
#### U.S. Department of Energy's Mercury Control Technology R&D Program for Coal-Fired Boilers



Working Session of the New Hampshire House Science, Technology, & Energy Committee

> April 26, 2005 Concord, New Hampshire

Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory





### Mercury Control Technology Field Testing Program Performance/Cost Objectives

Cost

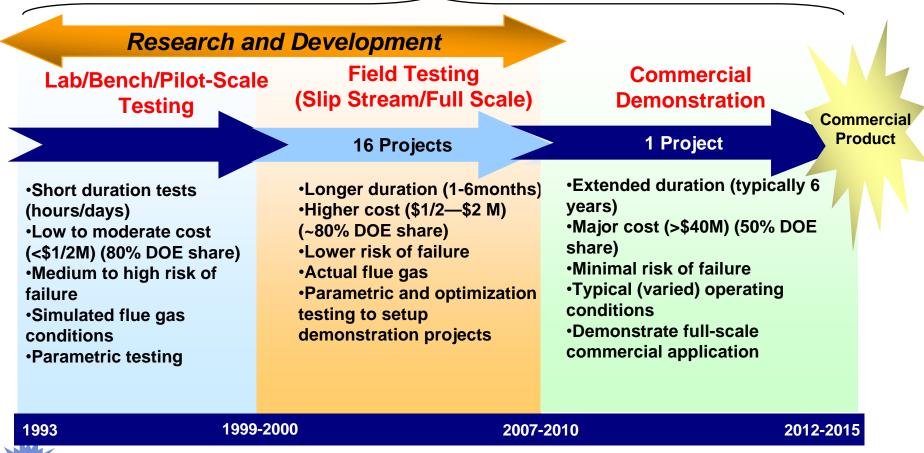
- Have technologies ready for <u>commercial demonstration</u> by 2007 for all coals
- Reduce "uncontrolled" Hg emissions by 50-70%
- Reduce cost by 25-50% compared to baseline cost estimates



2000






Baseline Costs: \$50,000 - \$70,000 / Ib Hg Removed

NH House Committee\_April 2005

#### Stages of Mercury Control Technology Development DOE RD&D Model

**Progress over time** 

**DOE Support** 





NH House Committee\_April 2005

#### **Key Facts About Power Plant Mercury**

- Unlike sulfur dioxide or nitrogen oxides, form (species) of mercury depends on coal type, fly ash composition, and other factors – that is, *"one size doesn't fit all"*
- Mercury is found in very low (parts per billion) concentrations, making it difficult to find and remove from flue gas
- Removal efficiency dependent upon existing air pollution control device (APCD)



# **Key Takeaways**

- Significant strides have been made in developing mercury control technology over the past several years, but more R&D is needed
- Activated carbon/sorbent injection and oxidation systems (i.e., catalysts, chemical additives) are most promising Hg control technologies
- Significant variability in Hg speciation depending on coal type and other factors
- DOE's current field testing activity is an <u>R&D</u> program
- Further long-term field testing is needed to bring technology to commercial-demonstration readiness
- DOE's RD&D model projects broad commercial availability in 2012-2015



# Field Testing to Address Technical/Cost Uncertainties

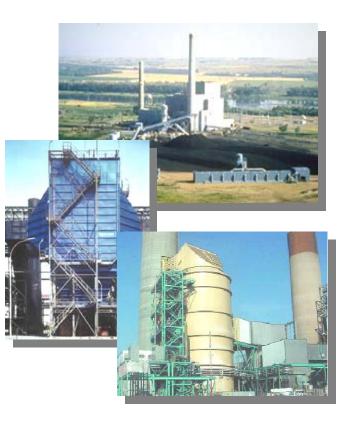
11-62

#### • General

- Performance over longer periods of operation
- Cost of mercury control
- By-product use and disposal
- Impacts of load variation
- Effect of variations in coal-Hg content
- Capture effectiveness with low-rank coals and coal blends

