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Abstract. Prognostic cloud schemes in large-scale models are typically formulated in terms of
grid-cell average values of cloud condensate concentration g, although variability in g at spatial
scales smaller than the grid cell is known to exist. Because the source and sink processes modifying
q are nonlinear, the process rates computed using the mean value of g are biased relative to process
rates which account for subgrid-scale variability. A preliminary assessment shows that these biases
can modify instantaneous process rates by as much as a factor of 2. Observations of ¢ at a continen-
tal site suggest that the bias is avoided in current practice through the arbitrary tuning of model
parameters. Models might be improved if subgrid-scale variability in ¢ were explicitly considered;

several approaches to this goal are suggested.

1. Introduction: Linear Averaging of Nonlinear
Process Rates

The representation of clouds in large-scale atmospheric models
has become substantially more realistic in the past decade with the
introduction of prognostic cloud schemes [e.g., Sundquist, 1978;
Tiedtke, 1993; Del Genio et al., 1996; Fowler et al., 1996; Rot-
stayn, 1997; Rasch and Kristjdnsson, 1998]. These schemes
explicitly compute the average concentrations of water and ice in
the cloudy portion of each grid cell as a time-evolving balance
between sources and sinks of cloud water and ice. Large-scale
dynamics, the hydrologic cycle, and cloud radiative properties are
related in the natural world; basing these links on physical pro-
cesses rather than diagnostic relationships in models should allow
for more accurate representation of the mean climate and its sensi-
tivity to change.

Prognostic cloud schemes, like nearly all components of a
large-scale model, are formulated in terms of average values within
the grid cell. In nature, though, the concentration g of cloud water
and ice varies at spatial scales from the planetary to the centimeter
[Tjemkes and Visser, 1994; Davis et al., 1999]. When ¢ is repre-
sented solely by its average in some volume, any variability within
that domain is effectively ignored. Larger domains typically
encompass more diverse values of g, so the spatial resolution of the
model (i.e., the averaging scale) affects how much variability
within each grid cell is neglected. Grid spacings in large-scale
models (LSMs) of the atmosphere currently range from about
50 km in numerical weather prediction models to 250 km or
greater in climate simulation models; at the latter grid size the
neglected variability can be a substantial fraction of the mean
value.

Some amount of subgrid-scale variability is already accounted
for in large-scale models. Most either diagnose or make a predic-
tion of the volume within each grid cell occupied by clouds. Grid
cell mean process rates are then computed as the product of this
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cloud fraction and the process rate computed from the in-cloud
value of ¢. The cloudy portion of the grid cell is further divided
into stratiform regions with weak vertical velocities and convective
regions with more vigorous vertical motion. Microphysical process
rates are computed separately for the stratiform and (presumably
much smaller) convective regions. Both the cloudy/clear and strati-
form/convective distinctions are somewhat arbitrary approxima-
tions to the underlying variability.

One well-known impact of unresolved spatial variability in cli-
mate simulations is a systematic bias in calculations of cloud
reflectance [Cahalan et al., 1994]. Because albedo is a convex
function of cloud optical thickness T, a constant change in T causes
larger changes in albedo in optically thin clouds than in optically
thick clouds. This nonlinearity means that a domain containing any
variability in optical thickness will always be less reflective, on
average, than the same domain filled with uniform clouds of the
mean optical thickness. This plane parallel homogeneous (PPH)
bias is potentially serious in climate simulations, where biases in
albedo and the amount of absorbed solar radiation must be com-
pensated for by changes in other portions of the energy budget.

But radiation is only one of many nonlinear processes acting in
a large-scale model. In any process that depends nonlinearly on a
spatially variable physical quantity, the presence of subgrid-scale
variability causes a bias between the average of the process rate
over the grid cell and the process rate computed from the grid cell
average.

This paper provides an initial assessment of the impact of sub-
grid-scale variability on the magnitude of instantaneous process
rates in prognostic cloud schemes. We focus on the bias that results
from assuming a single value of g in the portion of the grid cell
filled with stratiform clouds. We describe how process rates are
biased in the presence of subgrid-scale variability in g, show how
this bias may be evaluated, and assess the magnitude of the bias for
a variety of example distributions. We demonstrate that the pres-
ence of subgrid-scale variability is a significant factor driving the
need to arbitrarily tune large-scale model parameters. We close by
enumerating some of the issues that will require attention if a treat-
ment of subgrid-scale variability is to be incorporated into large-
scale models.
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Our intent here is to provide a framework for discussion and
fuel for debate. The examples in this paper, therefore, are an
attempt to balance realism and simplicity, but are not meant as
exhaustive calculations of the impact’s magnitude.

2. Computing Process Rates for Distributions
of Cloud Water Concentration

2.1. Computing Domain Averaged Process Rates

In large-scale models the local rate of change of water and ice
concentration is determined by accounting for every process acting
within the grid cell, each of which proceeds at its own rate R. Link-
ing process rates to local cloud properties and thermodynamic state
is the heart of parameterization; these relationships are developed
using some combination of observations and the results of more
detailed models. Although microphysical processes may in reality
depend on aspects of the drop size distribution, this information is
not available in most LSMs. We therefore focus on bulk schemes in
which the source and sink rates for cloud condensate are parame-
terized in terms of ¢ itself (R = R(q) ). We refer to schemes in
which R is a function of the mean value g within the grid cell
alone as single-value parameterization schemes.

In the presence of subgrid-scale variability the average process
rate R(g) within a model grid cell is obtained by integrating the
process rate across the domain. Cloud physical processes are most
often local; the condensation rate at one location, for example,
does not depend on cloud properties at any other location. Integra-
tion over the spatial domain is therefore equivalent to integration
over the probability distribution function (PDF) of condensate con-
centration P(q). The relative bias between the average process
rate and the process rate computed from the average value of ¢ is
then
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The domain average process rate can be recovered from the single-
value process rate and (1) as

R(q) = (1+B)R(). €3
Average process gates are ozverestimated by single value schemes
(B<0) where d R(q)/dq <0 and underestimated where this
derivative is greater then 0; the bias vanishes when the process rate
is linear in g or if the rate does not depend on g. The size of the bias
in general depends on the amount of nonlinearity and on the shape
of P(q).Making an analogy to the PPH bias, we refer to B as the
“subgrid-scale homogeneity” (SSH) bias.

The dependence of process rates R on g takes many mathemati-
cal forms in large-scale models; for the sake of illustration we
examine processes rates that are parameterized as R ~ q" . For pro-
cesses such as autoconversion, n may reach 7/3 [Manton and Cot-
ton, 1977; Khairoutdinov and Kogan, 2000] or higher [Beheng,
1994]. Rates computed for any P(g) will be greater than the rate
computed with g when n > 1 regardless of the details of the distri-
bution. We refer to schemes which compute process rates by inte-
grating over the PDF as distribution-based schemes.

2.2. Describing Subgrid-Scale Variability in Cloud Condensate

Evaluation of (1) requires knowledge of P(g) within each
model grid cell. What distributions might be reasonable? The true
PDFs of cloud condensate within LSM grid cell-sized domains are
not known and almost certainly depend on many aspects of the
atmospheric state. We therefore seek reasonable example distribu-
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tions that we can use to assess the order of magnitude of the SSH
bias.

We partition the variability of g within each grid cell into hori-
zontal and vertical components [Considine et al., 1997]. We
assume for simplicity that ¢ varies linearly with height with slope
B, which may be positive or negative. We represent horizontal vari-
ability using two-parameter analytic distributions. One parameter
is typically related to the mean value of the PDF, while a second
controls the width of the distribution. The three-dimensional PDF
of ¢ within each grid cell is then defined by the two parameters of
the horizontal distribution and the value of f3.

How can we estimate appropriate parameter values for P(q) ?
No instrument exists to measure the instantaneous three-dimen-
sional distribution of ¢ within a large domain. We rely instead on
observations of T made by imaging satellite radiometers, which we
use in conjunction with physical assumptions to obtain a rough
proxy for g. In marine boundary layer clouds, populations of T in
domains about the size of LSM grid cells are well represented by a
gamma distribution [Barker et al., 1996; Pincus et al., 1999]
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where T is the Euler gamma function. The average value of this
distribution is T; the width of the distribution increases as the
shape parameter v decreases.

P(1) =

3. Assessing the Impact of Subgrid-Scale
Variability

Our prototype distributions of cloud condensate concentration
may now be combined with the assumed dependence of process
rate on ¢ to obtain a rough estimate of the magnitude of the SSH
bias. The examples in this section are meant to be illustrative as
well as quantitative, so we proceed from simple computations to
complex ones.

3.1. The Effects of Vertical Stratification: Uniform
Distributions of Water Content

Consider first a horizontally uniform but vertically stratified
cloud which exactly fills a model grid cell of height Az. The aver-
age value of g is the value at the geometric midpoint of the grid
cell. The PDF is constant between 0 and max(g) = 2g ; normal-
ization requires that P(q) = 1/2g. We compute the SSH bias
using (1) as
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Because the distribution of ¢ is uniform, the magnitude of this
error (shown as a dashed line in Figure 1) depends only on the
degree of nonlinearity of the process rate. Average process rates are
overestimated by a modest 7% at n = 1/2 and underestimated by
about 50% at n = 7/3.

The SSH bias computed with (1) applies when the process
occurs everywhere within the model grid cell or, equivalently, at all
values of g. Some processes, however, occur only when a quantity
has exceeded a threshold value. Autoconversion, for example, does
not occur until cloud drops are large enough to fall past one
another with appreciable speed. This change in behavior is often
represented in LSMs by setting autoconversion rates to zero until
some threshold value of drop size (as inferred from g) is reached,
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Figure 1. Bias in the domain-averaged rate of a microphysical pro-
cess R in the presence of variability in condensate concentration g.
The process rate is proportional to ¢"; values of n far from 1 indi-
cate strongly nonlinear processes. The bias due to linear vertical
variation of ¢ with height (shown as a dashed line) depends only on
the degree of nonlinearity of the process. Horizontal variability is
modeled as a gamma distribution in which variability decreases
with shape parameter v; the bias is shown for values of v=1, 2,
and 4. Instantaneous estimates of process rate are affected strongly
when the process is highly nonlinear.

then allowing the process rate to vary with g [Rotstayn, 1997]. A
single-value scheme exhibits binary behavior: process rates change
abruptly from zero to a finite value as g passes through the thresh-
old value go. When g > g, the SSH bias can be computed using (1)
with the lower bound in the integral set to ¢, :

2 (g S

Tn+l 2(n+l) ©)
When g < g, , single-value schemes indicate that the process is not
active at all. When vertical stratification is taken into account, how-
ever, g may exceed g, in denser parts of the cloud [Rotstayn, 2000].
Thus distribution based schemes may predict small but finite pro-
cess rates when a single-value scheme predicts none even if both
schemes use the same threshold. Under these circumstances, (1) is
undefined but the process rate itself varies smoothly with g.
Schemes which account for vertical variability in g, therefore, pre-
dict smooth changes in process rates even for threshold-based pro-
cesses.

3.2. The Impact of Horizontal Variability

Imagine next a cloud which is vertically uniform but exhibits
horizontal variability in optical thickness T, and assume that the
distribution of ¢ follows that of 1. For an optical depth population
described by a gamma distribution as in (3), the SSH bias is

_ 1 T(n+v)
= ST (6)

v
This bias depends on both the amount of nonlinearity in the pro-
cess rate and on the amount of spatial variability within the model
grid cell (see Figure 1). When the standard deviation of the distri-
bution is about 60% of the mean value (v = (T/ 0)2 = 3, not
shown), the bias due to horizontal variability alone almost exactly
matches the bias due to vertical variability (dashed line).
We have seen that parts of the PDF may exceed a given thresh-
old value g, when g within the grid cell is distributed about its
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mean value. For processes including a threshold value, (1) can be
evaluated only when g > g, , when its value is

1 Tn+v, vV4o/q)

B = ”_____TTKB__——_’ (7)

v
where I'(a, b) is the incomplete Euler gamma function. As is true
for clouds with vertical inhomogeneity alone, a distribution-based
scheme may provide finite values of process rates when single-val-
ued schemes indicate no contribution.

