Oxycombustion Technology Research And The National Energy Technology Laboratory Carbon Sequestration Program

Timothy Fout, Sean Plasynski, José Figueroa, and Tom Ochs

Prof. Jost O.L. Wendt Honorary Session - Oxycombustion Of Coal III Salt Lake City, UT November 7, 2007

National Energy Technology Laboratory

Outline for Presentation

- NETL Overview
- Background
- Carbon Sequestration Program
- Oxy-combustion Research
- Systems Analysis

National Energy Technology Laboratory

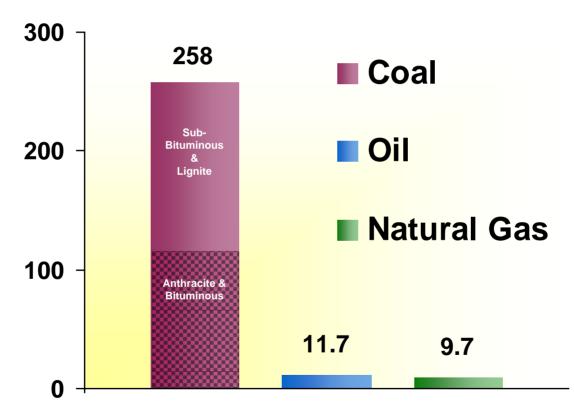
- Only DOE national lab dedicated to fossil energy
 - Fossil fuels provide 85% of U.S. energy supply
- One lab, five locations, one management structure
- 1,100 Federal and support-contractor employees
- Research spans fundamental science
 to technology demonstrations



