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Abstract

Studies that include individuals with multiple highly correlated exposures are common

in epidemiology. Because standard maximum likelihood techniques often fail to converge

in such instances, hierarchical regression methods have seen increasing use. Bayesian hier-

archical regression places prior distributions on exposure-specific regression coefficients to

stabilize estimation and incorporate prior knowledge, if available. A common parametric

approach in epidemiology is to treat the prior mean and variance as fixed constants. An

alternative parametric approach is to place distributions on the prior mean and variance to

allow the data to help inform their values. As a more flexible semi-parametric option, one

can place an unknown distribution on the coefficients that simultaneously clusters expo-

sures into groups using a Dirichlet process prior. We also present a semi-parametric model

with a variable-selection prior to allow clustering of coefficients at zero. We compare these

four hierarchical regression methods and demonstrate their application in an example esti-

mating the association of herbicides on retinal degeneration among wives of pesticide ap-

plicators.
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Highly correlated exposures are ubiquitous in epidemiologic research, and may arise

due to an association between the measured exposures and one or more latent factors. For

example, pesticide exposures for farm workers may be highly correlated because individu-

als apply multiple pesticides in a year, with choice of pesticide influenced by type of crop

and pest.1,2 To depict this correlated exposure problem, let x1, . . . , xk denote the levels of

k different exposure variables that are highly correlated due to an unmeasured variable or

variables, and let y denote the outcome. Researchers will generally be interested in esti-

mating effect measures β1, . . . , βk for exposures x1, . . . , xk. Hence, a common strategy is to

fit the logistic regression model:

logit{Pr(yi = 1 |xi1, . . . , xik)} = α0 + β1xi1 + . . . + βkxik. (1)

Unfortunately, maximum likelihood estimation of the model in expression (1) can fail to

converge when predictors are highly correlated, and estimated coefficients may be unstable

even when convergence is achieved.3

This problem has led many epidemiologists to fit logistic regression models incorporat-

ing one exposure variable at a time. However, the other exposure variables may be con-

founders and, if so, must be included in order to assess the causal effect of any specific

exposure.4 Another commonly-used strategy is to collapse the specific exposure informa-

tion into summaries, such as a sum across chemicals in a class or an ever/never indicator.

Unfortunately, this strategy results in a loss of information, does not allow inferences on

effects of specific exposures, and can be sensitive to the chosen summary measure.

The problems associated with performing maximum likelihood estimation on corre-

lated data have helped motivate increased use of hierarchical models.5 Ordinary regression

models treat the outcome as a random variable, dependent on parameters. For example, in

expression (1), yi is a random variable that depends on the parameters α0 and β1 . . . βk.

Hierarchical regression extends ordinary regression by also treating parameters as ran-
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dom variables depending on further coefficients through a prior distribution. Estimates

obtained through hierarchical regression are shrinkage estimates in the sense that they are

moved away from the asymptotically unbiased maximum likelihood estimate (MLE) and

toward the center of the prior distribution. Shrinkage estimators are advantageous in two

ways: they often have smaller frequentist mean squared error (MSE) and they represent

incorporation of prior knowledge in the Bayesian sense.6 Such hierarchical models help cir-

cumvent problems associated with MLE. Namely, hierarchical models can estimate effects

with lower MSE, even in the presence of high correlation.3,7

We discuss 4 Bayesian hierarchical models: 2 parametric models (P1 and P2) and 2

semi-parametric models (SP1 and SP2). These 4 models differ in how their prior distribu-

tion is specified. The most common Bayesian hierarchical model found in epidemiologic

research is the semi-Bayes model,5,8–13 which we refer to as model P1 (i.e., the 1st para-

metric model). A typical prior distribution for βj (where j indexes the k coefficients in

expression [1]) is N(µ, φ2), where µ characterizes the investigator’s prior knowledge about

the true value of βj and φ2 is the uncertainty regarding that value. Values for µ and φ2 are

chosen based on substantive knowledge. The amount that the estimated effects are shrunk

away from the MLEs and toward the prior mean is determined by the prior variance, φ2.

A large prior variance indicates greater uncertainty about the effect size and causes less

shrinkage.

Consider a model such as expression (1) in which 20 coefficients are estimated and

each has a N(0, φ2) prior. Prior knowledge may exist about the variability of the esti-

mates, but the data also contain information about that variability, with a simplistic es-

timate being the variance of the 20 MLEs about the prior mean. Model P1 incorporates

prior knowledge by treating φ2 as known, but it ignores information regarding the vari-

ability of the coefficients that is contained in the observed data. Thus, model P1 has fixed
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shrinkage regardless of the support for the prior distribution provided by the data.

