Bayesian Methods for Epidemiologic Data Analysis: Hierarchical Models

Rich MacLehose

National Institute of Environmental Health Sciences

June 18, 2007

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

2 Hierarchical Regression Models

3 Missing Data

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

< 17 ×

Hierarchical models Example - BrCa in NC

Pierarchical Regression Models

3 Missing Data

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hierarchical models Example - BrCa in NC

What makes a model hierarchical?

Definition

The joint distribution, (such as $f(y, \beta, \mu, \tau^2)$) can be written as a series of conditional distributions

Basic Bayesian regression

 $f(\boldsymbol{y},\boldsymbol{\beta},\boldsymbol{\mu},\tau^2) = f(\boldsymbol{y} \,|\, \boldsymbol{\beta}) f(\boldsymbol{\beta} \,|\, \boldsymbol{\mu},\tau^2)$

イロト イポト イヨト イヨト 二日

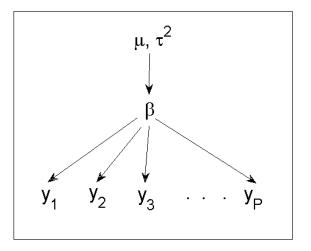
Hierarchical models Example - BrCa in NC

What makes a model hierarchical?

- The parameters of the model are arranged in levels
- Parameters at one level are dependent on parameters of higher levels
- In the basic Bayes logistic regression example
 - y_i depends on β
 - β depends on μ , τ^2

(日)

Hierarchical models Example - BrCa in NC



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

< ≣⇒

æ

Hierarchical models Example - BrCa in NC

Breast Cancer in North Carolina

Hierarchical models are a natural way to formulate many applied problems

(日)

Hierarchical models Example - BrCa in NC

Breast Cancer in North Carolina

Hierarchical models are a natural way to formulate many applied problems

- Want to estimate county-specific breast cancer rates in North Carolina in 2004
- y_i is the number of cancer cases in the *i*th county
- N_i is the population of each county in 2004

(日)

Hierarchical models Example - BrCa in NC

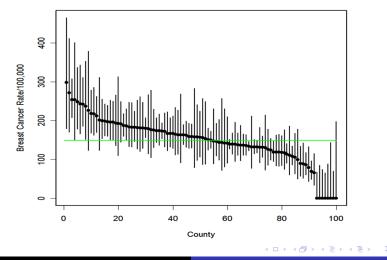
Breast Cancer in North Carolina

Hierarchical models are a natural way to formulate many applied problems

- Want to estimate county-specific breast cancer rates in North Carolina in 2004
- y_i is the number of cancer cases in the *i*th county
- N_i is the population of each county in 2004
- Standard maximum likelihood techniques provide a simple answer θ̂_i = y_i/N_i

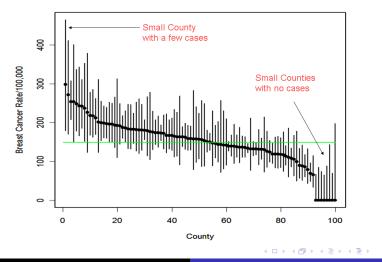
But is it a reasonable answer?

Hierarchical models Example - BrCa in NC



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Hierarchical models Example - BrCa in NC



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Hierarchical models Example - BrCa in NC

- Some of the point estimates are absurdly high or low
- Some of the confidence intervals are huge

How can we improve on this?

- We have some prior knowledge about BrCa rates
- Lets incorporate it through a hierarchical model

Hierarchical models Example - BrCa in NC

Hierarchical Modeling of Cancer Rates

Model

 $egin{aligned} & y_i \sim \mathsf{Poisson}(N_i \mathsf{exp}(heta_i)) \ & heta_i \sim \mathsf{Normal}(\mu, au^2) \end{aligned}$

- Poisson model with different intercepts for each county
- $\exp(\theta_i)$ is the county-specific rate
- N_i is commonly called the offset term

counties.txt contains the data for this example and counties.R has the code

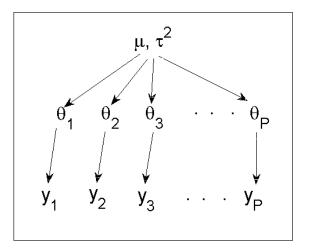
・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