3.3. Linking Vertical and Horizontal Variability

Imagine next a model grid cell in which the vertical gradient of
g is constant but optical thickness is distributed horizontally. We
must now make a further assumption, since variations in T might be
caused by variations in either drop concentration N or cloud geo-
metrical thickness 4. We assume here that N is constant and & var-
ies within the grid cell. This implies that drop size r at each height
z within the cloud varies as r ~ z 3 Optical thickness is related to
the vertically integrated drop cross section, so T ~ A

The PDF of cloud thickness P(h) is related to P(t) through
P(t)dt = P(h)dh . If P(t) follows (3) then

P = PO

S5v (8)

2

Ch 3 exp(—C2h5/3),

where C, and C, depend on v, N, 8, and 7. Finally, the PDF of ¢
can be determined from (8). As in clouds with vertical variability
alone, P(q;h) = 1/Bh for each value of g <Bh. If we account
for all values of &,

T
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Figure 2. Probability distributions P of cloud thickness s and ver-
tical displacement from cloud boundary z in a grid cell with con-
stant drop concentration. Changes in cloud thickness cause
variability in cloud optical thickness, which is constrained to fol-
low a gamma distribution in accordance with observations. P(z) is
linearly related to the distribution of cloud condensate which is
used to assess the bias in process rates computed with the average
value of g. In this example the mean optical thickness is 10, the
standard deviation of T is half the mean, and the drop concentration
N=100cm™.
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Figure 3. Bias in domain-averaged process rate in the presence of
vertical and horizontal variability in g. The distribution P(q) is con-
structed assuming that optical thickness follows a gamma distribu-
tion and that ¢ varies linearly with z. Drop concentration is held
constant, so changes in T are driven by changes in cloud thickness.
The bias increases with the amount of variability and the degree of
nonlinearity in the process rate. As in Figure 2, the mean optical
thickness is 10 and drop concentration N = 100 cm™. Depending
on the amount of subgrid-scale variability, the domain-averaged
process rate can be more than twice the value computed using the
mean value of g.

where C; and C, again depend on v, N, B, and 7. Consider as an
example a cloud with T=10,v=4,N = 100 cm™", which pro-
duce the distributions of P(h) and P(z) = P(q)/B shown in Figure 2.
The great majority of clouds in the grid box are between 100 and
400 m thick. All values of z < 100 m are about equally likely, and
P(z) has no mode value.

The error in instantaneous process rates is obtained by evaluat-
ing (1) with P(g) determined from (9). The resulting integral is not
analytically solvable, but the bias can be computed numerically if
parameter values are given. Figure 3 shows estimates of the magni-
tude of the bias for a cloud with mean optical thickness 10 and
N =100 cm™ as a function of the degree of nonlinearity n and the
amount of variability v. When the process is strongly nonlinear,
process rates computed accounting for the spatial distribution of g
can be more than twice the rate computed using the mean value of
q alone.

4. Current Practice: Avoiding the SSH Bias
by Tuning Model Parameters

Every large-scale model of which we are aware infers grid mean
process rates from grid mean values of cloud condensate concen-
tration. We have shown that these process rates are in error by
many tens of percent, yet long-term simulations of clouds agree
reasonably well with observations. How do models subject to the
SSH bias make accurate predictions? The answer lies in the tuning
of model parameters.

