
DOE Mercury Control Research

Air Quality III: Mercury, Trace Elements, and Particulate Matter

September 9-12, 2002

Rita A. Bajura, Director

National Energy Technology Laboratory

www.netl.doe.gov

Potential Mercury Regulations

MACT Standards

- Likely high levels of Hg reduction
- Compliance: 2007

Clean Power Act of 2001

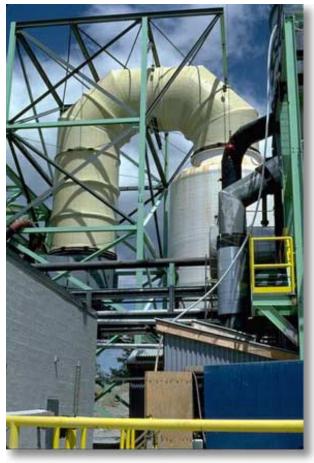
- 4-contaminant control
- 90% Hg reduction by 2007

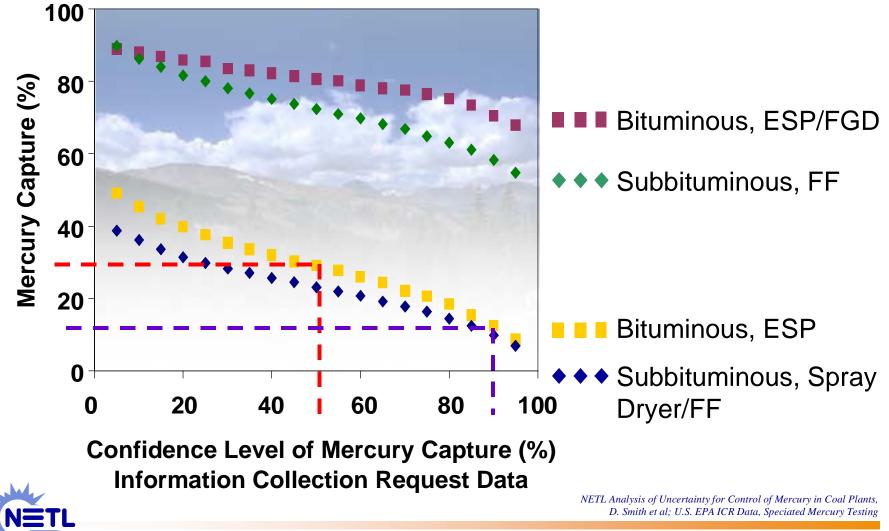
President Bush Announcing Clear Skies Initiative February 14, 2002

Clear Skies Act of 2002

- 3-contaminant control
- 46% Hg reduction by 2010
- 70% Hg reduction by 2018
- Hg emission trading

Uncertainties *Mercury Control Technologies*


- Balance-of-plant impacts
- By-product use and disposal
- Capture effectiveness with
 low-rank coals
- Confidence of performance


SCR + FGD Not Necessarily the Solution

- Plant 1 Bituminous coal
 - 25% Hg oxidation across SCR
 - 98% total oxidized Hg
- Plant 2 Bituminous coal
 31% Hg oxidation across SCR
 88% total oxidized Hg
- Plant 3 Subbituminous coal
 5% Hg oxidation across SCR
 10% total oxidized Hg

ICR Data Uncertainty *Confidence of Performance for Mercury Control*

169330 RAB 09/09/02 5

Capturing Mercury Difficult!

Houston Astrodome

A Hypothetical Example

- Dome filled with 30 billion ping-pong balls
- 30 mercury balls
- Remove 27 balls for 90% Hg capture

R&D Goals **DOE Mercury Control Program**

Cost

Have technologies ready for commercial demonstration:

- By 2005, reduce emissions 50-70%
- By 2010, reduce emissions by 90%
- Cost 25-50% less than current estimates

2000

Six Mercury Control Field Tests

Technology / Utility Plant	Start Date
ADA-ES – Sorbent Injection Alabama Power – Gaston We Energies – Pleasant Prairie PG&E – Brayton Point PG&E – Salem Harbor	March 2001 September 2001 June 2002 September 2002
McDermott-B&W – Enhanced Scrubbing Michigan South Central Power – Endicott Cinergy – Zimmer	May 2001 October 2001

ADA-ES Field Test Sites

Alabama Power – Gaston

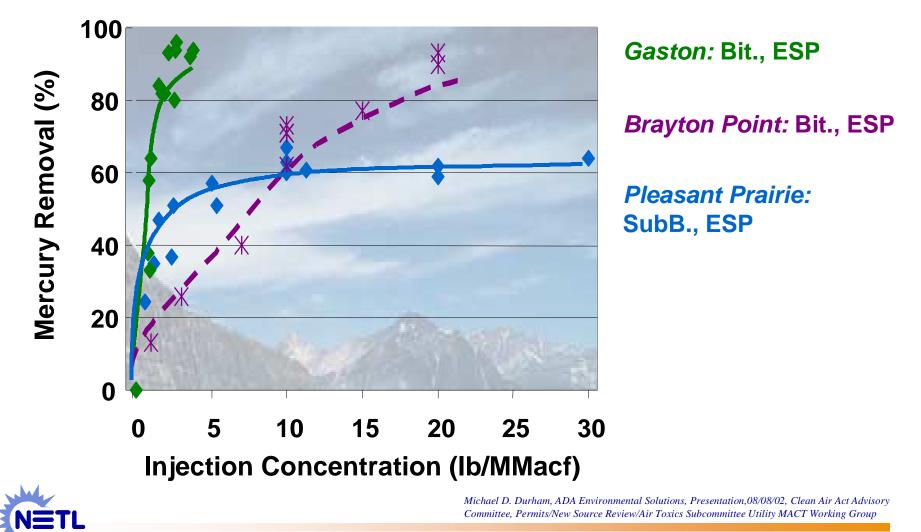
- 135 MW
- Low-sulfur bituminous coal
- ESP
- COHPAC fabric filter



