.cut				
2,349,235	2/24/1999	02:08a	3.74%.170kg.70GWd.fuel.cut				
2,364,663	2/24/1999	02:08a	3.74%.170kg.75GWd.fuel.cut				
2,151,447	2/24/1999	02:09a	3.74%.no.hardware.60GWd.fuel.cut				
2,294,945	2/24/1999	06:30a	3.74%.170kg.49GWd.fuel.cut				
2,178,808	2/24/1999	02:09a	3.74%.no.hardware.70GWd.fuel.cut				
2,189,439	2/24/1999	02:09a	3.74%.no.hardware.75GWd.fuel.cut				
2,294,945	2/24/1999	02:08a	3.74%.170kg.50GWd.fuel.cut				
2,287,590	2/24/1999	06:31a	3.74%.no.hardware.49GWd.fuel.cut				
Folder: UNIX-scr	<u></u>						
261	10/8/1999	04:31a	curies				
177	10/8/1999	04:07a	gammas				
158	10/8/1999	04:31a	neutrons				
268	10/8/1999	04:31a	watts				

CD 2						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
Folder: 1%_throug	h_3.5%_cut_files					
2,582,590	9/20/1999	05:57a	1.0%.20GWd.bottom.cut			
2,822,016	9/20/1999	06:01a	1.0%.20GWd.fuel.cut			
2,631,240	9/20/1999	06:34a	1.0%.20GWd.plenum.cut			
2,599,460	9/20/1999	06:56a	1.0%.20GWd.top.cut			
2,625,521	9/20/1999	06:54a	1.0%.30GWd.bottom.cut			
2,865,537	9/20/1999	06:00a	1.0%.30GWd.fuel.cut			
2,672,523	9/20/1999	06:29a	1.0%.30GWd.plenum.cut			
2,644,149	9/20/1999	06:33a	1.0%.30GWd.top.cut			
2,654,566	9/20/1999	06:32a	1.0%.40GWd.bottom.cut			
2,894,028	9/20/1999	05:59a	1.0%.40GWd.fuel.cut			
2,700,880	9/20/1999	06:25a	1.0%.40GWd.plenum.cut			
2,678,038	9/20/1999	06:29a	1.0%.40GWd.top.cut			
2,683,382	9/20/1999	06:28a	1.0%.50GWd.bottom.cut			
2,930,002	9/20/1999	05:57a	1.0%.50GWd.fuel.cut			
2,730,624	9/20/1999	06:09a	1.0%.50GWd.plenum.cut			
2,707,092	9/20/1999	06:24a	1.0%.50GWd.top.cut			
2,699,644	9/20/1999	06:25a	1.0%.60GWd.bottom.cut			
2,949,370	9/20/1999	05:56a	1.0%.60GWd.fuel.cut			
2,747,790	9/20/1999	06:06a	1.0%.60GWd.plenum.cut			
2,722,462	9/20/1999	06:21a	1.0%.60GWd.top.cut			
2,727,178	9/20/1999	06:20a	1.0%.70GWd.bottom.cut			
2,978,638	9/20/1999	05:54a	1.0%.70GWd.fuel.cut			
2,770,074	9/20/1999	06:04a	1.0%.70GWd.plenum.cut			
2,748,992	9/20/1999	06:06a	1.0%.70GWd.top.cut			
2,733,313	9/20/1999	06:09a	1.0%.75GWd.bottom.cut			
2,988,989	9/20/1999	05:53a	1.0%.75GWd.fuel.cut			
2,782,285	9/20/1999	06:02a	1.0%.75GWd.plenum.cut			
2,755,251	9/20/1999	06:05a	1.0%.75GWd.top.cut			
2,168,985	9/20/1999	07:18a	1.5%.100MWd.bottom.cut			
2,352,299	9/20/1999	07:04a				
2,206,465	9/20/1999	07:16a	1.5%.100MWd.fuel.cut			
2,186,063	9/20/1999	07:17a	1.5%.100MWd.plenum.cut			
····	9/20/1999	07:02a	1.5%.100MWd.top.cut			
	9/20/1999		1.5%.10GWd.bottom.cut			
with the second s		06:23a	1.5%.10GWd.fuel.cut			
······································	9/20/1999	06:59a	1.5%.10GWd.plenum.cut			
		07:01a	1.5%.10GWd.top.cut			
	9/20/1999	07:24a	1.5%.10MWd.bottom.cut			
	9/20/1999	07:15a	1.5%.10MWd.fuel.cut			
		07:23a	1.5%.10MWd.plenum.cut			
		07:24a	1.5%.10MWd.top.cut			
	Production and the second s	07:14a	1.5%.1GWd.bottom.cut			
		07:00a	1.5%.1GWd.fuel.cut			
		07:04a	1.5%.1GWd.plenum.cut			
		07:12a	1.5%.1GWd.top.cut			
		07:27a	1.5%.1MWd.bottom.cut			
	· · · · · · · · · · · · · · · · · · ·	07:20a	1.5%.1MWd.fuel.cut			
2,012,118	9/20/1999	07:26a	1.5%.1MWd.plenum.cut			

CD 2							
File Size (bytes)	Date of Transfer	Time of Transfer	File Name				
2,005,050	9/20/1999	07:26a	1.5%.1MWd.top.cut				
2,575,093	9/20/1999	06:57a	1.5%.20GWd.bottom.cut				
2,814,097	9/20/1999	06:02a	1.5%.20GWd.fuel.cut				
2,622,513	9/20/1999	06:54a	1.5%.20GWd.plenum.cut				
2,594,403	9/20/1999	06:56a	1.5%.20GWd.top.cut				
2,617,506	9/20/1999	06:55a	1.5%.30GWd.bottom.cut				
2,859,030	9/20/1999	06:00a	1.5%.30GWd.fuel.cut				
2,669,136	9/20/1999	06:30a	1.5%.30GWd.plenum.cut				
2,637,038	9/20/1999	06:33a	1.5%.30GWd.top.cut				
2,649,254	9/20/1999	06:32a	1.5%.40GWd.bottom.cut				
2,887,396	9/20/1999	05:59a	1.5%.40GWd.fuel.cut				
2,695,756	9/20/1999	06:26a	1.5%.40GWd.plenum.cut				
2,669,582	9/20/1999	06:30a	1.5%.40GWd.top.cut				
2,681,631	9/20/1999	06:28a	1.5%.50GWd.bottom.cut				
2,923,529	9/20/1999	05:57a	1.5%.50GWd.fuel.cut				
2,727,623	9/20/1999	06:20a	1.5%.50GWd.plenum.cut				
2,705,093	9/20/1999	06:24a	1.5%.50GWd.top.cut				
2,701,633	9/20/1999	06:25a	1.5%.60GWd.bottom.cut				
2,950,025	9/20/1999	05:56a	1.5%.60GWd.fuel.cut				
2,749,903	9/20/1999	06:06a	1.5%.60GWd.plenum.cut				
2,749,905	9/20/1999	06:21a	1.5%.60GWd.top.cut				
2,723,351	9/20/1999	06:21a	1.5%.70GWd.bottom.cut				
2,974,051	9/20/1999	05:55a	1.5%.70GWd.fuel.cut				
2,767,719	9/20/1999	06:04a	1.5%.70GWd.plenum.cut				
2,746,751	9/20/1999	06:07a	1.5%.70GWd.top.cut				
2,736,394	9/20/1999	06:08a	1.5%.75GWd.bottom.cut				
	9/20/1999	05:53a	1.5%.75GWd.fuel.cut				
2,992,586 2,781,150	9/20/1999	06:02a	1.5%.75GWd.plenum.cut				
have a second	9/20/1999	06:02a	1.5%.75GWd.top.cut				
2,758,580	9/20/1999	07:19a	2.0%.100MWd.bottom.cut				
2,166,839	9/20/1999	07:11a	2.0%.100MWd.fuel.cut				
2,346,899	9/20/1999	07:16a	2.0%.100MWd.plenum.cut				
2,201,447		07:18a	2.0%.100MWd.top.cut				
2,183,783	9/20/1999	07:03a	2.0%.10GWd.bottom.cut				
2,482,814	9/20/1999 9/20/1999	06:24a	2.0%.10GWd.fuel.cut				
2,707,270		06:59a	2.0%.10GWd.plenum.cut				
2,518,042	9/20/1999 9/20/1999	07:01a	2.0%.10GWd.top.cut				
2,499,510	9/20/1999	07:24a	2.0%.10MWd.bottom.cut				
2,054,614		07:15a	2.0%.10MWd.fuel.cut				
2,233,116	9/20/1999	07:23a	2.0%.10MWd.plenum.cut				
2,082,590	9/20/1999	07:23a	2.0%.10MWd.top.cut				
2,073,324	9/20/1999	and the second se	2.0%.1GWd.bottom.cut				
2,309,672	9/20/1999	07:14a	2.0%.1GWd.fuel.cut				
2,498,034	9/20/1999	07:01a	2.0%.1GWd.Idei.cut 2.0%.1GWd.plenum.cut				
2,343,794	9/20/1999	07:12a	2.0%.1GWd.plenum.cut 2.0%.1GWd.top.cut				
2,328,754	9/20/1999	07:13a					
1,989,053	9/20/1999	07:27a	2.0%.1MWd.bottom.cut				
2,146,853	9/20/1999	07:20a	2.0%.1MWd.fuel.cut				
2,011,497	9/20/1999	07:26a	2.0%.1MWd.plenum.cut				
2,006,661	9/20/1999	07:26a	2.0%.1MWd.top.cut				

CD 2						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
2,566,105	9/20/1999	06:58a	2.0%.20GWd.bottom.cut			
2,805,987	9/20/1999	06:02a	2.0%.20GWd.fuel.cut			
2,614,171	9/20/1999	06:55a	2.0%.20GWd.plenum.cut			
2,584,795	9/20/1999	06:57a	2.0%.20GWd.top.cut			
2,609,804	9/20/1999	06:55a	2.0%.30GWd.bottom.cut			
2,851,710	9/20/1999	06:00a	2.0%.30GWd.fuel.cut			
2,659,362	9/20/1999	06:31a	2.0%.30GWd.plenum.cut			
2,632,922	9/20/1999	06:34a	2.0%.30GWd.top.cut			
2,645,748	9/20/1999	06:33a	2.0%.40GWd.bottom.cut			
2,882,530	9/20/1999	05:59a	2.0%.40GWd.fuel.cut			
2,692,760	9/20/1999	06:26a	2.0%.40GWd.plenum.cut			
2,665,382	9/20/1999	06:30a	2.0%.40GWd.top.cut			
2,674,674	9/20/1999	06:29a	2.0%.50GWd.bottom.cut			
2,914,187	9/20/1999	05:58a	2.0%.50GWd.fuel.cut			
2,718,424	9/20/1999	06:22a	2.0%.50GWd.plenum.cut			
2,698,384	9/20/1999	06:26a	2.0%.50GWd.top.cut			
2,699,251	9/20/1999	06:25a	2.0%.60GWd.bottom.cut			
2,945,659	9/20/1999	05:56a	2.0%.60GWd.fuel.cut			
2,747,273	9/20/1999	06:07a	2.0%.60GWd.plenum.cut			
2,722,069	9/20/1999	06:21a	2.0%.60GWd.top.cut			
2,723,466	9/20/1999	06:21a	2.0%.70GWd.bottom.cut			
2,971,294	9/20/1999	05:55a	2.0%.70GWd.fuel.cut			
2,767,710	9/20/1999	06:04a	2.0%.70GWd.plenum.cut			
2,744,376	9/20/1999	06:07a	2.0%.70GWd.top.cut			
2,733,400	9/20/1999	06:08a	2.0%.75GWd.bottom.cut			
2,983,610	9/20/1999	05:54a	2.0%.75GWd.fuel.cut			
2,776,554	9/20/1999	06:03a	2.0%.75GWd.plenum.cut			
2,755,462	9/20/1999	06:05a	2.0%.75GWd.top.cut			
2,171,572	9/20/1999	07:18a	2.5%.100MWd.bottom.cut			
2,351,126	9/20/1999	07:04a	2.5%.100MWd.bottom.cut			
2,205,272	9/20/1999	07:16a	2.5%.100MWd.plenum.cut			
2,188,114	9/20/1999	07:17a	2.5%.100MWd.top.cut			
2,483,304	9/20/1999	07:02a	2.5%.10GWd.bottom.cut			
2,701,892		06:25a	2.5%.10GWd.fuel.cut			
2,518,656	**************************************	06:59a	2.5%.10GWd.plenum.cut			
2,500,000		07:01a	2.5%.10GWd.top.cut			
2,059,089		07:24a	2.5%.10MWd.bottom.cut			
2,236,341		07:15a	2.5%.10MWd.fuel.cut			
2,087,313		07:22a	2.5%.10MWd.plenum.cut			
2,078,037	· · · · · · · · · · · · · · · · · · ·	07:23a	2.5%.10MWd.top.cut			
2,303,085		07:14a	2.5%.1GWd.bottom.cut			
2,490,291	1	07:02a	2.5%.1GWd.fuel.cut			
2,337,207		07:12a	2.5%.1GWd.plenum.cut			
2,321,775		07:12a	2.5%.1GWd.top.cut			
,995,005		07:27a	2.5%.1MWd.bottom.cut			
2,152,185	**************************************	07:19a	2.5%.1MWd.bollon.cut			
2,016,953		07:25a	2.5%.1MWd.Idel.cut 2.5%.1MWd.plenum.cut			
2,012,365		07:26a	2.5%.1MWd.top.cut			
2,561,055		06:58a	2.5%.20GWd.bottom.cut			

	CD 2						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name				
2,795,079	9/20/1999	06:02a	2.5%.20GWd.fuel.cut				
2,602,649	9/20/1999	06:55a	2.5%.20GWd.plenum.cut				
2,577,875	9/20/1999	06:57a	2.5%.20GWd.top.cut				
2,608,409	9/20/1999	06:55a	2.5%.30GWd.bottom.cut				
2,849,933	9/20/1999	06:00a	2.5%.30GWd.fuel.cut				
2,655,695	9/20/1999	06:31a	2.5%.30GWd.plenum.cut				
2,631,527	9/20/1999	06:34a	2.5%.30GWd.top.cut				
2,644,200	9/20/1999	06:33a	2.5%.40GWd.bottom.cut				
2,881,096	9/20/1999	05:59a	2.5%.40GWd.fuel.cut				
2,691,202	9/20/1999	06:27a	2.5%.40GWd.plenum.cut				
2,664,826	9/20/1999	06:30a	2.5%.40GWd.top.cut				
2,671,355	9/20/1999	06:30a	2.5%.50GWd.bottom.cut				
2,906,745	9/20/1999	05:58a	2.5%.50GWd.fuel.cut				
2,715,105	9/20/1999	06:23a	2.5%.50GWd.plenum.cut				
2,694,941	9/20/1999	06:26a	2.5%.50GWd.top.cut				
2,696,048	9/20/1999	06:26a	2.5%.60GWd.bottom.cut				
2,941,304	9/20/1999	05:57a	2.5%.60GWd.fuel.cut				
2,745,284	9/20/1999	06:07a	2.5%.60GWd.plenum.cut				
2,719,634	9/20/1999	06:22a	2.5%.60GWd.top.cut				
2,715,038	9/20/1999	06:23a	2.5%.70GWd.bottom.cut				
2,966,614	9/20/1999	05:55a	2.5%.70GWd.fuel.cut				
2,763,308	9/20/1999	06:05a	2.5%.70GWd.plenum.cut				
2,737,856	9/20/1999	06:08a	2.5%.70GWd.top.cut				
2,730,060	9/20/1999	06:20a	2.5%.75GWd.bottom.cut				
2,977,878	9/20/1999	05:55a	2.5%.75GWd.fuel.cut				
2,774,552	9/20/1999	06:04a	2.5%.75GWd.plenum.cut				
2,751,094	9/20/1999	06:06a	2.5%.75GWd.top.cut				
2,167,994	9/20/1999	07:18a	3.0%.100MWd.bottom.cut				
2,347,300	9/20/1999	07:11a	3.0%.100MWd.fuel.cut				
2,199,556	9/20/1999	07:16a	3.0%.100MWd.plenum.cut				
2,184,412	9/20/1999	07:10a	3.0%.100MWd.top.cut				
2,479,926	9/20/1999	07:03a	3.0%.10GWd.bottom.cut				
2,697,264	9/20/1999	06:26a	3.0%.10GWd.fuel.cut				
2,515,164	9/20/1999	07:00a	3.0%.10GWd.plenum.cut				
2,496,166	9/20/1999	07:01a	3.0%.10GWd.top.cut				
2,056,243	9/20/1999	07:24a	3.0%.10MWd.bottom.cut				
2,233,867	9/20/1999	07:15a	3.0%.10MWd.fuel.cut				
	9/20/1999	07:22a	3.0%.10MWd.plenum.cut				
2,086,699	9/20/1999	07:23a	3.0%.10MWd.top.cut				
2,075,067	9/20/1999	07:14a	3.0%.1GWd.bottom.cut				
2,302,553		07:02a	3.0%.1GWd.fuel.cut				
2,485,667	9/20/1999	07:12a	3.0%.1GWd.plenum.cut				
2,336,933	9/20/1999	07:12a	3.0%.1GWd.top.cut				
2,320,881	9/20/1999	07:27a	3.0%.1MWd.bottom.cut				
1,992,416	9/20/1999	07:20a	3.0%.1MWd.fuel.cut				
2,151,580	9/20/1999		3.0%.1MWd.ndei.cut				
2,016,224	9/20/1999	07:25a	3.0%.1MWd.top.cut				
2,012,008	9/20/1999	07:26a	3.0%.20GWd.bottom.cut				
2,551,604	9/20/1999	06:58a	3.0%.20GWd.fuel.cut				
2,785,008	9/20/1999	06:02a	3.0 /0.20GWVU.IUCI.CUL				

CD 2						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
2,592,702	9/20/1999	06:56a	3.0%.20GWd.plenum.cut			
2,567,050	9/20/1999	06:57a	3.0%.20GWd.top.cut			
2,605,177	9/20/1999	06:55a	3.0%.30GWd.bottom.cut			
2,844,344	9/20/1999	06:01a	3.0%.30GWd.fuel.cut			
2,652,319	9/20/1999	06:32a	3.0%.30GWd.plenum.cut			
2,624,725	9/20/1999	06:54a	3.0%.30GWd.top.cut			
2,638,930	9/20/1999	06:33a	3.0%.40GWd.bottom.cut			
2,881,942	9/20/1999	05:59a	3.0%.40GWd.fuel.cut			
2,692,172	9/20/1999	06:27a	3.0%.40GWd.plenum.cut			
2,663,386	9/20/1999	06:30a	3.0%.40GWd.top.cut			
2,671,192	9/20/1999	06:30a	3.0%.50GWd.bottom.cut			
2,907,578	9/20/1999	05:58a	3.0%.50GWd.fuel.cut			
2,717,694	9/20/1999	06:22a	3.0%.50GWd.plenum.cut			
2,694,406	9/20/1999	06:26a	3.0%.50GWd.top.cut			
2,698,497	9/20/1999	06:25a	3.0%.60GWd.bottom.cut			
2,943,515	9/20/1999	05:57a	3.0%.60GWd.fuel.cut			
2,744,737	9/20/1999	06:07a	3.0%.60GWd.plenum.cut			
2,722,331	9/20/1999	06:21a	3.0%.60GWd.top.cut			
2,721,161	9/20/1999	06:22a	3.0%.70GWd.bottom.cut			
2,970,669	9/20/1999	05:55a	3.0%.70GWd.fuel.cut			
2,769,307	9/20/1999	06:04a	3.0%.70GWd.plenum.cut			
2,743,979	9/20/1999	06:07a	3.0%.70GWd.top.cut			
2,734,208	9/20/1999	06:08a	3.0%.75GWd.bottom.cut			
2,982,710	9/20/1999	05:54a	3.0%.75GWd.fuel.cut			
2,779,022	9/20/1999	06:03a	3.0%.75GWd.plenum.cut			
2,755,812	9/20/1999	06:05a	3.0%.75GWd.top.cut			
2,166,856	9/20/1999	07:18a	3.5%.100MWd.bottom.cut			
2,345,760	9/20/1999	07:12a	3.5%.100MWd.fuel.cut			
2,198,056	9/20/1999	07:12a	3.5%.100MWd.plenum.cut			
2,182,902	9/20/1999	07:18a	3.5%.100MWd.top.cut			
2,483,276	9/20/1999	07:02a	3.5%.10GWd.bottom.cut			
2,700,356	9/20/1999	06:25a	3.5%.10GWd.fuel.cut			
2,518,638	9/20/1999	06:59a	3.5%.10GWd.plenum.cut			
2,499,640	9/20/1999	07:01a	3.5%.10GWd.top.cut			
2,057,607	9/20/1999	07:24a	3.5%.10MWd.bottom.cut			
2,235,107	9/20/1999	07:15a	3.5%.10MWd.fuel.cut			
2,088,177	9/20/1999	07:22a	3.5%.10MWd.plenum.cut			
2,076,555	9/20/1999	07:22a	3.5%.10MWd.top.cut			
2,300,542	9/20/1999	07:14a	3.5%.1GWd.bottom.cut			
2,482,054	9/20/1999	07:03a	3.5%.1GWd.fuel.cut			
2,335,314	9/20/1999	07:12a	3.5%.1GWd.plenum.cut			
2,318,756	9/20/1999	07:12a	3.5%.1GWd.top.cut			
1,994,028		07:27a	3.5%.1MWd.bottom.cut			
2,153,068	9/20/1999	07:19a	3.5%.1MWd.fuel.cut			
2,017,588	9/20/1999	07:25a	3.5%.1MWd.ruer.cut			
2,013,496		07:26a	3.5%.1MWd.top.cut			
2,547,236	*	07.28a 06:59a	3.5%.20GWd.bottom.cut			
2,782,138	· · · · · · · · · · · · · · · · · · ·	06:02a	3.5%.20GWd.fuel.cut			
2,589,238		06:56a				
2,000,200	5/20/1555	00.00a	3.5%.20GWd.plenum.cut			

CD 2							
File Size (bytes)	Date of Transfer	Time of Transfer	File Name				
2,564,676	9/20/1999	06:58a	3.5%.20GWd.top.cut				
2,603,543	9/20/1999	06:55a	3.5%.30GWd.bottom.cut				
2,844,903	9/20/1999	06:00a	3.5%.30GWd.fuel.cut				
2,653,259	9/20/1999	06:32a	3.5%.30GWd.plenum.cut				
2,625,665	9/20/1999	06:54a	3.5%.30GWd.top.cut				
2,636,164	9/20/1999	06:33a	3.5%.40GWd.bottom.cut				
2,877,936	9/20/1999	05:59a	3.5%.40GWd.fuel.cut				
2,687,090	10/31/2002	11:39a	3.5%.40GWd.plenum.cut				
2,659,540	10/31/2002	11:36a	3.5%.40GWd.top.cut				
2,665,214	10/31/2002	11:39a	3.5%.50GWd.bottom.cut				
2,903,752	10/31/2002	11:36a	3.5%.50GWd.fuel.cut				
2,714,230	10/31/2002	11:39a	3.5%.50GWd.plenum.cut				
2,686,346	10/31/2002	11:36a	3.5%.50GWd.top.cut				
2,696,603	10/31/2002	11:39a	3.5%.60GWd.bottom.cut				
2,936,239	10/31/2002	11:36a	3.5%.60GWd.fuel.cut				
2,742,595	10/31/2002	11:39a	3.5%.60GWd.plenum.cut				
2,720,189	10/31/2002	11:36a	3.5%.60GWd.top.cut				
2,721,739	10/31/2002	11:39a	3.5%.70GWd.bottom.cut				
2,968,395	10/31/2002	11:36a	3.5%.70GWd.fuel.cut				
2,769,761	10/31/2002	11:38a	3.5%.70GWd.plenum.cut				
2,744,557	10/31/2002	11:36a	3.5%.70GWd.top.cut				
2,731,677	10/31/2002	11:39a	3.5%.75GWd.bottom.cut				
2,980,679	10/31/2002	11:36a	3.5%.75GWd.fuel.cut				
2,780,071	10/31/2002	11:39a	3.5%.75GWd.plenum.cut				
2,754,619	9/20/1999	06:05a	3.5%.75GWd.top.cut				

CD 3						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
Folder: 4.0%_throu	ugh_5.5%_and_SS	_clad				
2,164,211	9/20/1999	07:19a	4.0%.100MWd.bottom.cut			
2,346,359	9/20/1999	07:11a	4.0%.100MWd.fuel.cut			
2,196,775	9/20/1999	07:17a	4.0%.100MWd.plenum.cut			
2,183,739	9/20/1999	07:18a	4.0%.100MWd.top.cut			
2,479,639	9/20/1999	07:03a	4.0%.10GWd.bottom.cut			
2,698,207	9/20/1999	06:26a	4.0%.10GWd.fuel.cut			
2,515,011	9/20/1999	07:00a	4.0%.10GWd.plenum.cut			
2,496,261	9/20/1999	07:01a	4.0%.10GWd.top.cut			
2,058,599	9/20/1999	07:24a	4.0%.10MWd.bottom.cut			
2,235,831	9/20/1999	07:15a	4.0%.10MWd.fuel.cut			
2,089,035	9/20/1999	07:20a	4.0%.10MWd.plenum.cut			
2,077,671	9/20/1999	07:23a	4.0%.10MWd.top.cut			
2,300,650	9/20/1999	07:14a	4.0%.1GWd.bottom.cut			
2,480,292	9/20/1999	07:03a	4.0%.1GWd.fuel.cut			
2,335,670	9/20/1999	07:12a	4.0%.1GWd.plenum.cut			
2,318,740	9/20/1999	07:13a	4.0%.1GWd.top.cut			
1,995,145	9/20/1999	07:27a	4.0%.1MWd.bottom.cut			
2,154,309	9/20/1999	07:19a	4.0%.1MWd.fuel.cut			

CD 3						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
2,018,457	9/20/1999	07:25a	4.0%.1MWd.plenum.cut			
2,014,737	9/20/1999	07:25a	4.0%.1MWd.top.cut			
2,546,626	9/20/1999	06:59a	4.0%.20GWd.bottom.cut			
2,778,646	9/20/1999	06:03a	4.0%.20GWd.fuel.cut			
2,588,430	9/20/1999	06:57a	4.0%.20GWd.plenum.cut			
2,563,942	9/20/1999	06:58a	4.0%.20GWd.top.cut			
2,604,783	9/20/1999	06:55a	4.0%.30GWd.bottom.cut			
2,844,893	9/20/1999	06:01a	4.0%.30GWd.fuel.cut			
2,654,251	9/20/1999	06:32a	4.0%.30GWd.plenum.cut			
2,626,533	9/20/1999	06:34a	4.0%.30GWd.top.cut			
2,633,254	9/20/1999	06:33a	4.0%.40GWd.bottom.cut			
2,872,784	9/20/1999	06:00a	4.0%.40GWd.fuel.cut			
2,684,046	9/20/1999	06:28a	4.0%.40GWd.plenum.cut			
2,656,630	9/20/1999	06:31a	4.0%.40GWd.top.cut			
2,662,834	9/20/1999	06:30a	4.0%.50GWd.bottom.cut			
2,902,870	9/20/1999	05:58a	4.0%.50GWd.fuel.cut			
2,712,842	9/20/1999	06:23a	4.0%.50GWd.plenum.cut			
2,684,626	9/20/1999	06:28a	4.0%.50GWd.top.cut			
2,691,347	9/20/1999	06:27a	4.0%.60GWd.bottom.cut			
2,926,851	9/20/1999	05:57a	4.0%.60GWd.fuel.cut			
2,734,973	9/20/1999	06:08a	4.0%.60GWd.plenum.cut			
2,714,809	9/20/1999	06:23a	4.0%.60GWd.top.cut			
2,720,493	9/20/1999	06:22a	4.0%.70GWd.bottom.cut			
2,965,873	9/20/1999	05:56a	4.0%.70GWd.fuel.cut			
2,769,357	9/20/1999	06:04a	4.0%.70GWd.plenum.cut			
2,744,451	9/20/1999	06:07a	4.0%.70GWd.top.cut			
2,731,234	9/20/1999	06:09a	4.0%.75GWd.bottom.cut			
2,980,638	9/20/1999	05:54a	4.0%.75GWd.fuel.cut			
2,779,256	9/20/1999	06:03a	4.0%.75GWd.plenum.cut			
2,754,052	9/20/1999	06:06a	4.0%.75GWd.top.cut			
2,164,946	9/20/1999	07:19a	4.5%.100MWd.bottom.cut			
2,347,476	9/20/1999	07:11a	4.5%.100MWd.fuel.cut			
2,197,396	9/20/1999	07:17a	4.5%.100MWd.plenum.cut			
2,184,340	9/20/1999	07:17a	4.5%.100MWd.top.cut			
2,476,164	9/20/1999	07:03a	4.5%.10GWd.bottom.cut			
2,691,930	9/20/1999	06:27a	4.5%.10GWd.fuel.cut			
2,511,804	9/20/1999	07:00a	4.5%.10GWd.plenum.cut			
2,492,930	9/20/1999	07:02a	4.5%.10GWd.top.cut			
2,057,996	9/20/1999	07:24a	4.5%.10MWd.bottom.cut			
2,235,352	9/20/1999	07:15a	4.5%.10MWd.fuel.cut			
2,088,308	9/20/1999	07:22a	4.5%.10MWd.plenum.cut			
2,076,810	9/20/1999	07:22a 07:23a	4.5%.10MWd.top.cut			
2,299,411		07:14a	4.5%.1GWd.bottom.cut			
2,481,161		****				
2,334,307		07:03a	4.5%.1GWd.fuel.cut			
2,317,501		07:13a	4.5%.1GWd.plenum.cut			
1,996,386		07:14a	4.5%.1GWd.top.cut			
2,155,302		07:27a	4.5%.1MWd.bottom.cut			
-,100,002	9/20/1999	<u>07:19a</u>	4.5%.1MWd.fuel.cut			

CD 3							
File Size (bytes)	Date of Transfer	<b>Time of Transfer</b>					
2,016,226	9/20/1999	07:25a	4.5%.1MWd.top.cut				
2,548,621	9/20/1999	06:58a	4.5%.20GWd.bottom.cut				
2,775,557	9/20/1999	06:03a	4.5%.20GWd.fuel.cut				
2,590,043	9/20/1999	06:56a	4.5%.20GWd.plenum.cut				
2,565,947	9/20/1999	06:58a	4.5%.20GWd.top.cut				
2,602,026	9/20/1999	06:56a	4.5%.30GWd.bottom.cut				
2,841,526	9/20/1999	06:01a	4.5%.30GWd.fuel.cut				
2,650,488	9/20/1999	06:32a	4.5%.30GWd.plenum.cut				
2,623,082	9/20/1999	06:54a	4.5%.30GWd.top.cut				
2,633,213	9/20/1999	06:34a	4.5%.40GWd.bottom.cut				
2,874,355	9/20/1999	05:59a	4.5%.40GWd.fuel.cut				
2,680,365	9/20/1999	06:29a	4.5%.40GWd.plenum.cut				
2,656,341	9/20/1999	06:31a	4.5%.40GWd.top.cut				
2,660,821	9/20/1999	06:30a	4.5%.50GWd.bottom.cut				
2,899,597	9/20/1999	05:58a	4.5%.50GWd.fuel.cut				
2,709,559	9/20/1999	06:23a	4.5%.50GWd.plenum.cut				
2,683,729	9/20/1999	06:28a	4.5%.50GWd.top.cut				
2,686,888	9/20/1999	06:27a	4.5%.60GWd.bottom.cut				
2,921,608	9/20/1999	05:58a	4.5%.60GWd.fuel.cut				
2,731,828	9/20/1999	06:09a	4.5%.60GWd.plenum.cut				
2,710,648	9/20/1999	06:23a	4.5%.60GWd.top.cut				
2,717,321	9/20/1999	06:23a	4.5%.70GWd.bottom.cut				
2,962,205	9/20/1999	05:56a	4.5%.70GWd.fuel.cut				
2,765,555	9/20/1999	06:05a	4.5%.70GWd.plenum.cut				
2,740,907	9/20/1999	06:08a	4.5%.70GWd.top.cut				
2,729,846	9/20/1999	06:20a	4.5%.75GWd.bottom.cut				
2,977,404	9/20/1999	05:55a	4.5%.75GWd.fuel.cut				
2,778,884	9/20/1999	06:03a	4.5%.75GWd.plenum.cut				
2,753,358	9/20/1999	06:06a	4.5%.75GWd.top.cut				
2,163,695	9/20/1999	07:19a	5.0%.100MWd.bottom.cut				
2,345,977	9/20/1999	07:12a	5.0%.100MWd.fuel.cut				
2,196,145	9/20/1999	07:17a	5.0%.100MWd.plenum.cut				
2,181,591	9/20/1999	07:18a	5.0%.100MWd.top.cut				
2,477,536	9/20/1999	07:03a	5.0%.10GWd.bottom.cut				
2,692,538	9/20/1999	06:27a	5.0%.10GWd.fuel.cut				
2,513,176	9/20/1999	07:00a	5.0%.10GWd.plenum.cut				
2,494,044	9/20/1999	07:01a	5.0%.10GWd.top.cut				
2,056,374	9/20/1999	07:24a	5.0%.10MWd.bottom.cut				
2,230,744	9/20/1999	07:16a	5.0%.10MWd.fuel.cut				
2,086,686	9/20/1999	07:22a	5.0%.10MWd.plenum.cut				
2,073,442	9/20/1999	07:23a	5.0%.10MWd.top.cut				
2,298,772	9/20/1999	07:15a	5.0%.1GWd.bottom.cut				
2,480,904	9/20/1999	07:03a	5.0%.1GWd.fuel.cut				
2,334,298	9/20/1999	07:13a	5.0%.1GWd.plenum.cut				
	9/20/1999	07:14a	5.0%.1GWd.top.cut				
2,316,986	9/20/1999	07:14a	5.0%.1MWd.bottom.cut				
1,996,758	9/20/1999	07:19a	5.0%.1MWd.fuel.cut				
2,156,046	9/20/1999	07:25a	5.0%.1MWd.plenum.cut				
2,018,706 2,016,970	9/20/1999	07:25a	5.0%.1MWd.top.cut				

- 1 · •

CD 3						
File Size (bytes)	Date of Transfer	Time of Transfer	File Name			
2,549,177	9/20/1999	06:58a	5.0%.20GWd.bottom.cut			
2,775,503	9/20/1999	06:03a	5.0%.20GWd.fuel.cut			
2,590,733	9/20/1999	06:56a	5.0%.20GWd.plenum.cut			
2,566,513	9/20/1999	06:57a	5.0%.20GWd.top.cut			
2,601,534	9/20/1999	06:56a	5.0%.30GWd.bottom.cut			
2,840,290	9/20/1999	06:01a	5.0%.30GWd.fuel.cut			
2,646,728	9/20/1999	06:33a	5.0%.30GWd.plenum.cut			
2,620,348	9/20/1999	06:54a	5.0%.30GWd.top.cut			
2,633,137	9/20/1999	06:34a	5.0%.40GWd.bottom.cut			
2,874,155	9/20/1999	06:00a	5.0%.40GWd.fuel.cut			
2,680,041	9/20/1999	06:29a	5.0%.40GWd.plenum.cut			
2,656,007	9/20/1999	06:31a	5.0%.40GWd.top.cut			
2,656,948	9/20/1999	06:31a	5.0%.50GWd.bottom.cut			
2,897,098	9/20/1999	05:58a	5.0%.50GWd.fuel.cut			
2,706,058	9/20/1999	06:24a	5.0%.50GWd.plenum.cut			
2,682,232	9/20/1999	06:28a	5.0%.50GWd.top.cut			
2,683,602	9/20/1999	06:28a	5.0%.60GWd.bottom.cut			
2,922,200	9/20/1999	05:57a	5.0%.60GWd.fuel.cut			
2,730,282	9/20/1999	06:20a	5.0%.60GWd.plenum.cut			
2,709,112	9/20/1999	06:24a	5.0%.60GWd.top.cut			
2,710,938	9/20/1999	06:23a	5.0%.70GWd.bottom.cut			
2,951,328	9/20/1999	05:56a	5.0%.70GWd.fuel.cut			
2,759,678	9/20/1999	06:05a	5.0%.70GWd.plenum.cut			
2,734,648	9/20/1999	06:08a	5.0%.70GWd.top.cut			
2,725,401	9/20/1999	06:21a	5.0%.75GWd.bottom.cut			
2,970,667	9/20/1999	05:55a	5.0%.75GWd.fuel.cut			
2,773,635	9/20/1999	06:04a	5.0%.75GWd.plenum.cut			
2,748,987	9/20/1999	06:06a	5.0%.75GWd.top.cut			
2,156,746	9/20/1999	07:19a	5.5%.100MWd.bottom.cut			
2,339,028	9/20/1999	07:12a	5.5%.100MWd.fuel.cut			
2,189,196	9/20/1999	07:17a	5.5%.100MWd.plenum.cut			
2,174,642	9/20/1999	07:18a	5.5%.100MWd.top.cut			
2,474,808	9/20/1999	07:03a	5.5%.10GWd.bottom.cut			
2,692,176	9/20/1999	06:27a	5.5%.10GWd.fuel.cut			
2,512,442	9/20/1999	07:00a	5.5%.10GWd.plenum.cut			
2,493,558	9/20/1999	07:01a	5.5%.10GWd.top.cut			
2,056,632	9/20/1999	07:24a	5.5%.10MWd.bottom.cut			
2,230,744	9/20/1999	07:16a	5.5%.10MWd.fuel.cut			
2,086,944	9/20/1999	07:22a	5.5%.10MWd.plenum.cut			
2,073,700	9/20/1999	07:23a	5.5%.10MWd.top.cut			
2,296,678	9/20/1999	07:15a	5.5%.1GWd.bottom.cut			
2,478,686	9/20/1999	07:03a	5.5%.1GWd.fuel.cut			
2,332,070	9/20/1999	07:13a	5.5%.1GWd.plenum.cut			
2,314,892	9/20/1999	07:14a	5.5%.1GWd.top.cut			
1,997,253	9/20/1999	07:26a	5.5%.1MWd.bottom.cut			
2,156,417	9/20/1999	07:19a	5.5%.1MWd.fuel.cut			
2,019,077	9/20/1999	07:25a	5.5%.1MWd.plenum.cut			
2,017,217	9/20/1999	07:25a	5.5%.1MWd.top.cut			
2,547,276		06:58a	5.5%.20GWd.bottom.cut			

CD 3							
File Size (bytes)	Date of Transfer	Time of Transfer	File Name				
2,772,972	9/20/1999	06:04a	5.5%.20GWd.fuel.cut				
2,588,966	9/20/1999	06:56a	5.5%.20GWd.plenum.cut				
2,564,156	9/20/1999	06:58a	5.5%.20GWd.top.cut				
2,596,407	9/20/1999	06:56a	5.5%.30GWd.bottom.cut				
2,834,791	9/20/1999	06:01a	5.5%.30GWd.fuel.cut				
2,641,601	9/20/1999	06:33a	5.5%.30GWd.plenum.cut				
2,614,983	9/20/1999	06:55a	5.5%.30GWd.top.cut				
2,625,357	9/20/1999	06:54a	5.5%.40GWd.bottom.cut				
2,868,587	9/20/1999	06:00a	5.5%.40GWd.fuel.cut				
2,674,969	9/20/1999	06:29a	5.5%.40GWd.plenum.cut				
2,651,049	9/20/1999	06:32a	5.5%.40GWd.top.cut				
2,655,511	9/20/1999	06:31a	5.5%.50GWd.bottom.cut				
2,893,037	9/20/1999	05:59a	5.5%.50GWd.fuel.cut				
2,706,997	9/20/1999	06:24a	5.5%.50GWd.plenum.cut				
2,679,655	9/20/1999	06:29a	5.5%.50GWd.top.cut				
2,677,253	9/20/1999	06:29a	5.5%.60GWd.bottom.cut				
2,918,777	9/20/1999	05:58a	5.5%.60GWd.fuel.cut				
2,728,605	9/20/1999	06:20a	5.5%.60GWd.plenum.cut				
2,702,973	9/20/1999	06:25a	5.5%.60GWd.top.cut				
2,706,837	9/20/1999	06:24a	5.5%.70GWd.bottom.cut				
2,944,727	9/20/1999	05:57a	5.5%.70GWd.fuel.cut				
2,752,819	9/20/1999	06:06a	5.5%.70GWd.plenum.cut				
2,730,423	9/20/1999	06:09a	5.5%.70GWd.top.cut				
2,722,189	9/20/1999	06:21a	5.5%.75GWd.bottom.cut				
2,963,591	9/20/1999	05:56a	5.5%.75GWd.fuel.cut				
2,770,805	9/20/1999	06:04a	5.5%.75GWd.plenum.cut				
2,746,033	9/20/1999	06:07a	5.5%.75GWd.top.cut				
2,691,472	9/20/1999	06:27a	BWRSS.3.5%.10GWd.fuel.cut				
2,516,636	9/20/1999	07:00a	BWRSS.3.5%.10GWd.plenum.cut				
2,486,567	9/20/1999	07:02a	BWRSS.3.5%.1GWd.fuel.cut				
2,331,041	9/20/1999	07:13a	BWRSS.3.5%.1GWd.plenum.cut				
2,781,612	9/20/1999	06:02a	BWRSS.3.5%.20GWd.fuel.cut				
2,587,790	9/20/1999	06:57a	BWRSS.3.5%.20GWd.plenum.cut				
2,842,881	9/20/1999	06:01a	BWRSS.3.5%.30GWd.fuel.cut				
2,651,605	9/20/1999	06:32a	BWRSS.3.5%.30GWd.plenum.cut				
2,878,403	10/8/1999	04:05a	BWRSS.3.5%.40GWd.fuel.cut				
2,689,415	10/8/1999	04:01a	BWRSS.3.5%.40GWd.plenum.cut				
2,689,973	10/8/1999	04:02a	BWRSS.4.0%.10GWd.fuel.cut				
the second se	10/8/1999	04:02a	BWRSS.4.0%.10GWd.plenum.cut				
2,515,375 2,483,104	10/8/1999	04:02a	BWRSS.4.0%.1GWd.fuel.cut				
		04:02a	BWRSS.4.0%.1GWd.fuel.cut BWRSS.4.0%.1GWd.plenum.cut				
2,328,394	10/8/1999		BWRSS.4.0%.20GWd.fuel.cut				
2,779,992	10/8/1999	04:02a					
2,586,280	10/8/1999	04:02a	BWRSS.4.0%.20GWd.plenum.cut				
2,841,630	10/8/1999	04:03a	BWRSS.4.0%.30GWd.fuel.cut				
2,649,362	10/8/1999	04:03a	BWRSS.4.0%.30GWd.plenum.cut				
2,872,267	10/8/1999	04:03a	BWRSS.4.0%.40GWd.fuel.cut				
2,682,999	10/8/1999	04:03a	BWRSS.4.0%.40GWd.plenum.cut				

#### Averages from Ref. 7.24, Table 5; Maximums from Ref. 7.24, Attachment III bin.dat files

## For all cases, the information on the following pages represents the data set closest to those defined on this page

#### Case A, B, and C Averages for the extended baseline (84k MTU)

BWR:	Nominal data points	። 3.5%, 40 GWd/MTU, 2	25 years old,	200 kg loading (actual burnup is	39.3 GWd/t)
	3.02	33592.24016	0.18	Case A Average Age	25.32
	Enrich	Burnup (MWd/MTU)	MTU	Case B Average Age	25.31
		· · ·		Case C Average Age	25.43

Averages are calculated by multiplying the enrichment, burnup or age by the number of assemblies with that given burnup, enrichment, or age, summing, and then dividing by the total number in the waste stream

Case A , B, and C Maximums

Case A			Case B			Case C		
	Burnup			Burnup			Burnup	
Enrichment	(MWd/MTU)	Age (yrs)	Enrichment	(MWd/MTU)	Age (yrs)	Enrichment	(MWd/MTU)	Age (yrs)
4.28	65550	5	4.28	65550	5	4.28	65550	5

#### Nominal data

points: 5.0%, 75 GWd/MTU, 5 years old, 200 kg loading (actual burnup is 73.8 GWd/t)

#### For the maximums:

These are a combination of all the maximum parameters:

the maximum burnup, the max enrichment, and minimum age (all independent of each other).

## All source term calculations use dimensions

for the representative assembly

The cases refer to the arrival scenarios

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

18. A. A.

Average BWR for	or shorter decay	times			-					
Age:		125.0 yr	225.0 yr	325.0 yr	425.0 yr	525.0 yr	1025.0 yr	2025.0 yr	5025.0 yr	10025.0 yr
Year:	2033	2133	2233	2333	2433	2533	3033	4033	7033	12033
ag108	3.335E-04	1.934E-04		6.480E-05			1.416E-06	6.060E-09	4.680E-16	6.590E-28
ag108m	3.830E-03	2.216E-03	1.286E-03	7.460E-04	4.320E-04		1.629E-05	6.960E-08	5.390E-15	7.580E-27
am241	5.580E+02	6.720E+02		4.890E+02	4.170E+02	3.550E+02	1.590E+02	3.210E+01	2.900E-01	1.800E-02
am242	2.160E+00	1.320E+00		4.940E-01	3.020E-01	1.850E-01	1.580E-02	1.160E-04	4.560E-11	9.640E-22
am242m	2.170E+00	1.330E+00	8.100E-01	4.960E-01	3.030E-01	1.850E-01	1.590E-02	1.160E-04	4.580E-11	9.690E-22
am243	5.340E+00	5.290E+00	5.240E+00	5.190E+00	5.140E+00	5.090E+00	4.860E+00	4.420E+00	3.340E+00	2.080E+00
ar 39	1.610E-05	1.240E-05	9.590E-06	7.410E-06	5.730E-06	4.430E-06	1.220E-06	9.280E-08	4.070E-11	1.030E-16
ba137m	1.310E+04	1.300E+03	1.290E+02		1.270E+00		1.210E-06	1.110E-16	0.000E+00	0.000E+00
bi212	4.700E-03	1.770E-03	6.550E-04	2.430E-04	9.010E-05	3.350E-05	3.980E-07	1.690E-07	1.770E-07	1.920E-07
c 14	1.760E-01	1.730E-01	1.710E-01	1.690E-01	1.670E-01	1.650E-01	1.560E-01	1.380E-01	9.592E-02	5.241E-02
ca 41	3.730E-05	3.730E-05	3.720E-05	3.720E-05	3.720E-05	3.720E-05	3.700E-05	3.680E-05	3.600E-05	3.490E-05
cd113m	2.262E+00	1.657E-02	1.220E-04	8.910E-07	6.530E-09		1.012E-21	0.000E+00		
ce144	2.880E-05	0.000E+00	0.000E+00		0.000E+00			0.000E+00		
cl 36	2.930E-03	2.930E-03	2.930E-03		2.930E-03		2.920E-03	2.920E-03	2.900E-03	2.860E-03
cm242	1.780E+00	1.090E+00		4.080E-01	2.500E-01	1.530E-01	1.310E-02	9.580E-05	3.780E-11	8.000E-22
cm243	2.470E+00	2.170E-01	1.910E-02		1.470E-04		6.760E-11	1.850E-21	0.000E+00	0.000E+00
cm244	2.550E+02	5.540E+00	1.200E-01	2.610E-03	5.670E-05	1.230E-06	5.940E-15	1.370E-31	0.000E+00	0.000E+00
cm245	4.030E-02	4.000E-02	3.970E-02	3.930E-02	3.900E-02			3.420E-02	2.680E-02	1.780E-02
cm246	1.450E-02	1.430E-02	1.410E-02		1.370E-02	1.350E-02		1.080E-02	6.970E-03	3.350E-03
co 60	4.390E+01	8.510E-05			6.180E-22	1.200E-27	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cs134	6.320E+00	1.590E-14			0.000E+00	0.000E+00	0.000E+00	0.000E+00		0.000E+00
cs135	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.390E-01	1.380E-01
cs137	1.390E+04	1.370E+03	1.360E+02		1.340E+00		1.280E-06			
eu152	5.290E-01	2.920E-03	1.610E-05	8.861E-08	4.880E-10			0.000E+00		0.000E+00
eu154	1.746E+02	5.451E-02	1.706E-05		1.676E-12				0.000E+00	0.000E+00
eu155	1.603E+01	5.909E-06			2.985E-25		0.000E+00		0.000E+00	
fe 55	1.090E+00	1.020E-11	9.560E-23		0.000E+00				0.000E+00	
h 3	3.950E+01	1.428E-01	5.170E-04		6.750E-09		1.513E-23		0.000E+00	
ho166m	1.176E-03	1.110E-03	1.051E-03		9.372E-04	8.840E-04	6.622E-04	3.716E-04	6.577E-05	
i129	7.420E-03	7.420E-03			7.420E-03			7.420E-03		
kr 85	3.810E+02	5.930E-01	9.210E-04		2.230E-09			0.000E+00		
mo 93	2.220E-04	2.170E-04		2.090E-04	2.050E-04	2.010E-04	1.820E-04	1.490E-04	8.240E-05	3.060E-05
nb 93m	4.730E-01	3.407E-01	3.388E-01	3.387E-01	3.387E-01	3.387E-01	3.387E-01	3.376E-01	3.375E-01	3.363E-01
nb 94	1.872E-02	1.862E-02	1.862E-02		1.842E-02	1.842E-02		1.752E-02		1.331E-02
ni 59	5.020E-01	5.020E-01	5.010E-01	5.010E-01	5.000E-01	5.000E-01	4.970E-01	4.930E-01	4.790E-01	4.580E-01
ni 63	5.860E+01	2.930E+01	1.470E+01	7.340E+00	3.670E+00			5.660E-05		4.940E-29
np237	6.880E-02	9.090E-02	1.110E-01	1.280E-01	1.430E-01	1.550E-01	1.950E-01	2.210E-01	2.270E-01	2.260E-01
np238	9.750E-03	5.960E-03	3.650E-03		1.360E-03	8.350E-04	7.150E-05	5.240E-07	2.060E-13	4.360E-24
np239	5.340E+00	5.290E+00			5.140E+00			4.420E+00		
pa231	1.390E-05	1.950E-05			3.600E-05			1.240E-04	2.890E-04	5.590E-04
pa233	6.880E-02	9.090E-02	1.110E-01	1.280E-01	1.430E-01	1.550E-01	1.950E-01	2.210E-01	2.270E-01	2.260E-01
pa234	8.210E-05	8.210E-05			8.210E-05			8.210E-05		8.210E-05
pa234m	6.320E-02	6.320E-02	6.320E-02	6.320E-02	6.320E-02	6.320E-02	6.320E-02	6.320E-02	6.320E-02	

