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National Energy Technology Laboratory

e Only DOE national lab dedicated to fossil energy
—Fossil fuels provide 85% of U.S. energy supply
e One lab, five locations, one management structure

e 1,100 Federal and support-contractor
employees

e Research spans fundamental science
to technology demonstrations

West Virginia Oklahoma
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250+ Year Supply at Current Demand Levels !

U.S. Fossil Fuel Reserves / Production Ratio
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Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S.
%L Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and



Coal Use Linked to Economic Growth In
United States!
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Year

Coal-fired Generation and GDP Have Grown
at Nearly the Exact Same Pace Over Last 30 Years

GDP: U.S. DOC, Bureau of Economic Analysis Energy & Electricity: EIA, Annual Energy Review 2003
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Coal Dominates U.S. Power Generation Forecast
(Accounts for 50% of New Capacity Additions)

New Electricity Capacity Additions

(E1A Reference Case)
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154 GW New Coal Capacity By 2030
(~ 309 New 500 MW Plants)
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Technological Carbon Management Options
Pathways for Reducing GHGs -CO,

— - - o

Reduce Carbon Improve /" Sequester
Intensity Efficiency Carbon \
e Renewables e Demand Side e Enhance Natural
e Nuclear e Supply Side , Sinks
e Fuel Switching "o Capture & Store

All options needed to:

o Affordably meet energy
demand

e Address environmental
objectives
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What is Carbon Sequestration?

Capture and storage of CO, and other Greenhouse Gases that
would otherwise be emitted to the atmosphere

Capture can occur:
e at the point of emission
e when absorbed from air

Storage locations include:

e underground reservoirs

e converted to solid materials oot Droraraon oot
51 Dense Plume 3 Towed Pipe § CO2 Lake

e trees, grasses, soils, or ' 2 Droplt Piume 4 Dy oo
algae

e dissolved in deep oceans

Deep Saline
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Carbon Sequestration Program Structure

CORE R&D

DEMONSTRATION AND
DEPLOYMENT

CO; Capture

Carbon Storage

Monitoring,
Mitigation, and
Verification

Non-CO:
Greenhouse
Gas Control

Regional
Carbon Sequestration
Partnerships

B \aidation D

Deployment

Breakthrough
Concepts

Other Commercial
Opportunities

* Large-Scale Projects

* International Showcase

FutureGen

* Carbon
Sequestration

* Power
Generation
plus Hydrogen
Production
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U.S. DOE’s Carbon Sequestration Program

Statistics

100

FYO7 Cont. Res. $100 Million

DOE Budget (Million $)

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Fiscal Year

Diverse research
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portfolio
~ 70 Active R&D Projects

Strong industry support
~ 39% cost share on projects

Federal Investment to Date
~ $360 Million

FY 2007 Budget

Cross-cutting
Non-CO2 GHG 13%
Mitigation
1%

Breakthrough
Concepts
2%

Regional
Partnerships
49%

MMV
8%

Sequestration
13%

Capture of CO2
14%
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FY2008 Energy and Water Appropriations

® Sequestration
—$131,577,000 House HR2641Not yet law
® [ arge scale injection projects
—$132,000,000 Senate S1751 Not passed by Senate yet
® |nnovations for Existing Plants

—“The Committee provides $50,000,000 for innovations at existing
plants... The Committee directs the Department to focus R&D
efforts on CO,, capture technology for existing pulverized coal (PC)
combustion plants, to include efforts on high-strength materials for
heat intensive operations, plant efficiency, and oxy-fuel combustion
PC retrofit technology.” House HR2641 Not yet law

—“The recommendation includes $34,000,000 for Innovations for
Existing Plants. Because carbon capture from existing plants is a
substantial ongoing challenge to the existing fleet, the Innovations
for Existing Plants program is directed to consider carbon capture
as a future focus of this program...” Senate S1751 Not passed by

=TL Senate yet
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Regional Carbon Sequestration Partnerships
“Developing the Infrastructure for Wide Scale Deployment”

