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Outline
• Introduction

– Physics at the energy frontier

• Analysis procedure
• Event Analysis methods

– Neural Network
– Decision Tree
– Boosting
– Bayesian Limit

• Conclusions
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Disclaimer
• Focus on the energy frontier

– Problems of low statistics

• Example: single top quark search at the Tevatron
– My area of expertise

• Bayesian statistics where applicable
– I am a statistical philosophy agnostic
– Methods presented here are independent of which 

philosophy is followed

• Focus on general principles and guiding ideas
– Intuitive procedure, not necessarily mathematically rigorous 



4 Reinhard Schwienhorst, Michigan State University

The Energy Frontier
• Colliding particles at the highest available energies

• Probe structure of matter at the most fundamental level

– Observe interactions at the smallest possible distances
– Produce never-before-seen particles

Future: LHCFuture: LHCPresent: TevatronPresent: Tevatron



Searches at the Energy Frontier
• Searches for new particles, phenomena, couplings

– Tevatron:
• Single top quark production
• Higgs boson search
• SUSY
• Extra dim
• ...

        Tevatron Higgs Sensitivity
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Searches at the Energy Frontier
• Searches for new particles, phenomena, couplings

– Tevatron:
• Single top quark production
• Higgs boson search
• SUSY
• Extra dim
• ...

– LHC:
• Higgs boson search
• SUSY
• Extra dim
• ...

LHC SUSY signature
Meff = ET +  pT (jets)

SM background

Susy at 1TeV

/



Measurements at the Energy Frontier
• First measurements of properties, couplings

– With samples of limited size
– Example:

Tevatron top quark mass

 DØ top mass based on 
 55 top quark pair events 
 in 0.3 fb-1 



Measurements at the Energy Frontier
• First measurements of properties, couplings

– With samples of limited size
– Example:

LHC Susy particle
masses

LHC b mass:
 100 signal  
 events in 30 fb-1 

M(llbbET) [GeV]/

~



Physics at the Energy Frontier

• Searches for new particles, phenomena, couplings
• First measurements of properties, couplings

  Making the most out of small samples of events
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Analysis outline

1. Event selection
– Object identification
– Background modeling

2. Event analysis
– Discriminating variables
– Cut/combine in multivariate analysis

3. Statistical analysis
– Measurement with uncertainty
– Confidence limit



12 Reinhard Schwienhorst, Michigan State University

Analysis outline

1. Event selection
– Object identification
– Background modeling

2. Event analysis
– Discriminating variables
– Cut/combine in multivariate analysis

3. Statistical analysis
– Measurement with uncertainty
– Upper/Lower confidence limit
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Event Selection
• Select events with specific final state objects

– Object ID, remove mis-reconstructed events

– Cuts on pT and  for leptons, jets, MET

– Specific numbers of leptons, jets
– Possibly b-quark tagging

• Figure out possible SM backgrounds
– Any process resulting in same final state

• Compare background sum to observed data
– In background-dominated sample
– In additional samples where no signal is expected
– Compare total event counts
– Compare shapes of important distributions
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Analysis outline

1. Event selection
– Object identification
– Background modeling

2. Event analysis
– Discriminating variables
– Cut/combine in multivariate analysis

3. Statistical analysis
– Measurement with uncertainty
– Confidence limit
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Basic Event Analysis Procedures

1) Cut-based event counting
2) Peak in a characteristic distribution



Event counting
• Apply cuts to variables 

describing the event
– Object identification
– Kinematic cuts on objects
– Event kinematics

• Goal: cut until the signal
is visible
– No background left
– Or large S/B

• Sensitive to any signal with 
this final state

• Requires understanding of 
background

example: Z discovery at UA1
2 EM clusters,
ET > 25 GeV

1 EM cluster
track-matched

both EM clusters
track-matched
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Peak in a characteristic distribution
• Find a variable that has a smooth 

distribution for background 
– Typically invariant mass

• Measure this distribution over a 
large range of possible values

• Look for possible resonance peaks 
– Example: b-quark discovery at 

Fermilab

• Sensitive to any resonance with 
this final state

 “Bump Hunting”
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When Event Counting
and

Bump Hunting
don't work
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s-channel t-channel
Signal yield 9.5 15.0
Bkgnd yield               452
Data            443
Signal/bkgnd 1:50 1:30

Example:        Single Top in 370 pb  -1

 Invariant mass  
 too broad for bump  
 hunting

 Signal/Background 
 too small
 for event counting
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Example: Light Higgs at the LHC

L = 30 fb-1      

Top-Higgs production

t

t

g

g
H

 Invariant mass peak might  
 not be narrow enough for 
 bump hunting

CMS simulation
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How to improve upon

Event Counting
and

Bump Hunting
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Optimized Event Analysis

• Requires detailed expectation for signal and background
– Only applicable to searches for a specific signal or 

measurements of a specific process
• Limited by background and signal modeling

– MC statistics, MC model, background composition, shape, ...

