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[1] Global climate models typically do not correctly simulate cloudiness associated with
midlatitude synoptic systems because coarse grid spacing prevents them from resolving
dynamics occurring at smaller scales and there exist no adequate parameterizations for
the effects of these subgrid-scale dynamics. Comparison of modeled and observed cloud
properties averaged over similar regimes (e.g., compositing) aids the diagnosis of
simulation errors and identification of meteorological forcing responsible for producing
particular cloud conditions. This study uses a k-means clustering algorithm to
objectively classify satellite cloud scenes into distinct regimes based on grid box mean
cloud fraction, cloud reflectivity, and cloud top pressure. The spatial domain is the densely
instrumented southern Great Plains site of the Atmospheric Radiation Measurement
Program, and the time period is the cool season months (November–March) of
1999–2001. As a complement to the satellite retrievals of cloud properties, lidar and
cloud radar data are analyzed to examine the vertical structure of the cloud layers.
Meteorological data from the constraint variational analysis is averaged for each cluster to
provide insight on the large-scale dynamics and advective tendencies coincident with
specific cloud types. Meteorological conditions associated with high and low subgrid
spatial variability are also investigated for each cluster. Cloud outputs from a single-
column model version of the GFDL AM2 atmospheric model forced with meteorological
boundary conditions derived from observations and a numerical weather prediction model
were compared to observations for each cluster in order to determine the accuracy
with which the model reproduces attributes of specific cloud regimes.
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1. Introduction

[2] Clouds remain the primary source of uncertainty in
the modeling of current climate and predictions of future
climate [Intergovernmental Panel on Climate Change
(IPCC), 2001]. Many previous studies evaluated global
climate model (GCM) reliability by comparing large spatial
and temporal averages of simulated and observed cloud
properties, such as zonal and seasonal means [e.g., Weare
and AMIP Modeling Groups, 1996]. One shortcoming of
this approach is that it can obscure the presence of
compensating errors. For example, Norris and Weaver

[2001] demonstrated that overprediction of shortwave
cloud radiative forcing under conditions of ascent largely
balanced underprediction of shortwave cloud radiative
forcing under conditions of descent such that a realistic
midlatitude ocean radiation climatology occurred in the
National Center for Atmospheric Research (NCAR) Com-
munity Climate Model version 3 for the wrong reasons.
Moreover, comparisons of long-term averages do not
provide much information about reasons for correct or
incorrect simulation of cloud properties.
[3] A complementary method of model cloud evaluation

is compositing, i.e., averaging cloud properties grouped by
similar parameters such as 500-mbar vertical velocity or sea
level pressure [e.g., Bony et al., 1997; Klein and Jakob,
1999; Norris and Weaver, 2001; Tselioudis and Jakob, 2002;
Jakob, 2003; Bony et al., 2004; Lin and Zhang, 2004]. This
technique typically focuses on the connection between cloud
properties and the dynamical processes that affect them.
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There are, however, several disadvantages associated with
compositing on dynamical parameters. One is a lack of
reliable data for atmospheric variables important for cloud
formation (temperature, humidity, vertical velocity) over
much of the globe. Moreover, as was pointed out by Jakob
and Tselioudis [2003], compositing by dynamical parameter
requires prior knowledge about the meteorological processes
associated with the particular cloud regimes to be identified.
[4] Jakob and Tselioudis [2003] applied a clustering

algorithm to International Satellite Cloud Climatology
Project (ISCCP) [Rossow and Schiffer, 1999] histograms
of cloud optical depth and cloud top pressure to identify
dominant modes of cloud variability in the tropical west-
ern Pacific. This study uses a similar procedure to deter-
mine typical cloud regimes associated with extratropical
cyclones for the ISCCP grid box centered on the southern
Great Plains (SGP) site of the Atmospheric Radiation
Measurement (ARM) Program [Ackerman and Stokes,
2003]. Only the cool season (November–March) is exam-
ined because that is the time of year when clouds in this
region are primarily produced by large-scale synoptic
systems. Although our study focuses on clouds over
Oklahoma and Kansas due to the dense network of
ARM measurements there, the use of globally available
ISCCP data allows us to assess the extent to which our
results can be generalized to other regions of the world.
Lidar and cloud radar retrievals from the ARM SGP site
provide information about the vertical distribution of
cloudiness that is not available from satellite observations.
Other ARM measurements have been used to constrain the
water and energy budgets for reanalyzed output from a
numerical weather prediction model over approximately a
3.5� � 3.5� area, enabling relatively accurate determina-
tion of large-scale horizontal and vertical advection of
temperature and moisture in a volume approximately the
size of a GCM grid column. This product, the Constraint
Variational Analysis (CVA) [Zhang et al., 2001; Xie et al.,
2004], is superior to analyses from numerical weather
prediction models but is currently available only over the
SGP site during January 1999 to March 2001. Meteoro-
logical parameters coincident with the satellite cloud
scenes are averaged within cloud clusters to gain a better
understanding of the dynamics coincident with various
cloud types.
[5] Previous studies [e.g., Klein and Jakob, 1999; Norris

and Weaver, 2001; Tselioudis and Jakob, 2002; Lin and
Zhang, 2004] have demonstrated that GCMs have difficulty
correctly simulating clouds associated with extratropical
cyclones in large part because subgrid-scale processes and
especially subgrid-scale vertical motion are not adequately
represented [Katzfey and Ryan, 2000; Ryan et al., 2000].
One common GCM problem is production of frontal clouds
that are too thick and too horizontally uniform, presumably
due to lack of subgrid vertical motions that in the real
world thicken clouds in one part of the grid box and dry
out clouds in another part. The first step to improving
GCMs is determining which cloud regimes are most
problematic in models, and this study accomplishes that
by comparing observed cloud properties averaged within
each cloud cluster with those from the single-column
model (SCM) version of the Geophysical Fluid Dynamics
Laboratory (GFDL) Atmospheric Model (AM2) [GFDL

