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1 INTRODUCTION

This report presents results of a literature search for articles that relate to existing and potential WSR-88D
algorithms.  Brief summaries of papers that address technical needs (as identified by the NEXRAD Technical Advisory
Committee), evaluate current algorithms, and describe possible extensions to the current algorithm suite are collected in
a topical activities summary (Section 2).  Section 3 gives an overview of “data mining”, an entire industry that has
sprung up to extract information from databases.  The topic is quite broad and the discussion is necessarily limited by the
constraints of time and available technical resources.  Consequently, the intent is to describe some of the analysis tools,
summarize applications that potentially relate to WSR-88D activities, and direct interested readers toward sources of
information.  As in previous years, the report concludes with a bibliography containing short abstracts of all reviewed
papers (Section 4).

Maturation of the NEXRAD program has led to a noticeable shift in published research.  There is less activity
recently regarding the verification of existing tornado, mesocyclone, and hail detection algorithms.  Rather, greater
access to radar datasets has led to increasing numbers of papers that describe possible embellishments to existing
algorithms or new applications.  Innovative tools have been developed for the analysis of tropical cyclones, predicting
the onset of lightning, and assessing icing hazards.

Clutter mitigation is addressed in several studies.  Post data collection schemes based on neural networks and
fuzzy logic are under development.  An alternate approach with regressive filters, implemented at the radar processing
stage, is also summarized.  Two studies focus on wind field retrieval with low-cost bistatic radar systems.  Two articles
describe variational methods for retrieving wind fields from the measurements of single radars.

Active areas of research, as in recent years, continue to be precipitation analysis and radar polarimetry.  Several
researchers seek to improve rainfall estimates by making adjustments for the vertical gradient of reflectivity and by
incorporating rain gauge observations; others evaluate the utility of WSR-88D measurements and PPS products for
rainfall estimation.  Consensus seems to be that stratiform and warm cloud precipitation is underestimated (often by a
factor of 2 or more).  Convective precipitation estimates exhibit less bias or even small overestimates.  Problems in
rainfall estimation, other than those arising from hardware calibration, appear to be dominated by issues concerning
vertical precipitation gradients and the lack of a procedure for specifying Z�R relations by precipitation type.

A broad spectrum of papers in radar polarimetry is reviewed given the likelihood of this capability being added
to the WSR-88D in the future.  Benefits for the general estimation of rainfall and the estimation of rain in complex
terrain are demonstrated.  Several papers are concerned with hail detection and hydrometeor discrimination.  Other
papers discuss techniques for improving radar hardware calibration and for reducing the bias with specific differential-
phase rainfall estimators that arises from filtering and measurement error.

No papers were found that specifically address prioritized technical needs regarding the archiving of storm
events, data compaction and transmission techniques, and turbulence studies.
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2 TOPICAL ACTIVITIES SUMMARY

2.1 Velocity Dealiasing and Range Unfolding

Doppler velocity fields are contaminated by folding whenever the true radial wind speed exceeds the
unambiguous velocity (va) of the radar as given by va=PRF�/4 where PRF is the pulse repetition frequency and � is the
radar wavelength.  The true radial velocity is the radar measured value plus 2nva where n is the Nyquist interval number. 
Commonly used unfolding schemes may become confused if the initial velocity value along a radial is folded.  Yamada
and Chong (1999) propose to determine the proper Nyquist interval from the Fourier expansion used in velocity azimuth
display (VAD) analyses.  The method requires no prior information regarding the wind profile.  The paper begins with a
summary of previously proposed methods that rely on continuity in range and azimuth, estimated terminal velocities, a
procedure using a Fourier analysis dependent on azimuth, and dual-PRF methods.  With the proposed method the wind
field is assumed to be linear in the horizontal and uniform in the vertical and, consequently, described by a second-order
(harmonic) Fourier series of the form

vr=a0+a1cos1+b1sin1+a2cos21+b2sin21   .

vr is the true radial velocity, 1 is the azimuthal angle, and the a’s and b’s are Fourier coefficients relating to components
of the mean wind.  A global shift in the velocity field only affects a0.  The desired n causes a0+2nva to fall within the
interval ±va.  Key steps in the procedure are to 1) determine the radar range with the largest number of valid velocity
data, 2) make a first guess of the unfolded velocities by applying a simple continuity test, 3) apply a least-squares fit to
find the Fourier coefficients, 4) modify a0 to get a fold-free Fourier curve, and 5) unfold the remaining data with the
computed n.  Application to three events with widespread precipitation reveals that the correct Nyquist interval is
assigned for azimuthal data sectors bigger than 130 to 160o provided non-linear effects are not present.  The technique
would seem to work best for folding related to strong ambient winds rather than folding associated with strong
mesocyclones or tornadoes.

A known problem with pulsed radars is the range limitation imposed by the pulse length whereby radar echoes
from precipitation at intervals of the unambiguous range arrive at the radar simultaneously.  Historically, range-folded
echoes have been detected by varying the radar frequency (pulse repetition time) and by using phase-coded signals and
random-phase coding.  Phase coding alters the spectra of the overlaid echoes in a recognizable way.  Sachidananda and
Zrnie (1999) propose a variation of the method using systematic coding and a modified decoding procedure. 
Transmitted pulses are phase shifted with a systematic code sequence.  Returned signals are multiplied by a known factor
to make the first trip echoes coherent.  Echoes from other multiples of the unambiguous range are phase modulated so
that their autocorrelation functions are zero (noise).  This is accomplished by making second and higher trip signals
periodic over the sampling interval and effectively removing the bias of overlaid signals from the desired coherent
signal.  The second trip signal is made coherent by application of proper multipliers which render other trips phase
modulated.  A series of experiments is performed to test the scheme.  The standard error for recovered velocities using
the proposed systematic coding was reduced compared to random-phase coding.  The scheme requires a powerful
processor.

An alternate method for ameliorating range and velocity ambiguities involves staggered-pulse repetition times.  
Implementation of staggered-pulse methods has been hampered by clutter echoes which must be removed before
ambiguities can be resolved.  [Nonuniform sampling aliases the power from some Doppler frequencies to values near
zero.]  Previously suggested clutter removal methods often yield velocity estimates with large errors.  Sachidananda and
Zrnie (2000) describe a scheme which employs improved clutter filtering and then reconstructs the signal spectrum from
staggered time series measurements with a Fourier transform and deconvolution procedure.  The technique requires
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considerably more processing power than pulse-pair methods.

2.2 Severe Weather Detection

2.2.1 MESOCYCLONES

Apparent fluctuations in the intensity of radar-detected mesocyclones that arise simply because of discrete
azimuthal sampling and radar range were examined by Wood and Brown (2000).  For continuous sampling of
mesocyclones whose centers correspond with a radar beam volume there is a gradual decrease in mesocyclone width, the
distance between outbound and inbound wind maxima, and mean rotational velocity as the distance from the radar
increases.  Discrete 1o azimuthal sampling results in wide fluctuations in mesocyclone width and strength simply because
of the measurement locations relative to the mesocyclone.  Intensity changes are oscillatory in nature (±3 m s-1).  Core
diameter fluctuations are discontinuous and can be as large as 3 km for mesocyclones at 100 km.  Simulations of the case
in which the closest data point is 0.5o from the circulation center indicate that error fluctuations have a different phase
and that the fluctuations in mesocyclone diameter are much larger than those with continuous sampling (no azimuthal
blocking).  A final simulation presents average results for azimuthal samples that are randomly spaced within a ± 0.5o

interval.
Observational studies suggest that 30% to 50% of storms with mesocyclones ultimately produce tornadoes. 

Hence, an important problem for those issuing weather warnings is predicting whether or not a detected mesocyclone
will produce a tornado.  Trapp (1999) performed a detailed analysis of the kinematic properties of three thunderstorms,
observed with an airborne Doppler radar, that produced moderate-to-strong mesocyclones but did not spawn tornadoes. 
Tornado “failure” was defined as the absence of a tornado in a mesocyclone that produced a low-level vertical vorticity
� 0.01 s-1 and persisted for 15 min or more.  All three events exhibited low-level mesocyclones, rainy downdraft, hook
echoes, and bounded-weak-echo regions (BWERs) and produced severe hail.  Although rear-flank gust fronts were
evident, they did not advance to what is commonly referred to as the “occlusion stage”.  A TVS was detected in one
storm (�2 km above ground) by a local WSR-88D.  Tornadic mesocyclones (also a three-storm sample) had higher
vertical vorticity, smaller radii of maximum wind, and greater stretching generation of vertical vorticity.   Interestingly,
swirl ratios, determined from the ratio of tangential and inflow wind components and geometric factors related to inflow
depth and updraft radius, were larger in non-tornadic mesocyclones than in tornadic mesocyclones.  Tornado failure was
attributed to an intermediate range of swirl ratios for flows with Reynolds numbers that inhibit inflow and consequently
suppress vorticity amplification via stretching.  The dataset is rather small; hence, the explanation should be regarded as
tentative.  Also, dual-Doppler analyses presented are highly smoothed.  Potential distinguishing characteristics, e.g.,
outflow boundaries and surface-layer flows, may not be well represented.

Mesocyclone detection with wavelets is examined in the study of Desrochers and Lee (1999).  The procedure
effectively filters small scales (noise) and is relatively insensitive to data voids.  A nice review notes that previous
detection schemes often find other shear features (e.g., gust fronts), are susceptible to noise and data gaps, and do not
identify the mesocyclone vortex couplet directly but infer its existence with shear segments.  Limitations of these
methods are illustrated with a severe thunderstorm viewed by two radars.  A description of wavelets and their application
follows.  Wavelets are basis functions used for decomposing signals, much like Fourier sines and cosines; but their
impact is more local rather than global.  Signal reconstruction is confined to scales of interest.  A B-spline wavelet was
used for analysis in this case because its shape is similar to the velocity profile in a Rankine-combined vortex.  With
radar data, processing is in the radial and azimuthal directions with special allowances for the polar coordinates and array
sizes.  A search area for final mesocyclone designation is determined by constructing azimuthal shear segments from the
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filtered data, identifying velocity extrema computed from the original data in the search region, and fitting the ensemble
of points with an ellipse.  The derived major and minor axes and mesocyclone orientation were similar for the two
radars. 

2.2.2 TORNADOES

Trapp et al. (1999) test the hypothesis that tornadoes form aloft and then descend to ground.  “Tornadoes aloft”
were defined as elevated vortex signature maxima (above 3 km) with gate-to-gate differential velocities � 15 m s-1.  A
parameter S, defined as

   ,

was computed, where �Vpeak is the maximum velocity differential within a volume scan, �Vlow is the velocity
differential at the base 0.5o elevation and the z’s are the corresponding heights.  To qualify as “descending tornadoes”, S
was required to be � 2.25 m s-1 km-1 for at least one observation time prior to tornadogenesis.  Signatures from 52
tornadic storms detected by WSR-88Ds revealed that only 52% had descending tornado signatures.  Initial detections
were typically two volume scans (� 10 min) prior to tornado touch down.  Because non-descending tornadic vortex
signatures are quite common, forecasters should be alert to the fact that tornadogenesis may be in progress when the
maximum velocity difference is at the base elevation.  Low-level tornado formation was thought to be more common
with squall lines than with supercells.

Marzban et al. (1999) use the tornado detection algorithm as an example in a general discussion of how to
select “best predictors” when developing algorithms.  The study indicates that certain inputs in the current algorithm,
namely the parameter pairs of height of the maximum gate-to-gate velocity difference/height of the maximum shear and
the low-level shear/maximum shear, provide redundant information.  Also, the radar distance has no predictive value. 
Good predictors include the low-level gate-to-gate velocity difference, the height of the TVS above the radar, and a
tornado strength index.
2.2.3 TROPICAL CYCLONES

To better deduce the flow structure of tropical cyclones observed with a single Doppler radar Lee et al. (1999)
and Lee and Marks (2000) are developing the Ground-Based Velocity Track Display (GBVTD) technique.  Part I of the
study (Lee et al.) evaluates the retrieval technique with analytical wind fields that simulate tangential and radial wind
components, cyclone motion, and imposed disturbances (wavenumbers 1�3).  The procedure consists of 1) data
interpolation from polar coordinates to a constant-altitude PPI (CAPPI), 2) establishing the tropical cyclone center, 3)
interpolating the CAPPI data to a cyclone-based cylindrical coordinate system, and 4) wind field construction.  The
model and the Doppler observations are matched with a least-squares fit.  Mean tangential and radial flows were well
resolved, but retrievals for cyclones with a cross-beam translation component and imposed disturbances became
somewhat distorted.  The precise cause of the distortion can be determined by examining the characteristics of the zero
Doppler velocity contour.

In Part II, Lee and Marks acknowledge that the GBVTD wind retrieval method is sensitive to the assumed
location of the circulation center.  For example, missing the actual circulation center by 5 km can cause a severe (�20%)
underestimate of the maximum tangential wind and create a significantly aliased wavenumber 1 wind component.  They
propose an iterative procedure for determining the cyclone center (the relative vorticity maximum) which involves the
construction of search triangles that are modified in a systematic manner to find the radius of maximum wind. 



5

Convergence to a solution is sped by the presence of strong velocity gradients.  Designated circulation centers for
analytical cyclones were within 0.34 km.  Application to observed tropical storms is influenced by data voids and weak
velocity gradients.  Accuracies of 1�2 km are expected.

2.2.4 ICING

A capability for remotely detecting icing conditions would be of tremendous benefit to the aviation community. 
Supercooled water occurs in the updraft regions of subfreezing clouds when the generation of vapor exceeds the
depletion by depositional growth on frozen particles.  Unfortunately, other than freezing rain, icing situations are
typically characterized by drops with diameters < 200 �m and concentrations that are not detectable with the WSR-88D. 
Zawadzki et al. (2000) have developed a diagnostic tool, initialized by single-Doppler radar measurements, that could
alert forecasters to potential icing conditions.  It’s assumed that supercooled water coexists with detectable frozen
precipitation.  A variational analysis is performed with radar reflectivity and radial velocity measurements to derive the
three-dimensional flow in areas of precipitation.  The wind field (assumed steady) and a local sounding are then used to
initialize a cloud model.  The model finds an equilibrium liquid water content that is consistent with the retrieved updraft
and the observed distribution of snow.  A detailed description of the model and enabling assumptions is given.  In the
diagnostic model the excess of water vapor above saturation, minus the deposition on snow, yields the condensation on
supercooled cloud drops.  Using the retrieved updraft speed to find the supercooled water presents some difficulties that
are discussed in the paper.  The feasibility of diagnosing supercooled liquid was demonstrated with simulations using a
kinematic model and radar measurements from two stratiform events.  A limitation of the technique may be the presence
of undetected ice crystals which would deplete the supercooled water and result in an overestimation of the icing threat.

2.2.5 LIGHTNING

An ability to predict the onset of lightning in thunderstorms would have utility for those engaged in outside
activities as well as the aviation and recreation industries.  Lightning activity typically begins when convective updrafts
reach the �10 to �15oC level and charge separation processes are initiated.  Gremillion and Orville (1999) investigate
the potential for predicting the lightning onset in air mass thunderstorms from radar measurements and a temperature
sounding.  Data from the WSR-88D at Melbourne, Florida were first interpolated to a Cartesian grid.  The reflectivity
values at temperature levels of �10, �15, and �20oC were determined and overlaid on cloud-to-ground lightning
locations.  Results were quantized at 5 dB intervals.  An event was not defined until two consecutive radar measurements
surpassed a reflectivity threshold.  Detailed case studies of a storm with lightning and one without are presented.  The
latter was characterized by a reduced storm top (9 km versus 13.5 km).  Although the top was well above the �20oC
level, the reflectivity values were much less than with lightning producing storms.  A statistical analysis was performed
of 31 storms with lightning and 8 without.  At the �10oC level and a reflectivity threshold of 35 dBZ, the POD for
lightning detection was 0.88, the FAR was 0.20, and a CSI of 0.72 was determined.  The median time lag to the first
lightning strike was 7.5 min.  For a reflectivity threshold of 40 dBZ the POD, FAR, and CSI were 0.84, 0.07, and 0.79,
respectively.  Testing on an independent dataset and perhaps on other thunderstorm types (e.g., mesoscale convective
systems and squall lines) seems in order.

2.3 Precipitation Analysis



1
Steiner, M., R.A. Houze Jr. and S.E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operationa

and raingauge data.  J. Appl. Meteor., 34, 1978-2007.

6

2.3.1 ACCUMULATION TECHNIQUES

Anagnostou and Krajewski (1999a) describe an algorithm designed for real-time precipitation estimation that
combines weather radar data and rain gauge observations.  The algorithm makes range�height corrections using the
radar reflectivity profile, constructs a hybrid reflectivity map from the lowest two elevation angles, classifies
precipitation as stratiform or convective, makes corrections for mean-field and range-dependent bias, and incorporates an
advection scheme to mitigate the effects of discrete radar temporal sampling.  Adjustments are made on a global basis. 
The algorithm generates output precipitation fields for 1 h, 3 h, and storm accumulations on 2 and 4 km grids. 
Range�height corrections account for bright-band effects, changes in the dielectric constant, and incomplete beam filling
when the radar beam overshoots the precipitation.  The adjustments are based on either mean vertical profiles (assuming
spatial uniformity) or climatological information.  Precipitation type classification is made with an adaptation of the
method developed by Steiner et al. (1995)1.  Storm advection corrections are based on cross-correlation coefficient
analyses between consecutive rain maps.  A final step consists of the application of a mean-field bias adjustment derived
from gauge�radar comparisons.

An evaluation of their rainfall estimation technique and comparison with the WSR-88D Precipitation
Processing Subsystem (PPS) is described by Anagnostou and Krajewski (1999b).  For ranges out to 50�70 km,
integration of radar reflectivity from the lowest two elevation angles was beneficial.  Beyond 70 km only data from the
lowest elevation angle are used.  Their results suggest the algorithm can be improved by setting the exponent of the Z�R
relation to a value between 1.6 and 1.7. [By itself, such a change would cause a sizeable reduction in rain rates.]  Other
analyses suggest that root-mean-square errors (RMSEs) are sensitive to an apparent agreement between the Z�R relation
exponent and the hail threshold.  A physical explanation for the agreement was not given.  Application to a two-month
dataset from the Melbourne, Florida WSR-88D disclosed an overall correlation between gauge amounts and radar
estimates of 0.81 and a bias of 1.03.  Improvements over the PPS were estimated at 20%.  The advection scheme resulted
in only modest improvements in rainfall estimates.  Supposedly, storm velocities were often contaminated by new
growth.

Young et al. (2000) examine bias in NEXRAD precipitation estimates and evaluate procedures that combine
rain gauge observations and radar measurements.  Of concern are the benefits and the quality of the combined dataset
compared to rainfall estimates derived from gauge or radar data alone.  The dataset included hourly precipitation
estimates made by the Arkansas-Red River Basin River Forecast Center.  The Center produced two sets of gauge-
adjusted precipitation estimates.  One method (Stage III) computed a mean bias adjustment factor, based on gauge�radar
comparisons, which was then applied to the radar data.  This analysis was then combined with a gauge-only analysis. 
With the second adjustment method (P1) gauge�radar comparisons were made at gauge sites and adjustments applied to
the radar precipitation field by a distance-weighing scheme.  Pronounced range-dependent biases, rings, and spokes
persisted in the Stage III analyses but were largely absent in the P1 analysis.  The authors were unwilling to declare one
method superior to the other.  They argue that an in-depth error analysis is required and that the necessary data do not
exist.