Optimized = 

Optimize signal-background separation
Exploit full event information

Event kinematics, angular correlations, ...
Take all correlations into account

Wrong signal model: search is not sensitive

Wrong background model: find something that isn't there



23 Reinhard Schwienhorst, Michigan State University

Optimizing the Event Analysis
• Find discriminating variables

– Using physics intuition, analyzing Feynman diagrams
– Brute force trial and error
– Define smallest set that covers all of phase space

• Check that background model matches data for these 
variables
– In background

dominated samples
– In cross-check samples

free of signal
– Also check correlations
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Event Analysis Techniques

Cut­Based Likelihoods

Neural NetworksDecision Trees

Many others: Kernel methods, support vector machines, Matrix element, ... 
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Event Analysis Techniques

Cut­Based

Neural NetworksDecision Trees

Likelihoods
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Cut-Based Analysis

• Cut on several 
discriminating 
variables 
– Systematically explore

possible cuts

• Optimize each cut
based on
– Expected uncertainty:

maximize S/B
– Expected 

confidence limit
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Cut-Based Analysis

Lepton pT>41 GeV

P

P

Event Energy<65GeV

M(top) <352 GeV

Final Event Set

• Estimate background yield
• Compare to data

Nobs = Ndata – NB 

• Calculate signal acceptance
s = Nobs / (A*L)

In the final event set

P
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Including Events that fail a Cut

pT>41

PF

PF

pt<65

PF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
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Trees and Leafs

pT>41

PF

PF

pt<65

PF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
– A leaf          corresponds to an 

end-point
– For each leaf, calculate purity 

(from MC):
purity = NS/(NS+NB)

Leaf
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Decision Tree

pT>41

PF

PF

pt<65

PF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
– A leaf          corresponds to an 

end-point
– For each leaf, calculate purity 

(from MC):
purity = NS/(NS+NB)

– Train the tree by optimizing 
the Gini improvement: 

• Gini = 2 NS NB /(NS + NB) 

• Each leaf will be either 
background- or signal-enhanced

Leaf
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Decision Tree Output
• Train on signal and background models (MC)

– Stop and create leaf when NMC<100

• Compute purity value for each leaf
• Send data events through tree

– Assign purity value corresponding to the leaf to the event 

• Result is a probability distribution
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Event Analysis Techniques

Cut­Based

Neural NetworksDecision Trees

Likelihoods
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Likelihood Analysis
• Convert any variable into a probability distribution 

function:

– Determine pdf from signal and background MC

• Likelihood: product of pdf values for each 
discriminating variable

– Valid if variables are uncorrelated

S

B

p = __________NS

NS + NB 

L = p1 × p2 × p3 × ...

 Also called “simple Bayes”
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Likelihood Output
• No training required
• For each data event, evaluate likelihood

– From the discriminating variables 

• Result is a probability distribution
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Event Analysis Techniques

Cut­Based

Neural NetworksDecision Trees

Likelihoods
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Neural Networks
Input Nodes:  One for each variable xi

f(x)  P(S|x)

Goal: approximate signal probability
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Neural Networks

nk(x,wk) =
1

1 + e- wik xi

Hidden Nodes:  Each is a sigmoid 
dependent on the input variables

Sigmoid
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Neural Networks

f(x) =  w'k nk(x,wk)

Output Node: linear 
combination of hidden nodes

0 1

B S
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Neural Networks

f(x) =  w'k nk(x,wk)

Output Node: linear 
combination of hidden nodes

0 1

B S

Input Nodes:  One for each variable xi

nk(x,wk) =
1

1 + e- wik xi

Sigmoid Hidden Nodes:  Each is a sigmoid 
dependent on the input variables
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Neural Network Training
– Initialize NN weights
– Read in signal and background 

model events
• Training sample

– Compute NN error

•  ( fobserved – fexpected) 

– Adjust all NN weights as result 
– Compute NN error again
– Repeat until ...

DØ single top search 
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Neural Network Training
– Initialize NN weights
– Read in signal and background 

model events
• Training sample

– Compute NN error

•  ( fobserved – fexpected) 

– Adjust all NN weights as result 
– Compute NN error again
– Apply NN to independent set 

of signal and background
• Testing sample

– Stop training when error from 
testing sample starts increasing DØ single top search 
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Neural Network Result
• Train on signal and background models (MC)

– Stop when signal-background separation stops improving
• Independent MC training sample

• For each data event, compute NN output 
• Result is almost a

probability distribution
– But not necessarily 

constrained to [0,1]

DØ single top search 
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Boosting
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Boosting
• A general method to improve the performance of any 

weak qualifier
– Decision trees, neural networks, ...