A quick change in software package

- SAS has really nice Bayes capabilities and will probably get even better shortly
- But it's new, and you can reach its limitations quickly
- The BUGS family winBUGS, openBUGS, etc are very adaptable to most epidemiology applications (and its free)
- Using BUGS directly is a pain, but you can call it through R easily
- I won't bore you with an introduction to this software
 - I've posted a brief tutorial online, with code and data for all the examples
 - http://dir.niehs.nih.gov/dirbb/serbayes/

(日)

Hierarchical models Example - BrCa in NC

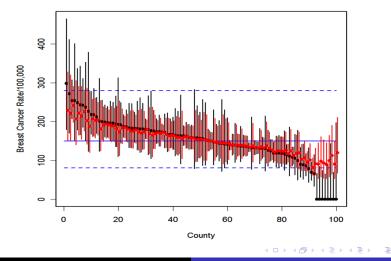


Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

< ≣⇒

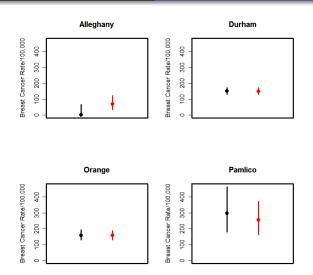
æ

Hierarchical models Example - BrCa in NC



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Hierarchical models Example - BrCa in NC



< Ξ

æ

Hierarchical models Example - BrCa in NC

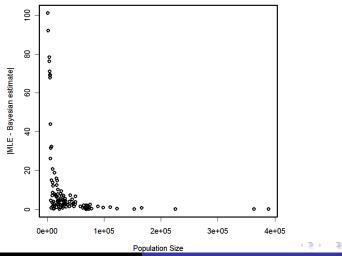
Key Properties of Hierarchical Models

Shrinkage

- Estimates are pulled away from their unbiased MLE and toward the prior mean
 - Bayesian: natural consequence of combining prior with data
 - Frequentist: introduce bias to reduce MSE (biased but more precise)

(日)

Hierarchical models Example - BrCa in NC



Rich MacLehose

Bayesian Methods for Epidemiologic Data Analysis

Hierarchical models Example - BrCa in NC

Pro's and Con's

Pro's

- Works really well bias/variance trade off
- Incorporates prior knowledge
- Certain problems that are very difficult for frequentist inference are easily solved in Bayesian hierarchical models
 - Non-parametrics, change point problems, spatial data

Con's

- More difficult to program
- SAS doesn't have a proc hierarchical (yet)

	Motivating Example: DBPs and SAB
Introduction	Right From the Start
Hierarchical Regression Models	Frequentist Analysis
Missing Data	Hierarchical Model 1 (semi-Bayes)
	Model 2 (fully Bayes)

2 Hierarchical Regression Models

3 Missing Data

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

ъ

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Hierarchical Regression

- Incorporating prior knowledge and shrinking estimates is very appealing
- Want to incorporate variable effects in hierarchical regression models
 - Logistic regression, though linear or poisson are easy extensions
- Motivating example of DBP's and SAB
 - Simulated data set and code provided

(日)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Spontaneous Abortion (SAB)

- Pregnancy loss prior to 20 weeks gestation
- Very common (> 30% of all pregnancies)
- Relatively little known about its causes
 - maternal age, smoking, prior pregnancy loss, occupational exposures, caffeine

(日)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Spontaneous Abortion (SAB)

- Pregnancy loss prior to 20 weeks gestation
- Very common (> 30% of all pregnancies)
- Relatively little known about its causes
 - maternal age, smoking, prior pregnancy loss, occupational exposures, caffeine
 - disinfection by-products (DBPs)?

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Disinfection By-Products

- A vast array of DBPs are formed in the disinfection process
- We focus on 2 main types:

Trihalomethanes (THMs)

CHCl₃, CHBr₃, CHCl₂Br, CHClBr₂

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Disinfection By-Products

- A vast array of DBPs are formed in the disinfection process
- We focus on 2 main types:

Trihalomethanes (THMs)

CHCl₃, CHBr₃, CHCl₂Br, CHClBr₂

Haloacetic Acids (HAAs)

CIAA, Cl₂AA, Cl₃AA, BrAA, Br₂AA, Br₃AA, BrCIAA, Br₂CIAA, BrCl₂AA

<ロト <回 > < 回 > < 回 > .

