
# DOE's Carbon Capture and Sequestration R&D Program



**Power-Gen International** Greenhouse Gas Regulation: The Future is Now – Panel Discussion

> December 11-13, 2007 New Orleans, LA

Timothy E. Fout Timothy.Fout@netl.doe.gov National Energy Technology Laboratory





# **Technological Carbon Management Options** *Pathways for Reducing GHGs - CO*<sub>2</sub>

## Reduce Carbon Intensity

- Renewables
- Nuclear
- Fuel Switching

## Improve Efficiency

- Demand Side
- Supply Side



- Enhance Natural Sinks
- Capture & Store

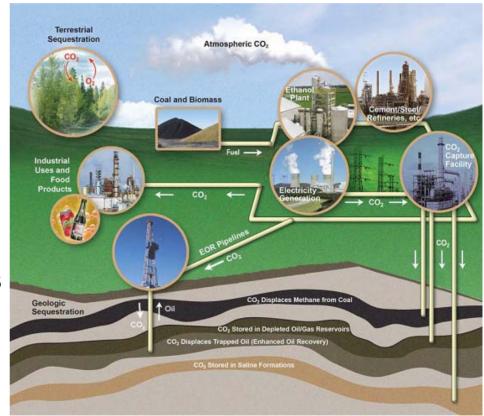
#### All options needed to:

- Affordably meet energy demand
- Address environmental objectives





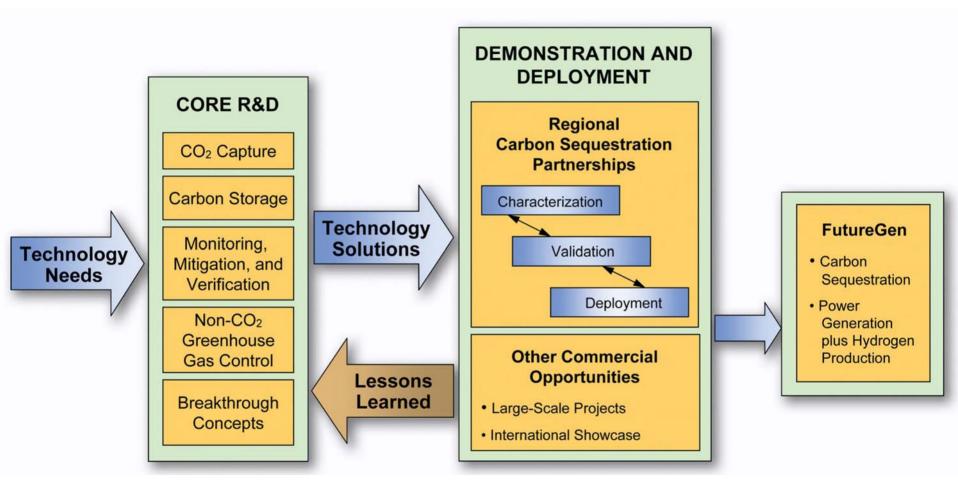
# What is Carbon Sequestration?


# Capture and storage of CO<sub>2</sub> and other Greenhouse Gases that would otherwise be emitted to the atmosphere

#### Capture can occur:

- at the point of emission
- when absorbed from air

#### **Storage locations include:**


- underground reservoirs
- conversion to solid materials
- trees, grasses, soils, or algae



Source: Carbon Sequestration Technology Roadmap and Program Plan 2007

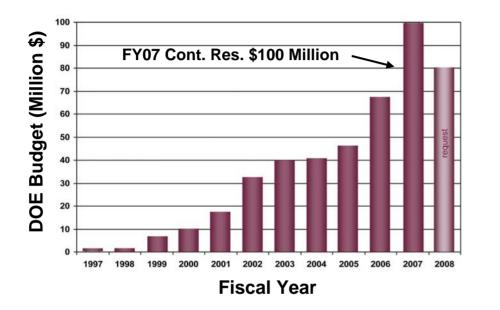


# **DOE's Carbon Sequestration Program Structure**





# **Carbon Sequestration Program Goals**


Deliver technologies & best practices that validate:

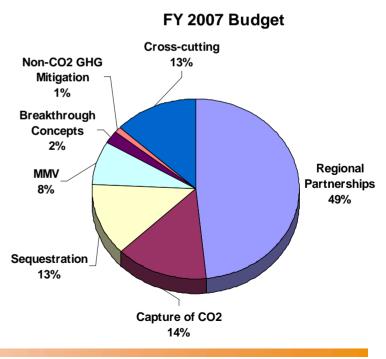
- -90% CO<sub>2</sub> capture
- 99% storage permanence
- < 10% increase in COE (pre-combustion capture)</p>
- < 20% increase in COE (post- and oxy-combustion)</p>





