

The DOE-NETL Air Quality Research Program

U.S. Department of Energy

Office of Fossil Energy (FE)

National Energy Technology Laboratory (NETL)

Why DOE-FE is Concerned About Air Quality

• Goal 1 of Strategic Plan, DOE Office of Fossil Energy:

– "eliminate environmental issues as a barrier to fossil fuel production and use, while maintaining the availability and affordability of fossil fuels."

• Coal is a vital, low-cost source of electricity

- -Responsible for > 50% of U.S. power generation
- -Reserves available for 200+ years

• Coal power emissions can adversely impact air quality

- -Criteria pollutants (SO₂, NO_x) are also fine PM precursors
- -Primary fine PM; Acid Gases
- -Mercury

FE's "Innovations for Existing Plants" Program

- Air quality research (today's topic)
- Mercury control technology
 PM/acid gas control technology
- NOx control technology
- Coal utilization byproducts research
- Energy-water initiatives

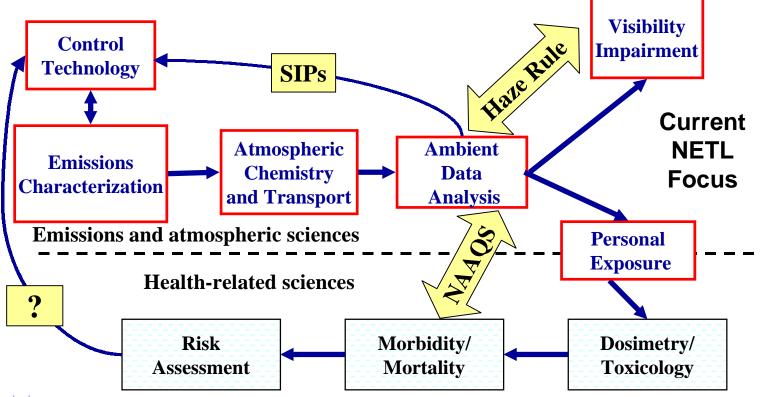
NETL Product Manager: Tom Feeley

Regulatory/Legislative Drivers

- National Ambient Air Quality Standards (NAAQS)
 - $-SO_2$, NO_x , O_3 , PM_{10} , $PM_{2.5}$
- 1999 Regional Haze Rule
 - -Affects SO₂; BART provisions for power plants
- MACT for Air Toxics (Hg)
- Near-stack opacity
 - -Acid gases (SO₃); Primary PM
- Multipollutant legislation "Clear Skies Initiative"
 - $-SO_2$, NO_x , Hg
- Greenhouse gas emission restrictions?

Current Emphasis in Air Quality Research: PM_{2.5}

- Complex issue
- Multiple regulatory/legislative drivers
- High stakes for electric power generation

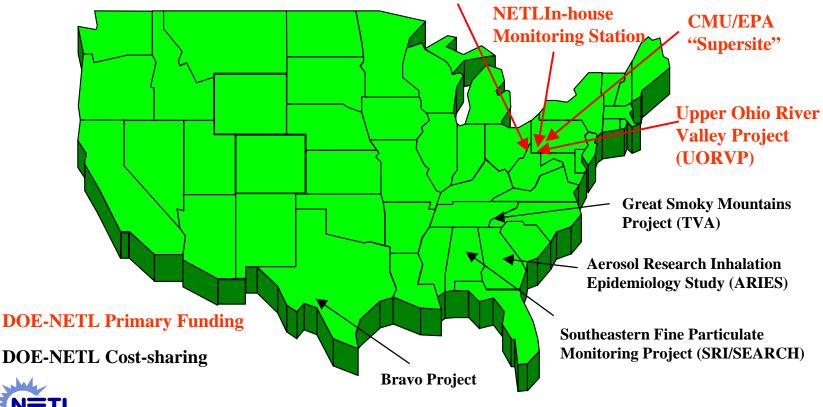


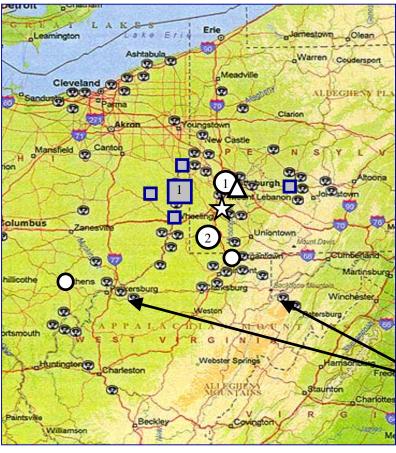
Coal Power & PM_{2.5} - Central Issues

- Power plant emissions contribute significantly to <u>secondary</u> PM_{2.5} mass
- Effect of power plant emission reductions on PM_{2.5} mass and regional haze is uncertain
- Effect of power plant emission reductions on human health is even less certain

