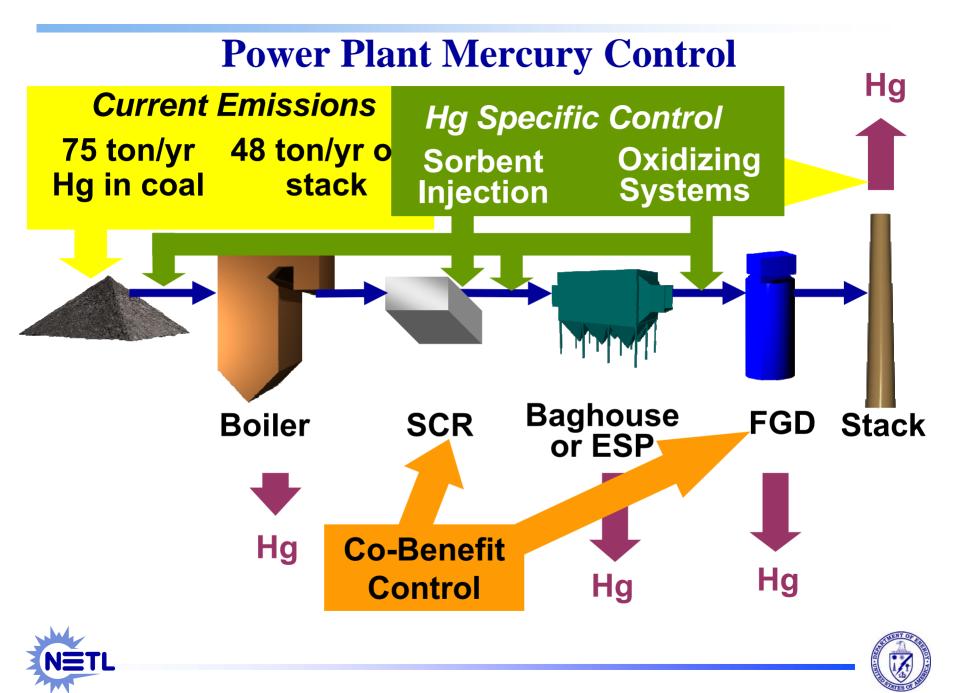

DOE's Hg Control Technology and Related Coal Utilization Byproducts Characterization Research

Presented to Indiana Office of Air Quality Mercury Workshop

> March 17, 2005 Indianapolis, Indiana

Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory



Outline

- DOE/NETL's Hg control technology
 program
- Characterization of fly ash
- Characterization of FGD solids
- Summary/conclusion

Mercury Field Testing Program Objectives

Cost

- Have technologies ready for commercial demonstration by 2007 for all coals
- Reduce emissions 50-70%
- Reduce cost by 25-50% compared to baseline cost estimates

2000

Baseline Costs: \$50,000 - \$70,000 / Ib Hg Removed

DOE/NETL Mercury Control RD&D Portfolio

 Boiler Combustion modification Chemistry modification 	• Iransport/	
 FGD Enhancements Oxidation catalysts Reagent addition Ultraviolet radiation Electro catalytic oxidation SCR oxidation 	 Sorbent Injection Activated carbon Amended silicates Halogenated AC Ca-based sorbents Chemically treated 	
Coal CombusByproductN≣TL	COHPAC/Toxecon	

