Mrs. Temoshok's Lesson Plan

$\mathcal{W} \mathcal{H A T}$ TIME IS IT ?

Objectives:

- Students will demonstrate an understanding of latitude and longitude by identifying locations by degrees.
- Students will le arn and use the meanings of a.m. and p.m. appropriately.
- Students will become familiar with a 24-hour (universal) clock.
- Students will demonstrate an understanding of time zone changes by calculating the time at different degrees longitude.

Age: grades 4-6

Time: 1-2 lessons

Mate rials:

- Globe
- Clock
- Map of the world for each student or pair of students
- Copy of student worksheet for each student.

Instruction:

- Checkfor students'understanding of time zone differences by leading a discussion about why the whole world is not on the same time. Ilfic it ideas about why it is important that there be an agreed upon time unive rsally. (Some ideas might be plane schedules, sporting events, $\mathcal{T V}$ shows, etc.) Explain that this came about a long time ago in a place called Greenwich, England. (The French wanted it to be in Paris, but the English prevailed.) So Greenwich became the place on the map we now call the Prime Meridian or 0 degrees longitude, otherwise called Greenwich Me an Time (GMI), ZULU time, or more properly, Universal Time. When traveling in a ship or plane there is a specialclock that is always set to Unive rsal Time. If you know your longitude and GMT time, you can figure out what time zone you are in.
- Demonstrate a 24-hour (universal) clock by counting from 1 a.m. (antemeridian) and continuing counting past 12 p.m. (post-meridian) all the
way to 24:00. Students might make a chart relating the two types of clocks. (Ex. 2:00 p.m. = 1400 fours)
- Review longitude and latitude: Explain that there are 360° of longitude (the circumference of the Earth) and that there are 24 hours in a day. So $360^{\circ} / 24=15^{\circ}$. Meaning that for each 15 degrees we st of $\mathcal{G M T}$ the time on the clock is (-1) and (+1) for each 15 degrees East from 0 .
- This is a 2-step problem. First take the longitude and divide it 6y 15. $\mathfrak{A d d}$ or subtract that answer to the known GMI.
- Example: If the ship is at $30^{\circ} \mathcal{W}$, the time is (+2) fours from $\mathcal{G M T}$. $\left(30^{\circ} / 15=2\right)$. So if the GMI were 3:00, the local time would be 1:00.
- Distribute student worksheet and maps or globes. Have students work in pairs to complete the assignment.

Evaluation/Assessment
Students will be assessed on successfulcompletion of the worksheet and successful writing of 2 original problems.

Name: \qquad

$\underline{\mathcal{W H A T}} \operatorname{TIME}$ IS IT ?

Example:
What time would it be if the GMT is 4:00 a.m. and your longitude is 450 W?

$$
45 / 15=3 \quad 4: 00-3=1: 00 \text { a.m. }
$$

1. What time would it be if the GMI is 1:00 a.m. and your longitude is 450 W?
2. What time would it be if the GMI is 13:00 and your longitude is $300 W$?
3. What time would it be if the GMI is 17:00 and your longitude is 75 oW ?
4. What time is in $\mathcal{H a w a i i}$ if the GMI is $3: 00$?
5. What time is it the Galapagos Islands if the GMT is noon?

Make up two of your own problems to give to a classmate. Write the solutions on the back.
1.
2.