Cloud schemes in large-scale models have their roots in similar
methods developed for finer-scale cloud resolving or mesoscale
prediction models. If these schemes are implemented in large-scale
models without modification, however, the clouds simulated by the
large-scale model are in strong disagreement with observations; in
particular, clouds tend to be more reflective and contain more
water than observations indicate. Large-scale models are therefore
tuned to match observations by adjusting one or more parameter
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values. The albedo bias, for example, is typically addressed by
reducing the liquid water path used in optical thickness calcula-
tions by some arbitrary amount [Ziedtke, 1996; Rotstayn, 1997].
Liquid water content is very sensitive to the threshold value at
which the autoconversion begins [Rotstayn, 2000]; this value is
usually decreased as the spatial resolution becomes more coarse.
These adjustments are made without reference to subgrid-scale
inhomogeneity, though unresolved variability is perhaps the most
significant reason they are needed.
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Figure 4. Average autoconversion rates computed from observed
subgrid-scale distributions of ¢ by two large-scale model cloud
parameterizations. Time-height profiles of g are inferred from
cloud radar reflectivity measurements made once a minute in cen-
tral Oklahoma, and 3-hour average autoconversion rates (shown on
the x axis) are compared with rates computed using the average
value of g. (top) Autoconversion rate depends on q4‘ . In all cases
the average process rate is substantially higher than the rate com-
puted using original parameterization and a single value of g
(shown as shaded circles). When implemented in large-scale mod-
els this parameterization is tuned by arbitrarily by increasing the
rate by a factor of 15 (shown as solid circles). (bottom) Autocon-
version is proportional to ¢ once a threshold value of inferred
drop radius r, is exceeded. Average autoconversion rates computed
with ry = 10 um vary from 0O to almost 100 g kg'I d’!, but autocon-
version rates computed from g alone are always zero. The thresh-
old radius must be reduced to 7 um (or g reduced by a factor of
nearly 2) for autoconversion rates to be accurately computed if
only the single time average value of g is used. The ad hoc adjust-
ment of model parameters in both examples is made necessary by
the neglect of subgrid-scale variability.



PINCUS AND KLEIN: UNRESOLVED VARIABILITY IN LARGE-SCALE MODELS

We underscore the relationship between Spatial variability, aver-
age process rates, and parameter adjustment by examining distri-
butions of liquid water content in continental stratiform water
clouds. We use 3 months of winter time observations from the mil-
limeter-wavelength cloud radar at the Atmospheric Radiation Mea-
surement Program’s Southern Great Plains site in Lamont,
Oklahoma. Radar reflectivity values are obtained every 10 s with
45 m vertical resolution. We exclude observations from heavily
precipitating clouds and assume a fixed value of N = 300 cm™ to
relate the radar reflectivity to g. We approximate the distribution of
g that would be found within an LSM grid cell centered on the
radar location by considering P(g) obtained during each 3-hour
interval.

We compute time average autoconversion rates using the
parameterization of Beheng [1994]. In this formulation, autocon-
version depends very strongly on ¢ (as q4'7) but occurs at all times
(i.e., there is no threshold value). Time average autoconversion
rates R(g) computed using the original formulation are substan-
tially smaller than R(g) , as shown in the top panel of Figure 4. In
fact, the version of this parameterization implemented in a large-
scale model [Lohmann and Roeckner, 1996] arbitrarily increases
the original autoconversion rate by a factor of 15. An SSH bias this
dramatic might be expected for this strongly nonlinear process, for
example, from modest (v = 2 ) horizontal variability alone.

Few parameterizations are as strongly nonlinear, and so as sus-
ceptible to the SSH bias, as the Beheng parameterization. The need
for tuning is perhaps less for other parameterizations but it can not
be avoided. Another commonly used autoconversion parameteriza-
tion [Manton and Cotton, 1977] increases as q7/3 once the diag-
nosed drop radius exceeds a threshold r,. The parameterization was
originally developed for mesoscale models and used a value of
roughly ry= 10 um; observations suggest a value 2-3 um larger
[Boers et al., 1998]. Three-hour average autoconversion rates R(g)
computed with r, =10 pm range from 0 to about 100 g kg" d!
(see the bottom panel of Figure 4). When this threshold applied to
q , however, R(g) is zero for all but a few 3-hour intervals in our
sample period because the drop radius diagnosed from g is almost
always less than 10 pm. The process rate inferred from g can be
brought into much closer agreement with R(g) only if the thresh-
old in the computation of R(g) is reduced to r, =7 um (a nearly
twofold decrease in qo). as Figure 4 shows. Though the higher
threshold value is more realistic (inasmuch as an distinction
between cloud and rain water is appropriate in nature), in large-
scale models the threshold is typically set to between 5 and 7 um
[Boucher et al., 1995; Rasch and Kristjdnsson, 1998; Wilson and
Ballard, 1999]. Figure 4 suggests that subgrid-scale variability is
one of the largest factors driving the arbitrary tuning of physical
parameterizations in large-scale models.

