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Abstract. Cloud optical properties vary dramatically at spatial scales smaller than typical grid
cells in large-scale models, which can cause a significant overestimate of cloud albedo by the
model. This plane parallel homogeneous (PPH) albedo bias exist may be reduced if the mean cloud
optical thickness and the amount of variability are available, but little is known about how much
variability exists in nature and to what factors it is sensitive, The authors combine 1331 observa-
tions made by volunteer surface observers with satellite imagery to assess the relationships between
cloud fraction, cloud optical properties, and cloud type in marine boundary layer clouds off the
coast of California during summer. Estimates of cloud fraction from the two datasets are in best
agreement when a reflectance threshold between 0.09 and 0.10 is used. Satellite-derived cloud frac-
tion increases slowly with sensor resolution at spatial scales from 1 to 32 km. Cloud fraction in
scenes dominated by cumulus is much more sensitive to the reflectance threshold used for cloud
detection than are scenes containing stratiform clouds. The mean magnitude of the PPH bias found
here, 0.025, is considerably smaller than those found in other recent studies. When fit to the
observed distributions of optical thickness both log-normal and gamma distributions substantially
reduce the PPH bias. The mean and dispersion of log optical thickness are related to cloud type:
optical thickness increases as cloud type changes from cumuliform to stratiform, while the relative
amount of variability decreases. The authors suggest a basis for the parameterization of unresolved

variability in large scale models.

1. Introduction

Clouds have long been recognized as being simultaneously one
of the most important and sensitive aspects of the Earth-atmo-
sphere system and one of the most difficult to simulate correctly.
The representation of clouds in large-scale weather and climate
models has improved greatly in the past decade as modelers have
developed prognostic schemes for cloud water and ice [Tiedrke,
1993; Del Genio et al., 1996; Fowler et al., 1996]. These treat-
ments couple large-scale dynamics, radiative processes, and the
hydrologic cycle by predicting the average amount of liquid water
and ice at each layer in each grid box. ,

Current prognostic cloud schemes add substantial realism to
large-scale models, but do not explicitly represent the horizontal
variability in cloud water that exists at spatial scales smaller then
individual grid cells. One significant problem caused by this unre-
solved variability arises in the treatment of solar radiation. Cloud
albedo is a convex function of optical thickness: given a constant
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increment in optical thickness, the change in albedo is larger for
thin clouds than for thick clouds. For a fixed average value of opti-
cal thickness, therefore, a model grid cell exhibiting any internal
horizontal variability will always be less reflective than a uniform
grid cell. Depending on the amount of subgrid scale variability, this
plane-parallel homogeneous albedo bias (PPH bias) can be quite
large [Cahalan et al., 1994].

The simplest treatment of cloud inhomogeneity is to allow
clouds to occupy a variable fraction of each grid cell. Processes
within the cell (including radiative transfer) can then be computed
as a weighted average of clear- and cloudy-sky values. Model pre-
dictions of cloud fraction may also be tested against observations,
since estimates of cloud cover have been made by surface observ-
ers and from satellite imagers for many years. Because the cloudy
portion of each grid cell is assumed to be uniform, however, mod-
els which estimate cloud fraction are still subject to the PPH bias.

Techniques to treat the PPH bias in a computationally reason-
able manner are a subject of active research. One possibility is a
renormalization or rescaling of one or more of the quantities in the
radiative transfer equation based on the amount of variability in
optical thickness within each grid cell [Cahalan et al., 1994; B.
Cairns, A.A. Lacis, and B.E. Carlson, Absorption within inhomog-
enous clouds and its parameterization in general circulation mod-
els, submitted to Journal of the Atmospheric Sciences, 1998,
hereinafter referred to as submitted manuscript, 1998] An alterna-
tive is to explicitly integrate a solution to the radiative transfer
equation (i.e., the two-stream approximation) over a specified dis-
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tribution [Barker, 1996; Oreopoulos and Barker, 1999]. Both
methods require knowledge about the distribution of optical thick-
ness that exists within each model grid cell.

Given evolving techniques for computing the domain-average
albedo of inhomogeneous clouds, models must still determine the
kind and amount of variability within a grid cell. Variability may
be specified as a free parameter, but a more self-consistent
approach would relate inhomogeneity to information available
within the model. Variability is, in principle, dependent on a great
number of interrelated factors including (but not limited to) mean
cloud properties, cloud type, cloud microphysical state, geographic
location, the level of atmospheric turbulence, and other meteoro-
logical conditions. Many of these relationships are quite difficult to
observe: cloud properties and the state of the atmosphere are typi-
cally assessed using surface observations and profiling instruments
including radiosondes, radar, and lidar, while albedo bias itself is
most naturally observed with space-borne instruments.