#### Activated Carbon/Sorbent Injection

- Understanding of in-flight capture
- Optimize injection lance configuration
- Effectiveness of chemically modified sorbents/impacts on air emissions
- Sorbent feed rate and costs
- Effectiveness with small SCA ESPs
- Impact on ESP performance and bag life


#### Enhanced Scrubber Capture/Oxidation

- Hg<sup>++</sup> reduction/re-emission
- Effectiveness of oxidation additives and catalysts



#### **Phase II Mercury Control Field Test Projects**

- Fourteen new projects selected
- Longer-term (1-6 months @ optimum conditions), large-scale field testing
- Broad range of coal-rank and air pollution control device configurations; focus on low-rank coals
- Sorbent injection & mercury oxidation control technologies



Field testing at 28 different coal-fired units --representing approximately 2.3% of 1,165 existing coal-fired generating units.



# NETL/DOE Mercury R&D Field Testing Phase II Projects

| Evaluation of Sorbent Injection for Mercury Control                                | ADA-ES               |
|------------------------------------------------------------------------------------|----------------------|
| Low-Cost Options for Moderate Levels of Mercury Control                            | ADA-ES               |
| Field Demonstration of Enhanced Sorbent Injection for Mercury Control              | ALSTOM               |
| Demonstration of Amended Silicates for Mercury Control                             | Amended Silicates    |
| Demonstration of Integrated Approach to Mercury Control                            | GE-EERC              |
| Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems            | UNDEERC              |
| Mercury Oxidation Upstream of an ESP and Wet FGD                                   | UNDEERC              |
| Field Testing of Activated Carbon Injection Options for Mercury Control            | UNDEERC              |
| Sorbent Injection for Small ESP Mercury Control                                    | URS Group            |
| Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems       | URS Group            |
| Evaluation of MerCAP for Power Plant Mercury Control                               | URS Group            |
| Field Testing of a Wet FGD Additive for Enhanced Mercury Control                   | URS Group            |
| Advanced Utility Mercury-Sorbent Field-Testing Program                             | Sorbent Technologies |
| Brominated Sorbents for Cold-Side ESPs, Hot-Side ESPs, and Fly Ash Use in Concrete | Sorbent Technologies |



### **DOE/NETL Phase II Mercury Control Field Testing Technology Matrix**

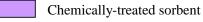
| Coal Rank                 | Cold-side ESP<br>(low SCA) | Cold-side ESP<br>(medium or high<br>SCA) | Hot-side ESP   | TOXECON      | ESP/FGD      | SDA/FF            |
|---------------------------|----------------------------|------------------------------------------|----------------|--------------|--------------|-------------------|
| Bituminous                | Miami Fort 6               | Lee                                      |                | Independence | Yates 1      |                   |
|                           |                            | Mianii Forto                             | Buck           |              | Gavin        | Yates 1           |
|                           |                            | Portland                                 |                |              | Conesville   |                   |
|                           | Yates 1&2                  | Sevier                                   |                |              | Conesville   |                   |
|                           |                            | Monroe                                   |                |              |              |                   |
| Subbituminous Crawford    |                            | Meramec                                  | Council Bluffs |              |              |                   |
|                           | Crawford                   | Dave Johnston                            | Louisa         |              |              |                   |
|                           |                            |                                          | Will County    |              |              |                   |
| Lignite (North<br>Dakota) |                            | Leland Olds 1                            |                |              |              | Antelope Valley 1 |
|                           |                            | Leland Olds 1                            |                |              | Milton Young | Stanton 10        |
|                           |                            | Stanton 1                                |                |              |              | Stanton 10        |
| Lignite (Texas)           |                            |                                          |                |              | Monticello   |                   |
|                           |                            |                                          |                |              | Monticello   |                   |
|                           |                            |                                          |                |              | Monticello   |                   |
| Blends                    |                            | St. Clair                                |                | Big Brown    |              | Holcomb           |