5. Predicting the Subgrid-Scale Distribution
of Water: Statistical Cloud Schemes

In the previous sections we described the SSH bias in the con-
text of prognostic cloud schemes that predict a single mean value
of g within each grid cell. The temporal evolution of g is of course
coupled in these models to the evolution of water vapor in the
domain through source and sink terms. But condensate is just one
of the many quantities which vary at the subgrid scale. Water vapor
in particular is also quite variable in space and time. Clouds exist
where water vapor concentrations reach or exceed saturation,
which may occur in some portions of a grid cell but not others.
Many large-scale models are tuned to account for the subgrid scale
variability of water vapor by introducing a critical relative humid-
ity (usually much less than 100%) at which clouds begin to form.
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Figure 5. Bias in domain-averaged process rates for a statistical
cloud scheme that assumes a triangular distribution with half width
8g of total (vapor and condensed) water concentration ¢, within
each grid cell. The distribution of ¢, and so the magnitude of the
bias, depends on the relationship between the grid cell average
total water concentration g, and the saturation concentration g,,.
Where g, < g, the distribution of ¢ is always right triangular and
the bias is constant with respect to g — g . As g, falls below g, ,
however, the distribution becomes more symmetric and the bias
decreases. Since statistical cloud schemes make implicit predic-
tions of P(q), these biases could be easily removed from existing
models.

One alternative to this aphysical approach is represented by sta-
tistical cloud schemes. These algorithms are formulated in terms of
the total water content ¢, (vapor plus condensate) in each grid cell,
which is assumed to be distributed about its mean value g, accord-
ing to some PDF; popular choices are Gaussian |Sommeria and
Deardorff, 1977] or triangular [Smith, 1990] distributions. Source
and sink equations are formulated in terms of g,. The PDF of ¢,, its
mean value, and knowledge of the saturation mixing ratio g,
(computed from the mean temperature and pressure) completely
define the critical relative humidity, cloud fraction, g , and P(g)
within the grid cell. If P(q,) is symmetric, then P(q) varies with
the relationship between g, and ¢, when g,<gq, the PDF of
condensate (if any exists) is skewed toward lower values, with P(g)
becoming more and more symmetric as g, falls below g, . In com-
mon practice the prognostic equations for g, are formulated in
terms of average condensate amounts, so statistical cloud schemes
are also subject to the SSH bias.

We consider as an example the scheme due to Smith [1990]
which assumes that P(g,) follows a triangular distribution of half
width 8¢ about g, . The SSH bias depends on P(g) and so on the
relationship between ¢, and g,. When g,<q, <g,+8q . for
example, P(gq) takes the form of a right triangle where the most
frequent value of ¢ is the one closest to 0. In this regime the rela-
tionship between g, and P(gq) is constant, so the SSH bias
depends only on the amount of nonlinearity in the process rate (see
Figure 5). Once ¢, falls below g the distribution of condensate
becomes more symmetric about its mean and the SSH bias
decreases, reaching a minimum when g, < g, —dq .

Statistical cloud schemes as currently formulated are subject to
the SSH bias because the source and sink rates are computed from
average values of condensate concentration rather than from the
average process rate computed from the inferred P(q). Accounting
for subgrid-scale variability in such schemes would be straightfor-
ward, however.
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6. Accounting for Subgrid-Scale Variability
in Model Processes

The ad hoc adjustment of model parameters is an evil made nec-
essary by the relatively coarse spatial resolution of climate and
weather prediction models. Tuning parameters allows the models
to produce fields in agreement with observations but is problematic
in theory and in practice. The adjustments are unsatisfying because
they lack any concrete physical basis. Furthermore, parameter
adjustments are currently uncoupled so that, for example, liquid
water path in albedo calculations is reduced without reference to
changes made to the autoconversion threshold. Because the
amount of unresolved variability changes with model spatial reso-
lution, each parameter has to be readjusted every time a new grid
spacing is implemented. Neither is it clear that adjustments made
to match current climate are applicable to other regimes.

