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ABSTRACT

This paper presents a quantitative methodology for evaluating air–sea fluxes related to ENSO from different
atmospheric products. A statistical model of the fluxes from each atmospheric product is coupled to an ocean
general circulation model (GCM). Four different products are evaluated: reanalyses from the National Centers
for Environmental Prediction (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF),
satellite-derived data from the Special Sensor Microwave/Imaging (SSM/I) platform and the International Satellite
Cloud Climatology Project (ISCCP), and an atmospheric GCM developed at the Geophysical Fluid Dynamics
Laboratory (GFDL) as part of the Atmospheric Model Intercomparison Project (AMIP) II. For this study,
comparisons between the datasets are restricted to the dominant air–sea mode.

The stability of a coupled model using only the dominant mode and the associated predictive skill of the
model are strongly dependent on which atmospheric product is used. The model is unstable and oscillatory for
the ECMWF product, damped and oscillatory for the NCEP and GFDL products, and unstable (nonoscillatory)
for the satellite product. The ocean model is coupled with patterns of wind stress as well as heat fluxes. This
distinguishes the present approach from the existing paradigm for ENSO models where surface heat fluxes are
parameterized as a local damping term in the sea surface temperature (SST) equation.

1. Introduction

ENSO events in the equatorial Pacific occur due to
the combined effect of upper ocean dynamics and
ocean–atmosphere interaction. A hierarchy of models
exists to examine ENSO (Neelin et al. 1998): simple
models, containing highly parameterized ocean and at-
mospheric components; intermediate models, charac-
terized by more complex ocean models; hybrid models,
consisting of an ocean GCM coupled to a simpler at-
mospheric model; and coupled GCMs. Simple, inter-
mediate, and hybrid ENSO models contain air–sea flux
components of the general form

t9 5 mL(T9) (1.1a)

Q9 5 gT9. (1.1b)

Anomalous air–sea momentum exchange, t9, is repre-
sented to zeroth order as a nonlocal linear functional,
L, of SST anomalies, T9. Primed quantities are defined
with respect to a seasonal climatology. An additional
parameter, m, modulates the level of air–sea wind cou-
pling. The ocean heat flux, Q9, represents those atmo-
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spheric processes which bring SSTs toward equilibrium
values. Here, g is a local Newtonian damping coefficient
which can, more generally, be a function of location in
order to reflect prevailing atmospheric conditions (Syu
and Neelin 1995). Over a wide range of the parameter
space of such models, instabilities tend to increase with
increased wind coupling strength. Chaotic oscillations
typically occur in regions of overlap between frequency-
locked regimes (Tziperman et al. 1994; Jin et al. 1994;
Chang et al. 1994; Tziperman et al. 1995). Thermal
coupling, Q9, regulates instability as well, but this aspect
of the air–sea coupling has not been afforded much
attention in the literature. Given the importance of air–
sea coupling for ENSO, a more physically based mea-
sure of this quantity seems appropriate. Specifically, the
role of radiative and turbulent heat flux anomalies in
addition to momentum fluxes can be examined in the
context of available data from satellite measurements
and atmospheric GCMs.

In this study, we will define an ENSO coupling
scheme using a regression based on singular vector de-
composition (SVD). The regression will apply to wind
stress and heat fluxes. The surface fluxes, as a function
of SST, take the resulting form:

t9 5 L (T9) (1.2a)t

Q9 5 L (T9), (1.2b)Q
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where Lt and LQ are nonlocal functionals defined by the
leading directions of simultaneous covariance in fluxes
and SST. We will demonstrate that the consistent treat-
ment of heat and momentum fluxes provides a more
direct insight into the nature of anomalous air–sea ex-
change during ENSO events. Furthermore, the omission
of tunable heat flux and wind stress coupling parameters
allows us to make quantitative assessments of different
atmospheric products.