Sorbent Injection



Sorbent Injection & Oxidation Additive


Other - MERCAP, FGD Additive, Combustion



**Oxidation Additive** 



**Oxidation Catalyst** 

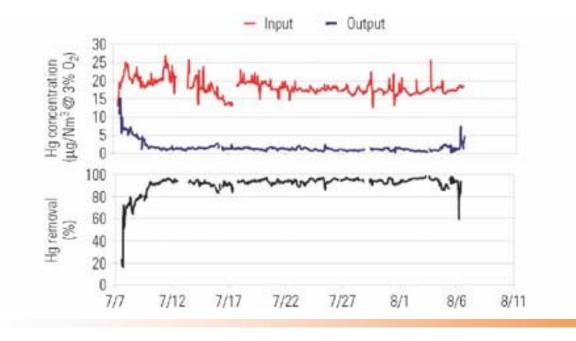




NH House Committee\_April 2005

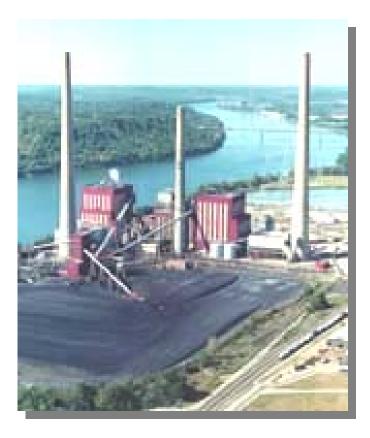
# **Evaluation of Sorbent Injection for Mercury Control --** *ADA-ES*

- Evaluate full-scale sorbent injection with existing pollution-control equipment at four sites:
  - Sunflower Electric's Holcomb Station
    - burns PRB/Bit coal blend and equipped with SDA/FF
  - Detroit Edison's Monroe Station
    - burns bituminous coal and equipped with ESP
  - AmerenUE's Meramec Station
    - burns PRB and equipped with ESP
  - AEP's Conesville Station
    - burns bituminous coal and equipped with ESP and wet FGD






### **Evaluation of Sorbent Injection for Mercury Control** *Preliminary Results*


#### Sunflower Electric's Holcomb Station

- Baseline mercury removal < 20%
- 30-day long-term test using halogenated activated carbon (Norit FGD E-3)
- Average mercury removal 93% at 1.2 lb/MMacf





## Amended Silicates for Mercury Control ADA Technologies



- Evaluate a new non-carbon sorbent, Amended Silicates<sup>™</sup>
- Avoid impact on fly ash sales
- Full-scale testing at Cinergy's Miami Fort Station Unit 6
  - burns bituminous coal and equipped with ESP

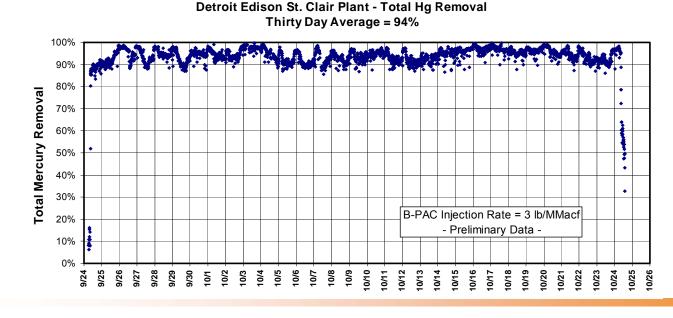


# **Advanced Utility Mercury Sorbent Field Testing --** *Sorbent Technologies*

- Evaluate brominated powdered activated carbon (B-PAC) sorbent
- Full-scale testing at two sites:
- Duke Energy's Buck Station

   burns bituminous coal and equipped with hot-side ESP
- Detroit Edison's St. Clair Station

 burns blend of bituminous and subbituminous coal and equipped with ESP






#### Advanced Utility Mercury Sorbent Field Testing *Preliminary Results*

#### **Detroit Edison's St. Clair Station**

- Baseline mercury removal across ESP varied from 0% to 40%
- One month long-term test using brominated activated carbon injection (B-PAC)
- Average mercury removal 94% at 3 lb/MMacf





### Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs, and Fly Ash use in Concrete -- Sorbent Technologies