A procedure used by Swedish and Finnish researchers for combining radar and gauge observations is described
by Michelson and Koistinen (2000).  The procedure is applied to a network of radars surrounding the Baltic Sea.  As a
first step, rainfall estimates from individual radars are adjusted for known system (calibration) biases to reduce mean
differences between the radar estimates and gauges.  To ensure a stable database, radar�gauge pairs with radar sums
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under 0.1 mm and gauge values < 0.5 mm are removed.  Data pairs may be collected over several days to obtain ratios
over the operational range of the radars.  A range adjustment, based on a second-order fit applied to logarithms of gauge-
to-radar ratios, is then made to account for the mean vertical reflectivity profile (on the intermediate time scale).  [Short-
term variations caused by different precipitation regimes, which could be important, are smoothed in this approach.] 
Recent gauge�radar comparisons are then given weights according to their perceived quality, i.e., their deviation from
the distribution mean.  Data pairs with quality weights are combined with an inverse distance-weighing scheme to make
local adjustments to the radar rainfall field.  Although the explained variance in the adjusted precipitation field is low
(0.30), it is significantly higher than that of the unadjusted field (0.18).  Curiously, the adjustment procedure leads to
higher accumulations for small amounts and lower accumulations for large amounts.

Quality control and radar corrections applied by the United Kingdom Meteorological Office in generating their
precipitation products are described by Harrison et al. (2000).  The paper begins with an overview of the various
problems that affect radar rainfall estimates in the United Kingdom.  The British Isles are covered by a network of 15 C-
band radars which transmit radar images to a central site for composition under their Nimrod system.  Preliminary
precipitation estimates are made with the Marshall and Palmer Z�R relation.  Images are examined for completeness and
compared to infrared and visual satellite images to identify and remove anomalous propagation.  The surface
precipitation rate is found by applying an idealized vertical reflectivity profile, which is weighted by the radar beam
characteristics, and the radar measured reflectivity at the base of the bright band.  Rainfall estimates are compared to
rainfall at select gauges and an adjustment factor is applied to remove any calibration bias.  Spatial adjustments are not
attempted�other than the range adjustment inferred from the vertical profile.  As part of verification procedures, the
quality controlled (raw) and adjusted rainfall estimates are compared to hourly rainfall observations from gauges. 
Residual bias and random errors among point comparisons are determined.  Typically, a RMSE reduction of �30% is
achieved.  Similar comparisons are also made for monthly periods.  The comparisons confirm the utility of the vertical
profile adjustment for reducing range bias.  When examined as a function of azimuth, the data disclose the validity of
occultation and clutter mitigation procedures.

A hydrometeorologic forecast system that combines radar and gauge information has been developed by
Pereira Fo and Crawford (1999).   The radar field is treated as background and adjusted by the gauge observations.  The
two precipitation fields are weighted according to their two-dimensional covariance structure.  Adjustments to the radar
analyses effectively correct for hail contamination, attenuation, range effects, and calibration bias.  The authors note that
rainfall estimates with the Twin Lakes WSR-88D (KTLX) are 28% low on average.  Hydrologic verification of the
analyses was hampered by data gaps in the radar record.  Results show that runoff is highly sensitive to the rainfall
estimate.  The radar underestimate in rain accumulations resulted in a three-to-five-fold runoff underestimate.

2.3.2 VERTICAL REFLECTIVITY PROFILES

It’s known that the increase in beam height and beam broadening with range can cause significant bias in radar
rainfall estimates.  The deterioration is sensitive to vertical gradients of precipitation, melting layer (bright-band) effects,
and changes in precipitation phase.  Underestimates can arise from attenuation and whenever the radar overshoots the
precipitation.  Overestimates result from the smoothing of precipitation gradients.   There have been numerous attempts
to improve rainfall estimates by making adjustments for observed vertical reflectivity gradients.  Retrieval of the profile
beyond a few tens of kilometers is difficult because of poor vertical sampling resolution and the fact that the melting
layer (usually a 0.5�1 km layer) generally is not well resolved by the radar.  Consequently, procedures have been
adopted to compute profiles at short radar ranges and then apply them at distant ranges.  This procedure usually assumes
homogeneity.  To lessen range effects Seo et al. (2000) propose a real-time adjustment procedure to account for
nonuniform vertical reflectivity profiles (VRPs).  The authors give a nice mathematical treatment to the procedure and
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present applications in situations with strong beam blockage.  The procedure causes rainfall estimates from the lower
elevation angles to converge to a similar value, reduces bright-band contamination, and reduces spoke-like features in
accumulated rain fields.  However, RMSEs after removing residual biases are reduced by only 10%, and considerable
scatter remains in gauge�radar comparisons.  The residual problems may be tied to spatial variations in DSDs (and
consequently Z�R relations) and uncompensated bright band effects.

Issues regarding vertical reflectivity profiles, which are amplified with stratiform rains,  have been studied
extensively in Europe, particularly by the French and Swiss.  These studies show benefits are gained when VRPs at
distant locations are modified by mean conditions deduced at short ranges.  The studies also suggest that further
improvement is possible by accounting for spatial variations.  Vignal et al. (1999) have a procedure for computing local
VRPs on roughly a 20 km scale from volumetric radar observations.  The problem is cast in terms of radar reflectivity
ratios (using the lowest radar elevation as a base).  Normalized profiles are computed for subdomains of the radar
umbrella and matched with an idealized profile.  The procedure includes a de-convolution of the “apparent VRP” to
recover the details of the “true” profile lost by beam broadening with range.  Sensitivity tests indicate that the range of
maximum profile identification is 70�120 km, depending on the number of vertical samples and bright-band
characteristics.  An efficiency parameter is calculated to determine the goodness of fit.  Efficiencies at more distant
ranges can be improved somewhat by increasing the computational domain.  The procedure is applied to a case study and
evaluated in terms of surface rainfall estimates.  Detailed reflectivity profiles with strong vertical reflectivity features, not
apparent in the discrete radar measurements at 60�90 km, are retrieved.  Small improvements in the RMSE (11 versus
13%) were determined over rainfall estimates made with measurements from a low elevation angle.  Greater
improvement (11 versus 43%) occurred when higher elevation data were used as a base.

Vignal et al. (2000) compare VRP adjustment schemes based on a climatological profile (averaged over time
and space), an hourly mean vertical reflectivity profile determined in real time by averaging measurements within 70 km
of the radar (the current Swiss method), and a procedure that computes VRPs on an �20 km grid (described above). 
With the latter scheme the profiles were de-convoluted to account for beam smoothing.  Reflectivity estimates were
extrapolated to ground with the three techniques.  Calculated rainfalls were then compared to gauge observations at
ranges of 20 to 130 km.  Results revealed significant improvement in the rainfall estimates for all three methods. 
Fractional standard errors (FSEs) for the climatological adjustment procedure were 31% compared to 44% for no
adjustment.  The FSEs for mean and variable adjustments were 25 and 23%, respectively.  Thus, �90% of the total
possible benefit occurred with the single mean-profile method.  The mean profile was believed to be suitable for
locations with beam blockage and severe clutter.  The computation of more frequent profiles (30 and 5 min) did not lead
to marked improvement with a convective event and only small improvement with a stratiform event.

2.3.3 WSR-88D PRODUCT EVALUATION

 
The utility of the WSR-88D for estimating rainfall was examined in several recent studies.  Brandes et al.

(1999) compared rainfall estimates from WSR-88Ds in Colorado (Denver, KFTG) and Kansas (Wichita, KICT) with
dense rain gauge observations and found correlation coefficients of 0.78 to 0.95.  Bias factors were 1.07 and 1.05 (small
underestimates).  The rain estimates were highly correlated with those from a collocated research radar suggesting that
storm-to-storm bias fluctuations were due in large part to variations in drop-size distributions.  Klazura et al. (1999)
stratified rainfall estimates from WSR-88Ds according to subjectively-determined horizontal reflectivity gradients.  A
bias factor of 0.88 (a small radar overestimate) was determined for the high gradient (generally strong convective)
events.  Stratiform events had a bias factor of 2.23.  Both precipitation types had significant range biases. 
Underestimates occurred for both precipitation types at ranges less than 50 km.

The impact of distance on precipitation processing subsystem (PPS) products for a flash flood probed by WSR-
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88Ds at Dover Air force Base, Delaware (KDOX) and Wakefield, Virginia (KAKQ) are examined in a study by Stuart
(1999).  The radars were located 90�120 nm from the event.  [Rainfall estimates from the WSR-88D at Sterling,
Virginia (�40 nm distance) were not used.]  No hail reports were received.  At the time of the event, the PPS was using
the default hybrid scan.  Adaptable parameters for the two radars were identical except for the maximum reflectivity
outlier value and the reflectivity threshold maximum for computing rain rates.  The latter values were 53 dBZ (KAKQ)
and 70 dBZ (KDOX).    Maximum rain accumulations were 3�4 in for the Wakefield radar and 5�6.2 in for the Dover
Air Force Base radar.  The latter estimates agreed more closely with surface reports.  Because maximum radar
reflectivities were as high as 60 dBZ, the lower threshold was thought to have contributed to the underestimate with the
Wakefield WSR-88D.  Another source of bias with the KAKQ radar was believed to be the ground clutter suppression
procedure.  Medium suppression was employed for all ranges.  Smoothing is also mentioned as a possible contributor to
the rainfall underestimates; but the argument is not compelling because the smoothing of gradients generally associates
with an overestimate of precipitation.

Nicosia et al. (1999) evaluate WSR-88D precipitation products for a flash flood produced by a lake-enhanced
rainband that occurred near Erie, Pennsylvania.  With the Z�R default relation, the Cleveland, Ohio radar (KCLE)
underestimated the maximum rainfall from the rainband by �40%.  Convective rainfall in neighboring areas was
overestimated.  The underestimate was attributed to warm-rain processes occurring below the radar beam.  It’s postulated
that the radar beam overshot higher reflectivity values at low levels.  Application of the “tropical” Z�R relation of
Rosenfield et al. (1993)2 improved the estimates in the flood region but overestimated the rainfall in the area of
convection by 200�400%.  Alternately, adjusting rainfalls in the flood region based on radar�gauge comparisons from
the convective rainfall would have further degraded the estimates of the flooding.

A study of the Fort Collins, Colorado flash flood of 28 July 1997 was reported by Petersen et al. (1999). 
Rainfall estimates from the WSR-88D at Cheyenne, Wyoming (KCYS) were compared to gauge-observed rainfalls and
to estimates made with a research radar.  A maximum rainfall of 10.2 in was recorded at one gauge in a 6-h period. 
KCYS maximum rainfall estimates with the NEXRAD default relation were 5.0 in (more than a factor of 2 low).  Bias
with the tropical Z�R relation was much less; the maximum estimated rainfall was 10.8 in.  The KCYS estimates were
�75% those of the research radar, signifying a calibration difference.  Precipitation production was thought to have been
dominated by warm rain processes.  That the drops may have been uncharacteristically small is supported by improved
rainfall estimates with the reflectivity�differential reflectivity measurement pair.

The performance of the WSR-88D PPS bias adjustment procedure for a heavy rain event in Colorado was
examined by Fulton (1999).  The PPS determines the radar bias by comparing hourly gauge reports and corresponding
radar estimates at selected sites.  The calculated bias, a multiplicative factor intended to bring the radar estimates in line
with the gauge amounts, is assumed to be valid for the hour following receipt of the gauge reports.  [This procedure can
introduce bias if the adjusting gauges are at one range interval and the adjustment made at another range interval.  Bias
can also be introduced if the character of the precipitation changes, e.g., from convective to stratiform over the hour
interval.]  The tested version of the algorithm estimated the bias from the nine data bins that surrounded each gauge
location.  In one experiment, it was assumed that there was no bias if the gauge observation was within the numerical
range of the surrounding radar bins.  If the gauge observation fell outside the range of radar data bins, the numerically
closest radar value was paired with the gauge observation.  This procedure minimizes the bias adjustment and yielded
hourly bias values of 0.96�1.00.  In a second experiment, the algorithm was modified to pair the radar data bin in which
the gauge resided with the gauge report.  A bias of 0.61 was determined.  Application of this factor greatly reduced the
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estimated rainfalls at test gauges (errors decreased from 63 to 25%).  However, the adjustment caused a significant
underestimate of the flash flood.

An evaluation of WSR-88D quantitative precipitation estimates over coastal regions in the western U.S. is
given by Westrick et al. (1999).  Problems endemic to the region arise from beam blockage by mountains, shallow
orographic precipitation (often confined to a surface layer below 2 km), and low freezing levels.  The problem is
compounded by the considerable elevation of several radar sites.  Under typical conditions quantitative precipitation
estimates can be made over only one third of the region (assuming beam blockages less than 50%).  Moreover,
estimation is poorest in flood prone areas.  Specific recommendations call for implementation of 0o or negative scan
angles, additional scans at low elevation, more radars placed in coastal regions, and research aimed at integrating radar
and gauge observations.

2.3.4 Z�R RELATION AND GAUGE/RADAR COMPARISON ISSUES

The variability in Z�R relations reported in the literature is generally attributed to fluctuations in DSDs.  Ciach
and Krajewski (1999) investigate possible contributions to the observed variance from the application of different
computational methods for estimating relations and from measurement error.  The experimental model consists of a fixed
relation between radar reflectivity and rain rate.  Parameterizations are made for radar measurement errors due to
differences between the true surface reflectivity and radar-measured values and for differences between radar estimated
rainfall intensity and point gauge observations.  It is assumed that the errors for the gauges and radar are not related and
that they have lognormal distributions.  Methods for deriving Z�R relations examined are the direct nonlinear regression
from R to Z, reverse regression (Z to R), and the probability-matching method.  The estimated exponent for R using
direct regression always exceeds that of the assumed model due to errors in reflectivity measurements.  Reverse
regression underestimates the exponent due to variability in the rainfall intensity and related point�area differences. 
Interestingly, the probability matching method, which is dependent on both the radar and gauge errors, is found to be the
geometric mean of the two nonlinear regressions.  The authors conclude that measurement errors contribute significantly
to the variation in Z�R relations reported in the literature.

Related problems were investigated by Campos and Zawadzki (2000).  They compared the contribution of drop-
size distribution measurement uncertainty on derived Z�R relations.  DSD measurements were available from a
Joss�Waldvogel impact disdrometer, an optical spectro-pluviometer, and spectra obtained with a specialized Doppler
radar.  Differences in Z�R relations derived from linear regression of 10logZ versus logR for the three instruments show
wide fluctuations similar to that seen in the literature and widely ascribed to meteorological factors.  Campos and
Zawadzki also derive relations with nonlinear regression between Z and R.  The relationships determined with the latter
method have significantly smaller coefficients and larger exponents.  The authors argue that the former regression
(10logZ versus logR) minimizes absolute errors and gives better rain rate estimates while the second method (Z versus R)
yields more precise accumulations.  They then derived relations with R as the dependent variable (similar to an
experiment conducted by Ciach and Krajewski), performing a linear regression of logR as a function of 10logZ, and then
inverting the relations.  Yet another distinctive set of estimators was obtained.

Rainfall estimate errors due to variations in Z�R relations and the radar constant were investigated by Ulbrich
and Lee (1999).  They compared radar reflectivity estimates from the Greer, South Carolina WSR-88D (KGSP) and a
raindrop disdrometer.  The radar underestimated the reflectivity by 3.5 dB.  By varying the coefficient of the Z�R
relation to conform with relations for stratiform and convective rainfalls (200 and 450, respectively), they determine the
WSR-88D relation should underestimate stratiform rain by 25% and overestimate convective rain by 33%.  Other
experiments were conducted in which the exponent was also allowed to vary.  Computations with a hypothesized �4 dB
radar calibration error predicted bias factors of 2.55 for stratiform rain and 1.35 for convective rainfalls.  Because these
biases exceed that for precipitation type, the authors conclude that the large bias with the KGSP WSR-88D lies with a
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calibration error.
An algorithm for classifying precipitation echoes as either convective or stratiform would improve estimates of

heating rates in the atmosphere and improve rainfall estimates.  Successful partitioning of precipitation types and
subsequent improvement in rainfall estimates has proven elusive.  Biggerstaff and Listemaa (2000) modify the technique
of Steiner et al. (1995)1, which tended to misclassify heavy stratiform rain as convective and light rains at the edges of
convective cells as stratiform.  The authors propose a three-dimensional approach with new diagnostic parameters for the
vertical gradient of reflectivity, bright-band fraction, and reflectivity gradients.  A global consistency check was also
added.  A consequence of this last step was that small convective elements were occasionally classified as stratiform. 
The new algorithm was tested on three events and results compared to that of Steiner et al.  Performance was judged on
the percentage of echoes reclassified with the proposed algorithm.  Largest changes occurred with unorganized
convection.  The new algorithm overcomes some problems with the method of Steiner et al.  Whether heating or rainfall
estimates were improved is not demonstrated.

Sampling differences between point and area gauge measurements of rainfall and their role in gauge�radar
comparisons were investigated by Anagnostou et al. (1999).  Radar and gauge errors were expressed as ratios of their
true values and assumed to represent a stochastic process in which the ratios are distributed lognormally (with a mean
linear value of 1) and with zero covariance.  Other important assumptions are that radar and rain gauge data are unbiased,
statistics are homogeneous within the domain, and that radar errors are uncorrelated at distances larger than the grid
interval (4 km).  Results show that as much as 60% of the variance between gauge and radar rainfalls arises from
area�point differences.  Extension to other geographical regions, seasons, and precipitation types is not straightforward
because rainfall statistics must first be developed.

2.4 Wind Analysis Techniques

2.4.1 BISTATIC NETWORKS

An inexpensive multiple Doppler radar network can be assembled using a primary radar for transmitting radar
signals and recording scattered returns at remote locations with passive non-scanning receivers.  Each remote (bistatic)
site measures the Doppler shift of the transmitted energy as obliquely scattered by precipitation.  The wind field is
reconstructed by combining Doppler measurements from one or more passive sites with those from the primary radar. 
Low-cost, broad-beam antennas and low-gain receivers are used.  An advantage with a bistatic network is that
measurements at a particular point in space are made simultaneously with all receivers.  Volumetric sampling is dictated
by the scanning strategy of the primary radar (typically 5 min or so).  Potential problems arising from the use of broad-
beam, low-gain antennas are thought surmountable by employing multiple receivers.  Protat and Zawadzki (1999)
describe the operational bistatic network at McGill University.  Three-dimensional wind fields are retrieved with a
method used previously with multiple Doppler radars.  The technique applies a semi-adjoint constraining (variational)
model (Laroche and Zawadzki 1995)3 under the assumption that the reflectivity and radial velocity fields have
conservative properties.  The paper begins with a concise explanation of how a bistatic network operates.  The radial
velocities are used as weak constraints and the continuity equation is a strong constraint.  The problem is overdetermined
with more than one bistatic receiver.  Steps in the procedure are: 1) make an initial guess of the horizontal wind
components, 2) calculate the vertical velocity, 3) calculate the gradient of a cost function, 4) evaluate convergence
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criteria, 5) calculate new components of the horizontal wind with a conjugate�gradient method, and 6) iterate until the
desired solution is achieved.  Several examples are presented.