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

DBPs and SABs

Early Studies

 Noted an increased risk of SAB with increased tap-water consumption

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

DBPs and SABs

Early Studies

 Noted an increased risk of SAB with increased tap-water consumption

More Recent Studies

- Increased risk of SAB with exposure to THMs
- Notably, CHBrCl₂ in Waller et al (1998)
 OR=2.0 (1.2, 3.5)

<ロ> <同> <同> <同> < 同> < 同>

Introduction Right Fr Hierarchical Regression Models Frequen Missing Data Hierarch

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Specific Aim

To estimate the effect of each of the 13 constituent DBPs (4 THMs and 9 HAAs) on SAB

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

- 2507 enrolled in three metropolitan areas in U.S.
- Years: 2001-2004
- Recruitment
 - Prenatal care practices (52%)
 - Health departments (32%)
 - Promotional mailings (3%)
 - Drug stores, referrals, etc. (13%)

(I)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Data Collection

Baseline Interview

demographic information, medical history, other confounders

Pregnancy loss

self report or chart abstraction

DBP concentration

- Disinfecting utilities
- Weekly samples at two sites with high DBPs
- Every other week at third site with low DBPs

(日) (四) (三) (三)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Logistic Model

- Standard logistic analysis
- Categorize DBP variables (quartiles,tertiles)

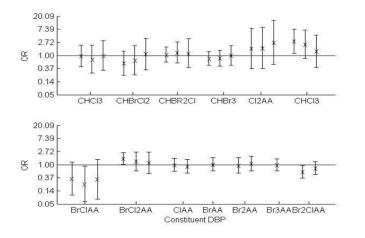
$$logit{Pr(y_i = 1 | \cdot)} = \alpha + \gamma_1 z_{1i} + \dots + \gamma_p z_{pi} + \beta_1 x_{1i} + \dots + \beta_{32} x_{32i}$$

Where,

- α is the intercept
- *z*_{1i}...*z*_{pi} are confounders: smoking, alcohol use, ethnicity, maternal age
- x_{ki} is the concentration of the kth category of DBP for the *i*th individual for the time interval around conception

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Results of frequentist analysis



Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Results of frequentist analysis

- Several large but imprecise effects are seen
- 4 of 32 coefficients are statistically significant
- Imprecision makes us question results

Is there a better analytic approach?

Image: A marked and A marked

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Other common options

- Try all exposure in one model
 - Problem: unreliable estimates

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Other common options

- Try all exposure in one model
 - Problem: unreliable estimates
- Combine variables in aggregate scores
 - Problem: difficult to interpret, can mask effects

(I)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Other common options

- Try all exposure in one model
 - Problem: unreliable estimates
- Combine variables in aggregate scores
 - Problem: difficult to interpret, can mask effects
- Analyze one variable at a time
 - Problem: uncontrolled confounding

(I)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Why choose a Bayes hierarchical model here?

- High correlation in the data
- There is some previous knowledge to be brought in
- Interpretability

(日)

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

- A simple two-level hierarchical model popularized by Greenland
- Have seen use in nutritional, genetic, occupational, and cancer epidemiology
- Despite the name, they are Bayesian models.
 - name may refer to asymptotic methods commonly used in fitting semi-Bayes models

(日)

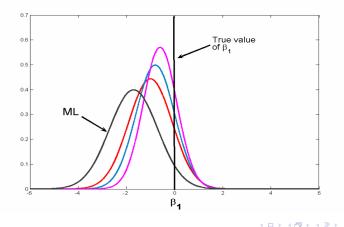
Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Shrinkage of Regression Coefficients

- Regression coefficients are shrunk toward prior distribution as in BrCa example
- Amount of shrinkage depends on prior variance
 - Large variance \rightarrow little shrinkage
 - Small variance \rightarrow lots of shrinkage

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Shrinkage in model 1



	Motivating Example: DBPs and SAB
Introduction	Right From the Start
Hierarchical Regression Models	Frequentist Analysis
Missing Data	Hierarchical Model 1 (semi-Bayes)
	Model 2 (fully Bayes)

