Advanced Event Analysis Methods at the Energy Frontier

Reinhard Schwienhorst

Boston University Particles & Fields Seminar, 12/7/2005

Outline

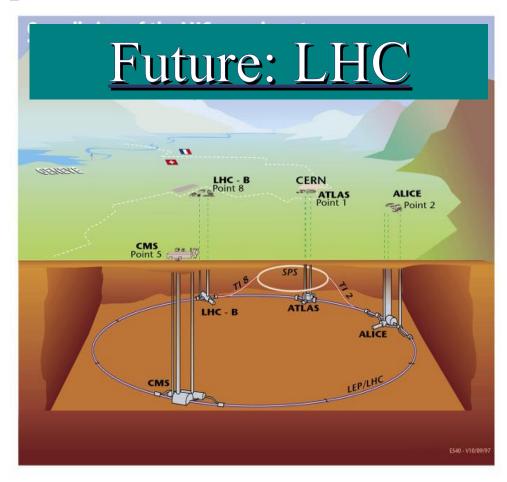
- Introduction
 - Physics at the energy frontier
- Analysis procedure
- Event Analysis methods
 - Neural Network
 - Decision Tree
 - Boosting
 - Bayesian Limit
- Conclusions

Disclaimer

- Focus on the energy frontier
 - Problems of low statistics
- Example: single top quark search at the Tevatron
 - My area of expertise
- Bayesian statistics where applicable
 - I am a statistical philosophy agnostic
 - Methods presented here are independent of which philosophy is followed
- Focus on general principles and guiding ideas
 - Intuitive procedure, not necessarily mathematically rigorous

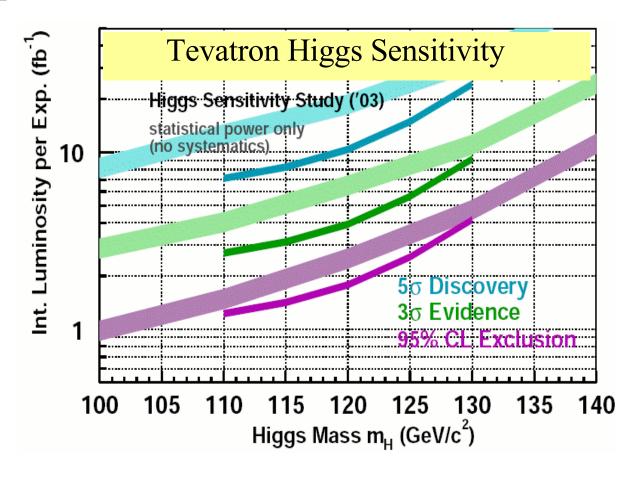
The Energy Frontier

- Colliding particles at the highest available energies
 - Probe structure of matter at the most fundamental level
 - Observe interactions at the smallest possible distances
 - Produce never-before-seen particles



Searches at the Energy Frontier

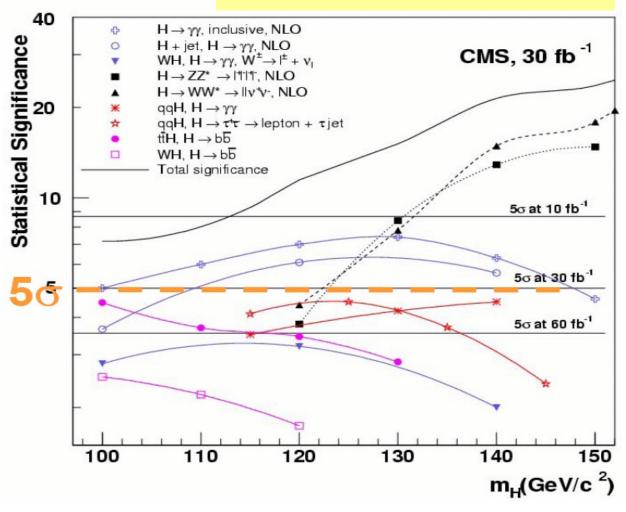
- Searches for new particles, phenomena, couplings
 - Tevatron:
 - Single top quark production
 - Higgs boson search
 - SUSY
 - Extra dim
 - •



Searches at the Energy Frontier

- Searches for new particles, phenomena, couplings
 - Tevatron:
 - Single top quark production
 - Higgs boson search
 - SUSY
 - Extra dim
 - •
 - LHC:
 - Higgs search

LHC Higgs Sensitivity

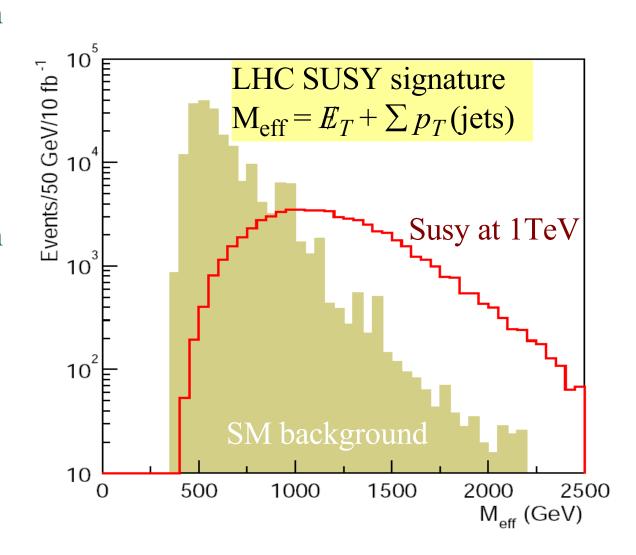


Searches at the Energy Frontier

- Searches for new particles, phenomena, couplings
 - Tevatron:
 - Single top quark production
 - Higgs boson search
 - SUSY
 - Extra dim
 - •

- LHC:

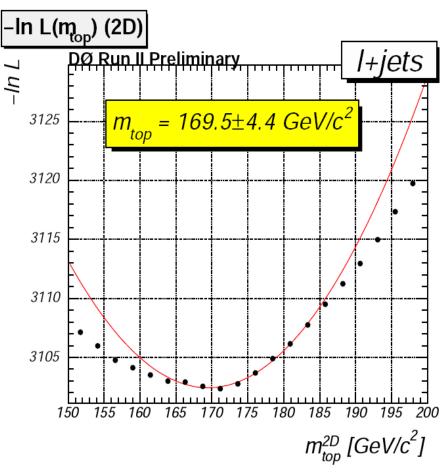
- Higgs boson search
- SUSY
- Extra dim
- •



Measurements at the Energy Frontier

- First measurements of properties, couplings
 - With samples of limited size
 - Example:Tevatron top quark mass

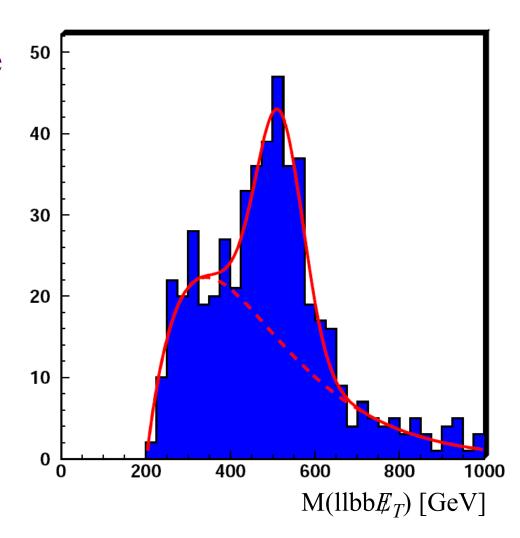
DØ top mass based on 55 top quark pair events in 0.3 fb⁻¹