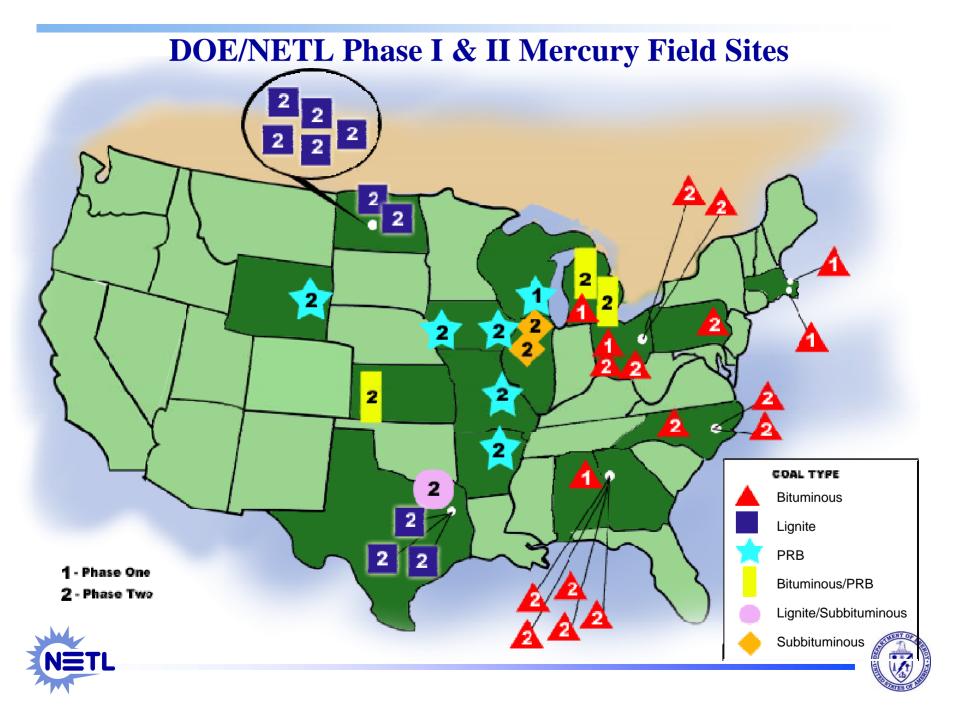
DOE/NETL Phase II Mercury Control Field Testing Technology Matrix

Coal Rank	Cold-side ESP (low SCA)	Cold-side ESP (medium or high SCA)	Hot-side ESP	TOXECON	ESP/FGD	SDA/FF
	Miami Fort 6	Lee		Independence	Yates 1	
		Buck		Gavin	Yates 1	
Bituminous		Portland	Buck		Conesville	
	Yates 1&2	Sevier			Conesville	
		Monroe				
Subbituminous		Meramec	Council Bluffs			
	Crawford	Dave Johnston	Louisa			
			Will County			
Lignite (North Dakota)		Leland Olds 1				Antelope Valley 1
		Leland Olds 1			Milton Young	Stanton 10
		Stanton 1				Stanton 10
Lignite (Texas)					Monticello	
					Monticello	
					Monticello	
Blends		St. Clair		Big Brown		Holcomb

Sorbent Injection

Oxidation Additive

Sorbent Injection & Oxidation Additive

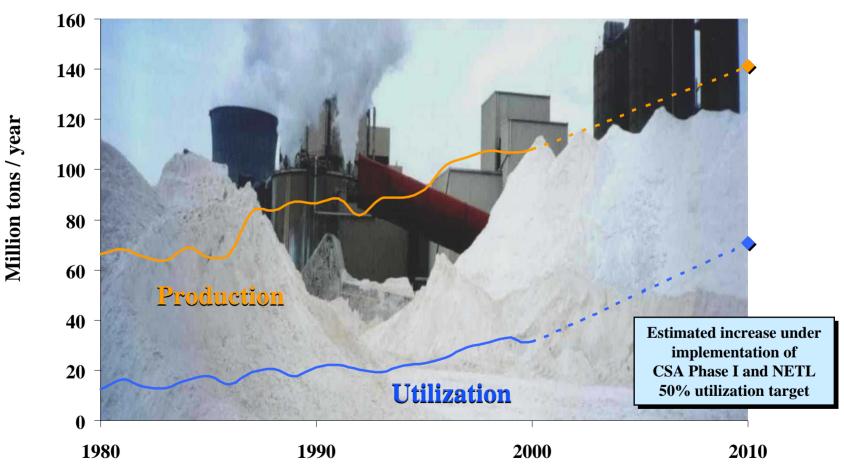

Oxidation Catalyst

Chemically-treated sorbent

Other - MERCAP, FGD Additive, Combustion

What are CUBs?

