
Carbon Capture R&D: DOE/NETL R&D Program

7th Annual Conference on Carbon Capture and Sequestration

> May 5-8, 2008 Pittsburgh, PA

Timothy E. Fout Timothy.Fout@netl.doe.gov National Energy Technology Laboratory

Technological Carbon Management Options

Reduce Carbon Intensity

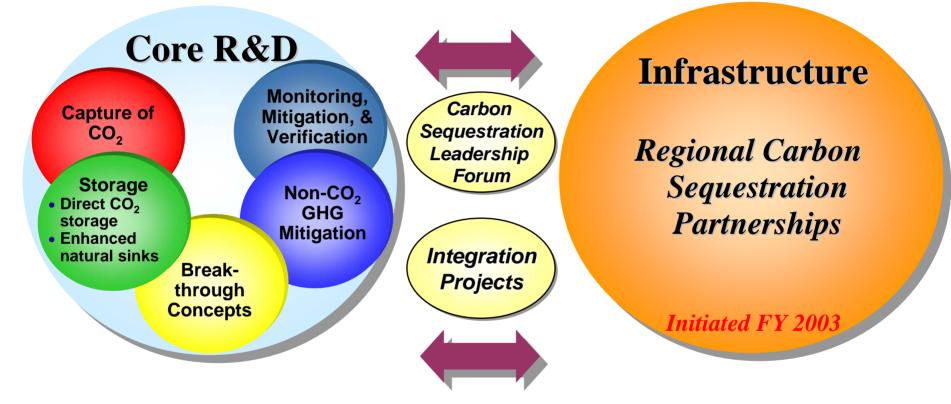
- Renewables
- Nuclear
- Fuel Switching

Improve Efficiency

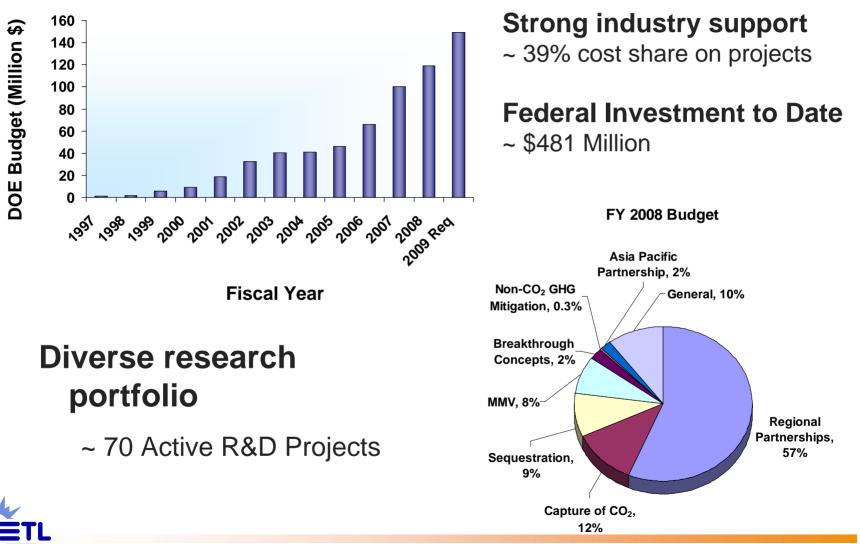
- Demand Side
- Supply Side

Sequester Carbon

- Capture & Store
- Enhance Natural Sinks


All options needed to:

- Affordably meet energy demand
- Address environmental objectives



DOE's Sequestration Program Structure

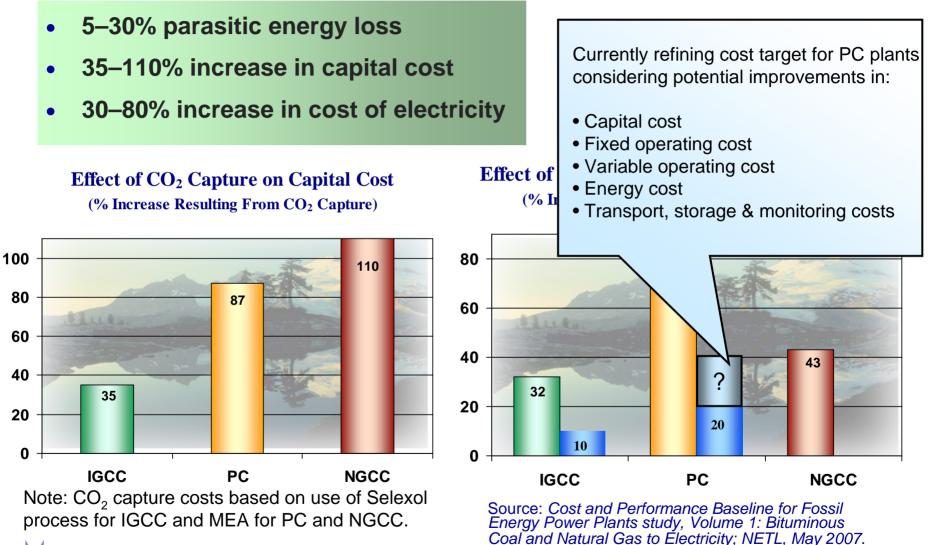
Sequestration Program Statistics FY2008

TF CCS Conf May2008

Separation & Capture of CO₂ from Coal-Based Power Plants

Issues

- Demonstrated technology is costly & energy-intensive
- Scale-up
- Market Considerations/Readiness
- Reliance on Enabling Technologies
- Integration
- Regulatory Framework


Research Areas

- Pre-Combustion
- Post-Combustion
- Oxy-Combustion

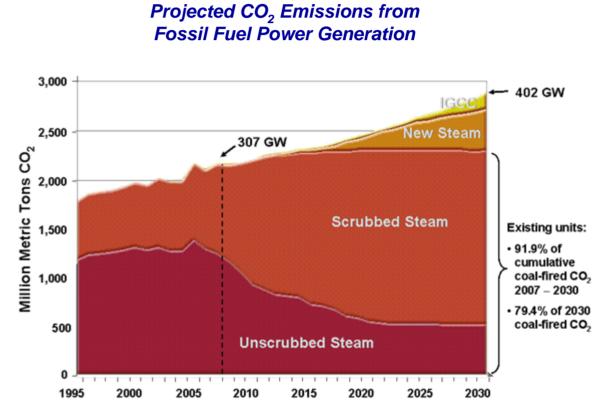
CO₂ Capture Is Expensive !

Carbon Capture RD&D Challenges

Pre-combustion (Synthesis Gas)

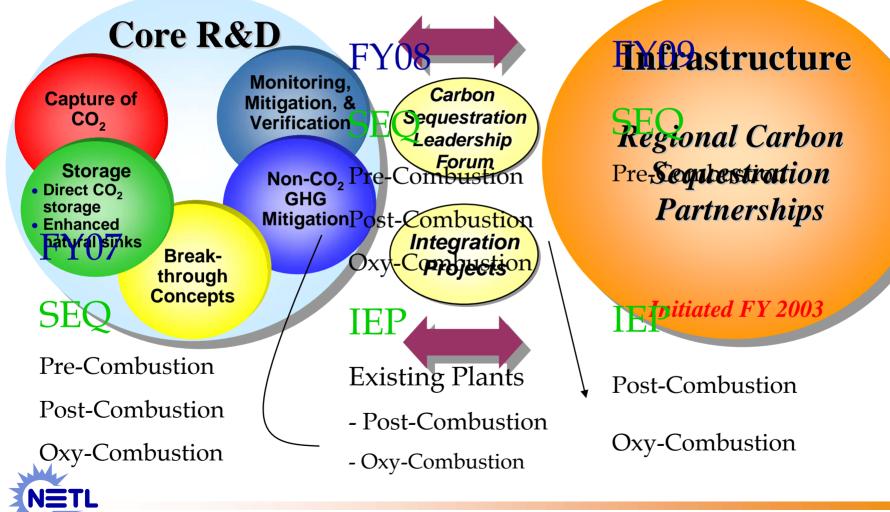
- Loss of CO₂ pressure due to flash regeneration
- Cooling / refrigeration of syngas to accommodate low operating temperatures; reheating prior to combustion
- H₂ losses, particularly in membranes
- Sulfur-tolerant materials / membranes

