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ABSTRACT

The physical processes responsible for maintaining the mixed layer are examined by considering the velocity
structure. The low-frequency Ekman response in the interior of unstratified mixed layers is much less sheared
than is predicted using eddy viscosity models that reproduce the temperature structure. However, the response
is more sheared than predicted by models that parameterize the mixed layer as a slab. An explanation is sought
by considering the effect of an infinite wain of surface gravity waves on the mean Ekman spiral. For some
realistic conditions, the Ekman spiral predicted by assuming small-scale diffusion alone is strongly unstable to
Langmuir cells driven by wave—current interaction. In the Northern Hemisphere, these cells are oriented to the
right of the wind, the result of a balance between maximizing the wave~-current forcing, maximizing the effi-
ciency of this forcing in producing cells, and minimizing the crosscell shear. The cells are capable of replacing
small-scale turbulent diffusion as the principal transport mechanism within the mixed layer. Finite-difference
code runs that include infinite-length trains of surface gravity waves qualitatively explain the reduction in shear
within the mixed layer relative to that predicted by small-scale mixing. However, the theory also predicts an

Eulerian return flow balancing the Stokes drift that has not been observed.

1. Introduction

There exists at present a lack of understanding of
how the oceanic mixed layer is maintained. This un-
certainty is reflected in attempts to model the velocity
structure. Although the upper layer of oceans and lakes
is often very well mixed with respect to scalar quanti-
ties such as temperature, salinity, and density, signifi-
cant velocity gradients may be found within it. A num-
ber of investigators (Richman et al. 1987, Weller and
Price 1988; Gnanadesikan 1994; Weller and Pluedde-
mann 1994 ) report the existence of strong shears within
the isothermal mixed layer, varying on superinertial
frequencies (1-30 cph) as well as on longer timescales
coherent with the surface stress. Despite this fact, many
models of the mixed layer treat it as a slab within which
velocity as well as all scalar quantities are instantane-
ously and completely mixed (Denman 1973; Davis et
al. 1981; Price et al. 1986, henceforth PWP). The re-
sponse of the near-surface velocity to wind forcing in
these slab models is thus sheared only below the min-
imum mixed layer depth. This paper uses a PWP mixed
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layer model [ described in section a( 1) of the appendix }
as a baseline slab model.

Classically, attempts to model the shear within the
mixed layer have followed the approach of Ekman
(1905) in which the local momentum transport is pa-
rameterized by an eddy viscosity v, multiplied by the
local shear 9v/9z. The divergence of this momentum
transport then balances the time rate of change of the
velocity and the Coriolis force 22, X v:

av d v
ar "XV = v (1)

where §2, is the planetary vorticity and the bold letters
denote vectors. The problem of how to parameterize
the eddy viscosity has, however, proven to be ex-
tremely difficult. Huang (1979) presented over 80 dif-
ferent published values and parameterizations, which
showed no systematic agreement. The most self-con-
sistent of these parameterizations are probably the tur-
bulence closure schemes of Mellor and Yamada (1974)
in which turbulence is produced by local shear and
buoyancy instability. This paper uses a Mellor-Ya-
mada level 2 (MY2) turbulence closure model in which
gradients of velocity and density at a given point pro-
duce turbulence that is balanced by dissipation ( see ap-
pendix section a(2) for a more complete description).

Tests of different mixed layer models have tradition-
ally focused on how well the models predict the density
or temperature structure of the mixed layer. In this re-
spect, both models do quite well. Figure 1 shows data
from the Mixed Layer Dynamics Experiment (hence-
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FiG. 1. Surface forcing and temperature structure during MILDEX. (a) Wind stress in pascals
calculated using bulk fluxes. (b) Heat flux in watts per square meter. (c) Mixed layer depth defined
as the minimum depth at which the temperature was 0.02°C different from the surface. Bold lines
are observed, solid lines predicted from the PWP model, and dashed lines predicted from a Mellor—
Yamada level-2 turbulence closure model. (d) Temperature difference between 2- and 10-m depth.

Line convention is the same as in (c).

forth MILDEX) that demonstrates this fact. The data
shown were collected from the Research Platform FLIP
using vector measuring current meters (VMCMs). De-
tails of the data collection are given in Weller and Price
(1988) and Gnanadesikan (1994). The PWP model
and Mellor—Yamada level-2 model were both forced
with the wind stress and heat flux shown in Figs. la
and 1b. The models reproduce the mixed layer depth
(Fig. 1c) and the temperature stratification between 2
and 10 m (Fig. 1d). In general, the two models agree
closely with the data, showing a mixed layer that be-
comes shallow during the day and deepens at night. The
major differences occur between 2 and 4 November, a
time when the winds are weak and there is a good deal
more stratification in the upper 10 m than predicted by
the model. Analysis of the heat budget indicates that
much of this stratification is due to frontal activity. As
the winds strengthen later on in the experiment, the
mixed layer is deeper and the upper 10 m do not be-
come strongly stratified in both the models and the data.

The mean velocity profiles predicted by the two
models, however, are systematically different from
each other and from the data. Figure 2 shows the low-
frequency Ekman response over five inertial periods
beginning at 0200 UTC (local time lags by 8 hours) 6
November. During this interval the winds were strong
and the mixed layer did not restratify. The low-fre-
quency responses in the data and the models [calcu-
lated by rotating the velocity into a wind-relative co-
ordinate system and averaging, a method documented
more extensively in Weller et al. (1991); Gnanadesikan
(1994); Schudlich and Price (1994)] are quite different.
The data show a velocity response that is strongest in
the middle of the mixed layer. Over depths of 5—-20 m
this response is extremely uniform. The PWP model
predicts a response that is essentially slablike down to
a depth of 35 m, underestimating the shear at both top
and bottom of the mixed layer. The MY2 model pre-
dicts a response that looks very much like a classical
Ekman spiral. The response is sheared throughout the
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Fi1G. 2. Subinertial velocity and shear relative to the wind during MILDEX. Calculated by orienting velocities relative
to the wind and averaging over time. For the velocity response, the velocity at a depth of 60 m was subtracted to
eliminate the geostrophic flow. Responses are shown for 6—11 November 1983, when Langmuir cells were strong. (a)
Velocity with respect to 60 m, relative to wind data. (b) Shear relative to wind from data. (c) Predicted velocity relative
to wind, PWP model (slab mixed layer). (d) Predicted shear relative to wind, PWP model. (e) Predicted velocity relative

to wind, MY?2 model. (f ) Predicted shear relative to wind, MY2 model.

mixed layer, greatly overestimating the shear in the culations) within the mixed layer. While such large ed-
middle of the mixed layer. These differences reflect dies are capable of homogenizing the mixed layer
uncertainties in the physics of present parameteriza- relative to the highly sheared profile predicted by the
tions of mixing within the mixed layer. MY2 model, they do not mix it completely and instan-
This paper suggests that the models may fail to' re- taneously as predicted by slab models. As a result, the
velocity profile in the presence of such large eddies

produce the shear structure because they do not prop-
erly include the effects of large eddies (Langmuir cir- differs significantly from that predicted by both of the
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models. This paper considers large eddies, which are
primarily driven by wave-—current interaction rather
than by the shear instability process known to be im-
portant in the atmospheric boundary layer (Brown
1970) or by buoyant overturning. This wave—current
interaction mechanism is absent from both the PWP
and MY2 models and thus provides an extra source of
mixing. When fully developed Langmuir cells are in-
cluded in a model of the mixed layer, the resulting shear
profile is less sheared than predicted by the MY2 model
but more sheared than predicted by the PWP model.

The paper proceeds as follows. Section 2 introduces
the equations of motion for a mixed layer with two-
dimensional Langmuir cells in the presence of Coriolis
forces. Section 3 solves for the low-frequency, one-
dimensional, response of this idealized layer to an in-
finite train of surface gravity waves, thus defining the
initial condition on which the cells grow. Section 4
demonstrates that a wide range of Ekman spirals are
unstable to Langmuir cells. Section 5 considers the
physical processes that drive the cells and argues that
wave—current interaction is the most important mech-
anism. Section 6 shows that the Ekman spiral predicted
by the MY2 model during MILDEX is unstable to
Langmuir cells driven by wave—current interaction.
Section 7 demonstrates that, when the unstable cells
grow to finite amplitude, they are capable of substan-
tially modifying the velocity structure of the mixed
layer. Section 8 concludes this paper.

2. The equations of motion

A schematic of the way in which we include Lang-
muir circulation in the mixed layer is shown in Fig. 3.
Langmuir circulation consists of an array of vortices
(Langmuir 1938), oriented at some angle « to the
wind. In the Northern Hemisphere, o tends to be pos-
itive so that the vortices lie to the right of the wind
(Faller 1964), a phenomenon which will be discussed
in more detail in section 5. For purposes of this paper,
the alongcell direction is the y direction. The velocity
in this direction is denoted by v and the vorticity in
this direction is denoted by £2. The crosscell horizon-
tal direction is the x direction and the velocity in this
direction is denoted by u. The vertical direction is the
z direction (increasing upward), and the velocity in
this direction is denoted by w. The vortices tend to be
asymmetric, with stronger downwelling W,,,,, than
upwelling (W,,) velocities. Estimates of W,,,,, range
from 0.01 to 0.25 ms~' (Leibovich 1983). Surface
convergence zones are associated with jets of water
that move more quickly in the alongcell direction than
the remainder of the mixed layer. The amplitude of
the jet V,, is of order 0.05 m s ™',

The most widely accepted theory for the generation
of Langmuir cells, that of Craik and Leibovich (1976),
assumes that the cells are driven by interactions be-
tween surface gravity waves and the Eulerian current
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FiG. 3. A schematic of Langmuir circulation illustrating the con-
cepts found in the text. Helical vortices with horizontal velocities U,
upwelling velocity W,,,, and downwelling velocity Wy, are oriented
at some angle a to the wind. Within the downwelling zones water
moving quickly in the alongwind direction (shown by the stippling)
is advected downward.

field. Thus, in order to model Langmuir cells within an
Ekman layer it is necessary to derive equations that
include surface gravity waves, capturing their effect
both on the mean current and the cells. Suppose the
equations of motion are as follows:

Qli+Vlu2+(w+fk)><u=—Y£+u,_,v2u,
ot 2 P

(2)

where w is the relative vorticity, f k is the vertical com-
ponent of the planetary vorticity, and the bold letters
denote vector quantities.! Suppose that an averaging
over a wave timescale (a few periods) is performed so
that

(g)—u (3a)

()~ p, (3b)

where (as noted below) the assumption is made that
the wave velocities are much larger than the mean ve-
locities. Then the various terms in (2) must be trans-
formed in a dynamically consistent manner. This was
done by Huang (1979), who obtained the following
equation for the velocity:

%‘;+V%u2+(w+fk) X (a+ u,)

= — Vr + v, V,

4

' For purposes of this paper, only the vertical component of the
planetary vorticity is considered, so that the cell structure depends
only on their orientation relative to the wind and waves, not on their
geographic orientation.
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where u, is the Stokes drift, a Lagrangian drift that
arises from the velocity at the crest of the wave being
larger than that in the trough (given irrotational surface
gravity waves). When averaged over a wave period
following a water particle this difference gives rise to
a mean drift. Equation (4) is derived under a number
of assumptions:

1) The velocities associated with the Langmuir cells
are considered to be small (order ¢, the wave slope) in
comparison with the wave orbital velocities.

2) The cells evolve on timescales that are large (1/
€?) in comparison with the wave period.

3) The eddy viscosity and Coriolis force enter the
equations at O(€?). This is necessary in order to allow
the nonlinear stresses associated with the cells to be the
same size as the Coriolis force and the transport of
momentum by small-scale diffusion.

4) The mixing coefficient within the mixed layer is
constant. This is an oversimplification: when the wind
is strong and the surface waves are breaking, the mix-
ing coefficient must be larger near the surface ( Agarwal
et al. 1992). The mixing coefficient should be inter-
preted as setting the layer-averaged level of turbulent
mixing. A consensus on how to consistently describe
the development of both the turbulence and the Lang-
muir cells has not yet emerged.

5) The surface waves are represented as a constant-
amplitude infinite-length wave train. This may result in
incorrect representation of the total Lagrangian mo-
mentum associated with the wave field (Mclntyre
1981) whose possible effects will be discussed in sec-
tion 8.

A frequently asked question is why the Stokes drift
only appears in the vortex tipping term and not else-
where in (4). Why, for example, can the Stokes drift
not be advected by vertical velocities? The simplest
answer is that the Stokes drift is a wave quantity and
so is trapped to the surface gravity waves by the pres-
sure field. The following section provides a qualitative
explanation of how this trapping occurs [for a rigour-
ous derivation, the reader is advised to consult Huang
(1979) or Gnanadesikan (1994)].

Vertical velocities associated with Langmuir cells
can of course advect the velocities associated with the
surface waves. However the wave velocities are asso-
ciated with a pressure field, and pressure fluctuations
that arise from the interactions between the O(e?)
“‘mean’’ flows and the O(e) wave orbital velocities act
to counteract such advection. The following example
illustrates how this occurs. Imagine that along some y—
z plane (which might correspond to an upwelling zone
in a Langmuir cell) there is a mean upwelling velocity
w,, and a wave train propagating in the +y direction
with velocity field, as illustrated in Fig. 4. For simplic-
ity, assume that the velocity field associated with the
waves is given by
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FiG. 4. Illustration of how the velocity field and pressure field as-
sociated with the waves interact with the mean vertical velocity in
an upwelling zone. Under the forward face of the waves, the mean
upwelling and the upwelling due to the waves add. This results in a
Jower pressure (shown by L). Under the trailing face of the wave, the
mean upwelling velocity reduces the downwelling velocity associ-
ated with the waves resuliting in a higher pressure (denoted by H).
Then under a wave crest, the deceleration due to the mean velocity
advecting slower-moving water upward is balanced by a pressure-
driven acceleration. The same counterbalancing effect occurs under
wave troughs.

(uw’ vw’ WW)
= a,,0e(0, cos(k,y — ot), sin(k,y ~ ot)), (5)

where k,, is the wavenumber, o the frequency, and a,,
the amplitude of the surface gravity wave train. Assum-
ing that the wave orbital velocities are larger than the
mean upwelling velocity, to first order the particle mo-
tion is then

(x,y,2) = (X0, Yo, Z0)

+ a,e"*(0, —sin(k,y ~ ot), cos(k,y — at)).
(6)

Then following a particle over a wave period and
denoting the average over this period by angle brack-
ets, the Coriolis force caused by the wave orbital ve-
locity,

ov,, Ov,,
fvw=f<vw+ ()")’o)gy“* (Z_ZO)E

. (1)

(yo.20)

+ higher order-terms)

has a nonzero average when (5) and (6) are substituted
into (7). Letting the average over a wave period be
denoted by angle brackets,

<fvw> = kwa\zvaezszo =fvs(20)' (8)

This force arises because (in the Northern Hemisphere)
the Coriolis force to the right of the axis of wave prop-
agation is larger at the crest of the wave than the Corio-
lis force to the left of the axis of wave propagation at
the trough of the wave. Thus, during a single wave
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cycle a water particle at a mean depth z, receives a net
Coriolis acceleration. Similarly,

v, o, 0%,
oy T e T T g0,

2
+(z~zo)—a—”—:—+--~) (9)

0z

(¥o0.20)

can be shown to have a nonzero average that goes as
3WypOv,/0z. However, unlike the wave—planetary vor-
ticity interaction term in (8), the wave—upwelling in-
teraction term in (9) creates a pressure gradient. Un-
derneath the forward face of the wave, the upwelling
velocity is increased by w,,, while under the trailing
face of the wave, the downwelling velocity is decreased
by w,,. This means that under the forward face of the
wave the total kinetic energy is larger while under the
trailing face of the wave the total kinetic energy is
smaller. By Bernoulli’s law, this means that under the
forward face of the wave the pressure is smaller than
under the trailing face of the wave. The resulting hor-
izontal pressure gradient goes as

— — = = g,0%"*(0, sin(k,y — ot),
p Oy

—cos(k,y — ot)) + 9 (WepoW,),
dy

consisting of a term due to the waves only and a term
due to the wave—current interaction. For a wave field
that is irrotational to first order, the wave—current in-
teraction term balances the advection term in (9). All
other terms involving shears in the wave velocities are
balanced in the same way and so do not enter the av-
eraged equations (4).

The equations for two-dimensional Langmuir cells
may then be derived as follows. Suppose that the
cells are invariant in the +y direction (all terms in
the averaged equations that have 0/8y in them are
zero) and that the following nondimensionalizations
are made:

(10)

v, _ f
La—aia F_k?vaio (11a)
k' (x,y,2) = (x,y,2) (11b)

(kwaw)Z{—(u,v,vx,w)=(a,a,u,,w) (11c)

w

1

2 .2
kiaio

t=,, (11d)

where v, is the eddy viscosity and f is the Coriolis
parameter. Here La is the Langmuir number and serves
as a scale for the strength of diffusion, and F is a scaled
Coriolis parameter. The lowercase script quantities are
dimensional, with (11b-d) giving the conversion from
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dimensional to nondimensional variables. Taking the
curl of (4) and applying (11) yields the following
equation for the vorticity €2 parallel to the cell axis (2
= Qul/0z — Ow/0x):

O
ot “ 7 Ox W(?z

¢ Gu, v )

. Faz(v+v_‘.)+azax+LaVQ.
Vorticity along the cell axis is thus advected by cross-
stream Eulerian flows and Stokes drifts, created as the
alongcell Eulerian shear and alongcell Stokes drift
shear tilts vertical filaments of planetary vorticity and
as the alongcell Stokes drift shear tilts vertical filaments
of relative vorticity. The vorticity is diffused assuming
a constant diffusive coefficient. The alongcell velocity
equation is then given by

(12)

Io,) v )
= —+w—=—F(u+ V.
at+(u+us)ax+waz F(u + u,) + LaV*v

(13)

Like the vorticity, the alongcell velocity can be ad-
vected by crosscell Eulerian flows and Stokes drifts.
Again, the crosscell Stokes drift adds a new body force
due to the wave—Coriolis force interactions outlined in
(8). Since dv/dy = 0, the continuity equation may be
satisfied by defining a streamfunction :

Q =V (14a)
W __
ox & 8z (14b)

The boundary conditions on momentum are set as
follows. Because the bottom of the mixed layer can be
taken as a barrier to the propagation of subinertial en-
ergy (Weller 1981), the stress at the layer base was set
to zero so that

(15)

This bottom boundary condition is an idealization. A
more realistic condition would be to relax the no-stress
condition so as to permit interactions between the
mixed layer and the main thermocline. However, since
it is unclear how to define such relaxation of the bound-
ary conditions, this was not done. The flux of momen-
tum is set on the upper boundary:

o

- =0
dz pla z

cos(a) at (16a)

Q=—sin(a) at z=0.

o (16b)

In the real ocean, stratification can play an important
role in changing the mixed layer depth and suppressing
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Langmuir circulations (Gnanadesikan 1994). How-
ever, because the eddy viscosity is constant, the equa-
tions cannot model a steady-state mean thermocline
and mixed layer without prescribing unrealistically
large heat fluxes within the thermocline. As a result,
interactions between the mixed layer and thermocline
are not considered in detail in this paper, which focus-
ses instead on the structure of the Ekman spiral within
the unstratified mixed layer.

The instability of the mean Ekman spiral, which
leads to the generation of Langmuir cells, is solved for
by assuming that the mean flow is initially equal to that
in the absence of Langmuir circulation with some small
perturbation that varies in time and space:

¥ = ¥y(z) + Ay’ (x, z, 1) + higher-order terms
(17a)

V(z) = Vo(z) + Av’(x, z, t) + higher-order terms,
(17b)

where A is a small number. Expanding in A, the so-
lution to zeroth order is one for which

8 3

_F&o%+wg=La%ﬁf (18a)
2

F(u, + Upy) = La%? ) (18b)

The velocity structure given by these equations is
solved for in section 3.
At first order in A, the equations are then

on’ o’ , 0%
£y + (U + uy) F +w 2

_Ov | Ov v’ e s

=F 2 + G20 + LaV*1’ (19a)
'’ M’ v, )
___+ ] ___+ P___= — ’ ,.
o (U + u,) " 5 Fu' + LaV%

(19b)

By expanding v’ and ¢’ in terms of sinusoidal basis
functions that satisfy the boundary conditions on ve-
locity, the instability problem can be cast as a linear
eigenvalue problem in terms of the coefficients of the
basis functions [e.g., Gottleib and Orzsag (1977); see
appendix section b(1) for a detailed explanation of
how this is done using a Galerkin approximation].

In addition to the Galerkin procedure that formally
models the equations of motion, this paper also consid-
ers some models that approximate the equations of mo-
tion. This is done so as to identify important physical
parameters and to include or exclude various physical
processes. These models are used to interpret the results
of section 4. The first approximate model is a truncated
Fourier series:
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Y(x, z, 1) = Pye” sin(kx) sin(wz/D")
+ e cos(kx) sin(2rz/D') + Wy(z),
( z>—=D'" (20a)
v(x,z,t) = voe” cos(kx) sin(nz/D")
+ vie” sin(kx) sin(2nz/D') + Vo(2),
(20b)

(20c¢)

z>-D'
¥ = Vo(z) V=Vo(2), z<—-D’,

where D' is the maximum penetration depth of the
cells. This truncation does not satisfy the boundary con-
ditions on velocity except when La = 0. For small val-
ues of La, however, it does closely approximate the
shape of the most unstable mode while keeping the
problem simple enough to obtain an analytic solution
for the growth rate. As noted in Gnanadesikan (1994),
truncated models of this type are inaccurate in those
cases when they fail to reproduce the structure of the
unstably growing cells.

In addition to the truncated model, two modified
spectral instability codes are also used to look at the
importance of various processes for causing instability.
The first code computes the instability of the equilib-
rium velocity profile as though the Coriolis force does
not act on the cells but does act on the background flow.
This is not, strictly speaking, a well-posed problem.”
The purpose of using the modified code for such a sce-
nario is to diagnose the importance of Ekman instabil-
ity. In this instability mechanism, cells change the cur-
vature of the mean alongcell velocity gradient. These
perturbations in velocity curvature are then turned by
the Coriolis force to reinforce the cells (Gammelsred
1975; Lele 1985). If the growth rate of cells in the
absence of Coriolis force is smaller than the growth rate
in the presence of Coriolis force, Ekman instability
probably contributes to cell growth. If the growth rate
does not change significantly, Ekman instability most
likely does not contribute. If the growth rate in the ab-
sence of Coriolis force is larger, the Coriolis force is
acting to suppress the instability. The growth rates cal-
culated from this code are referred to as being com-
puted ‘‘in the absence of Coriolis forces.”” A second
modified instability code examines the importance of
shear instability by expanding the streamfunction alone
[see appendix section b(2) for details]. The growth
rates from this code will be referred to as due to ‘‘shear
instability alone.”’

% In the limit when the growth rate of the most unstable mode v is
large in comparison with the scaled Coriolis frequency one can re- |
scale the equations in terms of F/y to obtain a formally valid ex-
pression for the growth rate. However, in many of the cases for which
this procedure is used, the growth rates are of the same order as the
Coriolis frequency, so that even this procedure is not formally valid.
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In the presence of finite-amplitude Langmuir cells
Egs. (12)~(14) can be integrated using a finite-differ-
ence code. Gnanadesikan (1994) developed a simple
finite-difference code, which is used in section 7 to
evaluate how Langmuir cells at finite amplitude actu-
ally modify the Ekman spiral. A brief description of the
finite-difference code is given in appendix section c.

3. The Ekman response in the presence of waves

To understand how instabilities act to modify the
mean profile of velocity, it is necessary to solve for that
profile in the presence of waves. Integrating (18a) with
respect to z and defining the complex velocity and
Stokes drift profiles:

W(z) = U(2) +iV(2) (21a)
W,(2) = u(z) + iv,(2) (21b)

yields the following equation for the steady-state com-
plex velocity vector:

o*w
7%

In the absence of waves (W, = 0), this equation has
the following solution:

iIF(W;+ W)=La (22)

T 1
La(l + l) e(l+i)D/b — e'“(l+i)D/b

(1+i)(z+ D)o ~(1+)(z+D)/ 6
X (et + e iz ),

WEk

(23)

where § = y2La/F is the Ekman depth. The presence
of waves, however, introduces an additional term, an
Eulerian return flow whose total mass transport bal-
ances that associated with the Stokes drift. This flow is
driven by a body force associated with the wave—Cori-
olis force interaction. For purposes of this paper, the
surface stress and wave field are taken to be separable.
In reality this is probably not the case [see Weber and
Melsom (1993) for a discussion] since the stress may
well depend on the wave field. However, such depen-
dence will merely lead to a different value of surface
stress in (23) and will not alter the wave —Coriolis force
term. The wave-driven return flow W, may be solved
for using the method of Green’s functions:

Wwave(z) = fD G(Z’ ZO)W;(Z())dZO, (24)

where G is given by

G(z, 20) = Ay (20)(e"*D70 4 71Dy 2> 74
(25a)
G(Z, ZO) =A_(ZO)(e(I+i)(z+D)/b + e—(l+i)(z+D)/O),

z<zo (25b)
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A, (z)
e e o,
Ay =L b e e Y hsg)

2 1 + ie—(H—i)D/b —_ e(l+i)D/b °

The structure of the return flow is strongly dependent
on the nondimensional Ekman number

La vk2
E = — = —
Ff
P Ekman depth 2
- wavelength of surface gravity waves
(26)

where k, is the wavenumber of the driving waves.
When Ek is small, the Eulerian return flow essentially
balances the Stokes drift at each depth. When it is large,
the return flow is smoothed out over depths comparable
to an Ekman depth (or if it is smaller, the mixed layer
depth). Figure 5 shows the structure of the Eulerian
return flow driven by a Pierson—Moskowitz (1964)
wave spectrum, for which

1
r
where f is a dummy variable denoting the wave fre-
quency. Calculations are presented given a layer depth
of 4, no surface stress, and Ek ranging from 0.01 to
100. In the midlatitude open ocean, the wave amplitude
is large (a, ~ 1 m), the wavelengths are quite long
(k;' ~ 0.05-0.1 m™"), and the eddy viscosities are
fairly high (0.01-0.05 m s™'). In such cases Ek is of
order 1, and La is of order 0.01. The range of cases
shown here is thus reasonable for oceanic Ekman spi-
rals.

The results presented above asymptote to those of
previous investigators (Hasselmann 1970; Huang
1979; Weber 1983; Weber and Melsom 1993; Xu and
Bowen 1994) when identical assumptions (generally
some subset of the following: deep water, monochro-
matic waves, and zero viscosity ) are made.’

v,(2) =f J-%exp(——l.ZS )exp(2fzz)df, (X))

F=0

4. The instability of the Ekman spiral to Langmuir
circulations

The Ekman spiral in the presence of surface gravity
waves can be strongly unstable to two-dimensional roll
vortices. This section studies the instability of Ekman
spirals given a range of Ek from 0.01 to 100 and a range

* The first three authors, for example, all predict a mean inviscid
(La = 0) flow in deep water that is equal and opposite to the Stokes
drift, as does this work.
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FiG. 5. Return flow driven by a Pierson—-Moskowitz spectrum for different values of Ek, Solid:
Ek = 0.01, +: Ek = 0.1, X: Ek = 1, O: Ek = 10, *: Ek = 100. (Note: the last two flows are
essentially identical.) (a) Hodograph of the return flow. (b) Vertical profile of the alongwave
component of the return flow. (¢) Vertical profile of the cross-wave component of the return flow.
Velocity is nondimensionalized by the Stokes drift scale k,a%0.

of La from 0.001 to 0.1. This spans a range of La and
Ek expected for the open ocean. In all of the profiles
studied here, the waves are taken to be parallel with the
wind [see Rieder et al. (1994 ) for a verification of this
common assumption]. The nondimensional surface
Eulerian shear is always set to 1, so the stress and Lang-
muir number are linearly related. This is done so that
differences in growth rate are due to differences in the
structure of the current profile, rather than being caused
by differences in the strength of the shear. Such a linear
relationship does not exist in the real world. The mixed

layer depth is set to 4, so the Stokes drift is felt only
over the top one-fourth of the mixed layer.

As demonstrated in section 3, the velocity structure
can depend on the presence of waves. Figure 6 shows
hodographs of the Ekman spiral with (solid) and with-
out (dashed) surface gravity waves as a function of La
and F. As in section 3, the structure of the Ekman spiral
is a function of Ek = La/F with constant values of Ek
running from the upper left to the lower right of the
figure. The presence of waves modifies the hodographs
greatly when Ek is small (lower left-hand corner), in-
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FiG. 6. Hodographs of the Eulerian velocity profile without waves (dashed) and with waves
given by a Pierson—Moskowitz wave spectrum, assuming a nondimensional layer depth of 4 and
a surface Eulerian shear of 1. The surface velocities are indicated by the open triangles. The
profiles in the absence of waves are computed from Egs. (23), those in the presence of waves by
adding the solutions from Eqs. (24) and (25) to that in the absence of waves. The assumption is
made that all the Ekman flow is carried within the layer.

troducing a strongly sheared Eulerian return flow.
When Ek is large (upper right), the presence of waves
changes the mean flow slightly, producing an offset in
the transport, but does not greatly change the structure
of the shear.

The growth rate of the fastest-growing unstable
mode as a function of angle of cell orientation and hor-
izontal wavenumber is shown in Fig. 7. Growth rates
were computed using the Galerkin code described in
appendix section b(1). The growth rates depend on the
horizontal wavenumber, the angle of cell orientation,
the Langmuir number La, and the scaled Coriolis fre-
quency F. The fastest-growing cells have growth rates
of 0(0.1-1). In all but the lower row, the growth rates
are much larger than the scaled Coriolis frequency, im-
plying that the Ekman spirals in Fig. 6 are strongly
unstable to Langmuir cells and thus will most likely not
be seen in the real world.

The angle at which the cells are oriented depends on
the current profile, which is in turn a function of Ek.

When Ek is large, the Eulerian shear is essentially par-
allel with the wind and waves and the cell axis is ori-
ented alongwind. As Ek decreases (moving from upper
right to lower left), the Eulerian shear moves off to the
right of the wind, as does the axis of cell orientation.
The relationship between the cell axis and the direction
of the Eulerian shear is explored in more detail in the
following section. -

Diffusion also plays an important role in determining
the growth rates. Given a constant current profile (con-
stant Ek), the maximum growth rate is a strong func-
tion of the Langmuir number La. Increasing La, cor-
responding to increasing the effect of diffusion, reduces
the growth rate and suppresses growth at large wave-
numbers (small wavelengths).

It has long been known (Brown 1970) that the Ekman
spiral can become unstable to roll vortices. It is impor-
tant to ask whether the presence of waves is necessary
for strongly growing vortices to appear on the Ekman
spiral. If the Stokes drift is set equal to zero, the same
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FiG. 7. Growth rate of the most unstable mode as a function of horizontal wavenumber (vertical axis) and angle of
orientation a of the cell axis relative to the wind (horizontal axis, 0 is parallel with the wind and waves, =90 is perpen-
dicular to the wind and’waves). Waves are given by a Pierson—Moskowitz spectrum. Growth rates for a * 180 are the
same as those for a. Negative contours are dashed. Growth rates were calculated using a 40-mode Galerkin code with
sinusoidal basis functions. Top left: F = 0.001, La = 0.001. Top center: F = 0.001, La = 0.01. Top right: F = 0.001,
La = 0.1. Middle left: F = 0.01, La = 0.001. Middle right: F = 0.01, La = 0.1. Bottom left: ¥ = 0.1, La = 0.001.
Bottom center: F = 0.1, La = 0.01. Bottom right: F = 0.1, La = 0.1. -

Galerkin code used to calculate the growth rates in Fig.
7 can be used to calculate the Ekman spiral without
waves. The pattern of growth when there are no waves
in the problem is shown in Fig. 8. The presence of waves
substantially alters the stability of an Ekman spiral.
When Ek is large, the Ekman spiral is stable in the ab-
sence of waves and strongly unstable in the presence of
waves. For the range of cases shown, the growth rates
in the presence of waves are all larger than the Coriolis
frequency. In the absence of waves, there are some un-
stable two-dimensional disturbances when Ek is suffi-

ciently small. The growth rates of these disturbances,
however, are at most one-third the Coriolis frequency,
in marked contrast to those in the presence of waves. In
the absence of waves, the disturbances are well off to
the right of the wind (45-70 deg). By contrast, Lang-
muir cells in the open ocean are generally aligned within
about 15 deg to the wind (Faller 1964 ), as is the case
when waves are present. Last, with the exception of the
lowest value of Ek (0.01 in the lower left-hand corner),
the fastest-growing vortices when waves are not present
has a wavelength much larger than the e-folding scale
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FiG. 8. Same as Fig. 7 but assuming that waves affect neither the current profile,
nor do they drive Langmuir cells through wave—current interaction.

of the waves. For open-ocean conditions, this implies
that the first cells to appear would have wavelengths of
order 50— 100 m. By contrast, in the presence of waves,
the fastest-growing cells are much smaller as seen in the
field (Leibovich 1983).