PM_{2.5} Research Paradigm *as applied to Power Plant Emissions*

DOE-NETL PM_{2.5} Research Goals


- Relate emissions from coal-based energy production to concentrations and composition of ambient PM_{2.5}
- Inform decision-makers about energy management options for achieving PM_{2.5} and related air quality standards


Ambient Monitoring and Analysis

Current and Recently-completed Projects

Stuebenville Comprehensive Air Monitoring Project (SCAMP)

Ambient Monitoring Sites in Ohio River Valley

UORVP Sites

- 1) Lawrenceville (Urban)
- 2 Holbrook (Rural)
- **O** Satellites

SCAMP Sites

- 1 Primary
- Satellites
- Δ CMU/EPA Supersite
- **☆** NETL In-house site

Coal-fired power plants

Upper Ohio River Valley Project Monitoring Sites

• Contractor: Advanced Technology Systems, Inc.

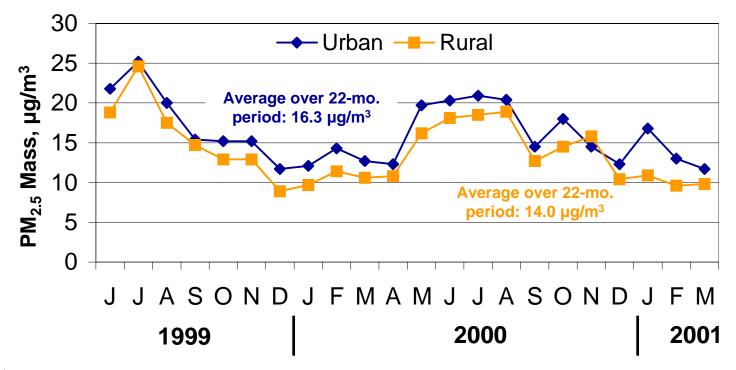
- -Sample Analysis: Desert Research Institute
- -Data Management: Ohio University

• Main sites (PM filters & TEOMs; gases; met tower):

- -Urban: Lawrenceville (Pittsburgh), PA (ACHD);
- -Rural: Holbrook, Greene County, PA (PADEP, NARSTO)

• Satellite sites (FRM Only):

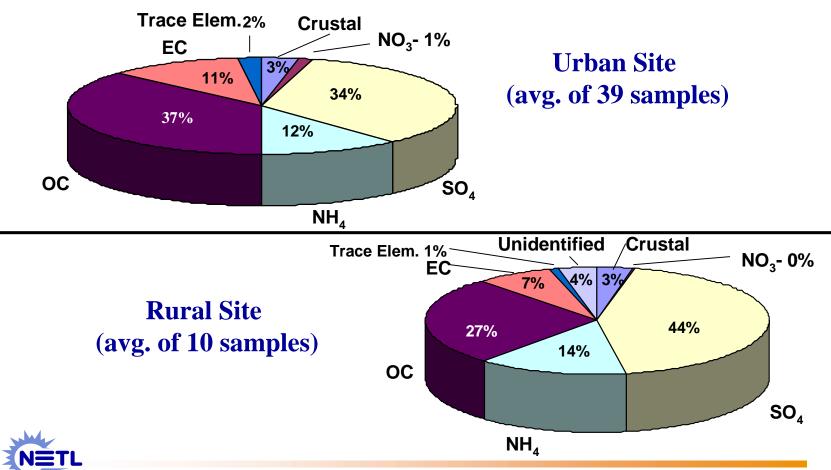
- Urban: Morgantown, WV (Airport)
- -Rural: Athens, OH (Gifford State Forest)