# **DOE's Carbon Sequestration Program Statistics**




# Diverse research portfolio

~ 70 Active R&D Projects

Strong industry support

~ 39% cost share on projects

# Federal Investment to Date ~ \$360 Million





# Separation & Capture of CO<sub>2</sub> from Coal-Based Power Plants

## Issue

Demonstrated technology is costly & energy-intensive

# Approaches

- Post-combustion
- Pre-combustion
- Oxycombustion
  - Chemical looping

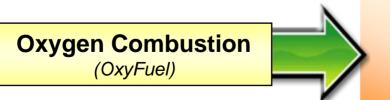
#### **Research Pathways**

- Chemical & Physical Solvents
- Chemical & Physical Sorbents
- Membranes
- Advanced Oxycombustion Technologies





# **Carbon Capture RD&D Challenges**


Pre-combustion (Synthesis Gas)



- Loss of CO<sub>2</sub> pressure due to flash regeneration
- Cooling / refrigeration of syngas to accommodate low operating temperatures; reheating prior to combustion
- H<sub>2</sub> losses, particularly in membranes
- Sulfur-tolerant materials / membranes



- Low-pressure flue gas dilute in CO<sub>2</sub>
- Steam requirement for thermal regeneration (amines)
- High compression costs and large loads due to CO<sub>2</sub> produced at low pressure
- Flue gas contaminants



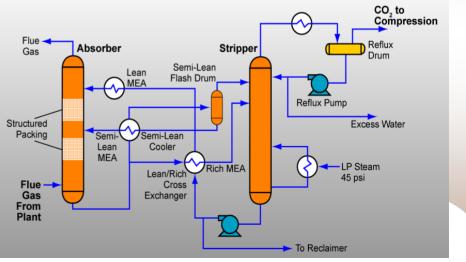
- Cost of O<sub>2</sub> production and materials
- Cooled CO<sub>2</sub> recycled to control combustion temperatures



# Carbon Capture Research Pathways Chemical Solvents

**Process Description** 

- > Reversible chemical reaction(s) between  $CO_2$  and aqueous absorbent solution
- Mature technology (MEA) at smaller scale


#### **Research Focus**

- Identify lower cost alternatives to MEA
  - ✓ Low solvent cost
  - ✓ High CO<sub>2</sub> loading capacity
  - ✓ Non-corrosive
  - ✓ No solvent degradation
  - ✓ Low regeneration energy

Primary Research Partners Alstom, NETL/ORD, Powerspan Corp.

## **Potential Technology Solutions**

- Improved solvents (carbonates, hindered amines, ammonia, etc.)
- Blended and promoted solvents



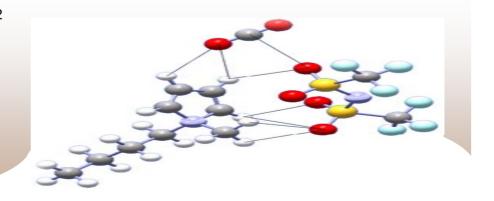


Source: DOE/NETL

# Carbon Capture Research Pathways Physical Solvents

**Process Description** 

- > Bulk phenomenon where liquids absorb a gaseous species from a gas mixture
- > Most effective with high  $CO_2$  partial pressure (IGCC systems)
- ➤ Mature technology (Selexol<sup>™</sup> & Rectisol<sup>®</sup>) at smaller scale


#### **Research Focus**

- Ionic Liquids (ILs)
  - ✓ High thermal stability
  - ✓ Low volatility
  - ✓ High  $CO_2$  solubility
  - ✓ Separation media for H<sub>2</sub> and CO<sub>2</sub>
  - ✓ High unit cost

Primary Research Partners NETL/ORD, University of Notre Dame

#### **R&D Progress**

Over 19x increase in  $CO_2$  solubility for physical ILs and 40x increase in  $CO_2$  solubility for ILs with chemical complexation when compared to ILs available at the beginning of the project





# Carbon Capture Research Pathways Chemical Sorbents

**Process Description** 

- Chemical adsorption involves bonding with a solid sorbent
- Low moisture content reduces regeneration steam requirements

#### **Research Focus**

- Solid regenerable CO<sub>2</sub> sorbents
  - ✓ Durable
  - ✓ High selectivity
  - ✓ Multiple regeneration cycles
  - ✓ High  $CO_2$  adsorption capacity
  - ✓ Low cost

Primary Research Partners NETL/ORD, Research Triangle Institute, University of Akron, UOP LLC



## **Potential Technology Solutions**

- Sodium & potassium oxides
- Carbonates
- Amine-enriched sorbents (Zeolites)

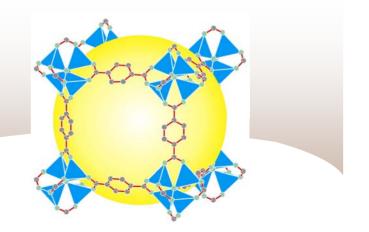


# Carbon Capture Research Pathways Physical Sorbents

**Process Description** 

- > Physical adsorption of  $CO_2$  on solid adsorbents by weak surface forces
- Adsorption capacity increases with CO<sub>2</sub> partial pressure
- Regeneration via TSA or PSA