- Evaluate brominated powdered activated carbon (B-PAC) sorbent
- Full-scale testing at three sites:
- Midwestern Generation's Crawford Station

   burns PRB coal and equipped with cold-side ESP (112 SCA)
- Progress Energy's Lee Station
  - burns bituminous coal and equipped with cold-side ESP (300 SCA)
- Midwestern Generation's Will County Station

   burns PRB coal and equipped with hot-side
   ESP (173 SCA)



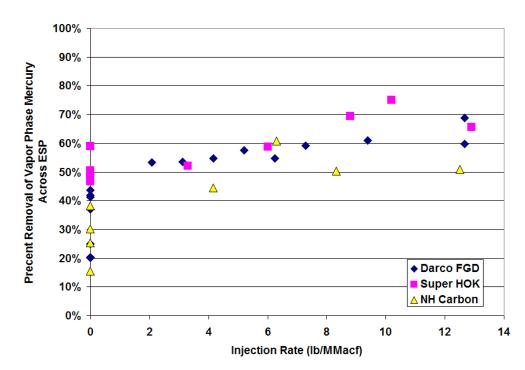




NH House Committee\_April 2005

# Sorbent Injection for Small ESP Mercury Control URS Group

- Evaluate sorbents injected upstream of ESP with small specific collection area (SCA)
- Full-scale testing at Southern
   Company's Plant Yates Unit 1 & 2
  - Unit 1 equipped with ESP (173 SCA) and wet FGD
  - Unit 2 equipped with ESP (144 SCA) and NH<sub>3</sub>/SO<sub>3</sub> conditioning
  - Both units burn bituminous coal

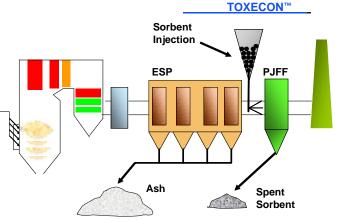





### Sorbent Injection for Small ESP Mercury Control Preliminary Results

#### Plant Yates Unit 1

- Short-term parametric testing
- Average baseline mercury removal ~34%
- Additional 30 40% mercury removal with sorbent injection at ~6 lb/MMacf
- No significant increase in ESP outlet particulates
- Similar results on Unit 2






# Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station -- UNDEERC

 Evaluate several activated carbon sorbents in a TOXECON<sup>™</sup> configuration





Full-scale testing at *TXU's Big Brown Station*

burns blend of lignite and
 PRB coal and equipped with
 ESP and COHPAC fabric filter



# Field Testing of Enhanced Sorbent Injection for Mercury Control -- *ALSTOM*

- Evaluate proprietary chemicallytreated activated carbon sorbent injection process – Mer-Cure<sup>™</sup>
- Full-scale testing at three sites:



- Basin Electric's Leland Olds Station Unit 1

   burns ND lignite and equipped with ESP
- Reliant Energy's Portland Station

   burns bituminous coal and equipped with ESP
- PacificCorp's Dave Johnston Station
  - burns PRB coal and equipped with ESP



# **Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems --** *UNDEERC*

- Evaluate two approaches:
  - Use of chlorine-based additive to coal and activated carbon sorbent
  - Use of chemically-treated sorbents



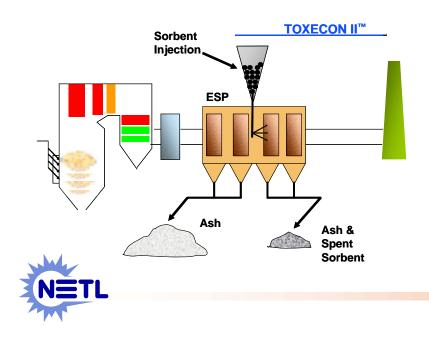
- Full-scale testing at four sites burning North Dakota lignite coal:
- Basin Electric's Leland Olds Station Unit 1
   equipped with ESP
- Basin Electric's Antelope Valley Station Unit 1

   equipped with SDA/FF
- Great River Energy's Stanton Station Unit 1
  - equipped with ESP
- Great River Energy's Stanton Station Unit 10
  - equipped with SDA/FF

# Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems *Preliminary Results*

#### Basin Electric's 220 MW Leland Olds Station Unit 1

- Baseline mercury removal ~15% across ESP
- Average mercury removal ~63% during one-month long-term testing with coal additive equivalent to 500 ppm chlorine in coal and 3 lb/MMacf sorbent injection

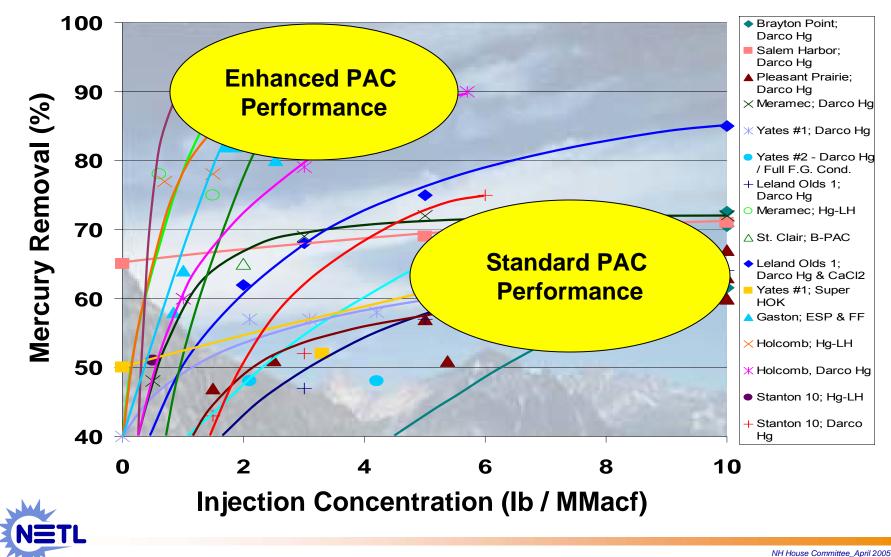

#### Great River Energy's 60 MW Stanton Station Unit 10

- Baseline mercury removal across SDA/FF <10%
- Mercury removal ranged from 65% to 75% during one-month long-term testing with halogenated activated carbon injection at 1 lb/MMacf (Norit's FGD E-3)



# Low Cost Options for Moderate Levels of Mercury Control -- ADA-ES

- Full-scale sorbent injection for hot-side ESPs will be tested at two sites:
  - MidAmerican's Council Bluffs Energy Center
    - burns PRB coal
  - MidAmerican's Louisa Station
    - burns PRB coal




• TOXECON II will be tested at two sites:

#### - AEP's Gavin Station

- burns bituminous coal and equipped with ESP and wet FGD
- *Entergy's Independence Station* burns PRB coal and equipped with ESP

#### **Field Testing Results 2001 – 2004** *Comparison of Standard & Enhanced PAC*



# Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems -- URS Group

- Evaluate honeycomb catalyst system for oxidizing elemental mercury
- Removal in downstream wet lime or limestone FGD systems





- Pilot-scale testing conducted over 14 months at two sites:
- TXU's Monticello Station Unit 3
  - burns Texas lignite
- Southern Company's Plant Yates – burns bituminous coal
- Both plants equipped with ESP and wet FGD



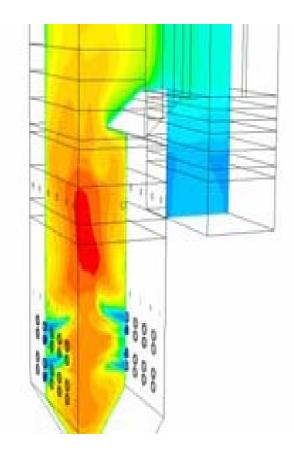
## Mercury Oxidation Upstream of an ESP and Wet FGD -- UNDEERC