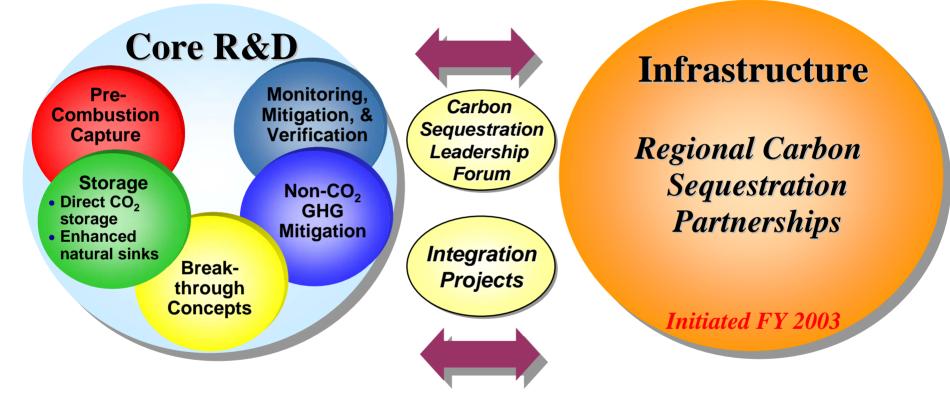
Oxy-Combustion (OxyFuel)



- Low-pressure flue gas dilute in CO₂
- Steam requirement for thermal regeneration (amines)
- High compression costs and large loads due to CO₂ produced at low pressure
- Flue gas contaminants
- Cost of O₂ production and materials
 - Cooled CO₂ recycled to control combustion temperatures

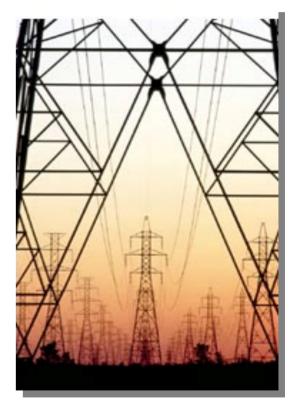
CO₂ Capture for Existing Plants


 Coal-fired power plants will continue to dominate CO₂ emissions from fossil fuel power generation



Source: EIA, Annual Energy Outlook 2008 Revised Early Release, March 2008

Capture Transition


DOE's Sequestration Program Structure

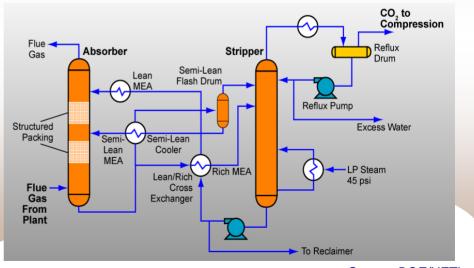
FY08 CO₂ Capture Funding Opportunity

- Funding Opportunity Announcement <u>DE-PS26-08NT00134</u>
- "Carbon Dioxide Capture and Separation Technology Development For Application To Existing Pulverized Coal-Fired Power Plants"
- Technical areas:
 - Post-Combustion Capture
 - Oxy-Combustion
 - Chemical Looping
- ~ \$30 million total funding available
 E to 15 projects @ \$450k to \$514 or
 - -5 to 15 projects @ \$150k to \$5M each
- Applications were due April 10, 2008
- Project selections by end of July 2008
- Project awards by end of September 2008

Carbon Capture Research Pathways Chemical Solvents

Process Description

- > Reversible chemical reaction(s) between CO_2 and aqueous absorbent solution
- Mature technology (MEA) at smaller scale


Research Focus

- ✓ Low solvent cost
- ✓ High CO₂ loading capacity
- ✓ Improved reaction kinetics
- ✓ Non-corrosive
- ✓ No solvent degradation
- ✓ Low regeneration energy

Potential Technology Solutions

- Improved solvents (carbonates, hindered amines, ammonia, etc.)
- Blended and promoted solvents

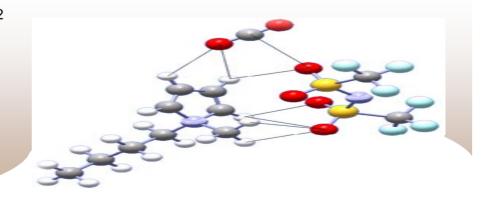
Carbon Capture Research Pathways Physical Solvents