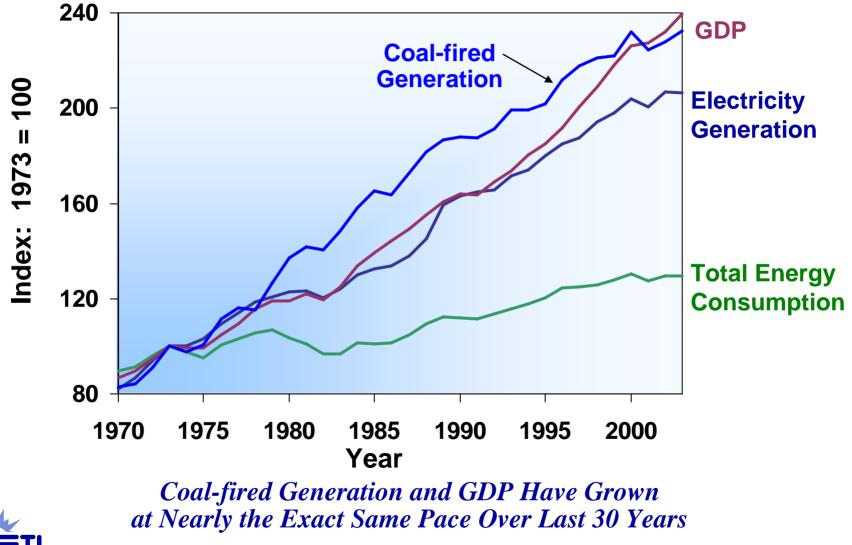
Pennsylvania

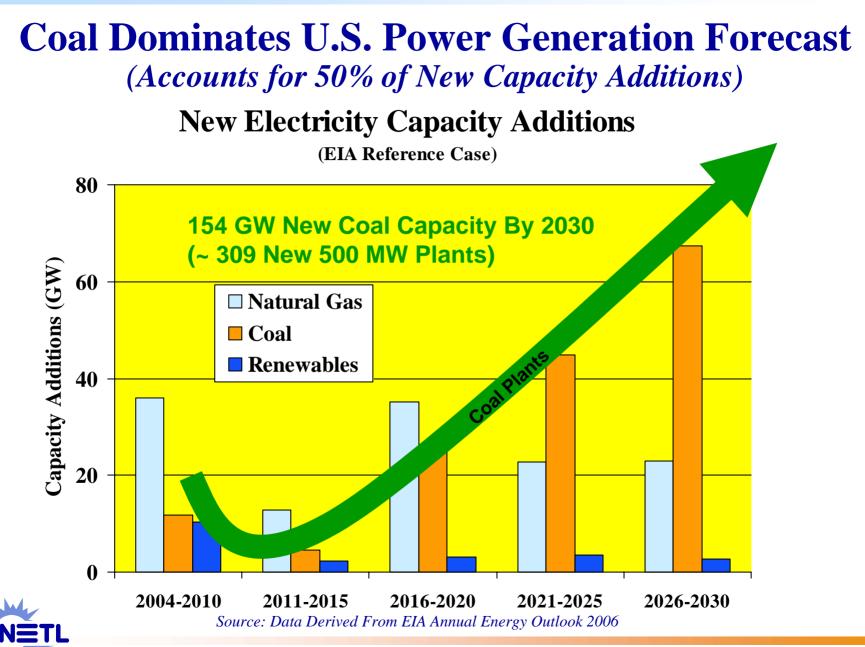
Oregon

West Virginia


Alaska

Oklahoma


250+ Year Supply at Current Demand Levels !


U.S. Fossil Fuel Reserves / Production Ratio

Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data.

Coal Use Linked to Economic Growth in United States!

Technological Carbon Management Options Pathways for Reducing GHGs -CO₂

Reduce Carbon Intensity

- Renewables
- Nuclear
- Fuel Switching

Improve Efficiency

- Demand Side
- Supply Side

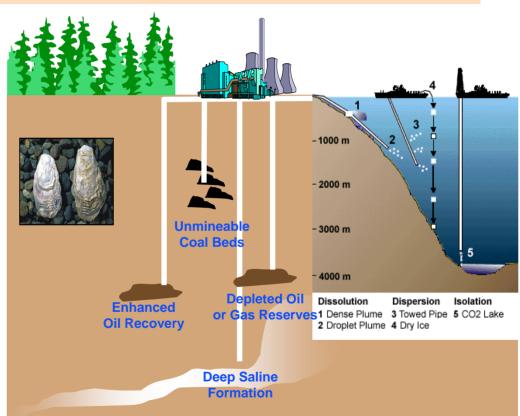
Sequester Carbon

- Enhance Natural Sinks
- Capture & Store

All options needed to:

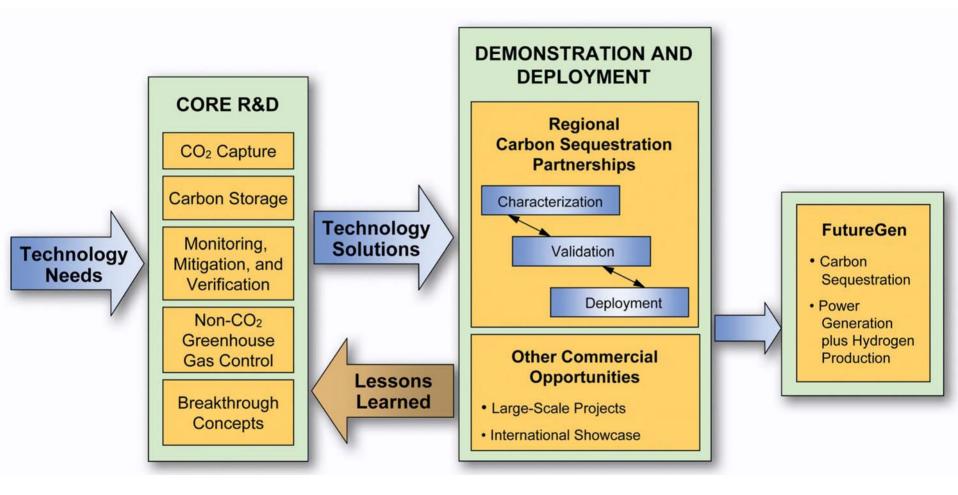
- Affordably meet energy demand
- Address environmental objectives

What is Carbon Sequestration?

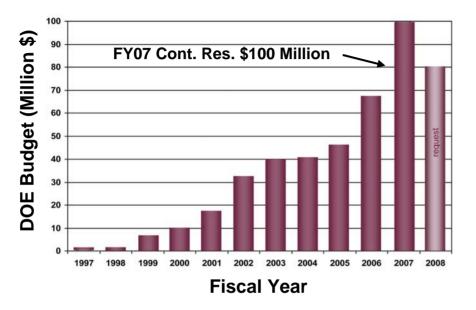

Capture and storage of CO₂ and other Greenhouse Gases that would otherwise be emitted to the atmosphere

Capture can occur:

- at the point of emission
- when absorbed from air


Storage locations include:

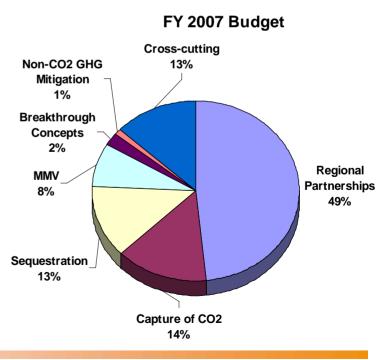
- underground reservoirs
- converted to solid materials
- trees, grasses, soils, or algae
- dissolved in deep oceans



Carbon Sequestration Program Structure

U.S. DOE's Carbon Sequestration Program Statistics

Diverse research portfolio


~ 70 Active R&D Projects

Strong industry support

~ 39% cost share on projects

Federal Investment to Date

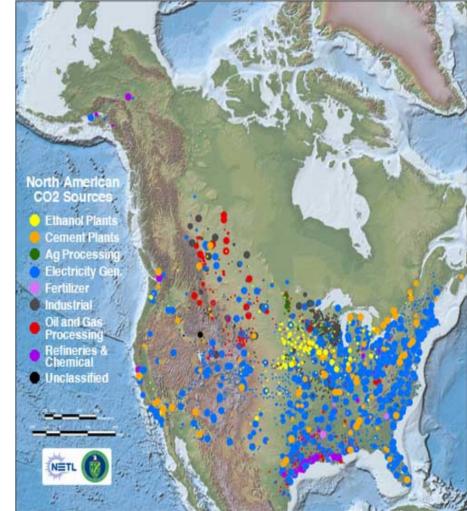
~ \$360 Million

FY2008 Energy and Water Appropriations

- Sequestration
 - -\$131,577,000 House HR2641 Not yet law
 - Large scale injection projects
 - -\$132,000,000 Senate S1751 Not passed by Senate yet
- Innovations for Existing Plants
 - "The Committee provides \$50,000,000 for innovations at existing plants... The Committee directs the Department to focus R&D efforts on CO₂ capture technology for existing pulverized coal (PC) combustion plants, to include efforts on high-strength materials for heat intensive operations, plant efficiency, and oxy-fuel combustion PC retrofit technology." House HR2641 Not yet law
 - "The recommendation includes \$34,000,000 for Innovations for Existing Plants. Because carbon capture from existing plants is a substantial ongoing challenge to the existing fleet, the Innovations for Existing Plants program is directed to consider carbon capture as a future focus of this program..." Senate S1751 *Not passed by* Senate yet

Regional Carbon Sequestration Partnerships "Developing the Infrastructure for Wide Scale Deployment"

Characterization Phase

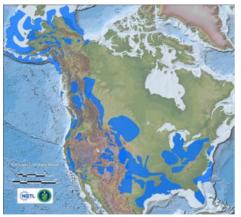

- 24 months (2003-2005)
- 7 Partnerships (40 states)
- ~\$15M DOE funds

Validation Phase

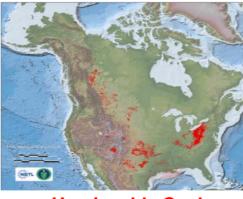
- 4 years (2005 2009)
- Field validation tests
 - 25 Geologic
 - 11 Terrestrial
- ~\$110M DOE funds

Deployment Phase

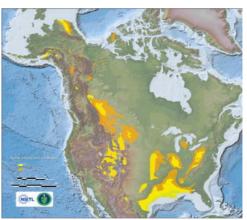
- 10 years (2008-2017)
- Several large volume injection tests


National Atlas Highlights

CO₂ Sources (Giga Tons)

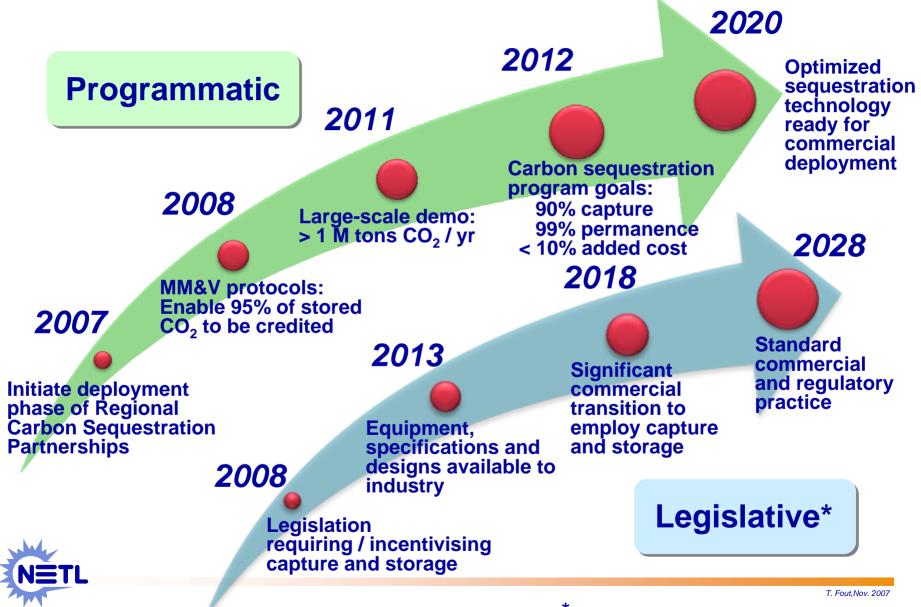

	CO ₂ Emission	Number of Facilities
CO ₂ Sources	3.81	4,365

North American CO₂ Storage Potential (Giga Tons)


Sink Type	Low	High
Saline Formations	969	3,223
Unmineable Coal Seams	70	97
Oil and Gas Fields	82	83

Saline Formations

Unmineable Coal Seams



Oil and Gas Fields

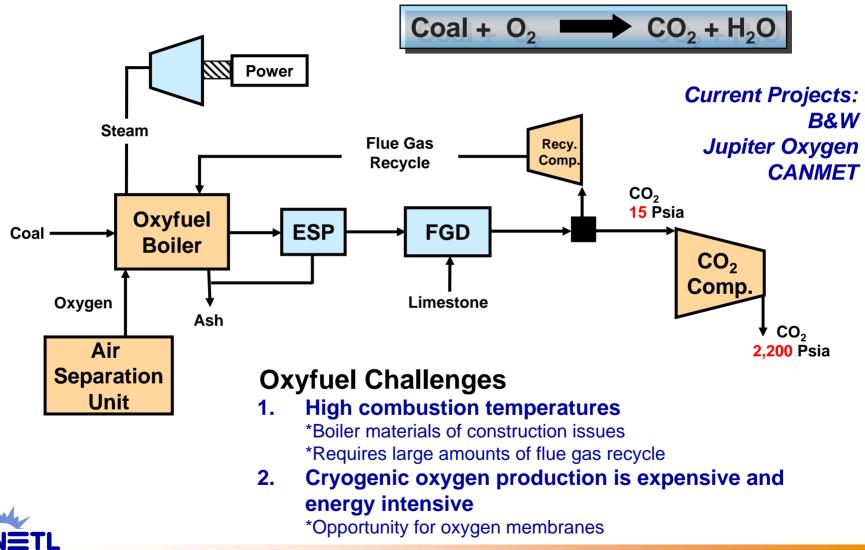
Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html

