
M.C.Kline – VIFSM Conf NIST Research Update

Disclaimers and Collaborations

Eunding: Interagency Agreement 2003-IJ-R-029 between the National Institute of Justice and NIST Office of Law Enforcement Standards

Points of view are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Our publications and presentations are made available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Past and Present Collaborators (also funded by NIJ):

Mike Hammer and Alan Redd (U. AZ) for Y-chromosome studies Tom Parsons, Rebecca Just, Jodi Irwin (AFDIL) for mtDNA coding SNP work Sandy Calloway (Roche) for mtDNA LINEAR ARRAYs Bruce McCord and students (FL Int. U.) for miniSTR work Marilyn Raymond and Victor David (NCI-Frederick) for cat STR work Artie Eisenberg and John Planz (U. North Texas) for miniSTR testing on bones

Team Impact on Forensic Community

- 28 publications (published or submitted) since Nov 2004
- 51 presentations to the community since Nov 2004
- All NIST publications and presentations available on STRBase: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm
- Training materials from **2 workshops** S00 PowerPoint slides
 Albany DNA Academy (June 13-14, 2005) with Bruce McCord
 NFSTC Validation Workshop (August 24-26, 2005) with Robyn Ragsdale
- Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers, 2nd Edition (John Butler)

AAFS 2006 Workshop #6 (John Butler and Bruce McCord) Advanced Topics in Capillary Electrophoresis and DNA Typing

National Institute of Justice

Current Areas of NIST Effort with Forensic DNA

Standards

- Standard Reference Materials
- Standard Information Resources (STRBase website)
- Interlaboratory Studies

Technology

- Research programs in SNPs, miniSTRs, Y-STRs, mtDNA, qPCR
- Assay and software development

Training Materials

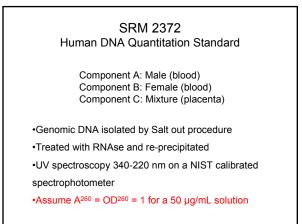
- Review articles and workshops on STRs, CE, validation
- PowerPoint and pdf files available for download

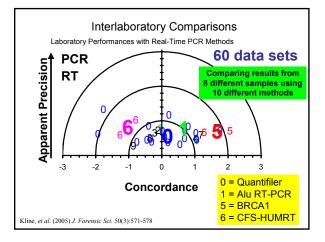
Congress Passed the DNA Identification Act of 1994 (Public Law 103 322)

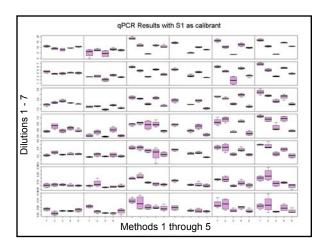
Formalized the FBI's authority to establish a national DNA index for law enforcement purposes.

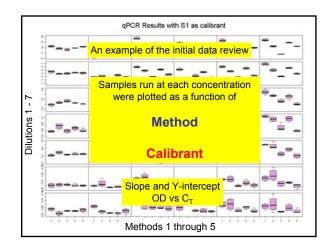
FBI's DNA Adivisory Board Quality Assurance Standards Gor Forensic DNA Testing Laboratories (October 1, 1998) STANDARD 9.5 The laboratory shall check its DNA procedures annually or whenever substantial changes are made to the protocol(s) against an appropriate and available NIST standard reference material or standard traceable to

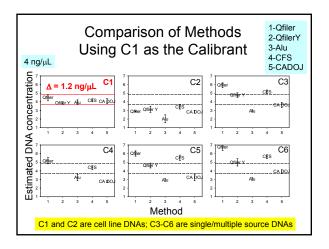
a NIST standard.