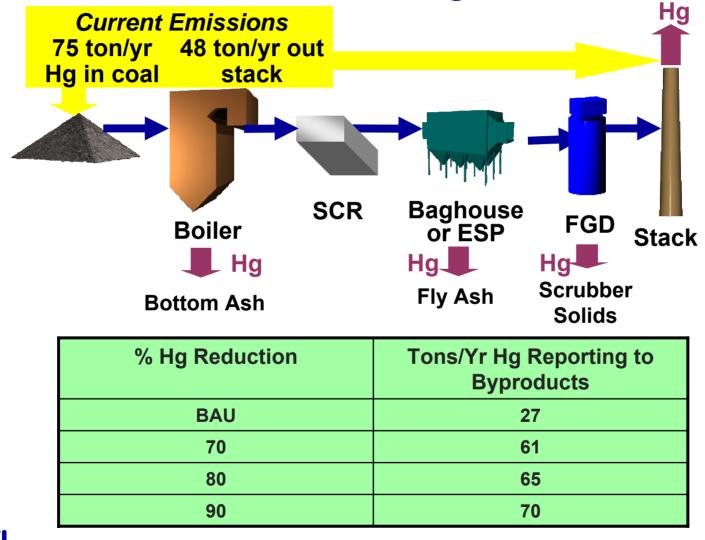
• <u>Coal Utilization Byproducts</u> (a.k.a. CCBs, CCPs, CCW, FFCW, CCR ...)


Utilization includes:

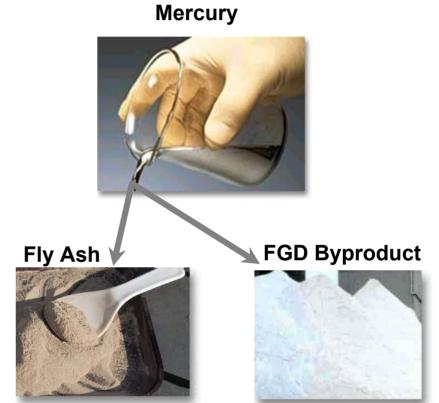
- -Combustion
- -Gasification
- -Hybrid systems

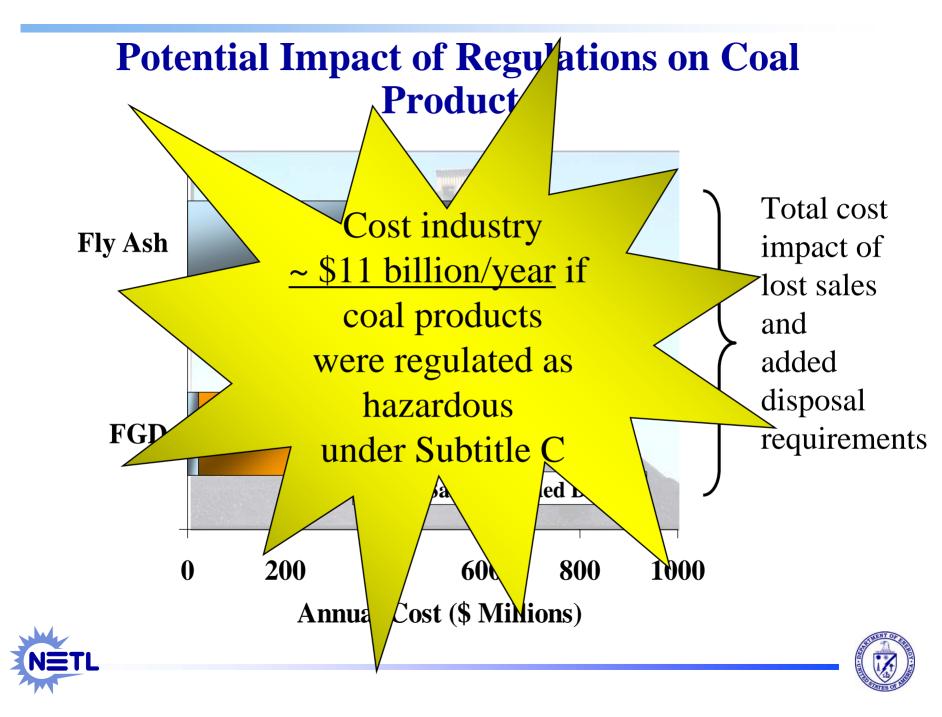
DOE/NETL Goal: Increase CUB Utilization to 50% by 2010

Source: USGS, Historical Statistics for Mineral Commodities in the United States, May 2002

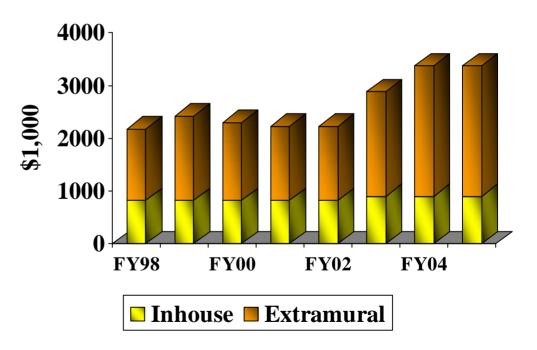

4 Key Challenges to Increased CUB Use

- Installation of additional FGD to meet CSI or CAIR would increase volume of scrubber solids
- Installation of additional advanced combustion technology and SCR to meet CSI or CAIR could increase UBC and NH₃ in fly ash
- Use of AC injection for Hg control could negatively impact fly ash utilization due to increased carbon content
- Increased scrutiny of CUBs due to transfer of Hg from flue gas to fly ash and scrubber solids


Impact of Regulation on Coal Byproducts Where Does Hg Go?


Why are We Concerned About Fate of Hg?

- Impact on environment?
 - Does Hg removed from flue gas get back into environment?
- Impact on disposal and reuse options?



DOE/NETL CUB Research Funding

- Over \$22 million from FY98 – FY05 under IEP Program
- Additional \$22 million for CUB technology demonstration under DOE's clean coal program

CUB Research Funding under IEP program

What is DOE/NETL Doing?

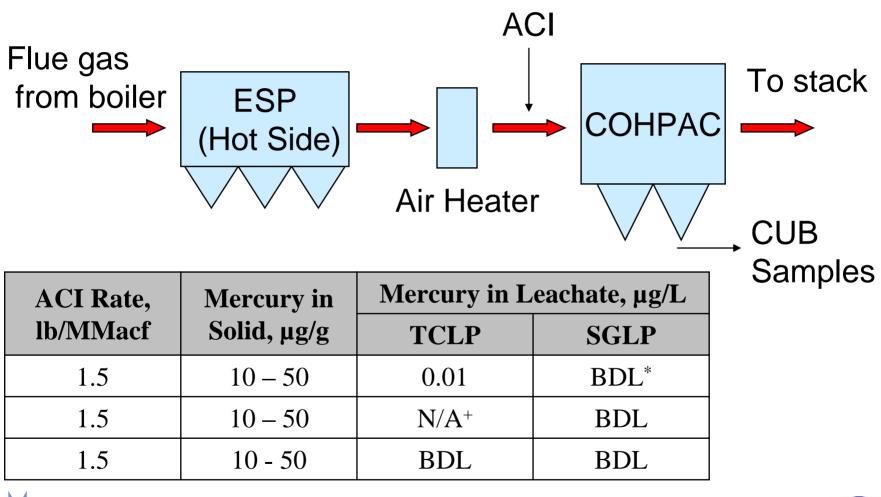
Project Title	Lead Organization
CUB Analysis from ACI Mercury Control Field Testing	ADA-ES and Reaction Engineering
CUB Analysis from Wet FGD Reagent Hg Field Testing	Babcock & Wilcox
Characterization of Coal Combustion By-Products for the Re-Evolution of Hg into Ecosystems	CONSOL Energy
Hg and Air Toxics Element Impacts of Coal Combustion By-product Disposal and Utilization	UNDEERC
Effect of Hg Controls on Wallboard Manufacture	CBRC and TVA
Fate of Hg in Synthetic Gypsum Used for Wallboard Production	USGypsum
CUB Batch Characterization and Interlaboratory Comparison	NETL In-house
Hg and Metals Stability in CUBs	NETL In-house
Hg Capture and Potential Release from FGD Products	NETL In-house
ETL	

Characterization of Hg in CUBs from Activated Carbon Injection Projects

- E. C. Gaston (AL) Bituminous
 - ESP + COHPAC FF for particulate control
- Brayton Point (MA) Bituminous
 - -2 ESPs in series
- Salem Harbor (MA) Bituminous
 - ESP: 474 SCA
- Pleasant Prairie (WI) PRB
 - ESP: 468 SCA

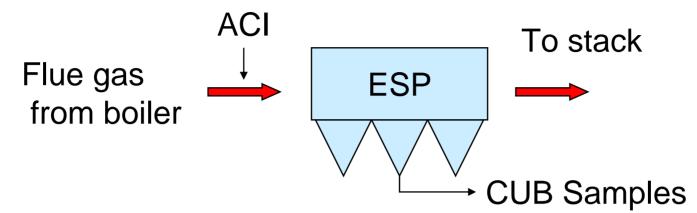
Activated Carbon Storage Silo

Impact of ACI on Fly Ash Mercury Concentrations


	Alabama Power E.C. Gaston	WeEnergies Pleasant Prairie	PG&E Brayton Point	PG&E Salem Harbor
APCD Configuration	Hot-side ESP and COHPAC	Cold-side ESP	Cold-side ESP (two)	Cold-side ESP & SNCR
Coal Rank	Bituminous	Subbituminous	Bituminous	Bituminous
Coal Ash, %	14.78	5.25	10.76	4.15
Coal Hg, ppm	0.146	0.156	0.068	0.063
Baseline Ash Hg, ppm	0.2 – 2	< 0.5	<0.5	NA
ACI Ash Hg, ppm	10 - 50	0.5 - 5	0.2 – 1.4	0.1 – 0.7

Results from DOE/NETL 2001-02 activated carbon injection field tests

Results: E.C. Gaston Plant



 $\mu g/g = ppm$

* Below Detection Limit of 0.01µg/L

Results: Salem Harbor and Pleasant Prairie

Plant	ACI Rate,	Mercury in	Mercury in Leachate, µg/L		
Flant	lb/MMacf	Solid, µg/g	TCLP	SGLP	
Pleasant Prairie	10	0.5 - 5	BDL	BDL	
Pleasant Prairie	10	0.5 - 5	BDL	BDL	
Pleasant Prairie	10	0.5 – 5	BDL	N/A	
Salem Harbor	0	0.1 - 0.7	0.034	BDL	
Salem Harbor	10	0.1 - 0.7	BDL	BDL	
Salem Harbor	10	0.1 - 0.7	BDL	BDL	

Summary of Hg Release from CUB after ACI Phase I Field Testing Program

- Hg in solids increased slightly after ACI
- Most leachates below 0.01 µg/L
- Max. leachate 0.07 µg/L (Brayton Point)
- Below all EPA water quality/drinking water criterion:
 - CCC = 0.77 μ g/L
 - $-CMC = 1.4 \,\mu g/L$
 - $-MCL = 2.0 \ \mu g/L$

Hg Release from CUB Disposal and Beneficial Use Applications - CONSOL

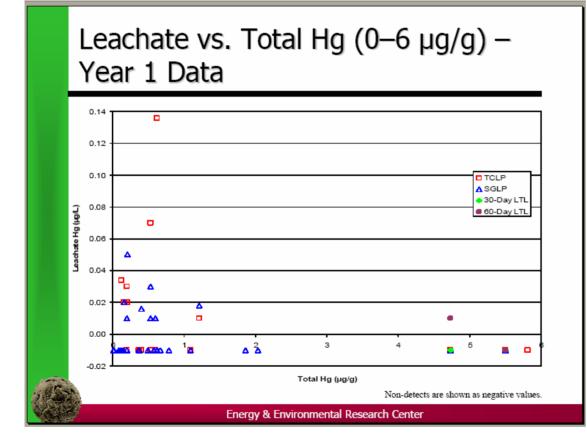
- Evaluating CUBs from 14 plants & end products made from CUBs (wallboard, fly ash concrete, etc.)
 - Wide range of coal types, CUB types, and pollution control configurations
- Laboratory leaching tests
 - Screening: All leachates <1.0 µg/L
 - Detailed analysis (6 samples): 0.0075 0.084 µg/L
- Volatilization tests (140°F)
 - CUBs acted as mercury "sinks"
- Field leachates from disposal sites still being analyzed
 - Screening: All leachates <1.0 μ g/L

Hg Release Studies - UNDEERC

Comprehensive investigation of Hg and other air toxics in CUBs including:

-Chemical & physical characterization of CUBs

-Laboratory methods development & Hg release studies


- Leaching (TCLP, SGLP, short and long term)
- Volatilization (short and long term)
- Microbiologically-mediated release

- Field investigations

UNDEERC Leaching Test Results

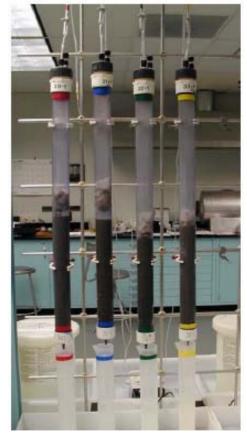
Below all EPA water quality/drinking water criterion:

 $CCC = 0.77 \ \mu g/L$ $CMC = 1.4 \ \mu g/L$ $MCL = 2.0 \ \mu g/L$

Source: D. P. Hassett at DOE/NETL's Mercury Control Technology R&D Program Review, July 14-15, 2004

Characterization of Coal Utilization By-Products from Mercury Control Field Testing Solicitation DE-RP26-04NT42110

- Examine Hg in CUBs from NETLsponsored Hg control projects
 - -14 projects awarded in 2003-04
- Use uniform testing procedures
 and inter-laboratory comparison
- Examine leaching, volatilization, and microbial mobilization
- Solicitation closed: 08/24/2004
 - Expect 1 award ~ Spring 2005

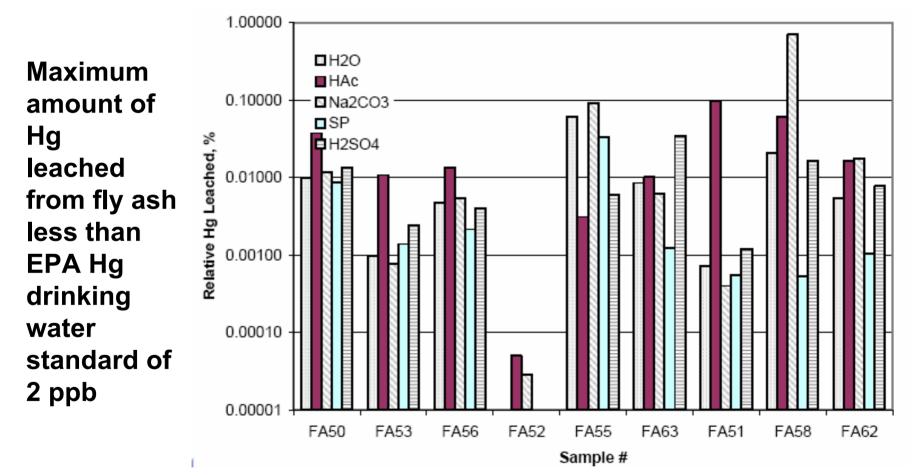

NETL In-house Research - Hg Release from CUBs

• Long-term column leaching tests

- 30 to 180 days
- Leaching liquids
 - Water
 - Acetic acid (TCLP)
 - Synthetic precipitation
 - Sodium carbonate
 - Sulfuric acid

Development of rapid leaching protocol

 Alternative to TCLP, SGLP; simulates column leaching

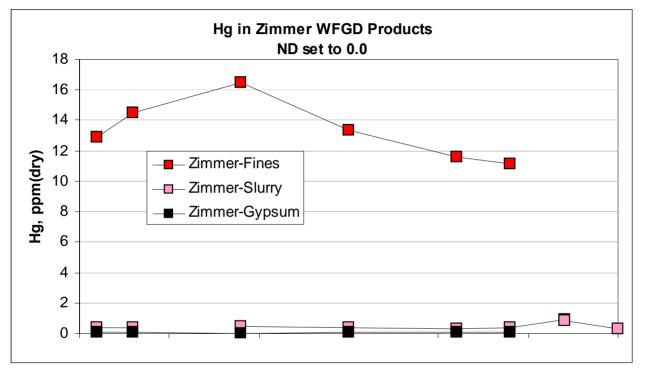


Laboratory Leaching Columns

Cumulative Hg Release – In-House Column Leaching Tests

Ref. A. G. Kim at DOE/NETL's Mercury Control Technology R&D Program Review, July 14-15, 2004

Characterization of Hg in CUBs from Enhanced Oxidation & Wet FGD Removal


Wet FGD Scrubber

- Endicott Station (MI) and Zimmer Station (OH)
- Both used high-S OH bituminous coal and cold-side ESPs
- Endicott FGD: Limestone insitu forced oxidation
- Zimmer FGD: Mg-lime external forced oxidation

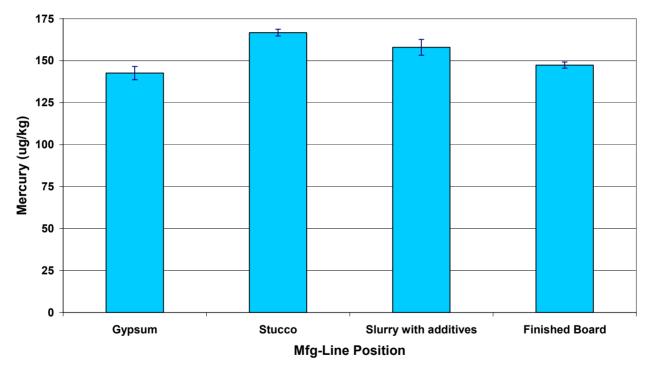
Characterization of Hg in CUBs from Enhanced Oxidation & Wet FGD Removal

"... the mercury compound formed in the wet scrubber is associated with the fines and is not tied to the larger gypsum crystals."

Source: "FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS" Final Report, DE-FC26-00NT41006, BABCOCK & WILCOX CO. and McDERMOTT TECHNOLOGY NET May 7, 2003

NETL In-House *Hg Capture and Release in FGD Solids*

- Samples provided from several power plants and synthetic gypsum wallboard facilities
 - Samples include:
 - Gypsum, stucco, slurry, and wallboard
- Determine Hg concentration
- Measure leachability
 - Hg, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, and Zn


FGD solids

Hg Analysis of Synthetic Gypsum from Power Plant A

Mercury in FGD to Wallboard Production Line (All values are on a moisture-free basis)

Hg concentration in synthetic gypsum samples average about 150 parts per billion.

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production - USG

 Measure mercury concentrations in solid, liquid, and gaseous streams at 3 operating wallboard manufacturing plants

Summary of Results to Date

- Minimal mercury release in typical disposal or utilization applications
 - Leachate Hg concentrations were significantly lower than EPA drinking water standards (2.0 μ g/L) and water quality criteria for protection of aquatic life (0.77 μ g/L)
- Very little (<1% of total) Hg can be extracted from fly ash via leaching
- Release of Hg not related to total Hg in CUB
- Release of Hg <u>may</u> relate to carbon content
 - Higher LOI ~ less Hg release
- Capture via ACI may "retain" Hg better than capture via carbon in fly ash
 May relate to number & location of adsorption sites (more research needed)
- Release of Hg from wallboard manufacture is currently being investigated
- DOE/NETL will need to continue to support research on environmental effects of CUBs

For additional information:

http://www.netl.doe.gov/coal/E&WR/ccb/