Characterization Phase

e 24 months (2003-2005)

e 7 Partnerships (40 states)
e ~$15M DOE funds

Validation Phase o
e 4years (2005 - 2009) :‘;:::F':‘
o Field validation tests | Cemen Planis "2

— 25 Geologic

— 11 Terrestrial
e ~$110M DOE funds
Deployment Phase
e 10 years (2008-2017)

e Several large volume injection
tests

Refineries &
Chemlr:al
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National Atlas Highlights

North American CO, Storage Potential

CO, Sources (Giga Tons) (Giga Tons)
CO, Emission  Number Sink Type Low High
of Saline Formations 969 3,223
e e Unmineable Coal 70 97
CO, 3.81 4,365 Seams
Sources Oil and Gas Fields 82 83

Unmineable Coal
Seams

L I ]
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ﬁ Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html
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CO, Sequestration Timelines

2020
: 2012 Optimized
Programmatic é sequestration
technology
2011 ready for
commercial
é Carbon sequlestration deployment
program goals:
2008 Large-scale demo: 882’2 gggrtnua:ﬁence
é > L Mtons CO, /yr — _ 70% added cost 2028
MM&V protocols: 2018

Enable 95% of stored
2007 CO, to be credited

Standard
o 2013 Significant commercial
Initiate deployment ‘ commercial and regulatory
phase of Regional transition to practice
Carbon Sequestration Equipment, employ capture
Partnerships specifications and and storage
designs available to
20080 industry
i . 9
Legislation Leg|S|atIV6 J
requiring / incentivising

=TL capture and storage
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* Basis 1970 Clean Air Act commercial / regulatory experience



Technology Pathways
Separation & Capture of CO,
Issue
e Demonstrated technology is costly

Pathways
e Post-combustion capture
e Pre-combustion capture

e Oxycombustion
— Chemical looping
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Pulverized Coal Oxycombustion

‘ Coal + O, === CO, + H,O I

Current Projects:

Steam . B&W
FFIzue G?s goecyp Jupiter Oxygen

ecycle 2
CANMET

v 4 C02 .
Oxyfuel 15 Psia
Coal > . > > > T
0a iodhe ESP FGD N
_ 1 C02
y _ Comp.
Oxygen \ Limestone
Ash CO
Air 2,200 Psia
Separation Oxyfuel Challenges
unit 1. High combustion temperatures

*Boiler materials of construction issues
*Requires large amounts of flue gas recycle

2. Cryogenic oxygen production is expensive and

energy intensive
*Opportunity for oxygen membranes
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Oxygen-Fired CO, Recycle for Application to
Direct CO, Capture from Coal-Fired Power Plants

e Retrofit existing combustion facility for oxy-combustion

— Design and Install Recycle Loop
— Parametric Testing Campaign

Status:

— Recycle Loop Design %1 |

Completed

— Oxy-combustion
Burner Design
Completed

— CFD underway
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Participants: Southern Research Institute, Maxon, DTE Energy,
The BOC Group, Doosan Babcock, REI
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Ceramic Autothermal Recovery

e Process Features
Purge (Steam

» Uses oxygen “storage” property of perovskites at and/or CO,)
high temperatures. Highly selective O, extraction.

» Based on conventional pelletized materials

' 300%@
Y |

» Cyclic steady state process. Perovskite alternately
exposed to feed air and regeneration gas flows.

> Partial pressure swing (using a sweep gas) enables
production of an O,-enriched stream

> Internal regenerative heat transfer

Perovskite
Samples

(in steam/CO,)
Participants: The BOC Group, Alstom, WRI

|
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Oxygen Transport Membranes (OTM)

Steam
e Reactive Purge T
Fuel Carbon
dioxide
Water

Air = VN \
Heat T
<4 /\/\/\<_I

OT™M Water
combustor

Heat recovery

e Oxy-fuel combustion technology. Natural Gas approach depicted.
Coal based concepts under development.

e Increase in thermal efficiency from ~87 % to ~95% (HHV)
e CO, product ready for sequestration
e Ultra Low NO, emissions

e 1/10t the power consumption for oxygen separation from air
compared to a cryogenic ASU.