Global Atmospheric Development Team, 2004]. Since the
SCM receives realistic large-scale advective tendencies
from the CVA, observed and simulated cloud properties
should be largely the same if the GFDL AM2 correctly
parameterizes subgrid processes. A second goal of this
study is the identification of large-scale meteorological
conditions that are associated with small or large subgrid
spatial variability in frontal clouds, which will be useful
for later parameterization. This is investigated by dividing
cloud clusters according to instantaneous spatial variability
in cloud reflectivity and cloud top pressure in each ISCCP
scene and examining the differences in CVA meteorology
and advective forcing for cases of high and low cloud
variability. The CVA data, however, do not provide
information about mesoscale and smaller-scale dynamical
processes directly responsible for generating subgrid cloud
variability. These must instead be investigated using a
high-resolution model, as reported by Weaver et al. [2005].

2. Clustering of Cloud Data

[6] The primary source of cloud observations for this
investigation was the ISCCP D1 equal-area (280 km �
280 km) data set, originally processed from radiances
measured by geostationary weather satellites [Rossow et
al., 1996; Rossow and Schiffer, 1999]. We examined the
single grid box (35–37.5�N, 99.3–96.2�W) most closely
collocated with the ARM SGP/Cloud and Radiation
Testbed (CART), centered on 36.6�N, 97.5�W. The entire
ISCCP grid box is located inside the boundary facilities of
the SGP/CART site and the CVA domain. ISCCP data
provide grid box mean cloud fraction, cloud top pressure
and visible cloud optical thickness every three hours
during daytime, usually averaged from 50–80 pixels about
4–7 km in size and spaced approximately 30 km apart.
Other available data are the spatial standard deviations of
pixel cloud top pressure and cloud optical thickness within
the grid box and the relative frequencies of pixels occur-
ring in seven cloud top pressure and six cloud optical
thickness intervals (42 categories). We restricted our anal-
ysis to solar zenith angles less than 72� because cloud
property retrievals may be inaccurate when the Sun is
close to the horizon. The restriction of our analysis to
daytime cases should not be significant due to the small
diurnal variability in high clouds over the central United
States in wintertime [Wylie and Woolf, 2002]. Because
reflected radiation flux varies nonlinearly with cloud
optical thickness, the unweighted average of cloud optical
thickness values does not correspond to the average
reflected radiation flux. We took this issue into account
by converting cloud optical thickness values to cloud
reflectivity at 0.6 microns using an ISCCP look-up table
(corresponding to Figure 3.13 of Rossow et al. [1996])
before averaging. The liquid water conversion table was
used for all clouds since cloud ice fraction was not
readily available, but the resulting error is smaller than
that from averaging cloud optical thickness instead of
cloud reflectivity.
[7] ISCCP 3-hourly data for the months of November–

March were grouped into cloud regimes by applying a
k-means clustering algorithm to gridbox mean cloud
fraction, cloud reflectivity, and cloud top pressure. The

D15S17 GORDON ET AL.: CLUSTER ANALYSIS OF CLOUD REGIMES

2 of 13

D15S17



k-means procedure classifies all data elements into a
specified number of clusters such that within-cluster vari-
ance is minimized [Hartigan, 1975]. The only arbitrary
parameter needed is the number of clusters; the character of
the individual cluster means is then objectively determined
by the data. For reasons described in the following para-
graph, we chose to calculate six clusters. Values of cloud
fraction, cloud reflectivity, and cloud top pressure were all
converted to a scale varying linearly from 0 to 1 to ensure
each parameter would contribute equally to clustering, and
times with no cloudiness at all, approximately 5% of the
total, were excluded from clustering. The clustering process
began with random selection of six data elements as initial
seeds, each element comprising a 3-hourly mean cloud
fraction, cloud reflectivity, and cloud top pressure. Every
other element in the data set was then assigned to the initial
seed it was closest to in a Euclidean sense. The number of
elements in a cluster divided by the total number of
elements is the frequency of occurrence of the cluster,
and the average of all elements in the cluster is the centroid.
These cluster centroids became new seeds to reinitialize the
clustering routine, which was repeated until the centroids
converged.
[8] The most subjective aspect of the k-means method is

specifying the number of clusters. After examining results
for various numbers, we chose to use six because that was
the minimum number of clusters that had clearly distinct
cloud properties and meteorological conditions. Additional
clusters overlapped preceding clusters without providing
appreciable new information. For example, two of the six
original clusters were patchy thin cirrus and extensive
thicker cirrostratus, and a seventh cluster was merely cirrus
of intermediate optical thickness and horizontal coverage.
Inclusion of such intermediate clusters would increase the
length of the paper and the number of plots without
commensurately enhancing our understanding of dynamical
and thermodynamical conditions associated with particular
cloud types. Another uncertainty in the k-means method is
the convergence of the clustering algorithm to different
results for different initial seeds. We resolved this ambiguity
by clustering on 100 different sets of random initial seeds
and choosing the final cluster set with the least sum of
variance around each cluster centroid. Only two alternate
realizations occurred, and these were substantially similar to
the minimum variance cluster set. The differences entailed
the addition of a cirrus-type cluster and the combination of
optically thick low-top clouds with optically thick high-top
clouds in a single cluster rather than placing them in
separate clusters.
[9] Our approach differs from that of Jakob and

Tselioudis [2003] in that we cluster on three parameters
(gridbox mean cloud fraction, cloud top pressure, and cloud
reflectivity) rather than on 42 parameters (cloud fraction
within each of seven cloud top pressure and six cloud
optical thickness intervals). We chose to use a three-param-
eter grid box mean phase space because it is simpler and
can be applied to GCMs that do not produce ISCCP-like
output (which has nonnegligible computational and storage
costs). One disadvantage of aggregation of the 42
parameters to three gridbox mean parameters is loss of
information when pixels in the grid box have widely
varying cloud properties (e.g., bimodal distributions), but

examination of instantaneous ISCCP scenes indicates that
unimodal distributions occur 71% of the time in our
domain. We define a scene as unimodal if the gridbox
mean cloud top pressure and optical thickness fall into a
cloud top pressure/optical thickness interval that is the
same or adjacent to the cloud top pressure/optical
thickness interval with the most pixels. One disadvantage
of clustering on 42 parameters is that each parameter is
treated as being equally distant from the others, and
adjacent cloud top pressure/optical thickness intervals are
grouped together only if they co-occur in instantaneous
ISCCP scenes. We found that clustering on 42 parame-
ters did not produce results that were any more dynam-
ically distinct than clustering on three parameters.
Moreover, the 42-parameter method converged to a
larger number of solutions for different starting seeds
than did the three-parameter method.
[10] Although the 1999–2001 time period is of greatest

interest because that is when advective forcing from the
CVA is available, the clustering algorithm was applied to
14 years (1988–2001) of the ISCCP data for January–
March and November–December to reduce sampling
uncertainties. Clusters for January 1999 to March 2001
were determined by matching elements to the nearest
14-year centroid, with no iterative reclustering. The 1999–
2001 centroids were nearly identical to those for the entire
14 years, but the cluster frequencies were slightly differ-
ent. In order to match the temporal resolution of the CVA,
January 1999 to March 2001 ISCCP data were linearly
interpolated from 3-hourly to 1-hourly before the applica-
tion of clustering.
[11] Table 1 lists cluster centroids for the 1999–2001

time period, ordered according to relative frequency. Con-
ditions with completely clear sky occurred 6% of the time
(in the 3-hourly data) and were not clustered. Although, for
convenience, we label each cluster with a cloud name, this
does not imply that the name is characteristic of every
element in the cluster. Pixel frequency distributions as a
function of cloud optical thickness and cloud top pressure
are plotted for each cluster in Figure 1. The variability in
cloud optical thickness and cloud top pressure seen in the
histograms results from both the subgrid variability of cloud
properties within individual scenes and the variability of the
gridbox mean elements around the cluster centroids. The
first and second clusters, ‘‘extensive cirrus’’ and ‘‘patchy
cirrus,’’ are optically thin with high cloud tops, but have
very different cloud fractions. Clusters 3 and 4 (‘‘frontal/
nimbostratus’’ and ‘‘stratus/stratocumulus,’’ respectively)
are optically thick, with nearly 100% cloud cover. Although
the frontal/Ns reaches into the upper troposphere, St/Sc
has the lowest cloud top of any cluster. The fifth cluster is a
mixture of clouds at multiple levels in the atmosphere with
nearly 100% cloud cover. Examination of individual scenes
indicated that clouds occur at a variety of levels at the same
time, so the histogram in Figure 1 is not merely an artifact
of averaging. This mixed cluster does not separate into
high-cloud and low-cloud clusters when more than six
clusters are calculated, suggesting it is indeed a distinct
regime. Cluster 6, ‘‘cumulus/cirrus,’’ is characterized by a
combination of low-level and high-level optically thin
clouds, and in this case the gridbox mean cloud top
pressure is not representative of individual pixels.
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[12] While satellite observations describe well the hori-
zontal distribution of cloud properties, they supply much
less information about the profile of overlapping clouds.
Knowledge of the vertical cloud distribution can be
obtained from the millimeter cloud radar (MMCR), micro-
pulse lidar, and ceilometer instruments located at the ARM
SGP Central Facility. The measurements from these instru-
ments have been combined in the Active Remote Sensing of
Cloud Layers (ARSCL) data product [Clothiaux et al.,
2000], which identifies the presence of cloud at 45 m
vertical resolution and provides the top and bottom heights
of every cloud layer directly above the instruments. ARSCL
10-s data at 45 m resolution were averaged within 250 m
vertical intervals and 30-min periods centered on the hourly
time points of the CVA to obtain cloud fraction as a function
of height. We assume that the frequency of cloudiness above
the instrument during a 30-min interval is identical to the
spatial cloud fraction within the surrounding local area
(18–36 km for 10–20 m s�1 advection speeds). This is
much smaller than the ISCCP domain (280 km), but

averaging over longer time intervals can mix in substantial
temporal variability in the cloud field [Kim et al., 2005,
Appendix A]. Averages of the highest cloud top, lowest
cloud base, and integrated thickness of all layers were also
calculated. We determined lowest cloud base according to
ceilometer measurements (30-s sampling and 8 m vertical
resolution) since they do not misidentify precipitation as
cloud like the MMCR. This adjustment was not undertaken
for the profiles of cloud fraction at each level, which may
lead to a slight overestimate of cloud fraction, especially
near the surface. At least 50% of the data in a 30-min
interval were required to have valid retrievals in order to
construct an average (16% of the data were missing from
the entire data set). The ARSCL 30-min values were
assigned to the same clusters that the coincident ISCCP
data were classified in, and then averaged. Although cloud
fractions reported by ISCCP and ARSCL may exhibit large
disagreement at any given time due to differences in spatial
sampling, this effect is random and will be reduced by
averaging over many time points in a cluster. Systematic

Table 1. ISCCP Mean Cloud Properties ±1 Standard Deviation for Each Cluster During January–March of 1999–2001 and November–

December of 1999–2000

Cloud Type Cluster Mean Cloud Fraction
Mean Cloud Top
Pressure, mbar Mean Reflectivity Optical Thickness Frequency, %

Extensive cirrus 1 0.82 ± 0.14 209 ± 74 0.11 ± 0.06 0.9 19
Patchy cirrus 2 0.24 ± 0.15 190 ± 98 0.07 ± 0.05 0.5 17
Frontal/nimbostratus 3 1.0 ± 0.03 431 ± 116 0.68 ± 0.11 20.9 16
Stratus/stratocumulus 4 0.92 ± 0.11 707 ± 86 0.58 ± 0.13 13.3 13
Mixed 5 0.90 ± 0.13 432 ± 103 0.31 ± 0.07 3.7 12
Cumulus/cirrus 6 0.33 ± 0.18 657 ± 155 0.28 ± 0.10 3.3 6
Clear 6

Figure 1. Frequencies of ISCCP pixels in cloud top pressure and cloud optical thickness intervals for
each cluster. The dashed lines indicate the nine ISCCP standard cloud categories.
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disagreement due to different methods of observation will
remain.
[13] Table 2 shows mean ARSCL cloud fraction, highest

cloud top, lowest cloud bottom, and integrated cloud
thickness of all layers. The cloud fraction listed in Table 2
is determined by the occurrence of cloud at any level.
Cluster cloud top heights reported by ARSCL correspond
well with those reported by ISCCP. Less agreement occurs
for cloud fraction, although the relative variations between
clusters are similar. One reason ISCCP might report larger
cloud fraction than ARSCL is that pixels are designated as
completely cloudy even if the actual cloud is smaller than
the pixel size. Another possible reason is that MMCR fails
to detect clouds otherwise seen by laser at heights above
8 km about 10–20% of the time [Clothiaux et al., 2000].
Physical cloud thickness is not directly comparable to
optical cloud thickness since the latter also depends on
the condensate concentration, effective particle size, and
water phase. Figure 2 displays average cloud fraction at
every level for each cluster. Clouds in the cirrus regimes
occur almost entirely above 5 km whereas St/Sc clouds are
generally confined to the lowest 3 km. Frontal/Ns cloudi-
ness is horizontally extensive and exists in a deep layer,
consistent with having the largest physical and optical
thickness of any cluster. The ARSCL profiles for the
multilayer clusters (Cu/Ci and mixed) exhibit nonnegligible
cloud occurrence over a wide range of vertical levels.

3. Characteristic Dynamics

[14] Dynamical parameters associated with ISCCP
1-hourly interpolated data were obtained from the Con-
straint Variational Analysis (CVA) [Zhang et al., 2001; Xie
et al., 2004], a single-column analysis carried out for a
domain approximately the size of a GCM grid box
centered on the ARM SGP Central Facility. The CVA
constrains numerical weather prediction (NWP) model
output with atmospheric soundings and measurements of
precipitation, surface energy fluxes, and top-of-atmosphere
energy fluxes. Column-integrated mass, water, energy and
momentum are conserved by the application of objective
analysis techniques. The resulting product provides vertical
profiles of atmospheric conditions (horizontal winds,
vertical motion, temperature, relative humidity) as well
as the tendencies of temperature and water vapor due to
large-scale horizontal and vertical advection. SCMs and
Cloud System Resolving Models produce more realistic
cloud and precipitation simulations when they are forced
by advective tendencies from the CVA rather than from
the original NWP output [Xie et al., 2003]. CVA data are
currently available at 25 mbar spacing between 1000 mbar

and 100 mbar for every hour during January 1999 to
March 2001.
[15] To provide insight into the atmospheric state and

advective forcing associated with the various cloud regimes,
we averaged vertical profiles of CVA data over the times
corresponding to each cluster. Monthly means were
removed from relative humidity (RH) and temperature
values prior to averaging to prevent the large basic state
decline in RH and temperature with height from domi-
nating the plots. Similarly, advective tendencies of water
vapor mixing ratio were divided by the saturation mixing
ratio at each level, thus converting them to tendencies in
RH under the assumption that temperature remains constant.
For consistency, all values of RH and saturation are with
respect to liquid water even though saturation with respect to
ice may be more applicable in the upper troposphere. We
calculated 95% confidence intervals for the cluster means

Figure 2. Profiles of ARSCL mean cloud fraction for each
ISCCP cluster. The horizontal lines indicate boundaries of
ISCCP cloud top pressure intervals.

Table 2. ARSCL Mean Cloud Properties ±1 Standard Deviation for the Same Times as the ISCCP Clusters

Cloud Type Cluster Cloud Fraction Cloud Top Height, km Cloud Base Height, km
Integrated Cloud
Thickness, km

Extensive cirrus 1 0.48 ± 0.66 9.4 ± 5.0 5.8 ± 3.9 3.1 ± 2.7
Patchy cirrus 2 0.13 ± 0.43 9.3 ± 5.1 6.0 ± 3.2 3.0 ± 2.1
Frontal/nimbostratus 3 0.87 ± 0.72 8.9 ± 3.8 1.4 ± 1.7 5.6 ± 3.0
Stratus/stratocumulus 4 0.80 ± 0.86 3.6 ± 2.9 1.2 ± 1.7 1.3 ± 1.1
Mixed 5 0.70 ± 0.81 7.5 ± 4.2 3.6 ± 2.7 2.9 ± 2.3
Cumulus/cirrus 6 0.70 ± 0.81 5.0 ± 3.2 2.7 ± 2.3 1.7 ± 1.4
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assuming a normal distribution and counting successive
hours classified into the same cluster as a single realization.
The smallest effective sample size for any cluster is 75
(frontal/Ns). The total number of ISCCP interpolated hourly
data contributing to the clusters is 1790. Vertical profiles of
perturbation RH are displayed in Figure 3, pressure vertical
velocity is displayed in Figure 4, and advective tendencies of
water vapor mixing ratio are displayed in Figure 5.
[16] The mean cloud properties of each cluster are

physically consistent with the dynamical forcing. Upper
tropospheric RH is higher than normal for the Extensive
Ci regime (cluster 1) due to upward vertical motion near
the 350 mbar level that is increasing the water vapor
mixing ratio over time. This positive total advection of
water vapor does not occur in the patchy Ci regime
(cluster 2), which instead experiences stronger downward
motion and drier conditions than extensive Ci. The frontal/
Ns regime (cluster 3) is associated with very strong
upward motion that is rapidly increasing water vapor
mixing ratio by vertical advection and producing a large
positive RH perturbation from surface to tropopause.
Despite the occurrence of mean ascent throughout the
troposphere in the St/Sc regime (cluster 4), a positive
anomaly in RH occurs only below the 600 mbar level.
Negative horizontal advection of water vapor overwhelms
the positive vertical advection to cause net drying above
the low-level clouds. Weak upward motion in the mixed
cloud regime (cluster 5) produces small positive RH
anomalies in the middle and upper troposphere through
vertical advection of water vapor. Negative horizontal
advection of water vapor dominates in the Cu/Ci regime

(cluster 6), and the troposphere is anomalously dry except
near the surface and tropopause. Despite the similarities
between advective forcing and cloud properties described
above, it is important to keep in mind that the mean
meteorological conditions may not be characteristic of
every element in the cluster.

4. Subgrid Spatial Cloud Variability

[17] Previous studies have found that GCMs have diffi-
culty correctly representing subgrid variability in cloud
properties [e.g., Norris and Weaver, 2001; Tselioudis and
Jakob, 2002]. This is particularly the case for frontal
cloudiness, which typically is too uniformly high and
optically thick under conditions of strong ascent. Norris
and Weaver [2001] attributed this to the lack of represen-
tation of subgrid vertical motions in current GCM param-
eterizations, since even if grid box mean vertical motion
were upward, subgrid variability could result in stronger
ascent in one portion of a grid box and weak descent in
another portion of the grid box. Because GCMs currently do
not consider subgrid variability in vertical motions aside
from moist convective parameterizations, grid box mean
ascent tends to produce spatially uniform saturation of the
entire grid column. Although the role of subgrid variability
in vertical motion is difficult to investigate observationally
due to lack of reliable data, high-resolution simulations of
two synoptic systems passing over the SGP site indeed
indicate a strong connection between the mesoscale distri-
bution of upward motion and the mesoscale distribution of
cloudiness [Weaver et al., 2005]. Identification of the

Figure 3. Profiles of mean CVA perturbation RH with respect to water (%) for each cluster. The dashed
lines indicate 95% confidence intervals.

D15S17 GORDON ET AL.: CLUSTER ANALYSIS OF CLOUD REGIMES

6 of 13

D15S17



large-scale forcing associated with mesoscale variability in
vertical motion and cloudiness will aid parameterization of
these effects. Since computationally intensive simulations
are available only for a few short time periods, it is useful
to examine in observations how the large-scale meteoro-
logical forcing differs between cases of high and low
subgrid cloud variability with the same grid box mean
cloud properties.
[18] We carried this out by partitioning clusters into

subsets based on the spatial standard deviations of cloud
reflectivity and cloud top pressure of each element. The
‘‘high variability’’ subset of a cluster then consists of those
elements whose standard deviations are above the median
values of both parameters for the cluster, and the ‘‘low
variability’’ subset consists of those elements whose stan-
dard deviations are below the median values. It happens to
be the case that the spatial standard deviations of cloud
reflectivity are dominated by the gridbox means because the
standard deviation must be close to zero when the mean
value is close to zero. For this reason we divide cloud
reflectivity standard deviations by the gridbox means
before partitioning the cluster. The high-variability and
low-variability subsets each have slightly more than one
quarter of the elements since subgrid variability in cloud
reflectivity tends to be positively correlated with subgrid
variability in cloud top pressure.
[19] Figure 6 shows horizontal, vertical, and total water

vapor advection for high-variability and low-variability
subsets of the frontal/Ns regime (cluster 3). Strong ascent
produces positive vertical and net positive total water vapor

advection for both subsets. The horizontal water vapor
advection, however, is negative for high-variability cases
and positive for low-variability cases. The presence of
positive vertical and negative horizontal water vapor
advection also occurs with the high-variability subsets of
the St/Sc (cluster 4) and mixed (cluster 5) cloud regimes
(not shown). These results suggest that substantial subgrid
variability in cloud top pressure and cloud reflectivity may
result from subgrid variability in vertical motion that
saturates only part of a grid box otherwise being dried
by horizontal advection, although subgrid variability in
horizontal moisture advection may also play a role. Con-
trastingly, horizontal moistening favors much more uni-
form saturation and cloud properties.
[20] Subsets of high and low subgrid cloud variability are

sometimes associated with completely different meteoro-
logical conditions. Figure 7 shows this is the case for the
St/Sc regime (cluster 4). The low-variability subset resem-
bles cold sector stratocumulus. These clouds occur beneath
subsidence that caps a shallow boundary layer and con-
strains cloud top height and thickness to be relatively
uniform. The high-variability subset resembles warm sector
stratus. Examination of individual days suggests plumes of
moist ascending air advected from the subtropics form
stratus clouds of varying heights and thicknesses. High-
and low-variability subsets of the extensive cirrus regime
(cluster 1) also occur in different meteorological regimes
(Figure 8). The low-variability subset is associated with
subsidence, a cold troposphere, and a depressed tropopause,
presumably in the upper level trough following the passage

Figure 4. As in Figure 3, but for pressure vertical velocity (mbar/h). Negative values correspond to
upward motion.
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of a cold front. The high-variability subset is associated with
ascent, a warm troposphere, and an elevated tropopause,
presumably in an upper level ridge ahead of an approaching
cyclone.

5. Global Representativeness

[21] The global representativeness of the results at the
SGP site can be assessed by measuring the proximity of

locally generated cluster centroids to the SGP centroids. We
did so by calculating clusters for 1999–2001 data in each
ISCCP grid box using the 14-year (1989–2001) SGP
centroids as initial seeds with no iterative reclustering.
The average Euclidian distance between these centroids
and the SGP centroids was computed for each grid box
with weighting by cluster frequency. The resulting values
then describe how well cloud regimes around the world
resemble cloud regimes at the SGP site. To provide insight

Figure 5. Profiles of mean CVA horizontal (thick dashed line), vertical (thick dot-dashed line), and total
(thick solid line) advection of water vapor mixing ratio for each cluster. Advection values have been
normalized by saturation mixing ratio at each level (units are percent of saturation/h). The thin solid lines
indicate 95% confidence intervals for total advection.

Figure 6. Profiles of mean CVA total, horizontal, and vertical water vapor advection (percent of
saturation/h) for subsets of high (thin line) and low (thick line) subgrid cloud variability in cluster 3
(frontal/Ns). The dashed lines indicate 95% confidence intervals.
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into the relative importance of differences from the 14-year
SGP centroid, we scaled distances from all grid boxes by
the distance between the 1999–2001 SGP centroid and the
14-year centroid. Thus a scaled distance equal to one
means clusters at an arbitrary grid box are as close to
the 14-year SGP centroid as clusters calculated from
three of those 14 years. Table 3 lists 14-year centroids
and frequencies at the SGP site, and a comparison with
Table 1 demonstrates that differences between centroids
calculated over 1989–2001 and centroids calculated over
1999–2001 are small. Figure 9 shows that cloud regimes
over many midlatitude land regions and especially over the
eastern half of the United States have similar properties to
those at the SGP site. This suggests the atmospheric state
and advective forcing documented for each SGP cluster
are broadly representative of midlatitude continental cool
season cloudiness.

6. Model Cloud Comparison

[22] One difficulty with evaluating the quality of GCM
cloud simulation is that it is not always clear whether errors
in cloud simulation result from incorrect large-scale forcing
or an incorrect response of parameterizations to correct
large-scale forcing. This problem is mitigated in the exam-
ination of 3-hourly SCM cloud output from runs with CVA
forcing, which presumably experienced similar forcing as
the observed clouds. In this study we will examine output

from an SCM implementing the full physics parameter-
izations, vertical resolution, and time step of the GFDL
AM2 [GFDL Global Atmospheric Model Development
Team, 2004], but our procedure could be applied to any
model. The GFDL SCM has 24 vertical levels and a
prognostic cloud scheme based upon the work by Tiedtke
[1993] with stratiform microphysics from Rotstayn [1997]
and Rotstayn et al. [2000]. The cumulus parameterization is
relaxed Arakawa-Schubert [Moorthi and Suarez, 1992], and
the turbulence parameterization is based upon work by Lock
et al. [2000]. Temperature and moisture forcings specified
from the CVA without nudging and the winds specified
from observations drive the model. The data analyzed in
this study come from hours 12 to 36 of 36-hour SCM
forecasts that begin every day with the observed sounding.
This minimizes the drifts of temperature and moisture that
can develop in such SCM simulations [Ghan et al., 2000].
[23] As was done for the ISCCP data, the 3-hourly SCM

cloud data were linearly interpolated to 1 hourly. Cluster by
cluster comparison of observed and simulated cloud prop-
erties will establish the specific cloud regimes that are well
or poorly modeled. For direct comparability with the
satellite data, the SCM output had been converted into
frequency distributions of ‘‘pixels’’ with various values of
cloud optical thickness and cloud top pressure using the
ISCCP simulator (http://gcss-dime.giss.nasa.gov, as de-
scribed by Klein and Jakob [1999] and Webb et al.
[2001]). The ISCCP simulator divided the SCM column

Figure 7. As in Figure 6, except for pressure vertical velocity (mbar/h), temperature (K), and
perturbation RH (%) in cluster 4 (St/Sc).

Figure 8. As in Figure 7, except for cluster 1 (extensive Ci).
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into 50 subcolumns and randomly assigned cloud cover or
clear to each level of each subcolumn such that the model
overlap assumption was maintained and the fraction of
subcolumns with cloud was the same as the SCM column
cloud fraction at each level. The total optical thickness and
cloud top pressure of each subcolumn were then calculated
from the vertical distribution of condensate amount and
effective particle size in a manner consistent with ISCCP
retrievals of cloud properties. Each subcolumn was treated
as a pixel, and the fraction of pixels in each ISCCP cloud
top pressure/optical thickness intervals was calculated.
Subcolumn cloud optical thickness was sometimes less than
that detectable by satellite, defined in this study as optical
thickness less than 0.3. These subvisible cloudy pixels were
not included in calculations of mean grid box cloud fraction,
cloud optical thickness, and cloud top pressure. Conditions
of solely subvisible cloudiness in the SCM column occurred
10% of the time, and completely cloudless conditions
occurred 18% of the time (in the 3-hourly data).
[24] Table 4 lists average SCM cloud properties, and

Figure 10 presents SCM pixel frequency distributions for
the same times classified into the ISCCP clusters during
1999–2000. Although SCM data were not available for
January–March 2001, this has little impact on the overall
results since differences between simulated and observed
clouds are much larger than differences between averages
over 1999–2000 and 1999–2001. Comparison with Table 1
and Figure 1 shows that model clouds are much more
optically thick than observed clouds. This is true even if
the subvisible clouds are included in the optical thickness

average. SCM cloud fraction, however, is generally less
than average ISCCP cloud fraction due to the frequent
occurrence of completely clear sky or subvisible cloudiness
in the SCM at times when clouds were actually observed.
Overprediction of cloud optical thickness and underpre-
diction of cloud fraction are common compensating errors
in GCMs. Clusters 3, 4, and 5 in Figure 10 also exhibit the
typical GCM behavior of producing clouds that are too
optically thick and too high in the atmosphere under
conditions of grid box mean ascent (Figure 4) [Norris
and Weaver, 2001; Tselioudis and Jakob, 2002; Lin and
Zhang, 2004; Xie et al., 2005; Xu et al., 2005; Zhang et
al., 2005]. The St/Sc cloud regime (cluster 4), which
exhibits substantial cloudiness in the middle and upper
troposphere despite net advective drying at these levels
(Figure 5), has the most egregious error. Since the Tiedtke
[1993] cloud parameterization does not have a way to treat
the impacts of horizontal advection differently from the
impacts of vertical advection, the SCM always generates
cloud water and cloud fraction whenever grid box mean
ascent occurs and grid box mean RH is greater than 80%.
Although substantial variability in cloud properties is
evident in the histograms displayed in Figure 10, more
variability results from temporal changes in the grid box
mean and less from spatial variability within the grid box
than is the case for ISCCP. Examination of individual
scenes indicated that all cloud pixels occur in a single
cloud top pressure interval and single cloud optical thick-
ness interval three times as often in the SCM than in
ISCCP.

Table 3. ISCCP Mean Cloud Properties for Each Cluster During January–March of 1988–2001 and November–

December of 1988–2000

Cloud Type Cluster Mean Cloud Fraction Mean Cloud Top Pressure, mbar Mean Reflectivity Frequency, %

Extensive cirrus 1 0.85 227 0.11 20
Patchy cirrus 2 0.23 218 0.07 18
Frontal/nimbostratus 3 1.00 429 0.62 12
Stratus/stratocumulus 4 0.94 698 0.54 15
Mixed 5 0.92 451 0.29 17
Cumulus/cirrus 6 0.33 660 0.25 12
Clear 2

Figure 9. Distances of 1999–2001 centroids at each grid box from the 1989–2001 centroids at the SGP
grid box, scaled by the 1999–2001 SGP value. Contour interval is 0.5; values less than 1.0 are dark gray
and values greater than 2.0 are white. A white square marks the SGP site.
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[25] Model cloudiness might differ from coincident
observed cloudiness if there were a delay in the SCM
response to observed forcing or if the CVA did not
correctly represent the observed forcing. To account for
this possibility, we carried out a statistical evaluation of
the SCM distribution of cloud properties. This was ac-
complished by classifying the SCM elements into their
own clusters by performing the clustering routine on the
grid box mean SCM cloud properties. Table 5 lists the
resulting SCM cluster centroids, and Figure 11 displays
pixel frequency distributions as a function of cloud optical
thickness and cloud top pressure for each cluster. Note that
the SCM clusters have a different order and frequency
than the ISCCP clusters. Patchy Ci and Cu/Ci regimes
occur much less frequently in the SCM than in ISCCP,
presumably because the SCM too often produces clear sky
instead of partial cirrus cloudiness. This underestimation
still exists even if subvisible cloudiness is included in the
clusters. Although the greater frequency of completely
clear sky in the SCM causes the relative frequency of
frontal/Ns and St/Sc regimes to increase, they still occur

with approximately the same absolute frequency as in the
ISCCP clusters. Although SCM cluster cloud fractions are
comparable to the ISCCP clusters, the optical thickness
values are much larger. Figure 11 indicates that most of
the SCM clusters have less variability in cloud optical
thickness and/or cloud top pressure than do the ISCCP
clusters, consistent with the general tendency for lesser
subgrid spatial variability in individual SCM scenes.