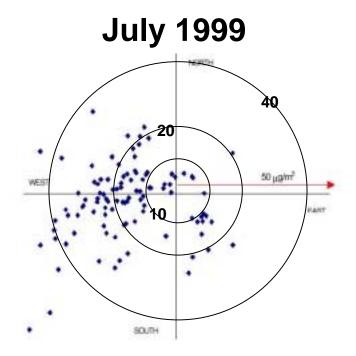


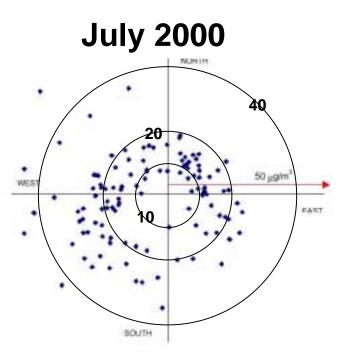
Upper Ohio River Valley Project *PM Filter Sampling Schedule*

- Baseline: 1-24h sample every 6th day at all sites
- Intensives:
 - -Approx. 1 month in length
 - -Winter and Summer 1999, 2000 and 2002; Summer 2001
 - -Lawrenceville: 4 samples daily
 - -Holbrook: 1 sample daily
 - -Satellites: 1 sample every 3rd day
- Samples stored at DRI for chemical analysis
 - -Focus on key periods to reduce cost

Monthly Average TEOM PM_{2.5}, UORVP Sites

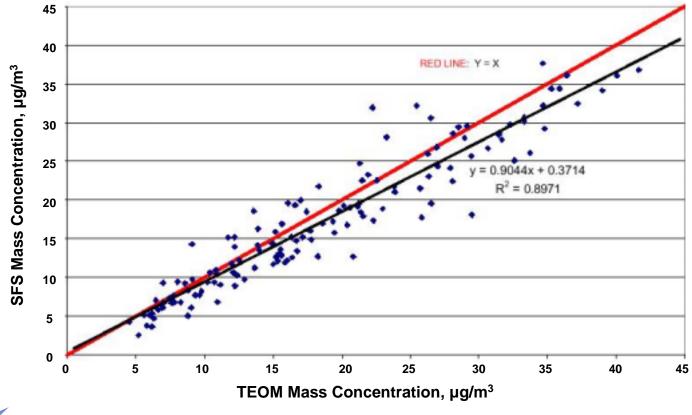



Typical UORVP PM_{2.5} **Speciation** (*Winter 1999*) Trace Crustal Unidentified Elem.^{2%} NO₃ 3% **Urban Site** 13% 18% EC 10% (avg. of 36 samples) 14% 26% 14% OC SO₄ NH₄ Crustal **Unidentified** Trace NO₃ Elem.^{2%-} 3% 8% 6% 7% SO₄ **Rural Site** EC 33% 27% (avg. of 9 samples) 14% OC **NH**₄


Descriptor - include initials /org#/date

Typical UORVP PM_{2.5} Speciation (Summer 1999)

PM_{2.5} Mass vs. Wind Direction



Urban site, 6-Hr TEOM Averages, µg/m³

TEOM vs. Sequential Filter Sampler, PM2.5 6-Hour Samples, Summer 1999

Summary of Interim Results - UORVP

• PM_{2.5} Mass:

- -Urban site slightly higher than rural site
- -Higher levels, wider variations in during summer
- -Higher at urban site when winds from W, SW, NW

• Sulfate is dominant component of PM_{2.5} mass

- -Higher nitrate at urban site
- -Higher OC at rural site
- TEOMs and filter samplers give similar masses
 - -Less semi-volatile PM than in other regions

Steubenville Comprehensive Air Monitoring Project (SCAMP)

Outdoor (Ambient) Study

- -Central monitoring site; four satellite sites
- -Primary performer: CONSOL, Inc.
- Daily sampling of ambient $PM_{2.5}$ mass
 - 1 day in 4 chemical speciation
- -Funding: DOE, EPA