This - paper explores the relationships between cloud optical
properties and cloud type in the subtropical marine boundary layer.
We use surface observations of cloud amount and type to charac-
terize the state of the atmosphere, and compare these to satellite
observations of cloud amount and cloud optical thickness distribu-
tions at spatial scales between 1 and 128 km. After describing the
data sets used in the study, we compare estimates of cloud fraction
derived from satellite imagery with those made by surface observ-
ers, and explore the sensitivity of the satellite-based techniques to
various parameters. We then examine the distributions of optical
thickness derived from satellite images of marine boundary layer
clouds and assess the accuracy with which these distributions may
be represented by simple analytic functions. Finally, we relate the
parameters of the optical thickness distributions to the underlying
cloud type and propose ways in which these relationships might be
used in large-scale models.

2. Simultaneous Observations of Clouds
From Ships and Satellites

We combine two data sets collected during FIRE, the First
ISCCP (International Satellite Cloud Climatology Project)
Regional Experiment, between June 27 and July 25, 1987, in the
eastern subtropical Pacific (110° W to 135° W; 20° N to 50° N) off
the western coast of the United States and Baja California.

2.1 Observations From Ships of Opportunity

We employ individual synoptic surface cloud and meteorologi-
cal observations from volunteer observing ships, which are taken
from an extended version of the Edited Cloud Report Archive
[Hahn et al., 1996]. The archive is formed by applying quality con-
trol procedures to those observations of the Comprehensive Ocean
Atmosphere Data Set [Woodruff et al., 1987] that contain valid
cloud information. These surface reports include estimates of total
cloud cover and the cloud cover at the lowest level containing
clouds. Cloud fraction is reported in octas (eighths) so that only
nine discrete values are possible. Observers are instructed to report
1 octa if any cloud is visible, and 7 octas if any clear sky is visible.
The observers also use the classification system provided by the
World Meteorological Organization [1974] to record the dominant
cloud type present at low, middle, and high levels. Mid- and high-
level clouds are quite rare in our study area during summer.

2.2 Observations From Meteorological Satellites

We utilize daytime observations of narrow-band visible wave-
length (0.65 pwm) reflectance obtained by the VISSR instrument
aboard the GOES6 platform. The instrument has 6-bit radiometric
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resolution and a nominal 1-km spatial resolution at nadir. Images
are available every half-hour for locations east of 135° W longi-
tude. Instrument counts are converted to reflectance using ISCCP
calibration coefficients [Rossow et al., 1992]. Pixels which are
more reflective than a certain threshold are denoted cloudy, as dis-
cussed in section 3. The optical thickness for each cloudy pixel is
then estimated using a look-up table retrieval [Pincus et al., 1995]
which assumes the presence of a midlatitude summer atmosphere.
Solar zenith angle at scene center is distributed nearly normally
across the set of images, with a mean value of 48.7°+7.9°; this nar-
row range of values makes stratification by solar zenith angle
unenlightening.

2.3 Combining Observations

We merge these two data sets by matching pairs of ship and sat-
ellite observations of individual cloud fields in space and time. We
discard ship observations further west than 134° W longitude and
those closer to the California coast than 1°, since satellite images
for these locations will be incomplete or will contain land. We
associate each ship observation with the satellite image closest in
time and extract from this image a scene 128 km on a side, cen-
tered on the ship location. This subimage covers an area somewhat
larger than the area visible to the ship observer but between the
sizes of grid cells used in climate and weather prediction models;
we will show that the exact size of the subimage is unimportant.
We discard ship observations for which a satellite image is not
available within 45 min. We further restrict our attention to clear
skies and fair weather boundary layer clouds: small and large
cumulus (Cy, 1 and 2), stratocumulus (Cy, 5), fair weather stratus
(Cy, 6), mixtures of cumulus and stratocumulus (Cy 4 and 8), and
sky-obscuring fog (as reported in the present weather code and
denoted as Cy, 11). The characteristics used to identify these clouds
are noted in Table 1. We have excluded observations reporting stra-

Table 1. Low Cloud Classification.

Cp Code Nontechnical Cloud-Type Description Number

0 no stratocumulus, stratus, cumulus, or 40
cumulonimbus

1 cumulus with little vertical extent and seemingly 124
flattened, or ragged cumulus other than of
bad weather, or both

2 cumulus of moderate or strong vertical extent, 138
generally with protuberances in the form of
domes or towers, either accompanied or not
by other cumulus or by stratocumulus, all
having their bases at the same level

4 stratocumulus from the spreading out of 185
cumulus; cumulus may also be present

8 cumulus and stratocumulus other than that 222
formed from the spreading out of cumulus;
the base of the cumulus is at a different level
than that of the stratocumulus

5 stratocumulus not resulting from the spreading 368
out of cumulus

6 stratus in a more or less continuous sheet or 226

layer, or in ragged shreds, or both, but no

stratus fractus of bad weather

Cloud type 11 (sky obscuring fog) is not a WMO cloud type, but is used
when the present weather code indicates sky-obscuring fog. After Hahn et
al. [1996] and Norris [1998a].
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tus fractus associated with synoptic storm systems (C; 7) and
cumulonimbus (Cp, 3 and 9) to reduce the incidence of midlevel
and high clouds which might not be accurately treated by our
remote sensing algorithms. The resultant data set comprises 1331
pairs of ship and satellite observations.

3. Cloud Detection by Surface Observers
and Satellite Radiometers

We begin our study of spatial variability in cloud properties by
assessing sensitivities in the detection of clouds and the determina-
tion of cloud fraction (also called cloud amount or cloud cover).
Cloud detection, by which cloud fraction is determined from satel-
lite imagery, is the precursor to assessments of variability in cloud
optical properties, since optical thickness distributions are properly
computed only for cloudy pixels. Cloud fraction also provides the
most direct link between the ship and satellite data sets because it
is the single parameter the two data sets have in common.

3.1 Estimates of Cloud Fraction by Surface Observers

Table 1 documents the number of occurrences of each low
cloud type in our data set of surface observations. Stratocumulus is
the most commonly reported low cloud type, followed by stratus,
then mixtures of stratocumulus and cumulus clouds. This is consis-
tent with the long-term record from volunteer observing ships
[Norris, 1998b]. These cloud types are associated with large values
of cloud cover: completely cloudy skies (8 octas) are reported by
the surface observers in more than half the observations in our data
set, while cloud fractions of 6 octas or greater comprise 80% of the
observations. Surface observer reports of cloud fraction are known
to best agree with satellite estimates when skies are nearly overcast
or nearly clear [Henderson-Sellers et al., 1987].

3.2 Estimating Cloud Fraction From Satellite Imagery

Cloud fraction is typically estimated from satellite images by
examining each pixel in turn and comparing the reflectance at visi-
ble wavelengths and/or the brightness temperature at infrared
wavelengths to clear-sky values. Those pixels that are sufficiently
colder and/or more reflective than the clear sky estimates are
denoted cloudy. Cloud fraction is then computed by dividing the
number of cloudy pixels in a scene by the total number of pixels.
Cloud detection schemes differ primarily in which wavelengths are
used and how the clear-sky values and temperature and reflectance
increments (or thresholds) are determined [Rossow et al., 1985;
Wielicki and Parker, 1992].

We derive cloud fraction from satellite images using a simple
visible reflectance threshold. Marine boundary layer clouds have
small vertical extent but are quite reflective, so they exhibit much
more contrast with the uniform ocean surface in visible wave-
lengths than in the infrared. More general cloud detection tech-
niques such as the ISCCP algorithm [Rossow and Garder, 1993]
also detect shallow, reflective clouds based on.their visible wave-
length reflectance.

3.3 Comparisons of Cloud Fraction: Sensitivity to Radiance
Threshold, Sensor Resolution, and Cloud Type

Although estimates of cloud fraction are available from both
surface reports and satellite imagery, the two values represent fun-
damentally different quantities. Satellite imagery tells us how
much of the surface is obscured by clouds (“earth cover”) while
surface observers report how much of the celestial dome is
obscured (“sky cover”). The extent to which the measures should
be expected to agree in instantaneous observations is unclear. We
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therefore use surface estimates of cloud fraction primarily to eluci-
date the sensitivities inherent in the detection of clouds from space.
Cloud detection algorithms devote substantial effort to identify-
ing the spectral signature of the clear sky, from which thresholds
are set for cloud detection. In our visible-wavelength cloud detec-
tion scheme, this process reduces to choosing a reflectance thresh-
old separating clear and cloudy pixels. The agreement between
satellite and surface estimates of cloud fraction is thus a function
of this threshold. Figure 1 shows the difference between satellite
and surface estimates of cloud cover, averaged over all pairs of
observations, as a function of the reflectance threshold. When the
threshold is near zero every pixel (including clear-sky pixels) is
considered cloudy, and the average difference corresponds to the
average amount of clear sky in the surface observations. This
clearly represents an overestimation of cloud cover. As the thresh-
old increases fewer clear-sky pixels are misidentified. Agreement
between ship observers and satellite estimates of cloud fraction is
best when the reflectance threshold is between 0.09 and 0.10; this
agrees with ISCCP algorithms given an ocean albedo of 0.06-0.07.
The amount of cloud determined from satellite imagery
depends on the spatial resolution of the satellite sensor [Wielicki
and Parker, 1992, hereinafter referred to as WP92], especially
when threshold-based algorithms are used. We simulate the effects
of varying sensor spatial resolution by averaging N X N groups of
full resolution pixels and retrieving cloud fraction from these
degraded images; in Figure 1 we show results for full resolution
(1km) pixels and for N = {2,4,8,16,32}. WP92 noted that
optimal thresholds must be derived in different ways depending on
sensor resolution. Full-resolution VISSR pixels are roughly the
same size as individual clouds, so the “correct” threshold is that
which strikes a balance between identifying partially cloudy pixels
as fully cloudy and missing optically thin clouds. In the large pixel
limit (WP92, p. 12813) “the ‘correct’ threshold is a complex func-
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Figure 1. Average difference between satellite-derived and ship-
based estimates of cloud fraction, as a function of reflectance
threshold, at various sensor spatial resolutions. Cloud fraction is
determined from each satellite image by counting the proportion of
pixels which exceed the reflectance threshold. The average differ-
ence between these estimates and the cloud fraction reported by
the corresponding surface observers is shown as a function of
threshold. The VISSR instrument has a nominal spatial resolution
of 1km; results are also shown for degraded images in which
groups of 2x 2,4 x4, 8x8, 16 x 16, and 32 X 32 pixels are aver-
aged before cloud fraction is determined. Cloud fraction as esti-
mated from satellite imagery increases as sensor spatial resolution
degrades.
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tion of pixel size, cloud-cell size, cloud fraction, and the profile of
cloud reflectance. .. from cloud edge to the center of the cloud cell”
[WP92]. Our results support this view even at spatial scales
exceeding 30 km, although the prevalence of optically thick clouds
and high cloud fraction in our scenes makes the dependence of
cloud fraction on spatial resolution weaker in our study than in
WP92.

The characteristics that affect satellite determination of cloud
fraction (i.e. visible features of cloud reflectance hundreds to thou-
sands of meters in extent) are similar to those used by surface
observers to identify cloud type. It is therefore unsurprising that
the sensitivity of cloud fraction to threshold varies by cloud type.
Figure 2 shows this sensitivity by presenting the average difference
between satellite-derived and surface-reported values of cloud
fraction for all clouds and for subsets of cumulus, stratus, stratocu-
mulus, mixtures of cumulus and stratocumulus, and sky-obscuring
fog, as a function of reflectance threshold. Cloud fraction for
scenes dominated by cumulus show strong sensitivity to threshold
because there are many pixels at cloud edges which are only mar-
ginally more reflective than the ocean surface. Stratiform clouds,
on the other hand, are both more extensive and optically thicker, so
changes in threshold have a smaller impact. WP92 showed similar
relationships between cloud type (as inferred from satellite imag-
ery) and the sensitivity of cloud fraction to sensor spatial resolu-
tion,

The relationships between cloud type and the amount of cloud
detected at a given radiance threshold do not depend strongly on
the size of the satellite image. We have repeated the analysis shown
in Figure 2 for images 64 km on a side and find that the average
amount of cloud detected by the satellite changes by less 0.5%
regardless of threshold. Satellite-derived cloud amounts for cumu-
lus increase by about 2.5% in aggregate; this improves the agree-
ment with ship observations at realistic thresholds. Sky-obscuring
fog shows an opposite trend, and the changes for other cloud types
are less than 1%.
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Figure 2. Average difference between satellite-derived and ship-
based estimates of cloud fraction, as a function of reflectance
threshold, for various cloud types as reported by surface observers.
Cumulus are associated with somewhat lower cloud fraction, and
the greater fraction of marginally cloudy pixels causes a higher
sensitivity to the reflectance threshold. Uniform stratus and stratoc-
umulus are much less sensitive. Fog is assumed by the surface
observer to cover the entire scene but is sometimes more localized,
yielding lower satellite-derived values of cloud fraction at reason-
able thresholds.
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4. Parameterizing Distributions
of Cloud Optical Thickness

Once the cloudy pixels in each satellite image have been identi-
fied, we can determine the probability distribution of cloud optical
thickness for each scene. If we assume that there is no net transfer
of radiation between pixels (as is consistent with the assumptions
underlying the retrieval algorithm), we can compute the albedo of
each pixel independently. Averaging over pixels provides the aver-
age cloudy-sky albedo, as would be required by a large-scale
model. The difference between the albedo computed using the
domain averaged optical thickness and the albedo computed using
this Independent Pixel Assumption (IPA) [Cahalan et al., 1994]
yields the cloudy sky plane paralle]l homogeneous (PPH) albedo
bias:

Bppy = Rppr—Ripa

_ — M
R, g) = R(T,p6 L)

1l

where the overbar denotes averaging over cloudy pixels, and the
dependence of albedo on the cosine of the solar zenith angle W, is
explicit. Note that Bppy; is always greater than 0. The IPA is accu-
rate and provides a benchmark calculation, but it is impractical to
implement in a large-scale model because it requires a large num-
ber of radiative transfer calculations.

Many of the techniques that exist to circumvent the computa-
tional burden of the IPA [Barker, 1996; Cahalan et al., 1994; Ore-
opoulos and Barker, 1999] rely on assumptions about the shape of
the optical thickness distribution, which is often modeled as either
a lognormal or a gamma distribution. With our data set we can
assess the utility and accuracy of these two distributions in repre-
senting the optical thickness distributions in our data set.

The lognormal distribution is a function of two parameters,
which may by determined by computing the first and second
moments (mean and variance) of the logarithm of the observed val-
ues of optical thickness. Using distribution moments to estimate
the parameters of the gamma distribution, however, can lead to
serious errors [Oreopoulos and Davies, 1998b]. We therefore com-
pute the gamma distribution parameters using a maximum likeli-
hood estimator [see, e.g., Wilks, 1995].

4.1 Removing the Plane Parallel Homogeneous Albedo Bias

To test the skill of the lognormal distribution to reduce the PPH
bias, we compute the parameters of the lognormal distribution for
each scene, then integrate the analytic reflectance function of
Cahalan et al. [1994] over the lognormal distribution, using the
solar zenith angle at the scene center. The difference between this
lognormal IPA and the IPA albedo provides the lognormal error:

E;_, = R(T_, W) —R(T,e o) 2

We compute the gamma error in an analogous fashion.

Figure 3 shows histograms of the PPH, lognormal, and gamma
albedo errors for the 1331 scenes in our study. A few scenes show
PPH biases as large as 0.175, but on average the bias is a moderate
0.025. The magnitude of this bias is smaller than some other stud-
ies have shown; we discuss this further in section 6. Both the log-
normal and gamma IPA treatments greatly reduce both the range
and the mean value of the error. The lognormal IPA is somewhat
more effective, producing a range of errors about a factor of 2 and
a mean value a factor of 3.5 smaller than the gamma IPA.

In principle, PPH albedo bias is largest for intermediate optical
thickness [Cahalan et al., 1994] and increases with the amount of
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Figure 3. Histogram of (a) albedo bias for each scene computed
with the plane parallel homogeneous model, and (b, ¢) the error
made using log-normal and gamma distributions. In each case the
albedo error is computed relative to the independent pixel approxi-
mation using the observed distribution of optical thickness for each
scene. Both the lognormal and gamma distributions nearly elimi-
nate the PPH albedo bias, though the lognormal distribution is
somewhat more effective in reducing both the mean error and its
range.

variability about the average. In nature, however, the average value
and the amount of variability may be related both to each other and
to other cloud properties. Barker et al. [1996], for example,
divided 45 Landsat scenes into three classes denoted overcast, bro-
ken, and scattered, in order of decreasing mean optical thickness
and increasing cloud fraction. They noted that PPH albedo biases
increased as the clouds became thinner and more broken.
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In Figure 4 we show joint probability density estimates for the
co-occurrence of the mean and variability of the logarithm of opti-
cal thickness. Variability is characterized by the dispersion
D(logt) =o(logt)/ lo_gr , where o is the standard deviation.
Solid contours indicate the value of the PPH bias calculated with
fixed p, = 0.8 using a lognormal distribution at each
logt, D(logt) pair. The abscissa is also labeled with effective
optical thickness T, = exp(l—o?c) . This quantity provides a sec-
ond-order accurate scaling of optical thickness for albedo calcula-
tions, though transmittance and absorption computations are not as
well corrected if the clouds are absorbing (Cairns et al., submitted
manuscript, 1998). The scenes in our data set exhibit a wide range
of variability and a corresponding range in PPH albedo bias at each
value of lo?c , but the range of the PPH bias does not increase dra-
matically with lo?c .