The results displayed in Figs. 7 and 8 raise a number
of questions:

1) What are the principal processes responsible for
driving the instability? In addition to Craik—Leibovich
instability, surface gravity waves may also increase the
effect of shear instability centering around inflection
points in the velocity profile (Brown 1970; Mourad
1995) or the increased shear in the Eulerian return flow
may change the effect of Ekman instability (Gam-
melsrad 1975).

2) What determines the size of the growth rate and
the angle of orientation of the cells? Previous work has
assumed that the cell axis and Eulerian shear are all par-
allel. This is clearly not true in the presence of Coriolis
forces. In fact, for very small Ek, cells lying parallel to
the wind are only very weakly unstable. These questions
are considered in more detail in the following section.

5. Langmuir cells in nonparallel flow

a. Setting the angle of maximum instability:
Crosscell shear and wave-—-current interaction

The following processes can all play a role in the
dynamics of two-dimensional roll vortices:
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1) Wave—current interaction. This forces cells
when the product of the projection of the Stokes drift
shear and Eulerian shear on the axis of cell orientation
is positive.

2) Tilting of cells by crosscell shear. This tends to
reduce the growth rate.

3)° Diffusion. For the cases presented here, diffusion
reduces the growth rate. When layers with strong
Stokes drift shear and Eulerian shear are not collocated,
however, this is not necessarily the case.

4) Shear instability centered around inflection
points in the velocity profile. This mechanism is
thought to be responsible for the instability of the at-
mospheric Ekman layer (Brown 1970).

;y 0.(!1)) _ ___k___
S k2 4+ (n/D’)?
—0Rh Y 0
-V 0 y
0 kV®

-0
where

V(D) = Dijﬂol%‘gsinz(———(l’;,)“)dz
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0z

. 2 o, . (1,2)mz\ .
VS(Z\,Z) D) = — s 2f A2 /0
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5) Coriolis effects. These can either induce insta-
bility (Gammelsred 1975) or suppress it.

This subsection focuses on the tradeoff between min-
imizing the crosscell shear and maximizing the wave-
current interaction. In order to do this a simplified sce-
nario (shown in Fig. 9) is considered. Both the Stokes
drift and Eulerian shears are assumed to be constant
and to lie along axes that are separated by an angle 6.
The cells lie along some axis a relative to the Stokes
drift shear. If F and La are O, the truncation in (20)
may be substituted into (12) and (13), and the insta-
bility problem may be reduced to the following eigen-
value problem:

0 Yo
k - : .
N § 4¢3
k* + 4(x/D")? Vi Ui = 0, (28)
o Vo
Y Yy

where the superscripts refer to the vertical wavenumber
of the perturbations. Physically, V{?» and V{'?
represent the depth-weighted averages of the alongcell
Stokes drift and Eulerian shears, respectively, where
the weighting function is proportional to the momen-
tum transport carried by Langmuir cells with either one
or two maxima in vertical velocity. The frequencies
o {r, o3, and o are measures of the effectiveness of
the crosscell shear at coupling cells with different ver-
tical wavenumbers. These terms scale as the aspect ra-
tio kD' times the crosscell shear; o will be referred to
as the crosscell tilting frequency.

This simple case is useful because it involves only
two physical processes, wave—current interaction and
crosscell shear. Shear instability cannot cause instabil-
ity because the Eulerian shear is constant (Case 1960).
Ekman instability cannot occur because F = 0. Diffu-
sion does not play a role because La = 0. As such, the
constant shear scenario allows the development of an
understanding of the two most important physical
mechanisms determining the growth rate and orienta-
tion of the cells.

Defining

k2 1/2
={—— Oy w
4 (k2 YDy Ve Y )
k*D'? BV

[ _kD"* v,
“\*D?+ x| 0z

62

1/2
X cos(8 — a) cos(a)) (30a)
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the solution to (29) is given by

v? = max(y? — 02, ¥3 — o?). (31)

The truncation is used to approximate the results of the
instability code by maximizing y with respect to D’
with all other parameters held fixed.

For the constant shear case in Fig. 9, (31) does an
excellent job at predicting both the maximum growth
rate and the angle of cell orientation at which that
growth rate occurs. Figure 10 shows the growth rate
and angle of orientation of the fastest-growing cells
as a function of Eulerian shear and # given constant
Stokes drift shear. For constant Eulerian shear, as 6
increases, the angle of orientation increases and the
growth rate drops. This behavior is identical to that
seen in an unstable Ekman spiral, so that understand-
ing the behavior in Fig. 10 can lead to insight about
the Langmuir cell orientation and growth rate as a
function of Ek. Note that when the Eulerian shear
and Stokes drift shear are equal (solid, lines, +-
marks) the maximum instability occurs at one-half
the separation angle and (31) gives a result identical
to the full Galerkin code. When the Eulerian shear is
larger than the Stokes drift shear, the angle of max-
imum instability lies closer to the axis of the Eulerian
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shear. This behavior can be explained by considering
(31) in detail.

The growth rates predicted by (31) depend on both
the strength of the wave~—current interaction and the
tilting of the cells due to crosscell shear. They depend
not only on the structure of the mean flow, but also
on the depth of penetration of the cells D’. As shown
in Gnanadesikan (1994), the concentration of the
wave-—current interaction forcing near the oceanic
surface results in the depth of penetration being a
function of the wavelength. Short-wavelength cells
penetrate less deeply into the water column than
long-wavelength celils.

For the case at hand, the growth rate is determined
by a trade-off between maximizing v, and vy, and min-
imizing o; 7y, and 7y, are maximized when kD’ and the
product cos (8 — a) cos(a) are maximized. The former
occurs when the cells fill the entire domain (D' = D).
The latter occurs when o = 8/2, so that the cell axis
lies halfway between the Eulerian velocity and Stokes
drift. Effectively, maximizing cos(§ — a) cos(a) cor-
responds to maximizing the ability of the wave—current
interaction mechanism in converting a given stress into
eddy kinetic energy. Maximizing kD', on the other
hand, corresponds to maximizing the efficiency of the
released eddy kinetic energy at feeding back on the
stress. When kD’ is small, most of the released energy
in the crosscell direction goes into horizontal rather
than vertical motions. For linearly unstable cells, these
horizontal velocities do not reinforce the alongcell jets.
By contrast, the tilting of the cells by crosscell flow
will be small when kD' is small or when the crosscell
Lagrangian shear 8U"/9z

UL
aaz _ l%‘zﬁlsm(a)_ '%% sin(0 — @) (32)
is small.

When the Stokes drift and Eulerian shears are equiv-
alent in magnitude, the wave—current forcing is max-
imized and the crosscell shear is minimized when «
= §/2 so that the growth rate of the fastest-growing
mode is

k*D?

_ ov
Y= k*D? + 72

E3

oV,
0z

1/2
‘ ) cos(6/2). (33)

When the Stokes drift and Eulerian shears have differ-
ent magnitudes, the axis of instability lies closer to the
larger of the two shears, and the growth rates are
smaller than that given by (33).