=1L Participants: Praxair, University of Utah

Graphic from Praxair Presentation, 2/15/06 NETL Pittsburgh



e PC Coal and Turbine

NETL/Office of Research and Development
Oxy-Combustion Activities

Power Cycles

Overall objective: development of
Improved and validated modeling
tools for oxy-combustion systems

e Approach combines

modeling, lab tests, and
field work

fNEm

The Integrated Pollutant Removal
(IPR) Process for CO2 Capture
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NETL/Office of Research and Development
Oxy-Combustion Activities — cont’d

Obtain fundamental combustion data
and radiative properties of oxy-flames

— Laminar flame speeds

— Radiative properties/heat transfer in
high steam environments and
validation data sets

Systems-level modeling —

— test, demonstration and full scales
Develop improved modeling/
simulation tools

----
....

e Develop and validate CFD models for

. . Reheat Combustor Demonstration
oxy-fired PC combustion

— NETL/NASA/CES
e Assess materials performance in oxy-

combustion environments i--
o Develop approaches to capture CO2 o
from oxy-fuel combustion products foe W

20402 e B
I 4 330+02 z . .
-— L
T 2 9608+02
- L ]
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Study Matrix

Steam
Case | CO, Capture _ Oxidant NOx Control CO, Purity Storage
psig/°F/I°F
1 None 3500/1110/11502 0.07 Ib/10°Btu N/A
2 None 4000/1350/1400b A - LOW NOX Burners N/A
ir

3 Econamine 3500/1110/1150 - Over-fired Air ~100%

4 Econamine | 4000/1350/1400 - SblR ~100%

5 95 mol% O, Spec. A
SA Cryogenic Supercritical 99 mol% O, Spec. B Saline

ASU Oxyfuel 3500/1110/1150 0 * Formation

5B 95 mol% O, 0.07 Ib/106Btu Spec. B
5C 95 mol% O, | - Low NOx Burners | Spec.C

6 Cryogenic | Ultrasupercritical | .~ |- Over-fired Air Spec. A

6A | ASU Oxyfuel | 4000/1350/1400 o772 | - Flue Gas Recycle [ goec ¢

/ Membrane Supercritical ~100 mol% Spec. B

7A | ASU Oxyfuel | 3500/1110/1150 O, Spec C

aSteam conditions for the supercritical (SC) power plant cases (available now)

bSteam conditions for the ultra-supercritical (USC) power plant cases (2015-2020)

=TL

ASU: Air Separation Unit
SCR: Selective Catalytic Reduction

T. Fout,Nov. 2007



CO, Purity

Specification A: Raw flue gas product using 95 mol% oxygen - Saline Formation
Specification B: Raw flue gas product using 99 mol% oxygen - Saline Formation
Specification C: Raw flue gas product using 95 mol% oxygen and treated to meet EOR Spec.

TL

EOR

Saline Formation

Pressure (psia)

2200

2200

co,

>95 vol%

not limited?

Water

dehydration? (0.015 vol%)

dehydration? (0.015 vol%)

N,

<4 vol%

not limited?!

O,

<40 ppmv

<100 ppmv

Ar

< 10 ppmv

not limited

NH

3

<10 ppmv

not limited

CO

< 10 ppmv

not limited

Hydrocarbons

<5 vol%

<5 vol%

H,S

<1.3 vol%

<1.3 vol%

<0.8 vol%

<0.8 vol%

uncertain

uncertain

<40 ppmv

<3 vol%

uncertain

uncertain

1: These are not limited, but their impacts on compression power and equipment cost need to be considered.
2: Dehydration process, such as a glycol absorber, is required.