Model

$$logit\{Pr(y_i = j | \cdot)\} = \alpha + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \gamma_1 z_{1i} \dots \gamma_p z_{pi}$$

$$\beta_j \sim N(\mu, \phi^2)$$

- α = intercept
- γ 's = confounder effects
- β 's= exposure effects

▲ 御 ▶ ▲ 臣 ▶ ▲

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

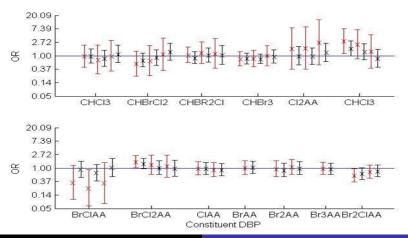
Prior specification

- Little prior evidence of effect: specify $\mu = 0$
- Calculate ϕ^2 from existing literature
 - Largest observed effect: OR=3.0

•
$$\phi^2 = (\ln(3) - \ln(1/3))/(2 \times 1.96) = 0.3142$$

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Model 1 - Results



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Can we improve on the semi-Bayes model?

- Assumes the prior variance, ϕ^2 , is known with certainty
 - constant shrinkage of all coefficients
- Sensitivity analyses address changes to results with different prior variances
- Data contain information on prior variance

(日)

	Motivating Example: DBPs and SAB
Introduction	Right From the Start
Hierarchical Regression Models	Frequentist Analysis
Missing Data	Hierarchical Model 1 (semi-Bayes)
Ţ.	Model 2 (fully Bayes)

Places prior distribution on \$\phi^2\$
 reduces dependence on prior variance

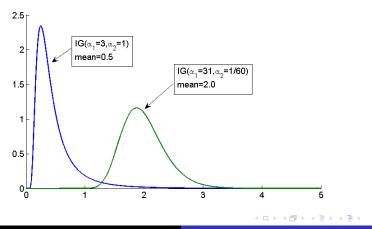
$$logit\{Pr(t_i = j | \cdot)\} = \alpha + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \gamma_{1i} z_{1i} + \dots + \gamma_{pi} z_{pi}$$

$$\beta_j \sim N(\mu, \phi^2)$$

$$\phi^2 \sim IG(\alpha_1, \alpha_2)$$

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

What's an inverse-Gamma distribution?



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

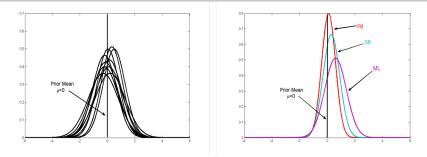
Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Properties of model 2

- Prior distribution on ϕ^2 allows it to be updated by the data
- As variability of estimates from prior mean increases, so does ϕ^2
- As variability of estimates from prior mean decreases, so does ϕ^2
- Adaptive shrinkage of all coefficients

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Adaptive Shrinkage of model 2



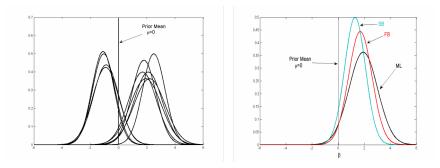
Model	Prior variance	ϕ^2 , Data	Shrinkage
SB	Fixed	Constant	Constant
FB	Random	\downarrow	↑

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Image: A matrix

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Adaptive Shrinkage of model 2



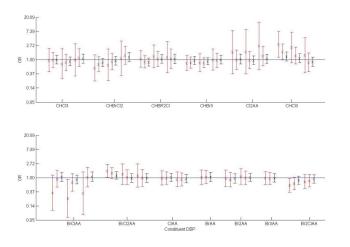
Model	Prior variance	ϕ^2 , Data	Shrinkage
SB	Fixed	Constant	Constant
FB	Random	1	\downarrow

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

Image: A matrix

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

Model 2 - Results



Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

≣⇒

Motivating Example: DBPs and SAB Right From the Start Frequentist Analysis Hierarchical Model 1 (semi-Bayes) Model 2 (fully Bayes)

The Problem with Model 2

- How sure are we of our parametric specification of the prior?
- Can we do better by grouping coefficients into clustering and then shrinking the cluster specific coefficients separately?
 - Amount of shrinkage varies by coefficient
- see MacLehose et al. 2007