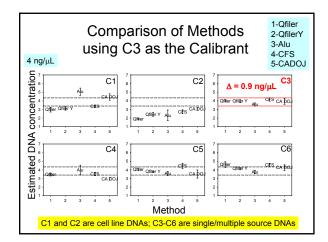


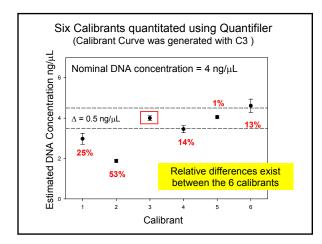

http://www.nist.gov/srm



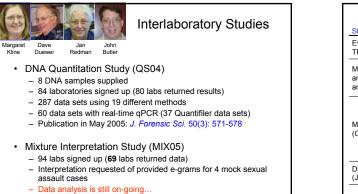

Component A: Male Component B: Female Component C: Mixture

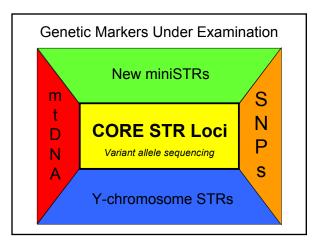

Planned Amounts: Each component 50 µL of Human Genomic DNA with a concentration targeted @ 50 ng/ μ L. The [DNA] for each component will be list in the materials Certificate of Analysis.