Consider, instead, a model that treats these prior parameters as random variables in

turn having their own prior distributions (model P2). Unlike model P1, which has fixed

shrinkage (because φ2 is constant), model P2 estimates φ2 by combining the observed data

with prior knowledge about φ2. This allows the amount of shrinkage to vary depending

on how well the data support the prior distribution. If the data lend some support to the

prior distribution, model P2 can provide greater shrinkage than model P1. If the data lend

little support to the prior distribution, model P2 will result in less shrinkage. In the dis-

cussion so far, all coefficients have been shrunk toward a common mean; however, it is

straightforward to allow coefficients to be grouped into classes with each set of coefficients

shrunk toward separate class-specific means.

Models P1 and P2 have potential disadvantages. A normally distributed prior is com-

monly assumed for historical reasons and computational convenience; however, results may

be sensitive to this assumption. Second, for these methods to shrink estimates towards

multiple prior means, the coefficients must be specified into classes (e.g., if the coefficients

are the effects of different pesticides, they could be classified as fungicides or fumigants to

allow coefficients in those classes to be shrunk toward different means). However, it may

be impossible to specify which effects should be grouped into which classes, or even how

many classes there should be. A method that allows the data to guide the clustering of co-

efficients into classes would be preferable. To accomplish this, we place a Dirichlet process

prior (DPP) on the distribution of the coefficients.14–16 A DPP allows researchers to spec-

ify their prior knowledge as being ”similar” to a known parametric distribution (such as

the normal), while remaining flexible enough to allow for substantial deviations from that

distribution. Additionally, the DPP attempts to cluster coefficients into groups based on

effect size. Coefficients are clustered together probabilistically (soft clustering) rather than
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with certainty (hard clustering) and this feature of DPPs can offer dramatic improvements

in effect estimation. We will refer to this semi-parametric model with DPP priors as model

SP1.

In epidemiologic studies some exposures will typically have virtually no effect, in which

case they cannot confound the effect of any other exposure and we might prefer to exclude

them from the model. Variable-selection techniques in the epidemiologic literature are lim-

ited, generally relying on backward or forward selection strategies that increase the type

I error rate.17–19 However, there has been an increasing focus on variable-selection meth-

ods (implemented through variable-selection priors) in the statistics literature based on the

advent of microarray technology.20,21

To account for the opportunity that some βj = 0 we propose a mixture prior that al-

lows an unknown subset of the predictors to have zero coefficients.22,23 A coefficient is im-

plicitly removed from the model when βj = 0, a probability we estimate by combining our

prior knowledge of a null effect with the observed data. When using a DPP for the coeffi-

cients, the exposures are clustered into groups. By using this mixture prior, we also allow

a cluster of exposures that has coefficients equal to zero. Adopting this prior distribution

in the DPP to perform simultaneous variable selection and clustering has been shown to

have excellent properties.24 We refer to the semi-parametric model with clustering of coef-

ficients at zero as model SP2.

Parametric models

Both parametric models (P1 and P2) have been discussed in much greater detail else-

where.5,6,11,12,25,26 Here, we illustrate some of their properties in the simple setting of an

ordinary linear regression model in which centered covariates xi1 . . . xik are regressed on an

outcome yi. For ease of presentation, we assume the linear model has a known error term,
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σ2, and that the covariates are orthogonal (i.e., they are not correlated); however, the re-

sults are generalizable to non-orthogonal situations.

As mentioned above, model P1 incorporates information on βj through a prior distri-

bution. A typical specification for this model is:

[yi|βj] ∼ N
( k∑

j=1

βjxij, σ
2
)

[βj] ∼ N
(
ηj, φ

2
j

)
(2)

where the prior mean, ηj, incorporates prior evidence regarding the size of the effect for

the jth coefficient and the xij may be standardized so they are all on the same scale. Prior

scientific knowledge may indicate that all coefficients have the same prior distribution,

that some coefficients have one prior distribution while others have a different prior dis-

tribution, or that each coefficient has its own prior distribution. For example, if β1 . . . βk

are the effects of pesticides on retinal degeneration, one could assume that the effects of

all pesticides are the same (eg, they all belong to the same class and have a common prior

distribution), that the effect varies over different functional groups of pesticides (eg, they

could be grouped into classes such as fungicide or fumigant, with each class having a dif-

ferent prior distribution), or that each pesticide has a different prior distribution.2 Indica-

tor variables, zlj, denoting a pesticide class can be introduced into the prior distribution

by allowing ηj =
∑p

l=1 θlzlj. However, these classes need not be mutually exclusive and

more complicated prior specifications can be included where biologically relevant. The

prior variance φ2
j represents the uncertainty that βj = ηj. The prior variance could be

specified from a meta-analysis or could be calculated by choosing a range within which the

researcher believes 95% of effect estimates on this topic would lie. Solving the standard

confidence interval formula for the variance term allows the researcher to specify the prior

variance. The lack of a prior distribution on ηj or φ2
j is the distinguishing feature of model
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P1.