Measurements at the Energy Frontier

- First measurements of properties, couplings
 - With samples of limited size
 - Example:LHC Susy particlemasses

LHC b mass: 100 signal events in 30 fb⁻¹

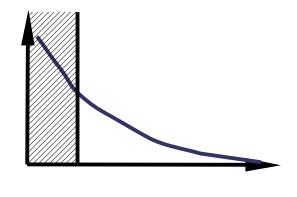


Physics at the Energy Frontier

- Searches for new particles, phenomena, couplings
- First measurements of properties, couplings

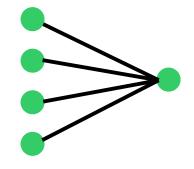
Making the most out of small samples of events

Analysis outline



1. Event selection

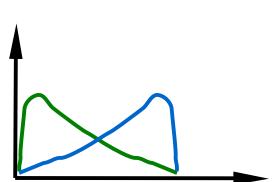
- Object identification
- Background modeling



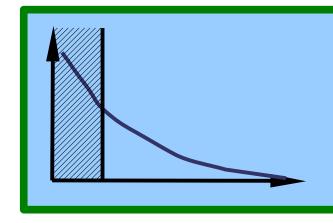
2. Event analysis

- Discriminating variables
- Cut/combine in multivariate analysis

- Measurement with uncertainty
- Confidence limit

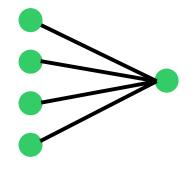


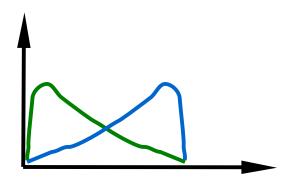
Analysis outline



1. Event selection

- Object identification
- Background modeling





2. Event analysis

- Discriminating variables
- Cut/combine in multivariate analysis

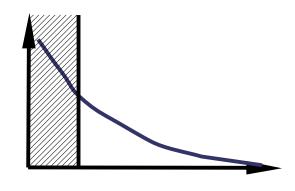
3. Statistical analysis

- Measurement with uncertainty
- Upper/Lower confidence limit

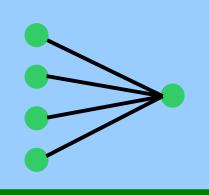
Event Selection

- Select events with specific final state objects
 - Object ID, remove mis-reconstructed events
 - Cuts on p_T and η for leptons, jets, MET
 - Specific numbers of leptons, jets
 - Possibly b-quark tagging
- Figure out possible SM backgrounds
 - Any process resulting in same final state
- Compare background sum to observed data
 - In background-dominated sample
 - In additional samples where no signal is expected
 - Compare total event counts
 - Compare shapes of important distributions

Analysis outline

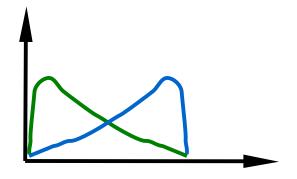


- 1. Event selection
 - Object identification
 - Background modeling



2. Event analysis

- Discriminating variables
- Cut/combine in multivariate analysis



3. Statistical analysis

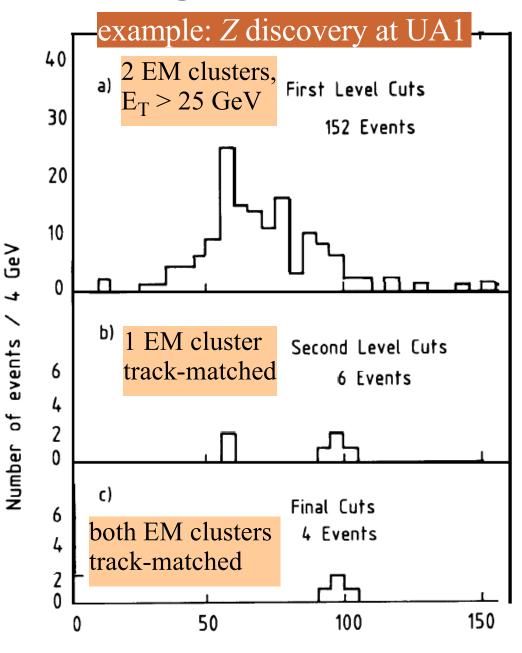
- Measurement with uncertainty
- Confidence limit

Basic Event Analysis Procedures

- 1) Cut-based event counting
- 2) Peak in a characteristic distribution

Event counting

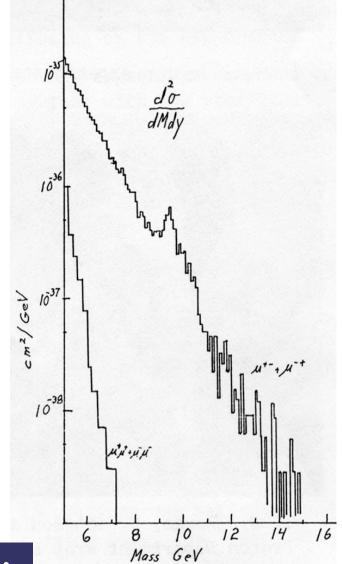
- Apply cuts to variables describing the event
 - Object identification
 - Kinematic cuts on objects
 - Event kinematics
- Goal: cut until the signal is visible
 - No background left
 - − Or large S/\sqrt{B}
- Sensitive to any signal with this final state
- Requires understanding of background



Uncorrected invariant mass cluster pair (GeV/c²)

Peak in a characteristic distribution

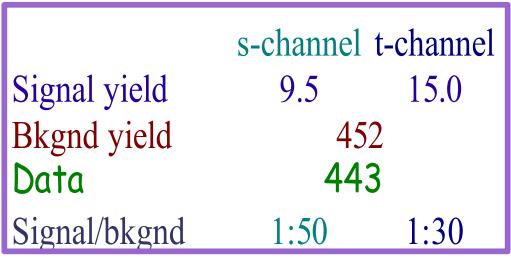
- Find a variable that has a smooth distribution for background
 - Typically invariant mass
- Measure this distribution over a large range of possible values
- Look for possible resonance peaks
 - Example: b-quark discovery at Fermilab
- Sensitive to any resonance with this final state



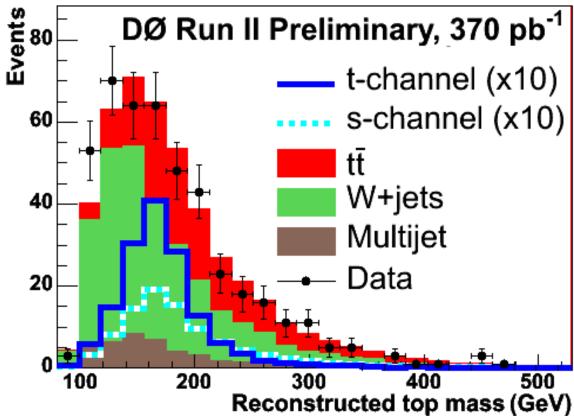
"Bump Hunting"