An evaluation of sidelobe contamination with the McGill University bistatic network is presented by de Elía
and Zawadzki (2000).  The passive sites are equipped with low-gain receivers which have lower sensitivity than
traditional high-gain radars.  Also, the broad beams cause the bistatic receivers to be more sensitive to multiple scattering
effects and side lobe contamination.  Because contamination is proportional to the one-way antenna gain, sidelobes are
twice as intense as those with traditional antennas.  The particular sidelobe pattern depends on the characteristics of both
the transmitting radar and the receiver and can be contaminated by ground clutter.  A simulation model and
contamination index were developed to quantify sidelobe influences on reflectivity and Doppler fields and to aid in the
design of bistatic networks.  Contamination of the bistatic Doppler and reflectivity measurements generally concentrates
in the direction of an ellipsoid with its foci at the radar sites.  Impacts are most pronounced in regions of weak echo with
nearby strong convection.  Several examples are shown.  The authors note that, if the beam patterns are known, a
correction scheme can be built into the wind retrieval algorithm.  Additional receivers may be part of a solution.

2.4.2 SINGLE-DOPPLER WIND-FIELD RETRIEVAL

Studies of wind-field retrieval from single-Doppler measurements are presented by Lazarus et al. (1999) and
Liou (1999).  Both studies evaluate a variational technique originally proposed by Zhang and Gal-Chen (1996)4 whereby
the three-dimensional wind field is retrieved from multiple time levels of radar data.  The primary assumptions are that
the reflectivity pattern is conserved and that the velocity field is steady in a reference frame given by the mean translation
velocity.  Mean and perturbation components of the wind field are retrieved as a least-squares minimization problem with
constraints for reflectivity conservation and for geometric terms that relate the radial velocity and Cartesian wind
components.  The process involves the minimization of a cost function.  The weights of each constraint are inversely
proportionate to their variances.  Lazarus et al. give an excellent summary of the method.  They then conduct a series of
sensitivity experiments utilizing simple simulated radar reflectivity and wind patterns.  They note that the mean flow
cannot be determined in regions without a reflectivity gradient.  Also, the retrieved mean flow is sensitive to small-scale
reflectivity errors.  The error decreases as the domain increases.  Analyses are also presented for various signal-to-noise
ratios and for the retrieval of a simple divergent wind pattern for various analysis domains.

Liou suggests a modification of the Zhang�Gal-Chen variational method for minimizing time derivatives of a
scalar field in a moving reference frame.  New terms representing mass conservation and vertical vorticity are added to
the cost function to reduce noise.  Cost function minimization involves making an initial guess, determining the gradients
of the cost function, using a conjugate-gradient algorithm to find a new estimate of the wind field, and repeating the
process until a minimum cost function is achieved.  Tests showed higher correlations between the retrieved and model
wind field and reduced RMSEs.  The improvement comes largely from the mass conservation term.  Other experiments
are conducted with multiple time levels to represent different scanning strategies.  Retrievals improve with the number of
input time levels and for longer intervals between data insertions (270 s versus 180 s).  Other experiments are conducted
assuming various error levels in the data and using reflectivity measurements alone for the retrieval.  For the latter
experiment the radial velocity information is not used but a degraded wind field can be estimated from the time series of
reflectivity using the reflectivity conservation equation, the continuity equation, and the vorticity term (three equations
and three unknowns).
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2.5 Radar Analysis Techniques

2.5.1 GROUND CLUTTER MITIGATION

The removal of ground echoes from radar signals is highly desired because of their potential impact on
algorithm performance.  Ground clutter is of two types, permanent echoes associated with nearby structures, trees, and
terrain and transient clutter that occurs whenever atmospheric conditions cause the radar beam to be ducted along the
ground.  Radar reflectivity returns from clutter typically have high intensities and high spatial variance; Doppler returns
are characterized by mean radial velocities near zero and small spectrum widths.  Velocity contamination is often
removed with notch filters.  A potential new method for removing ground clutter echoes from Doppler signals with a
regressive filter is proposed by Torres and Zrnie (1999).  Classical digital filters are either finite impulse or infinite
response filters where filtering is achieved by superposition of signal samples.  Regressive filters approximate radar
signals with polynomial functions in the time domain.  The technique assumes that clutter echoes vary slowly in time
compared to meteorological echoes.  The utility of regressive filters is demonstrated by imposing a narrow-band
Gaussian process having zero mean velocity on a weather signal.  The composite signal is filtered to obtain the Doppler
moments.  The clutter suppression ratio for the regressive filter with a narrow clutter spectrum was 10 dB better than the
high-suppression elliptical filter used on the WSR-88D.  There was also less suppression of weather signals.  Superiority
of the regressive filter was also shown for a dataset collected with a WSR-88D.

A neural network (NN) method for detecting anomalous propagation and ground clutter echoes in radar
reflectivity fields is proposed by Grecu and Krajewski (2000). [For a discussion of neural networks and data mining see
Section 3.]   Key steps in the process are the selection of predictors and network calibration.  The Doppler information
was not used.  System predictors include the translational velocity of reflectivity features, the local velocity variance of
these features, echo heights, height of the maximum reflectivity, the reflectivity magnitude, the range of the echo, the
local reflectivity variance, a fluctuation parameter, and the local maximum reflectivity gradient.  Datasets consisting
entirely of anomalous propagation (AP) and precipitation were selected for calibration (training).  Continuity checks are
made to ensure that the same designation is made throughout a vertical column.  The procedure was applied to datasets
obtained from two WSR-88Ds.  Of the predictors evaluated, echo height provided the best separation of AP and
precipitation.  Classifications were compared to those determined with a “quadratic discrimination function”.  The error
reduction with the NN was about a factor of two.  Performance varied according to the training dataset.  An obvious
improvement to the scheme would be to add the Doppler information.

Kessinger et al. (1999) have been developing an AP detection algorithm that utilizes fuzzy logic.  Input
parameters are the magnitude of the radial velocity, the spectrum width, the texture of the velocity and reflectivity fields,
and the vertical gradient of reflectivity.

2.5.2 TERRAIN INFLUENCE

To aid in the interpretation of radar data in mountainous terrain James et al. (2000) superimpose radar
observations (reflectivity and radial velocity) on 30-s digital elevation information available from the Defense Mapping
Agency and the National Aeronautics and Space Administration.  The terrain information is believed important for
explaining enhanced precipitation in upslope regions and suppressed precipitation in downslope areas.  The plots are
thought useful for data quality assurance in regions where clutter suppression has been implemented and where the beam
may be blocked.

2.5.3 ECHO EVOLUTION/MOVEMENT
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In support of aviation activities, MacKeen et al. (1999) attempted to predict the remaining lifetime of single and
multicell thunderstorms from their radar reflectivity characteristics at a specific development stage.  Previous studies
have shown storm intensity, size, and height to be of some value.  Sixteen parameters generated by the WSR-88D storm
cell identification and tracking (SCIT) algorithm and hail detection algorithm (HDA) were selected for study.  Variables
where determined for each 6 min data collection (VCP21) and correlated with the remaining lifetime.  Variables weakly
correlated with storm lifetime (linear correlation coefficients > 0.3) were the maximum reflectivity, height of the
reflectivity maximum, height of the center of mass, height of the 40-dBZ reflectivity core, cell-based VIL, and storm-top
height. [Note that these parameters are not all independent.]  A multiple regression with all variables gave a correlation
coefficient of 0.43.  Tests with trends determined from every other or every third volume scan did not improve the
results.  Probability density functions of the remaining lifetimes were computed for various reflectivity thresholds. 
Expectedly, thunderstorms with lower maximum reflectivities were more likely to dissipate.  Because the explained
variance was so low (� 18%), the authors conclude that longevity forecasts made with reflectivity parameters have no
utility.  Failure is attributed in part to non-linear relationships between radar characteristics and storm lifetime, sampling
limitations presented by the scanning mode and deterioration with range, and the fact that reflectivity patterns are only
by-products of meteorological processes.  Although some improvement is expected if velocity and environmental data
are added, the authors seem to favor making lifetime predictions with cloud models.

An interesting new approach to forecasting precipitation is described by Otsuka et al. (1999).  The method,
based on the assumption that pattern A will be followed by pattern B, is offered as an alternative to extrapolation. 
Forecasts are made by examining the historical record for similar events and retrieving previous outcomes.  The
challenge is to format the historical record into a manageable form for real-time application.  The present application
decomposes precipitation patterns into local and global textural features.  Extracted local information consists of features
that describe element motion, the degree of element formation and dissipation, and cell arrangement.  Global features
describe the shape of the overall echo pattern and its motion.  Descriptors are represented by eigenvectors and
eigenvalues.  Their motion is used for comparison with the historical record.  Matches are judged by computing a
“dissimilarity” index.  The historical record consisted of 1000 h of winter precipitation data (12000 images).  Some
examples of large-scale pattern designations and forecasts are shown.  All considered features contributed to pattern
designations (echo band, oriented stratiform rain, and scattered echoes).  Overall, 87% of the patterns were correctly
detected.
2.6 Data Acquisition Strategies

It’s clear that radar scanning strategies influence algorithm performance.  For example, designated echo tops
with volume coverage pattern VCP-21 with 9 elevation scans and coarse elevation angles above 4.3o would be expected
to be less accurate than echo tops determined with the 14 elevation scans of VCP-11.  Brown et al. (2000a) quantify the
difference.  The study incorporated VCP-11 scans and deleted scan elevations at 5.25, 7.5, 8.7, 12.0, and 16.7o to
construct a simulated VCP-21.  The dataset consisted of several hours of measurements from the Melbourne, Florida and
Frederick, Oklahoma WSR-88Ds.  The storm cell identification and tracking (SCIT) algorithm, hail detection algorithm
(HDA), mesocyclone algorithm (MESO), and velocity azimuth display (VAD) were selected for comparison.  Potential
upgrades to current WSR-88D mesocyclone and tornado detection algorithms were also studied.  Components from the
SCIT algorithm examined were the maximum height of the 30-dBZ echo and the vertically integrated liquid (VIL). 
There was a marked tendency for the 30-dBZ echo heights with the simulated VCP-21 scans to be lower than the VCP-
11 tops.  The differences occur out to a range of �125 km.  Beyond that distance storm heights generally are below 5o

and results for the two VCPs converge.  Comparison of VILs reveals that those computed from VCP-21 were somewhat
higher because the smaller number of measurements at middle storm levels, where the reflectivity is often a maximum,
had greater relative weight.  The spacing of vertical samples had less impact on the predicted size of hailstones. 
Diameter differences were typically < 0.6 cm.  The probabilities of hail and probability of severe hail differed by ± 10%. 
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Mesocyclone depths with VCP-21 were smaller than that with VCP-11 �10% of the time.  Results for the proposed
mesocyclone algorithm upgrade were similar.  A considerable scanning strategy impact occurred with the tornado
algorithm where tornado depths are less with VCP-21 approximately 25% of the time.  When the analysis was restricted
to locations where elevation angles > 5o were involved (i.e., for relatively short radar ranges) , the percentage of
algorithm values that differed for VCP-11 and the simulated VCP-21 exceed 40% for all tested parameters except those
for the HDA.  Depending on the algorithm, significant over or underwarnings could result, suggesting that different
warning criteria are required for the two VCPs.

In a companion paper Brown et al. (2000b) propose a methodology for optimizing scanning strategies.  The
technique seeks to minimize the uncertainty in storm height with range.  A maximum storm height for surveillance
purposes and the maximum height underestimate to be tolerated are specified.  A minimum elevation angle is selected. 
This elevation sets the maximum range for data collection.  The range is reduced until the height falls below the threshold
for maximum height underestimate.  [The maximum height underestimate with the current VCP-11, assuming a storm top
of 16 km and a range of 230 km, is �4 km at 2.4o antenna elevation.]  At that point the second elevation angle is
determined provided the angular difference is more than a half beam width.  The process is repeated and constructs a
VCP that is consistent with the selected maximum height underestimate.  The latter parameter sets the number of scans
that must be made.  The duration of the scan is also determined by the desired accuracy of the measurements and the
antenna rotation rate.  The maximum feasible rate is selected.  If the potential scan duration is too long, the maximum
acceptable height underestimate can be increased.  Considering all factors, such as the double passes currently made at
the lowest two elevation angles and allowing for antenna motion between scans, Brown et al. show that a VCP with 19
elevation angles to a maximum elevation angle of 49o (having a maximum height underestimate of 18% or 2.9 km for a
16 km maximum storm height) could be made in 6 min 5 s.  VCPs with 13 elevation angles and a maximum height
underestimate of 28% would have durations of 4 min 58 s.  The procedure could allow increased elevation samples, give
better low-level coverage, and reduce the unsampled cone above the radar.  The advantage of optimized scans is
demonstrated with simulated VIL calculations and for microburst precursor detection.

2.7 Polarimetric Radar5

Polarimetric radar measurements are sensitive to scatterer size, shape, orientation, and composition.  They can
be used to identify ground echoes and biological scatterers and to discriminate among hydrometeor types.  Radar
polarimetry should lead to improved understanding of microphysical processes in storms, new algorithms for detecting
weather hazards, and improved methods for estimating rainfall.  Prospects for making polarimetric measurements with
the WSR-88D are investigated by Doviak et al. (2000).  They propose to simultaneously transmit horizontally and
vertically polarized pulses.  To ensure the purity of returned signals a possible modification of the current three-spar
antenna feed horn support was considered.  [The current design has a spar in the vertical plane.]  At first it was thought
that a switch to a four-spar system creating an X pattern would result in a better match between the radiation patterns of
the two radar beams.  However, measurements with research radars revealed the four-spar feed system had higher
sidelobes.  Consequently, the decision was made to retain the current configuration.  Antenna pattern measurements were
then made with the NSSL WSR-88D before and after a modification of the antenna feed from a single port (designed to
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transmit horizontally-polarized waves) to a dual-port system.  Sidelobe patterns met original specifications for the WSR-
88D, and the horizontal and vertical beam patterns agreed to within a fraction of a decibel down to a �20-dB signal
level.  While a weak cross-polarization signal was found, the authors conclude that the leakage should not compromise
the polarimetric measurements.  Another key consideration is the selection of a polarimetric basis that strikes a balance
among desires to obtain the maximum precipitation information, to hold down radar modification costs, and to meet
operational needs.  A detailed theoretical comparison is made of linear and circular polarimetric bases.  It’s concluded
that specific differential phase and differential reflectivity cannot be reliably determined with a circular basis, especially
for light rainfalls.  Also, circularly polarized waves can be significantly attenuated in an anisotropic medium.  Thus, a
linear horizontal�vertical basis is preferred.

For implementation on the WSR-88D Doviak et al. recommend two operational modes: 1) a dual-polarization
mode with simultaneous transmission/reception and 2) a single-polarization mode.  Some advantages with this system are
the direct measurement of the correlation coefficient at zero lag, direct measurement of the differential phase shift, and
faster scanning rates (or increased numbers of samples).  A disadvantage with this scheme is that  the linear
depolarization ratio cannot be routinely measured and simple automatic detection of range-folded echoes is not possible. 
Potentially, a coupling of horizontally and vertically polarized waves could create significant bias in the polarimetric
parameters.  A related bias could be introduced by hydrometeor canting.  Examples of polarimetric parameters
determined from measurements in a data collection mode that alternated between horizontal and vertical polarization and
a simultaneous transmission and alternate reception (STAR) mode designed to replicate simultaneous transmission and
reception are presented.  Unexplained differences in specific differential phase up to 0.5o km-1 were found.  Also, the
correlation coefficient ('HV) was lower for the STAR mode, possibly due to depolarization.  The authors argue that
simultaneous transmission and reception should give better results than either of the tested methods.

A description of the polarimetric radar operated by Colorado State University is given by Brunkow et al.
(2000).  Topics covered are system characteristics, processing capabilities, and calibration procedures.  Polarimetric
measurements are shown for a vertical cross-section through a thunderstorm.

2.7.1 RAINFALL ESTIMATION

The estimation of rainfall with the specific differential phase parameter (KDP) has been an active research area
in recent years.  The signal arises from hydrometeors whose major axes are aligned with the polarization of transmitted
radar signals.  The parameter (a phase or time measurement) has several advantages over radar reflectivity (a power
measurement) for estimating rainfall.  For example, the differential phase is insensitive to radar calibration error and
relatively insensitive to beam blockage and anomalous propagation.  KDP is related to the 4.24th power of the drop-size
distribution for light rainfall rates and to the 5.6th power of the DSD for heavy rainfalls.  Hence, KDP is more closely
related to rainfall rate (3.67th moment of the DSD) than is radar reflectivity (a 6th moment of the DSD).  The specific
differential phase is defined as one half the range derivative of the differential propagation phase (0DP.).  The
computation of KDP entails filtering to reduce error in the 0DP measurements and assumes that the distribution of 0DP

and consequently the precipitation is linear over the range interval of the calculation.  The procedure causes a bias
whenever the distribution is not linear.  The bias can be either positive or negative and can be as large as 30%.  A bias
correction scheme has been proposed by Gorgucci et al. (1999).  The procedure attempts to recover some of the lost
signal by making use of the consistency between polarimetric parameters.  That is, the specific differential phase can be
computed from the radar reflectivity and differential reflectivity measurements; and the computed value can be compared
to that obtained from the measured 0DP.  Gorgucci et al. propose to adjust the radar estimates of KDP with

where KDP
* is the slope of the radar observed 0DP profile, �KDP

r
� is the average value of KDP

r constructed from the self-
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consistency principle, and (KDP
r)* is the estimate of �KDP

r
� obtained from the 1DP

r profile.  Application should restore
some detail to the radar-estimated KDP profile.  While the authors demonstrate that fairly accurate adjustments can be
made, the impact on accumulated rainfall estimates was not examined.

Gorgucci et al. (2000a) study the effect of the path length over which KDP is computed on rainfall estimates. 
They note that KDP estimates are subject to bias related to inhomogeneous rainfall distributions, nonlinearity in the
rainfall estimators, and parameterization in algorithm development.  In quantifying the errors they find that non-uniform
precipitation path lengths cause underestimates of rainfall rate that range from 5% for a 10 dB gradient over the distance
KDP is computed to 25% for a 30 dB gradient.  Bias due to algorithm nonlinearity causes an overestimate of 5% for a 10
dB gradient and an overestimate of 10-12% for a 30 dB gradient.  Parameterization errors associate with underestimates
of �10% for nonlinear estimators regardless of the reflectivity variation.  The accumulated effect is expected to be an
underestimate of between 10 and 25%.  The authors conclude that successful implementation of KDP estimators will
require techniques to reduce the bias.

Because KDP is computed as a radial derivative and the exponent of the estimator is close to unity, the mean
rainfall rate over a radial interval is largely determined by the change in 0DP over the end points of the range interval. 
Ryzhkov et al. (2000) note that this property gives improved rain rate accuracy for watersheds having radial dimensions
of 10 km or more and for integration times � 1 h.  They compared watershed rainfalls estimated from radial distributions
of KDP with estimates determined from 0DP values at the leading and trailing boundaries.  Results showed a reduction in
bias with the 0DP method, an 8% underestimate compared to a 13% underestimate based on the spatial distribution of
KDP; fractional standard errors fell from 25 to 18%.  Computation of watershed rainfall drastically reduces the
computation required.  The impact of statistical errors and bias introduced by reflectivity gradients is also reduced by the
proposed method.  The disadvantage is that information regarding the distribution of rainfall within the watershed is lost. 

The utility of KDP (at Ku band) for estimating rainfall was examined by Timothy et al. (1999).  Application to
Ku band introduces backscattering issues that have little impact on rain estimation at S band.  Nevertheless, the study
finds that the specific differential propagation phase shift is a better estimator of rainfall than radar reflectivity. 
Calculations are presented that show the dependence of polarimetric variables and rain rate estimators on temperature,
assumed drop shapes, and the shape factor (�) of the gamma DSD.  A differential reflectivity rainfall estimator in the
form R=�ZDR

� is derived rather than the usual two-parameter estimator which includes ZH and ZDR.  A comparison of
rain rate estimators indicates that for rain rates > 70 mm h-1  KDP outperforms ZH.  The ZDR estimator has the largest
error for R > 20 mm h-1.

The relative insensitivity of rain accumulations derived from the specific differential phase parameter to beam
blockage was examined by Vivekanandan et al. (1999).  Rainfall estimates derived from radar reflectivity and specific
differential phase were compared for a flash flood event in complex, mountainous terrain.  The distribution of the
differences in the rain estimates for a relatively unblocked region (< 22% blockage) were Gaussian distributed with a
relatively small standard deviation compared to a region of up to 70% blockage where the distribution of differences
were skewed and the standard deviation of differences was somewhat broader.  The reflectivity rainfall estimates were
lower than those from specific differential phase because of the loss of power due to blockage.  Percent differences
between specific differential phase and reflectivity estimators were nearly linearly related to the percentage of beam
blockage. [Blockage in the lower portion of a radar beam restricts the 0DP measurement to the upper portion of the
beam.  If there is a significant vertical profile of precipitation or the melting layer is encountered, the specific phase
estimates of precipitation could differ significantly from that observed at ground.]

Rainfall estimates with the radar reflectivity�differential reflectivity measurement pair and the specific
differential phase are sensitive to the axis ratios of the drops.  Recent radar research suggests that oscillating drops in the
free atmosphere may be more spherical in the mean than suggested by studies of equilibrium drop shapes and early wind



18

tunnel experiments.  A technique for estimating axis ratios (r) from radar measurements would be useful.  Gorgucci et al.
(2000b) propose to derive an estimate of the axis ratio that is consistent with the radar reflectivity factor, the differential
reflectivity, and the specific differential phase measurements.  The drop shape versus size relation is expressed as
r=1.03��D where � is the magnitude of the DSD slope and D is the drop equivalent diameter.  The authors show how �
can be calculated from ZH, ZDR, and KDP and derive the necessary relation from simulations where the parameters of a
gamma DSD are allowed to vary randomly.  An error analysis suggests that � can be estimated within 10%.  Gorgucci et
al. compute KDP values over 50 range samples and restrict their analysis to KDP > 0.4o km-1 (a rain rate of roughly 18
mm h-1).  Data analysis revealed that � decreased as reflectivity increased from 45 to > 53 dBZ.  The utility of the
relation needs to be proved.  Note that other studies, including those of the authors, use inconsistencies among the same
three parameters, to calibrate radars.  Also, drop canting affects the three radar measurements in ways similar to changes
in drop shapes.

2.7.2 HYDROMETEOR CLASSIFICATION AND DETECTION

Because polarimetric radar measurements are sensitive to particle size, shape, orientation, phase (liquid or
solid), and density (wet, dry, aggregates, or rimed), they can be used to discriminate between various particle types.  For
example, hail stones usually tumble as they fall, and the orientation of their major axes tends to be random.  As a
consequence, the differential reflectivity parameter, the difference in reflectivity at horizontal and vertical polarization
(when expressed in dB), is close to zero.  Hail signatures are generally quite distinct from those for heavy rain.  The
ensemble of polarimetric measurements and other parameters, such as the standard deviations of velocity, differential
reflectivity, and differential phase, can be used to designate the type of dominant scatterer at each measurement location. 
Several recent papers focus on issues related to hydrometeor classification.  A comprehensive review of related
observational studies and simulations has been prepared by Straka et al. (2000).  Topics discussed include definitions and
descriptions of the polarimetric radar variables, hydrometeor characteristics, and relations between polarimetric variables
and bulk properties of hydrometeor types.  Polarimetric signatures for hydrometeor distributions consisting of hail,
graupel and/or small hail, rain, rain�wet hail mixtures, mixed-phase hydrometeors, snow crystals, and aggregates are
presented.  The studies summarized provide a foundation for “rule-based” or “fuzzy-logic” classification schemes under
development. [An overview of fuzzy logic methods for diagnosis is given in Section 3.3.4.]

Vivekanandan et al. (1999) outline a potential algorithm for particle discrimination.  Because signatures for
various particles may overlap, they propose a fuzzy logic approach to discriminate between scatterers.  The methodology
employs “membership functions” to determine the degree to which a particular radar parameter measurement (radar
reflectivity, differential reflectivity, ... etc.) belongs to a particular precipitation classification (rain, hail, wet snow, ...
etc.).  The value of the membership function varies from 0 (no membership) to 1 (complete membership).  The shape of
the membership functions is based on experience and simulations.  The radar reflectivity membership function for hail
has a value of 0 for reflectivities < 45 dBZ and a value of 1 for reflectivities > 50 dBZ.  The membership function
increases linearly for intermediate reflectivities.  The fuzzy logic approach ensures that particular classifications are
insensitive to the details of the membership functions.  Final scatterer designations, based on a weighted summation of
the membership functions, had 15 categories.  The technique was applied to an observed severe thunderstorm.

A competing hydrometeor classification algorithm is described by Liu and Chandrasekar (2000).  Input
observations include radar reflectivity, differential reflectivity, differential propagation phase, the correlation coefficient
between reflectivities at horizontal and vertical polarization, the linear depolarization ratio, and measurement height.  A
rule-based, fuzzy-logic system is used to infer particle types; and a neural network is used to adjust the parameter
weights.  Output consists of 10 hydrometeor classes.  An advantage with this particular scheme, derived from the neural
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network component, is the capacity to learn from earlier data collections and thereby refine the fuzzy membership
functions.  The paper gives a brief history of early efforts in particle classification, provides an overview of fuzzy-logic
systems, and details membership functions for particle discrimination in summer and winter storms.  Three convective
examples with in situ observations obtained by aircraft and an example of rain�snow discrimination are presented.  A
possible improvement to the system may be to add a temperature sounding.

The utility of polarimetric measurements for hail detection is examined by Smyth et al. (1999).  They begin
with a summary of previous studies and the theoretical basis for hail detection.  The focus is on the utility of the specific
differential phase parameter (KDP).  An important issue is a significant backscatter component that arises for
hydrometeors in the Mie scattering range.  Calculations show that polarimetric signatures are sensitive to the hail
consistency (whether spongy, wet, or dry) and can become quite large for aligned oblate hailstones. [There is no signal
for tumbling hail with a random distribution of axis orientations.]  The authors present measurements from an unusual
severe hailstorm.  In a portion of the storm with reported oblate hail, ZDR was 3�5 dB suggesting that the hail fell with its
principal axis roughly aligned in the horizontal.  In another region of the storm the differential propagation phase
decreased with range in a region of high radar reflectivity and large differential reflectivity.  The implication is that large
drops in the Mie scattering range (> 7 mm), perhaps supported by ice cores, were present.  The authors conclude that
there are potentially two problems in using the KDP�ZH measurement pair for hail detection: 1) the backscatter
differential phase shift can mask the propagative component and 2) recent studies suggestive of more spherical drop
shapes dictate that the rain contribution to radar reflectivity in a rain�hail mixture can not be uniquely determined from
KDP.  Smyth et al. propose a new hail detection algorithm that relies on the consistency among polarimetric variables for
a rain medium in which the path-integrated phase shift computed from ZDR and ZH is made to agree with the measured
change in 0DP along the radial.  Discrepancies between the calculated phase shifts (assuming rain) and observed phase
shifts that exceed expected measurement errors (2�5o) are interpreted as indicating the presence of hail.  The excursions
can be positive or negative.  Positive values arise when ZDR is reduced by hail; negative values can arise when there is a
significant backscatter phase due to aligned hail.  In this instance ZDR may be large if the major axes are close to
horizontal. When applied to the hail storm, the hail region was characterized by absolute differences exceeding 5o. 
Because the sign of the differences can be positive or negative, there is some uncertainty in the region of small
differences between extremes.  It is possible that hail designations with the proposed algorithm could be triggered by the
presence of very large drops (> 7 mm diameter).  Nevertheless, difference parameters might be part of an ensemble
algorithm that makes use of all the polarimetric measurements.

Nanni et al. (2000) evaluate the polarimetric hail detection algorithm proposed by Aydin et al. (1986)6.  The
technique is based on the HDR parameter as calculated from reflectivity and differential reflectivity measurements.  Hail
is indicated by positive values signifying departures from the “rain-only” case.  To preclude problems related to
attenuation at C-band, detections were restricted to measurements made at 1.4o antenna elevation.  Radar measurement
frequency was 15 min.  Observations from a network of 330 hail pads within 75 km of the radar provided verification. 
Several analysis constraints were applied to eliminate issues related to sampling and hail detections arising from
attenuation.  Hail was found to be associated with HDR > 13 dB rather than all positive values.  A probability of detection
of 0.9 was determined for radar signatures within 2 km of the hail pads.  The critical success index was 0.6, and the false
alarm rate was 0.3.  Performance may be influenced by imposed constraints which eliminated about one half of the hail
events.  The authors note that many of the false alarms were close to pads that recorded hail.

El-Magd et al. (2000) show how polarimetric measurements (reflectivity, the copolar correlation coefficient,
and linear depolarization ratio) could be used to compute the density of graupel and hail.  Ground truth is provided by a
storm penetrating aircraft.  A simulation reveals that radar reflectivity is more sensitive to hail density than it is to hail
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axis ratio and orientation.  The authors then argue that, to a first-order approximation, differences between measured
radar reflectivity and that calculated from in situ hail observations are due largely to density fluctuations.  Assuming that
the aircraft-detected hail is spherical and adding the distribution of rain, they compare reflectivity computed from particle
observations to that measured by radar.  The calculated values are slightly less than that measured by radar.  The
differences are interpreted as caused by wet-hail density variations between 0.915 and 0.945 g cm-3.  The calculations are
repeated for a storm containing conical graupel.  Densities of 0.48 to 0.62 g cm-3 were determined, suggesting that the
graupel is dry.  The results, which rely on small differences between measured and calculated reflectivity, seem too good. 
In summary, the authors note that the hail region was characterized by an LDR of �22 dB and a 'HV of 0.92.  The
graupel region had an LDR of �26 dB and a 'HV of 0.97.

2.7.3 C-BAND CAPABILITIES

The lower cost and practical benefits of C-band radars has led to their wide-spread installation as network
radars, particularly in Europe and Asia.  With heightened interest in polarimetric measurements there is concern about
the suitability of short radar wavelengths whenever hail, aggregates, or large rain drops are present.  Hydrometeors with
diameters larger than about 5 mm are well within the Mie scattering range and cause a resonance in the power
measurements.  Also, power-based measurements can be significantly attenuated in heavy rain.  Because the differential
propagation phase signal is inversely related to the radar wavelength, statistical errors in KDP should be less at C band
than at S band for a given rain rate.  Zrnie et al. (2000) conduct a sensitivity study of the polarimetric variables to
simulated drop-size distributions.  For monodispersed drops they find marked resonance effects for drop diameters
greater than 5 mm.  For example, they compute a ZDR of 10 dB for a drop diameter of 6 mm and a ZDR of 4.5 dB for a
diameter of 8 mm.  The authors then investigate the influence of Marshall�Palmer (exponential) and gamma drop-size
distributions on the polarimetric measurements.  Because the Marshall�Palmer (MP) distribution has greater numbers of
large drops, reflectivities at intense rain rates are higher than those with a gamma DSD at the same rain rate.  The
differential reflectivity is found to be highly sensitive to the shape of the distribution and the maximum drop size. 
Interestingly, ZDR increases with rain rate for the MP distribution but decreases with rain rate for the gamma distribution. 
Attenuation and differential attenuation increase more rapidly with rain rate for a MP DSD than a gamma DSD.  This is
because the number of large drops increases with rain rate for the Marshall�Palmer DSD but decreases with rain rate for
the gamma DSD.  The specific differential phase parameter exhibits the least sensitivity to the DSD shape and maximum
drop size.  DSD affects on rain rate are also examined.  The maximum drop diameter (Dmax) with the MP DSD strongly
influences radar reflectivity estimates.  When Dmax exceeds 5 mm, rain rates can be overestimated by a factor of 3.  The
problem is complicated by attenuation.  In contrast, the KDP estimator is far less sensitive to DSD variations.  Estimators
that combine radar reflectivity and differential reflectivity are also insensitive to DSD variations, but the estimates are
subject to attenuation.  The latter problem can be corrected with the differential propagation phase measurement.

May et al. (1999) evaluate the utility of C-band differential propagation phase measurements for estimating
rainfall.  The paper gives a nice historical review of polarimetry for rainfall estimation.  Computational procedures for
determining KDP and for applying attenuation corrections to ZH and ZDR are described in detail.  Radar�gauge rain rate
comparisons were made for ZH and KDP estimators.  ZH rain rate estimates were made for raw radar reflectivity and for
reflectivity corrected for attenuation and beam blockage.  Highest correlations and smallest bias between 5 min gauge-
observed rain rates and radar were with the KDP estimator.  For an event with small drops the rain was underestimated
with KDP�suggesting some dependence on the DSD exists.  For rainfall estimates at unblocked elevation angles, the
results for KDP and ZH (when corrected for attenuation) converged.

3.  DATA MINING
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3.1 Overview

“Data mining” refers to an emerging technology that is a response to the information age in which we live.  The
availability of low cost computers and data storage devices has enabled routine processing of large databases where
previously the computation required was either too expensive or time consuming.  Databases, consisting of
measurements, text, or images, are mined to disclose patterns, trends, and outliers.  Enthusiasm for data mining is
particularly strong in the retail business sector where potential profits are the primary motivation and in the financial
sector for predicting future movements in interest rates or stock prices.

There is undoubtedly great potential for the mining of remotely sensed data from earth satellites and radars. 
Each WSR-88D tilt sequence produces millions of data points (measurements) consisting of three variables distributed
over a large volume.  Data refreshment intervals are 5 to 6 min.  Typically, a high percentage of the data points are noise,
containing no meteorological signal.  A radar operator can readily distill vast amounts of data and quickly determine, for
example, which thunderstorms are likely to produce severe weather and to require warnings.  However, not all radar
operators are equally skillful; and the issuance of warnings is just one of the services operational meteorologists perform. 
Hence, some automation in the form of algorithms is desirable to assist the operator and to free him for other tasks.  A
number of data mining applications that could have impact on WSR-88D algorithms have appeared in the meteorological
literature (see also previous literature reviews of research related to algorithms).

Beginning a program in data mining can be daunting.  The diversity of applications has produced a variety of
sophisticated tools, such as, “neuro-fuzzy” systems which have a certain “black box” aura; and there is a jargon to be
learned.  Much of the notation is borrowed from statistics.  But some tools do not have rigorous mathematical definitions
and may be described with symbols that have precise definitions in other fields.

Data mining begins with databases.  The construction of a working dataset may require preprocessing, e.g.,
quality control measures, making allowances for missing data, and removing irrelevant or redundant data.  To be
successful it is necessary to have a goal in mind and that a model can be formulated.  For most tools it is imperative that
the algorithm developer understands the relevant issues concerning the problem being addressed.  Above all, the database
must contain the necessary information to solve the problem; and the data must be exploitable.  Model building is most
efficient when basic issues are known and experts guide the process.  Uncorrelated inputs are removed, perhaps with
simple bivariate analyses (Marzban et al. 1999) or a genetic algorithm (Lakshmanan 2000).  Sample size (too few data
points) may be an issue.  On the other hand, it is usually not necessary to analyze an entire dataset.  In fact, an accepted
practice is to withhold some data for independent testing.  The cleaned data are then mined with appropriate tools.  These
may be rule-based systems, statistics, statistically-based regression analyses, decision trees, neural networks, and fuzzy
logic systems.  Restructuring of the data through clustering may be required.  Results are validated, evaluated, displayed,
and interpreted.  The whole process may then be refined by iteration.  Generalized approaches to data mining with
meteorological databases are presented by Howard and Rayward-Smith (1999) and Büchner et al. (1999).  

To summarize data mining activities represents a challenge.  The topic is quite broad and applications cover
diverse disciplines.  Hence, the purpose of this section is simply to present a brief introduction to data mining and point
readers toward various sources of information and some recent applications.

3.2 Sources of information

A search of the World Wide Web reveals how fashionable data mining has become.  Literally hundreds of
thousands of web sites (many ephemeral) are found by using search engines such as AltaVista and Lycos.  Smaller
numbers (hundreds) are found with Netscape and GoTo.  [Similar results are obtained for topical searches with terms
such as “vector machines” or “knowledge discovery”.]  Many organizations are multi-listed.  In some cases organizations



7
Underlined sites can be reached directly.

22

pay a listing fee that is charged when a user enters the site.  Fee payers tend to be larger organizations.
A perusal of selected web sites reveals that the majority are geared toward business activities and represent

entrepreneurs with products (software, books, or consulting services) for sale.  Successful applications are mentioned but
details are not generally provided.  A few sites attempt to educate visitors by giving overviews of data mining, presenting
white papers, giving a bibliography of introductory references, and listing tool vendors.  Some of the more informative
web sites, found by searching with GoTo and using the linkages provided, are7

Bibliography of Internet Resources about Data Mining: fiat.gslis.utexas.edu.  A
nice site with lots of information on tools, publications, and vendors.

Data Mining, Data Warehousing, Neural Networks: KnowThis.com:
www.knowthis.com.  Gives general information on data mining, neural networks,
and links with other sites.

Data mining as seen by a professional: home.planet.nl.  Presents an overview of
data mining from the business perspective. 

KDnuggets: Data Mining, Web Mining, and Knowledge Discovery Guide:
channel1.com.  Lists commercial products, tools, applications, and references.

URL’s for data mining: www.galaxy.gmu.edu.  Gives general information. 

Knowledge discovery in databases and data mining: db.cs.sfu.ca. Gives
references.  

Data mining: What is data mining?: www.anderson.ucla.edu. Presents an
overview. 

Data miners home page: www.data-miners.com.  Data mining references for
business applications.  

Data mining and CRM (Kurt Thearling): www.santafe.edu.  Has several white
papers and gives references.  

The data warehousing information center: www.dwinfocenter.org.  Nice site for
data warehousing, white papers, and tool vendors. 

Other nice web sites are:

University of Birmingham, United Kingdom: References.
http://www.cs.bham.ac.uk/�anp/TheDataMine.html.

Exclusive Ore: A detailed description of tools and other information.
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http://www.xore.com.

Z Solutions, Inc.: Information on neural networks.
http://www.zsolutions.com. 

Major upcoming meetings on data mining are the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining scheduled to convene 26�29 August,
2001 in San Francisco, California and the 2001 IEEE International Conference on Data Mining to
be held in Silicon Valley, California from November 29 to December 2.

Some acronyms used by vendors and advertisers are:

CART Classification and regression tree
CRM Customer relationship management
DBMS Database management system
IT Information technology
KDD Knowledge discovery in databases
OLAP Online analysis processing
SQL Structured query language.

Another source of information is that available through library search services.  A simple
search with the words “data mining” produced 270 book titles.  Unfortunately, the depth of
coverage cannot be determined from the information provided.  Some books represent conference
proceedings and probably describe specific applications in detail.  Other books are designed for
businessmen giving an overview of data mining tools and directing readers toward vendors or
particular analysis packages.  Still others are textbook in nature and intended as reference
material for classrooms.  An example of the latter is “Data mining: Methods for Knowledge
Discovery” (Cios et al., 1998).  This technical book (just one of many) describes the
mathematical aspects of tools and contains chapters on rough sets, fuzzy sets, Bayesian methods,
machine learning, neural networks, clustering, and data preprocessing.