The posterior distribution (i.e., the distribution that results when the prior distribu-

tion for βj is updated with the observed data) for βj is given by:

[βj|Data] ∼ N
(ηj/φ

2
j +

∑
xijyi/σ

2

1/φ2
j +

∑
x2

ij/σ
2

,
1

1/φ2
j +

∑
x2

ij/σ
2

)
(3)

The posterior mean is an average of the prior mean (ηj) and the maximum likelihood es-

timate (
∑

xijyi/
∑

x2
ij), inversely weighted by their respective variances, φ2

j and σ2/
∑

x2
ij.

This is the essence of a shrinkage estimator: the posterior distribution of βj is shrunk to-

wards its prior distribution. As the number of observations increases, the posterior distri-

bution is weighted more heavily toward the observed data. With orthogonal data of mod-

erate size, the observed data will quickly overwhelm anything but the strongest priors (i.e.,

those with very small φ2), and estimates obtained from these parametric Bayesian models

will be similar to the MLE. For concreteness, we generated a small (n=50) dataset with 5

orthogonal covariates, none of which have an effect. We estimate β1 . . . β5 using MLE and

using model P1 in expression 2 with k = 5 and ηj = 0 for all j. Figure 1 shows the result-

ing distribution of the MLE of β1, as well as the Bayesian estimate with φ2
j = 0.5, 1.0, and

2.0. Note that, on average, the MLE will be unbiased but in this single sample the results

are far from the truth. The amount of shrinkage in the hierarchical models is a function of

the prior variance: as the prior variance decreases (representing increasing certainty about

the effect of β), the posterior distribution shrinks toward the prior mean.

Because φ2 is so vital to model P1, it is wise to vary it in sensitivity analyses and see

how estimates change with different plausible values. In Figure 1, for example, φ2 = 1.0

may have been the best guess of the variance of β with sensitivity analyses conducted for

φ2 = 2.0 and φ2 = 0.5. However, although there may be uncertainty regarding the prior

variance (leading to sensitivity analyses), estimates from model P1 cannot account for this

uncertainty.
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Model P2 explicitly accounts for uncertainty in the prior variance by placing a prior

distribution on φ2, resulting in estimates that are averaged over plausible values of φ2. Un-

like the fixed shrinkage of model P1, model P2 adapts the shrinkage of βj based on the ob-

served variability of β1 . . . βk from their prior mean. Additionally, when the prior mean is a

function of covariates (e.g., ηj =
∑

θlzlj), substantive information may exist for the effect

of those variables and a prior distribution can be placed on those parameters. A typical

specification for model P2 is:

[yi|βj] ∼ N
( k∑

j=1

βjxij, σ
2
)

[βj|θ, φ2
j ] ∼ N

( p∑
l=1

θlzlj, φ
2
j

)
[θl] ∼ N(µl, ω

2
l )

[φ2
j ] ∼ IG(α1j, α2j) (4)

Here, θl is the effect of a zlj covariate and its prior mean, µl, is the prior knowledge re-

garding the size of θl’s effect; the prior variance ω2
l represents uncertainty in that effect.

The prior distribution for the φ2
j is chosen as an inverse gamma (IG) distribution with pa-

rameters α1j and α2j. The inverse gamma distribution is a common choice for the prior

distribution of a variance term because of its flexibility and computational convenience.

The prior mean of φ2
j is α2j/(α1j − 1) and its variance is α2

2j/((α1j − 1)2(α1j − 2)). Model

P1 is a special case of model P2 in which the variance of θ and φ2 goes to zero. In choos-

ing values of α1 and α2 for an analysis, we suggest specifying a most likely value of φ2

(call this Eφ2) and a value for the variance of φ (call this Vφ2) such that 95% of the rea-

sonable φ2 values would fall within the 95% confidence interval (CI) for IG(Eφ2 , Vφ2).

Solving the mean and variance equations for α1 and α2 gives: α1 = E2
φ2/Vφ2 + 2 and

α2 = E3
φ2/Vφ2 + Eφ2 . It is useful to plot a large number (n ≈ 10,000) of samples from

the prior to ensure that the shape of distribution conforms to prior knowledge.
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The full conditional posterior distributions for the parameters in model P2, assuming

φ2 is the same for all βj (for simplicity) are:

[βj|Data, σ2
2, θj, φ

2] ∼ N
(∑

l θlzlj/φ
2 +

∑
xijyi/σ

2

1/φ2 +
∑

x2
ij/σ

2
,

1

1/φ2 +
∑

x2
ij/σ

2

)
(5)

[θj|Data, βj, φ
2] ∼ N

(
µl/ω

2
l +

∑
zljβj/φ

2

1/ω2
l +

∑
z2

lj/φ
2

,
1

1/ω2
l +

∑
z2

lj/φ
2

)
(6)

[φ2|Data, βj, θj] ∼ IG
(
α1 + p/2, α2 +

∑
j(βj −

∑
l zljθj)

2

2

)
(7)

The conditional distribution of φ2 in expression (7) is of particular interest. The adaptive

shrinkage properties of model P2 are apparent from the
∑

j(βj −
∑

l zljθj)
2 term, that rep-

resents the variation of the βj from their prior mean. As the variance of the parameters

increases, the mean of φ2 also increases and when the variance decreases, the mean of φ2

decreases. Thus, if the data indicate that our prior specification of φ2 is too small, the pos-

terior mean of φ2 is increased to reflect this. Because φ2 determines the amount of shrink-

age, βj will be shrunk to a lesser extent. The converse is also true; when the data show

little variability of the estimates from the prior mean, the posterior estimate of φ2 will de-

crease and cause greater shrinkage of βj to their prior distribution. This adaptive shrink-

age is a potential improvement over model P1 that has a constant amount of shrinkage,

regardless of the variability of the βj from the prior mean that is observed in the data.

Model P2 also allows inferences to be more data-driven and less sensitive to the prior spec-

ification of µ and φ2.

The distribution of βj in expression (5) is similar to the distribution in expression (3).

However, the distribution from model P1 is conditional on known values, while the dis-

tribution from model P2 is conditional on random variables (φ2 and θj). To average the

distribution of βj over these random variables, we use Gibbs sampling (a type of Markov

Chain Monte Carlo) that proceeds by iteratively drawing parameter values from the full

conditional distributions in expressions (5), (6) and (7), given the value of the other ran-
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dom variables from the previous steps of the Gibbs sampler.27,28 After running the Gibbs

sampler for a large number of iterations and discarding some initial number of iterations

to allow for a burn-in period, the mean and variance of βj in the remaining samples are

the mean and variance of the marginal posterior distribution of interest. For more infor-

mation regarding burn-in period and convergence, consult Gelman et al.29 We also note

that these algorithms (which can be implemented in programs such as WinBUGS [MRC

Bisotatistics Unit, Cambridge, UK]) generate the exact posterior distribution of the coeffi-

cients that is useful in small datasets. This result is an improvement over previous meth-

ods proposed for fitting model P1 that rely on asymptotic approximations.30

We analyze, under model P2, the dataset we previously examined for the model P1.

The prior mean for all βj is zero and the parameters for the prior variance, φ2, are α1 = 1

and α2 = 1. We ran a Gibbs sampling algorithm for 50000 iterations and excluded the first

5000 iterations as a burn-in period. The marginal posterior distributions of β1 and φ2 are

presented in Figure 2. The mean of β1 = −0.51, which is between the mean of the esti-

mates from model P1 under the assumption of a fixed φ2 = 1 (β1 = −0.56) and φ2 = .5

(β1 = −0.43). Although the mean of the prior variance was 1 in the model P2, β1 . . . β5

exhibited less variability than the prior indicated, and the posterior mean of φ2 (0.87) de-

creased to reflect this additional information. Thus, by incorporating information on φ2

that is contained in the data, we adaptively allow greater shrinkage of β1 towards its prior

mean.

Although we have focused on linear regression with orthogonal data, the results can

be generalized to correlated predictors and logistic regression. It is only for computational

convenience that we have focused on linear models here. We implement logistic hierarchi-

cal models in simulations and the applied example presented later in this paper.
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Semi-parametric models

As we demonstrate (Appendix I, available with the online version of this article), mod-

els P1 and P2 can offer a distinct improvement over MLE. However, results of these mod-

els may be sensitive to the assumed prior distribution of βj and a non-parametric prior

may be preferable. Further, when sufficient prior information exists, coefficients may be

grouped into classes by incorporating second level coefficients; however, in many epidemi-

ologic applications such prior knowledge may not exist. Instead, we explore a procedure

that allows coefficients to be grouped into clusters based on similarity of effect sizes before

shrinking them toward a prior distribution.

