NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl's home page > gfdl on-line bibliography > 1998: Journal of Physical Oceanography, 28(5), 831-841

The Gent-McWilliams skew flux

Griffies, S. M., 1998: The Gent-McWilliams skew flux. Journal of Physical Oceanography, 28(5), 831-841.
Abstract: This paper formulates tracer stirring arising from the Gent-McWilliams (GM) eddy-induced transport in terms of a skew-diffusive flux. A skew-diffusive tracer flux is directed normal to the tracer gradient, which is in contrast to a diffusive tracer flux directed down the tracer gradient. Analysis of the GM skew flux provides an understanding of the physical mechanisms prescribed by GM stirring, which is complementary to the more familiar advective flux perspective. Additionally, it unifies the tracer mixing operators arising from Redi isoneutral diffusion and GM stirring. This perspective allows for a computationally efficient and simple manner in which to implement the GM closure in z-coordinate models. With this approach, no more computation is necessary than when using isoneutral diffusion alone. Additionally, the numerical realization of the skew flux is significantly smoother than the advective flux. The reason is that to compute the skew flux, no gradient of the diffusivity or isoneutral slope is taken, whereas such a gradient is needed for computing the advective flux. The skew-flux formulation also exposes a striking cancellation of terms that results when the GM diffusion coefficient is identical to the Redi isoneutral diffusion coefficient. For this case, the horizontal components to the tracer flux are aligned down the horizontal tracer gradient, and the resulting computational cost of Redi diffusion plus GM skew diffusion is roughly half that needed for Redi diffusion alone.
smaller bigger reset
last modified: March 23 2004.