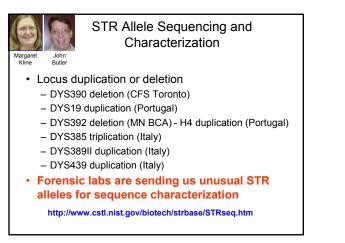


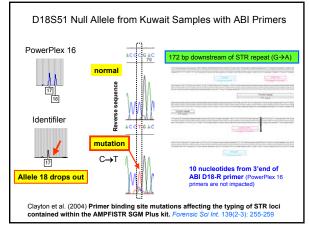

Address Address (at 199	ret.gov/betechistobau	e/valdation.htm	- PG	Links **	
laboratory's validation i standard format rumma downloadable Excel file	mains with a partic rizing the studies of r [<u>click here</u>].	nati John Buffer "solin loafer (front goys of you would like to a use forenan DNA tent, nutruanent, or software program File anducted, a description of samples run, and the number of sam Conducted in Individual Laboratories (not publi	ue submit mfore sples examined i	nation in a using this	
Kit, Assay or Instrument PowerPlex 16 Kit with ABI 310 Quantifiler with ABI 7000		Laboratory St	abmitter .	Senter Constantine Constantin	
		Pennsylvania State Police Christine		ev	
				Della Manna	
		on Studies Performed by the		•	
uny conducted	120	cription of Samples Han with Powert 16X to Valuation	1.158		
ngle Source (Concordance)	120		1.19		
ngle Source (Concordance) Intures	8 sergies (cription of Samples Han with Powert 16X to Valuation	() 206 45 condti) 22	e o.reastor. 1 100	
way Cananacara Ingle Source (Concordance) Intures Inture Ratio Instituty	fit swepters (1 swepters 11 rst	CTUPDON OF SHITPHER HUN WITH POWERT DX. 10 VARIANTED Promege concordance) + 200 samples (part of population concordance stud 45	() 206 () 45 condt) 22 = dropout] 55	e oliseasoe 1 100 10 33 33	
nge consectes ngle Source (Concordance) sture Ratio mstivity n-Human	fit swepters (1 swepters 11 rst	социона на Запорнев нила и или с очено на кала каланалио Pronega concordance > - 200 заведен (рат of рорайбол сонсоглансе пъл 46 ос (15, 191, 91, 41, 21, 11, 12, 14, 19, 119, 01) + 2 инстало (510 за 11 (5010 50 256 1250 00000 год) - (5 заверать 1) роето (аблес-яблебо - 11 англият	() 100 () 200 45 condt) 22 = thopox() 55 11	e 0.022004 100 10 33 33 0	
ung canouccea ngle Source (Concordance) intures insteatio instituty on-Human ST SRM 2391b	fit swepters (1 swepters 11 rst	CLIDERD, DC -SATELINES, NUEL WHITE - COMMITS AR. IN . VALUATION Prompt Concentration 9 - 200 samples (part of proposition concentration that 40 cos (10, 10, 10, 11, 11, 21, 11, 11, 11, 11, 11, 11, 11	() 200 46 consti) 22 = #rapout[55 11 12	e <u>0.192000</u> 100 33 33 0 12	
nge canuecea ngle Source (Concordance) stures sture Ratio institute Netwan ST SFM 2391b coipion (AEII 310)	fit swepters (1 swepters 11 rst	CONTINUE ALL SAMPLINES AND AND EXPERIENCES AND	() 200 45 consti) 22 e strapout)[55 11 12 (0)	0.000000000000000000000000000000000000	
ung Canuscues ngle Source (Concordance) stures sture Ratio nebWg n-Human ST SRM 2391b ecision (ABI 310) n-Probative Cases	fit swepters (1 swepters 11 rst	Chapterio at a Samplers Alla Central Constitution A Samplers Phonge Consolvations 2: 30 samples (part for providers can list at en (10, (11, 11, 1, 12, 11, 12, 11, 13, 11), 13, 21), and (11) en (10, (11, 11, 12, 11, 12, 11, 13, 11), 13, 21), and (11) en (10, (11, 12, 13, 13, 12, 13, 13, 11), 13, 21), and (11) en (10, 12, 12, 13, 13, 12, 13, 13, 11), 13, 21), and (11) en (11), 13, 14, 12, 14, 13, 11, 13, 01), a 2 metrics (11) at (11), 13, 14, 14, 14, 14, 14, 14, 15, 11), 13, 14, 14, 11, 15, 01), a 2 (12), 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	() 200 46 consti) 22 = #rapout[55 11 12	e <u>0.192000</u> 100 33 33 0 12	
ung canonicore ngle Source (Concordance) stures store Ratio netking nething nething SGM 2391b scision (ABI 310) in-Probative Cases utile	fit swepters (1 swepters 11 rst	Controlling and a sensitivities to all weeks (control to all and all and all to prevalences) and a sensitivity (control to all and all	() 200 45 consti) 22 e strapout)[55 11 12 (0)	0.000000000000000000000000000000000000	
ung canonicore ngle Source (Concordance) situres siture Ratio msbibity n-Human ST SRM 2391b ection (ABI 310) in-Probathe Cases citier aix Height Ratio	1280 Bisergies (Tisergies x Dienour Sisergies x Dienour	CHIENDIA L. SALEMENTER SUBLICITIES CONTROLLINGS. IN SALEMENT CHIENDIA L. SALEMENTER SUBLICITIES CONTROLLING CONTROLLING CONTROLLING CONTROLING CONTROLLING	() 200 45 condit) 22 # dropout) 51 11 12 60 20 -	0.000000000000000000000000000000000000	
Ner Canonicus rigle Source (Concordance) stores stores stores stores stores or SSM 2991b scision (ABI 310) n-Probative Cases title sak Height Ratio cling Parameters	1990 Boxegiles (Toxengiles x D amoun Soxengiles x D amoun 14 stat	California California California Conservati rato, di a Sattanana Denga consolutori a 200 sente (part la programa consolutori conti el consolutori conti el consolutori conti el consolutori conti el consolutori conti el consolutori conti el consolutori conti el consolutori consolutori conti el consolutori consolutori conti el consolutori consolutori consolutori consolutori conti el consolutori consolutori consolutori consolutori conti el consolutori consolutori consolutori consolutori (si anviese : el trapectori consolutori consolutori consolutori conservante consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consolutori consoli consolutori consolutori consolutor	() 200 45 const) 22 edropout() 55 11 12 60 20 - 55 56	100 100 10 33 33 0 12 60 20 -	
ing canonical right Source (Concordance) stores store Ratio mebility in-Human ST SRM 2391b cocision (ABI 310) in-Probative Cases utle risk Height Ratio cling Parameters waining Temperature	1990 Boxegiles (Toxengiles x D amoun Soxengiles x D amoun 14 stat	CHIENDIA L. SALEMENTER SUBLICITIES CONTROLLINGS. IN SALEMENT CHIENDIA L. SALEMENTER SUBLICITIES CONTROLLING CONTROLLING CONTROLLING CONTROLING CONTROLLING	() 200 45 condit) 22 # dropout) 51 11 12 60 20 -	0.000000000000000000000000000000000000	
Aur Canascon Ingel Source (Concordance) store Raiso motivity n-Human ST SSM 2291b ecision (ABI 310) n-Probative Cases utile eak Height Raiso cologin Parameters ovealing Temperature decision y	1990 Boxegiles (Toxengiles x D amoun Soxengiles x D amoun 14 stat	Calibilitis II. Jangeles Xulli Yelli X. B. X. Xulli X. Xulli Y. Xulli X.	() 200 () 200 (condit) 22 = shispost() 51 11 12 00 200 - - - - - - - - - - - - - - - -	e c.tester 1 100 10 33 33 0 12 60 20 - - - - 0	
Soliciting In May consume inference (Cencordence) infures enablity on-Human IST SFM 2391b con-Human IST SFM 2391b con-Probable Cases tutter wak-Height Ratio yoling Parameters rowsing Temperature robiciancy ubtitete	Letti () sungies () sample x 11 mi 5 samples x 0 enour 14 man 3 sample	Califold II. A sense to call we call the sense of the sen	() 200 45 consti) 22 # drspot[] 55 11 12 60 20 - 56 60 60 60 60 60 60 60 60 60 60 60 60 60	100 100 10 33 33 0 12 60 20 - - - - 12	

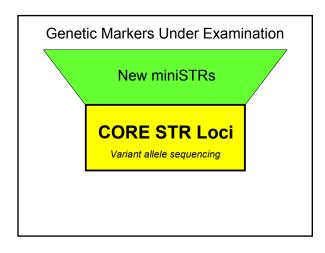
http://www.cstl.nist.gov/biotech/strbase/interlab.htm

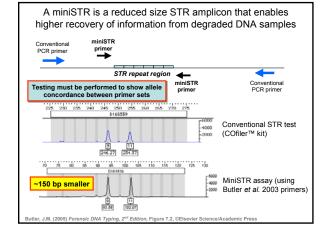
NIST Initiated Interlaboratory Studies

Studies involving STRs	# Labs	Publications
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JM, Newall PJ, Reeder DJ. (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J. <i>Forensis Sci.</i> 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. Anal. Chem. 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study #3: signal intensity balance in commercial short tandem repeat multiplexes, Anal. Chem. 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004)	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50(3):571-578
MIX05 Mixture Interpretation Study (Jan-Mar 2005)	69	Data analysis currently on-going Some information presented at NJJ Grantees (June 2005), ISFG (Sept 2005), Promega (Sept 2005)

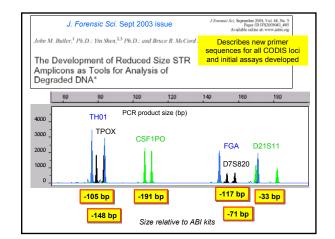

STR Allele Sequencing and Characterization

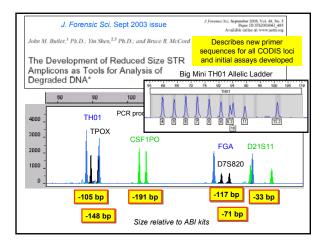

· Variant characterization

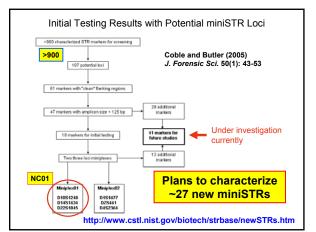

- TPOX 10.3 (Maryland State Police)
- D18S51 null alleles (FSS and Kuwait govt)
- D18S51 allele 40 (Nebraska State Crime Lab)
- D18S51 allele "5.3" (DNA Solutions)
- VWA allele "15.1" (Peter de Knijff)
- DYS19 allele 9 (Italy)
- DYS392 allele "10.2" (AFDIL)
- DYS439 allele 7 (Italy)

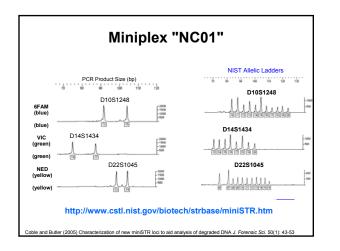

http://www.cstl.nist.gov/biotech/strbase/STRseq.htm


M.C.Kline – VIFSM Conf NIST Research Update



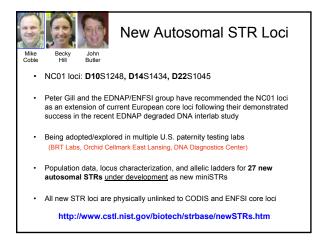


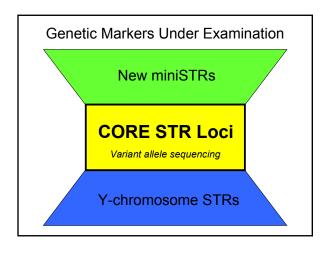


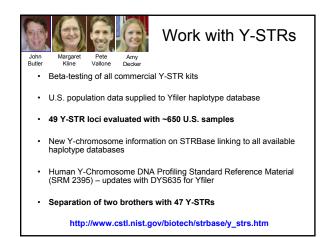


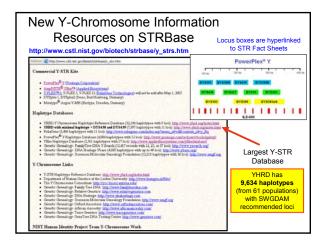
March 29, 2006

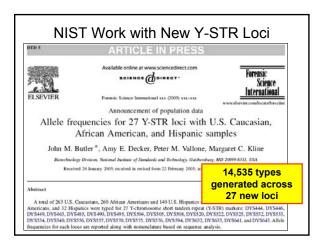
M.C.Kline – VIFSM Conf NIST Research Update

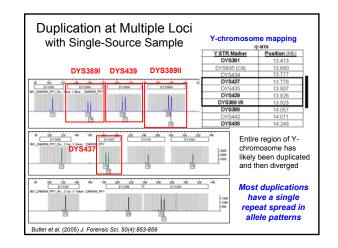


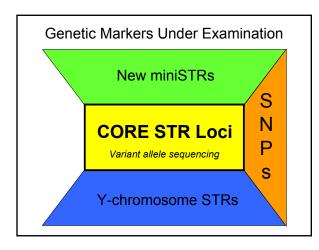


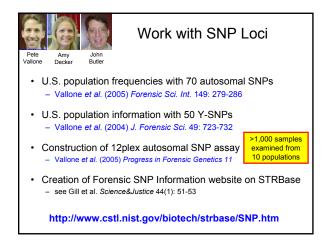


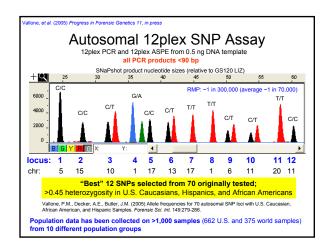


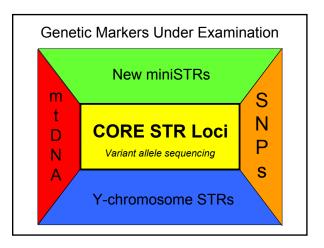


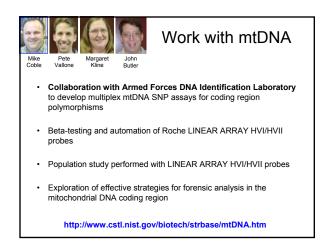


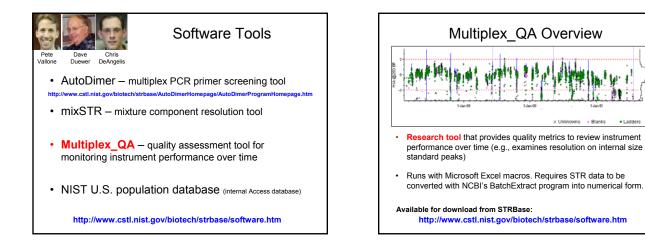


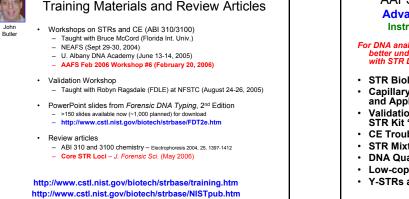






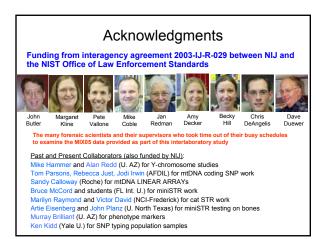






·	NIST population samples			Summary of Our Population Typing with Roche mtDNA			
# in Group	Freq	% Types	% People	51 0			
1	185	65.6	27.8	LINEAR ARRAYS			
2	46	16.3	13.8				
3	18	6.4	8.1	LINEAR ARRAY summary			
4	4	1.4	2.4				
5	3	1.1	2.3	•282 different types			
6	4	1.4	3.6	•185 were unique (occurred only once)			
7	1	0.4	1.1	•51 samples had "Most Common Type			
8	9	3.2	10.8				
9	2	0.7	2.7				
10	4	1.4	6.0	HV1/HV2 sequencing summary			
11	1	0.4	1.7	 •518 different types 			
12	1	0.4	1.8	•454 were unique (occurred only once)			
18	1	0.4	2.7	•17 samples had "Most Common Type"			
23	1	0.4	3.5	Tr samples had wost common type			
28	1	0.4	4.2				
51	1	0.4	7.7	"Most Common Type" evaluated further			
with mtDNA coding region SNP assay							

AAFS Workshop #6 (Feb 2006, Seattle) Advanced Topics in STR DNA Analysis Instructors: John Butler and Bruce McCord


For DNA analysts using the ABI 310 or ABI 3100 who would like to better understand the underlying issues and science involved with STR DNA typing

- STR Biology, Markers, and Methods
- Capillary Electrophoresis Instrumentation: Theory and Application
- Validation Aspects to Consider in Bringing a New STR Kit "On-line"
- CE Troubleshooting
- STR Mixture Interpretation
- DNA Quantitation with Real-Time qPCR
- Low-copy Number Issues
- Y-STRs and mtDNA

Workshop Slide Handouts Handouts available as downloadable pdf files from htp://www.cstl.nist.gov/biotech/strbase/NISTpub.htm#NEAFSworkshop Cay workshop with >500 slides describing STRs and CE (Ag 30 and ABI 3100) NEAFS CE-DNA Workshop (Butler and McCord) Sept 29-30 cold Capillary Electrophoresis In DNA Analysis With States States Busice States Busice States Distered Busice States Busice States Distered Busice States Busice States

Review Article on Core STR Loci

- J.M. Butler "Genetics and Genomics of Core STR Loci Used in Human Identity Testing"
- Journal of Forensic Sciences, in press (March 2006)
- Reviews STR kits, genomic locations, mutation rates, potential genetic linkage, and known variant alleles for autosomal STR and Y-STR loci
- Covers characteristics of 18 autosomal loci (13 core CODIS loci, D2, D19, Penta D, Penta E, SE33) and 11 SWGDAM-recommended Y-STR loci