When Event Counting and Bump Hunting don't work

Example: Single Top in 370 pb⁻¹

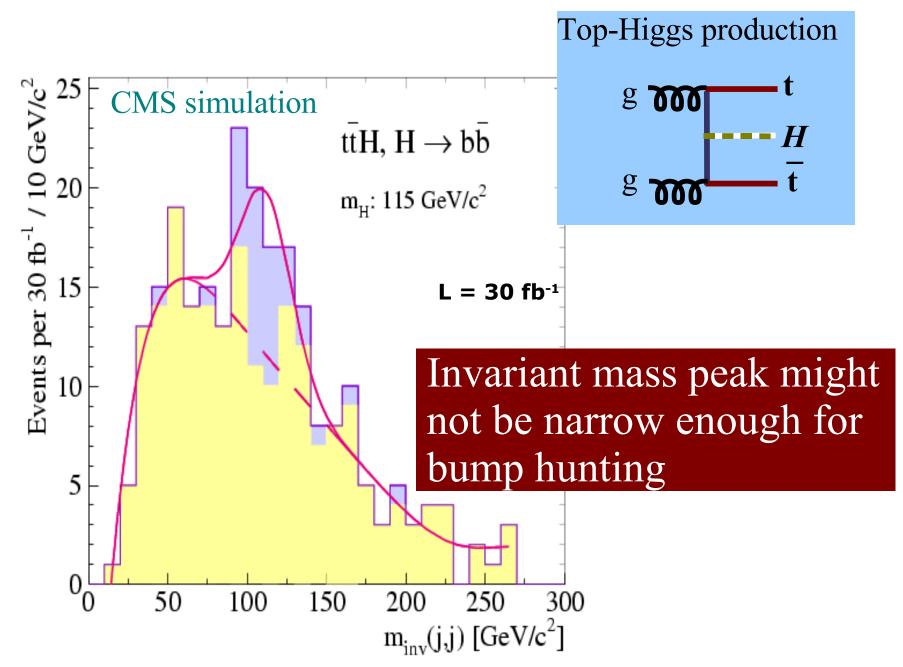


Signal/Background too small for event counting



Invariant mass too broad for bump hunting

Example: Light Higgs at the LHC



How to improve upon

Event Counting and Bump Hunting

Optimized Event Analysis

Optimized =

Optimize signal-background separation Exploit full event information Event kinematics, angular correlations, ... Take all correlations into account

- Requires detailed expectation for signal and background
 - Only applicable to searches for a specific signal or measurements of a specific process
- Limited by background and signal modeling
 - MC statistics, MC model, background composition, shape, ...

Wrong signal model: search is not sensitive

Wrong background model: find something that isn't there

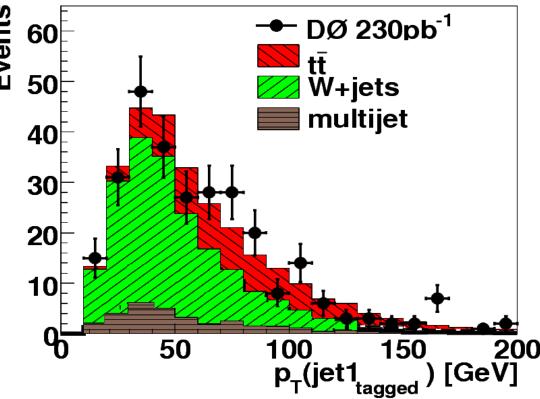
Optimizing the Event Analysis

- Find discriminating variables
 - Using physics intuition, analyzing Feynman diagrams
 - Brute force trial and error
 - Define smallest set that covers all of phase space
- Check that background model matches data for these

variables

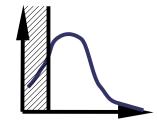
In background dominated samples

- In cross-check samples free of signal
- Also check correlations

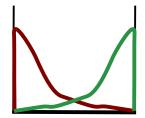


Event Analysis Techniques

Cut-Based

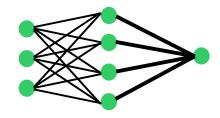


Likelihoods



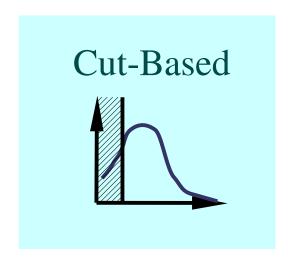
Decision Trees

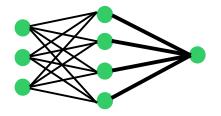
Neural Networks



Many others: Kernel methods, support vector machines, Matrix element, ...

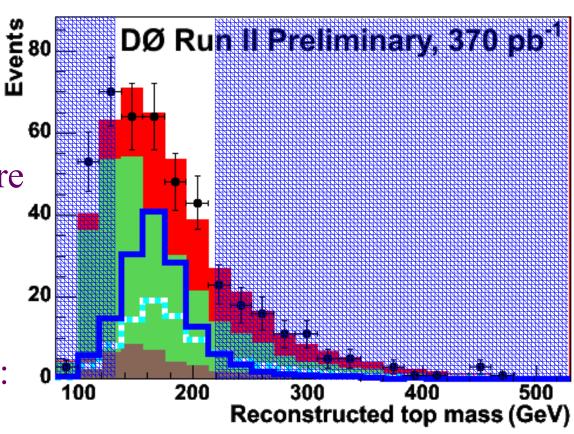
Event Analysis Techniques



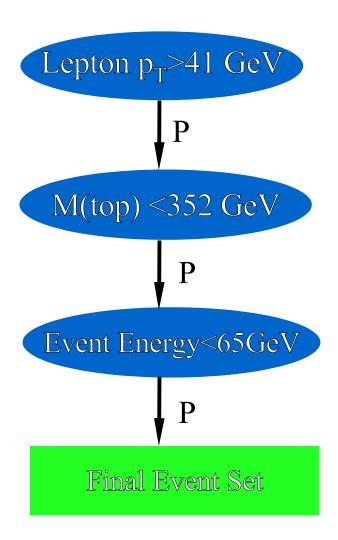


Cut-Based Analysis

- Cut on several discriminating variables
 - Systematically explore possible cuts
- Optimize each cut based on
 - Expected uncertainty:
 maximize S/√B
 - Expected confidence limit



