NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl's external home page > gfdl on-line bibliography > 2001: Journal of Climate, 14(16), 3444-3463

A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: thermodynamic and hydrological aspects in a general circulation model

Donner, L., C. J. Seman, R. S. Hemler, and S. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: thermodynamic and hydrological aspects in a general circulation model. Journal of Climate, 14(16), 3444-3463.
Abstract: A cumulus parameterization based on mass fluxes, convective-scale vertical velocities, and mesoscale effects has been incorporated in an atmospheric general circulation model (GCM). Most contemporary cumulus parameterizations are based on convective mass fluxes. This parameterization augments mass fluxes with convective-scale vertical velocities as a means of providing a method for incorporating cumulus microphysics using vertical velocities at physically appropriate (subgrid) scales. Convective-scale microphysics provides a key source of material for mesoscale circulations associated with deep convection, along with mesoscale in situ microphysical processes. The latter depend on simple, parameterized mesoscale dynamics. Consistent treatment of convection, microphysics, and radiation is crucial for modeling global-scale interactions involving clouds and radiation.
Thermodynamic and hydrological aspects of this parameterization in integrations of the Geophysical Fluid Dynamics Laboratory SKYHI GCM are analyzed. Mass fluxes, phase changes, and heat and moisture transport by the mesoscale components of convective systems are found to be large relative to those of convective (deep tower) components, in agreement with field studies. Partitioning between the convective and mesoscale components varies regionally with large-scale flow characteristics and agrees well with observations from the Tropical Rainfall Measuring Mission (TRMM) satellite.
The effects of the mesoscale components of convective systems include stronger Hadley and Walker circulations, warmer upper-tropospheric Tropics, and moister Tropics. The mass fluxes for convective systems including mesoscale components differ appreciably in both magnitude and structure from those for convective systems consisting of cells only. When mesoscale components exist, detrainment is concentrated in the midtroposphere instead of the upper troposphere, and the magnitudes of mass fluxes are smaller. The parameterization including mesoscale components is consistent with satellite observations of the size distribution of convective systems, while the parameterization with convective cells only is not.
The parameterization of convective vertical velocities is an important control on the intensity of the mesoscale stratiform circulations associated with deep convection. The mesoscale components are less intense than in TRMM observations if spatially and temporally invariant convective vertical velocities are used instead of parameterized, variable velocities.
smaller bigger reset
last modified: March 22 2004.