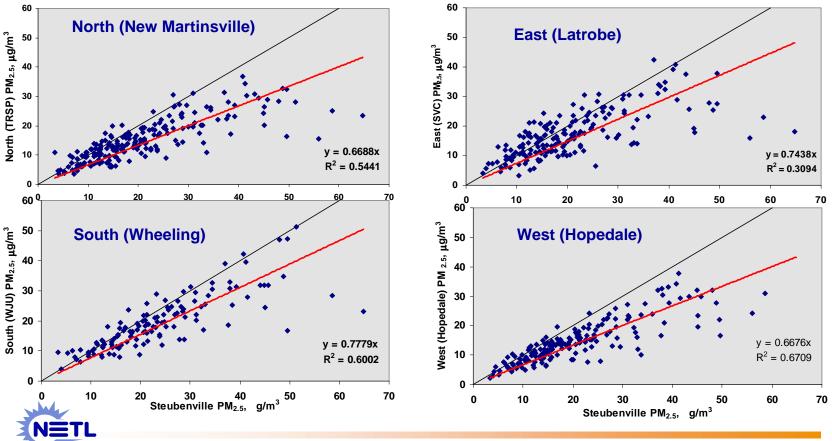
Personal Exposure Study

- -Outdoor vs. indoor vs. personal PM_{2.5} in Steubenville
- -Primary Performer: Harvard School of Public Health
- Primary Funding: Ohio Coal Development Office (OCDO)
- -Co-funding: EPRI, NMA, API, AISI, CONSOL

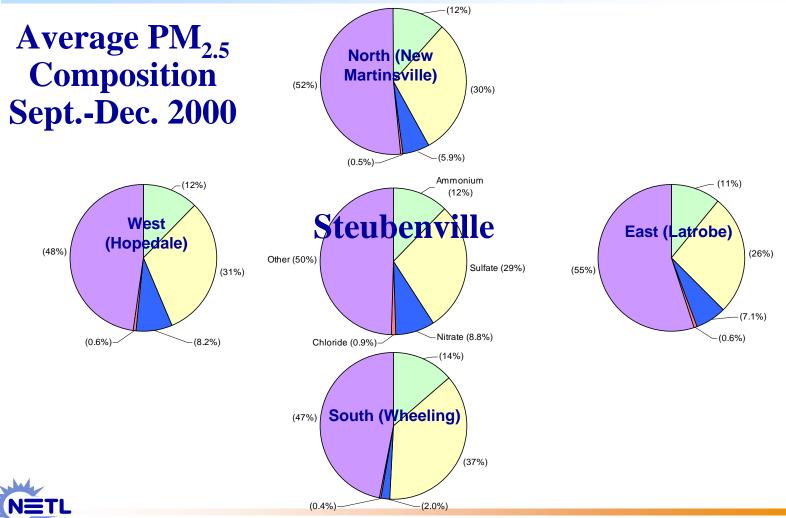
SCAMP Outdoor Study - Status

- Sampling May 2000 May 2002
- Ambient data analysis "complete" through Dec. 2000

 Except for OC/EC/Crustal Speciation
- Not yet integrated with Personal Exposure Study



SCAMP Monitoring Sites


- Steubenville, OH
- New Manchester, WV
- Hopedale, OH
- Wheeling, WV
- Latrobe, PA
 N≣TL

Steubenville PM_{2.5} Mass vs. Satellites (FRM Data)

Descriptor - include initials /org#/date

Average PM_{2.5} Composition, wt %

	Nł	┨ ₄ +	sc) ₄ ²⁻	NC) ₃ -	С	ŀ	Other (by difference)			
	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec		
Steubenville	12.0	12.2	35.7	28.6	3.3	8.8	0.9	0.9	48.1	49.5		
North	11.7	11.7	36.4	30.2	2.1	5.9	1.2	0.5	48.6	51.6		
South	13.1	13.7	39.7	37.1	2.7	2.0	0.8	0.4	43.7	46.8		
East	11.9	10.9	35.8	26.5	2.6	7.1	1.0	0.6	48.7	55.0		
West	12.3	12.3	38.1	31.3	2.5	8.2	1.0	0.6	46.1	47.6		

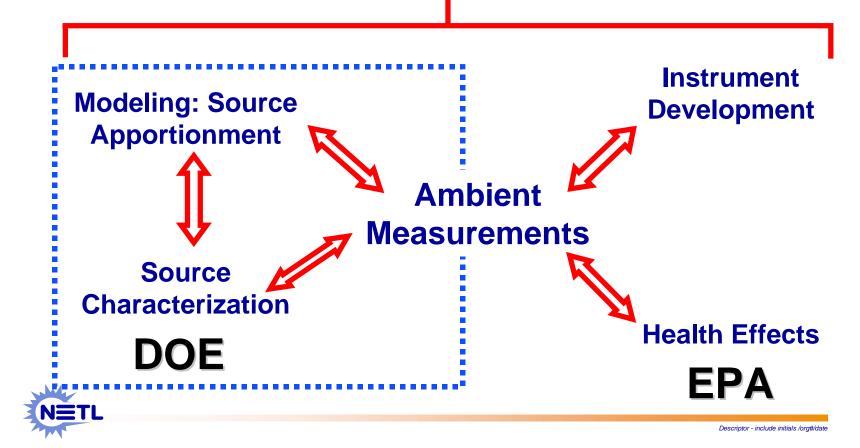
Decrease

Increase

SCAMP Personal Exposure Study - Status

- Completed data collection for panel studies of 2 "susceptible" populations
- Older Adults: Summer 2000; Fall 2000
 Companion cardiovascular health study (NIEHS)
- Children: Winter 2001; Summer 2001
- Preliminary data analysis for older adult panel
 -PM_{2.5} mass concentrations