(日)

Introduction and Terminology Simulated Data

2 Hierarchical Regression Models

3 Missing Data

Rich MacLehose Bayesian Methods for Epidemiologic Data Analysis

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction and Terminology Simulated Data

- Missing data are omnipresent
- The best solution to missing data is to avoid it by good study design
- When that's not possible, you can begin to address missing data through proper analysis

Introduction and Terminology Simulated Data

Various Missing Data Techniques

The Good

Bayesian modeling, E-M algorithm, Multiple Imputation, Weighted Estimating Equations

The So-So

Hot deck imputation, Improper imputation

The Ugly

Replacing missing values with sample mean

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

Introduction and Terminology Simulated Data

Missing Data Terminology

Missing Completely At Random

- Data is missing based on a coin flip
- Lightning struck your sample
- Complete case analysis is unbiased here

Example

$$Logit{Pr(y_i = 1)} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2}$$

Logit{Pr(r_i = 1)} = λ_0

where r_i is an indicator for whether the x_{i1} is missing

Introduction and Terminology Simulated Data

Missing Data Terminology

Missing At Random

- The data DO contain information about why some values are missing
 - e.g., Diabetic men don't report dietary variables as often

Complete case analysis?

- If the missingness depends on the outcome, complete case analysis may be biased
- If the missingness depends only on other covariates, complete case analysis is not biased
 - However, you want to include covariates that cause missingness in the regression

Image: A math a math

Introduction and Terminology Simulated Data

Missing Data Terminology

Missing At Random

- The data DO contain information about why some values are missing
 - e.g., Diabetic men don't report dietary variables as often

Example

$$Logit{Pr(y_i = 1)} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2}$$
$$Logit{Pr(r_i = 1)} = \lambda_0 + \lambda_1 y_i + \lambda_2 x_{i2}$$

Where r_i is an indicator for whether the x_{i1} is missing

・ロト ・ 四 ト ・ 回 ト ・

э

Introduction and Terminology Simulated Data

Missing Data Terminology

Not Missing at Random

- The missing data itself contains information about why some values are missing
 - e.g., Men with certain dietary habits don't report those dietary variables as often
- Complete case analysis is not OK here

Example

$$Logit\{Pr(y_i = 1)\} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2}$$
$$Logit\{Pr(r_i = 1)\} = \lambda_0 + \lambda_1 x_{i1} + \lambda_2 y_i$$

where r_i is an indicator for whether the x_{i1} is missing

Introduction and Terminology Simulated Data

Missing Outcome Data

- If the outcome is MCAR, you get unbiased estimates
- If the outcome is MAR and you're doing likelihood inference, you get unbiased estimates
 - Beware GEE in this case
- The data won't provide any information outside of what they're already telling you in the regression model
- it its not missing at random, you still need to worry

Introduction and Terminology Simulated Data

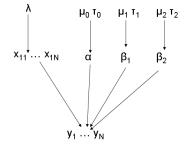
Hierarchical Analysis of Missing Data

Bayesian analysis of missing data

- Place a prior distribution on the missing covariates and proceed as usual
 - This makes Bayesian approaches to missing data relatively easy, comparatively
 - $x_{i1} \sim N(\lambda_0 + \lambda_1 y_i + \lambda_2 x_{i2}, \tau^2)$ if x_{i1} continuous
 - x_{i1} ~ Bernoulli(p_i) with p_i a logistic model if x_{i1} discrete
- All we're doing is adding a few lines to our Gibbs sampling algorithm, drawing values for the missing covariates

(日)

Introduction and Terminology Simulated Data



Introduction and Terminology Simulated Data

Simulated Data

- We'll simulate some data so we know what the answer should be when we analyze it
- 200 observations from a linear regression

•
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$$

missingdata.R contains the code for this example

(日)

Introduction and Terminology Simulated Data

Bayesian Analysis of Full Data

Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma_y^2)$$

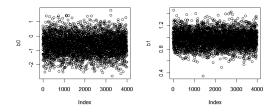
$$\beta_j \sim N(0, 100)$$

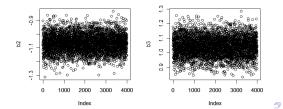
$$\sigma_y^2 \sim Uniform(0.00001, 100)$$