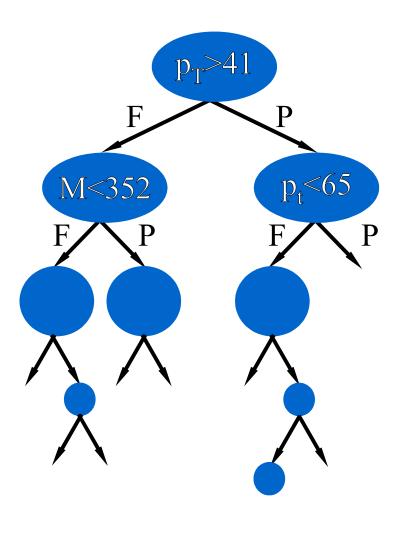
Cut-Based Analysis



In the final event set

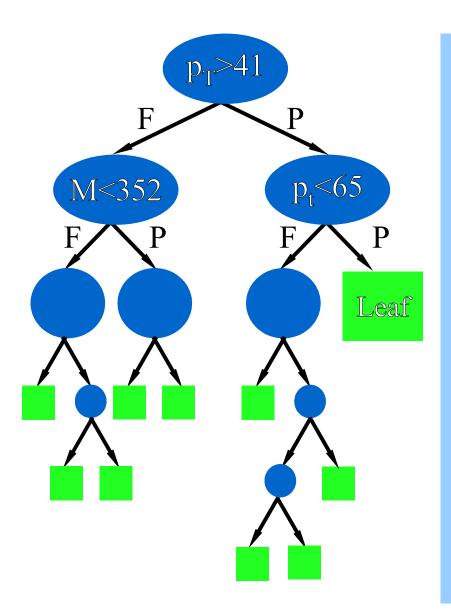
- Estimate background yield
- Compare to data $N_{\rm obs} = N_{\rm data} N_{\rm B}$
- Calculate signal acceptance $\sigma = N_{\text{obs}} / (A*L)$

Including Events that fail a Cut



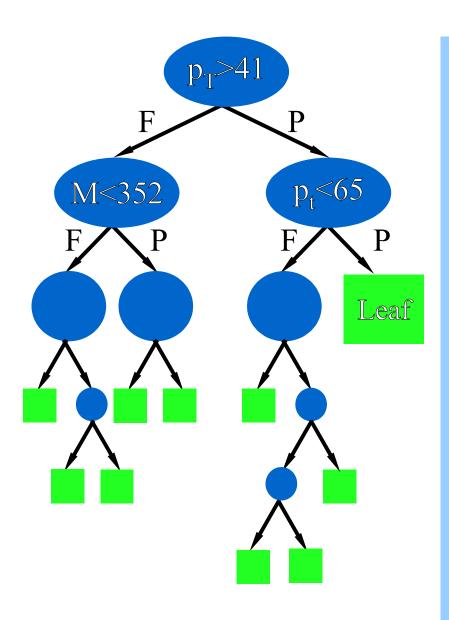
- Create a tree of cuts
- Divide sample into "pass" and "fail" sets
- Each node corresponds to a cut (branch)

Trees and Leafs



- Create a tree of cuts
- Divide sample into "pass" and "fail" sets
- Each node corresponds to a cut (branch)
- A leaf corresponds to an end-point
- For each leaf, calculate purity (from MC): purity = $N_S/(N_S+N_B)$

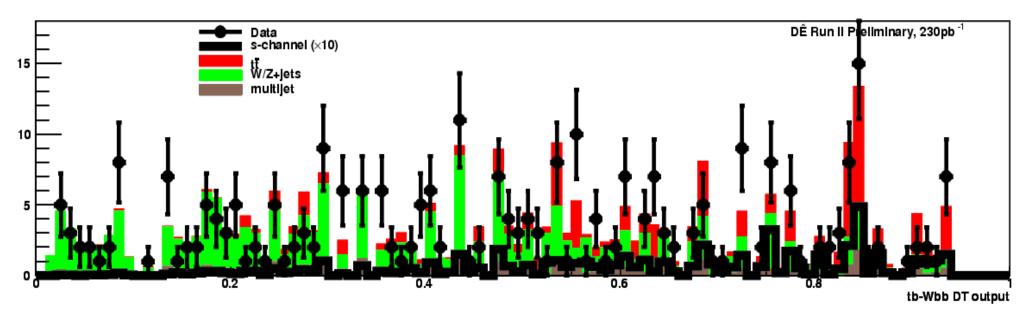
Decision Tree



- Create a tree of cuts
- Divide sample into "pass" and "fail" sets
- Each node corresponds to a cut (branch)
- A leaf corresponds to an end-point
- For each leaf, calculate purity (from MC): purity = $N_S/(N_S+N_B)$
- Train the tree by optimizing the Gini improvement:
 - Gini = $2 N_{\rm S} N_{\rm B} / (N_{\rm S} + N_{\rm B})$
 - Each leaf will be either background- or signal-enhanced

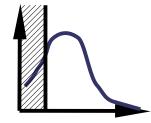
Decision Tree Output

- Train on signal and background models (MC)
 - Stop and create leaf when N_{MC} <100
- Compute purity value for each leaf
- Send data events through tree
 - Assign purity value corresponding to the leaf to the event
- Result is a probability distribution

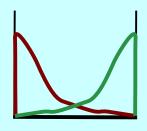


Event Analysis Techniques

Cut-Based

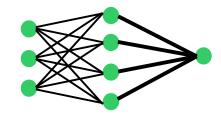


Likelihoods



Decision Trees

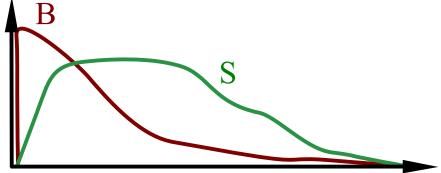
Neural Networks



Likelihood Analysis

• Convert any variable into a probability distribution function:

$$p = \frac{N_{\rm S}}{N_{\rm S} + N_{\rm B}}$$



- Determine pdf from signal and background MC
- Likelihood: product of pdf values for each discriminating variable

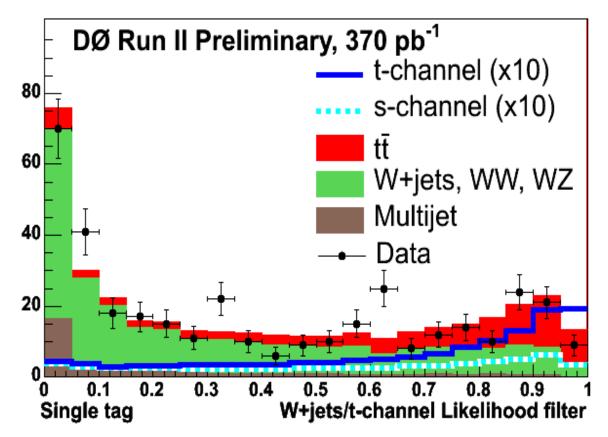
$$L = p_1 \times p_2 \times p_3 \times \dots$$

- Valid if variables are uncorrelated

Also called "simple Bayes"

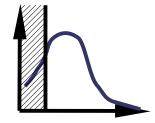
Likelihood Output

- No training required
- For each data event, evaluate likelihood
 - From the discriminating variables
- Result is a probability distribution

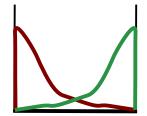


Event Analysis Techniques

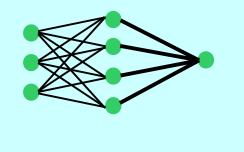
Cut-Based



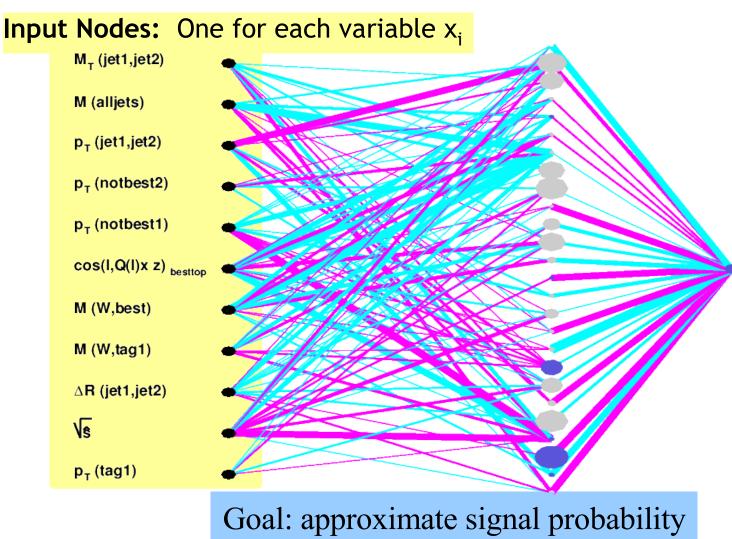
Likelihoods



Decision Trees



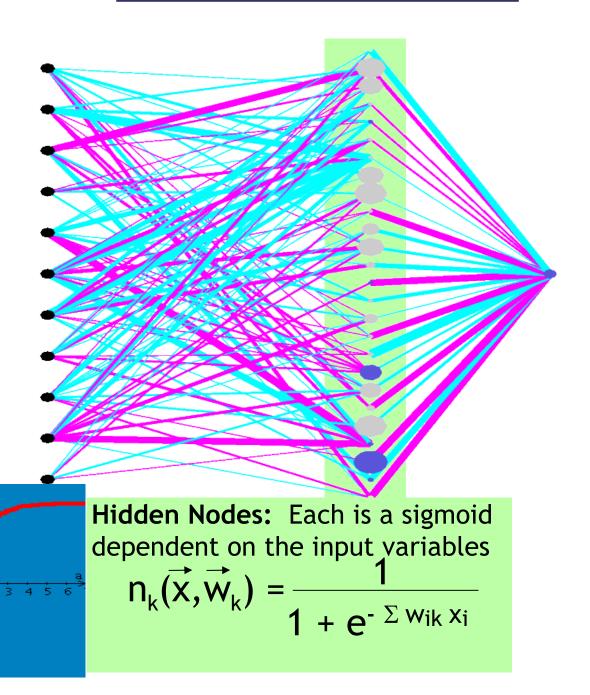
Neural Networks



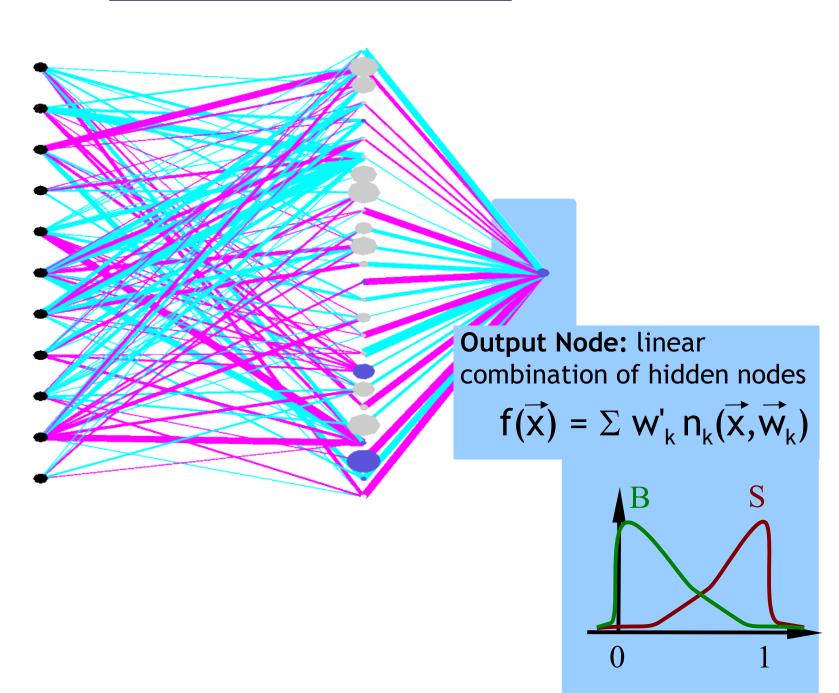
$$f(\vec{x}) \approx P(S|\vec{x})$$

Sigmoid

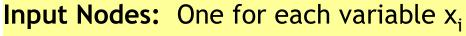
Neural Networks



Neural Networks



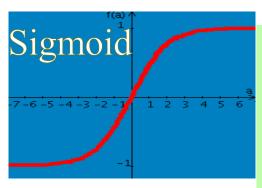
Neural Networks





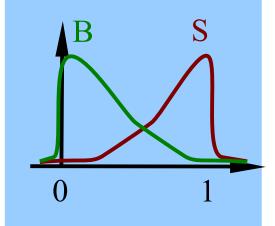
Output Node: linear combination of hidden nodes

$$f(\vec{x}) = \sum w'_k n_k(\vec{x}, \vec{w}_k)$$



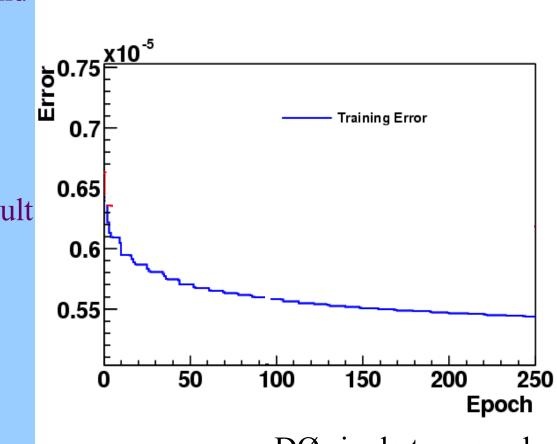
Hidden Nodes: Each is a sigmoid dependent on the input variables

$$n_k(\vec{x}, \vec{w}_k) = \frac{1}{1 + e^{-\sum w_{ik} x_i}}$$



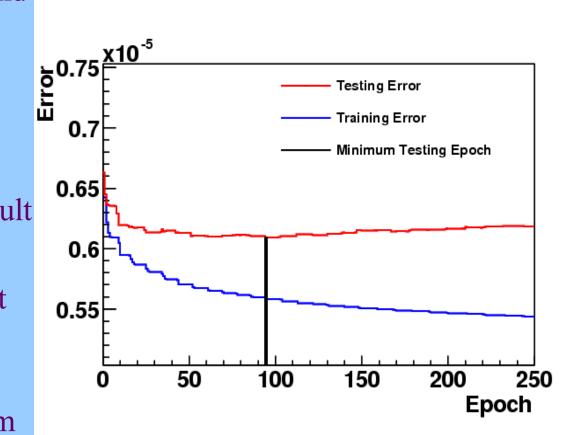
Neural Network Training

- Initialize NN weights
- Read in signal and background model events
 - Training sample
- Compute NN error
 - $\sum (f_{\text{observed}} f_{\text{expected}})$
- Adjust all NN weights as result
- Compute NN error again
- Repeat until ...



Neural Network Training

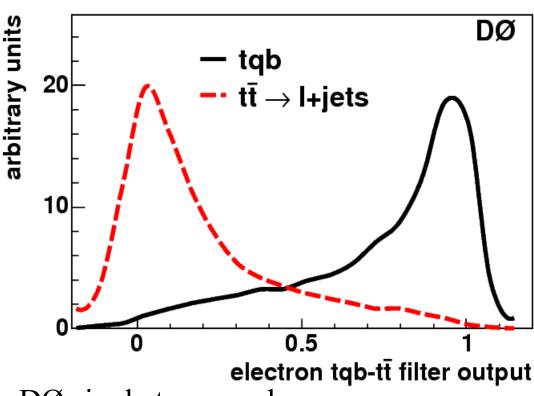
- Initialize NN weights
- Read in signal and background model events
 - Training sample
- Compute NN error
 - $\sum (f_{\text{observed}} f_{\text{expected}})$
- Adjust all NN weights as result
- Compute NN error again
- Apply NN to independent set of signal and background
 - Testing sample
- Stop training when error from testing sample starts increasing



DØ single top search

Neural Network Result

- Train on signal and background models (MC)
 - Stop when signal-background separation stops improving
 - Independent MC training sample
- For each data event, compute NN output
- Result is almost a probability distribution
 - But not necessarily constrained to [0,1]



DØ single top search

Boosting

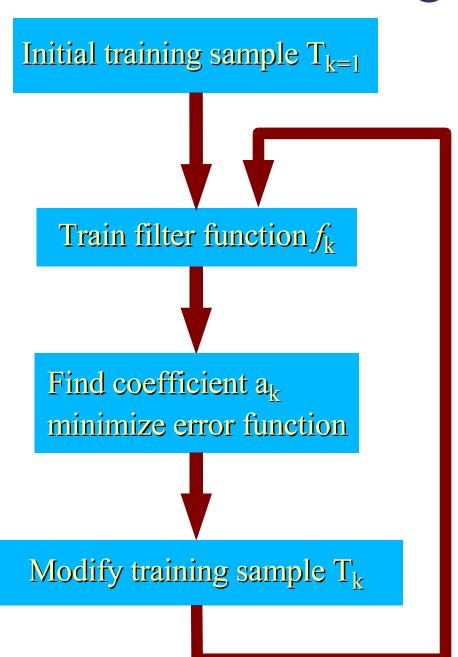
Boosting

- A general method to improve the performance of any weak qualifier
 - Decision trees, neural networks, ...
- Linear combination of many filter functions

$$F(\mathbf{x}) = \sum_{k} a_k f_k$$

a_k: coefficient, typically result of minimization of error function

Boosting Procedure

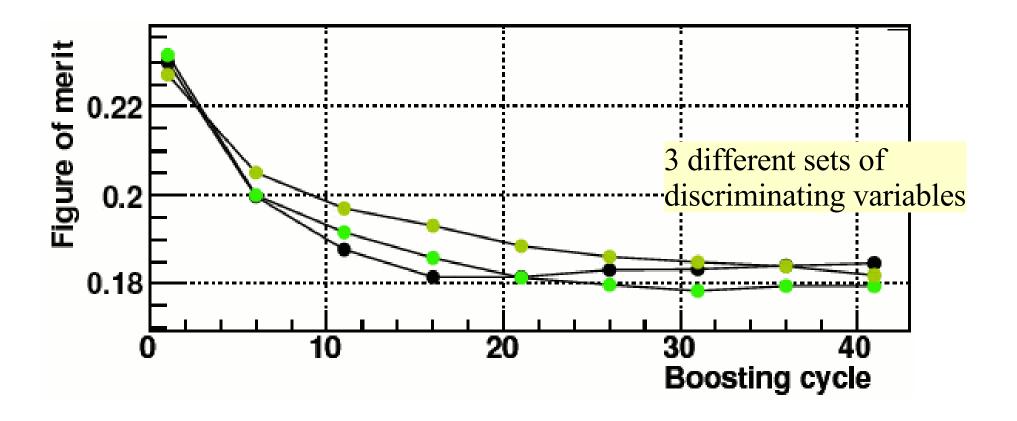


$$F(x) = \sum_{k} a_{k} f_{k}$$

Adaptive Boosting

- In each iteration, update coefficient a_k
 - From minimizing error function
 - coefficients decrease at each iteration
- Update weight for each event in training sample T_k
 - Figure out which events have been misclassified
 - Signal events should have purity ≥ 0.5
 - Background should have purity < 0.5
 - Increase event weight for those events that have been misclassified

Boosting Performance



DØ single top search with decision trees

Comparing Multivariate Methods

How optimal can an optimal event analysis be?

Bayesian Limit

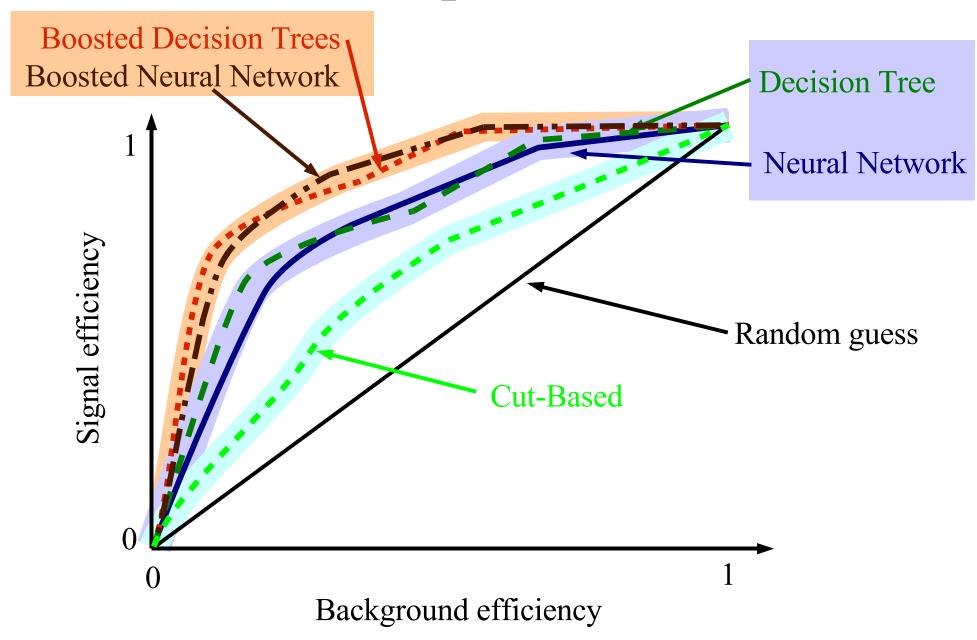
- For each analysis, there exists a fully optimized signal-background separation
 - Bayesian limit, also called target function