The dependence of the growth rate and angle of in-
stability on Ek can now be explained. For large Ek, the
Stokes drift and Eulerian shears are aligned. Maximiz-
ing the forcing on the cells and minimizing the crosscell
tilting of the cells requires that the cells be aligned par-
allel with the Eulerian velocity and Stokes drift shears.
As Ek becomes smaller, however, the angle between
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FiG. 10. Verification of (31) as a predictor of the growth rate for the constant shear case in Fig.
9. Results from (31) are compared with the full Galerkin code for constant Stokes drift shear = 1
and cells with a wavelength twice the water depth; La = F = 0. Horizontal axis is 6, angle between
the shear and waves. Two values of Eulerian shear are used. Solid: full Galerkin code, Eulerian
shear = 1. Dashed: full Galerkin code, Eulerian shear = 2. +: Growth rate from (31!) with Eulerian
shear = 1. O: Growth rate from (31) with Eulerian shear = 2. Note that the truncation is very
close to the full code with the exception of one point. Left: fastest growth rate. Right: angle at
which that growth rate occurs. Note that when the two shears are equal, the angle of maximum
instability is one-half of the separation angle, while when the Eulerian shear is larger, the angle

of instability lies closer to that axis.

the mean Eulerian shear and the mean Stokes drift shear
increases and the axis of cell orientation is in between
the two. This physical trade-off provides a rationale for
Faller’s (1964 ) result that cells in the Northern Hemi-
sphere are oriented off to the right of the wind. Indi-
vidual cases, however, could behave differently, par-
ticularly if the wind is shifting direction or there is swell
at some angle to the wind. The key physics (namely
the dependence on the angle between Eulerian and
Stokes drift shears) is not dependent on whether the
wind and waves are aligned.

b. Effects of other instability processes

Although section 5a does give a qualitative expla-
nation for the dependence of growth rate and angle of
instability on EK, it does not provide much insight into
how other physical processes affect the instability. This
section explores two such questions. -

1) How does the presence of Coriolis forces affect
the instability? Does it drive Ekman instability, en-

hancing the growth rates, or does it stabilize two-di--

mensional instabilities?
2) To what extent does shear instability contribute
to Langmuir cell growth?

These questions were approached using the modified
Galerkin codes described in appendix section b(2). As

outlined in section 2 and b(2), one of these codes omits
the effect of the Coriolis force on the unstable rolls, while
the other omits the effects of wave—current interaction on
the rolls as well. The codes were run for the three sce-
narios with F = 0.01 presented in Fig. 7 (the central row).
The results are presented in Fig. 11. The pattern of growth
rates in the absence of Coriolis forces closely resembles
that in the presence of Coriolis forces (compare the top
and middle rows of Fig. 11). The range of angles over
which the Ekman spiral is unstable is somewhat reduced.
Away from the instability boundary, however, the mag-
nitude of the growth rate increases in the absence of Cor-
iolis forces over most of the range of parameters shown.
Coriolis forces, then, tend to have a damping effect on
the most strongly growing Langmuir cells, while desta-
bilizing some marginally stable cells far from the axis of
greatest instability.

The angle of maximum instability is also affected by
the presence or absence of Coriolis forces. In the ab-
sence of Coriolis forces, the angle at which the maxi-
mum instability occurs shifts away from the axis along
which the Eulerian shear is oriented and closer to the
axis of wave propagation. This may be because the
Ekman instability mechanism is strongest for cells that
are oriented along the axis of the Eulerian shear. In the
absence of Coriolis forces, the cells oriented along the
axis of Eulerian shear have their growth rates decrease,
and the axis of maximum instability shifts closer to
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FIG. 11. Growth rates for two-dimensional Langmuir cells with F = 0.01 as a function of horizontal wavenumber
(vertical axis) and angle relative to the wind and waves (horizontal axis) as in Figs. 7 and 8. Top row reproduces the
middle row of Fig. 6 with slightly different vertical axis. Middle row shows the growth rates calculated as if the Coriolis
force had no effect on the instability (though it is presumed to have an effect on the mean flow). Ekman instability is
thus “‘turned off”’ in this case. Note the similarity between the top and middle rows, indicating that Ekman instability is
not a dominant process. Bottom row shows the growth rates calculated for two-dimensional shear instability (assuming
no effects from either Coriolis forces or Craik~Leibovich interaction). Dashed lines are contours of negative growth
rates; solid lines positive growth rates. Note the major differences between top and bottom rows, demonstrating that
Craik-Leibovich interaction is a dominant process, more important in setting the growth rates than shear instability.

being midway between the axis of wave propagation
and the axis of the Eulerian shear.

Shear instability does not play a critical role in Lang-
muir cell growth for the cases shown (compare the top
and bottom rows of Fig. 11). The growth rates due to
shear instability alone are far smaller than those asso-
ciated with wave—current interaction. Indeed, only for
Ek = 0.1 are there significant shear instabilities at all,
and even these have relatively small growth rates (only
3 to 4 times the Coriolis frequency and fully an order

of magnitude smaller than those associated with wave—
current interaction). In combination, these results sup-
port the hypothesis that oceanic Langmuir cells are pri-
marily driven by wave—current interaction, rather than
Ekman or shear instability.

6. Instability of the unstratified Ekman spiral
during MILDEX

The theoretical discussion developed above is now
applied to the example from the Mixed Layer Dynam-
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FiG. 12. Instability of the mean Ekman response during MILDEX to Langmuir cells. (a) Ekman
spiral predicted using the MY2 model (solid) and using an averaged eddy viscosity of 0.0168
m’ s~'. (b) Mean Stokes drift calculated using a wavestaff aboard FLIP (solid) and fitted using a
Pierson—~Moskowitz spectrum (dashed) with rms amplitude of 1.26 m and peak period of 10 sec.
(c) Growth rate in s™' of the most unstable mode as a function of wavenumber in cpm (vertical)
and angle of cell orientation (horizontal) assuming waves act on both the cells and mean flow.
Dashed lines are negative contours. (d) Growth rate of most unstable mode assuming waves act on

neither the cells nor the mean flow.

ics Experiment (MILDEX) outlined earlier in this pa-
per. This section considers the tendency of the mean
profile to become unstable. The approach taken is to
compute the instability of the mean Ekman response
assuming the cells to be forced by the mean waves and
wind stress. This approach has certain limitations. In
particular, if Langmuir when cells appear only there is
no diurnal restratification, looking at instability of the
mean structure will result in Langmuir cells being
driven by shears that are not present at the same time

as the cells. It is hoped that by looking at a time period
when cells were almost always present such effects will
be minimized. Nonetheless, the mean structure may not
actually be representative of any specific time.

The Ekman response predicted by the MY2 model
is well approximated by assuming a constant eddy vis-
cosity of 0.0168 m?s~' (Fig. 12a). The averaged
Stokes drift during the high-wave period in MILDEX
can be modeled by a Pierson—-Moskowitz spectrum that
has a peak period T of 10 sec and an rms wave
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FiG. 13. Modeled mixed layer structure using mean MILDEX pa-
rameters after roughly one-dimensional day. (a) Perturbation stream-
function in m® s~'. (b) Alongcell velocity in centimeters per second.
Mean over the entire mixed layer has been removed. Solid lines are
positive (downwind); dashed lines negative (upwind). (c) Vertical
velocity in centimeters per second. Solid lines are positive (up), and
dashed lines negative (down).

amplitude of 1.26 m. This implies a characteristic
length scale L of 25 m (the inverse wavenumber of a
deep water surface gravity wave with a period of 10
s). This in turn implies a Langmuir number of

Ve Tpeak

La=——=0.017 34
A na? (34)
and a scaled Coriolis frequency
preakL2
F=—-F—=0.
P 0.051, (35)

where f is the dimensional Coriolis frequency. By ap-
plying the mean absolute stress over this time period
(0.131 Pa), one can calculate a mean, nondimension-
alized surface shear of 4.8. These values together with
a mixed layer depth of 50 m were used to run the spec-
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tral instability code used above. The results were then
converted to dimensional units.

The presence of surface gravity waves plays an im-
portant role in determining whether or not the classical
Ekman spiral is unstable. In the absence of surface
gravity waves, the mean Ekman spiral is only slightly
unstable to Langmuir cells (Fig. 12d). Maximum
growth rates are about 10™* s ', roughly the same size
as the Coriolis frequency. The unstable cells also have
very long (over 200 m) wavelengths. In the presence
of surface gravity waves (Fig. 12c), the Ekman spiral
is destabilized strongly. The fastest-growing mode is
oriented about 15 deg to the right of the wind and has
a wavelength of 25-30 m, much more in accord with
the data. The growth rate of such a mode is 0.002 s,
implying a growth time of less than 10 minutes. This
suggests that an Ekman spiral was not seen within the
unstratified mixed layer during MILDEX, because it
was unstable to Langmuir cells driven by wave—cur-
rent interaction. In order to verify this hypothesis, it is
necessary to estimate whether the finite-amplitude cells
were capable of modifying the velocity profile. This is
done in the following section.