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

Average BWR	for shorter decay	times								
Age:	25.0 yr	125.0 yr	225.0 yr	325.0 yr	425.0 yr	525.0 yr	1025.0 yr	2025.0 yr	5025.0 yr	10025.0 yr
Year:	2033	2133	2233	2333	2433	2533	3033	4033	7033	12033
pb212	4.700E-03			2.430E-04					1.770E-07	1.920E-07
pd107	2.650E-02						2.650E-02			
pm145	2.610E-04	5.200E-06		2.060E-09		8.180E-13		0.000E+00		
pm146	2.490E-02	8.950E-08		1.160E-18						
pm147	3.980E+01	1.330E-10		0.000E+00			0.000E+00			
po212	3.010E-03			1.560E-04			2.550E-07	1.080E-07	1.130E-07	
po216	4.700E-03			2.430E-04			3.980E-07	1.690E-07	1.770E-07	1.920E-07
pr144	2.880E-05					0.000E+00	0.000E+00			
pu236	1.670E-04	1.640E-07		1.640E-07		1.640E-07	1.630E-07	1.620E-07		1.550E-07 2.130E-21
pu238	5.850E+02					1.160E+01	2.490E-01	1.880E-04		4.100E+01
pu239	5.350E+01	5.330E+01		5.310E+01		5.280E+01	5.210E+01	5.080E+01	4.690E+01	
pu240	1.140E+02						1.030E+02 3.720E-02		6.760E+01 2.690E-02	3.980E+01 1.790E-02
pu241	6.780E+03		4.710E-01	4.280E-02				3.430E-02 5.060E-01	5.040E-01	4.990E-02
pu242	5.080E-01	5.080E-01	5.080E-01	5.080E-01		5.080E-01	5.070E-01 3.980E-07			
ra224	4.700E-03			2.430E-04						
rh102	6.530E-04	2.720E-14								
rh106	3.000E-03									
rn220	4.700E-03 3.000E-03									
ru106	2.891E+00									
sb125 sb126	1.770E-02									
sb126m	1.270E-01	1.270E-02		1.260E-01			1.260E-01		1.220E-01	
se 79	1.590E-02									
sm151	5.390E+01	2.500E+01		5.350E+00						
sn121	4.640E-01	1.316E-01						5.270E-12		
sn121m	5.980E-01	1.701E-01				1.097E-03		6.780E-12	2.593E-28	
sn126	1.270E-01	1.270E-01		1.260E-01			1.260E-01	1.250E-01	1.220E-01	
sr 90	9.540E+03			5.900E+00		4.280E-02	1.920E-07	3.880E-18		
tc 99	3.200E+00		3.200E+00		3.200E+00	3.200E+00				
te125m	7.060E-01	6.610E-12								
th228	4.700E-03	1.770E-03								
th230	6.090E-05									
th231	2.620E-03									
th234	6.320E-02									
tl208	1.690E-03									
u232	4.630E-03									
u233	1.060E-05									
u234	2.500E-01	3.640E-01					4.580E-01			
u235	2.620E-03									
u236	6.260E-02									
u237	1.620E-01									
u238	6.320E-02								-	
y 90	9.540E+03									
zr 93	3.386E-01	3.386E-01	3.386E-01	3.386E-01	3.386E-01	3.385E-01	3.385E-01	3.375E-01	3.374E-01	3.3032-01

Title: BWR Source Term Generation and Evaluation **Document Identifier:** 000-00C-MGR0-00200-000-00A

Worksheet 'BWR.ave.3.curies'

Average BWR	for longer decay	times					·····	
Decay Time	10025. yr	20025. yr	30025. yr	100025. yr	300025. yr	1000025 yr		
Year:	12033	22033	32033	102033	302033	1002033		
ac225	3.27E-03	1.01E-02	1.82E-02	7.15E-02	1.58E-01	1.75E-01		
ac227	5.59E-04	1.08E-03		3.63E-03	4.49E-03	4.51E-03		
am241	1.79E-02	7.90E-03	3.49E-03	1.16E-05	1.00E-12	0.00E+00		
am243	2.08E+00					6.64E-08		
at217	3.27E-03	1.01E-02			1.58E-01	1.75E-01		
bi210	3.12E-02	6.74E-02		2.42E-01	2.69E-01	9.71E-02		
bi211	5.59E-04					4.51E-03		
bi213	3.27E-03				1.58E-01	1.75E-01		
bi214	3.12E-02	6.74E-02				9.72E-02		
c 14	5.24E-02	1.56E-02				0.00E+00		
ca 41	3.49E-05	3.26E-05				4.45E-08		
cl 36	2.86E-03				1.47E-03	2.93E-04		
cm245	1.78E-02	7.89E-03	3.49E-03					
cm246	3.35E-03		1.79E-04	6.28E-09	1.11E-19	9.13E-32		
cs135	1.38E-01	1.38E-01	1.38E-01	1.35E-01	1.27E-01	1.03E-01		
fr221	3.27E-03	1.01E-02	1.82E-02	7.15E-02	1.58E-01	1.75E-01		
i129	7.42E-03	7.42E-03	7.41E-03	7.39E-03	7.33E-03	7.10E-03		
mo 93	3.06E-05		5.81E-07	5.50E-13	3.38E-30	0.00E+00		
nb 93m	3.36E-01	3.35E-01	3.34E-01	3.23E-01	2.96E-01	2.15E-01		
nb 94	1.33E-02	9.46E-03	6.72E-03	6.16E-04	6.66E-07	2.76E-17		
ni 59	4.58E-01	4.17E-01	3.80E-01	1.99E-01	3.14E-02	4.86E-05		
np237	2.26E-01	2.26E-01	2.25E-01	2.20E-01	2.06E-01	1.64E-01		
np239	2.08E+00	8.14E-01	3.18E-01	4.40E-04	6.84E-08	6.64E-08		
pa231	5.59E-04		1.56E-03		4.49E-03			
pa233	2.26E-01	2.26E-01	2.25E-01	2.20E-01	2.06E-01	1.64E-01		
pa234	8.21E-05		8.21E-05	8.21E-05	8.22E-05			
pa234m	6.32E-02	6.32E-02	6.32E-02	6.32E-02	6.32E-02	6.32E-02		
pb209	3.27E-03		1.82E-02	7.15E-02	1.58E-01	1.75E-01		
pb210	3.12E-02	6.74E-02	9.97E-02	2.42E-01	2.69E-01	9.71E-02		
pb211	5.59E-04		1.56E-03		4.49E-03	4.51E-03		
pb214	3.12E-02	6.74E-02	9.97E-02	2.42E-01	2.69E-01	9.72E-02		
pd107	2.65E-02	2.64E-02	2.64E-02	2.62E-02	2.56E-02	2.38E-02		
ро210	3.12E-02	6.74E-02	9.97E-02	2.42E-01	2.69E-01	9.71E-02		
po213	3.20E-03	9.92E-03	1.79E-02	7.00E-02	1.55E-01	1.71E-01		

Worksheet 'BWR.ave.3.curies'

ł

Title:BWR Source Term Generation and EvaluationDocument Identifier:000-00C-MGR0-00200-000-00A

Average BWR	for longer decay	times					
Decay Time	10025. yr	20025. yr	30025. yr	100025. yr	300025. yr	1000025 yr	
Year:	12033	22033	32033	102033	302033	1002033	
po214	3.12E-02	6.74E-02	9.97E-02	2.42E-01	2.69E-01	9.71E-02	
po215	5.59E-04	1.08E-03	1.56E-03	3.63E-03	4.49E-03		
po218	3.12E-02	6.75E-02		2.42E-01	2.69E-01	9.72E-02	
pu239	4.10E+01	3.11E+01	2.34E+01	3.15E+00	1.00E-02		
pu240	3.98E+01	1.39E+01	4.82E+00				
pu241	1.79E-02	7.90E-03	3.49E-03				
pu242	4.99E-01	4.90E-01		4.22E-01		7.95E-02	
ra223	5.59E-04	1.08E-03					
ra225	3.27E-03	1.01E-02				1.75E-01	
ra226	3.12E-02	6.75E-02			2.69E-01	9.72E-02	
rn219	5.59E-04	1.08E-03	1.56E-03				
rn222	3.12E-02	6.75E-02		2.42E-01			
sb126	1.66E-02	1.54E-02		8.87E-03			
sb126m	1.18E-01	1.10E-01	the second se	6.34E-02			
se 79	1.56E-02						
sn126	1.18E-01	1.10E-01		6.34E-02			
tc 99	3.10E+00	3.00E+00	2.90E+00				
th227	5.52E-04						
th229	3.27E-03	1.01E-02	1.82E-02	and the second s			
th230	4.00E-02	7.54E-02					
th231	3.09E-03	3.44E-03	3.71E-03	4.40E-03			
th234	6.32E-02	6.32E-02	6.32E-02	a succession of the second sec			
tl207	5.58E-04	1.07E-03					
tl209	6.87E-05						
u233	9.69E-03	1					
u234	4.48E-01						
u235	3.09E-03						
u236	8.35E-02						
u238	6.32E-02	6.32E-02					
zr 93	3.36E-01	3.35E-01	3.34E-01	3.23E-01	2.96E-01	2.15E-01	

### Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

- Status - Andrew

1.0

1

Max BWR	for shorter decay	y times					· · · · · · · · · · · · · · · · · · ·			
Age:	5.0 yr	105.0 yr	205.0 yr	305.0 yr	405.0 yr	505.0 yr	1005.0 yr	2005.0 yr	5005.0 yr	10005.0 yr
Year:	2033	2133	2233	2333	2433	2533	3033	4033	7033	12033
ag108	8.490E-04	4.920E-04	2.840E-04	1.651E-04	9.560E-05	5.540E-05	3.610E-06	1.542E-08	1.194E-15	
ag108m	9.760E-03	5.650E-03	3.270E-03	1.895E-03		6.370E-04	4.160E-05		1.372E-14	1.929E-26
ag109m	9.401E-03	0.000E+00	0.000E+00			0.000E+00			0.000E+00	0.000E+00
ag110	1.090E-01	0.000E+00				0.000E+00	0.000E+00		0.000E+00	
ag110m	8.021E+00	0.000E+00	0.000E+00						0.000E+00	0.000E+00
am241	2.660E+02	8.790E+02	7.540E+02			4.660E+02			5.900E-01	1.570E-01
am242	3.390E+00	2.070E+00			4.750E-01	2.900E-01	2.490E-02	1.820E-04	7.170E-11	1.520E-21
am242m	3.410E+00	2.080E+00	1.270E+00	7.800E-01	4.770E-01	2.920E-01	2.500E-02		7.200E-11	1.520E-21
am243	1.930E+01	1.910E+01	1.890E+01	1.880E+01	1.860E+01	1.840E+01	1.760E+01	1.600E+01	1.210E+01	7.530E+00
ar 39	2.930E-05	2.270E-05	1.750E-05	1.350E-05	1.050E-05	8.090E-06	2.230E-06	1.690E-07	7.440E-11	1.890E-16
ba137m	3.650E+04	3.620E+03		3.560E+01	3.540E+00		3.370E-06	3.100E-16	0.000E+00	0.000E+00
bi212	1.690E-02	8.780E-03		1.210E-03		1.660E-04	1.920E-06	7.730E-07	7.750E-07	7.830E-07
bk249	2.900E-03	0.000E+00		0.000E+00			0.000E+00		0.000E+00	0.000E+00
c 14	3.161E-01	3.121E-01	3.081E-01	3.041E-01	3.010E-01	2.970E-01	2.800E-01	2.480E-01	1.720E-01	9.412E-02
ca 41	6.720E-05	6.710E-05	6.710E-05	6.700E-05			6.670E-05		6.490E-05	6.280E-05
ca 45	3.610E-05	0.000E+00	0.000E+00	0.000E+00			0.000E+00		0.000E+00	0.000E+00
cd109	9.401E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cd113m	1.393E+01	1.023E-01	7.493E-04	5.491E-06	4.028E-08	2.947E-10		0.000E+00	0.000E+00	0.000E+00
ce142	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05	1.190E-05
ce144	1.370E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cf249	4.710E-04	3.920E-04	3.220E-04	2.640E-04	2.170E-04	1.780E-04	6.610E-05	9.150E-06	2.420E-08	1.230E-12
cf250	1.940E-03	9.690E-06	4.840E-08	2.430E-10	2.090E-12	8.800E-13		8.230E-13	7.300E-13	5.980E-13
cf251	2.280E-05	2.110E-05	1.960E-05	1.810E-05	1.680E-05	1.550E-05		4.870E-06	4.810E-07	1.010E-08
cf252	3.250E-03	1.350E-14	5.600E-26	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cl 36	4.990E-03	4.990E-03	4.990E-03	4.990E-03	4.980E-03	4.980E-03	4.980E-03	4.970E-03	4.930E-03	4.880E-03
cm242	1.130E+01	1.720E+00	1.050E+00	6.420E-01	3.930E-01	2.400E-01	2.060E-02	1.510E-04	5.950E-11	1.260E-21
cm243	1.120E+01	9.850E-01	8.650E-02	7.600E-03	6.670E-04	5.860E-05	3.070E-10	8.380E-21	0.000E+00	0.000E+00
cm244	3.940E+03	8.550E+01	1.860E+00	4.030E-02	8.750E-04	1.900E-05	9.180E-14	2.140E-30	0.000E+00	0.000E+00
cm245	3.530E-01	3.510E-01	3.480E-01	3.450E-01	3.420E-01	3.390E-01	3.260E-01	3.000E-01	2.350E-01	1.560E-01
cm246	2.960E-01	2.920E-01	2.880E-01	2.840E-01	2.800E-01	2.750E-01	2.560E-01	2.210E-01	1.420E-01	6.850E-02
cm248	2.370E-05	2.370E-05	2.370E-05	2.370E-05	2.370E-05	2.370E-05	2.360E-05	2.360E-05	2.340E-05	2.320E-05
co 58	1.170E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		0.000E+00	0.000E+00	0.000E+00
co 60	8.530E+02	1.650E-03	3.200E-09	6.200E-15	1.200E-20	2.330E-26	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cs134	1.150E+04	2.900E-11	7.260E-26	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
cs135	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.820E-01	2.810E-01
cs137	3.870E+04	3.840E+03	3.810E+02	3.770E+01	3.740E+00	3.710E-01	3.570E-06	3.290E-16	0.000E+00	0.000E+00
eu150	2.520E-05	3.630E-06	5.240E-07	7.570E-08	1.090E-08	1.580E-09	9.850E-14	3.860E-22	0.000E+00	0.000E+00
eu152	1.690E+00	9.321E-03	5.130E-05	2.830E-07	1.560E-09	8.591E-12	4.370E-23	0.000E+00	0.000E+00	0.000E+00
eu154	1.799E+03	5.618E-01	1.759E-04	5.507E-08	1.729E-11	5.397E-15	2.280E-32	0.000E+00	0.000E+00	0.000E+00
eu155	6.280E+02	2.321E-04	8.570E-11	3.165E-17	1.175E-23	4.333E-30	0.000E+00	0.000E+00	0.000E+00	0.000E+00
fe 55	2.340E+02	2.190E-09	2.060E-20	1.830E-31	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
gd153	1.532E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
h 3	1.764E+02	6.390E-01	2.307E-03	8.370E-06	3.024E-08	1.094E-10	6.770E-23	0.000E+00	0.000E+00	0.000E+00
ho166m	2.198E-02	2.072E-02	1.957E-02	1.842E-02	1.748E-02	1.643E-02	1.235E-02	6.918E-03	1.224E-03	6.803E-05

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

	for shorter deca				447 4		4005.0	0005.0	E005 0	10005 0
Age:	5.0 yr	105.0 yr	205.0 yr	305.0 yr	405.0 yr	505.0 yr	1005.0 yr	2005.0 yr	5005.0 yr	10005.0 yr
Year:		2133	2233	2333	2433	2533	3033	4033	7033	12033
129	1.350E-02	1.350E-02		1.350E-02						
n113m	6.480E-03	0.000E+00		0.000E+00						
kr 85	2.030E+03	3.160E+00		7.640E-06				0.000E+00		
mn 54	1.610E+00	0.000E+00	0.000E+00	0.000E+00						
mo 93	4.280E-04	4.200E-04	4.120E-04	4.040E-04						
nb 93m	1.221E+00	6.120E-01	6.030E-01	6.030E-01	6.030E-01	6.030E-01		6.020E-01	6.020E-01	6.000E-0
nb 94	3.380E-02	3.370E-02		3.340E-02	3.330E-02	3.320E-02	3.260E-02			
nb 95	8.248E-04	0.000E+00	0.000E+00	0.000E+00			0.000E+00	0.000E+00		
ni 59	7.780E-01	7.780E-01	7.770E-01	7.760E-01			7.710E-01	7.640E-01	7.430E-01	
ni 63	1.160E+02	5.790E+01	2.900E+01	1.450E+01	7.250E+00		1.140E-01	1.120E-04	1.060E-13	9.750E-2
np235	3.170E-04	0.000E+00					0.000E+00	0.000E+00	0.000E+00	0.000E+0
np237	1.330E-01	1.590E-01	1.850E-01	2.080E-01				3.290E-01	3.370E-01	3.370E-0
np238	1.530E-02	9.380E-03								
np239	1.930E+01	1.910E+01	1.890E+01	1.880E+01				1.600E+01		
pa231	2.940E-05	3.140E-05	3.330E-05	3.520E-05						
pa233	1.330E-01	1.590E-01	1.850E-01	2.080E-01					3.370E-01	
pa233	7.890E-05	7.890E-05								
pa234 pa234m	6.070E-02	6.070E-02								
pb212	1.690E-02	8.780E-02							7.750E-07	
pd212	5.690E-02	5.690E-02			5.690E-02					
pm145	1.520E-02	3.030E-02		1.200E-08						
pm145 pm146	5.830E-01	2.090E-06								
pm147	7.460E+03	2.500E-08								
po212	1.080E-02	5.620E-03								
	1.690E-02									
po216										the second se
pr144	1.370E+03 1.920E+01	0.000E+00								
pr144m										
pt193	1.610E-05							and the second se		
pu236	6.950E-02									
pu238	2.110E+03									
pu239	5.360E+01	5.350E+01	5.340E+01	5.330E+01 1.540E+02						
pu240	1.480E+02									
pu241	2.250E+04									
pu242	1.260E+00	1.260E+00	1.260E+00							
ra224	1.690E-02				3 4.470E-04					
rh102	1.930E-01									
rh106	3.290E+03									
rn220	1.690E-02									
ru106	3.290E+03									
sb125	6.210E+02									
sb126	3.520E-02									
sb126m	2.520E-01									
se 79	2.880E-02	2.880E-02								
sm145	6.780E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+0	0.000E+0	0.000E+

### Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

Max BWR	for shorter decay	/ times				<u> </u>	l			
		105.0 yr	205.0 yr	305.0 yr	405.0 yr	505.0 yr	1005.0 yr	2005.0 yr	5005.0 yr	10005.0 yr
Year:		2133	2233	2333	2433	2533	3033	4033	7033	12033
sm151	8.220E+01	3.810E+01	1.760E+01	8.150E+00	3.770E+00	1.750E+00	3.710E-02	1.680E-05	1.540E-15	2.280E-32
sn113	6.480E-03	0.000E+00								
sn119m	3.719E+01	0.000E+00								
sn121	1.146E+00	3.250E-01	9.210E-02	2.617E-02	7.410E-03	2.098E-03	3.850E-06	1.299E-11	4.960E-28	0.000E+00
sn121m	1.476E+00	4.190E-01	1.188E-01	3.370E-02	9.550E-03	2.711E-03	4.970E-06	1.677E-11	6.390E-28	0.000E+00
sn123	8.210E-03	0.000E+00								
sn126	2.520E-01	2.520E-01	2.510E-01	2.510E-01	2.510E-01	2.510E-01	2.500E-01	2.480E-01	2.430E-01	2.350E-01
sr 90	2.520E+04	2.140E+03	1.830E+02	1.560E+01	1.330E+00		5.080E-07	1.020E-17	0.000E+00	0.000E+00
tb160	1.500E-04	0.000E+00								
tc 99	5.350E+00	5.350E+00	5.350E+00	5.340E+00	5.340E+00	5.340E+00	5.330E+00	5.320E+00		5.180E+00
te123m	2.190E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		0.000E+00	0.000E+00
te125m	1.511E+02	1.424E-09	1.328E-20	1.141E-31	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
te127	1.510E-02	0.000E+00								
te127m	1.550E-02	0.000E+00								
th228	1.690E-02	8.780E-03	3.250E-03	1.210E-03	4.470E-04	1.660E-04	1.920E-06	7.730E-07	7.750E-07	7.830E-07
th230	2.050E-05	4.420E-04	1.120E-03	1.920E-03	2.780E-03	3.650E-03	8.100E-03	1.700E-02	4.290E-02	8.410E-02
th231	9.430E-04	9.480E-04	9.530E-04	9.580E-04	9.640E-04	9.690E-04	9.950E-04	1.050E-03	1.190E-03	1.420E-03
th234	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02
t1208	6.080E-03	3.160E-03	1.170E-03	4.330E-04	1.610E-04	5.970E-05	6.900E-07	2.780E-07	2.790E-07	2.810E-07
tm171	4.670E-04	9.790E-20	0.000E+00							
u232	2.000E-02	8.540E-03	3.160E-03	1.170E-03	4.350E-04	1.620E-04	1.880E-06	7.630E-07	7.490E-07	7.270E-07
u234	2.260E-01	6.370E-01	8.230E-01	9.080E-01	9.460E-01	9.640E-01	9.770E-01	9.750E-01	9.670E-01	9.540E-01
u235	9.430E-04	9.480E-04	9.530E-04	9.580E-04	9.640E-04	9.690E-04	9.950E-04	1.050E-03	1.190E-03	1.420E-03
u236	9.550E-02	9.600E-02	9.640E-02	9.690E-02	9.730E-02	9.780E-02	1.000E-01	1.040E-01	1.140E-01	1.250E-01
u237	5.390E-01	4.310E-03	4.270E-05	8.530E-06	8.190E-06	8.120E-06	7.800E-06	7.190E-06	5.630E-06	3.740E-06
u238	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02	6.070E-02
y 90	2.520E+04	2.140E+03	1.830E+02	1.560E+01	1.330E+00	1.130E-01	5.080E-07	1.020E-17	0.000E+00	0.000E+00
y 91	3.330E-05	0.000E+00								
zn 65	1.350E-01	0.000E+00								
zr 93	6.030E-01	6.030E-01	6.030E-01	6.030E-01	6.030E-01	6.030E-01	6.030E-01	6.020E-01	6.010E-01	5.990E-01
zr 95	3.744E-04	0.000E+00								