- Non-informative priors on all parameters
- Don't do this if you have prior information!
- Caution is required for the prior on σ^2

Introduction and Terminology Simulated Data

Convergence





Rich MacLehose

Bayesian Methods for Epidemiologic Data Analysis

Introduction and Terminology Simulated Data

Full Data results

Coefficient	Coeff	95% CI
β_0	-0.6	(-1.9, 0.7)
β_1	1.0	(0.7, 1.2)
β_2	-1.1	(-1.2, -0.9)
β_3	1.0	(0.9, 1.2)

- $\beta_1, \beta_2, \beta_3$ almost identical to truth
- β₀ is off a bit, but the credible intervals are quite wide, and include the truth

(日)

Introduction and Terminology Simulated Data

Missing Data type 1: MCAR

MCAR Data

$$Pr(r_{i1} = 1) = 0.2$$

$$Pr(r_{i2} = 1) = 0.25$$

$$Pr(r_{i3} = 1) = 0.3$$

- The r_i's are probabilities of each variable being missing
- The probabilities are constant: MCAR
- 56.4% of the data are missing

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Introduction and Terminology Simulated Data

Bayesian MCAR Analysis

Standard Bayes Model for Linear Regression

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$ $\epsilon_i \sim N(0, \sigma_y^2)$ $\beta_j \sim N(0, 100) \quad \sigma_y^2 \sim Uniform(0.00001, 100)$

(日) (圖) (E) (E) (E)

Introduction and Terminology Simulated Data

Bayesian MCAR Analysis

Standard Bayes Model for Linear Regression

 $y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \epsilon_{i}$ $\epsilon_{i} \sim N(0, \sigma_{y}^{2})$ $\beta_{j} \sim N(0, 100) \quad \sigma_{y}^{2} \sim \textit{Uniform}(0.00001, 100)$...and MCAR Missing Data Model

 $\begin{array}{l} x_{i1} \sim Bernoulli(p_{x_1}) \\ \text{logit}\{p_{x1}\} = \mu_{x_1} \\ x_{i2} \sim N(\mu_{x_2}, \sigma_2^2) \quad x_{i3} \sim N(\mu_{x_3}, \sigma_3^2) \\ \sigma_2^2 \sim Uniform(0.00001, 100) \quad \sigma_3^2 \sim Uniform(0.00001, 100) \\ \mu_j \sim N(0, 100) \end{array}$

イロト イポト イヨト イヨト 二日

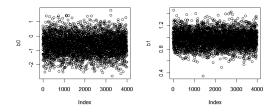
Introduction and Terminology Simulated Data

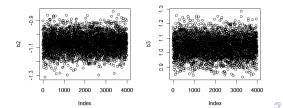
Some intuition on the model

- We want to estimate β in the same way as before
 - Combining prior with data
- Also want to estimate μ , the mean of the missing data
 - Under MCAR, the data provide lots of information about μ
 - For instance, the means of observed variables
 - The µ's are used to impute missing values of x's

Introduction and Terminology Simulated Data

Convergence





Rich MacLehose

Bayesian Methods for Epidemiologic Data Analysis

Introduction and Terminology Simulated Data

MCAR Data results

	Complete Case		Account for MCAR	
Coefficient	Coeff	95% CI	OR	95% CI
β_0	-1.6	(-3.4, 0.3)	-1.1	(-2.4, -0.6)
β_1	1.1	(0.7, 1.5)	1.0	(0.7, 1.3)
β_2	-1.2	(-1.3, -1.0)	-1.1	(-1.2, -0.9)
β_3	1.0	(0.8, 1.1)	1.0	(0.9, 1.2)

- CC and adjusted are quite similar Not surprisingly
- Accounting for the MCAR mechanism improves precision slightly
- This is why people usually don't bother with missing data techniques when MCAR

Introduction and Terminology Simulated Data

Missing Data type 2: MAR

MAR Data

Logit{
$$Pr(r_{i1} = 1)$$
} = 15 + 2 $y_i - x_{2i}$
Logit{ $Pr(r_{i2} = 1)$ } = 3 + 0.5 y_i
Logit{ $Pr(r_{i3} = 1)$ } = -13 - $y_i - x_{1i}$