Supercritical Oxyfuel Combustion
Key Points

» Going from 95% to 99% O, purity results in:
»  Less than 0.5% increase in ASU auxiliary load (130.5 MW to 131 MW)

> A 9% increase in ASU capital cost ($509/kWe to $555/kWe)

> A4 Megawatt decrease in CO, compression and purification auxiliary
power (78.5 to 74.5 MW) - Results in a slightly higher net power plant
efficiency.

Bottom Line: The CO, compression and purification auxiliary power
savings—due to the use of a higher purity oxidant—is offset by a 9%
increase in ASU capital cost resulting in a negligible advantage in going
from 95 to 99% oxygen purity.

=TL
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Oxyfuel COE Increase Distribution
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Why the Need to Focus on the
CO, Capture Program Objectives

Energy Penalty due to CO, Capture 10% 20% 30% 40%
Target Market, GW 184 184 184 184
Fleet CO, Reduction, % 50.2 49.2 47.9 46.3
New Capacity Req’'d, GW 25.5 57.5 98.5 153.3
Additional Coal Reqg’'d., tons x 103 79,940 | 179,864 | 308,338 | 479,637
Cost of New Capacity, MM$ 45,975 | 103,444 | 177,332 | 275,850
Cost of CO, Retrofits, MM$ 91,950 91,950 91,950 91,950
Total New Cost, MM$ 137,925 | 195,394 | 269,282 367,800_

ﬁ — l]

Y

Current Energy Penalty
of CO, BACT MEA
Absorption System
=TL

T. Fout,Nov. 2007

Source: U.S. DOE Carbon Capture and Separation Program: A Program
Synopsis, Jose’ Figueroa and Sean Plasynski



Innovation Advances

A
B Post-combustion
: A Chemical
T @ Pre-combustion @ looping
5 —CgEEmeN el M lonic liquids A OTM boiler
o B MOFs M Biological
@ . processes
c @PBI M Enzymatic
O membranes  membranes
= @ Advanced .SOIibd : Agﬁ)liess
D physical S ORUENTS
a4 solvents M Membrane
% | MAmine B Advanced @®systems
8 solvents i ATMs
@ Physical solvents @
solvents
A Cryogenic
@®oxygen
>

N=TL Time to Commercialization —>
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Figueroa JD, et al., Advances in CO, Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2007



Additional Information

National Energy Technology Laboratory
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THE ONLY U.S. NATIONAL LABORATORY DEVOTED TO FOSSIL ENERGY TECHNOLOGY

ABOUT HETL Home = Technologies = Camor Seguestation NEWS & FEATURES // All =
v Carbon Sequestration
KEY ISSUES & MAHDATES Technologies Technology Roadmag [PDF-
i 4542K8
ONSITE RESEARCH Carbon Sequestration |

v Carbon Sequestration

Program Outresch Plan
TECHHOLOGIES o
METL manages a portfolio of ! S [PDF-143EMB]
v DOE-Advances

laboratory and field RED focused on =l i
Commerciglization of Climate
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reducing dgreenhouse gas emissions )
g g + Redional Carkon

and controling global climate change. Seguestration Partnerships
2EHUESTIELION Parnersnips
Mozt efforts focus on capturing Program Adds Canadian
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approaches . Cortral of fugitive methane emissions iz alzo addressed. + The 2006 EIC Climate
Chance Technaology

. . . ) ) Conference - Engineeting
Carbon sequestration work directly implements the President's Global Climate Challenges and Solutions in
Lhallenges and solllons i

Chanae Intistive, as well as several Mational Eneray Policy aoals taraeting the the 215t Century
development of nevw technologies . | also supports the goals of the Framewwork
Canvention on Climate Change and other internstional collaborations to reduce

EVENTS CALENDAR /Y 81 =

) ) - PUBLICATIONS &
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PROJECTS // ai =
SOLICITATIONS & BUSINESS The programmatic timeling is to demonstrate a portfolio of safe, cost effective + Carbon Seguestration
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