CO₂ Sequestration Timelines

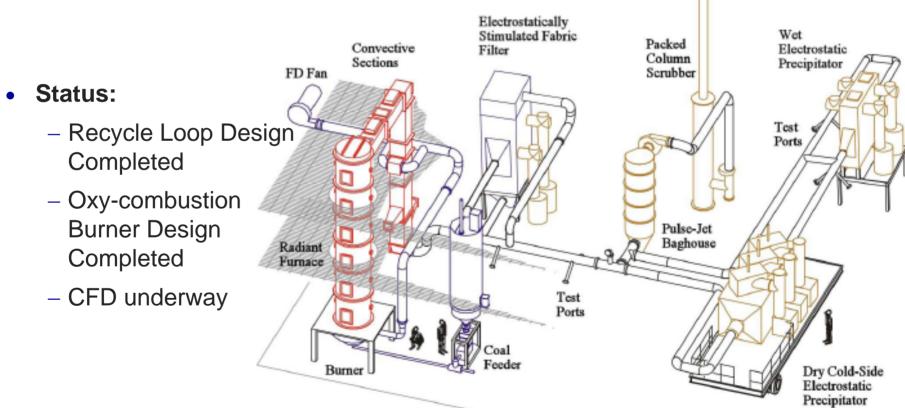
Technology Pathways Separation & Capture of CO₂

Issue

Demonstrated technology is costly


Pathways

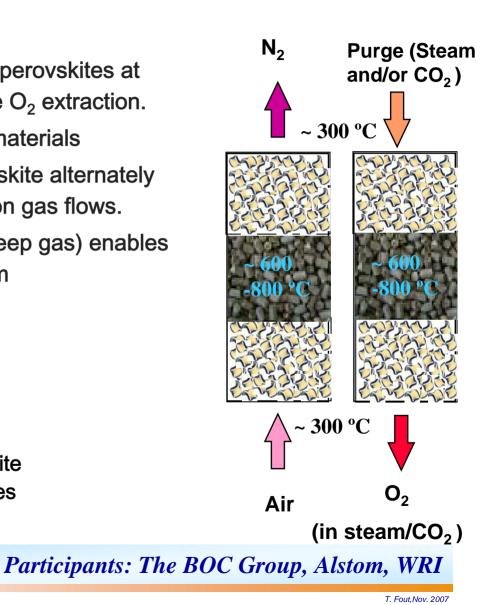
- Post-combustion capture
- Pre-combustion capture
- Oxycombustion
 - Chemical looping

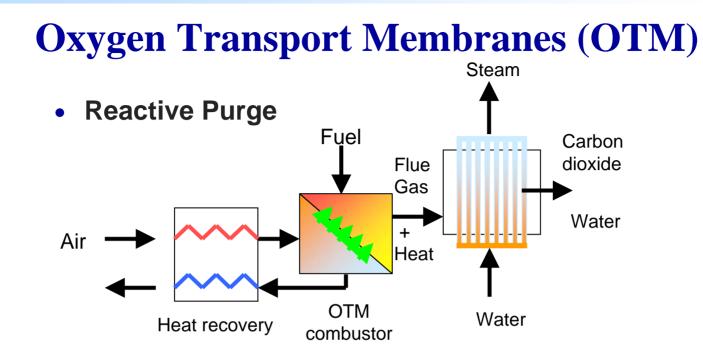

Pulverized Coal Oxycombustion

Oxygen-Fired CO₂ Recycle for Application to Direct CO₂ Capture from Coal-Fired Power Plants

Stack

- Retrofit existing combustion facility for oxy-combustion
 - Design and Install Recycle Loop
 - Parametric Testing Campaign




Participants: Southern Research Institute, Maxon, DTE Energy, The BOC Group, Doosan Babcock, REI

Ceramic Autothermal Recovery

- Process Features
 - Uses oxygen "storage" property of perovskites at high temperatures. Highly selective O₂ extraction.
 - Based on conventional pelletized materials
 - Cyclic steady state process. Perovskite alternately exposed to feed air and regeneration gas flows.
 - Partial pressure swing (using a sweep gas) enables production of an O₂-enriched stream
 - Internal regenerative heat transfer

- Oxy-fuel combustion technology. Natural Gas approach depicted.
 Coal based concepts under development.
- Increase in thermal efficiency from ~87 % to ~95% (HHV)
- CO₂ product ready for sequestration
- Ultra Low NO_x emissions
- 1/10th the power consumption for oxygen separation from air compared to a cryogenic ASU.