- The missingness mechanism is different for each variable
- Depends on the rest of the observed data, so MAR
- 17% of *x*₁, 3% of *x*₂, and 37.6% of *x*₃ missing

э

Introduction and Terminology Simulated Data

Bayesian MAR Analysis

Standard Bayes Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma_y^2)$$

$$\beta_j \sim N(0, 100) \quad \sigma_y^2 \sim Uniform(0.00001, 100)$$

<ロ> <同> <同> < 同> < 同> < 同> <

크

Introduction and Terminology Simulated Data

Bayesian MAR Analysis

Standard Bayes Model

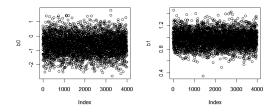
 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$ $\epsilon_i \sim N(0, \sigma_y^2)$ $\beta_j \sim N(0, 100) \quad \sigma_y^2 \sim \textit{Uniform}(0.00001, 100)$...and MAR Missing Data Model

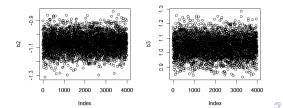
 $\begin{aligned} x_{i1} \sim & \textit{Bernoulli}(p_{x_1}) \\ & \textit{logit}\{p_{x1}\} = \mu_{0,1} + \mu_{1,1}y_i + \mu_{2,1}x_{2i} \\ & x_{i2} \sim & \textit{N}(\mu_{0,2} + \mu_{1,2}y_i, \sigma_2^2) \quad x_{i3} \sim & \textit{N}(\mu_{0,3} + \mu_{1,3}y_i + \mu_{2,3}x_{i2}, \sigma_3^2) \\ & \sigma_2 \sim & \textit{Uniform}(0.00001, 100) \quad \sigma_3 \sim & \textit{Uniform}(0.00001, 100) \\ & \mu_{j,k} \sim & \textit{N}(0, 100) \end{aligned}$

イロト イポト イヨト イヨト 二日

Introduction and Terminology Simulated Data

Convergence





Rich MacLehose

Bayesian Methods for Epidemiologic Data Analysis

Introduction and Terminology Simulated Data

MAR Data Results

	Complete Case		Account for MAR	
Coefficient	Coeff	95% CI	OR	95% CI
β_0	-4.4	(-6.2, 2.5)	-0.2	(-1.8, 1.3)
β_1	0.4	(0.1, 0.7)	1.0	(0.6, 1.3)
β_2	-0.6	(-0.8, -0.4)	-1.1	(-1.3, -1.0)
β_3	0.6	(0.4, 0.8)	1.1	(0.9, 1.2)

- Complete Case analysis would yield incorrect answer
- Complete Case intervals don't include true effect, even!
- Bayes model accounting for MAR recovers true effects, almost exactly

(日) (圖) (E) (E) (E)

Introduction and Terminology Simulated Data

- Bayesian methods for missing data can be very useful
- Generally easier to implement than other (proper) methods
- The results depend on your model for x
- Can't test between MCAR, MAR, NMAR
- Extensions to non-ignorable data are straightforeward (see Kmetic et al, Hernan et al)

Introduction and Terminology Simulated Data

References - Hierarchical Regression

- Congdon P. Bayesian Statistical Modelling. 2001
- Gelman A and Hill J. Data Analysis Using Regression and Multilevel/ Hierarchical Models. Cambridge University Press. 2006
- Greenland S. Methods for epidemiologic analyses of multiple exposures. Stat Med. 12: 717-736. 1992
- Greenland S. Hierarchical regression for epidemiologic analyses of multiple exposures. Environ Health Perspect. 102 (Suppl 8): 33-39. 1994
- MacLehose RF, Dunson DB, Herring AH and Hoppin JA. Bayesian methods for highly correlated data. Epidemiology 18(2): 199-207, 2007.

・ロット (母) ・ ヨ) ・ コ)

Introduction and Terminology Simulated Data

References - Missing Data

- Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models: A comparative review. JASA 2005.
- Kmetic A, Jospeh L, Berger C, Tenenhouse A. Multiple imputation to account for missing data in a survey. Epidemiology 13:437-444. 2002
- Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology 2004

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <