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ABSTRACT

A fully coupled data assimilation (CDA) system, consisting of an ensemble filter applied to the Geo-
physical Fluid Dynamics Laboratory’s global fully coupled climate model (CM2), has been developed to
facilitate the detection and prediction of seasonal-to-multidecadal climate variability and climate trends.
The assimilation provides a self-consistent, temporally continuous estimate of the coupled model state and
its uncertainty, in the form of discrete ensemble members, which can be used directly to initialize proba-
bilistic climate forecasts. Here, the CDA is evaluated using a series of perfect model experiments, in which
a particular twentieth-century simulation—with temporally varying greenhouse gas and natural aerosol
radiative forcings—serves as a “truth” from which observations are drawn, according to the actual ocean
observing network for the twentieth century. These observations are then assimilated into a coupled model
ensemble that is subjected only to preindustrial forcings. By examining how well this analysis ensemble
reproduces the “truth,” the skill of the analysis system in recovering anthropogenically forced trends and
natural climate variability is assessed, given the historical observing network. The assimilation successfully
reconstructs the twentieth-century ocean heat content variability and trends in most locations. The experi-
ments highlight the importance of maintaining key physical relationships among model fields, which are
associated with water masses in the ocean and geostrophy in the atmosphere. For example, when only
oceanic temperatures are assimilated, the ocean analysis is greatly improved by incorporating the tempera-
ture–salinity covariance provided by the analysis ensemble. Interestingly, wind observations are more
helpful than atmospheric temperature observations for constructing the structure of the tropical atmo-
sphere; the opposite holds for the extratropical atmosphere. The experiments indicate that the Atlantic
meridional overturning circulation is difficult to constrain using the twentieth-century observational net-
work, but there is hope that additional observations—including those from the newly deployed Argo
profiles—may lessen this problem in the twenty-first century. The challenges for data assimilation of model
systematic biases and evolving observing systems are discussed.

1. Introduction

A numerical coupled model system that describes the
interactions between the atmosphere, land, ocean, and
sea ice contains uncertainties. The uncertainties can be
attributed to an incomplete understanding of the radia-
tive effects of various components of the earth system
that are simulated, and inaccurate numerical imple-
mentation of physical processes such as clouds, radia-
tion, convection, and turbulent mixing, etc. Therefore,
the coupled model system can be viewed as a continu-
ous stochastic dynamical process (instead of a single

deterministic process), in which the climate evolution is
described by a vectorized stochastic differential equa-
tion (Jazwinski 1970):

dxt �dt � f�xt , t� � G�xt , t�wt . �1�

Here, xt is an n-dimensional vector representing the
coupled model state at time t (n is the size of the model
state), f is an n-dimensional vector function, wt is a
white Gaussian process (uncorrelated in time) of di-
mension r with mean 0 and covariance matrix S(t),
while G is an n � r matrix. The first and second terms
of the right-hand side in Eq. (1) represent the deter-
ministic modeling and uncertainty contributions in a
coupled system, respectively.

These uncertainties lead to the existence of modeled
climate drifts from the real world. Observations on cli-
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mate state variables are sparse and noisy in both time
and space. For example, the expendable bathythermo-
graph (XBT), the major means of measuring the ocean
state throughout the twentieth century, provides only
temperature profiles based on irregular ship courses,
and starting from the early of 1990s, satellite altimeters
began to provide measurements of sea surface height.
All observations have instrument measurement errors
and sampling (representation) errors. Neither modeling
nor observations alone provides a complete picture of
climate variations (which in oceans are defined by the
time series of three-dimensional temperature, salinity,
and currents, etc.).

Climate research requires the implementation of
data assimilation with coupled climate models for 1)
assessment of climate change from all perspectives
(e.g., see Hahn and Manabe 1982), 2) initialization of
forecasts (Rosati et al. 1997), and 3) estimation of cli-
mate state components for which adequate measure-
ments are still unavailable. Coupled data assimilation
(CDA) uses ocean–atmosphere coupled dynamics to
extract the signals from available observations (some
aspects of climate states during some time periods) to
produce a continuous time series of climate states in
which each variable is distributed over a regular mesh
in time and space. Coupled dynamics impact the assimi-
lation results in both direct and indirect ways. The di-
rect way refers to using observations to directly adjust
certain exchange fluxes between coupled components
using covariances between fluxes and observed vari-
ables. Examples include the adjustment of wind stresses
and heat/water fluxes at the surface by the observed
temperature at the top of the ocean. On the other hand,
the assimilation results can be impacted indirectly by
the feedback processes between coupled components,
which improve the estimate of the background covari-
ances in the assimilation. One example is when only
oceanic data assimilation (ODA) is carried out in a
CDA system in which the atmospheric circulations are
to be improved by the corrected sea surface tempera-
ture (SST) and in return the improved atmospheric
flows provide better surface fluxes to the oceans, which
improves the estimate of the background covariance in
ODA. This positive feedback process is expected to
speed up the convergence of assimilation and enhance
the assimilation quality. Combining all aspects above,
the net result is that the reconstructed historical se-
quence of climate states by CDA blends the observa-
tional information and coupled dynamics. Because all
components of the CDA-estimated coupled model
state are expected to stay in a dynamical balance at any
instant in time, the initial shock of coupled model fore-

casts initialized from CDA products is expected to be
minimized.

The coupled data assimilation system at the National
Oceanic and Atmospheric Administration/Geophysical
Fluid Dynamics Laboratory (NOAA/GFDL) solves for
a temporally varying probability density function
(PDF) of climate state variables by combining the PDF
of observations and a prior PDF derived from dynami-
cally coupled models using the framework described in
Eq. (1). The resulting temporally varying PDF is a com-
plete solution for the coupled data assimilation prob-
lem. The climate state is estimated by the expectation
(the first moment of the PDF, i.e., the ensemble mean)
and the uncertainty of the estimate is measured by all
higher-order moments. The vectorized Eq. (1) means
that the solved PDF has a joint-distribution nature that
reflects the physical balance between state variables re-
quired by the coupled model dynamics. The prior PDF
is discretely estimated using a set of ensemble integra-
tions of the coupled model by a Monte Carlo approach.
The combination of the observational PDF and the
prior PDF is implemented using the ensemble adjust-
ment Kalman filter (EAKF; Anderson 2001, 2003). Be-
cause four major components in the GFDL’s coupled
climate models—atmosphere model, land model, ocean
model, and sea ice simulator—are highly parallelized,
the ensemble filter, also serving as the ensemble orga-
nizer, involves a so-called superparallel technique,
which is an extension of the previous study of Zhang et
al. (2005). The system is currently configured for as-
similating both atmospheric and oceanic observations.
Under the same ensemble organizer and filter frame-
work, other assimilation components (e.g., land and sea
ice) can be added feasibly in the future when the rel-
evant measurements for assimilation become available.
Utilizing the cross covariances provided by the joint
PDF of climate state variables, evaluated by the en-
semble integrations, the system is able to maintain the
physical balance (relying on the ensemble size accord-
ing to the availability of computation resources) be-
tween different climate state variables. Thus, it has a
wide scope of applications.

For multiple purposes such as climate detection,
ocean observing system evaluation, and assimilation
validation, etc., as the first step of the CDA system
application this study and a forthcoming follow-up
study (Zhang et al. 2007, manuscript submitted to J.
Geophys. Res.) are using a perfect model study frame-
work, or so-called idealized “twin” experiments. The
truth in the twin experiments is a long model integra-
tion with the temporally varying greenhouse gas and
natural aerosol (GHGNA) radiative forcings. The “ob-
servations” are the projections of the truth onto a cer-

3542 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



tain observational network, modified by adding white
noise to simulate the observational errors. Under the
perfect model study framework, the CDA system has
completed a series of long (25 yr) assimilation experi-
ments based on the twentieth-century (XBT, CTD,
etc.) and twenty-first century (Argo) ocean observa-
tional networks. This study focuses on the system de-
scription and the first step, validation. In particular two
test cases are examined to illustrate the importance of
maintaining geostrophic balance in atmospheric data
assimilation (ADA) and maintaining the temperature–
salinity (T–S) relationship in ODA. The most difficult
assimilation case in the series of ODA experiments uses
a fixed-year GHGNA radiative forcing to retrieve the
truth (from a simulation with the temporally varying
GHGNA radiative forcings) through the XBT network.
Its analysis serves as a preliminary evaluation of the
system. Detailed analyses and diagnostics about the im-
pact of the XBT–Argo ocean observational network,
the temporally varying GHGNA radiative forcing in
assimilation, and the atmospheric data constraint on
climate detection will be presented in follow-up studies.

This study is organized as follows. Section 2 describes
the coupled model and filtering algorithm with paral-
lelization design. Section 3 describes the twin-
experiment design. Section 4 examines the importance
of maintaining the T–S relationship in oceanic data as-
similation. Here, the importance of assimilating salinity
data for estimating climate states, based on a dummy
salinity observing network, is also discussed. Section 5
examines the importance of maintaining geostrophic
balance in reconstructing the mid- and high-latitude at-
mospheric structure. Section 6 analyses and discusses
the results of a long ODA experiment, which provides
a preliminary evaluation of the system. A summary and
discussion are given in section 7.

2. Description of the coupled data assimilation
system

a. GFDL’s coupled climate model: CM2

Using both the B-grid finite-difference and finite-
volume atmosphere dynamical cores, GFDL has two
coupled climate models: CM2.0 and CM2.1. In this
study, the B-grid version (CM2.0) is first chosen to
implement the coupled data assimilation. The CM2.0
uses the GFDL atmosphere model AM2p12 (AM2/
LM2; GFDL Global Atmospheric Model Development
Team 2005) with a B-grid dynamical core that has 24
vertical levels and 2° latitude by 2.5° longitude horizon-
tal resolution, including a Mellor–Yamada level-2.5 dry
planetary boundary layer, relaxed Arakawa–Schubert
convection, and a simple diffusive parameterization of

the vertical momentum transport by cumulus convec-
tion.

The ocean component is the fourth version of the
Modular Ocean Model (MOM4) configured with 50
vertical levels (22 levels of 10-m thickness each in the
top 220 m) and 1° � 1° horizontal B-grid resolution,
telescoping to 1⁄3° meridional spacing near the equator.
The model has an explicit free surface with true fresh-
water fluxes exchanged between the atmosphere and
ocean. Parameterizations include k-profile parameter-
ization vertical mixing, neutral physics, a spatially de-
pendent anisotropic viscosity, and a shortwave radia-
tive penetration depth that depends on a prescribed
climatological ocean color. Insolation varies diurnally
and the wind stress at the ocean surface is computed
using the velocity of the wind relative to the surface
currents. An efficient time-stepping scheme (Griffies
2005) is employed. More details can be found in
Gnanadesikan et al. (2006) and Griffies (2005).

The sea ice component of the CM2.0 is the GFDL
Sea Ice Simulator, a dynamical ice model with three
vertical layers (one snow and two ice) and five ice-
thickness categories. The elastic–viscous–plastic tech-
nique (Hunke and Dukowicz 1997) is used to calculate
the internal stresses of the ice, and the thermodynamics
follows a modified Semtner three-layer scheme (Win-
ton 2000). More details can be found in appendix 1 of
Delworth et al. (2006). The interactions of these four
major model components in the GFDL’s coupling sys-
tem are schematically demonstrated in Fig. 1.

b. EAKF under a local least squares framework

The general derivation of an ensemble filter from
Bayes’s rule (Jazwinski 1970) can be found in the lit-
erature (e.g., Evensen 1994; Miller 1998; Miller et al.
1994, 1999; Houtekamer and Mitchell 1998; 2001;
Burgers et al. 1998; van Leeuwen 1999; Mitchell and
Houtekamer 2000; Bishop et al. 2001; Hamill et al.
2001; Anderson 2001; Whitaker and Hamill 2002). Tip-
pett et al. (2003) analyzed existing ensemble-based fil-
ters (Anderson 2001; Bishop et al. 2001; Whitaker and
Hamill 2002) and pointed out that these methods are
roughly equivalent and suggested that the deterministic
square-root filter as a unified family name may be ap-
propriate. Houtekamer and Mitchell (2001) and Ander-
son (2003) pointed out that ensemble-based filters can
be applied sequentially to individual scalar observa-
tions when each scalar observation has an independent
error distribution, or with the application of a singular
value decomposition technique when the observational
errors are correlated (Anderson 2003). Furthermore,
Anderson (2003) described a two-step data assimilation
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procedure for ensemble filtering under a local least
squares framework, which is quite suitable for applica-
tion to the implementation of parallelization if an ap-
propriate core domain and halo size are defined (Zhang
et al. 2005). Without mathematical details, but with the
aid of a schematical diagram as shown in Fig. 2, a de-
tailed flow for the two-step assimilation procedure is
depicted: the first step computes ensemble increments
at an observation location and the second step distrib-
utes the increments over the impacted grids. This uni-
versal algorithm is applied to the ADA (see section 5)
and ODA (see section 4) with their own parameters
according to the different time scales and internal vari-
abilities in the atmospheric–oceanic processes for con-
structing the GFDL’s CDA system.

The two-step procedure first computes the ensemble
increment at the observation location produced by an
available observation, y, with the observation value yo

and standard deviation �o
y, which has a Gaussian dis-

tribution (marked by the thick-dashed arrow and la-
beled STEP 1 in Fig. 2). Then, a least squares fit is used
to distribute the increment over the relevant grid points
(marked by the thick-dashed arrow and labeled STEP 2
in Fig. 2) for each ensemble member. The new shape
(solid arrow 1) of the prior PDF at the observation
location denotes the formation of the new ensemble
spread (�y� as below; Fig. 2, dotted curve in bottom-
right panel) from the prior ensemble spread (�yp as
below, solid-thin curve) by the observation distribu-

tion (denoted “obs PDF” in Fig. 2). Here, �y�i is for-
mulated by

�y �i �
�yi

p

	1 � rk
2

and �2�

rk �
� k,k

p

�k,k
o , �3�

where i represents the ensemble sample index and k
represents the observation index, while �o

k,k and � p
k,k

represent the standard deviation of the observation er-
ror and its prior estimate from the ensemble, respec-
tively. Here rk is the ratio of the estimated prior en-
semble standard deviation and the observational error
standard deviation. Equation (3) says that if the esti-
mated prior ensemble variance is greater than the ob-
servational error variance (rk 
 1), the ensemble spread
is largely reduced by the observation; otherwise, the
ensemble stays close to the prior. The shift of the en-
semble mean (solid arrow 2) induced by this observa-
tion is computed by

yu �
yp

1 � rk
2 �

yo

1 � rk
�2 . �4�

Equation (4) shows that if the estimated prior ensemble
variance is greater than the observational error vari-
ance, the ensemble mean shifts toward the observation
value; otherwise, the ensemble mean stays close to the
prior model ensemble mean. Then, the increment in-
duced by the observation y o for the ith ensemble
sample member at the observation location is

�yi
o � �yu � �y �i� � yi

p. �5�

Once the ensemble increments at the observation loca-
tion are available, a least squares fitting is applied to
distribute the increments on to all grid points impacted
by the observation using the covariance between the
grid point ( j) and the observation location (k), cp

j,k , as

�xi, j �
c j,k

p

� k,k2
p �yi

o, �6�

where x represents the component of a certain state
variable at grid point j. The computation in Eq. (6)
(marked by solid arrow 3 in Fig. 2) uses the ensemble-
estimated covariance between the observation location
and the model grid point, cj,k, denoted by the shaded
region around the observation location (asterisk) and
the model gridpoint location (circle) to distribute the
observation increments �y o

i onto all relevant grid

FIG. 1. Schematic diagram illustrating how the GFDL’s coupled
model exchanges fluxes between model components (black ar-
rows), and constraints of oceanic–atmospheric observations in this
particular climate detection study (red arrows). The dashed green
arrow denotes the use of the fixed-year (1860) radiative forcings
in the coupled model during the assimilation.
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points for each ensemble sample member so that an
“analysis PDF” is formed (Fig. 2, left panel). This kind
of ensemble-based algorithm is sequential because the
prior ensemble estimate of any observation, which is
used to compute � p

k,k , cj,k , yp
i , and yp in Eqs. (3)–(6), is

updated using the ensemble vector adjusted by what is
already known. The background covariance is a func-
tion of time and space, that is, it is flow dependent and
anisotropic.

As shown above, an ensemble filter uses finite
samples to estimate the PDF of a state variable, solving
the data assimilation problem by computing the prod-
uct of modeled and observational PDFs. This process,
called filtering, solves for signals that have major like-
lihood at the centers of PDFs and gets rid of noise with
minor likelihood at the tails of PDFs; it uses a linear
regression based on error covariance between the ana-
lyzed and observed variables (as illustrated in Fig. 2). In
an ensemble-based filtering algorithm, the background
error covariance between state variables is directly
computed from the model ensemble integrations by a

Monte Carlo approach. It is convenient to conduct mul-
tivariate data assimilation using an ensemble filter be-
cause once error covariances are available, the obser-
vational increment of any variable, if available, can be
regressed onto another to obtain the adjustment
amount. The nature of multivariate adjustment is es-
sentially important for solving such problems as climate
assessment that require maintenance of the joint distri-
bution as much as possible. The other important advan-
tage of ensemble-based filters is that error covariances
used in regression are flow dependent and temporally
varying (Zhang and Anderson 2003). Thus, they are
well suited to handle the nonstationary stochastic pro-
cesses like climate variations in which the error struc-
ture of flows is highly anisotropic and strongly depen-
dent on the seasonal cycle and interannual fluctuations.

Based on a previous study (Zhang et al. 2005) on
covariance filtering and observation smoothing tech-
niques, and under computational resource constraint,
trials and errors are used to determine the ensemble
size to be 6 in this perfect model study.

FIG. 2. Cartoon of how a two-step data assimilation procedure works for updating the
estimate of the probability distribution of a single state variable x given a single observation
y in the EAKF under the least squares framework. The right-hand column represents step 1:
updating the PDF at the observation location as a new observation comes in (denoted by the
thick-dotted arrow labeled STEP 1). The solid arrow 1 denotes that the prior PDF at the
observation location is squashed by a new observation (denoted by the bottom-right dashed
curve), computed by Eq. (3), and the solid arrow 2 represents the shift of the prior ensemble
mean at the observation location due to the new observation, computed by Eq. (5). The
thick-dotted arrow extending from the right-hand column to the left-hand column denotes
step 2: using the correlation distribution (shaded region) to distribute the observation incre-
ments to impacted grid points, computed by Eq. (6). The solid arrow 3 represents the process
of updating the PDF of a grid point.
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c. A “super”-parallelized ensemble filter with CM2

Because of the limitations on memory storage, a
single GFDL coupled model run requires a parallel
computation environment [e.g., a minimum number of
processing elements (PEs) is 20 on the Silicon Graphics
Inc. Intel–Altix cluster] and the ensemble filter de-
mands a so-called superparallelization technique to
guarantee that model ensemble integrations and the
filtering computation are conducted iteratively online.
First, a large number of PEs (where K is the total PE
number) are loaded and regrouped to form a global PE
list and M sub-PE lists, each of which has K/M PEs
(where M is the ensemble size). The analysis domain
decomposition is done on the global PE list in which K
analysis domains [each containing a core domain and a
halo; Zhang et al. (2005)] are formed. Within each sub-
PE list, the model domain decomposition is first con-
ducted and a certain ensemble member model integra-
tion is then advanced in parallel, in which each PE
works for a subdomain. In this process, these M sub-PE
lists work independently and the whole ensemble of
model integrations is forwarded synchronously. Then,
when the model ensemble reaches an observational
time, a data transfer process from the model domains
(sub-PE lists) to the analysis domain (global PE list) is
activated so that an ensemble vector is formed in each
analysis domain where a specific PE updates the en-
semble vector by assimilating observations indepen-
dently. Once the analysis process is done, data in the
ensemble vectors over core domains are transferred

back to the model domains for each ensemble member
on a certain sub-PE list for initializing the next cycle of
ensemble model integrations. A flow chart illustrating
the iterative procedure specifically for a six-member
ensemble is shown in Fig. 3 in which each member uses
30 PEs to carry out the model integration (left panels)
while the daily filtering analysis uses 180 PEs (right
panels).

3. Design of a perfect model study using the
existing ocean observational network

a. Perfect model framework

Coupled data assimilation is a multitask problem that
involves many issues: coupled model bias, sampling of
the observing system, validation of the analysis scheme,
etc. A CDA system is so complex that any uncertainty
in the aspects described above may cause the evalua-
tion of CDA results to become extremely difficult. To
reduce the complexity, this study excludes the model
bias issue by using a perfect model study framework, or
so-called identical twin experiments, in which a real-
ocean observational network is used to sample a mod-
eled time series of climate states serving as the true
solution of the assimilation problem. Then it is feasible
to evaluate the assimilation quality by verifying assimi-
lation results with the “truth” so that any up/downgrade
of the assimilation system, when a new assimilation
component or observational data type is added, or

FIG. 3. Flow chart of the GFDL’s superparallelized coupled data assimilation system for the
180 PEs case. Generally, this system can be scaled for any ensemble size and any PE number
that is big enough. But in practice, because of efficiency considerations, it is currently scaled
for running 6, 12, and 24 ensemble members by invoking a minimum of 120 PEs and a
maximum of 1440 PEs on the SGI Altix cluster at GFDL or the National Aeronautics and
Space Administration’s Supercomputing Division.
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when an assimilation parameter is tuned, can be quan-
tified. Once the confidence of the assimilation scheme
in a CDA system is established, the signal of the climate
variations contained in the observing system can be as-
sessed by verifying the assimilation results with the
truth. This process within the identical-twin framework
is referred to as an observing system simulation experi-
ment (OSSE) or climate detection because various
scale variabilities and trends in climate variations have
to be assessed in this process. The perfect model frame-
work that is designed in this study is based on the real-
ocean observational network, which is important not
only for the CDA system development but also for
OSSEs/climate detection.

b. Idealized “observed” data in the actual ocean
observational network

In this study, all observed ocean data are produced
by projecting a model integration onto a real observa-
tional network and superimposing white noise. The
three-dimensional structure of the ocean observational
network is based on the temperature profiles taken
from the World Ocean Database, which is maintained
by the National Oceanographic Data Center. Data
types used here are for the most part the same as those
used by Levitus et al. (2005) for the World Ocean

Analysis, including XBT, conductivity–temperature–
depth, drifting buoy, ocean station data, undulating
oceanographic recorder, and moored buoy data, shown
in Fig. 4. The GFDL’s Intergovernmental Panel on Cli-
mate Change (IPCC) twentieth-century historical inte-
gration, which uses the temporally varying GHGNA
radiative forcings, is set to be the true solution for the
assimilation experiments. Then, the observed ocean
profiles are formed by sampling the historical integra-
tion temperature and/or the salinity data from the
ocean observational network on a daily basis, and add-
ing white noise. The projection from the model space
onto the observational space (limited to the top 500 m
in this study) is basically a trilinear (horizontal and ver-
tical) interpolation. The imposed white noise attempts
to account for random measurement errors of the ob-
serving system and the interpolation error in the pro-
jection. The standard deviation of the white noise is
0.5°C for temperature and 0.1 psu for salinity at the sea
surface (typical error levels for SST and sea surface
salinity) and exponentially decays to zero at 500-m
depth. The representation errors of the observations,
which reflect the limitations of the scales of the obser-
vation sampling, are not included in the superimposing
white noise. How to realistically construct the error dis-
tribution to represent sampling errors could be an in-
teresting research topic in itself.

FIG. 4. Samples of the ocean observational network during the last quarter of the twentieth century.
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c. Observed data for the atmosphere

The atmospheric observations take the monthly
mean reanalysis format (i.e., gridpoint values) of atmo-
spheric variables (full grid points) in the GFDL’s IPCC
historical run described previously. In this case, an ob-
served atmospheric variable is a monthly mean time
series from the model integration, onto which white
noise is superimposed with standard deviations of 1°C
for temperature; 1 m s�1 for the u and � wind compo-
nents; and 10 hPa for surface pressure. Again those
numbers represent typical standard deviation values of
atmospheric observational errors that do not include
the representation error of the observations.

As discussed after Eq. (4) in section 2b, the standard
deviation of the observational errors is a parameter that
determines the strength of the observational constraint.
The values of the atmospheric observation error stan-
dard deviation set in this section and the values of the
oceanic observation error standard deviation set in the
last section may be tuned for an optimal observational
constraint.

4. Tests on ODA

The ocean observational network from the last quar-
ter of the twentieth century is used to sample the
GFDL’s IPCC historical run. All assimilation experi-
ments in this study use observed ocean data only above
500 m. A totally independent ensemble initial condition
is formed by combining the atmosphere and land states
at 0000 UTC 1 January of years 41, 42, 43, 44, 45, and
46 with the ocean and ice state at 0000 UTC 1 January
44 of the GFDL’s IPCC control run (using the 1860
fixed-year GHGNA radiative forcing). The assimila-
tion model integration only uses the fixed-year
GHGNA radiative forcing at 1860, which is the hardest
assimilation case in this perfect model study because
the different GHGNA radiative forcings in the truth
and in the assimilation model may introduce model bias
into the assimilation. The initial motivation to use
fixed-year GHGNA radiative forcing in the assimila-
tion model is an attempt to determine how much of the
radiative forcing information is detectable by an ocean
observational network, although the temporally vary-
ing GHGNA radiative forcing will be used in the real-
data assimilation. The impact of the temporally varying
GHGNA radiative forcing on data assimilation for
climate detection and ocean observing system evalua-
tion will be discussed in an accompanying study (Zhang
et al. 2007, manuscript submitted to J. Geophys. Res.),
where the assimilation results with the fixed-year–
temporally varying GHGNA radiative forcing are com-
pared and analyzed in detail. Then, all of the ODA tests

shown below try to answer the following question: With
the ocean observational network, how much can we
retrieve of the truth? In other words, these tests offer a
means of simultaneously evaluating the assimilation
system and the ocean observing system.

Given the fact that most ocean observations in the
twentieth century consist of temperature data only,
once the ODA system using the GFDL’s coupled cli-
mate models is set up, the first issue we want to address
is the capability of the ODA system to maintain the
physical balance in ocean flows, mostly characterized
by the T–S relationship, while assimilating only ocean
temperature data. As shown in Fig. 4, from the 1970s to
the 1990s the coverage of the ocean observational net-
work had improved. We chose 1991 as a representative
sample in the 1990s coverage for this first set of tests.
With such a small ensemble size, it is important to use
a weighting function, 
(a, d) (Gaspari and Cohn 1999),
for covariance filtering to limit the noise in the covari-
ance estimates (Hamill et al. 2001). Following Zhang et
al. (2005), 
(a, d) is applied for space (horizontal and
vertical) and time (an observational time window for
smoothing the observations). Most of the parameters in
the ODA scheme are the same as in Zhang et al. (2005)
except for those that need to be adjusted according to
the new model configuration such as the halo size (10°
for both longitude and latitude) and the time window (2
days before and after the analysis time). In addition, the
horizontal correlation scale [the parameter a in 
(a, d)]
is multiplied by a cos� (� is the grid latitude) factor up
to 80°N (S) to make the scale consistent with the char-
acteristics of the Rossby deformation radius for a global
analysis scheme. The vertical scale a is set to be the
width of a grid box (10 m above 200 m, gradually in-
creasing up to 80 m around 500-m depth) and each
observation is only allowed to impact at most four
neighboring levels (two above and two below). Then,
three assimilation experiments using different analysis
scheme are conducted and the root-mean-square
(RMS) errors of the oceanic temperature and salinity
are listed in Table 1. The errors of a control simulation
(starting from the same initial conditions as the assimi-
lation) without any data constraint are also listed as the
reference.

a. Importance of maintaining the T–S relationship

The first assimilation employs a univariate analysis
scheme, allowing the observed temperature to only cor-
rect the temperature itself, denoted by T2T in Table 1.
The univariate ODA reduced the top-500-m ocean
temperature RMS errors by 43% compared with the
control case. However, the univariate scheme increases
the top-500-m ocean salinity error by 6% and the top-
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1000-m ocean salinity at the equator by 36%, compared
with the control case. From the zonal-depth sections of
the temperature and salinity errors at the equator, it is
found that the assimilation of temperature causes the
top 250 m of the central Pacific Ocean to cool because
data require a relatively shallow thermocline while the
west Pacific Ocean becomes too fresh. The T–S imbal-
ance in the univariate assimilation scheme also causes
larger salinity errors in other places such as the Atlantic
and Indian Oceans. The following example investigates
how temperature and salinity errors can both be coher-
ently reduced over the tropical Pacific by employing the
T–S covariance.

The cooling of the central Pacific caused by the as-
similation of oceanic temperature can be clearly exhib-
ited in the zonal-depth distribution of the temperature
correction right at the equator (Fig. 5a). Yet the posi-
tive T–S covariance (at the same location) over the
central Pacific (Fig. 5b) means that in order to simul-
taneously satisfy the model relationship as well as the
cooling response, the ocean has to be fresher. Because
the salinity remains unadjusted in the univariate assimi-
lation scheme, the water’s density in the central Pacific
Ocean is higher than it should be. This higher density
causes excessive downwelling (Fig. 6b) over the central
Pacific. Through the same mechanism, excessive up-
welling is produced in the western Pacific by the
univariate assimilation scheme because of the failure to
maintain the correct T–S balance. This excessive up-
welling persistently transports the 500–1000-m freshwa-
ter over the western Pacific to the top and causes a
strong negative salinity error center (the water tends to
be much fresher) there. Complementary to the exces-
sive upwelling–downwelling over the western/central
Pacific Ocean, an excessive westerly undercurrent also
is observed (Fig. 7b) from the western to the central
Pacific.

A multivariate assimilation scheme uses the covari-
ance between any two variables estimated by the model
ensemble to accordingly adjust the ocean state when

observations of only one variable are available. Figures
6c and 7c depict the tropical vertical motion and under-
current errors (zonal-depth sections) when only tem-
perature observations are assimilated but both tem-
perature and salinity are adjusted by applying the T–S
covariance. These results are denoted by T2TS. Com-
pared with the univariate assimilation, use of the T–S
covariance in the multivariate assimilation significantly
improves the assimilation quality due to the mainte-
nance of the T–S balance. Most notably, at the equator
the salinity errors are reduced by 45%, vertical motion
errors by 81% (Figs. 6b and 6c), and the undercurrent
errors by 50% (Figs. 7b and 7c).

We may attribute the positive T–S covariance along
the thermocline (thick red line in Fig. 5b) to upward–
downward thermocline oscillations associated with the
isopycnal nature of ocean movements, and the negative
T–S covariance at the top of the western Pacific to the
atmospheric precipitation response associated with the
warmer SST (over the ascending branch of Walker
cells). It is worth mentioning that attributing the co-
variance to the certain physical process is usually very
difficult because a covariance reflects the syntheses of
the correlation between two variables over all scales of
motions. From the viewpoint of information estimation,
use of covariances is a means of trying to maintain the
nature of the joint distribution of a multivariate sto-
chastic dynamical process, which plays an important
role in solving such a complex problem as climate as-
sessment. Previously, methods of relaxing the inconsis-
tencies of the adjusted–unadjusted temperature–
salinity have been studied in a few other ways to build
up the T–S relationship (Troccoli and Haines 1999;
Troccoli et al. 2002; Han et al. 2004; Ricci et al. 2005).
More experiments with the application of covariances
between temperature and currents (T–U, T–V) and
temperature and zonal and meridional wind stresses
(T–�x, T–�y) do not produce a dramatic improvement in
the assimilation quality (not shown here), as the T–S
does. However, to better maintain the nature of the

TABLE 1. Time-averaged RMS errors of the oceanic temperature (°C) and salinity (psu) in one control simulation and three
assimilation experiments.

Domain

Ctl T2T T2TS TS2TS

Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity

Top 500 m in the global domain 0.81 0.18 0.46 0.19 0.36 0.15 0.34 0.09
Top 1000 m in the X–Z plane

at y � 0
0.77 0.14 0.42 0.22 0.24 0.12 0.21 0.06

Ctl: control simulation without any data constraint.
T2T: allowing the observed temperature to only correct the temperature itself.
T2TS: allowing the observed temperature to correct both temperature and salinity by using T–S cross covariance.
TS2TS: allowing the observed temperature and salinity to correct both temperature and salinity by using T–S cross covariance.
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joint distribution, the long run in section 6 and follow-
up studies for climate detection and/or ocean observing
system evaluation all use the above-mentioned covari-
ances associated with the ocean state.

b. Importance of assimilating salinity observations

With the advent of the new century, great efforts
have been made to obtain more salinity measurements

[e.g., the Array for Real-time Geostrophic Oceanogra-
phy (ARGO) design and deployment]. The second set
of experiments discussed below primarily attempts to
quantify the importance of explicitly assimilating the
observed oceanic salinity as well as temperature.

Assuming that the observational network used in sec-
tion 4a provides both temperature and salinity mea-
surements, the salinity profiles have the same structure

FIG. 5. Annual mean corrections of (a) potential temperature and (c) salinity, and (b) the
local T–S covariance at the same location, distributed on the x–z cross section at the equator
produced by the T2TS analysis scheme. The contour intervals are 0.01°C, 0.002 psu °C, and
0.005 psu for (a)–(c), respectively.
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as temperature profiles except that the “observed” data
are the samples (projection) of the salinity of the truth
on (onto) the ocean observational network. White
noise is superimposed onto the projection of the model-
simulated observed salinity data by the procedure de-
scribed in section 3b. Again, to maintain the nature of
the joint distribution, while assimilating the salinity,
the multivariate scheme also applies the T–S covariance
to adjust the temperature (denoted by TS2TS in Table
1). The resulting assimilation errors are shown in col-
umn 8 and 9 in Table 1, as well as in Figs. 6d and 7d,
which are for the tropical vertical motions and under-

currents (zonal-depth sections). Comparing columns 8
and 9 in Table 1 and Figs. 6d and 7d (TS2TS case) to
columns 6 and 7 in Table 1 and Figs. 6c and 7c (T2TS
case), it is observed that assimilating the salinity mea-
surements significantly improves the analysis of salinity
but has a marginal effect on the temperature assimila-
tion errors. For example, salinity assimilation errors are
reduced by 40% for the global average and 50% for the
Tropics, whereas the temperature assimilation errors
are reduced by only 6% for the global average and 13%
for the Tropics. Again, assimilating salinity observa-
tions further improves the estimate of the joint PDF

FIG. 6. Annual mean ocean vertical motion errors at the equator for (a) the control simulation with no data constraint, (b) only
allowing temperature observations to impact temperature itself (denoted by T2T, univariate analysis scheme), (c) allowing temperature
observations to impact both temperature and salinity using their cross covariance (denoted by T2TS, multivariate analysis scheme), and
(d) using both temperature and salinity observations to adjust both temperature and salinity (denoted by TS2TS, multivariate analysis
scheme). The contour interval is 0.05 m day�1, the 0 contour is omitted, and the dashed lines are negative.
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of the multivariate stochastic process, and hence
the errors of both the vertical motion and the under-
current are further reduced by approximately 13% by
the introduction of salinity data (see Figs. 6c,d and
7c,d).

The meridional heat–salt transport integrated zonally
and vertically (�� �cpT� dx dz /�� �S� dx dz) is an indi-
cator of how well the ocean general circulation is esti-
mated. Figures 8a and 8b show the annual mean of the
integral of the meridional heat and salt transport, re-
spectively, for all three data assimilation experiments.
Because of the incorrectness of the density in the
univariate assimilation (red in Fig. 8a, denoted by T2T),
the gradually increase of the northward heat transport
at low latitudes from south to north (black curve in Fig.
8a, denoted by truth) is significantly trapped in the

Tropics. The use of the T–S covariance mostly fixes this
problem (green curve in Fig. 8a, denoted by T2TS). The
introduction of salinity data greatly improves the south-
ward heat transport over the Southern Hemisphere
subtropics (blue curve in Fig. 8a, denoted by TS2TS).
On the other hand, while fixing the problem of the
tropical northward salt transport trap, the use of the
T–S covariance overestimates the northward salt trans-
port in the Southern Hemisphere and the southward
salt transport in the middle latitudes in the Northern
Hemisphere (green curve in Fig. 8b). Such overesti-
mates may come from imperfections in the T–S co-
variance estimates based upon the small ensemble size
(six in this case), and then these overestimates are re-
laxed through the direct assimilation of the salinity ob-
servations (blue curve in Fig. 8b).

FIG. 7. Same as in Fig. 6 but for the undercurrent and with a contour interval of 0.05 m s�1.
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5. Tests on ADA: Importance of maintaining the
geostrophic balance

The correlation scales employed in the atmosphere-
filtering analysis are 1000 km for temperature and 500
km for u and �. In the following test cases, one or more
atmospheric variables are chosen as the observed vari-
ables to be assimilated. The purpose is to understand
how to assimilate the atmospheric variables to improve
the estimate of the atmospheric state and the fluxes it
provides to other model components in the coupled
modeling system. Using the observed atmospheric data
produced in section 3c, three assimilation cases are
compared and analyzed: 1) case I, to assimilate only
atmospheric winds; 2) case II, to assimilate only atmo-
spheric temperature; and 3) case III, to assimilate both

winds and temperature. The verification discussed be-
low is based on the first month’s atmospheric data as-
similation results from daily analyses.

a. Assimilating winds only (case I) versus
assimilating temperature only (case II)

The first experiment (case I) assimilates only winds
(both u and � components) to adjust the atmospheric
wind itself as well as the temperature, based on an
ODA-only case (T2TS). Results show that the assimi-
lation of u and � retrieves the truth’s winds very well,
reducing the global RMS errors by 58% from the
ODA-only results (from 4.5 to 1.9 m s�1). Reconstruct-
ing the atmospheric temperature by assimilating only
temperature (case II) turns out to be somewhat more

FIG. 8. The zonal and vertical integral of the (a) meridional heat and (b) salinity transports
in the truth (black), the univariate assimilation (T2T, red), the multivariate assimilation using
T–S covariance without salinity observations (T2TS, green), and the multivariate assimilation
using both T and S observations (TS2TS, blue).
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difficult than reconstructing the atmospheric winds by
assimilating winds (case I), the global temperature
RMS error reduction from the ODA-only being 46%
(from 1.7° to 0.9°C). Because of the improvement of
the atmospheric bottom boundary conditions on SST
generated by the ODA process, the ODA reduces the
global RMS errors for both atmospheric winds (by
18%) and atmospheric temperature (by 19%), com-
pared with the control (the RMS errors are 5.5 m s�1

for winds and 2.1°C for temperature).
To illustrate the impact of assimilating only atmo-

spheric winds or assimilating only atmospheric tem-
perature on the atmosphere analysis, the RMS error
variation with respect to latitudes, of winds and tem-
perature (summed in the zonal and vertical domain),
are plotted in Fig. 9. It is observed that while the at-
mospheric winds are consistently reconstructed well in
all latitudes by assimilating the wind observations in
case I (red curve in Fig. 9a), the atmospheric tempera-
ture is improved in the Tropics but becomes worse at
middle and high latitudes (red curve in Fig. 9b). On the
other hand, it is relatively easier to improve the esti-
mates of the winds at high latitudes of the Northern
Hemisphere than in the Tropics by assimilating the at-
mospheric temperature observations in case II (green
curve in Fig. 9a) while the estimate of temperature is
improved in a global domain (green curve in Fig. 9b).
This phenomenon can be explained by the geostrophic
balance constraint on atmospheric flows at different
latitudes. In the Tropics, because of the weak geo-
strophic balance constraint, it is the winds that govern
the formation of the flows in which the temperature
adapts to the flow, so that once the winds are corrected,
the temperature improves (case I), while the better
temperature estimates do not guarantee improved
winds (case II). Meanwhile, at middle and high lati-
tudes where geostrophic balance dominates the atmo-
spheric flows, the thermal winds govern the formation
of the flows so that in case I the imbalance of the winds
and temperature causes the temperature errors to ex-
ceed those of the ODA-only results even though the
winds are corrected well, and a corrected temperature
easily improves the estimate of the winds in case II.
These results are consistent with the simulation experi-
ment study of Gordon et al. (1972). Assimilating the
atmospheric temperature only cannot improve the es-
timate of the Southern Hemisphere subpolar jet, prob-
ably because of the strong dependence of the jet on the
SST, while the ODA cannote provide a good SST esti-
mate because of the lack of oceanic data in this region.

Because of the strong internal variability of the at-
mospheric flows and the small ensemble size in the fil-

ter (six in this case), the use of cross covariances be-
tween temperature and winds relaxes the imbalance
only slightly, but not enough to significantly improve
the assimilation quality.

b. Case III: Assimilating both winds and
temperature

From the analyses and discussion in the last section,
assimilating both the atmospheric temperature and
wind observations is critically important for obtaining a
self-consistent atmospheric state. In this section, we
show the results of an experiment in which both winds
and temperature data are assimilated. Figure 10 pre-

FIG. 9. The RMS errors computed on a zonal-vertical domain,
for (a) the atmospheric zonal wind and (b) the atmospheric tem-
perature in the ODA-only simulation (black), the case with ODA
plus the atmospheric wind assimilation (red), and the case with
ODA plus the atmospheric temperature assimilation (green). The
control model simulation (dashed black) is also plotted as a ref-
erence.
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sents the errors of the vertical velocity in the Tropics
(averaged over 20°S–20°N) for the control (Fig. 10a), as
well as the ODA-only (Fig. 10b) and the ODA � ADA
(Fig. 10c) simulations. Figure 10 shows that because
both the winds and the temperature are consistently
estimated by the assimilation, the ADA simulation
(Fig. 10c) significantly improves the estimate of the
Walker circulation in the Tropics compared with the
ODA-only simulation (Fig. 10b). Nevertheless, it is also
clear that the estimate of the Walker circulation in the
ODA-only simulation is better than that of the control
simulation. Again, this is because the ODA process
provides a better SST bottom boundary condition for
the atmosphere. Figure 11 depicts the errors of the
zonal wind stress that the atmosphere exerts on the
ocean surface. It shows that the estimate of the zonal
wind stress is improved by the ADA over much of the
globe, but especially over the North Atlantic.

It is worth mentioning that although the problem dis-
covered in the previous section by assimilating monthly
mean winds or temperature individually may more or
less be relaxed by assimilating daily data, the destruc-
tion of the geostrophic balance while only using the
atmospheric wind data is a nonnegligible issue. A “bal-
anced initial condition” for a reliable coupled system
will be a key element for improving the seasonal–
interannual forecasts [an El Niño–Southern Oscillation
(ENSO) event, for instance].

6. A 25-yr ODA long run test using the CDA
system

The temperature of the GFDL’s IPCC twentieth-
century historical run is sampled onto the last quarter
of the twentieth-century ocean temperature network
(Fig. 4) to produce a 25-yr idealized observed dataset,
as described in section 3b. Using the ensemble initial
condition and the assimilation model configuration de-
scribed in section 3b, and the ocean assimilation param-
eters described in section 4a, the assimilation system is
run to assimilate the 25-yr ocean temperature observa-
tions. However, to simulate the sparseness of the XBT
observations in the deep ocean, the observations used
in this experiment are limited above 500 m. In addition
to the temperature correction, the observed tempera-
ture is allowed to correct salinity and currents using the
covariance between these variables and the tempera-
ture. Also, ocean temperature observations above 50 m
are allowed to directly impact the sea surface wind
stresses (�x and �y) to increase the constraint of oceanic
observations on the coupled model in the absence of an
atmospheric data constraint, as the direct means of ap-
plying the coupling dynamics to the CDA system men-

FIG. 10. Vertical motion errors of the tropical atmosphere (av-
eraged over 20°S–20°N) for (a) the control, (b) the ODA-only,
and (c) the ODA � ADA simulations. The contour interval is 0.1
m day�1. The 0 contour is omitted.
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tioned in the introduction. The heat–water fluxes ap-
pear to be very sensitive to the adjustment by the ocean
temperature observations, and because of the small en-
semble size (six) used in this study, the adjustment of

heat–water fluxes by the ocean temperature observa-
tions is not included here.

The error reduction of the ocean temperature over
the top 500 m by the ODA is presented in Fig. 12. It is
shown that the global RMS error is reduced by roughly
60% (from 0.85° to 0.35°C) (Fig. 12a) during the 5-yr
spinup period. The 20-yr time mean errors (from 1981
to 2000) of the vertically averaged top-500-m ocean
temperature are shown in Fig. 12b (control) and Fig.
12c (ODA). Comparing Fig. 12c with Fig. 12b, it is
observed that except for the Southern Ocean (south of
32°S) and the North Atlantic, the ODA significantly
reduced the temperature errors below 0.2°C from 1°C
of the control. The interesting portions of the assimila-
tion temperature errors include the southwest–
northeast error belt along the northwest coastline of the
Atlantic and a nearly equator-symmetric error distribu-
tion over the central-eastern tropical Pacific. The
former must be associated with the complex heat–salt
transport mechanism over the North Atlantic including
meridional overturning circulation (MOC), and the lat-
ter may be created by the extra Kelvin waves induced
by the imbalance in the data constraint process and
their reflection as Rossby waves at the east coast. Some
degree of imbalance still exists in the data constraint
process, mainly because of an imperfect T–S relation as
a result of the small ensemble size. On the other hand,
the temperature assimilation errors over the Southern
Ocean basically can be attributed to the sparseness of
the observations in that region (see Fig. 4).

To examine the capability of the ODA to reconstruct
ENSO variability, the anomalies of the regionally av-
eraged ocean temperature over the Niño-3.4 region are
computed and presented in Fig. 13. Figure 13 shows
that except for some small-scale details, the ODA (sec-
ond panel from the top, denoted by ASSIM) captures
nearly all events, that is, reproducing the phase and
amplitude of all ENSO events of the truth (third panel
from the top) while the control (top panel, denoted by
CTL) exhibits its own ENSO variability that is entirely
different from the truth. The ability of the ODA to
accurately reconstruct the ENSO variability can be
more clearly demonstrated by the vertical average of
the Niño-3.4 ocean temperature anomalies (bottom
panel). Note that the assimilation curve (red) follows
the truth (black) very closely.

Another interesting point about the coupled ODA
process we want to show here is the response of the
atmospheric bottom winds to the SST generated by the
ODA. Figure 14 presents the zonal wind stress (�x)
exerted on the ocean surface in the Tropics by the at-
mosphere in three cases: the control (top panel), the
ODA (second panel from the top), and the truth (third

FIG. 11. Zonal wind stress errors for (a) the control, (b) the
ODA-only, and (c) the ODA � ADA simulations. The contour
interval is 0.04 N m�2. The contour 0 is omitted.
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FIG. 12. Time series of the global RMS error of the top-500-m ocean temperature for (a) the
control (dotted) and the ODA (solid), and the time mean of the vertically averaged ocean
temperature errors over the top 500 m for (b) the control and (c) the ODA. The contour
intervals in (b) and (c) are 0.2°C. The 0 contour is omitted.
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panel from the top). First, the control �x shows an en-
tirely different variability from the truth, that is, while a
few strong wind bursts associated with strong ENSO
events appear in the truth during the first 20 yr, the
control only has some weak �x anomalies with different
phase. The ODA �x captures the major wind burst
events that occur in the truth, although the former
tends to be a smoothed version of the truth. Also note
that the very strong wind burst event in 1982–83 is re-
constructed precisely.

It is useful to estimate the uncertainty of various vari-
ables of the assimilation product in an ensemble filter-
ing framework. This exercise may further our under-
standing of assimilation results and possibly provides
clues on how to improve the assimilation system. The
upper–lower bounds of the ODA ensemble spread of
the Niño-3.4 temperature anomaly averaged over the
top 250 m are plotted by pink dashed lines in the bot-
tom panel in Fig. 13. (The terms “spread” and “devia-
tion” throughout this study are used relative to the en-
semble mean.) Comparing the ODA spread to the con-
trol spread (green dashed), which is estimated by using
six 25-yr nonoverlapping time series of the model simu-
lation from the 150-yr IPCC control run (using 1860
fixed-year GHGNA radiative forcings), the ODA re-
duces the uncertainty of the model heat content dra-
matically because of the direct constraint of ocean tem-
perature observations. Comparing the spread of the as-
similation wind stress (pink dashed lines in the bottom
panel in Fig. 14) with the spread of the control wind
stress (green dashed), although the entire ensemble of
the ODA wind stresses appears to follow the truth’s
trend, the uncertainty of the zonal wind stress is only
slightly reduced by the ODA. The horizontal distribu-
tion of the time mean (25 yr) of the standard deviations
of the spread of the zonal wind stress and SST is shown
in Fig. 15. The largest uncertainty of the model wind
stress is located over the North Atlantic, which may be
associated with the North Atlantic Oscillation (NAO)
phenomenon and the low-level jets there. Two other
places exhibiting large model wind stress spread are the
North Pacific and the high latitudes in the Southern
Ocean, which are basically consistent with the corre-
sponding regional storm tracks. The largest model
spreads of SST (Fig. 15c) are located over the equato-
rial Pacific and the North Atlantic. The former reflects
the ENSO variability that is associated with the Kelvin
wave activity and strong atmosphere–ocean interaction,
while the latter can be linked to the North Atlantic
gyre. In addition, some stronger spread centers associ-
ated with Rossby wave activity are found in the middle
and high latitudes of the Pacific. Beneath the mixed

layer, these Rossby-wave-related spread centers be-
come even stronger and appear to spread over the
whole Pacific (not shown here). Through the ODA, the
uncertainties of ocean temperature over the Pacific and
Atlantic are significantly reduced (Fig. 15d) by the di-
rect assimilation of observed ocean temperatures while
the uncertainties of the wind stresses are reduced
slightly at the equator and remain nearly unchanged off
of the equator (Fig. 15b; see also the bottom panel in
Fig. 14). In this perfect model ODA experiment, the
atmospheric spread is based on both stochastic initial
conditions and SST uncertainties. The difference be-
tween the wind stress spread and the ocean tempera-
ture spread generated by the ODA (in Figs. 13–15)
implies that the atmospheric spread is dominated by the
strong internal variability of the atmosphere, while the
convergence of SST brought about by the ODA is not
sufficient to constrain the atmosphere.

Finally, time series of heat content anomalies in vari-
ous ocean basins (basin averaged over the top 500 m)
are presented in Fig. 16. For comparison, all anomalies
are computed using the truth’s climatology. The ocean
mask used here is the same as in the work of Levitus et
al. (2000). Comparing the black curve (truth) in Fig. 16
to the estimate of Levitus et al. (2000, their Fig. 1) for
the top 300 m using real-ocean temperature observa-
tions, it is found that the GFDL’s model simulation
using the historical GHGNA radiative forcing shows a
consistent multidecadal warming trend in almost all
oceans with its own interannual variability. Figure 16
shows that for oceans that have reasonable observation
coverage (as shown in Fig. 4) the ODA process re-
trieves the trend and the variability of the heat content
quite well, with a reduced uncertainty [pink-dashed
(green dashed) curves represent the upper (lower)
bounds of the ODA–control spread]. While the heat
content anomalies of those oceans (which have good
data coverage) approach the truth quickly (i.e., within a
couple of years; e.g., over the Pacific and North Atlan-
tic Oceans), a relatively longer spinup is required for
the oceans in which data coverage is sparse (e.g., over
the South Atlantic, and the southern and northern In-
dian Ocean). It is interesting to notice that the ODA’s
heat content in the Southern Ocean and the Arctic
Ocean follows the general trend of the truth with dif-
ferent details. For example, in the assimilation, the
Southern Ocean heat content remains a nearly constant
departure from the truth while the Arctic Ocean heat
content exhibits some strong warmer events in the
middle of the 1990s. Because of the lack of observations
in the Southern Ocean and the Arctic Ocean (see Fig.
4), the adjustment of the trend in both oceans may be
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attributed to the communication between ocean circu-
lations in different areas and/or between different cou-
pling components. For example, the adjustment of the
Southern Ocean heat content trend can be maintained
by the interaction between the circulations in the
Southern Ocean and other neighboring oceans such as
the South Pacific, the South Atlantic, and the southern
Indian Ocean, where the strong data constraint in
ODA significantly corrects their circulations. The ad-
justment of the Arctic Ocean heat content trend may be
more complex by also being associated with the ice–
water interaction and ice–atmosphere flux exchanges.
More detailed analyses on interactions between differ-
ent ocean circulations and different coupling compo-
nents and their impact on climate detection will be in-
vestigated in future studies.

7. Conclusions and discussion

We have described a CDA system based on the
GFDL’s CM2 and an EAKF. The method produces
ensemble estimates of the coupled system state and its
uncertainty, by assimilating observations in a tempo-
rally continuous manner. The resulting ensemble can
then be used to initialize seasonal to multidecadal fore-
casts of climate variability and trends. The experiments
herein serve as a proof-of-concept ensemble data as-
similation in comprehensive coupled models.

The CDA system is evaluated using a series of twin
experiments, in which a particular model integration
(with temporally evolving GHGNA radiative forcings)
serves as the “truth” from which observations are
drawn. These experiments highlight the importance of

FIG. 15. (a), (b) Time mean of the standard deviations of the zonal wind stress spread and (c), (d) the SST spread in (a), (c) the control
and (b), (d) the ODA. The method for estimating the spread is the same as in Fig. 13. The contour interval is 0.01 N m�2 for (a), (b)
and 0.1°C for (b), (d).

←

FIG. 14. Time series of the anomalies of the zonal wind stress (�x) over the tropical Pacific (5°S–5°N) average for the control (denoted
CTL), the ODA (denoted ASSIM), and the truth. Curves in the panel second from the bottom are the zonal averages over the Pacific
for the control (green), the ODA (red), and the truth (black). The upper (lower) bounds of the control–ODA spread are plotted by
the green-dashed (pink dashed) lines in the bottom panel. The method for estimating the spread is the same as in Fig. 13. All anomalies
are computed using the truth’s climatology and the contour interval for the first three is 0.01 N m�2.
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FIG. 16. Time series of the anomalies of the top-500-m ocean heat content (averaged temperature) in different oceans for the truth
(black), the ODA (red), and the control (blue). The upper (lower) bounds of the control–ODA spread are plotted by the green-dashed
(pink dashed) lines. The method for estimating the spread is the same as in Fig. 13. All anomalies are computed using the truth’s
climatology.
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maintaining temperature–salinity relationships (associ-
ated with particular water masses) in ODA, and of
maintaining geostrophic balance for ADA. They also
address whether the ODA in the CDA system is ca-
pable of reconstructing the twentieth-century variabil-
ity and trends of global ocean heat content, given the
twentieth-century ocean observing network.

Because the atmosphere exhibits strong internal vari-
ability, a small ensemble (six in this case) may not ac-
curately evaluate the covariance among the simulated
fields, and thus the assimilation cannot effectively ad-
just the analysis solution away from the observational
locations. The ADA experiments with dense atmo-
spheric observations suggest that in the Tropics obser-
vations of the winds are most useful in reconstructing
the atmospheric state (Gordon et al. 1972); while in the
middle and high latitudes, atmospheric temperature
data are more useful for establishing the geostrophic
balance. The more slowly evolving ocean, in contrast,
appears amenable to assimilation even with the small
ensemble. The ODA effectively utilizes the T–S co-
variances to maintain realistic water masses, isopycnal
transports, and the observed collocation of warm SST
and enhanced precipitation in tropical warm pool re-
gions, even when temperature-only observations are as-
similated. At higher latitudes, direct salinity observa-
tions become more important for constraining the
ocean circulation.

To test how well the analysis system reconstructs the
oceanic impacts of twentieth-century radiative forcing
changes, we performed a 25-yr CDA using the histori-
cal oceanic temperature observing network. We find
that the assimilation takes at most 5 yr to spin up to
equilibrium, at which point the heat content in all eight
ocean basins closely resembles the true trends and vari-
ability—with a 60% reduction in RMS ocean tempera-
ture errors relative to an unconstrained control run.
The true heat content variability is captured best in the
Pacific, where the data coverage is relatively dense;
ENSO variations in particular are reconstructed very
well. The analysis is less skillful in high-latitude regions,
where observations are extremely sparse over the twen-
tieth century; while the assimilation is unable to capture
the interannual variability of the oceanic heat content,
it does reconstruct the long-term trend teleconnected
from the lower latitudes.

The purpose of this study has been to outline the
design, implementation, and initial evaluation of the
ensemble CDA system, in terms of reconstructing the
twentieth-century oceanic temperature trends and vari-
ability. In a series of follow-up studies, we intend to
explore several remaining issues.

1) The impacts of temporally varying radiative forcing
on the state estimate: the present study represents a
particularly stringent test for the CDA, in that the
truth run uses historically evolving GHGNA forc-
ings, while the assimilation run uses GHGNA radia-
tive forcings from a fixed year (1860). Presumably,
more realistic radiative forcing will improve the
CDA performance.

2) Impacts of the observational network on the detec-
tion of climate variability and trends: in particular,
we will explore to what extent the deep-profile tem-
perature and salinity measurements from Argo
floats can better constrain the assimilation in high
latitudes, which experience substantial freshwater
input from river runoff and melting ice. These fresh-
water inputs, combined with strong thermohaline
transports, may be key in determining the Atlantic
MOC, an important source of multidecadal climate
variability and trends.

3) Impacts of atmospheric observations on the coupled
state estimate, and on the initial conditions used for
forecasts of global climate: presumably this will have
a positive impact for the Tropics and ENSO, where
the air–sea fluxes of heat and momentum are largely
controlled by the atmosphere. Estimation and pre-
diction of the high-latitude oceans and the global
ocean circulation may also benefit from ADA, given
the link between atmospheric NAO and the MOC
(Delworth and Greatbatch 2000; Delworth and
Dixon 2000).

4) Impacts of model drifts and biases on the assimila-
tion skill: the two main approaches we would like to
explore include (a) the assimilation of additional
kinds of observations—such as satellite SSTs and
altimeter, and ocean currents from drifting and
moored buoys to increase the sample size of oceanic
observations; and (b) the use of multiple coupled
models and multiple model parameters in the as-
similating ensemble for improving the estimation of
the prior PDF. In particular, for the first approach,
because altimeter data contain integrated informa-
tion about the temperature and salinity within the
whole water column, based on the model dynamics
the ensemble filter may project sea surface height
information onto the vertical structure so as to cor-
rect the biases beneath the surface. How to use al-
timeter data to build the vertical structure of oceanic
circulations will be the next challenge within the
perfect model study framework. The multimodel ap-
proach could be a long-term goal. The improvement
of the estimate of the prior PDF brought by a mul-
timodel ensemble not only could improve assimila-
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tion skills but also may ultimately enhance the en-
semble forecast quality.
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