Participants: Praxair, University of Utah

NETL/Office of Research and Development Oxy-Combustion Activities

Cyclone

Coal

Flue Gas

Recirculation

Oxygen

Ga

Flue

Heat Exchange

Filter-

9

ž

ő

Pump

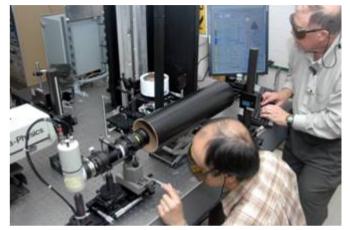
12

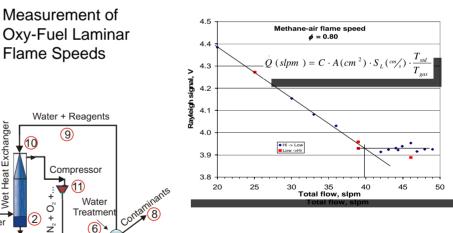
Cooling

Water

(5)

Pure Water

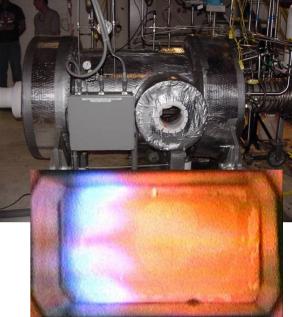

 $\overline{7}$

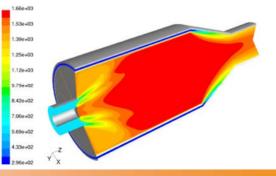

Heat Exchanger

PC Coal and Turbine **Power Cycles**

Overall objective: development of improved and validated modeling tools for oxy-combustion systems

 Approach combines modeling, lab tests, and field work





NETL/Office of Research and Development Oxy-Combustion Activities – cont'd

- Obtain fundamental combustion data and radiative properties of oxy-flames
 - Laminar flame speeds
 - Radiative properties/heat transfer in high steam environments and validation data sets
- Systems-level modeling
 - test, demonstration and full scales Develop improved modeling/ simulation tools
- Develop and validate CFD models for oxy-fired PC combustion
- Assess materials performance in oxycombustion environments
- Develop approaches to capture CO₂ from oxy-fuel combustion products

Reheat Combustor Demonstration
- NETL/NASA/CES

Study Matrix

Case	CO ₂ Capture	Steam psig/°F/°F	Oxidant	NOx Control	CO ₂ Purity	Storage
1	None	3500/1110/1150ª	Air	0.07 lb/10⁶Btu - Low NOx Burners - Over-fired Air - SCR	N/A	Saline Formation
2	None	4000/1350/1400 ^b			N/A	
3	Econamine	3500/1110/1150			~100%	
4	Econamine	4000/1350/1400			~100%	
5	ASU Oxyfuel 3		95 mol% O ₂	0.07 lb/10⁶Btu - Low NOx Burners - Over-fired Air - <u>Flue Gas Recycle</u>	Spec. A	
5A		Supercritical	99 mol% O ₂		Spec. B	
5B		3500/1110/1150	95 mol% O ₂		Spec. B*	
5C			95 mol% O ₂		Spec. C	
6	Cryogenic ASU Oxyfuel	Ultrasupercritical	95 mol% O ₂		Spec. A	
6A		4000/1350/1400			Spec. C	
7		Supercritical	~100 mol%		Spec. B	
7A		3500/1110/1150	O ₂		Spec C	

^aSteam conditions for the supercritical (SC) power plant cases (available now) ^bSteam conditions for the ultra-supercritical (USC) power plant cases (2015-2020) ASU: Air Separation Unit SCR: Selective Catalytic Reduction