Atmospheric reanalyses from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the
National Centers for Environmental Prediction (NCEP)
are included in our analysis. These products represent
the merging of atmospheric observational networks with
GCMs over an extended retrospective period using a
consistent data assimilation and model framework [Gib-
son et al. (1997) and Kalney et al. (1996)]. Surface
fluxes derived from satellite measurements are also in-
cluded in this study. Latent heat and momentum fluxes
are retrieved from the Special Sensor Microwave/Im-
ager platform (SSM/I; Jost et al. 1999) and radiative
fluxes are derived from the International Satellite Cloud
Climatology Project (ISCCP) D3 dataset (Darnell et al.
1996). Directional information for the SSM/I winds are
provided by the ECMWF analysis. Lastly, surface fluxes
provided by the Geophysical Fluid Dynamics Labora-
tory (GFDI) Atmospheric Model Intercomparison Pro-
ject (AMIP) II run are analyzed (Gordon and Stern
1982).

Section 2 describes how the coupled model is con-
structed. Section 3 provides a general description of air–
sea regressions derived from the various atmospheric
products. Results from long integrations and retrospec-
tive forecasts using the linear atmospheric models based
on the various atmospheric products are presented in
section 4. This section also contains a discussion of the
sensitivity of the coupled model results to the regression
method and to the training period for the statistical mod-
els. Section 5 is a summary discussion with some con-
clusions and proposals for future work.

2. Model design

a. Ocean model

The ocean model is the GFDL Modular Ocean Model,
version 3. The domain extends from roughly 408N to
408S and from 1208E to 708W. It consists of 16 fixed
vertical levels with 10 levels within 250 m of the sur-
face. The vertical mixing parameterization of Philander
and Pacanowski (1981) and the horizontal mixing based
on the work of Smagorinsky (1963) are used.

The ocean model is spun up from a rest state with
observed temperature and salinity (Levitus and Boyer
1994; Levitus et al. 1994) using climatological surface
fluxes. The monthly wind stress is from the Florida State
University (FSU) pseudostress analysis (Stricherz et al.
1997). A constant air density of 1.2 kg m23 and a non-

dimensional drag coefficient of 0.0012 were chosen.
Outside the FSU domain (308N to 308S), the FSU winds
are merged with climatological winds from Hellerman
and Rosenstein (1983). Monthly heat fluxes are from
Esbensen and Kushnir (1981), plus a restoring term to
observed SST. Surface salinities are restored towards
climatological values in lieu of freshwater fluxes. Sur-
face fluxes for the spin up run are summarized as fol-
lows:

obst 5 t (t) (2.3a)
obs obs

Q 5 Q (t) 1 g [T 2 T (t)] (2.3b)1

obs
F 5 b[S 2 S (t)]. (2.3c)s

Here, t, Q, and Fs are vector momentum, surface heat,
and salinity flux, respectively; g1 5 250 W m22 8C21,
b 5 20.01 kg m22 s21 (PSU)21, and obs and obs areT S
observed monthly varying climatological SST and sea
surface salinity, respectively (Levitus and Boyer 1994;
Levitus et al. 1994). The temperature and salinity re-
storing correspond roughly to a 5-day damping time-
scale for the top model level thickness. Overbar denotes
monthly climatological values.

Figure 1 is a comparison with observational estimates
(Levitus and Boyer 1994; Levitus et al. 1994) after in-
tegrating the ocean model for 25 yr using the surface
forcing from [(2.3a)–(2.3c)]. The top panel of the figure
shows a section along the equator and demonstrates that
the ocean model has a 1–28C cold bias throughout much
of the upper 300 m. A slight warm bias exists in the
warm pool region along the equator and in the eastern
equatorial Pacific near 100 m. The bottom panel is a
zonal average across the Pacific basin. A 1–28C cold
bias is observed through most of the subsurface on either
side of the equator. The SST seasonal cycle along the
eastern equatorial Pacific is shown in Fig. 2. The am-
plitude, phase, and westward propagation of the sea-
sonal cycle are in good agreement with observations.
The model has a SST cold bias of approximately 18C
in the eastern Pacific. The model cold bias is most likely
attributable to deficiencies in the wind forcing and the
vertical mixing. Stockdale et al. (1998) provide an ac-
count of this familiar cold tongue bias which has been
documented in similarly configured ocean GCMs.