#### **Research Focus**


Metal organic frameworks (MOFs)

- Hybrid organic/inorganic ordered structures w/ high porosity
- ✓ High thermal stability
- ✓ High adsorption capacity
- ✓ High selectivity
- ✓ Customized sorption properties
- ✓ Good adsorption/desorption rates

Primary Research Partner UOP LLC

## **Future Work**

- Evaluate hydrothermal stability
- Synthesis, forming, and scale-up
- Process design and economics





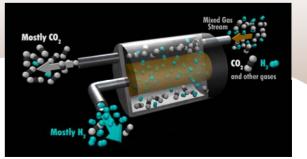
# Carbon Capture Research Pathways Membranes

#### **Process Description**

- $\triangleright$  Diffusion via a physical or chemical interaction between the membrane and CO<sub>2</sub>
- Selectivity and permeability are key
- > Most effective with high  $CO_2$  partial pressure (IGCC systems)

#### **Research Focus**

- More efficient CO<sub>2</sub> membranes
  - ✓ Durable
  - ✓ Improved selectivity
  - ✓ Thermal and physical stability
  - ✓ Sulfur tolerance


#### **Primary Research Partners**

Carbozyme, Membrane Technology & Research, NETL/ORD, SRI International, LANL & INEEL



#### **Potential Technology Solutions**

- Polymers (PBI)
- Metals (palladium)
- Facilitated transport
- Molecular seives
- Gas absorption membranes
- Carbonic anhydrase enzyme
- Ionic liquids



# Carbon Capture Research Pathways Advanced Oxycombustion Technologies

**Process Description** 

- > Combustion in pure  $O_2$  to produce flue gas that is comprised of  $H_2O$  and  $CO_2$
- > CO<sub>2</sub> separation via H<sub>2</sub>O condensation

#### **Research Focus**

- Reduce O<sub>2</sub> production costs
- Improved oxyfuel boilers
  - ✓ Compact design
  - ✓ Advanced materials and burners
- Retrofit options
- Reduce flue gas recycle
- Co-sequestration

Primary Research Partners B&W, BOC Group, Jupiter Oxygen, NETL/ORD, Praxair, SRI

# NET

## **Potential Technology Solutions**

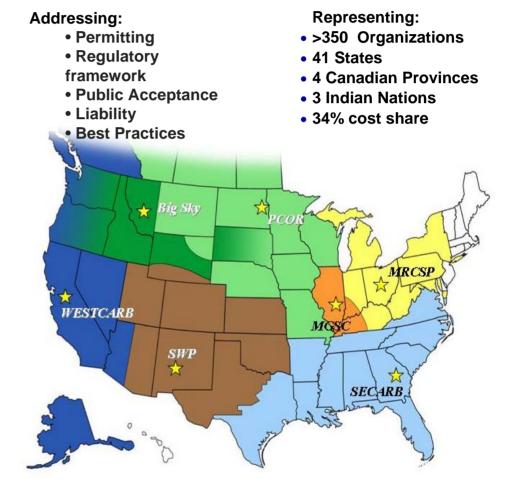
- Oxygen Transport Membranes (OTM)
- Ceramic Autothermal Recovery (CAR)
- Integrated Pollutant Removal
- Chemical Looping



# **Regional Carbon Sequestration Partnerships**

**Creating Infrastructure for Wide Scale Deployment** 

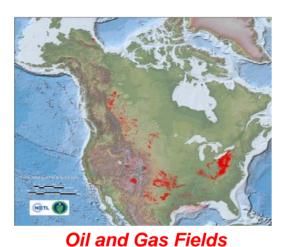
#### **Characterization Phase**


• 24 months (2003-2005)

#### **Validation Phase**

- 4 years (2005 2009)
- Field validation tests
  - 25 Geologic
  - 11 Terrestrial

#### **Deployment Phase**


- 10 years (2007-2016)
- Up to 7 large volume injection tests





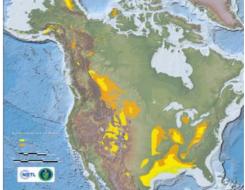
# **First Ever National Sequestration Atlas**

#### U.S. Emissions ~ 6 GT $CO_2$ /yr all sources





**Saline Formations** 


Sink Type

Seams

**Saline Formations** 

**Unmineable Coal** 

**Oil and Gas Fields** 



North American CO<sub>2</sub> Storage Potential (Giga Tons)

Low

969

70

82

High

3,223

97

83

**Unmineable Coal Seams** 

| Hundreds of |
|-------------|
| Years of    |
| Storage     |
| Potential   |



Available for download at http://www.netl.doe.gov/publications/carbon\_seq/refshelf.html

# **Visit Office of Fossil Energy & NETL Websites**





AP Jones 30Nov2007