- Evaluate chloride-based additive to increase mercury oxidation upstream of ESP and wet scrubber
- Full-scale testing at two sites burning lignite coal and equipped with both ESP and wet FGD:
- Minnkota Power Cooperative's Milton R. Young Station Unit 2 – burns ND lignite
- TXU's Monticello Station Unit 3

   burns TX lignite






# Field Testing of a Wet FGD Additive for Enhanced Mercury Control -- URS Group

- Evaluate chemical additive in wet FGD systems to prevent re-emission of mercury
- Full-scale testing at three sites equipped with ESP and wet FGD:
  - TXU's Monticello Station
    - burns lignite coal
  - Southern Company's Plant Yates
    - burns bituminous coal
  - AEP's Conesville Station
    - burns bituminous coal



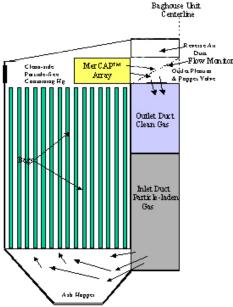


### **Demonstration of Integrated Approach to Mercury Control --** *GE-EERC*



 Evaluate boiler combustion modifications for combined NOx and mercury control

#### Full-scale testing at *Progress Energy's Lee Station*


burns bituminous coal and equipped with ESP



## **Evaluation of MerCAP for Mercury Control** URS Group



- Evaluate EPRI's Mercury Control via Adsorption Process (MerCAP<sup>TM</sup>) technology
- Regenerable, gold-coated fixed-structure sorbent
- Mercury not contained in combustion byproducts
- Testing at two sites over a six month period:
  - Great River Energy's Stanton Station Unit 10 burns ND lignite coal and equipped with SDA/FF (Full-scale at 6 MW equivalent)
  - Southern Company's Plant Yates Unit 1
     burns bituminous coal and equipped with ESP and wet FGD (Pilot-scale at 1 MW)





# **Evaluation of MerCAP for Mercury Control** *Preliminary Results*

#### **Great River Energy's Stanton Unit 10**

- Baseline mercury capture <10% across SDA/FF
- Full-scale testing results a good news bad news story
- Initial 24-hrs mercury removal ~90% across gold plates
- After 24-hrs mercury removal decreased to 40% to 50%
- After one-month mercury removal stabilized at 30% to 40%
- What's next? Revise gold-plate spacing from 1" to <sup>1</sup>/<sub>2</sub>"



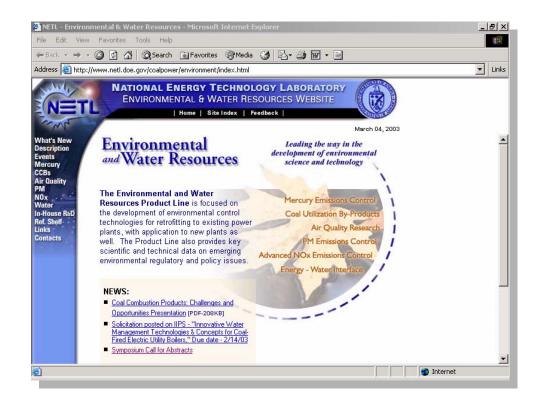


# **Key Takeaways**

- Significant strides have been made in developing mercury control technology over the past several years, but more R&D is needed
- Activated carbon/sorbent injection and oxidation systems (i.e., catalysts, chemical additives) are most promising Hg control technologies
- Significant variability in Hg speciation depending on coal type and other factors
- DOE's current field testing activity is an <u>R&D</u> program
- Further long-term field testing is needed to bring technology to commercial-demonstration readiness
- DOE's RD&D model projects broad commercial availability in 2012-2015



#### **Future Plans**


 Continue Phase II field testing of technology capable of achieving 50-70% Hg removal through FY06-FY07

 Issue competitive solicitation in June 2005 for Phase III field testing of control technologies capable of <u>></u> 90% Hg capture



NH House Committee\_April 2005

# **DOE/NETL Environmental and Water Resources** (Innovations for Existing Plants Program)



To find out more about DOE-NETL's Hg R&D activities visit us at: http://www.netl.doe.gov/coal/E&WR/index.html