$$L(x) = \frac{P(x|S)}{P(x|B)}$$

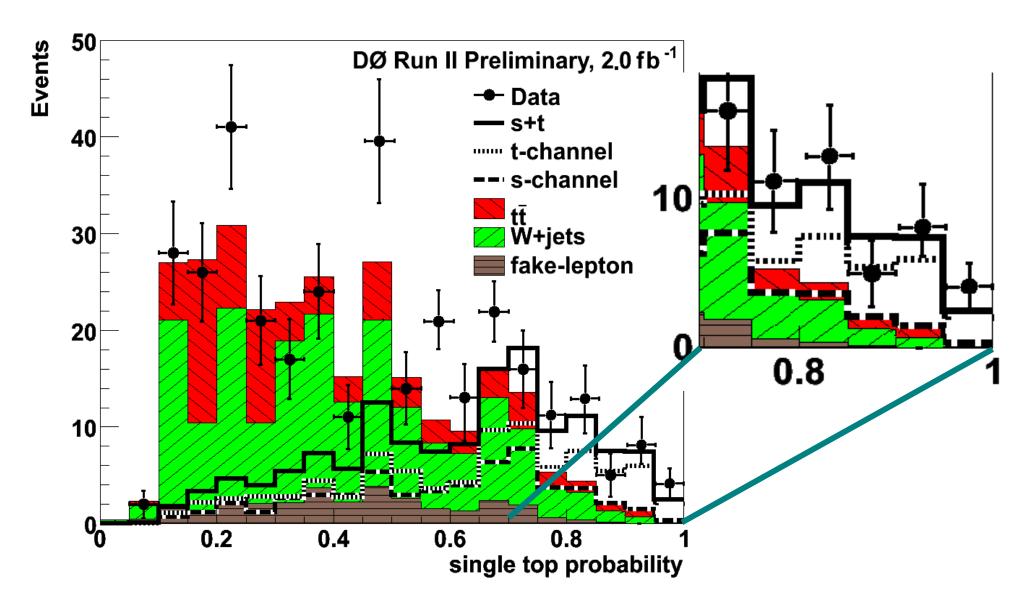
- For a single discrimintating variable, this is equivalent to the pdf
- For many discriminating variables, this isn't possible anymore
 - Typically not enough MC statistic to compute a multidimensional pdf

When do we reach the Bayesian limit?

Comparison



Discovery using a Multivariate Analysis



Conclusions

- Multivariate event analysis techniques are a common tool in HEP
 - So far mostly neural networks, now also decision trees
 - Glast, MiniBoone ID, Atlas ID, Dzero
- Boosting significantly improves weak qualifiers
- Accurate background modeling is very important

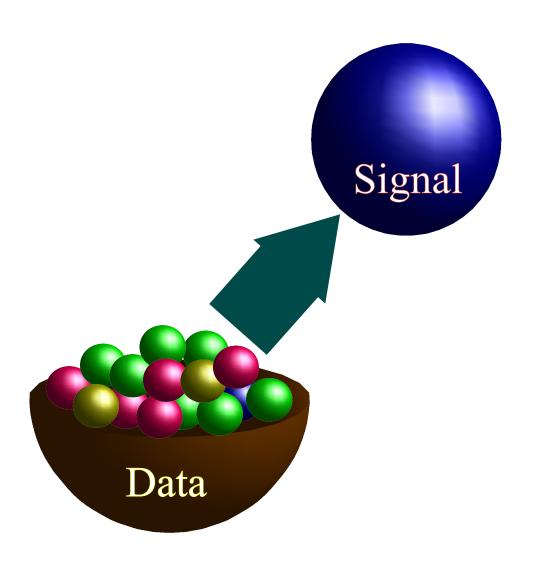
Advanced Event Analysis enables Discoveries

Resources

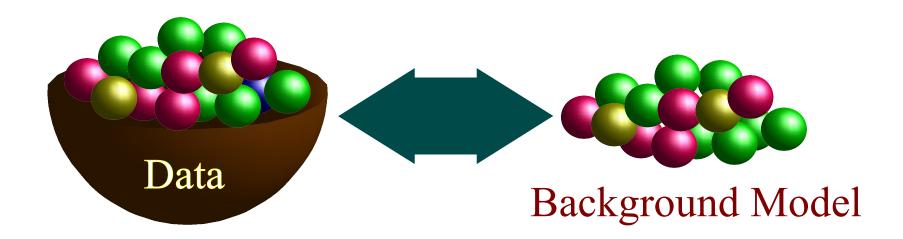
- PhyStat 2005 conference http://www.physics.ox.ac.uk/phystat05/
- Jim Linnemann's collection of statistics links: http://www.pa.msu.edu/people/linnemann/stat_resources.html
- Neural Networks in Hardware http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html
- Neural Network package JetNet
 http://www.thep.lu.se/public_html/jetnet_30_manual/jetnet_30_manual.html
- Neural Network package MLPFit <u>http://schwind.home.cern.ch/schwind/MLPfit.html</u>
- Boosted Decision Trees in MiniBoone http://arxiv.org/abs/physics/0508045
- Decision Tree Introduction
 http://www.statsoft.com/textbook/stcart.html
- GLAST Decision Trees http://scipp.ucsc.edu/~atwood/Talks%20Given/CPAforGLAST.ppt

Backup Slides

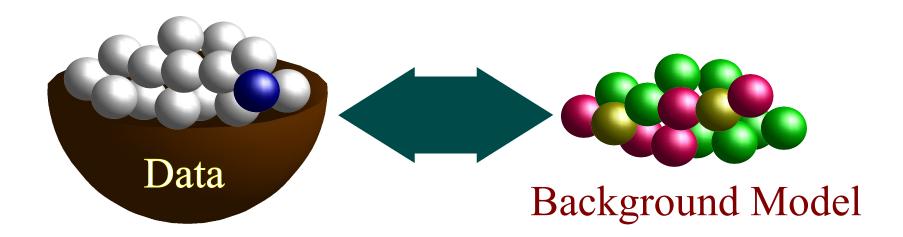
Analysis Outline



Analysis Procedure

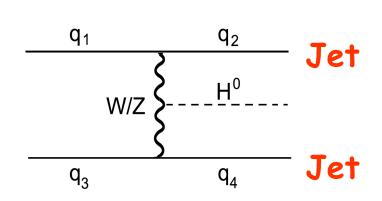


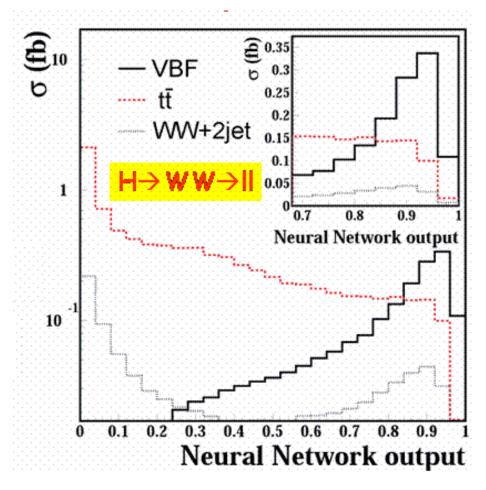
Analysis Procedure



Example: Atlas VBF Higgs Search

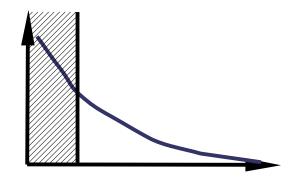
Higgs boson production through vector boson fusion