• Linear combination of many filter functions 

–  ak: coefficient, typically result of minimization of error 
function

 F(x) =  ak fk  
k
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Boosting Procedure

Train filter function Train filter function ffkk

Find coefficient aFind coefficient akk  
minimize error functionminimize error function

Initial training sample TInitial training sample Tk=1k=1  

Modify training sample TModify training sample Tkk

 F(x) =  ak fk  
k
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Adaptive Boosting

• In each iteration, update coefficient ak  
– From minimizing error function
– coefficients decrease at each iteration

• Update weight for each event in training sample Tk 
– Figure out which events have been misclassified

• Signal events should have purity  0.5
• Background should have purity <0.5

– Increase event weight for those events that have been 
misclassified 



47 Reinhard Schwienhorst, Michigan State University

Boosting Performance

DØ single top search
with decision trees 

3 different sets of
discriminating variables
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Comparing Multivariate Methods

How optimal can an
optimal event analysis be?
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Bayesian Limit
• For each analysis, there exists a fully optimized 

signal-background separation
– Bayesian limit, also called target function

• For a single discrimintating variable, this is equivalent 
to the pdf

• For many discriminating variables, this isn't possible 
anymore
– Typically not enough MC statistic to compute a multi-

dimensional pdf

 When do we reach the Bayesian limit?

L(x) = 
_____P(x|S)

P(x|B)
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Comparison

Background efficiency

Si
gn

al
 e

ff
ic

ie
nc

y

1

0
0 1

Random guess

Neural Network

Decision Tree
Boosted Decision Trees

Boosted Neural Network

Cut-Based
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Discovery using a Multivariate Analysis



Conclusions
• Multivariate event analysis techniques are a common 

tool in HEP
– So far mostly neural networks, now also decision trees

• Glast, MiniBoone ID, Atlas ID, Dzero

• Boosting significantly improves weak qualifiers
• Accurate background modeling is very important

 Advanced Event Analysis
enables Discoveries



Resources
• PhyStat 2005 conference

http://www.physics.ox.ac.uk/phystat05/

• Jim Linnemann's collection of statistics links:
http://www.pa.msu.edu/people/linnemann/stat_resources.html

• Neural Networks in Hardware
http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html

• Neural Network package JetNet
http://www.thep.lu.se/public_html/jetnet_30_manual/jetnet_30_manual.html

• Neural Network package MLPFit
http://schwind.home.cern.ch/schwind/MLPfit.html

• Boosted Decision Trees in MiniBoone
http://arxiv.org/abs/physics/0508045

• Decision Tree Introduction
http://www.statsoft.com/textbook/stcart.html

• GLAST Decision Trees
http://scipp.ucsc.edu/~atwood/Talks%20Given/CPAforGLAST.ppt

http://www.pa.msu.edu/people/linnemann/stat_resources.html
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Backup Slides
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Data
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Analysis Procedure

Signal
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Example: Atlas VBF Higgs Search
• Higgs boson production through vector boson fusion

Jet

Jet

Atlas Preliminary, Bruce Mellado, Wi
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Analysis outline

1. Event selection
– Object identification
– Background modeling

2. Event analysis
– Discriminating variables
– Cut/combine in multivariate analysis

3. Statistical analysis
– Measurement with uncertainty
– Confidence limit
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Bayes Theorem

A B

P(B|A): conditional probability
  for B, given that A is true.



Bayes Theorem

A B

P(B|A) = 
_____________P(A|B) × P(B) 

P(A) 



63 Reinhard Schwienhorst, Michigan State University

Bayesian Statistical Analysis

P(signal|data) = 
P(data|signal) × P(signal) 

P(data) 
_____________________



64 Reinhard Schwienhorst, Michigan State University

Bayesian Statistical Analysis

P(signal|data) = 
P(data|signal) × P(signal) 

P(data) 
“Posterior probability”

_____________________
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Bayesian Statistical Analysis

P(signal|data) = 
P(data|signal) × P(signal) 

P(data) 
“Posterior probability” Likelihood

_____________________
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Bayesian Statistical Analysis

P(signal|data) = 
P(data|signal) × P(signal) 

P(data) 
“Posterior probability” “prior

 probability”
Normalization 
factor

Likelihood

_____________________



Bayesian Statistical Analysis

• Procedure
1) Determine likelihood from signal and background models
2) Make assumption for prior and find normalization factor
3) Compute posterior from actual data

• Measurements based on posterior
– Cross section (peak) and uncertainty (width)
– Confidence limit from integrating 95% of posterior area

P(signal|data) = 
P(data|signal) × P(signal) 

P(data) 
“Posterior probability” “prior

 probability”
Normalization 
factor

Likelihood

_____________________
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Statistical Data Analysis
• Event counting

– Likelihood is a Poisson function
• Mean m  Signal + Background 
• Width s = m  

– Measurement uncertainty ~ S/(S+B)
– Search: how far is data away from background? 

• Sensitivity ~ 1/B 
• “5 sigma discovery”  S/B > 5 

• Combining channels
– Independent datasets

– Multiply likelihoods   L = L1 × L2 

• Binned likelihood
– Each bin of a given distribution is a separate channel

L(x,m) = _____mx e-x 

x!