Numerous papers concerned with data mining tools and applications appear in the
scientific literature.  Many can be found in issues of Signal Processing and IEEE publications.  A
number of papers have appeared in the journals of the American Meteorological Society.  While
applications are described in scientific papers, emphasis typically is on technique.  Some applied
papers can be found in preprint volumes of AMS Conferences on Interactive Information and
Processing Systems for Meteorology, Oceanography, and Hydrology.

3.3 Tools

Analysis tools are at the heart of data mining.  Those described here represent only a
subset of what is available.  Tools differ in approach and function.  A data mining tool may be an
algorithm that simply detects outliers and ascertains whether or not they are legitimate data points
or the result of measurement or encoding errors.  Outlier detection is often facilitated by plotting
the data or searching for data points which lie outside expected domains.  Another simple data
mining method is that of statistical regression analysis�usually linear regression.  While
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regression analysis can be important for determining relationships, the approach is often limited
because system processes are non-linear.  Regression analysis is just one example of a statistical
or probability (Bayesian) method.  Time-series analysis is long used tool for determining trends
or making associations with subsequent events.  Other tools seek associations by grouping data
points according to interrelationships among variables or by classifying data points into particular
bins.  Membership classification is often binary�the input variable is either in the desired class or
it is not.  But desired outputs may be a specific value or the degree of membership for a
continuous distribution of values.  Classification tools frequently used are decision trees, neural
networks, and fuzzy logic.  More than one tool can be applied to most problems; the search for
the particular tool best suited for a particular problem may not be a trivial issue.  Further, to solve
more complex problems combinations of tools may be required.  To make predictions, it is
necessary to model the process.  This requires a training or learning period and normally involves
a database consisting of events with both the desired outcome and non-events.  Finally, the model
is validated with independent (withheld) data.  Importantly, the outcome of a data mining process
is dictated largely by the quality of the input observations.

3.3.1 DECISION TREES

A simple data mining model, easily visualized and understood, is the decision tree.  Trees
constitute a set of decisions or rules (usually binary, yes�no, or if�then) designed to classify a
dataset.  Decision tree systems have been developed by a number of vendors.  An example of a
tool which builds trees automatically is the Classification and Regression Tree (CART) system
developed by Salford Systems (see www.salford-systems.com for a description).  The procedure
is concerned with logical sets of statements that determine the effect of a specific event or
decision on subsequent events.  A related vendor tool is the Chi-squared Automatic Interaction
Detection (CHAID) algorithm.  A key activity with decision trees is the determination of
effective splitting statements to isolate desired outcomes.  A tornado detection algorithm might
restrict an analysis to storms with maximum reflectivity greater than 40 dBZ.  A “yes” might then
invoke a second decision concerning the presence of a mesocyclone.  A second “yes” could lead
to additional decisions regarding the presence of a tornado vortex signature.  The process
continues until a “no” occurs or all tests are exhausted and a final designation is made. Generally,
the decision logic is based on historical data.  Algorithms (the tree itself) are refined with
repeated passes through the data.  The number of passes is dictated by the number of levels in the
tree and the number of input variables.  It’s possible to map every possible outcome by adding
levels, but the data may be overfit and the tree too specific.

Trees begin with a root node containing the input data and are grown by successively
splitting the data into subsets.  Trees are composed of branches�collections of related nodes.  A
concluding node at the end of a branch is referred to as a leaf node.  Decisions are made at nodes,
and each subsequent decision is made at child nodes along the branch.  The process continues
until it no longer makes sense to subdivide the dataset or a leaf node is reached.  The cases at the
terminal node are then classified as to the outcome.  Recording the number of times a specific
node is reached can be helpful for determining the statistical properties of the dataset and for
constructing new branches, for pruning trees to cure overfitting, or for removing inappropriate
portions of trees generated by automatic algorithms.  

Decision trees are popular in computer processing because of their simplicity.  They are
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less applicable for complex problems requiring many decisions thereby reducing the efficiency of
the tool.  When outputs are not in specific categories, decisions (splits) can be based on expert
knowledge or statistics.  Tree testing is accomplished with the usual method of withholding a
subset of the data.

3.3.2 NAÏVE-BAYESIAN TECHNIQUES

This tool seeks to classify inputs according to statistical relationships between
independent (input) and dependent (output) variables.  An implicit assumption is that the
independent variables are uncorrelated.  The method generally requires that inputs be binned, i.e.,
that they not be continuous.  For mesocyclones this could mean classifications such as weak,
moderate, and strong rather than using a metric like rotational velocity.  The selection of each
bounded class is not trivial since it must relate to independent (naïve) variables.  The frequency
with which each independent variable occurs in combination with each dependent variable is
determined.  The frequencies are used to find the probability of the dependent variable based on
the conditional probabilities for the independent variables.  The predicted outcome is found by
multiplying the conditional probabilities by the probability of the dependent variable.  The
conditional probabilities can be helpful for understanding the physical processes involved.  A
mathematical treatment of Bayesian methods is given by Cios et al. (1998, chapter 4).  An
illustrative data mining example can be found at the Exclusive Ore web site
(http://www.xore.com).

3.3.3 NEAREST NEIGHBOR

This tool, also referred to as k-nearest neighbor, compares an input observation to the
historical record, finds a subset of cases (k) that are similar, and then predicts the most likely
outcome.  Key issues are the definition of “near” and the number of required near cases to ensure
system stability.  New inputs are expected to have the same outcome as the predominant outcome
for similar cases in the past (the training dataset).  Predictions are made after passing through the
entire dataset.  Problems can arise when applying the algorithm to multiple inputs.  Presumably
different distance measures could be applied for different inputs (e.g., reflectivity and for
rotational velocity).  The arbitrariness of determining distance measures and the need to peruse
the entire dataset to find the nearest neighbors is a drawback to the scheme.  For additional
information see Cios et al. (1998, chapter 4) and the Exclusive Ore web site
(http://www.xore.com).

3.3.4 FUZZY LOGIC

Fuzzy logic tools are considered by developers to be analogous to how the human brain
operates in complex situations.  Fuzzy logic can be applied in situations where cause and effect
are not well understood mathematically or understood only in subjective (linguistic) terms. 
Subjective information might be the realization that, if a tornado was near a specific location at a
particular time, it should be relatively near that location a short time later or that turbulence is
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light, moderate, or severe.  Sources of objective information include physical laws, models, and
statistics.  The technique has been applied for pattern recognition, forecasting trends, quality
control, and diagnosis.  Early applications required an expert to define the problem.  More recent
applications with “neuro-fuzzy” schemes are self-training.  Applications most likely to benefit
from a fuzzy logic approach are processes with variable control parameters, situations where
mathematical descriptions do not exist, problems are complex or cannot normally be solved in
real time, signal-to-noise ratios are high, and situations where an expert can provide rules related
to system behavior (Cox 1992). 

Fuzzy numbers have utility for defining classes with continuous rather than abrupt (step)
boundaries, that is, they relax dichotomous classifications and permit intermediate values of class
membership.  Hence, fuzzy numbers may allow for a more realistic interpretation of data when
outcomes do not have well-defined boundaries (tornadic mesocyclones versus non-tornadic
mesocyclones).  Generally, fuzzy logic systems map multiple input data into a single, useable
output.  Inputs and outputs are generally “crisp” (ordinary) numbers.  The degree of membership
of each variable to a particular class is expressed in the interval 0 � 1 where 0 represents
nonmembership and 1 indicates complete membership.  Numbers close to 0 (1) indicate a low
(high) degree of membership.  For example, it may be desirable to define a number “close to 10”,
i.e., having a modal value of 10.  The membership function may be triangular in shape, increasing
linearly from 0 at 8 to a value of 1 at 10 and then decreasing to a value of 0 at 12.  Data values �
8 or � 12 would have a membership value of 0.  The assignment of weights is referred to as
“fuzzification”.  The membership function for our example [A(x)] can be expressed as

A= 0 if x � a

(x - a)/(m - a) if x �[a,m]

(b - x)/(b - m) if x �[m,b]

0 if x � b

where a = 8, b = 12, m = 10.  An equivalent notation is

A(x;a,m,b)=max{min[(x-a)/m-a),(b-x)/(b-m)],0}   .

The membership functions describe a “fuzzy set”.  Depending on the application, a variety of
membership function shapes, e.g., S, trapezoidal, and Gaussian, can be defined.  Membership
functions may be further modified through extensions (multiplying by mathematical functions),
taking logarithms, squaring, and normalizing.   Techniques are being developed to objectively
determine membership functions [e.g., Cios et al. (1998, chapter 3)].

The special issue of the IEEE Proceedings (Vol. 83, March 1995) presents several
applications.  The lead article by Mendel (1995) gives a tutorial on fuzzy systems.  Eighty-seven
references to other information sources are given.  Mendel defines a fuzzy logic system as the
path between input and output.  Key components of a non-trivial system are a fuzzifier, rules, an
inference engine, and a defuzzifier.  [A simple example (the operation of a steam turbine) is
given by Cox (1992).]  The fuzzifier turns input numbers into fuzzy sets.  The fuzzy numbers are
then subjected to rules provided by experts.  The rules typically are in the form of if�then
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statements.  The inference engine maps the fuzzy sets into new sets by combining the individual
rules.  Defuzzification transforms the output into useful numbers which might be binary (yes�no
for tornado designation) or numerical (the probability of a tornado or its estimated location). 
Another reference with background tutorial material on fuzzy logic is Bowles and Peláez (1995).

As a meteorological example of a fuzzy system, consider the relationship between
maximum radar reflectivity within a thunderstorm and the occurrence of hail.  It might be
supposed, following Vivekanandan et al.  (1999), that the likelihood of hail in storms with
reflectivities less than 45 dBZ is zero.  Hence, the hail membership for storms with maximum
reflectivity values less than 45 dBZ would be assigned a value of 0.  It’s known that the
probability of hail increases as reflectivity increases.  At a maximum reflectivity of 50 dBZ nearly
all storms might be considered to contain hail.  Hence, storms with maximum radar reflectivity of
� 50 dBZ would be assigned a hail membership value of 1.  Storms with reflectivities between 45
and 50 dBZ would have some degree of membership in the hail storm class.  The degree of
membership might increase linearly over the interval or, if climatological information is
available, can be defined by some nonlinear function.  Hail membership functions might be
defined regionally, e.g., the likelihood of hail in Florida with storms having maximum
reflectivities < 50 dBZ might be less than that in Oklahoma due to elevated freezing levels and
weaker storm dynamics.

As noted, fuzzy logic is a promising tool for solving complex problems.  For example,
polarimetric radars provide a suite of measurements that relate to the properties of hydrometeors
illuminated by the radar beam.  Additional information beyond radar reflectivity, radial velocity,
and spectrum width is available which should facilitate hydrometeor classification.  Compared to
rain, hail typically associates with low differential reflectivity, high linear depolarization ratios,
low correlation coefficients between reflectivity at horizontal and vertical polarization, and, if the
hail is in the Mie scattering range, large fluctuations in differential propagation phase. 
Potentially each parameter can be used to define parameter-specific membership functions for
hail.  Final “hail” or “no hail” decisions would be based on a weighing of the results for each
parameter.  The redundancy inherent in the suite of polarimetric measurements should drastically
reduce false alarms and may even be useful for estimating hail stone size (see also last year’s
report).  Other potential applications are in general hydrometeor classification and rainfall
estimation.  Several applications in quantitative precipitation estimation might be possible. 
Fuzzy logic might be used to apply range corrections based on precipitation type (stratiform or
convective), to account for bright bands and changes in phase (liquid or solid), to apply
climatological adjustments, and to make adjustments based on gauge�radar comparisons.  One of
the primary sources of error with fixed-radar reflectivity rainfall estimators associates with
changes in drop size.  With polarimetric radars it is possible to compute median drop diameters. 
This information could be used in a fuzzy system to adjust the coefficient of radar reflectivity
estimators.

3.3.5 NEURAL NETWORKS

Artificial neural networks (NNs) are among the more complicated data mining tools.  A
variety of types (feedforward, recurrent, and hybrids), the use of hidden layers, and questions
regarding training and size of the training dataset can discourage their use.  Nonetheless, the list
of applications is growing rapidly.  Neural networks are modeled after the way the brain operates



28

and learn by example.  Indeed, NNs make an association with the biological neuron, the
interconnections with other neurons, and the signals generated when thresholds are reached. 
Neural networks can solve complex (nonlinear) problems where the governing physics is not
known.  Solutions are fairly tolerant of input imprecisions.

An overview of how neural networks function is given by Brierley and Batty (1999). The
article includes Fortran 90 code for a short illustrative program.  [General, less technical 
discussions of NNs can be found at the Exclusive Ore (http://www.xore.com) and Z Solutions
(http://www.zsolutions.com) web sites.]  Artificial neural networks are simple computer
programs designed to find nonlinear relationships in data without having a preconceived concept
of how input data and desired outputs are related.  The procedure is statistical in approach but has
characteristics of rule-based systems.  A simple feedforward multilayer network consists of an
input layer which contains the relevant variables, one or more hidden layers of neurons, and an
output layer.  The input data are transformed by weights and neurons as it passes through the
network.  The output represents a transformation between input (independent) and output
(dependent) variables.  As implied by its name, the flow in a feedforward network is in one
direction.  Networks in which neuron outputs may feed backward either to themselves or other
neurons in previous layers are referred to as recurrent networks.  In recurrent networks the error is
“backpropagated” by adjusting the weights at each node (see Silverman and Dracup 2000). 
Typically, each input variable is connected to each of the neurons in the hidden layer.  Each
hidden neuron sums all the weighted inputs (the variable times the connecting weight).  The
summed value is passed through an “activation function” before being weighted again and passed
to the next layer.  Outputs are usually binary.

Neural networks are trained with a subset of the historical data that contains
representative inputs and outputs.  Training establishes the weights that optimize the desired
output with the input variables.  Training involves the minimization of a cost function.  Network
tuning and testing is performed by varying the number of neurons and by applying the network to
withheld historical data.  Training increases exponentially as the size of the dataset increases. 
Optimization is accomplished by conducting random or patterned searches in which performance
is judged by the gradient-descent technique. The activation function must be differentiable.  S-
shaped functions permit the network to solve nonlinear problems.  Logistic and hyperbolic
tangent functions are commonly used because they vary over nice limits (0�1 and �1�1,
respectively).  The logistic function has the form

where x is the sum of all weighted inputs at the node (neuron).  Because logistic and hyperbolic
tangent functions have near-linear regions they can also approximate linear problems.

Training involves passing through the data numerous times and making small adjustments
to the weights.  The size of the adjustment determines the learning rate.  Training ends after a set
number of passes through the data, when the residual error falls below a specified threshold, or
when the added improvement by additional passes is insignificant.  Training is complicated by
decisions that must be made regarding the number of nodes, number of hidden layers, the choice
of activation function, learning rate, and the setting of parameters and thresholds.

Research indicates that neural networks generally outperform linear regression models,
persistence, and nowcasting methods.  A possible problem with neural networks is that of
overfitting the training data by having too many hidden neurons.  Overfitting is also a potential
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problem with noisy data.  Too few nodes can result in poor accuracy.  Importantly, neural
networks do not represent physical models, nor do they give physical insight to the particular
problem addressed.  Outputs are determined by the domain of the inputs.  Extrapolations outside
the data domain have no basis.  If network performance is judged by a metric involving least-
square errors, it is possible that the network solution can be dictated by outliers.  It is also
possible that the network solution represents a local error minimum rather than a global
minimum.

There have been numerous papers concerned with neural networks and applications in the
scientific literature.  Particular applications include signal detection and compression, data
filtering, parameter estimation, pattern recognition and reconstruction, and time series analysis. 
Many applications can be found in issues of Signal Processing and IEEE publications.  The entire
November 1997 issue of Signal Processing was dedicated to neural networks.  IEEE Proceedings
with special issues on neural networks include Volume 78, September and October 1990 and
Volume 84, October 1996.  Of interest is the article by Widrow and Lehr (1990) which gives an
early history of neural network development and an overview of how various networks operate. 
The IEEE Transactions on Signal Processing had a special issue on neural networks in November
1997 (Volume 45).  Additional papers can be found in the issue for May 1998 (Volume 46). 
IEEE Workshops on Neural Networks for Signal Processing are held annually and papers are
compiled in meeting proceedings.

3.3.6 GENETIC ALGORITHMS

Genetic algorithms are another tool set patterned after biological processes.  The tool
mirrors the Darwinian principal that over time natural selection will result in the fittest species.  
When applied to data mining, this refers to the use of genetic methods to optimize models.  The
algorithms employ fitness functions (chromosomes) to cluster data points within groups.  They
also incorporate operators which allow for copying and altering the data descriptions.  These
operations are said to be analogous to reproduction, mating, and mutation.

3.3.7 SOME APPLICATIONS

Among recent fuzzy logic applications having a meteorological flavor is the study of Shao
(2000) who describes a fuzzy categorization system for determining road conditions.  Infrared
measurements made with a vehicle-mounted system are used to map road surface temperatures. 
The information is then combined with standard meteorological observations in a road-ice
prediction model.  Data interpretation requires some expertise in mapping and meteorology.  The
thermal mapping products are classified (based on spatial measurement variation) as extreme,
intermediate, and damped.  Moreover, actual road conditions are sensitive to cloud cover, cloud
type, and, to a lesser extent, wind speed and humidity.  Four fuzzy sets for the latter variables are
described.  Several references to other fuzzy logic applications are also given.

Cornman et al. (1998) describe a fuzzy logic application for estimating Doppler moments
from wind profiler spectral measurements.  The system removes spurious signals from birds,
aircraft, ground clutter, and radio frequency interference and corrects for velocity and range
folding.  The scheme features mathematical analyses (gradient and curvature terms), fuzzy logic,
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global image processing, and incorporates the signal-to-noise ratio as a quality control measure. 
Atmospheric signals and contaminants are distinguished by the magnitudes of computed gradient
and curvature terms.  Four fuzzy sets (for gradients, curvature, the distance of velocity peaks
from zero, and symmetry) are used for clutter detection.  Composition is accomplished by
linearly weighing the various membership functions.  The global analysis removes isolated
features with small total membership values and retains coherent features with high total
membership values.  This is accomplished with a density weighting procedure in which each
point is weighted according to the number of neighboring points whose total membership value is
above a specified threshold.

The development of a fuzzy logic algorithm for detecting AP in Archive Level II data is
described by Kessinger et al. (1999).  The fuzzy logic approach was picked over rule-based and
NN systems because of performance and ease of implementation.  Membership functions were
constructed for mean radial velocity, spectrum width, the texture of the signal-to-noise ratio, the
standard deviation of the radial velocity, and the vertical gradient of reflectivity between 0.5 and
1.5o antenna elevation.  The individual interest fields are weighted to determine the
contamination.  The AP detection problem is complicated on the WSR-88D because the spatial
resolution of Doppler and reflectivity measurements differ and because the measurements are not
made simultaneously at the lowest two antenna elevations.  Also, the fact that the azimuthal
location of the radial measurements changes from scan to scan makes it difficult to incorporate
time continuity.  Preliminary results show the algorithm has skill in identifying AP.  A possible
use of the algorithm is to define regions where clutter filters should be turned on.  A planned
system upgrade is a reflectivity compensation routine to mitigate bias introduced by notch
filtering.

Fuzzy logic-based systems serve as the core of hydrometeor discrimination algorithms
being developed for polarimetric radars.  Vivekanandan et al. (1999) give an overview of the
scientific basis for hydrometeor discrimination and a short description of how fuzzy classifiers
are applied.  Expected radar parameter ranges for various hydrometeors are shown in ZH � ZDR

and ZH � KDP space (see also Section 2.7.2).  Algorithm output is demonstrated with a cross-
section through a severe thunderstorm.  