Although biases exist in the ocean model climatology,
it is a reasonable representation of the ocean consistent
with similarly configured ocean models at this resolu-
tion. Results using the statistical atmosphere, which will
be presented in the following sections, are sensitive to
the ocean background state. In particular, the position
of the thermocline in the upwelling region in the eastern
Pacific controls the level of SST sensitivity to changes
in atmospheric winds.

The restoring heat flux term [second term in (2.3b)]
and the model SSTs are averaged over the final 10 yr
of the 25-yr spin up run. The heat flux equation is sub-
sequently modified as follows:
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FIG. 1. Ocean model annual mean climatology minus observational estimates from Levitus and Boyer (1994) for
the upper 300 m (8C). (top) A section along the equator, and (bottom) the zonal average from 1208E to 808W.

FIG. 2. Seasonal cycle of SST (58S–58N, 5-month running mean) from the (left) spinup run and (right) Levitus and Boyer (1994).
Contour interval is 0.58C.

obs adj
Q 5 Q (t) 1 Q (t) 1 g T9,2 (2.4)

where adj(t) is the monthly climatology of the restoringQ
term (2.3b), T9 is the SST anomaly defined with respect
to the model monthly climatology and g 2 5 21 W m22

8C21 or a 100-day restoring timescale. The heat flux
forcing in (2.4) results in a stable ocean background
state, with a very modest local damping factor that pre-
vents long-term drift. Atmospheric flux anomalies are
added to the climatological heat fluxes (2.4) and the
wind stress (2.3a) for the coupled runs. Results that will
be presented are not very sensitive to changes to g 2,

although it is important that this term is small in com-
parison to the statistically based heat flux feedbacks,
which will be discussed in the following section.

b. Statistical atmospheric model

The atmospheric flux anomalies, t9 and Q9, are based
on least squares linear regression of momentum and heat
fluxes to SST. The heat flux is separated into latent and
radiative components. Sensible and freshwater flux
anomalies are not incorporated in the model at this time,
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since their impact on SST in the Tropics is typically
much smaller [the local damping term in Eq. (2.4) can
be considered a proxy for sensible feedbacks].

t9 5 L (T9) and (2.5a)t

Q9 5 L (T9) 1 L (T9). (2.5b)evap rad

The above terms are based on a SVD of the vector wind
stress, latent heat, and net radiation covariance with SST.
Each set of patterns is calculated separately. Data are
interpolated onto a 38 grid over the Pacific domain from
208S to 208N. Monthly means over the length of the
dataset are extracted to produce interannual anomalies,
which are detrended prior to forming the covariance
matrix. Detrending is based on a least squares linear fit
to the component flux and SST time series. The SST
anomalies are from the Reynolds analysis (Reynolds and
Smith 1994). The Numerical Algorithms Group routine
F02WEF is used to calculate the singular vectors. The
elements of the covariance matrix, C, are calculated

N

n n(t f )O i j
n51C 5 , (2.6)i , j N 2 1

where are observed SST anomalies and are surfacen nt fi j

flux anomalies at locations i and j occurring at time n.
This Ni 3 Nj matrix can be decomposed into two or-
thonormal sets of vectors such that

TC f * 5 l t*, C t* 5 l f *. (2.7)k k k k k k

There are R nonzero eigenvalues, , where R #2lk

min(Ni, Nj, N 2 1). Here, and are the unit lengthf* t*k k

eigenvectors of CCT and CTC, respectively (see Breth-
erton et al. 1992 for a more complete review). The unit
normalized inner product between the SST anomalies
and the SST singular vector,

Tn t21 na 5 ŝ t t*,k k k (2.8)

where is the estimated standard deviation of the timetŝk

series coefficient for SST, is used as a predictor for flux
estimates, , corresponding to mode knf̂k

N

n n(a f )O k j
n51n nf̂ 5 a b̂ , b̂ 5 . (2.9)k k k j,k N 2 1

Here, b̂k is a regression vector of length Nj defined by
the covariance between the flux anomalies, f j, and the
normalized predictor variable, ak. The regressed fluxes
are a least squares estimate of the surface fluxes based
on predictor patterns of SST anomalies. The regression
vectors are equivalent to the heterogeneous correlation
maps (Bretherton et al. 1992) multiplied by the standard
deviation of the fluxes at each point. Syu and Neelin
(1995) used the flux singular vectors, f*, in place of the
regression vectors, b̂. Newman and Sardeshmukh (1995)
discuss the deficiencies in this approach. However, for
the leading mode analyses presented in sections 3 and

4, the results are similar if the flux singular vectors are
used in place of the regression vector.

The coupled model is composed of the ocean GCM
subject to climatological fluxes (2.3a), (2.3c) and (2.4)
plus wind stress, and evaporative and radiative anom-
alies (2.9). The coupled model is initialized from a given
state (some deviation from the model climatology) and
the flux anomalies are calculated once per day. An im-
portant aspect of the coupled model is that the local
temperature-restoring forces in the model are negligible.
The present statistical atmospheric model, it is argued,
provides a more physically consistent framework for
evaluating air–sea coupling than the type described in
Eq. (1.1a).

For this work, the comparison between atmospheric
products is limited to single predictor models based on
the leading mode (k 5 1). Section 3 provides a detailed
physical interpretation of the leading coupled modes.
This is an important component to this study since it is
argued that additional coupled modes should be subject
to similar physically based descriptions. Sensitivity of
the results to inclusion of additional modes will be dis-
cussed in section 4c along with an examination of the
impact of using a different SST predictor.

3. Regression patterns

Four atmospheric products are considered in this
study: two atmospheric reanalyses from ECMWF and
NCEP, the GFDL AMIP II model, and a satellite product
combining SSM/I and ISCCP measurements (SAT). The
NCEP and ECMWF reanalyses and the GFDL datasets
are analyzed for the period beginning in 1979 and end-
ing in 1993. The SSM/I wind and evaporative fluxes
were available from 1988 to 1996 and the cloud forcing
was available from 1983 to 1991. All of the analysis
periods coincide, with the exception of the SAT datasets.
Differences in the analyses for the other products based
on the SAT time periods compared with the 1979–93
period were small in comparison to the differences be-
tween products. The discrepancies outlined below are
therefore, in large part, attributable to inherent char-
acteristics of the atmospheric datasets.

The leading regression patterns indicate equatorward
(poleward) and eastward (westward) shifts in the trop-
ical convective zones associated with warming (cooling)
in the cold tongue region. For example, the leading
mode from the ECMWF reanalysis is shown in Fig. 3.
A 118 eastern-central equatorial Pacific SST anomaly
corresponds roughly to a 0.2 dyn cm22 (0.02 N m22)
westerly wind stress anomaly near the date line. Latent
cooling over the cold tongue increases by roughly 20
W m22. Near the date line, the latent cooling is reduced
(ocean warming tendency) by approximately 8 W m22.
Net surface radiation near the date line reduces (ocean
cooling tendency) by approximately 20 W m22 and this
extends well to the east. Each flux component is asso-
ciated with a separate SST predictor pattern. Only the
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FIG. 3. Mode 1 regression patterns from the ECMWF reanalysis.
Top to bottom: wind stress anomalies (dyn cm22); downward latent
flux anomalies (W m22); net downward surface radiation (W m22);
and SST anomalies (8C). The regressions account for 9% and 14%
of the zonal and meridional wind stress, respectively, and 4% and
6% of the latent and radiative fluxes.

FIG. 4. As in Fig. 3 except for NCEP reanalysis. The regressions
account for 6% and 9% of the zonal and meridional wind stress,
respectively, and 5% and 10% of the latent and radiative fluxes.

wind stress predictor pattern is shown in the figures
since the component patterns are nearly identical.

Changes over the cold tongue are due to destabili-
zation of the boundary layer (Deser and Wallace 1990).
As SSTs in this region warm, the overlying atmosphere
becomes more unstable and evaporation increases as a
result. Near the date line, enhanced cloudiness and west-
erly winds are associated with the eastward movement
of the South Pacific convergence zone (SPCZ). Lower-
level winds converge to the west of the maximum SST
anomalies to supply the mass and energy to balance the
more frequent occurrence of penetrative convection in
this region. Surface evaporation in these regions weak-
ens in association with a reduction in surface wind
speed. Net surface radiation tends to decrease over the
warmer waters as cloudiness increases, while regions
that are normally cloudy, the climatological locations
of the intertropical convergence zone (ITCZ) and SPCZ,
show an increase in surface radiation.

These features of the atmospheric response are qual-

itatively reproducible between the various atmospheric
products considered in this study. This points to the
rather straightforward nature of ENSO air–sea inter-
action, which mostly involves the modulation of orga-
nized regions of convection, that is, during warm events,
convection shifts eastward and during cold events it
retreats westward. As such, differences in the ENSO
patterns of various atmospheric products are largely as-
sociated with differences in the climatological structure
and location of their respective convergence zones.

The NCEP reanalysis, GFDL, and SAT leading re-
gression patterns are shown in Figs. 4, 5, and 6, re-
spectively. The SST predictor patterns are similar in all
cases. Qualitatively, the atmospheric response patterns
match between the products, that is, westerly winds in
the central Pacific, increased evaporation over the cold
tongue, and enhanced cloudiness in the central Pacific.
There are, however, notable differences: the NCEP flux-
es are as much as 50% less than ECMWF’s, the GFDL
fluxes are located approximately 208 further west than
the other products, and the SAT product shows a rela-
tively large, 20 W m22, reduction in evaporative cooling
in the central Pacific.
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FIG. 5. As in Fig. 3 except for GFDL AMIP II model. The re-
gressions account for 10% and 13% of the zonal and meridional wind
stress, respectively, and 8% and 16% of the latent and radiative fluxes.

FIG. 6. As in Fig. 3 except for satellite products. The regressions
account for 8% and 10% of the zonal and meridional windstress,
respectively, and 3% and 8% of the latent and radiative fluxes.

It is beyond the scope of this work to analyze in detail
the sources of the discrepancies in these atmospheric
products. Our present interest is restricted to understand-
ing the implications of these differences for ENSO mod-
eling.

4. Coupled model results
This section presents comparisons between different

atmospheric models based on the flux products de-
scribed in section 3 coupled with the ocean GCM de-
scribed in section 2a. The stability of the coupled model
solutions is compared in section 4a. In section 4b, the
atmospheric products are compared based on retrospec-
tive forecast skill for Niño-3 region SST. Sensitivity of
the results to the training period, an alternate regression
model, the inclusion of additional air–sea modes, and
seasonally based air–sea coupling is presented in section
4c.

a. ENSO as a self-sustained or damped oscillator?

Hybrid-coupled model averaged SST anomalies for
the Niño-3 region (58S to 58N, 1508W to 908W) are

shown in Fig. 7. The ECMWF model yields sustained
regular oscillations when coupled with the ocean model.
The oscillation period is approximately three years. The
NCEP model results in a damped oscillatory mode with
an approximate decay timescale of three to four years.
The GFDL model also produces a damped mode with
a yet shorter decay timescale of approximately one year.
The SAT model is unstable and nonoscillatory. The
Niño-3 anomalies are calculated by subtracting the
monthly climatology from the spinup run shown in Fig.
2. All of the models are producing oscillations around
the background state of the ocean model with the ex-
ception of the SAT model, which drifts to a warm cli-
mate state. The annual oscillations shown in the SAT
model are due to a shift in the seasonal cycle associated
with the coupled model drift.

As discussed in section 3, the ECMWF wind stress
regression coefficients in the central Pacific exceed 0.2
dyn cm22 while the NCEP anomalies are approximately
0.1 dyn cm22, which might account for the differences
in stability between these two coupled models. The
GFDL wind stress magnitude is, however, comparable
to ECMWF’s but the GFDL flux anomalies yield the
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FIG. 7. Niño-3 SST anomalies based on the hybrid coupled model
runs using (a) ECMWF, (b) NCEP, (c) GFDL, and (d) SAT fluxes. FIG. 8. Coupled model Niño-3 anomalies (8C) based on a Gaussian

zonal wind stress anomaly coupling pattern centered at (a) 1708W,
(b) 1808W, and (c) 1708E. A spatially uniform heat flux damping was
applied.most stable oscillations. The magnitude of the wind

stress alone, therefore, does not determine coupled mod-
el stability. The reasons for this lack of sensitivity to
the wind stress magnitude lies in our treatment of the
heat flux feedbacks.

In contrast to ENSO models based on atmosphere–
ocean coupling of type (1.1a) and (1.1b), where the SST
damping term is considered independently of the wind
stress, the present approach combines the two. Indeed,
it is physically plausible that the surface heat flux anom-
alies are strongly tied to wind anomalies. For instance,
wind anomalies in the central Pacific are linked to shifts
in the Walker circulation which carries with it changes
in cloudiness and surface evaporation.

The coupled model stability is more sensitive to the
zonal location of the feedbacks in this model framework.
Idealized experiments were performed by specifying a
Gaussian-shaped zonal wind stress anomaly pattern and
spatially constant local heat flux feedbacks. The zonal
and meridional scales of the Gaussian anomaly pattern
were set to approximately 548 and 58, respectively,
which are similar to the scales observed in the reanal-
yses. The SST predictor was identical to the pattern used
in the ECMWF coupled model. The local heat flux
damping was set to approximately 210 W m22 8C21.
The hybrid model becomes more damped as the winds
are moved westward (Fig. 8). This partly explains why
the GFDL hybrid model was the most stable since the
flux anomaly patterns are shifted westward relative to
the other products as discussed in section 3.

The nonoscillatory instability in the case of the SAT
model is the result of the comparatively large evapo-
rative flux anomaly in the central equatorial Pacific. This
was verified by replacing the SSM/I evaporation anom-
alies with the ECMWF anomalies, in which case the
model produced stable oscillations.

b. Retrospective Niño-3 hindcasts
An important measure of the accuracy of the atmo-

spheric flux anomalies is how well the models are able

to predict ENSO events. The coupled models were pro-
vided with ocean initial conditions from the GFDL
ocean temperature assimilation system (Rosati et al.
1997), which is similar to the ocean initialization system
used operationally at NCEP (Behringer et al. 1998) for
seasonal forecasting. The ocean initialization run was
forced with FSU winds and surface and subsurface in
situ temperature data were assimilated into the model
using a statistical interpolation scheme. Hindcasts were
made from 1981 through 1997 from 1 January initial
conditions for lead times up to 24 months. The SAT
model was not included in this comparison since the
results from the long coupled run were considered un-
realistic. Niño-3 correlations for the reanalysis models
were greater than 0.6 through 6 months and rms errors
dropped below persistence errors after 4 months (Fig.
9). The model correlation skill was much greater during
the 1980s and showed a marked drop-off during the
1990s. The El Niño events in 1982, 1987, and 1997
were successfully predicted by the reanalysis hindcast
models along with the 1988 La Niña event, although
the magnitude of the events was consistently underpre-
dicted. The GFDL hybrid model results in a precipitous
drop in skill in the first 4 months of the hindcast. The
quality of the hindcasts was assessed based on 1 July
hindcast starts and the relative skill of the models was
the same (not shown). Comparisons of hindcast SST
anomaly correlation with observed values from Reyn-
olds and Smith (1994) are shown in Fig. 10. Shown are
maps for 6-month hindcasts from January initial con-
ditions. Correlations greater than 0.5 are shaded. The
top two panels are maps for the ECMWF and NCEP
hybrid models, respectively. The lower panel is a map
for the GFDL hybrid model. Correlation skills exceed
0.5 over most of the eastern equatorial Pacific for the
reanalyses and are considerably lower for the GFDL
model. Despite having reasonably good ocean initial
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FIG. 9. (top) Niño-3 SST hindcast correlation skill and (bottom)
rms error initialized in Jan using FSU winds and subsurface data
assimilation. Persistence (thick solid), NCEP (thin solid), ECMWF
(dashed), and GFDL (dash-dot). The units for rms error are 8C.

FIG. 10. Jun SST hindcast correlation skill (from 1 Jan initial
conditions) for the (a) ECMWF, (b) NCEP, and (c) GFDL coupled
models.

conditions, evidenced by the success of the reanalysis
models in predicting the ENSO events of the 1980s and
1997, the GFDL model performed poorly in these cases
since the initial perturbations were not successfully am-
plified by the air–sea interactions that are subcritical
(Fig. 7). Although the NCEP coupled model is damped,
it is less strongly damped than the GFDL model. These
results highlight the relevance of the air–sea coupling
factors for prediction, particularly for anomaly coupled
GCM forecast systems (Ji et al. 1998). The GFDL hy-
brid model should, perhaps, be expected to perform
poorly in the hindcast comparison with the reanalysis-
based models since the GFDL AMIP II model is not
constrained by observations. Furthermore, the training
period for the reanalyses coincides with most of the
hindcast period.

c. Sensitivity of coupled model results

The regression values are sensitive to the time period
of analysis. This is particularly true in the case of the
reanalysis regression models. For instance, the NCEP
reanalysis exhibits a marked change in the tropical cir-
culation near 1979. As a result, regressions based on
the pre-1979 data produce sustained oscillations in the
coupled model compared with the post-1979 data, which
produces damped oscillations. Inhomogeneities in the
reanalyses are at least partly related to changes in the
observational network, for instance the introduction of
satellite data. Statements about the implications of the
various flux datasets for ENSO stability are therefore
limited by uncertainty regarding stationarity of the sta-
tistics of the products themselves.

As discussed, this study is focused on comparing the
leading air–sea mode between the various hybrid cou-
pled models. However, several coupled model runs were
made to examine the sensitivity to additional coupled

modes. The addition of mode 2 to the coupled models
did not have a substantial impact on the oscillatory be-
havior and/or the predictive skill for any of the models
examined in this study. The ECMWF model with the
leading three air–sea modes did, however, show sensi-
tivity. The amplitude of the oscillations is reduced in
this model and the period of oscillation lengthens to
approximately 7 years. The spatial distribution of SST
anomalies in the model degrades with respect to the
mode 1 and 2 models with off-equatorial anomalies near
108S, 1408W, which are significantly larger than ob-
served (not shown). This added variability is driven in
the model by local radiative feedbacks. A detailed ex-
amination of additional coupled modes is a topic for
future study. A more careful statistical analysis would
need to be performed, for instance, using ensembles of
atmospheric datasets in order to assess the statistical
significance of additional coupled modes. While such
an analysis could be performed for the GFDL dataset
since ensemble runs are available, this is not the case
for the reanalyses and satellite data.

In order to assess the sensitivity of our results to the
choice of the SST predictors, an EOF-based regression
is calculated by computing the EOFs of the SST co-
variance matrix and regressing the fluxes against the
time series of projection coefficients for SST. The SVD
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TABLE 1. Residual sum of squares (RSS) from regression model
for NCEP fluxes based on 1, 2, and 3 leading predictor patterns. The
RSS values are based on SVD and EOF-based predictors, respec-
tively. Here, RSS is expressed as a percentage of original variance.

Flux 1 2 3

Zonal wind stress
Meridional wind stress
Latent heat flux
Radiative heat flux

94.3, 94.4
91.2, 91.2
95.5, 95.5
89.6, 89.6

91.1, 91.6
88.0, 88.0
92.9, 93.0
86.5, 86.4

89.4, 90.5
84.7, 87.1
91.3, 91.4
85.1, 84.9

regression values were compared with regressions based
on the EOFs. Table 1 shows the residual sum of squares
(RSS) as a percentage of the original flux variance for
the NCEP reanalysis. The basin-average RSS values are
statistically indistinguishable between the two results.
Therefore, there is no basis for advocating the use of
SVD-based predictors over EOF predictors. A conse-
quence of this statistical equivalence is that differences
in coupled model results arising from the use of different
predictors reflect a breakdown in the regression method.
Fortunately, the coupled model results were nearly in-
distinguishable between the EOF and SVD regressions
for modes 1 and 2. Differences were evident for higher
modes. Given the uncertainty associated with the choice
of flux predictors for modes higher than the second
mode, the restriction of the comparisons in this study
to the leading mode seems appropriate.

Seasonality of the air–sea coupling arises from dif-
ferent factors (Tziperman et al. 1997) and has been pro-
posed as contributing to ENSO’s irregularity (Tziper-
man et al. 1994; Tziperman et al. 1995) and to its ten-
dency for warm events to reach maximum amplitude
near the end of the calendar year (Tziperman et al. 1998;
Galanti and Tziperman 2000). A 36-yr integration of
the ECMWF hybrid model revealed that the model os-
cillations tend to peak between June and September. A
possible source of the poor seasonal locking behavior
of the model was investigated by defining the air–sea
coupling on a seasonal basis. This was achieved by di-
viding the flux and SST time series into seasonal bins
and calculating the regression based on covariance of
the seasonally binned time series. During the model run,
a linear interpolation between the seasonal predictor and
regression patterns to the current model time was used.
Warm events tend to occur somewhat earlier in the year
in this case. In the context of the current model frame-
work, the seasonality of the air–sea coupling does not
favorably impact the seasonal phase-locking behavior
of the model. Further sensitivity studies based on dif-
ferent versions of the ocean model and statistical at-
mospheric models are required to more fully evaluate
the phase-locking behavior of the hybrid coupled model.

5. Discussion

The approach presented here provides a quantitative
measure of air–sea flux products from AGCMs and ob-

servational data by regression of surface heat and mo-
mentum flux anomalies to patterns of SST anomalies.
Coupling the resulting statistical atmospheric models to
an ocean GCM allows us to assess the implications of
these flux products in a coupled model context. The
surface flux regression is a least squares estimate of the
fluxes based on predictor patterns of SST anomalies.
The predictors are defined by SVD of flux–SST co-
variance, whereby, the SST patterns associated with the
largest fraction of covariance between these fields are
selected. The comparisons presented in this work are
based on single predictor models defined by the leading
SVD mode.

We have considered several flux products: the
ECMWF and NCEP reanalyses, a satellite product
(SAT) and the GFDL model. Differences in the air–sea
flux anomalies between the ECMWF and NCEP re-
analyses had a substantial impact on the hybrid coupled
model results. The ECMWF model produced sustained
oscillations while the NCEP model was oscillatory and
moderately damped. The differences in the predictive
skill of the models for Niño-3 SST correlation and rms
error were not, however, significantly different. The
GFDL hybrid model produced a strongly damped sys-
tem with a significant reduction in forecast skill com-
pared to the reanalyses. The GFDL coupled model had
a strongly damped and shorter period ENSO mode at
least in part due to the westward bias in the Walker
circulation in the GFDL atmospheric model. The sat-
ellite product yielded an unstable (nonoscillatory) so-
lution. This is associated with a strong evaporative feed-
back in the central equatorial Pacific.

A result from this work is that the hybrid coupled
model is less sensitive to the magnitude of the flux
anomalies than it is to their location. For instance, the
NCEP flux anomalies were relatively weak compared
to the GFDL anomalies; however, the NCEP hybrid
model is in a less damped oscillatory regime. The flux
anomalies are associated with the modulation of tropical
convection, occurring mainly in the western and central
Pacific. Surface latent, radiative, and momentum fluxes
are linked by this mechanism. Strong winds are tied
with greater evaporation and more cloudiness that tend
to offset the effect of the winds, which, considered in-
dependently, would typically lead to a more unstable
ENSO system.

The results presented here are dependent on the
choice of ocean model and its background state, the time
period of analysis, and the inclusion of modes higher
than the second pattern. The results are insensitive to
the choice of EOF or SVD predictor method for the
leading two modes. Seasonally dependent air–sea cou-
pling does not impact the stability of the coupled model
solutions examined here, but does affect the seasonal
locking behavior of the coupled model. Both the sea-
sonally based and nonseasonal air–sea coupling models
do not exhibit the observed seasonal locking behavior.

Future studies will be directed towards examining the
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use of multiple SST predictors in the coupled model
and will likely incorporate filtering of the fluxes and
SST prior to generating the covariances in order to min-
imize the impact of atmospheric noise. In addition to
establishing statistical confidence, a physical under-
standing of additional coupled modes is important. For
instance, SST–flux covariance can arise through an at-
mospheric response to SST anomalies or vice versa.
Since statistics do not inform us about causality, a phys-
ical interpretation is necessary to provide confidence in
the results. Furthermore, the sensitivity of the results
will be examined in the context of higher resolution
ocean models with improved physics.
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