CO₂ Purity

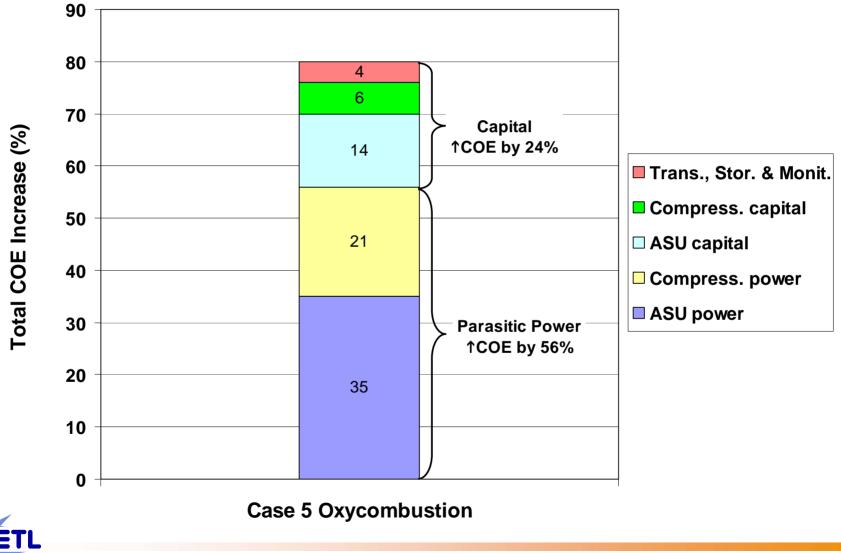
Specification A: Raw flue gas product using 95 mol% oxygen → Saline Formation
 Specification B: Raw flue gas product using 99 mol% oxygen → Saline Formation
 Specification C: Raw flue gas product using 95 mol% oxygen and treated to meet EOR Spec.

	EOR	Saline Formation
Pressure (psia)	2200	2200
CO ₂	>95 vol%	not limited ¹
Water	dehydration ² (0.015 vol%)	dehydration ² (0.015 vol%)
N ₂	<4 vol%	not limited ¹
0 ₂	<40 ppmv	<100 ppmv
Ar	< 10 ppmv	not limited
NH ₃	<10 ppmv	not limited
СО	< 10 ppmv	not limited
Hydrocarbons	<5 vol%	<5 vol%
H₂S	<1.3 vol%	<1.3 vol%
CH ₄	<0.8 vol%	<0.8 vol%
H ₂	uncertain	uncertain
SO ₂	<40 ppmv	<3 vol%
NOx	uncertain	uncertain

1: These are not limited, but their impacts on compression power and equipment cost need to be considered.

2: Dehydration process, such as a glycol absorber, is required.

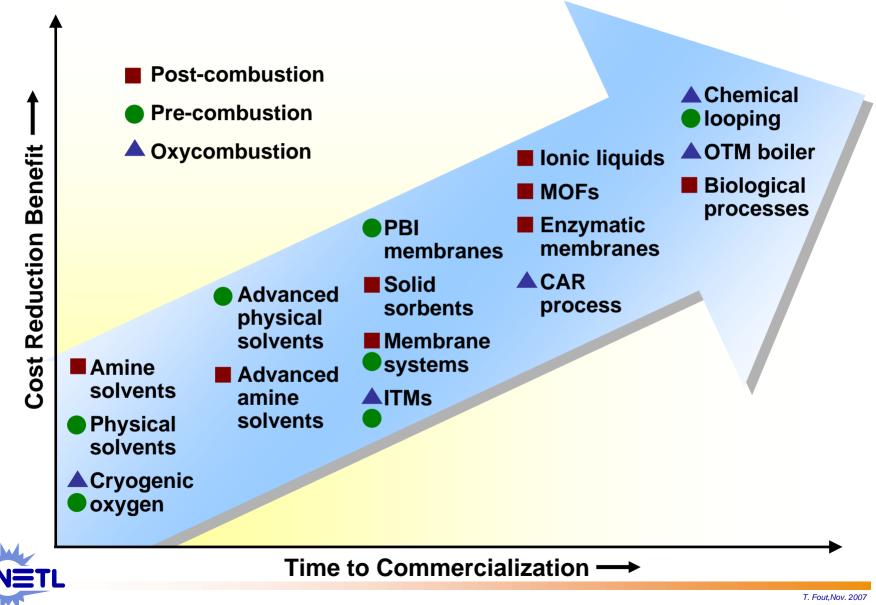
Supercritical Oxyfuel Combustion Key Points


Going from 95% to 99% O₂ purity results in:

- Less than 0.5% increase in ASU auxiliary load (130.5 MW to 131 MW)
- A 9% increase in ASU capital cost (\$509/kWe to \$555/kWe)
- A 4 Megawatt <u>decrease</u> in CO₂ compression and purification auxiliary power (78.5 to 74.5 MW) → Results in a slightly higher net power plant efficiency.