4.2 Testing for Goodness of Fit

Both the lognormal and gamma distributions can greatly reduce
the PPH bias, but this success alone is not a guarantee that the ana-
lytic distributions accurately model the observed distribution of
values. To answer this question, we turn to the Kolmogorov-
Smirnov goodness of fit test [see, e.g., Wilks, 1995]. According to
this test, we find that almost none of our fits to both lognormal and
gamma distributions are statistically significant at a confidence lev-
els larger than 10%. In other words, we cannot reject the null
hypothesis that the observed distribution is drawn from an underly-
ing distribution other than the specified distribution with the
parameters we have computed. This somewhat surprising result
may be due to a number of causes. First, the VISSR instrument has
a relatively coarse 6-bit reflectance digitization, so optical thick-
ness values in each image are clustered around discrete values. For
large sample sizes the Kolmogorov-Smirnov test interprets the lack
of continuous values of optical thickness as evidence that the fit is
incorrect. We also find that in some scenes a few very large values
of optical thickness have a disproportionate impact on the distribu-
tion parameters. The analytic distributions can still accurately
reproduce the IPA albedo, however, because changes in optical
thickness have a very small effect on albedo when optical thick-
ness is very large.

5. Relating Variability in Optical Properties
to Cloud Type

Although neither the lognormal or gamma functions provide
good fits in the strictest statistical sense, their ability to reduce the
PPH bias indicates that important aspects of the observed distribu-
tions of optical thickness can be summarized in terms of the distri-
bution parameters. In order for this information to be useful in a
large-scale model, however, cloud optical properties (including the
amount of variability) must be related to quantities available in
large-scale models. To this end, we examine the relationships
between cloud properties and the information contained in the sur-
face observations; the most robust connections exist between cloud
optical properties and cloud type.

We show the distributions of the two parameters used in the log-
normal distribution (logt, D(logt) ), and the corresponding distri-
butions of PPH albedo bias, segregated according to the low cloud
type reported by the surface observer, in Figure 5. The summary
plots code the number of samples in each cloud type (see Table 1)
in the width of each box. The median is indicated by a horizontal
white line, with a notch showing the 95% confidence interval about
the mean (i.e., if the notched areas of two samples do not overlap,
we can assert that the medians are different with 95% or greater
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Figure 4. Probability density estimate for joint occurrence of the mean and dispersion (standard deviation
divided by the mean) of the logarithm of optical thickness for 1331 images of subtropical marine boundary
layer clouds. Also shown (as dashed contours) are the plane parallel homogeneous albedo bias for each value
of mean and dispersion. The dispersion, and hence the PPH albedo bias, exhibits a wide range of values at each
logt, but the relative amount of variability decreases as logt increases.

confidence). The dark box contains 50% of the observations for
each cloud type, while the whiskers extend to the limits of the data.
Outliers (points further from the quartile than 1.5 times the inter-
quartile range) are shown separately.

The correspondence between what might be expected for a par-
ticular cloud type and what is observed is remarkable, and under-
scores the value of the long term record from ships of opportunity.
In general, cloud optical thickness increases as cloud type changes
from cumuliform (Cy 1 and 2) to stratiform (C 4, 5, 6, and 8),
while the relative amount of variability decreases. Small cumulus
are often optically thinner than cumulus with greater vertical extent
but are about as variable. Stratocumulus formed by the spreading
out of cumulus (Cy, 4) are likely to be optically thinner and some-
what more variable than other stratiform cloud types, but the opti-
cal properties of stratocumulus are unaffected by the presence of
underlying cumulus (compare C; 4 and Cp 5). Stratus and stratoc-
umulus are indistinguishable. Sky obscuring fog tends to be opti-
cally thinner than any other stratiform cloud type. The distribution
of PPH albedo bias, however, does not vary substantially by cloud
type. With the exception of fog and shallow cumulus, increases in
average optical thickness are offset by decreases in the amount of
variability.