Process Description

- > Bulk phenomenon where liquids absorb a gaseous species from a gas mixture
- > Most effective with high CO_2 partial pressure (IGCC systems)
- ➤ Mature technology (Selexol[™] & Rectisol[®]) at smaller scale

Research Focus

- Ionic Liquids (ILs)
 - ✓ High thermal stability
 - ✓ Low volatility
 - ✓ High CO_2 solubility
 - ✓ Separation media for H₂ and CO₂
 - ✓ High unit cost


Primary Research Partners

R&D Progress

Over 19x increase in CO_2 solubility for physical ILs and 40x increase in CO_2 solubility for ILs with chemical complexation when compared to ILs available at the beginning of the project

Carbon Capture Research Pathways Chemical Sorbents

Process Description

- Chemical adsorption involves bonding with a solid sorbent
- Low moisture content reduces regeneration steam requirements

Research Focus

- Solid regenerable CO₂ sorbents
 - ✓ Durable
 - ✓ High selectivity
 - ✓ Multiple regeneration cycles
 - ✓ High CO_2 adsorption capacity
 - ✓ Low cost

Primary Research Partners

Potential Technology Solutions

- Sodium & potassium oxides
- Carbonates
- Amine-enriched sorbents (Zeolites)

Carbon Capture Research Pathways Physical Sorbents

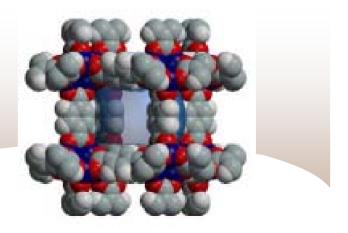
Process Description

- > Physical adsorption of CO_2 on solid adsorbents by weak surface forces
- Adsorption capacity increases with CO₂ partial pressure
- Regeneration via TSA or PSA

Research Focus

Metal organic frameworks (MOFs)

- Hybrid organic/inorganic ordered structures w/ high porosity
- \checkmark High thermal stability
- ✓ High adsorption capacity
- ✓ High selectivity
- ✓ Customized sorption properties
- ✓ Good adsorption/desorption rates

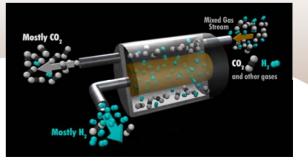

Primary Research Partner

Future Work

- Evaluate hydrothermal stability
- Synthesis, forming, and scale-up
- Process design and economics

Carbon Capture Research Pathways Membranes

Process Description


- \triangleright Diffusion via a physical or chemical interaction between the membrane and CO₂
- Selectivity and permeability are key
- > Most effective with high CO_2 partial pressure (IGCC systems)

Research Focus

- More efficient CO₂ membranes
 - ✓ Durable
 - ✓ Improved selectivity
 - ✓ Thermal and physical stability
 - ✓ Sulfur tolerance

Potential Technology Solutions

- Polymers (PBI)
- Metals (palladium)
- Facilitated transport
- Molecular seives
- Gas absorption membranes
- Carbonic anhydrase enzyme
- Ionic liquids

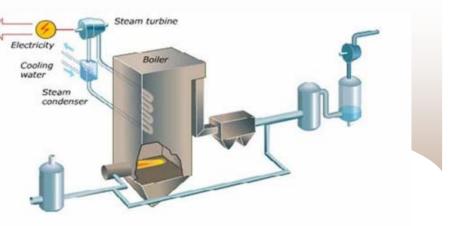
Primary Research Partners

Carbon Capture Research Pathways Advanced Oxycombustion Technologies

Process Description

- > Combustion in pure O_2 to produce flue gas that is comprised of H_2O and CO_2
- > CO₂ separation via H₂O condensation

Research Focus


- Reduce O₂ production costs
- Improved oxyfuel boilers
 - ✓ Compact design
 - ✓ Advanced materials and burners
- Retrofit options
- Reduce flue gas recycle
- Co-sequestration

Primary Research Partners

Potential Technology Solutions

- Oxygen Transport Membranes (OTM)
- Ceramic Autothermal Recovery (CAR)
- Integrated Pollutant Removal
- Chemical Looping

Visit Office of Fossil Energy & NETL Websites

TF CCS Conf May2008