Title: BWR Source Term Generation and Evaluation Document Identifier: 000-00C-MGR0-00200-000-00A

Max BWR for I	onger decay t	imes		L		
Decay Time	10005. yr	20005. yr	30005. yr	100005. yr	300005. yr	1000005 yr
Year:	12033	22033	32033	102033	302033	1002033
ac225	4.85E-03	1.51E-02	2.71E-02	1.07E-01		2.61E-01
ac227	2.52E-04	5.14E-04	7.89E-04	2.25E-03		2.98E-03
am241	1.57E-01	6.93E-02	3.06E-02	1.02E-04	8.81E-12	0.00E+00
am243	7.53E+00	2.94E+00	1.15E+00	1.59E-03		2.38E-06
at217	4.85E-03	1.51E-02	2.71E-02		2.36E-01	2.61E-01
bi210	6.62E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01
bi211	2.52E-04	5.14E-04	7.89E-04			
bi213	4.85E-03	1.51E-02	2.71E-02	1.07E-01	2.36E-01	2.61E-01
bi214	6.63E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01
c 14	9.41E-02	2.81E-02	8.37E-03			
ca 41	6.28E-05	5.87E-05	5.49E-05		the second se	
ce142	1.19E-05	1.19E-05		1.19E-05		
cl 36	4.88E-03	4.76E-03	4.66E-03	3.96E-03		
cm245	1.56E-01	6.92E-02	3.06E-02			
cm246	6.85E-02	1.58E-02	3.66E-03	1.28E-07		
cm248	2.32E-05	2.27E-05	2.23E-05	1.93E-05		and the second sec
cs135	2.81E-01	2.81E-01	2.80E-01	2.74E-01		
fr221	4.85E-03	1.51E-02				
ho166m	6.50E-05					
i129	1.35E-02				and the second s	
mo 93	5.90E-05	8.14E-06				
nb 93m	6.00E-01	5.97E-01	5.94E-01			3.83E-01
nb 94	2.40E-02	1.71E-02	1.21E-02			
ni 59	7.10E-01	6.47E-01	5.90E-01	3.09E-01		
np237	3.37E-01	3.36E-01	3.36E-01			
np239	7.53E+00	and the second sec				
pa231	2.52E-04					
pa233	3.37E-01	3.36E-01		3.28E-01	· · · · · · · · · · · · · · · · · · ·	
pa234	7.89E-05					
pa234m	6.07E-02	6.07E-02				
pb209	4.85E-03					
pb210	6.62E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01

Max BWR for	onger decay t	imes				
Decay Time	10005. yr	20005. yr	30005. yr	100005. yr	300005. yr	1000005 yr
Year:	12033	22033	32033	102033	302033	1002033
pb211	2.52E-04	5.14E-04	7.89E-04	2.25E-03	2.97E-03	2.98E-03
pb214	6.63E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01
pd107	5.69E-02	5.68E-02	5.68E-02	5.63E-02	5.51E-02	5.12E-02
po210	6.62E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01
po213	4.75E-03	1.47E-02	2.66E-02	1.04E-01	2.31E-01	2.55E-01
po214	6.62E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.39E-01
po215	2.52E-04	5.14E-04	7.89E-04	2.25E-03		2.98E-03
po218	6.63E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.40E-01
pu239	4.33E+01	3.37E+01	2.57E+01	3.50E+00		2.38E-06
pu240	5.53E+01	1.92E+01	6.69E+00	4.11E-03		
pu241	1.57E-01	6.93E-02		1.02E-04		0.00E+00
pu242	1.24E+00	1.22E+00	1.20E+00	1.05E+00		1.98E-01
ra223	2.52E-04	5.14E-04	7.89E-04	2.25E-03		
ra225	4.85E-03	1.51E-02	2.71E-02	1.07E-01	2.36E-01	2.61E-01
ra226	6.63E-02	1.43E-01	2.12E-01	5.10E-01	5.43E-01	1.40E-01
rn219	2.52E-04				the second se	
rn222	6.63E-02		2.12E-01	5.10E-01	5.43E-01	1.40E-01
sb126	3.29E-02	3.07E-02				
sb126m	2.35E-01	2.19E-01	2.04E-01		3.15E-02	
se 79	2.82E-02					
sn126	2.35E-01	2.19E-01				
tc 99	5.18E+00					
th227	2.49E-04					
th229	4.85E-03					
th230	8.50E-02					
th231	1.42E-03					
th234	6.07E-02					
ti207	2.52E-04					
tl209	1.02E-04	· · · · · · · · · · · · · · · · · · ·				
u233	1.44E-02					
u234	9.54E-01					
u235	1.42E-03					
u236	1.25E-01					
u238	6.07E-02					
zr 93	0.599	0.597	0.594	0.5762	0.5258	0.3826

1. 1. ja

1.1

Staffics 1473 Co

. e. e.

.

Con	nparison of Source Te	rms per MTU of 4 Avera	ge BWR SNF Assemblie	es .
Assembly	3.5%-40GWd-25y	3.03%-33.6GWd-23.0y	3.02%-33.6GWd-25.0y	3.09%-34.8GWd-22.0
Characteristics	(0.2 MTU)	(0.177 MTU)	(0.177 MTU)	(0.177 MTU)
Curies				
Activation Products	6.8200E+02	7.0580E+02	6.0790E+02	7.8770E+02
Actinides and daughters	6.7620E+04	5.9170E+04	5.4690E+04	6.4560E+04
Fission products	2.4960E+05	2.1100E+05	2.0070E+05	2.2570E+05
Total	3.1790E+05	2.7090E+05	2.5610E+05	2.9110E+05
Watts				
Activation Products	4.8150E+00	5.4880E+00	4.2350E+00	6.4490E+00
Actinides and daughters	5.0520E+02	3.3040E+02	3.2880E+02	3.6590E+02
ission products	7.1290E+02	6.0270E+02	5.7250E+02	6.4540E+02
Total	1.2230E+03	9.4440E+02	9.1110E+02	1.0250E+03
Grams				
Activation Products	7.2580E+05	7.2580E+05	7.2580E+05	7.2580E+05
Actinides and daughters	9.5460E+05	9.6340E+05	9.6340E+05	9.6160E+05
Fission products	4.5480E+04	3.5950E+04	3.5950E+04	3.7690E+04
Total	1.7260E+06	1.7260E+06	1.7260E+06	1.7260E+06
Neutrons/s				
Activation Products				
Alpha, N Neutrons	1.4810E+07	9.5950E+06	9.5330E+06	1.0670E+07
Fission products	5.4010E+08	2.7050E+08	2.5300E+08	3.3440E+08
Total	5.5500E+08	2.8060E+08	2.6290E+08	3.4560E+08
Phtons/s				
Total intensity	6.1110E+15	5.1470E+15	4.8900E+15	5.5180E+15

# **Engineering Change Notice**

1. QA: QA 2. Page 1 of 1

Complete only applicable items.

000-00C-MGR0-00200-000-00A-E	CN1				I	
3. Document Identifier:	4. Rev.:	5. Title:				6. ECN:
000-00C-MGR0-00200-000-00A	00A	BWR Source Ter	m Generation and Ev	aluation		1
7. Reason for Change: Per LP-3.12Q-BSC Design Calcula		Analyses Section 5.	1 [2] c,			
"The decision of the DEM, "committed" status will be analysis will change, and th procurement activities, base	e degree o ed on the d	f impact those char esign's bounding co	ssment of the likeliho iges will have on desi onservatism."	od that the re igns that sup	esults of the calcu port the regulator	ilation or y submittals or
the status designation of <i>BWR Source</i> "Committed" as the results are not o	ce Term G expected to	eneration and Eval	<i>uation</i> (000-00C-MG nanner that will affec	R0-00200-0 t support of	00-00A) can be c regulatory submi	hanged to ttals.
8. Supersedes Change Document:	🗌 Yes	If, Yes, Change Do	DC.:		No No	
		9. Chan	ge Impact:			
Inputs Changed: Yes	🛛 No		Results Impacted:	Yes	No No	
Assumptions Changed: Yes 10. Description of Change: (Address any	🛛 No		Design Impacted:	Yes	No No	
Add a "Committed" option in Block "Committed". Block 7 on the cover 7. Document Status Designation	on		Committed 🗌 Fir		Canceled	
11. Originator: (Print/Sign/Date) Dorin Musat Checker: (Print/Sign/Date) YuChien Yuan Approved: (Print/Sign/Date)	ncl	- Ale	set 8/12/200	<i>8/1</i> 5	2/200	5
Dave Darling	$\rightarrow \prime \prime \rightarrow$		~1. I	-		



## -----