We Energies – Pleasant Prairie

- 150 MW
- Subbituminous coal
- ESP

PG&E – Brayton Point


- 122 MW
- Low-sulfur bituminous coal
- Low-NO_X burners
- Two ESPs in series

Mercury Removal Trends Activated Carbon Injection

169330 RAB 09/09/02 10

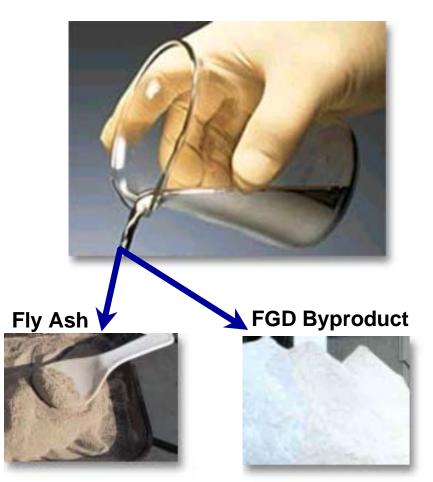
Observations from Field Tests

Activated carbon removes Hg

 Range of effectiveness depends on coal type and plant configuration

Many uncertainties remain

- -Low-rank coals
- -Sorbent costs
- Units equipped with ESPs
- Downtime for startup
- -By-product use and disposal


Impact on By-Products Could Be Significant

Fly Ash

- 63M tons/yr generated
- 32% used
- Utilization loss for concrete < \$390M impact

FGD By-product

- 25M tons/yr generated
- 19% used
- Utilization loss for wallboard < \$135M impact



Hazardous Designation of All By-products Would Cost \$11 Billion / Year

Long-Term Field Testing Key Research Need

- Competitive solicitation in FY 03
- Seeking stakeholder input:
 - -Coal types
 - Plant size and configuration
 - -Testing duration
 - -Application of CEMs

Other Research Needs

- Implications of global Hg emissions on U.S.
- Improvements in CEMs
- Investigation of Hg impacts on coal by-product use and disposal
- Continued development of advanced Hg control concepts

Advanced Mercury Control Concepts

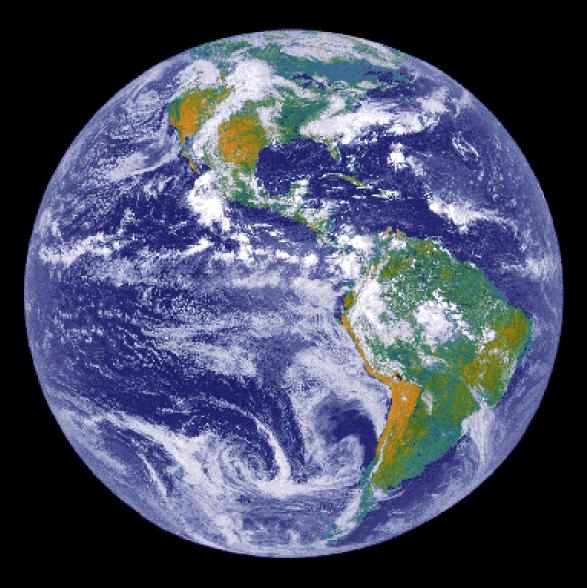
- Apogee Scientific
 - -Advanced Hg sorbents
- CONSOL
 - –Multi-pollutant control for Hg, SO₂, acid gases

• EERC

-Hybrid particulate control system

- Powerspan
 - -Multi-pollutant control for Hg, SO₂, NO_x, particulates, acid gases
- Southern Research Institute

-Calcium-based additives to control Hg


URS Group

-Catalyst to convert elemental to oxidized Hg

Designed to Achieve ≥ 90% Hg Removal

We Live in One World

Proposed Emissions Reductions *Electric Power Plants (Tons / Year)*

			Clear Skies		Jeffords
Emission	Actual 2001	Baseline	2008/2010 Cap	2018 Cap	2007 Cap
SO ₂	10.6 M	8.9 M	4.5 M	3.0 M	2.2 M
NO _x	4.7 M	4.0 M	2.1 M	1.7 M	1.5 M
Mercury	48	48	26	15	4.8

Partnership Is Key to Success!

Jim Kilgroe – EPA Scott Renninger – NETL George Offen – EPRI Larry Monroe – SCS

Discussing Mercury Control Field Testing Plans