Bottom Line: The CO_2 compression and purification auxiliary power savings—due to the use of a higher purity oxidant—is offset by a 9% increase in ASU capital cost resulting in a <u>negligible</u> advantage in going from 95 to 99% oxygen purity.

Oxyfuel COE Increase Distribution


Why the Need to Focus on the CO₂ Capture Program Objectives

Energy Penalty due to CO ₂ Capture	10%	20%	30%	40%
Target Market, GW	184	184	184	184
Fleet CO ₂ Reduction, %	50.2	49.2	47.9	46.3
New Capacity Req'd, GW	25.5	57.5	98.5	153.3
Additional Coal Req'd., tons x 10 ³	79,940	179,864	308,338	479,637
Cost of New Capacity, MM\$	45,975	103,444	177,332	275,850
Cost of CO ₂ Retrofits, MM\$	91,950	91,950	91,950	91,950
Total New Cost, MM\$	137,925	195,394	269,282	367,800

Current Energy Penalty of CO₂ BACT MEA Absorption System

Innovation Advances

Figueroa JD, et al., Advances in CO₂ Capture Technology—The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2007

Additional Information

National Energy Technology Laboratory

ABOUT NETL

KEY ISSUES & MANDATES

ONSITE RESEARCH

TECHNOLOGIES

Oil & Natural Gas Supply Coal & Power Systems Carbon Sequestration

▸CO₂ Capture

▸CO₂ Storage

- Monitoring, Mitigation, Verification
- *Non-CO2 Greenhouse Gas
- Breakthrough Concept
 Regional Partnerships

FAQs

- Contacts

Technology Transfer

SOLICITATIONS & BUSINESS

CAREERS & FELLOWSHIPS

Home > Technologies > Carbon Sequestration

Technologies Carbon Sequestration

NETL manages a portfolio of laboratory and field R&D focused on technologies with great potential for reducing greenhouse gas emissions and controlling global <u>climate change</u>. Most efforts focus on capturing carbon dioxide from large stationary sources such as power plants, and sequestering it using geologic, terrestrial ecosystem, or oceanic

THE ONLY U.S. NATIONAL LABORATORY DEVOTED TO FOSSIL ENERGY TECHNOLOGY

Site Map

approaches. Control of fugitive methane emissions is also addressed.

Carbon sequestration work directly implements the President's Global Climate Change Initiative, as well as several National Energy Policy goals targeting the development of new technologies. It also supports the goals of the Framework Convention on Climate Change and other international collaborations to reduce greenhouse gas intensity and greenhouse gas emissions.

The programmatic timeline is to demonstrate a portfolio of safe, cost effective greenhouse gas capture, storage, and mitigation technologies at the commercial scale by 2012, leading to substantial deployment and market penetration beyond 2012. These greenhouse gas mitigation technologies will help slow greenhouse

NEWS & FEATURES // All >

- <u>Carbon Sequestration</u> <u>Technology Roadmap [PDF-</u> 4542KB]
- <u>Carbon Sequestration</u> <u>Program Outreach Plan</u> [PDF-1438MB]
- DOE-Advances
 <u>Commercialization of Climate</u>
 <u>Change Technology</u>
- <u>Regional Carbon</u> <u>Seguestration Partnerships</u> <u>Program Adds Canadian</u> <u>Provinces</u>

EVENTS CALENDAR // All >

 The 2006 EIC Climate Change Technology Conference - Engineering Challenges and Solutions in the 21st Century

PUBLICATIONS & PROJECTS // All >

- <u>Carbon Sequestration</u>
 <u>Reference Shelf</u>
- Carbon Sequestration <u>Project Portfolio</u> [PDF-1200//P]

http://www.netl.doe.gov/technologies/carbon_seq/index.html