Liu and Chandrasekar (2000) propose a hydrometeor classification algorithm that has
both fuzzy logic and neural network components.  A decision tree system was rejected because
the measurement set for different hydrometeors is not mutually exclusive and trees do not easily
allow for measurement errors.  Statistical models were considered too difficult to construct given
that joint probabilities for the five pertinent polarimetric variables are not known.  The described
neuro-fuzzy system was thought to have the advantages of rule-based systems and a capability for
learning by inserting observations.  Beta membership functions of the form

 
were defined where m is the center value of the function, a is its width, b is the slope, and x is the
measurement value.  [Those for ZH and ZDR are described in detail.]  Prior (expert) knowledge is
incorporated in the construction of the fuzzy sets and if�then inference rules.  Weights for each of
10 hydrometeor classes are determined as the product of the fuzzy numbers for the 5 radar
measurements and the measurement height.  The class with the largest numerical value is the
designated hydrometeor.  In the examples given, the fuzzy logic system is mapped as layers in a
feedforward neural network.  When in situ observations are available, the misclassification error
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can be backpropagated to adjust system parameters.  The system performed plausibly on summer
and winter storms used in development.   

A neural network for detecting anomalous propagation echoes has been developed by
Grecu and Krajewski (2000).  System predictors, determined from volume reflectivity scan
information, are 1) the advection velocity of the radar echo, 2) the coefficient of variation of echo
velocities, 3) height of the echo above the base scan, 4) height of the reflectivity maximum, 5) the
reflectivity value, 6) the distance to authentic data pixels, 7) the coefficient of variation of the
reflectivity values, 8) a measure of significant fluctuations, and 9) a horizontal gradient term. 
Although a decision tree might be implemented in this case, it might not be as computational
efficient over time.  The training dataset consisted of events that were exclusively AP or rain. 
With this approach mixed-echo events would be classified by the dominant echo type.  A
backpropagating (recurrent) system was used.  Network output was binary; radar pixels were
classified as either rain or AP.  It is assumed that once a pixel in the base scan is classified, all
pixels above it have the same classification.  Although histograms of the nine selected features
for AP and rain overlapped, the first three features differed significantly.  Application to several
events showed that the percentage of misclassified pixels varied from 0.5 to 6.8%.  The network
gave marked improvement compared to a quadratic discrimination function.  Tests revealed that
selection of the training dataset was not trivial and that the network would not perform well on
events for which it was not trained.  Other experiments investigated the impact of the training
dataset size.

In another radar application, Bellerby et al. (2000) propose a multilayer feedforward
neural network to estimate rainfall with multispectral imagery from the Geostationary
Operational Environmental Satellite (GOES).  For training, measurements from NASA’s
Tropical Rainfall Measuring Mission (TRMM) precipitation radar were matched with satellite
measurements from visible and 4 infrared (IR) channels.  A total of 45 input values defined the
essential characteristics of the image data.  These included measurements from the IR bands
(mostly mean values over subsets of the interest area and standard deviations), an image texture
parameter, time changes over the previous 30 min, and the time of day.  The first hidden layer
contained 200 sigmoidal neurons, whereas the second layer had 100 neurons.  The second layer
was found necessary because many simple satellite inputs at the edges of rain areas produced
very different outcomes.  A linear combination of outputs from the second layer was used to
estimate the rainfall.  Training was evaluated with the gradient descent method.  The two-layer
network outperformed both a network with a single hidden layer and a linear regression method. 
A comparison of network and modified GOES precipitation index (GPI) estimates with those
from the precipitation radar revealed higher correlations but larger overall bias with the neural
network.

A NN application in precipitation prediction is described by Silverman and Dracup
(2000).  The central hypothesis was that regional precipitation is driven by the circulation at 700
mb and that the wind patterns could be used to make long-term rainfall predictions.  A concise
summary of neural network attributes is given.  The paper then details steps taken in network
development and training.

A time series application in rain runoff is presented by Furundzic (1998).  The basic
assumption is that time series of rain gauge observations contain sufficient relevant information
in a statistical or dynamic form to draw inferences about runoff behavior.  Factors influencing the
runoff relate to watershed slope, meteorology (e.g., temperature, humidity, and rainfall duration
and intensity), antecedent soil moisture, soil composition, and the degree of urbanization.  The
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neural network approach to the rain�runoff (RR) problem was deemed appropriate because of
inherent nonlinearities and the large time and space variations that characterize the interrelation
between rain and runoff.  Runoff models tested included a network with three multilayer
perceptrons and a self-organizing feature and a stepwise regression model that assumed linear
relationships among variables.  The neural network markedly improved the runoff estimate. 
Advantages of the neural network are believed to be the high tolerance of imprecision and
uncertainty in the inputs, distributed processing, an ability to generalize, computational
parallelism, and learning capability.

A heuristic paper on neural networks, typical of many in the literature, is that of Yuval
(2000) which describes a modification to network training.  The procedure is designed to
optimize training by minimizing a generalized cross-validation function.  Questions regarding the
level of fitting for training data and how to select the model that gives the best prediction are
addressed.  Performance is judged in terms of bias and variance.  Poor fits to the data create bias
whereas overfitting (often in response to noise) results in high variance.  The latter problem can
be alleviated through the introduction of some bias by imposing additional constraints�a
technique referred to as regularization.  The problem is to choose a regularization parameter
when system noise sources and levels are not known.  Optimization is achieved when the
generalized cross-validation function is minimized.  This is accomplished by choosing the
regularization parameter such that the sensitivity of the final model to successively leaving one
datum out is a minimum.  The method is demonstrated on a synthetic dataset consisting of time-
dependent westerly winds with imposed large-scale eddies and is applied to the prediction of
surface temperatures during El Niño events.  As an aside, Yuval notes that neural networks do
not supersede dynamical models but promote the understanding and prediction of phenomena
until dynamical models are developed.  

Lakshmanan (2000) fine tuned an algorithm for bounded weak echo region (BWER)
detection with a genetic algorithm.  At the core of the BWER algorithm is a rule-based system
that consists of 20 fuzzy attribute sets.  The genetic algorithm is used to optimize the membership
functions.  The tuning of the fuzzy sets is accomplished in stages (generations) in which bad data
points (bad genes) are weeded out.  The genetic code that determines the fitness of the data point
is called a chromosome.  The latter are composed of genes (the fuzzy sets).  The genetic
algorithm does not change the shape of the membership function but optimizes the fuzzy system
by changing its breakpoints.  The procedure is outlined and a metric for evaluating fitness is
described.  Tuning is performed on a “truthed” dataset.  Sets of chromosomes with high detection
probabilities are retained for inclusion in successive generations.  The procedure stops when new
chromosomes are no longer identified.  Application of the genetic algorithm does not guarantee
optimality; hence, hybrid schemes pair the algorithm with a search routine to find optimal
chromosomes.  The algorithm was tuned on a dataset consisting of five cases containing 200
volume scans.  CSIs with test datasets varied from 0.17 to 0.50.

4 BIBLIOGRAPHY OF RELATED RESEARCH

This section summarizes scientific articles relating to existing and potential WSR-88D
algorithms that have appeared in recent journals, society bulletins and announcements, and
conference proceedings.  Although the breadth of topics is broad, the reviewed papers are
believed to be of general interest.  Each article is given a subjective rating as to its perceived
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relevance to the NEXRAD program.  In general, a “low impact” rating refers to articles of
general interest.  Case studies and applications using WSR-88D data and articles on data mining
fall into this category.  “Moderate impact” usually refers to research that could lead to
improvements of existing algorithms or research that is likely to be important in the future. 
Radar polarimetry falls into this category.  “High impact” articles represent research that is
closely related to existing algorithms and technical needs.   Importantly, ratings are not an
indication of research quality.

REVIEWED PAPERS:

Anagnostou, E. N., and W. F. Krajewski, 1999a: Real-time radar rainfall estimation. Part I:
Algorithm formulation.  J. Atmos. Oceanic Technol., 16, 189-197.
[High impact, potential modification to the precipitation processing subsystem.  The paper
describes a multi-step process for estimating rainfall with radar reflectivity and adjusting
estimates with rain gauge observations.  Key algorithm components include adjustments for the
vertical profile of precipitation, hybrid scan construction (lowest two elevation angles),
precipitation type classification, precipitation advection, and mean field bias adjustment.]

Anagnostou, E. N., and W. F. Krajewski, 1999b: Real-time radar rainfall estimation. Part II: Case
study.  J. Atmos. Oceanic Technol., 16, 198-205.
[High impact.  An evaluation of the algorithm described in Part I of this study is presented.  The
paper begins with a demonstration of an optimization technique for determining the controlling
parameters of the algorithm and shows how the parameters are inter-related.  Application to a
dataset acquired in east-central Florida follows.  Results show essentially no system bias and
relatively high correlation between gauge and radar-estimated amounts.  A 20% reduction in error
over the PPS is achieved.]

Anagnostou, E. N., W. F. Krajewski, and J. Smith, 1999: Uncertainty quantification of mean-
areal radar-rainfall estimates.  J. Atmos. Oceanic Technol., 16, 206-215.
[Low impact.  The authors develop a methodology for determining the contribution of the
variance in gauge area-point rainfall (sampling) differences to the variance of radar�gauge ratios. 
The ratios are treated as a stochastic process in which errors (expressed in terms of ratios) are
assumed to be lognormally distributed with zero covariance.  Area�point differences in the
gauge-observed rainfall contributed up to 60% of the variance in gauge�radar comparisons.  The
errors were a function of radar grid size, the distance of the gauge from the center of the
averaging domain, and the distance from the radar.  Application to precipitation regimes other
than Florida is not straightforward because detailed statistical information on the small-scale
structure of the precipitation is required.]

Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation from combination of
TRMM precipitation radar and GOES multispectral satellite imagery through the use of an
artificial neural network.  J. Appl. Meteor., 39, 2115-2128.
[Low impact.  The paper describes an artificial neural network for estimating rainfall with visual
and infrared images from the Geostationary Operational Environmental Satellite.  The network is
trained with measurements from NASA’s precipitation radar (PR) and is verified with PR
measurements and rain gauge observations.  Improvement is found over the older GOES



8
Gauthreaux, S. A., Jr., and C. G. Belser, 1998: Display of bird movements on the WSR-88D: Patterns and quantification. Wea. and

Forecasting, 13, 453-464.

34

Precipitation Index (GPI) estimation technique.]

Biggerstaff, M. I., and S. A. Listemaa, 2000: An improved scheme for convective/stratiform echo
classification using radar reflectivity.  J. Appl. Meteor., 39, 2129-2150.
[Low impact.  A study was undertaken to improve the partitioning of convective and stratiform
precipitation in a previously published algorithm.  Model enhancements include terms for vertical
and horizontal gradients of reflectivity and bright bands.  The proposed model does not suffer
from the obvious misclassification flaws in the earlier study.  It’s unclear whether the
classification changes will result in significant improvements in heating rates and rainfall
estimates.]

Black, J. E., and N. R. Donaldson, 1999: Comments on “Display of bird movements on the
WSR-88D: Patterns and Quantification”.  Wea. and Forecasting, 14, 1039-1040.
[Low impact, information only.  This note is in response to a paper by Gauthreaux and Belser
(1998)8 concerning the use of the WSR-88D for monitoring bird migrations.  The original paper
attempted to estimate the migration traffic rate of birds from measured reflectivity.  Black and
Donaldson assert that reflectivity is more closely related to the number of birds.  (In truth, the
relation between birds and reflectivity is likely to be complicated because birds are Mie
scatterers.)  The flux of birds would be given by their number and their speed.  The authors
suggest bird speeds can be estimated from the Doppler information.  In their reply, Gauthreaux
and Belser compute the bird density and show a linear relation with reflectivity (linear units). 
The correlation is high (0.89) and better than that between traffic rate and reflectivity in dBZ. 
The correlation may be strongly influenced by two data points.]

Bowles, J. B., and C. Peláez, 1995: Application of fuzzy logic to reliability engineering.  IEEE
Proceedings, 83, 435-449.
[Low impact.  Applications in estimating failure rates in complex manufactured goods are
described.  The paper begins with a brief introduction to membership functions and how fuzzy
logic tools operate.  Fuzzy fault trees are also introduced for determining likely system outcomes
when failures do occur.]

Brandes, E. A., J. Vivekanandan, and J. W. Wilson, 1999: A comparison of radar reflectivity
estimates of rainfall from collocated radars.  J. Atmos. Oceanic Technol., 16, 1264-1272.
[Low impact, system evaluation.  Rainfall estimates for storms in Colorado and Kansas from a
research radar and WSR-88Ds were examined.  Storm-to-storm bias factors and correlation
coefficients between estimated and gauge observed rainfalls were very similar for collocated
radars suggesting that much of the observed variance in these parameters stems from
meteorological factors.]

Brierley, P., and B. Batty, 1999: Data mining with neural networks�An applied example in
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understanding electricity consumption patterns.  Knowledge Discovery and Data Mining, M. A.
Bramer (Ed.), The Institution of Electrical Engineers, London, 240-303.
[Low impact.  The authors give a nice overview of how neural networks operate.  An application
designed to understand and predict electricity consumption is examined in detail.  Usage has
yearly, weekly, and diurnal components and is influenced by holidays, the length of day light, and
weather.  Experiments with varying numbers of hidden nodes are described.  Rudimentary
Fortran 90 code for a backpropagating multilayer NN is provided.]

Brown, R. A., J. M. Janish, and V. T. Wood, 2000a: Impact of WSR-88D scanning strategies on
severe storm algorithms.  Wea. and Forecasting, 15, 90-102.
[High impact, user awareness issue.  The influence of vertical sampling resolution on algorithm
output for VCP-11 (14 elevation) and simulated VCP-21 (9 elevation) scans is examined.  For
storms relatively close to the radar and extending above 5o elevation, algorithm output can differ
significantly in a large percentage of cases.  Estimated vertical depths of features differ more than
60% of the time.  Moreover, there is a tendency for feature depths to be smaller with VCP-21. 
Other parameters such as VIL are consistently larger.  The differences seem significant enough
that different warning thresholds may be justified.  The authors recommend that VCP-11 be used
in convective situations whenever warnings may be required.]

Brown, R. A., V. T. Wood, and D. Sirmans, 2000b: Improved WSR-88D scanning strategies for
convective storms.  Wea. and Forecasting, 15, 208-220.
[High impact.  A procedure for optimizing radar scans is proposed.  Constraining parameters are
the selected minimum and maximum elevation angles, an assumed storm height, and the
maximum allowable storm height underestimate.  The latter parameter dictates the number and
spacing of elevation angles.  The procedure should result in VCPs with increased low-level
sampling of distant storms, more regularly spaced elevation angles, and a reduction in the “cone
of silence” above the radar.  By maximizing the rotation rate, temporal sampling can also be
increased.]

Brunkow, D., V. N. Bringi, P. C. Kennedy, S. A. Rutledge, V. Chandrasekar, E. A. Mueller, and
R. K. Bowie, 2000: A description of the CSU-CHILL National Radar Facility.  J. Atmos. Oceanic
Technol., 17, 1596-1608.
[Low impact, description of a research polarimetric radar.  The paper describes the S-band dual-
polarization radar operated by Colorado State University.  Dual transmitters and receivers are
featured.  The radar can operate by alternate transmission of horizontally and vertically polarized
signals or the transmitters can be triggered simultaneously to produce ±45o linear or right-hand or
left-hand circular polarization states.  The radar reportedly has the sensitivity to measure LDR
signals of �34 dB when signal-to-noise ratios are >35 dB.  A procedure for calibrating ZDR with
sun scans and LDR measurements is presented.]

Büchner, A. G., J. C. L. Chan, S. L. Hung, and J. G. Hughes, 1999: A meteorological know-
ledge-discovery environment.  Knowledge Discovery and Data Mining, M. A. Bramer (Ed.), The
Institution of Electrical Engineers, London, 204-226.
[Low impact.  The article details the desired attributes of a data mining system for meteorological
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datasets.]

Campos, E., and I. Zawadzki, 2000: Instrumental uncertainties in Z�R relations.  J. Appl.
Meteor., 39, 1088-1102.
[Low impact.  Radar reflectivity estimators are derived from DSD measurements obtained with
three different instruments.  Relations are constructed by performing a linear regression between
10logZ and logR, a nonlinear regression between Z and R, and a regression between logR and
10logZ which was then inverted.  The computations produced three sets of estimators that
differed significantly in their coefficients and exponents.  The total variation was similar to that
in Z�R relations reported in the literature.]

Ciach, G. J., and W. F. Krajewski, 1999: Radar�rain gauge comparisons under observational
uncertainties.  J. Appl. Meteor., 38, 1519-1525.
[Low impact.  The influence of radar and gauge measurement errors on the direct nonlinear
regression (Z to R), inverse nonlinear regression to (R to Z), and probability matching method for
estimating the exponent of Z�R relations is examined.  Results show that the direct method
always overestimated the exponent due to errors in reflectivity measurements.  Reverse
regression always underestimated the exponent.  The probability matching method, which is
susceptible to both radar and gauge errors, was found to be the geometric mean of the two
regression methods.]

Cios, K., W. Pedrycz, and R. Swiniarski, 1998: Data Mining: Methods for Knowledge Discovery,
Kluwer Academic Publishers, Boston, 495 pp.
[Low impact, a technical reference for data mining.  Individual chapters cover rough sets, fuzzy
logic, Bayesian methods, and neural networks.]

Cornman, L. B., R. K. Goodrich, C. S. Morse, and W. L. Ecklund, 1998: A fuzzy logic method
for improved moment estimation from Doppler spectra.  J. Atmos. Oceanic Technol., 15, 1287-
1305.
[Low impact.  Doppler velocity estimates are improved by application of fuzzy logic to identify
point targets, velocity and range folding, radio interference, and ground clutter in spectral
moments.  An overview of tool development is given.]  

Cox, E., 1992: Fuzzy fundamentals.  IEEE Spectrum, 58-61.
[Low impact.  The paper presents a short description of how fuzzy logic tools operate and system
components.  An example, in which the operation of a steam turbine is controlled using
temperature and pressure inputs, is outlined.]

de Elía, R., and I. Zawadzki, 2000: Sidelobe contamination in bistatic radars.  J. Atmos. Oceanic
Technol., 17, 1313-1329.
[Low impact, an evaluation of bistatic radar systems.  The paper presents a forthright discussion
of sidelobe issues with bistatic radar systems.  Problems can be acute because sidelobes are about
twice as strong as that with monostatic weather radars.  Moreover, problems are further
complicated by the characteristics of the transmitting and receiving systems.  The paper describes
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a simulation model for evaluating contamination and presents several examples.  Contamination
typically occurs in areas of low reflectivity with nearby strong precipitation.]

Desrochers, P. R., and S. Y. K. Lee, 1999: Wavelet applications for mesocyclone identification in
Doppler radar observations.  J. Appl. Meteor., 38, 965-980.
[Moderate impact, possible algorithm upgrade.  A B-spline wavelet serves as the basis for a
mesocyclone detection algorithm.  The wavelet produces a filtered rendition of the mesocyclone
that retains the dominant scales.  Azimuthal shear segments are then computed for the filtered
mesocyclone and used to define a search region for velocity extrema in the original data.  The
mesocyclone is then designated by an ellipse which encompasses the extrema.  An illustrative
example is given.  Further testing seems warranted.]

Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnie, 2000: Considerations for
polarimetric upgrades to operational WSR-88D radars.  J. Atmos. Oceanic Technol., 17, 257-278.
[High impact, prospects for polarimetric observations with the WSR-88D are discussed.  Issues
investigated include the potential impact of the current three-spar feed horn support on the
polarization measurements.  Although one spar is in the vertical, it’s concluded that this
configuration results in less sidelobe contamination of the polarimetric variables than a four-spar
X-shaped arrangement.  Antenna measurements made after the installation of a dual-port antenna
feed (to accommodate horizontal and vertical polarizations) indicated that the radar still met the
original specifications for sidelobe levels.  The authors recommend a linear polarization basis
whereby horizontally and vertically-polarized pulses are transmitted and received
simultaneously.]

El-Magd, A., V. Chandrasekar, V. N. Bringi, and W. Strapp, 2000: Multiparameter radar and in
situ aircraft observation of graupel and hail.  IEEE Trans. Geosci. Remote Sensing, 38, 570-587.
[Low impact, information only.  Simulations suggest that radar reflectivity is more sensitive to
hail density than to axis ratios and particle orientation.  Consequently, it’s argued that differences
between radar-measured reflectivity and that calculated from in situ hail observations are due to
density fluctuations.  From small reflectivity differences (< 1 dB), hydrometeor densities of 0.915
to 0.945 g cm-3 were inferred for a hail region, suggesting the hail was wet.  Densities of 0.48 to
0.62 g cm-3 were found for conical graupel indicating it was dry.  Because in situ measurements
are required, there are no algorithm implications.]

Fulton, R. A., 1999: Sensitivity of WSR-88D rainfall estimates to the rain-rate threshold and rain
gauge adjustment: A flash flood study.  Wea. and Forecasting, 14, 604-624.
[High impact, deficiencies in the precipitation processing subsystem for estimating radar bias are
discussed.  The current PPS bias adjustment procedure is examined for a heavy rain event.  The
bias is determined by comparing gauge reports to the radar estimate at the nine surrounding radar
data bins.  If the gauge report is within the range of radar values, it is assumed that the radar is
unbiased.  If the gauge report is outside the range of radar values, the closest radar estimate is
used to determine the bias.  This procedure underestimates the actual bias.  Substantial
improvement was found at independent test gauges when the bias was determined either from the
data bin within which the calibrating gauge resided or by taking an average of the nine data bins.]
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Furundzic, D., 1998: Application example of neural networks for time series analysis:
Rainfall�runoff modeling.  Signal Processing, 64, 383-396.
[Low impact.  Runoff is predicted with multilayer neural network-based models.  Input consists
of gauge observations and thirty-five parameters representing watershed topographic, geographic,
geologic, and sociological factors.  The networks show marked improvement over a stepwise
regression model.]

Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: Specific differential phase estimation in
the presence of nonuniform rainfall medium along the path.  J. Atmos. Oceanic Technol., 16,
1690-1697.
[Moderate impact, could be important if the WSR-88Ds are modified for polarimetric
capabilities.  A scheme is proposed to account for bias in estimates of specific differential phase
(KDP) that arises from the filtering of the differential propagation phase (0DP) measurement
whenever the profile of 0DP is not linear.  The technique capitalizes on the consistency among the
polarimetric variables and attempts to recover detail in the KDP profile by making adjustments in
accordance with computations of specific differential phase made from radar reflectivity and
differential reflectivity measurements.]

Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 2000a: Practical aspects of radar rainfall
estimation using specific differential propagation phase.  J. Appl. Meteor., 39, 945-955.
[Moderate impact, could be important if the WSR-88Ds are modified for polarimetric
capabilities.  The paper extends the study of Gorgucci et al. (1999).  Biases due to the
parameterization of KDP estimators, non-uniform precipitation paths, and the use of non-linear
estimators are quantified.]

Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2000b: Measurement of mean
raindrop shape from polarimetric radar observations.  J. Atmos. Sci., 57, 1406-1413.
[Low impact, possible refinement to rainfall estimation with polarimetric radar.  Differential
reflectivity and specific differential phase are sensitive to hydrometeor shape.  It’s shown that the
axis ratio associated with the drop median volume diameter can be computed from ZH, ZDR, and
KDP to an accuracy within 10%.  Potentially, the information could lead to fine tuning of
polarimetric rainfall estimators.]

Grecu, M., and W. F. Krajewski, 2000: An efficient methodology for detection of anomalous
propagation echoes in radar reflectivity data using neural networks.  J. Atmos. Oceanic Technol.,
17, 121-129.
[Moderate impact, possible WSR-88D application.  Results of an experiment in anomalous
propagation detection are described.  Nine potential predictors representing properties of radar
reflectivity fields serve as input to a neural network.  The network was trained on datasets
characterized by precipitation-only and AP-only events.  Network performance was significantly
better than that with a statistical technique using a quadratic discrimination function.  Possible
improvement to the method�which might be helpful in mixed AP and precipitation events�would
be to add the Doppler fields to the detection scheme.]
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Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground
lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as
indicated by the WSR-88D.  Wea. and Forecasting, 14, 640-649.
[Moderate impact, potential air mass thunderstorm algorithm.  A capability to “predict” the onset
of lightning in thunderstorms would have utility not only for monitoring rocket launches at the
Space Center but also for the aviation industry and those engaged in outdoor activities.  Lightning
typically begins when the temperature in convective updrafts falls below �10oC.  For a
reflectivity of 40 dBZ and a temperature of �10oC a POD of 0.84, a FAR of 0.07, and CSI of
0.79 were determined.  The median lead time was 7.5 min.]

Harrison, D. L., S. J. Driscoll, and M. Kitchen, 2000: Improving precipitation estimates from
weather radar using quality control and correction techniques.  Meteorol. Appl., 6, 135-144.
[Moderate impact.  The paper begins with a short description of potential problems in radar
estimates of rainfall and then describes data quality control measures and bias adjustment
procedures implemented by the Meteorological Office in the United Kingdom.  Rainfall
estimates are adjusted for the vertical profile of reflectivity and for mean radar bias due to
calibration.  Comparison with hourly rain gauge observations shows improvement in rainfall
estimates, as indicated by a drop in RMSEs of �30%.  Long-term comparisons between radar and
gauges are found useful for verifying the utility of the profile correction scheme, for reducing
range-dependent errors, and for identifying regions with residual problems relating to clutter and
beam occultation.]

Howard, C. M., and V. J. Rayward-Smith, 1999: Discovering knowledge from low-quality
meteorological databases.  Knowledge Discovery and Data Mining, M. A. Bramer (Ed.), The
Institution of Electrical Engineers, London, 180-203.
[Low impact.  The article discusses issues relevant to data mining with meteorological databases. 
Topics covered are data preprocessing to remove outliers, data quality issues, inserting missing
values, discretization, feature selection, the data mining operation (search for rules), and desired
features of tool kits.]

James, C. N., S. R. Brodzik, H. Edmon, R. A. Houze Jr., and S. E. Yuter, 2000: Radar data
processing and visualization over complex terrain. Wea. and Forecasting, 15, 327-338.
[Low impact, information only.  Data streams from WSR-88Ds in mountainous terrain are
enhanced by the addition of underlays to show topography based on 30-s digital elevation data
from the Defense Mapping Agency and the National Aeronautics and Space Administration.  The
information is displayed as color contours, filled contours, or raster plots.  The authors assert the
information aids in the interpretation of radar echoes and the identification of areas where
widespread precipitation may be intensified or suppressed by orography.  Also, the overlays,
particularly in vertical cross sections, are useful for evaluating data quality in regions of clutter
and beam blockage.]

Kessinger, C., S. Ellis, and J. VanAndel, 1999: An algorithm to detect anomalously-propagated
ground clutter.  Preprints, 15th International Conf. on Interactive Information and Processing
Systems for Meteor., Ocean., and Hydro., Amer. Meteor. Soc., Dallas, Texas, 310-313.
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[Moderate impact.  An AP detection algorithm that incorporates fuzzy logic is proposed. 
Designations are based on the magnitude of the radial velocity, the spectrum width, the texture of
the reflectivity and radial velocity fields, and the vertical gradient of reflectivity.  Details of the
membership functions and defuzzification are not given.  The implemented procedure is designed
to define areas where clutter filters would be applied.] 

Klazura, G. E., J. M. Thomale, D. S. Kelly, and P. Jendrowski, 1999: A comparison of NEXRAD
WSR-88D radar estimates of rain accumulation with gauge measurements for high- and low-
reflectivity horizontal gradient precipitation events.  J. Atmos. Oceanic Technol., 16, 1842-1850.
[Moderate impact, evaluation of the precipitation processing subsystem.  WSR-88D rainfall
estimates for high and low reflectivity gradient storms were compared to rain gauge observations. 
On average, rainfall was slightly overestimated for the high gradient (convective) storms. 
However, underestimates occurred at short radar ranges.  This was attributed to the use of a
reflectivity composite of the lowest four elevation angles.  The small mean overestimate could be
caused in part by smoothing of reflectivity gradients.  Precipitation in the low gradient storms
was underestimated by more than a factor of two and also exhibited a range dependent bias. 
Possibly, low-reflectivity gradient storms are characterized by drops with relatively small median
diameters.]

Lakshmanan, V., 2000: Using a genetic algorithm to tune a bounded weak echo region detection
algorithm.  J. Appl. Meteor., 39, 222-230.
[Moderate impact, possible WSR-88D algorithm.  The use of a genetic algorithm for fine tuning
the breakpoints of fuzzy logic membership functions in a BWER detection algorithm is
described.  Techniques for optimization and estimating the fitness of the tuned algorithm are
discussed.  Results of training and test runs with CSIs � 0.5 may be more indicative of problem
difficulty rather than the power of the tuning method.]

Lazarus, S., A. Shapiro, and K. Droegemeier, 1999: Analysis of the Gal-Chen single-Doppler
velocity retrieval.    J. Atmos. Oceanic Technol., 16, 5-18.
[Low impact.  A series of tests with simple analytical radar reflectivity and radial wind fields are
used to determine the influence of measurement errors on retrieved wind fields.  In some cases
the error impact can be reduced by changing the relative weights of the reflectivity and radial
velocity fields.  Mean wind retrieval improves as the analysis domain increases.  Because
observed radar data have complex error structures, extension of the results to wind fields
retrieved in an operational setting is not straightforward.]

Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic
structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler
velocity patterns and the GBVTD technique.  Mon. Wea. Rev., 127, 2419-2439.
[Moderate impact, possible algorithm.  A scheme for retrieving simple asymmetric flow patterns
in tropical cyclones observed by a single ground-based radar is presented.  The method was tested
on analytical wind fields with tangential, radial, and translational components.  Tests were
extended to asymmetric systems by superimposing disturbances with wavenumbers 1�3. 
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Components of observed flows are retrieved by comparing the observed radial wind pattern with
modeled flows and determining least-squares differences.  Axisymmetric circulations were well
retrieved.  Wind fields in simulated cyclones with translational components and azimuthal
disturbances were retrieved with some distortion.  The cause of the distortion can be identified by
the characteristics of the zero Doppler velocity contour.]

Lee, W.-C., and F. D. Marks Jr., 2000: Tropical cyclone kinematic structure retrieved from
single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm.  Mon.
Wea. Rev., 128, 1925-1936.
[Moderate impact, possible algorithm.  The GBVTD method for retrieving the wind field in
tropical cyclones was modified by a procedure to more accurately determine the circulation
center.  The iterative method is based on constructed triangles which are continually changed
through reflection, contraction, and expansion in a search for the tangential wind maximum. 
Testing with an analytical dataset suggested cyclone centers could be located with an accuracy of
0.34 km.  Application to a typhoon indicated errors in an operational setting may be as large as 2
km.  Potential problems identified were missing data sectors and weak velocity gradients.] 

Liou, Y.-C., 1999: Single radar recovery of cross-beam wind component using a modified
moving frame of reference technique.  J. Atmos. Oceanic Technol., 16, 1003-1016.
[Low impact.  The method of wind field retrieval based on the reflectivity conservation equation
is extended by adding cost function terms for mass conservation and vertical vorticity.  The
method is applied to model data.  Compared to methods using the reflectivity conservation
equation alone, the added constraints significantly improve the correlation between the retrieved
and model wind field and reduce root-mean-square errors.  A series of tests suggest the method is
robust with respect to measurement errors and can produce reasonable estimates of the wind from
reflectivity alone.]

Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar
measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification.  J.
Atmos. Oceanic Technol., 17, 140-164.
[Moderate impact, potential algorithm if the WSR-88D is modified for polarimetry.  A procedure
for hydrometeor classification that incorporates fuzzy logic for hydrometeor designation and a
neural network for adjusting fuzzy logic parameters is described.  The procedure is successfully
applied to three convective events and a rain�snow event.  The paper includes a nice discussion
of fuzzy logic systems and gives schematic representations of the membership functions used for
summer and winter storms.]

MacKeen, P. L., H. E. Brooks, and K. L. Elmore, 1999: Radar reflectivity-derived thunderstorm
parameters applied to storm longevity forecasting.  Wea. and Forecasting, 14, 289-295.
[Low impact, nominal value as a potential algorithm.  The study attempts to predict the
remaining lifetime of thunderstorms from radar reflectivity generated parameters provided by the
storm cell identification and tracking (SCIT) algorithm and the hail detection algorithm (HDA). 
Storm characteristics weakly correlated with longevity were the maximum reflectivity, height of
the reflectivity maximum, center of mass height, height of the 40-dBZ core, cell-based VIL, and
storm top.  Linear and multiple regression correlation coefficients were low (� 0.43).  Hence, the
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authors see little value in the reflectivity-based predictions.  Future efforts will incorporate the
velocity information, environmental conditions, and output from a cloud model.]

Marzban, C., E. D. Mitchell, and G. J. Stumpf, 1999: The notion of “best predictors”: An
application in tornado prediction.  Wea. and Forecasting, 14, 1007-1016.
[High impact, the study relates both to the current tornado detection algorithm and general
algorithm development.  An important issue when developing algorithms for solving complex
problems with a large number of potential contributing parameters is the determination of “best
predictors”.  The authors argue that the strength of individual predictors is best assessed by a
bivariate analysis between the independent variable and each candidate dependent variable. 
Bivariate approaches suggested are the computation of the linear correlation coefficient, the use
of performance parameters such as the critical success index (CSI) and the Heike skill score
(HSS) to determine algorithm threshold values, and finding event probabilities as a function of
predictor value.  The methods were applied to the WSR-88D tornado detection algorithm.  Some
input parameters are highly correlated and hence provide redundant information.  The range
parameter has no predictability.  By making yes�no decisions at various thresholds, optimum
values can be determined.  Thresholds that maximize CSIs and HSSs may differ.  Variables with
good predictive skill are thought to be those with large probability variation as a function of
parameter value.]

May, P. T., T. D. Keenan, D. S. Zrnie, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric radar
measurements of tropical rain at a 5-cm wavelength.  J. Appl. Meteor., 38, 750-765.
[Low impact, information only.  The utility of the specific differential phase parameter at C band
is investigated.  Results show much higher correlations and less bias between rain rates computed
from KDP and rain gauges than with ZH.  A significant KDP rainfall underestimate on a small drop
day suggests some dependence on the DSD.  Correcting radar reflectivity measurements for
blockage and attenuation reduced the overall bias with reflectivity and caused the RMSEs with
reflectivity to converge with those for KDP.] 

Mendel, J. M., 1995: Fuzzy logic systems for engineering: A tutorial.  IEEE Proceedings, 83,
345-377.
[Low impact.  An introduction to fuzzy logic systems and an extended list of references is given. 
The article features a comparison of fuzzy logic and other models such as probability and
presents mathematical formulations for the various components of fuzzy systems.]

Michelson, D. B., and J. Koistinen, 2000: Gauge�radar network adjustment for the Baltic Sea
Experiment.  Phys. Chem. Earth (B), 25, 915-920.
[Moderate impact, could lead to improved rainfall estimates.  A two-step adjustment procedure
for improving rainfall estimates with gauge observations is described.  A second-order range-
dependent adjustment is determined using gauge�radar pairs to account for the vertical profile of
reflectivity.  Calculations are made with logarithms to achieve a more normal distribution of data
points.  Small rainfall accumulations and data pairs that differ by more than 2 standard deviations
from the mean distribution are eliminated from the analysis.  Data pairs from several past days
may be included to ensure a stable sample size.  The range-adjusted precipitation field is then
subjected to a distance-weighing scheme of recent gauge�radar pairs to make additional local
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adjustments.  The net effect is a precipitation map that is free of bias and has an increased
explained variance between radar-derived and gauge-observed rainfalls (0.30 versus 0.18).]

Nanni, S., P. Mezzasalma, and P. P. Alberoni, 2000: Detection of hail by polarimetric radar data
and hailpads: Results from four storms.  Meteorol. Appl., 7, 121-128.
[Low impact, polarimetric radar application.  Experiences with the differential hail signal (HDR)
for storms in Italy are presented.  Because measurements are made at C-band, constraints are
imposed to limit attenuation problems and consequent spurious hail designations.  Other
constraints are designed to reduce problems associated with 15 min sampling.  A probability of
detection of 0.9, a critical success index of 0.6, and a false alarm rate of 0.3 were determined.]

Nicosia, D. J., E. J. Ostuno, N. Winstead, G. Klavun, C. Patterson, C. Gilbert, G. Bryan, J. H. E.
Clark, and J. M. Fritsch, 1999: A flash flood from a lake-enhanced rainband.  Wea. and
Forecasting, 14, 271-288.
[Low impact, product evaluation.  Rainfall estimates from the Cleveland, Ohio WSR-88D
(KCLE), using the default Z�R relation, for a flash flood produced by a slow moving rainband
near Erie, Pennsylvania were �40% less than the observed peak rainfall.  Rainfall in an adjacent
region of convective precipitation was overestimated.  Application of the relation Z=250R1.2

improved the estimates in the flood region but created overestimates of 200�400% in the area of
convection.  The underestimate of the flood rainfall is attributed to “warm rain” processes
occurring below the radar beam.  It is also possible that the drops were uncharacteristically
small.]

Otsuka, K., T. Horikoshi, S. Suzuki, N. Sonehara, and M. Fujii, 1999: Local precipitation
forecast based on retrieval of similar echo patterns in radar images.  Preprints, 15th International
Conf. on Interactive Information and Processing Systems for Meteor., Ocean., and Hydro.,
Amer. Meteor. Soc., Dallas, Texas, 99-102.
[Low impact.  A new approach to forecasting weather patterns is described.  Forecasts are made
by comparing observed precipitation patterns with the historical record and determining previous
outcomes for similar events.  Hence, the technique embodies elements of the nearest neighbor
approach to forecasting.  The problem is reduced to describing the motion and texture of
observed reflectivity patterns with eigenvectors and eigenvalues.  The goodness of fit is
expressed by an index.  Exemplary pattern designations and forecasts are given.]

Pereira Fo, A. J., and K. Crawford, 1999: Mesoscale precipitation fields. Part I: Statistical
analysis and hydrological response.  J. Appl. Meteor., 38, 82-101.
[Moderate impact, algorithm extension.  A methodology for optimally combining radar and
gauge observations is described.  The weight received by the two precipitation fields is based on
their two-dimensional covariance/correlation structures.  The adjusted rain field has
characteristics of both fields.  The technique was evaluated by inserting unadjusted and gauge-
adjusted rainfall accumulations into a hydrologic runoff model.  The unadjusted radar estimates
from the Twin Lakes WSR-88D (KTLX) were found to underestimate the rainfall by 28% which
in turn caused the runoff to be underestimated by a factor of 3 to 5.]
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Petersen, W. A., L. D. Carey, S. A. Rutledge, J. C. Knievel, N. J. Doesken, R. H. Johnson, T. B.
McKee, T. Vonder Haar, and J. F. Weaver, 1999: Mesoscale and radar observations of the Fort
Collins flash flood of 28 July 1997.  Bull. Amer. Meteor. Soc., 80, 191-216.
[Low impact.  Rainfall estimates made from the Cheyenne, Wyoming WSR-88D (KCYS) using
the NEXRAD default Z�R relation were found to be a factor of 2 less than observed.  Rainfall
estimates were essentially unbiased for the tropical Z�R relation.  Importantly, the KCYS
estimates were about 25% less than that with a research radar�an indication of a possible
calibration error.  Polarimetric measurements with the research radar suggest that the
underestimates with radar reflectivity may be due to small drops.  Although rainfall estimates
increased for polarimetric estimators, the underestimate persisted.]

Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-
dimensional wind field from multiple-Doppler bistatic radar network data.  J. Atmos. Oceanic
Technol., 16, 432-449.
[Low impact, a possible low-cost multiple radar network.  The paper describes a method for
computing the wind field with a bistatic radar network.  The network consists of relatively
inexpensive passive broad-beam, low-gain radar receivers which measure obliquely scattered
signals from pulses transmitted by a primary radar.  Measurements from multiple receivers are
combined with a variational procedure.  The technique is demonstrated with examples.]

Ryzhkov, A., D. Zrnie, and R. Fulton, 2000: Areal rainfall estimates using differential phase.  J.
Appl. Meteor., 39, 263-268.
[Moderate impact, polarimetric rainfall estimation study.  It is shown that rainfall estimates for
watersheds with dimensions �10 km can be improved by computing the rain rate from the total
change in 0DP over rays through the watershed rather than using the distribution of KDP at all data
points within the watershed.  By using the change in 0DP, computational requirements and
potential problems related to statistical errors and bias introduced by reflectivity gradients are
much reduced.  A bias reduction from 13 to 8% and a lowering of FSEs from 25 to 18% were
achieved with the proposed method.  The trade-off is a loss of information regarding the
distribution of rainfall within the watershed.]

Sachidananda, M., and D. S. Zrnie, 1999: Systematic phase codes for resolving range overlaid
signals in a Doppler weather radar.  J. Atmos. Oceanic Technol., 16, 1351-1363.
[High impact.  A scheme for retrieving overlaid (range-folded) echoes is described.  Transmitted
signals are systematically phase coded and returned signals are multiplied by decoding factors. 
Echoes from a specified trip are made coherent, but echoes from other multiples of the
unambiguous range are phase modulated so that they  appear as noise and make no contribution
to the desired coherent signal.  Tests show the proposed scheme is more robust than random-
phase coding.]

Sachidananda, M., and D. S. Zrnie, 2000: Clutter filtering and spectral moment estimation for
Doppler weather radars using staggered pulse repetition time (PRT).  J. Atmos. Oceanic
Technol., 17, 323-331.
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[High impact, a potential solution to the ground clutter problem.  A method is discussed for
estimating spectral parameters (mean power, mean velocity, and spectrum width) from staggered
radar pulses.  Variable PRTs are used to generate a uniform time series from which the spectral
parameters are estimated.  The procedure involves a Fourier transform, a filtering operation to
remove the clutter, and a deconvolution to reconstruct the spectrum.  Reportedly, reconstructed
spectra have less bias than other spectral methods and yield improved mean velocity estimates
even when clutter is absent.]

Seo, D.-J., J. Breidenbach, R. Fulton, and D. Miller, 2000: Real-time adjustment of range-
dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of
reflectivity.  J. Hydrometeor., 1, 222-240.
[Moderate impact, possible adjustment procedure for removing range-dependent biases from
rainfall estimates.  The paper describes a proposed method for removing biases in radar
reflectivity rainfall estimates due to bright bands.  Examples are shown for two cases with severe
beam blockage.  Modest improvements occur in the correlation coefficient between radar-
estimated and gauge-observed rainfalls and in RMSEs.]

Shao, J., 2000: Fuzzy categorization of weather conditions for thermal mapping.  J. Appl.
Meteor., 39, 1784-1790.
[Low impact.  The paper describes a fuzzy classification system for determining road conditions. 
Infrared measurements from a vehicle-mounted system are used to map road surface
temperatures.  The thermal mapped products, classified in fuzzy categories, such as extreme,
intermediate, and damped, are combined with cloud cover, cloud type, wind speed, and humidity
observations in a model for predicting road icing conditions.]

Silverman, D., and J. A. Dracup, 2000: Artificial neural networks and long-range precipitation
prediction in California.  J. Appl. Meteor., 39, 57-66.
[Low impact.  The paper outlines a neural network for estimating rainfall from circulation
patterns at 700 mb.  Experiments are conducted with variable numbers of hidden nodes, different
training datasets, and withheld parameters.]

Smyth, T. J., T. M. Blackman, and A. J. Illingworth, 1999: Observations of oblate hail using
dual-polarization radar and implications for hail-detection schemes.  Quart. J. Royal Meteor.
Soc., 125, 993-1016.
[Moderate impact, implications for polarimetric hail detection algorithms.  The paper gives an
excellent discussion of issues related to hail detection with polarimetric radar.  Topics covered
are past observational studies, theoretical considerations, and a discussion of fall modes that are
so critical to measurement interpretation.  A simulation shows that a unique relation between KDP

and radar reflectivity (rain rate) does not exist.  Observations from an unusual hailstorm are then
examined.  Large ZDR values in the region of hail suggest that the hail was oblate and fell with its
major axis close to horizontal.  Detection algorithms that assume hail tumbles as it falls would
have failed.  An examination of the differential phase measurements revealed a large backscatter
component due to Mie scattering.  The lack of a unique relation between KDP and rain rate and
the presence of Mie scatterers dictated that hail detection algorithms based on KDP (e.g.,
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Balakrishnan and Zrnie, 1990)9 would also fail.  A new algorithm is proposed that makes use of
the consistency between polarimetric parameters.  KDP is computed from the observed radar
reflectivity and differential reflectivity and compared to that computed from the radar measured
distribution of 0DP.  Significant differences (values > ±5o km-1) signify hail.]

Straka, J. M., D. S. Zrnie, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and
quantification using polarimetric radar data: Synthesis of relations.  J. Appl. Meteor., 39, 1341-
1372.
[Moderate impact, research related to radar polarimetry.  This is an important paper which
reviews the scientific basis for hydrometeor classification with polarimetric radar.  The described
research will serve as the foundation for a hydrometeor classification algorithm if the WSR-88D
is modified for polarimetry.  The paper begins with an overview of the polarimetric variables and
follows with detailed explanations of expected signatures for various hydrometeors.  Numerous
references are given.]

Stuart, N. A., 1999: Operational considerations of the WSR-88D precipitation processing
subsystem during the convective flooding event of 11 August 1994 in northern Virginia. 
National Wea. Digest, 23, 21-31.
[Low impact, product evaluation.  Radar rainfall estimates for a flash flood made by two radars
at distances > 90 nm are compared.  Rain accumulations for one radar (the Dover Air Force Base
WSR-88D, KDOX) were 5�6.2 inches versus 3�4 inches for the Wakefield, Virginia WSR-88D
(KAKQ).  The estimates from KDOX more closely matched gauge observations.  A contributor
to the KAKQ underestimate is thought be a lower maximum reflectivity threshold for rainfall
accumulation (53 versus 70 dBZ).]

Timothy, K. I., T. Iguchi, Y. Ohsaki, and H. Horie, 1999: Test of the specific differential
propagation phase shift (KDP) technique for rain-rate estimation with a Ku-band rain radar.  J.
Atmos. Oceanic Technol., 16, 1351-1363.
[Low impact.  Utility of the specific differential propagation phase for rain rate estimation is
compared to that for radar reflectivity and differential reflectivity.  The study concludes that,
when all factors, such as, calibration error, DSD variations, ... etc. are considered, KDP estimators
are superior for rain rates > 40 mm h-1.]

Torres, S. M., and D. S. Zrnie, 1999: Ground clutter canceling with a regression filter.  J. Atmos.
Oceanic Technol., 16, 1364-1372.
[High impact, data processing issue.  The use of regressive clutter filters is examined.  Filter
response is dictated by the number of samples to which the regression is applied and the degree
of the polynomial.  The degree broadens the notch width.  Tests show greater suppression of
clutter and greater retention of weather signals than with fifth-order elliptic clutter filters
currently used on the WSR-88D.]
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Trapp, R. J., 1999: Observations of non-tornadic low-level mesocyclones and attendant
tornadogenesis failure during VORTEX.  Mon. Wea. Rev., 127, 1693-1705.
[Low impact.  Kinematic flow properties of dual-Doppler derived wind fields for three tornadic
and three non-tornadic mesocyclones are examined.  Tornadic mesocyclones are distinguished by
greater low-level vertical vorticity and smaller maximum tangential wind radii.  Swirl ratios,
essentially the ratio of the tangential and radial wind components, were greater for non-tornadic
mesocyclones than for tornadic mesocyclones.  The author postulates that higher swirl ratios
associate with Reynolds numbers that suppress strong radial inflows and consequently prevent
the amplification of mesocyclone vorticity by stretching.  Given the small sample size and
possible deficiencies in the low-level Doppler-derived wind fields, independent confirmation
seems warranted.]

Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M.
A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-
88Ds.  Wea. and Forecasting, 14, 625-639.
[Moderate impact, warning implications should be further quantified.  Analysis of Archive Level
II measurements from 52 tornadic storms disclosed that 52% of the time tornadogenesis was
preceded by a descending tornado vortex signature (TVS).  Typically, differential velocity
maxima were first detected between 2 and 7 km above ground.  Non-descending tornadoes were
associated with vortex signatures that formed at low levels and frequently intensified upward. 
Tornadoes produced by descending TVSs had lead times that averaged about 10 min longer than
the non-descending variety.  Their maximum velocity differences were also greater.  Six of seven
tornadoes examined in squall lines were associated with non-descending TVSs.]

Ulbrich, C. W., and L. G. Lee, 1999: Rainfall measurement error by WSR-88D radars due to
variations in Z�R law parameters and the radar constant.  J. Atmos. Oceanic Technol., 16, 1017-
1024.
[Low impact, could help clarify rainfall underestimates.  To explain radar�gauge differences a
series of experiments were conducted in which the coefficient and exponent of the WSR-88D
default Z�R relationship were varied to determine potential effects on estimated rainfalls. 
Results suggest underestimates of �25% for stratiform rain and overestimates of 33% for
convective rains are likely on average.  Because the biases are much smaller than observed with
some WSR-88Ds, the authors conclude that large discrepancies must be due to radar calibration
errors.  A comparison of radar reflectivity measurements from the WSR-88D near Greer, South
Carolina (KGSP) and a disdrometer implied the radar is 3.4 dB too low.]

Vignal, B., H. Andrieu, and J. D. Creutin, 1999: Identification of vertical profiles of reflectivity
from volume scan radar data.  J. Appl. Meteor., 38, 1214-1228.
[Moderate impact, could be important for improving rainfall estimates.  A methodology for
computing distributed vertical reflectivity profiles from volumetric radar data is described. 
Profiles of reflectivity, normalized to the lowest radar elevation angle, are computed for small
radar domains at a spacing of �20 km.  The discrete profiles are input into a theoretical model
that accounts for radar beam filtering with range.  A case study illustrates that useful detailed
vertical structure can be retrieved by the method.  A substantial improvement in the RMSE of
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surface rainfall estimates (43 versus 11%) was found when the technique was applied to
observations made with an elevated radar beam.]

Vignal, B., G. Galli, J. Joss, and U. Germann, 2000: Three methods to determine profiles of
reflectivity from volumetric radar data to correct precipitation estimates.  J. Appl. Meteor., 39,
1715-1726.
[Moderate impact, could be important for improving rainfall estimates.  Surface rainfall
estimates are evaluated after adjusting radar-observed profiles of reflectivity and extrapolating
them to ground.  Tested methods included a climatological profile, an hourly mean profile based
on radar measurements within 70 km, and local profiles on a 20 km grid.  All methods improved
the rainfall estimates.  The climatological profile lowered the RMSE from 44% (for unadjusted
reflectivity measurements from the lowest antenna elevation angle) to 31%.  Application of the
mean reflectivity profile lowered the RMSE to 25%, and the distributed VRP method lowered
the error to 23%.  The authors suppose that mean profiles are less susceptible to clutter and beam
blockage and that the distributed VRP method will be more advantageous when the region of
interest is relatively flat.]
 
Vivekanandan, J., D. N. Yates, and E. A. Brandes, 1999: The influence of terrain on rainfall
estimates from radar reflectivity and specific propagation phase observations.  J. Atmos. Oceanic
Technol., 16, 837-845.
[Moderate impact, polarimetric radar study.  The advantage of specific differential phase for
estimating rainfall in mountainous regions where the radar beam is partly blocked is
demonstrated.  Comparison with radar reflectivity-derived rainfall estimates revealed that the
reflectivity estimates were lower than that from specific phase, and the percentage difference was
nearly linearly related to the amount of blockage.]

Vivekanandan, D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud
microphysics retrieval using S-band dual-polarization radar measurements.  Bull. Amer. Meteor.
Soc., 80, 381-388.
[Moderate impact, potential algorithm if the WSR-88D is modified for polarimetry.  A fuzzy
logic technique for classifying radar returns in hydrometeor, biological, and ground echo
categories is described.  Designations are made by employing membership functions weighted
according to how strongly each polarimetric measurement matches supposed characteristics for
each classification type.]

Westrick, K. J., C. F. Mass, and B. A. Colle, 1999: The limitations of the WSR-88D radar
network for quantitative precipitation measurement over the coastal western United States.  Bull.
Amer. Meteor. Soc., 80, 2289-2298.
[Low impact, a difficult problem not readily solved.  An assessment of the WSR-88D network
for making quantitative precipitation estimates along coastal sections of California, Oregon, and
Washington is given.  PPS products in cold seasons are compromised by low freezing levels,
shallow precipitation, and blockage by mountain ranges.  The authors estimate that precipitation
estimates can be made in only one third of the region.  They recommend that scanning angles be
reduced to 0o or less at some radar sites, that additional radars be placed in some coastal areas,
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and that research be conducted to combine radar and rain gauge data in overlap areas.]

Widrow, B., and M. A. Lehr, 1990: 30 years of adaptive neural networks: Perceptron, Madaine,
and backpropagation.  IEEE Proceedings, 78, 1415-1442.
[Low impact.  Topics covered in this review article include the history of neural networks, how
various networks operate, and their training.]

Wood, V. T., and R. A. Brown, 2000: Oscillations in mesocyclone signatures with range owing
to azimuthal radar sampling.  J. Atmos. Oceanic Technol., 17, 90-95.
[Low impact.  The influence of radar distance on the deduced strength and width of
mesocyclones detected with discrete azimuthal samples is examined by simulation.  Oscillations
in mean rotational velocity of several meters per second and discontinuous fluctuations in
mesocyclone diameter on the order of 5 km are shown.]

Yamada, Y., and M. Chong, 1999: Vad-based determination of the Nyquist interval number of
Doppler velocity aliasing without wind information.  J. Meteorol. Soc. Japan, 77, 447-457.
[Low impact, the technique appears most applicable for determining strong mean winds.  A
velocity unfolding technique based on the coefficients of a second order VAD analysis is
proposed.  It is shown that the proper Nyquist interval can be determined by modifying the
zeroth-order coefficient so that differences are minimized.  Simulations show that the technique
is sensitive to measurement errors and non-linearities in the wind field.  Application to real data
indicates measurements must extend over azimuthal sectors of at least 130 to 160o.]

Young, C. B., A. A. Bradley, W. Krajewski, and A. Kruger, 2000: Evaluating NEXRAD
multisensory precipitation estimates for operational hydrologic forecasting.  J. Hydrometeor., 1,
241-254.
[Low impact, an evaluation of gauge-adjusted radar rainfall products.  The study examines
gauge-adjusted precipitation maps constructed by the Arkansas-Red River Basin River Forecast
Center.  The assessment is based on Stage III rainfall analyses and compares a simple mean radar
bias correction method with a technique whereby ratios of radar estimates and gauge
observations are inversely weighted by distance.  The latter method produced precipitation fields
with less artifacts (rings, spokes, and range bias) and smaller RMSEs.  In the absence of a
detailed error analysis, attributed to the lack of independent gauge observations and knowledge
of precipitation characteristics on scales < 4 km, the authors were reluctant to declare one
product better than the other.]

Yuval, 2000: Neural network training for prediction of climatological time series, regularized by
minimization of the generalized cross-validation function.  Mon. Wea. Rev., 128, 1456-1473.
[Low impact.  The training of a neural network is evaluated with hybrid cost functions that gauge
system performance.  The paper seeks to optimize model development by minimizing a
generalized cross-validation function which is integrated during the training period and applied
to subsets of the data.  The sensitivity of the final model is evaluated by withholding selected
input parameters.]
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Zawadzki, I., W. Szyrmer, and S. Laroche, 2000: Diagnostic of supercooled clouds from single-
Doppler observations in regions of radar-detectable snow.  J. Appl. Meteor., 39, 1041-1058.
[Moderate impact, possible tool for detecting icing in the terminal area of airports.  The paper
describes a proposed algorithm for estimating supercooled liquid in stratiform precipitation.  The
radar data are examined to determine the snow content and to verify the model through self
consistency.  The wind field is derived with a variational analysis of the radar reflectivity and
radial velocity measurements.  A cloud model is then initialized with the retrieved wind field and
a local sounding.  The model is integrated forward to steady state.  The excess of water vapor
above saturation (determined from the deduced vertical velocity and observed moisture profile)
is portioned between deposition on snow and condensation on supercooled cloud drops.]

Zrnie, D. S., T. D. Keenan, L. D. Carey, and P. May, 2000: Sensitivity analysis of polarimetric
variables at a 5-cm wavelength in rain.  J. Appl. Meteor., 39, 1514-1526.
[Low impact, information only.  Simulations with Marshall�Palmer and gamma DSDs are used
to determine the effects of large drops on polarimetric variables and estimated rain rates at C
band.  The calculations show important resonant effects for drops with diameters � 5 mm. 
Polarimetric parameters are sensitive to the distribution shape (exponential or gamma) and to the
maximum drop diameter.  Greatest impacts are with radar reflectivity because of the 6th power
dependency on diameter.  Among polarimetric variables, KDP is least affected.  KDP and ZH,ZDR

rain rate estimators are found to be fairly insensitive to the presence of large drops, but ZH,ZDR

estimators would be subject to attenuation.  The latter problem can be corrected with KDP.  The
study finds that polarimetric rainfall estimates at C band are more robust than those from radar
reflectivity.  The authors state that better knowledge of large drop concentrations would further
improve the estimators.]
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APPENDIX: LIST OF ACRONYMS AND SYMBOLS

CSI Critical success index
DSD Drop-size distribution
FAR False alarm rate
FSE Fractional standard error
HDR Differential hail signal
IEEE Institute of Electrical and Electrons Engineers, Inc.
KDP Specific differential phase
NN Neural network
POD Probability of detection
PPI Planned position indicator
PPS Precipitation Processing Subsystem
R Rain rate
RMSE Root-mean-square error
SCIT Storm cell identification and tracking 
TVS Tornado vortex signature
VAD Velocity azimuth display
VCP Volume coverage pattern
VIL Vertically integrated liquid
VRP Vertical reflectivity profile
WSR�88D Weather Surveillance Radar�1988 Doppler
Z Radar reflectivity factor
ZDR Differential reflectivity
ZH Radar reflectivity factor at horizontal polarization
0DP Differential propagation phase