7. Results from finite-difference code runs

This section demonstrates that large eddies driven by
wave-—current interaction were capable of modifying
the velocity profile predicted by a MY2 model during
MILDEX. It considers the results of a finite-difference
code used to integrate Eqs. (13), (14) given the pa-
rameters in section 6. The angle of cell orientation was
chosen to be 15 deg based the instability code run in
section 6. The results are indicative of the potential
importance of wave-current interaction in modifying
the velocity profile. They do not constitute a full pre-
diction of the velocity structure, since such a prediction
would need to include some information on the time
variability of wind, waves, and eddy viscosity and a
better estimation of the effects of density (interaction
with the thermocline and time-variable heat flux). Such
effects are beyond the scope of this paper.

The velocity signals associated with the finite-am-
plitude cells are roughly the same size as those asso-
ciated with the mean Ekman spiral. Figure 13 shows
the streamfunction, alongcell velocity, and vertical ve-
locity fields predicted by the finite-difference code at a
time ¢t = 147, corresponding roughly to one-dimen-
sional day. After one day, the finite-difference code
predicts a flow field dominated by cells with a wave-
length of roughly 200 m. The cells are strongly asym-
metric, with downwelling plumes of up to 0.06 m s ™'
and weaker upwelling zones where the vertical velocity
is only about 0.02 m s~'. The cells advect plumes of
water moving quickly in the alongcell direction. The
alongcell velocity associated with the plumes at mid-
depth is 0.02-0.03 m s~' faster than the mean mixed
layer velocity and 0.03-0.04 m s™' faster than the
mean velocity in the mixed layer interior.
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These finite-amplitude Langmuir cells replace small-
scale diffusion as the principal mechanism by which
the wind stress is distributed within the mixed layer.
Figure 14 shows the velocity structure observed during
MILDEX and various models. The observed and pre-
dicted shear structure is shown in Fig. 15. The velocity
and shear profiles from the one-dimensional models are
reproduced from Fig. 2. The profiles generated by the
finite-difference code are averages over the last inertial

Data
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period, after the startup transients had died off and the
eddy kinetic energy had stabilized.

The velocity structure in the presence of finite-am-
plitude Langmuir cells is very different from that in the
absence of cells. The finite-difference code predicts a
mixed layer in which there is a strongly sheared layer
near the surface of the mixed layer, very little shear in
the middle of the mixed layer, and more shear at greater
depths. The structure of the velocity and shear profiles
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FiG. 14. Mean low-frequency velocity structure during MILDEX, 611 November. (a) Data. (b) Modeled by PWP
model. (c) Modeled given mean eddy viscosity from MY2 model, but no waves. (d) Modeled given mean eddy viscosity
from MY2 model, Pierson—Moskowitz spectrum, but without Langmuir cells. (¢) Modeled using finite-difference code.
(f) Velocity structure from finite-difference code corrected so as to give the same transport as the data.
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Fig. 15. Mean low-frequency shear structure during MILDEX, 6-11 November. (a) Data. Note the strong upwind
shear near the surface. (b) Modeled by PWP model. (c) Modeled given mean eddy viscosity from MY2 model, but no
waves. (d) Modeled given mean eddy viscosity from MY 2 model, Pierson—Moskowitz spectrum, but without Langmuir
cells. () Modeled using finite-difference code. Although the finite-difference code does get the magnitude of the

observed shear right, it gets the direction wrong.

is very different from that predicted in the absence of
Langmuir cells by the MY2 model. In general, the ve-
locity profile is more uniform than predicted by the
MY?2 model. However, there are still shears within the
mixed layer, a phenomenon seen in the data which con-
trasts sharply with the PWP model. The details of this
shear structure, however, still differ significantly from

observations. Differences between the finite-difference
code and the data (of which there are several) are con-
sidered in more detail in the following section.

In general, the finite-difference code seems to show
more and deeper mixing than actually observed during
MILDEX. This supports the hypothesis that Langmuir
cells rather than small-scale turbulent motions are the
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primary mechanism for stirring the mixed layer and
that such cells need to be included in mixed layer mod-
els. However, the differences between the model output
and observations are evidence that the actual physics is
probably more complex than that included in the finite-
difference code—so that there is no simple way to
patch the one-dimensional models at present.

8. Conclusions

This work argues that the mixed layer is primarily
maintained by large eddies driven by wave—current
interaction. Models of the mixed layer that do not
include these large eddies fail to capture the observed
velocity structure. If one predicts the structure of the
open-ocean Ekman spiral using eddy viscosities de-
rived from assuming small-scale turbulent mixing,
the resulting velocity profile is frequently strongly
unstable to Langmuir cells driven by surface gravity
waves. These Langmuir circulations mix over the
depth of the layer and replace small-scale diffusion
as the primary mechanism for vertical transport of
momentum within the mixed layer interior. As a re-
sult, the interior of the mixed layer is less sheared
than predicted by one-dimensional eddy viscosity
models, which assume mixing to be driven by small-
scale turbulence. However, near the upper boundary,
these strongly mixing Langmuir cells are weaker, and
a near-surface shear layer in which the mixing is
driven by small-scale turbulence is predicted. This
near-surface shear layer is not predicted by one-di-
mensional slab models (such as the PWP model),
which assume complete and total homogenization of
the mixed layer.

In the Northern Hemisphere, Langmuir cells that
grow upon the Ekman spiral are oriented to the right
of the wind, as observed in the field (Faller 1964).
This orientation results from the cells responding to
the rotation of the shear to the right of the wind. Pre-
sumably, observations in the Southern Hemisphere
should show the cells as being oriented to the left of
the wind. In both hemispheres, however, strong prop-
agation of oceanic swell at some angle to the wind
can result in the cells choosing a different angle of
orientation, subject to the constraints outlined in sec-
tion 5.

The numerical models of Langmuir circulation in the
presence of Coriolis force presented here yield useful
insights into the physics governing mixing in oceanic
surface layers. However, there are still major differ-
ences between the theory as currently stated and ob-
servations of Langmuir cells. Three important discrep-
ancies are listed below:

¢ The presence of waves was predicted to induce an
Eulerian return flow balancing the Lagrangian transport
associated with the Stokes drift. This return flow was
not observed during MILDEX and has not been seen
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in other experiments (Price et al. 1987; Gnanadesikan
1994; Schudlich and Price 1994; Weller and Pluedde-
mann 1995).*

® The shear in the near-surface shear layer was pre-
dicted to be downwind (with water near the surface
moving more quickly in the alongwind direction than
water slightly deeper in the water column). At greater
depths, on the other hand, the finite-difference code
predicts upwind shear. The reverse was seen at both
depths during MILDEX.

¢ The horizontal length scale of the cells is ex-
tremely large (approximately 200 m), with no smaller
scales present. Observations of the horizontal scale of
the cells have often shown a range of scales (Weller
and Price 1988; Zedel and Farmer 1991).

As noted in section 7, to some degree the failure of
the finite-difference code to exactly reproduce the ob-
served structure is attributable to the fact that the ob-
servations occurred in an environment where the forc-
ing functions varied over time and the effects of density
were not considered. However, certain inadequacies in
the physics of the finite-difference code may also be
important. The remainder of this section considers
where the finite-difference code may be failing for in-
trinsic physical reasons and considers what might be
done to improve the situation.

The failure of the model to reproduce the range of
length scales and the near surface shear are potentially
linked. Short-wavelength Langmuir cells act over shal-
lower depths, growing more quickly than long-wave-
length cells, but penetrate less deeply into the water
column (Gnanadesikan 1994). Strong Langmuir cells
near the surface could potentially produce a shear re-
versal similar to that caused by the long-wavelength
cells. Such strong near-surface cells might also weaken
the longer-wavelength cells, reducing the amount of
momentum they are capable of transporting over the
entire mixed layer and reducing the deep upwind
shears.

The difference between the observed and predicted
transport is more difficult to explain. One possible ex-
planation for the difference is that the waves are rep-
resented by infinite length wave trains rather than by
finite length groups. Mclntyre (1981) points out that
the mean volume flux associated with a wave group
consists of three components:

1) That associated with the Stokes drift, which is
trapped to the group itself.

2) A return flow that has a deeper structure but
which is also trapped to the group.

* Fortunately, for MILDEX, the presence of an Eulerian return flow
does not greatly alter the shear structure of the mixed layer (Fig. 15).
As a result, it should not greatly change the instability characteristics

-of the mixed layer. This is not necessarily the case for smaller values

of Ek.
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Long Wave

Pressure Driven Return Flow

FiG. 16. Schematic of the mass fluxes associated with a finite-
length wave group in deep water (after McIntyre 1981). The Stokes
drift associated with the wave train contributes one component. How-
ever, the orbital velocities associated with the wave train are larger
under the center of the wave train. This resuits in a surface depression
trapped to the wave train, which drives a return flow. A third com-
ponent, the long wave which balances the pressure depression, prop-
agates away from the group at long gravity wave speeds. All three
components have the same absolute value of mass transport.

3) A long wave that propagates away from the
group.

A schematic of this is shown in Fig. 16. The magnitude
of the volume transport associated with all three of
these components is exactly equal. In the presence of
the Coriolis force, all three components will exert a
body force on the fluid. In the presence of mixing, how-
ever, the body forces associated with the wave group
may cancel, while that associated with the long wave
may contribute to the barotropic response of the entire
water column.

In summary, Langmuir cells have the potential to
play a major role in the physics of the oceanic surface
layer. However, simple finite-difference code models
do not yield accurate predictions of the mixed layer
structure due to uncertainties in the physics of Lang-
muir cells as well as inadequacies in the model runs
(lack of time dependence in particular). For more pro-
gress to be made, the following issues will need to be
addressed:

¢ How to consistently specify the wave-Coriolis
force interaction, given finite length wave groups and
the correspondingly complicated structure of the mass
transport.

¢ How to model turbulence and Langmuir cells in
parallel so as to realistically model interactions with the
thermocline.

¢ How to produce the range of scales seen in the
ocean. The problem may lie in the parameterization of
the mixing, the lack of three-dimensionality, or other
as yet unspecified mechanisms.
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APPENDIX
Models of the Mixed Layer Used in This Paper
a. One-dimensional mixed layer models
1) THE PRICE ET AL. (1986) SLAB MODEL

This model consists of two regions, a slab mixed
layer and a transition layer directly underneath. Within
the transition layer, adjacent boxes are mixed until the
gradient Richardson number

_gApAz

Ri, =
IA poAU2

1
e (Al)
The mixed layer deepens as the result of two processes,
buoyant overturning, which occurs whenever the water
within the mixed layer is denser than the water im-
mediately below it, and ‘‘bulk Kelvin—Helmholtz in-
stability.”” This latter process occurs when the bulk
Richardson number

. glpD
Ri, =
" poAU?

= 0.65, (A2)

where D is the mixed layer depth and Ap and AU are
defined across the base of the mixed layer. This term
represents a parameterization of large eddies that ho-
mogenize the mixed layer rapidly.

2) MELLOR-YAMADA LEVEL-2 MODEL

In the Mellor—Yamada level-2 model, diffusion
is parameterized with eddy diffusion coefficients
K, and K, for momentum and density, respec-
tively,

(K> Kp) = qL(S,(Ri), S,(Ri1)), (A3)

where ¢ is a typical turbulence velocity, L is a typical
turbulence length scale, and §,, and S, are functions of
the local gradient Richardson number Ri,. The turbu-
Ient velocity is set by the energy balance equation

¢ _ g [(OUY (9VY
B.L_K'"[(az) +(8z)

vk, 8 (@) (A4)
p

0z

dissipation = shear production + buoyancy transport,

where B, is a constant. Here L is set using the traditional
Blackadar formulation

KZ
L=1L, 2t L (A5a)
L, = 0.20 f zqdz/f qdz, (A5b)



3170

where « is the Kolomogorov constant 0.4. For most
neutrally stratified layers Lo is of order 10 m, so that L
is of order 5 m.

b. Two-dimensional models of instability
1) GALERKIN CODE

If the streamfunction, alongcell velocity, and Stokes
drift are expanded as a Fourier series:

W =U(z) + P(x, 2, 1) = i v, sin<"7’)r5>

n=1

+ i ¥ (1) Sin(-ng—z)e”“ (A6a)

n=\

v=V(z)+tuv(x,z,0) =2V, cos(%)

n=|

+ 3 ) sin<%)e“* (A6b)

n=1

u, = u(z) Y, u, cos(-’}g—z) (A6c)

n=1

v =v(2) = X v, cos(%) . (A6d)

n=1

In everything that follows, the horizontally varying se-
ries will be considered the perturbation. These series
are truncated at some number N for the horizontally
varying part (the second summation) and at 2N + 1 for
the horizontal mean part. A matrix equation for the ¢,
v, p. can then be defined:

W _ <
%= 3 Uy + Byt DL

V N

+ 2 (E,, + V., v, (ATa)
m=0
Oy yoo
- = Z (Uﬂ'nm + Pum" + Dvmn)vm

at m=0

N
+ X (E,, + Vo, )m.  (ATD)
m=1

Here D, and D, represent viscous damping and are
given by

2,2

n
D’Z )6,,m. (A8)

= —La(k2 +

The effects of Coriolis forces are given by E,
and E,

Fnn/D
E, =—5—F—->— Al
Vym k2 + n27r2/D2 6nm ( 9a)
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n
=T

E, D G-

(A9b)
Left to themselves these matrices produce an inertial
oscillation whose frequency asymptotes to a minimum
of Fatk = 0.

The advection of vorticity as the result of crosscell
Eulerian flow and Stokes drifts is given by P, and U,,,
respectively,

~ikm/2D ,  n’m?
P/’nm-k2+n27r2/02|:‘m nl<k + D2
m — n|*n?
- l—l)—z—_)‘plm~n| - (m + n)
k> + n’n?  (m + n)’n?
X ( D2 - D? )\IIM,,] (Al10a)
2.2
, mmw
+
_ ik k D?
va,,,,, = - E , n27r2 (us‘,,_,,,| - us,,+,,,)' (AlOb)
k D?
The Craik—-Leibovich vortex force is represented by V.:
ikm/2D

Smn = k2 + n2,n.2jD2 ((n - m)v5|n~m|

(Al1l1)

Turning to the alongcell velocity advection terms, the
cross-stream advection of perturbation velocity is rep-
resented by P,:

+ (n + my,,,,).

ikm

Punm = - 2—D_ (]n - m|\I/|n——m|
+ (n + m)‘yn+m) n > 0 (A12a)
ik
= -y,
Po, = = 5 M¥n (A12b)

Similarly, the advection of mean alongcell velocity by
the perturbation flow V,, is given by

ikm
Vl’mn == Z_D— (_(n - m)Vln—mI
+(n+m)V,,,) n>0 (Al3a)
ikm
Vi = = 5 (=mMVn), (A13b)

and the matrix representation of the advection of the
alongcell velocity by cross-stream Stokes drift U, is

Youm =~ % (s, + t,,,,) n>0 (Alda)
ik
U, = = 5 (muy,). (A14b)
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The code was tested for a number of cases where F
= (, and the Stokes drift shear and Eulerian shear were
constant with depth (similar to section 5). For N = 10,
the error found was less than 1 part in 10*. All runs in
this work are for N = 40.

2) APPROXIMATE GALERKIN

In the Galerkin code of appendix section b(1) the
effect of the Coriolis force on the unstable rolls arises
from the E, and E, matrices in (A8a,b). If these ma-
trices are set equal to zero, the instabilities do not
feel the effect of Coriolis forces even though the
mean flow upon which they are growing does. While
this is not mathematically consistent, such a code can
be used to estimate the importance of the Coriolis
force in establishing the instability.

Similarly, all the terms involved with shear instabil-
ity are in the shear/streamfunction interaction matrices
P,, Uy, and D,. The eigenvalues of P, + U, + D,
thus give the growth rates due to shear instability alone
given the background Stokes drift and Eulerian shears.

c. Full two-dimensional model ( finite-difference
code )

This code uses a simple forward-difference time
step, Arakawa Jacobians to evaluate the nonlinear ad-
vection terms, and simple centered differencing to eval-
uate the diffusion (Roache 1977). The grid used for
the simulation in section 7 had 256 points in the hori-
zontal and 32 in the vertical, modeling a dimensional
space 400 m wide and 50 m deep. The code was ini-
tialized with perturbations at a variety of wavelengths
(corresponding to 1, 2, 3, 4, 8, 12, and 16 cycles within
the domain). The relatively naive handling of the dif-
fusion and time stepping can lead to unrealistic nu-
merical diffusion if the time step is too large. For the
MILDEX case, the code was run for 32 000 time steps
corresponding to approximately 1 pendulum day, so
that each time step was approximately 3 s. For such a
small time step the numerical diffusion was found to
be insignificant when growth rates predicted from the
code were compared to analytical solutions.
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