Comparisons of ISCCP-derived cloud properties with ship
observations (C.J. Hahn, W.B. Rossow, and S.G. Warren, ISCCP
cloud properties associated with standard cloud types identified in
individual surface observations, submitted to Journal of Climate,
1998) indicate that cloud radiative properties vary nearly as much
within a given cloud type as between cloud types; the distributions
in Figure 5 support this view. It is not possible to identify the
underlying cloud type based solely on the radiative properties of a

scene, but the converse is not true: the parameters governing the
distribution of optical thickness vary among cloud types by statisti-
cally significant amounts. Given a cloud type, therefore, one could
choose a representative value of the mean and dispersion of log
optical thickness from within a distinct distribution.

6. Discussion: On the Magnitude of the Plane
Parallel Homogenous Albedo Bias

In section 4 we showed that the plane parallel albedo bias in our
1331 scenes has a mean value of Bppy = 0.025. The PPH bias
computed in four related studies equals or exceeds this amount.
The spread in PPH bias estimates is primarily a result of differ-
ences in observing practices and the methods of relating observa-
tions to large-scale models. Before assessing the sources and
importance of these differences, however, we first explore the spa-
tial and temporal scales at which horizontal variability is relevant
to large-scale models and to remote sensing applications.

6.1 Spatial and Temporal Scales and the PPH Bias

Cloud optical properties exhibit variability over an enormous
range of scales in both time and space. Instantaneous spatial vari-
ability might bias retrievals of optical thickness which, like large-
scale models, are based on the assumption that cloud properties are
horizontally uniform within each pixel. Fortunately, we know that
this bias is small in unbroken clouds such as those in our sample.
Cloud properties are indeed inhomogeneous within each 1-km
pixel in our images, but the impact of this variability on our retriev-
als is negligible for two reasons. In the first place, the amount of
variability at spatial scales smaller than 1 km is substantially less
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Figure 5. Distributions of the (a) mean and (b) dispersion of the log of optical thickness, and (c) the resultant
PPH albedo bias segregated by cloud type as reported by the surface observer. The distribution of optical thick-
ness for each of 1331 scenes is fit to a lognormal distribution, and contributes a single point to this figure. The
distributions are displayed with boxplots: the white bar shows the median value, with shaded notches indicat-
ing 95% confidence levels about the median; the dark bar contains 50% of the observations; the whiskers
extend to the closer of the limits of the data or to 1.5 times the interquartile range. Both effective optical thick--
ness and the dispersion vary widely within each cloud type, but different cloud types have significantly differ-
ent populations. The distribution of absolute PPH albedo bias, however, is not dependent on cloud type.

than the variability at larger scales. In addition, radiative transfer
tends to smooth out spatial structure at scales below the photon
mean free path, which is several hundred meters in marine bound-
ary layer clouds [Marshak et al., 1995]. The two effects combine to
make the total bias in optical thickness retrievals small for 1-km
pixels in unbroken clouds [Davis et al., 1997].

Weather prediction and climate models, however, operate on
much larger spatial and temporal scales than remote sensing
retrievals. These models exhibit a bias associated with the variabil-
ity that exists between the radiative smoothing scale and the size of
one model grid cell. Our computations of PPH bias for 128-km
scenes may be extended to the spatial scales appropriate to specific
model grid sizes following Oreopoulos and Davies [1998a]. For
example, we estimate that the bias within 300-km grid cells is
roughly 1.5 times the amount at 128 km. The variability of cloud
optical thickness at spatial scales larger than one model grid cell
and at temporal scales larger than the interval between radiation
calculations (about 3 to 12 hours), will presumably be simulated
by prognostic cloud schemes. Indeed, the spatial and temporal
variations of cloud water produced by a cloud parameterization

might be compared with observations as a means of assessing the
performance of the scheme.

6.2 Observations of the PPH Bias

Two studies have employed measurements of liquid water path
made by ground based upward looking microwave radiometers.
Cahalan et al. [1994] accumulated a month’s worth measurements
made off the coast of California and found that the PPH bias varied
between about 0.03 and 0.10, depending on the time of day. A sim-
ilar study [Cahalan et al., 1995] in the Madeiras, where cloud type
is more variable, found values as high as 0.125. These studies
report higher values of PPH bias than we in part because they con-
sider substantially larger regions than ours, and the bias increases
with the size of the region being considered [Oreopoulos and
Davies, 1998a]. Aggregation over time compounds this problem by
introducing another source of variability. By way of comparison,
we compute a PPH bias of 0.063 (using the average solar zenith
angle of 50°) if all pixels in all scenes of our sample are combined
into a single population. This considerably larger value would only
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apply to a large-scale model which called its radiation scheme
once a month using the space-time mean optical thickness.