Pittsburgh Air Quality Study Carnegie-Mellon University


- Leveraged with CMU/EPA Supersite
- DOE Project Title: "Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-fired Power Plants"

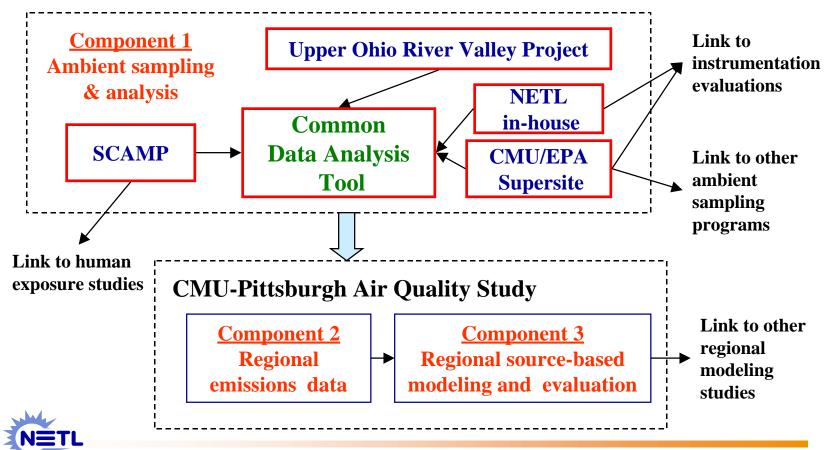
• 3 components:

- -Advanced ambient monitoring at EPA "Supersite"
- -Source characterization/profiling in Pittsburgh area
- -Comprehensive regional modeling and data analysis

CMU-Pittsburgh Air Quality Study Objectives

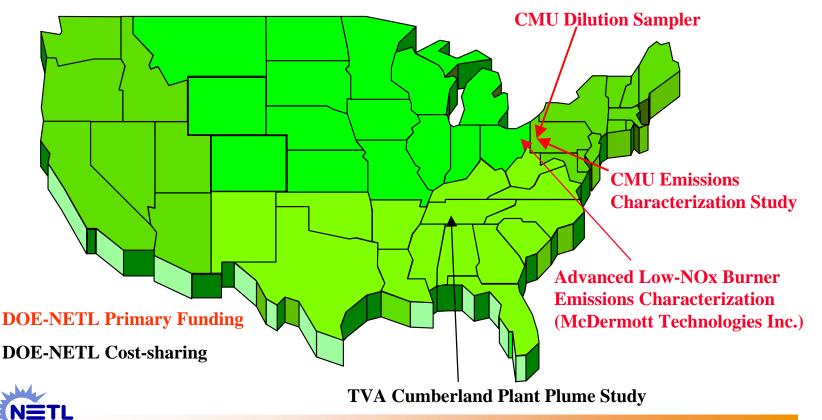
CMU-Pittsburgh Air Quality Study DOE Project Schedule

															20	02				2003													
	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Ambient Monitoring and																																	
Analysis																																	
Source Characterization																																	
Compile Inventories &																																	
Activity Levels																																	
Source Sampling w/Dilution																				<u> </u>										ľ			
Sampler																																	
Source Apportionment																									<u> </u>								
Modeling																																_	
Three-Dimensional																									<u> </u>								
Modeling																																	
																																	-
Final Report																																	\mathbf{x}


Integrated Database and Analytical Tool

- New Award to Advanced Technology Systems, Inc.
 - -Expected start: May 2002
- Integrate data from UORVP, SCAMP, CMU, and NETL In-house monitoring sites
 - -Include EPA, State, local site data if possible
 - -Database structure coordinated with EPA, NARSTO, etc.
- Web-based querying, sorting, graphing, mapping downloading cpabilities