Explicitly accounting for unresolved spatial variability in g may
allow models to make fewer arbitrary adjustments to parameter
values. Because the same amount of variability could be included
in every process rate computation, the treatment of variability
might be incorporated in a consistent manner throughout all the
parameterizations in an LSM. The amount of unresolved variabil-
ity depends in part on the model grid cell spacing, so the rates of
all processes will change in concert as model resolution improves.

Several interrelated questions must be addressed if subgrid-
scale variability is to be included in large-scale models. Although
we have shown a variety of plausible examples, the PDFs of ther-
modynamic and microphysical properties require much more care-
ful characterization. Are the PDFs easily parameterized in terms of
simple distributions? Should different distributions be used in the
presence and absence of precipitation? Building up a collection of
observed PDFs is a difficult observational task: in section 4, for
example, we computed autoconversion rates based on radar obser-
vations which fail in the presence of strong precipitation, so our
sample is necessarily biased toward light rain. It is also unclear
how much of the observed variability is already being resolved;
vertical resolution in an LSM and the division of cloud water into
convective and stratiform components both account for portions of
the total PDF as observed from space. A first step, therefore, is to
use a wide variety of sources to describe the unresolved spatial
variability in large-scale models.

Progress will also depend on understanding the mechanisms
that drive variability and how these may be diagnosed or predicted
from information available from the simulation. The subgrid-scale
distribution of g reflects the impact of a wide variety of thermody-
namic, dynamic, and microphysical processes occurring in each
grid cell, and so is a function of season, location, cloud type, and a
host of other factors. Even if P(q) is well described by simple
few-parameter distributions, large-scale models will still need
ways to diagnose or predict the distribution moments. A statistical
approach to this problem might use scaling ideas to extrapolate the
resolved local variability down to the unresolved subgrid scale
[Cusack et al., 1999]. A more physically based method might
attempt to relate the amount of variability to the local conditions
prevailing in the model. Modifying process rate calculations to
account for subgrid-scale inhomogeneity will be straightforward;
providing estimates of the amount of variability may prove much
more difficult.

Although we have focused on cloud water concentration ¢, the
SSH bias applies to any process rate which depends nonlinearly on
a quantity. Accounting for subgrid-scale variations in vertical
velocity, for example, can change the ice water path of high strati-
form clouds predicted by a large-scale model by a factor of 2
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[Donner et al., 1997). Indeed, since variations in cloud condensate
are driven in part by variations in dynamics, it may eventually
prove wisest to account for small-scale variability in both dynami-
cal and microphysical processes.

Modifying a large-scale model to account for the effects of sub-
grid-scale variability would be a significant undertaking, and it is
unclear whether simulations of either the mean climate or its sensi-
tivity to perturbation would be affected. Might resources be better
spent on, for example, capturing additional physical processes? We
believe several compelling reasons exist for pursuing the impact of
unresolved variability. First, the sensitivity of some aspects of
cloud-aerosol interactions (in particular, the “cloud lifetime indi-
rect effect”) are significantly influenced by the details of cloud
physical parameterizations [Lohmann and Feichter, 1997; Rot-
stayn, 2000]. We also note that while the relative PPH bias in
albedo is smaller than the SSH bias in most cases, the PPH bias is
considered important enough to include in several large-scale mod-
els [Tiedike, 1996; Rotstayn, 1997]. Most importantly, all nonlinear
processes acting in an LSM are affected by unresolved variability,
so parameterizations of additional processes in an LSM will also
have to be tuned. We believe it is preferable to explicitly account
for the subgrid-scale variability in every process.
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