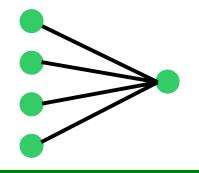
Atlas Preliminary, Bruce Mellado, Wi

Analysis outline



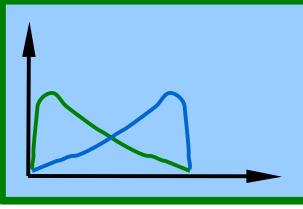
1. Event selection

- Object identification
- Background modeling



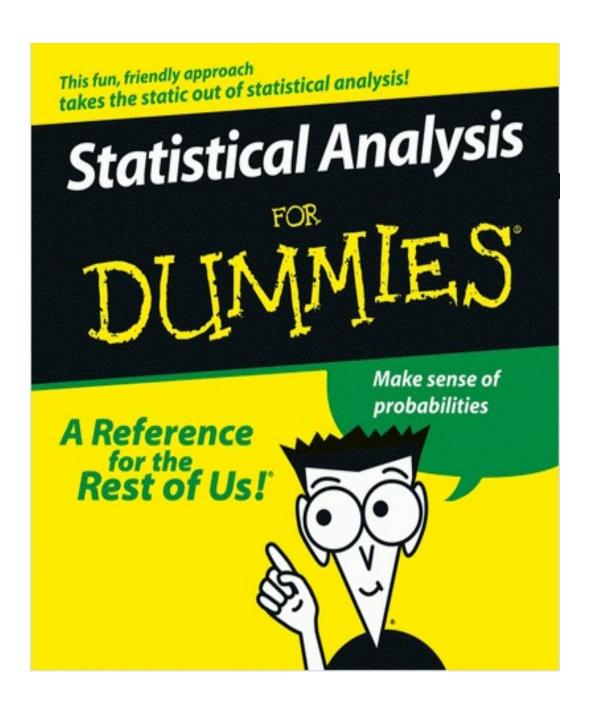
2. Event analysis

- Discriminating variables
- Cut/combine in multivariate analysis

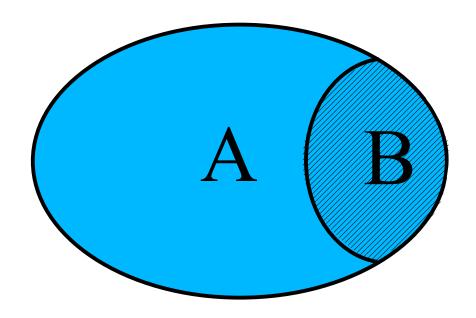


3. Statistical analysis

- Measurement with uncertainty
- Confidence limit

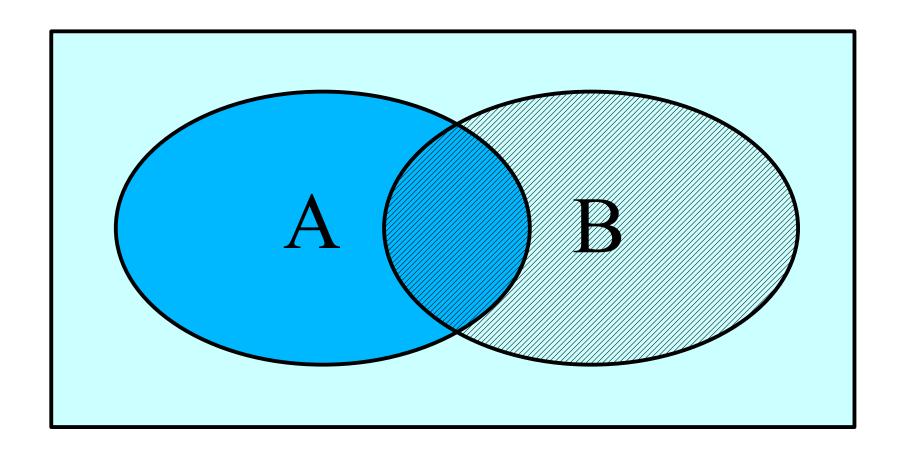


Bayes Theorem



P(B|A): conditional probability for B, given that A is true.

Bayes Theorem



$$P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$$

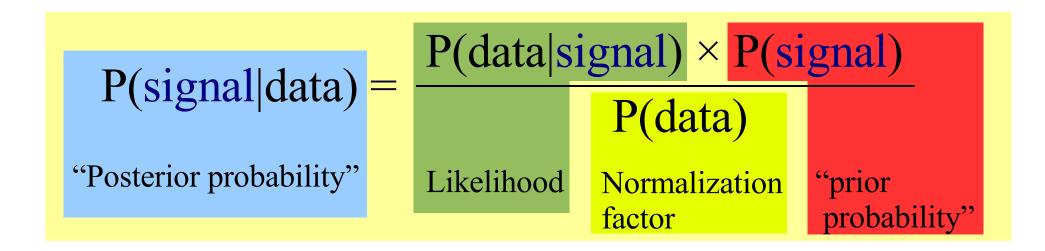
$$P(signal|data) = \frac{P(data|signal) \times P(signal)}{P(data)}$$

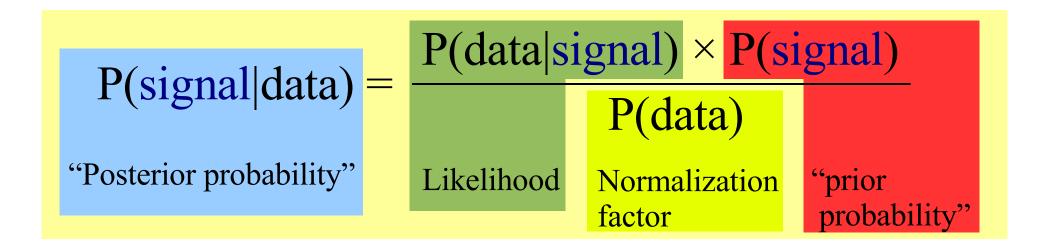
$$\frac{P(\text{signal}|\text{data})}{P(\text{data}|\text{signal}) \times P(\text{signal})} = \frac{P(\text{data}|\text{signal}) \times P(\text{signal})}{P(\text{data})}$$

"Posterior probability"

 $\frac{P(signal|data)}{P(signal)} = \frac{P(data|signal) \times P(signal)}{P(data)}$ "Posterior probability"

Likelihood





Procedure

- 1) Determine likelihood from signal and background models
- 2) Make assumption for prior and find normalization factor
- 3) Compute posterior from actual data

Measurements based on posterior

- Cross section (peak) and uncertainty (width)
- Confidence limit from integrating 95% of posterior area

Statistical Data Analysis

Event counting

- Likelihood is a Poisson function
- $L(x,\mu) = \frac{\mu^x e^{-x}}{x!}$
- Mean $\mu \rightarrow \text{Signal} + \text{Background}$
- Width $\sigma = \sqrt{\mu}$
- Measurement uncertainty $\sim S/\sqrt{(S+B)}$
- Search: how far is data away from background?
 - Sensitivity $\sim 1/\sqrt{B}$
 - "5 sigma discovery" \rightarrow S/ $\sqrt{B} > 5$

Combining channels

- Independent datasets
- Multiply likelihoods $L = L_1 \times L_2$

Binned likelihood

- Each bin of a given distribution is a separate channel Reinhard Schwienhorst, Michigan State University