-Stakeholder group to define analytical capbilities



Integration of Air Quality Research Components

Emissions Characterization

Current and Recently-completed Projects

Characterization of Primary PM_{2.5} Emissions from Low-NOx Burners (*McDermott Technology Inc.*)

• Higher unburned carbon in ultra-low NOx PM

-Overall ash LOI: 4.3% vs. 1.3%

-PM_{2.5} carbon: 45% vs. 7%

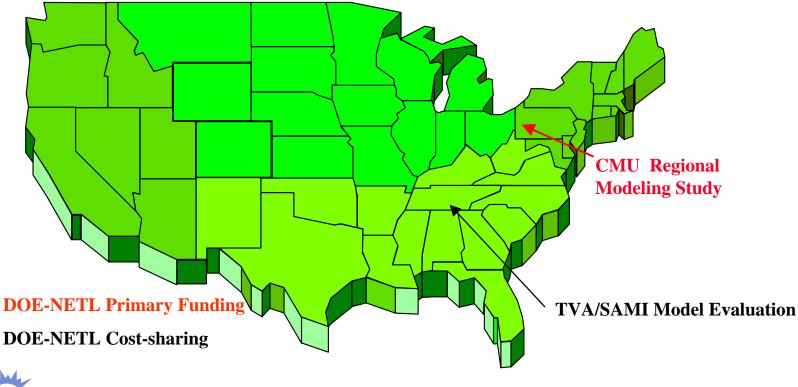
- Slight decrease in ESP efficiency with ultra-low NOx
 - -99.3% vs 99.9%

-Associated with greater rapping re-entrainment

• Most volatile trace elements (As, Se) enriched in finest particles

TVA Cumberland Plume Studies - Key Results

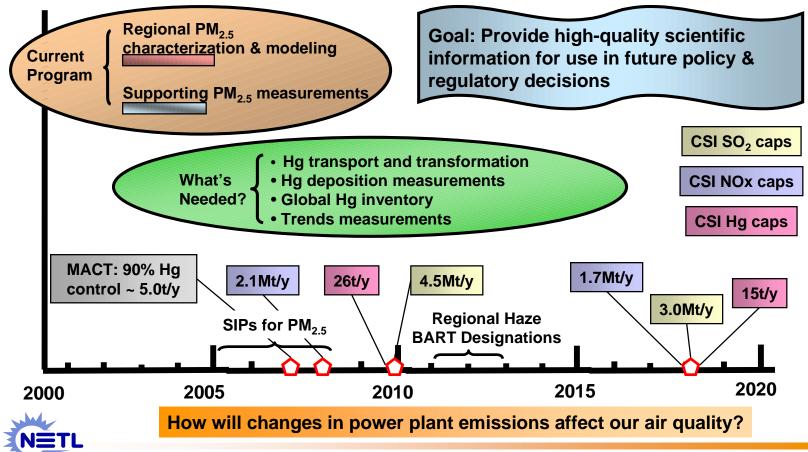
- Helicopter flights through plume before & after FGD
 - Difficult to detect post-FGD plume with particle-based instruments
- Conversion rate of SO₂ to SO₄ ~ 4%/hr (gas-phase only)


-Heterogeneous conversion not measured

Production of SO₄ occurs primarily at plume edges

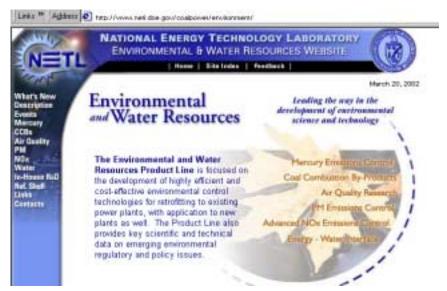
Modeling and Evaluation

Current and Recently-completed Projects


TVA/SAMI Model Evaluation *Key Results*

- Modeled the changes in PM_{2.5} expected to result from reduced SO₂ emissions in SAMI region
 - -Slight regional net decreases in overall PM_{2.5} mass
 - Urban areas now exceeding 15 μ g/m³ is may not benefit from the decline in sulfate because of increases in OC
 - Rural areas already in attainment are likely to remain that way through 2010
- Small benefits to visibility in Class 1 areas

-Not enough benefit to meet regional haze goals



Air Quality Research Program

For Further Information

- NETL Environmental & Water Resources Website
 - http://www.netl.doe.gov/ coalpower/environment/

• NETL Conference - April 9-10, 2002

 "PM_{2.5} and Electric Power Generation: Recent Findings and Implications"