7. Summary and Discussion

[26] This study demonstrates how satellite observations
of midlatitude cool season continental cloudiness can be
grouped into distinct cloud regimes by application of a
k-means clustering algorithm to grid box mean cloud
fraction, cloud reflectivity, and cloud top pressure. These
regimes correspond to typical cloud types associated with
various synoptic conditions over land during winter:
extensive cirrus, patchy cirrus, frontal/nimbostratus, stra-
tus/stratocumulus, cumulus/cirrus, and a mixture of clouds
at a variety of levels. Averages of ground-based retrievals

Table 4. SCM Mean Cloud Properties for the Same Times as the ISCCP Cloud Clusters

Cloud Type Cluster Mean Cloud Fraction Mean Cloud Top Pressure, mbar Mean Reflectivity

Extensive cirrus 1 0.46 ± 0.45 291 ± 273 0.27 ± 0.23
Patchy cirrus 2 0.28 ± 0.40 327 ± 288 0.29 ± 0.24
Frontal/nimbostratus 3 0.90 ± 0.26 371 ± 186 0.74 ± 0.24
Stratus/stratocumulus 4 0.84 ± 0.32 579 ± 239 0.73 ± 0.21
Mixed 5 0.72 ± 0.40 388 ± 257 0.48 ± 0.29
Cumulus/cirrus 6 0.45 ± 0.44 461 ± 333 0.41 ± 0.31

Figure 10. Frequencies of SCM pixels in cloud top pressure and cloud optical thickness intervals for
each ISCCP cluster. The dashed lines indicate the nine ISCCP standard cloud categories and a special
category of subvisible cloudiness (optical thickness < 0.3).
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of cloud fraction, cloud height, and cloud thickness are
consistent with the satellite cloud distributions and provide
additional insight into the vertical structure of the cloud
regimes. Consistency is also found between cloud proper-
ties of each regime and vertical profiles of meteorological
parameters averaged over a domain approximately the size
of a GCM grid box and constrained by a dense network of
observations to conserve column-integrated mass, water,
energy, and momentum. In particular, a close relationship
is found between mean vertical profiles of water vapor
advection, relative humidity, and cloudiness for each
regime. We investigated cloud properties over the ARM
SGP site since it was one of the few locations on Earth
with accurate observations of water vapor advection, but
our general results should be applicable to many midlat-
itude land regions around the globe.
[27] A primary motivation for this study is the diagnosis

of errors in GCM simulations of specific cloud regimes. To
this end we carried out an analogous classification of cloud
output from the SCM version of the GFDL AM2 model and
compared properties of the resulting cloud regimes with

those of the observations. Since the SCM was forced with
realistic large-scale boundary conditions, simulated cloudi-
ness should be similar to coincident observed cloudiness if
the model correctly parameterizes subgrid processes. An
alternative diagnostic method is to calculate cloud regimes
separately for the SCM output and the observations and
compare the mean properties of the cloud regimes. Both
methods indicate cloud optical thickness is too large and
completely clear sky is too frequent in the model, as is the
case for other GCMs and SCMs [e.g., Norris and Weaver,
2001; Tselioudis and Jakob, 2002; Lin and Zhang, 2004;
Xie et al., 2005; Xu et al., 2005; Zhang et al., 2005]. The
SCM appears to reproduce the correct absolute frequencies
of frontal/Ns and St/Sc regimes, albeit with clouds that are
too bright, but other cloud regimes that include optically
thin cirrus are underproduced.
[28] Another feature of the simulated clouds is their lack,

relative to the observations, of subgrid spatial variability in
cloud optical thickness and cloud top pressure, especially
for the frontal/Ns regime. The GFDL SCM and other
models tend to saturate the entire grid column under

Table 5. Mean Cloud Properties for Clusters Derived From the SCM Output

Cloud Type Cluster Mean Cloud Fraction, % Mean Cloud Top Pressure, mbar Mean Reflectivity Frequency, %

Extensive cirrus 1 0.88 ± 0.14 148 ± 75 0.17 ± 0.08 14
Patchy cirrus 2 0.23 ± 0.13 105 ± 86 0.08 ± 0.06 8
Frontal/nimbostratus 3 1.0 ± 0.02 369 ± 122 0.87 ± 0.07 18
Stratus/stratocumulus 4 0.98 ± 0.06 795 ± 96 0.69 ± 0.17 16
Mixed 5 0.93 ± 0.12 368 ± 120 0.45 ± 0.12 10
Cumulus/cirrus 6 0.37 ± 0.21 780 ± 110 0.61 ± 0.18 4
Clear/subvisible 30

Figure 11. As in Figure 9, but for cluster generated from an independent clustering of SCM mean
properties.
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conditions of grid box mean ascent, thus producing a
uniform and very optically thick cloud. Possible reasons
for this were explored using observed cloud and meteoro-
logical data. Division of the observed frontal/Ns regime into
subsets of high and low subgrid spatial cloud variability
indicates high subgrid variability is associated with negative
horizontal water vapor advection whereas low subgrid
variability is associated with positive horizontal advection.
In both subsets, vertical water vapor advection is positive, a
result of large-scale ascent. This finding suggests that
models do not sufficiently represent the effects of horizontal
advection of dry air in a vertically moistened column. If the
vertical moistening is nonuniform, due to subgrid variability
in vertical velocity, then substantial subgrid variability in
cloudiness results. Weaver et al. [2005] showed, using
high-resolution simulations, that storms over this site
indeed exhibited substantial mesoscale (and smaller-scale)
variability in vertical motion and that this variability was
strongly correlated with similar variability in clouds. More
research must be carried out to identify the large-scale
meteorological forcing and subgrid processes responsible
for producing various observed cloud regimes and how
these can be better represented in GCMs.
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