Two additional studies have employed satellite observations of
optical thickness to assess the instantaneous PPH bias. Barker et
al. [1996] employed 45 high spatial resolution Landsat images of
marine boundary layer clouds. These images were nearly the same
size as our VISSR scenes, and were classified as either overcast,
broken, or scattered according to cloud fraction. For overcast
clouds the PPH bias was 0.03 (cf. our value of 0.025), but this
value increased by about a factor of 3 when cloud fraction
decreased. We suggest that this increase is associated with the abil-
ity of Landsat to distinguish between small-scale holes and opti-
cally thin clouds, as well as three-dimensional radiative transfer
effects in the Landsat retrievals. In addition, the average biases
reported by Barker et al. [1996] are increased by several scenes in
which the solar illumination is very oblique, especially for cumu-
lus clouds.

Finally, Oreopoulos and Davies [1998a] examined several thou-
sand AVHRR scenes taken over the Atlantic during summer and
fall; for (110 km)? regions they report a mean PPH bias of 0.08 to
0.17, depending on the assumptions employed. At least two factors
contribute to the large bias. With respect to observational strate-
gies, we note that the solar zenith angle is more oblique in most of
their scenes than in ours. Since optical thickness retrievals become
more uncertain as the solar zenith angle increases [Pincus et al.,
1995], low sun angles act to increase the variability within each
scene. Additionally, the geographic area considered by Oreopoulos
and Davies [1998a] is quite large and contains a variety of cloud
types (including ice clouds, which are not accounted for in the
retrieval scheme), many of which may exist within individual
scenes. Some of the PPH bias observed in complex images may be
attributed to vertical variability of cloud optical properties (differ-
ent cloud top and base heights, the presence of clouds at multiple
vertical levels, etc.). This vertical variability is already treated in
shortwave radiative transfer schemes for large-scale models, which
employ cloud overlap assumptions and explicitly consider vertical
profiles of cloud fraction.

7. Implications: On the Treatment of Horizontal
Variability in Large-Scale Models

The magnitude of the plane parallel homogeneous albedo bias
for the clouds we have described is moderate. Nonetheless. we
suggest that the bias is still of concern. Systematic errors in the
partitioning of energy between reflection, absorption in the atmo-
sphere, and transmission to the Earth’s surface may well affect
other components of the climate system simulations. We note too
that the relatively small PPH albedo bias we report applies only to
fair weather marine boundary layer clouds. The large number of
scenes we have considered make it likely that our results are robust
for this geographic location and season, but they should not be
extrapolated to other locations, seasons, or cloud types, where
other observations would be welcome.

Our results imply that large-scale models cannot properly
address the effects of subgrid scale variability in cloud optical
properties without developing techniques for the diagnosis or pre-
diction of that variability. We suggest that consideration of cloud
type may be a useful approach. Cloud type might be diagnosed
from profiles of temperature and humidity according to observed
relationships [Norris, 1998a], or by considering the parameterized
processes acting to form cloud within a grid cell (i.e., shallow con-
vection versus large-scale saturation). Once cloud type is deter-
mined, the amount of variability could be drawn at random from an
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appropriate population, such as the distributions shown in
Figure 5. Such an approach would use information about physical
processes occurring in the model more directly than do parameter-
izations based on cloud fraction [Barker et al., 1996] and/or mean
optical thickness [Oreopoulos and Davies, 1998b]. Indeed, optical
thickness adjustments based on cloud type are already included in
some large-scale models [Rotstayn, 1997].

One of our goals has been to focus attention on the general
problem of unresolved spatial variability in large-scale models of
the atmosphere. Many physical processes besides radiative transfer
depend nonlinearly on the concentration of water vapor or conden-
sate. The representation of all these processes may benefit from a
uniform consideration of spatial variability. Some models already
treat the variability in one or more processes: the Hadley Centre
Unified Model, for example, uses estimates of the subgrid scale
variability of water vapor to predict the grid-averaged relative
humidity at which clouds begin to form [S. Cusack, J. M. Edwards,
and R. Kershaw, A parametrization of the subgrid-scale variability
of saturation for use in GCM cloud schemes, submitted to Quar-
terly Journal of the Royal Meteorological Society, 1998]. Autocon-
version may also be a good candidate for such an approach [Chen
and Cotton, 1987]. We suggest that a unified treatment of subgrid
scale variability may help improve the physical basis of a wide
variety of model parameterizations.
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