In Bayesian non-parametric inference, a common method to limit the dependence of a

parameter on a prior distribution is to let the prior distribution be random. In the previ-

ous section we assumed βj ∼ N(µ, φ2). Instead, we could specify βj ∼ D, where D is a

random distribution. Because D is random, we place a prior distribution on it; in this case

we choose a Dirichlet process prior, D ∼ DPP (λD0), where D0 is the base distribution

(such as a normal distribution) and λ is a precision parameter determining how closely D

follows D0. As λ increases, D converges to D0, and the non-parametric approach reduces

to the parametric models of the previous section. Smaller values of λ indicate less cer-

tainty that βj ∼ D0. Figure 3 presents two realizations of DPP (λD0) with D0 ≡ N(0, 1)

and λ equal to either 1 or 100. The larger value of λ yields a distribution that resembles

the base distribution, while the sample with λ = 1 shows no similarity to the D0.

A feature of the two distributions shown in Figure 3 is their discrete nature. Rather

than being continuous, like the base distribution, a draw from a DPP is discrete, imply-

ing that any 2 (or more) coefficients have a nonzero probability of being clustered together

and having the same effect size. The scale of the predictor may be important, and the pre-

dictors could potentially be rescaled to allow greater similarity among coefficients. The
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clustering feature can be seen more clearly through the (identical) representation of the

DPP as a mixture distribution: βj ∼ w0D0 + w1
∑

i6=j δβi
, where w0 and w1 are weights de-

termined by λ. The term δβi
indicates that, with probability w1, βj is clustered with coef-

ficient βi. The posterior probability of clustering coefficients depends on λ (smaller values

of λ favor clustering) and the similarity of the magnitude of those coefficients (increased

similarity favors clustering).

Consider two predictors, xim and xin, with effects βm and βn which follow some un-

known distribution D that is assigned a DPP. This model estimates, based on prior knowl-

edge and information in the data, a probability pmn that βm = βn. In the extreme (and

unlikely) case where pmn = 1, coefficients xim and xin are estimating parameters with the

same value (βm = βn). That is, the data contain twice as much information regarding the

common effect, resulting in more precise effect estimates as well as less shrinkage toward

the prior distribution. At the other extreme, if pmn = 0, the two coefficients do not aid in

each other’s estimation. More commonly, pmn will be between 0 and 1, allowing βm and βn

to add some information to one another’s estimation. This will result in different posterior

distributions for the two coefficients, that can have lower MSE than model P1 or P2 (see

Appendix I). In the sense that model P1 allowed for constant shrinkage of all coefficients

toward the prior mean, and model P2 allowed for adaptive shrinkage of all coefficients to-

ward the prior mean, the semi-parametric models (SP1 and SP2) allow individual coeffi-

cients to be adaptively shrunk toward the prior mean to different extents. The more likely

coefficients are to be clustered together, the more information there is in the data regard-

ing their common effect, and the less impact the prior specification will have.

This model is semi-parametric because the distribution of the outcome, yi, is paramet-

ric, while the distribution of βj is non-parametric. The first semi-parametric model (SP1)
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is an extension of model P2 and can be specified as:

yi ∼ N(
k∑

j=1

βjxij, σ
2)

βj ∼ D

D ∼ DP (λD0)

D0 ≡ N(µ, φ2)

λ ∼ G(a, b)

φ2 ∼ IG(α1, α2), (8)

where G is a gamma distribution with mean ab and variance ab2. Placing a prior distri-

bution on the precision parameter, λ, serves the same function as placing a parameter on

φ2 in model P1; it allows the data to help guide inference rather than relying solely on

prior knowledge. Generally, relatively noninformative values are chosen for a and b, such

as a = 1, b = 1 or a = 0.1, b = 0.1. However, empirical Bayes methods are available to esti-

mate this parameter as well.31 As with the model P2, estimating these parameters requires

a Gibbs sampling algorithm.32,33

In many instances it may be useful to exclude variables that have no effect on the

outcome or there may be prior substantive knowledge that the exposure has no effect.

In either case, modification of the base distribution D0 in expression 8 allows a variable-

selection prior distribution to be incorporated in a DPP model. Following the approach of

Dunson et al.,34 we specify a second semi-parametic model (SP2):

yi ∼ N(
k∑

j=1

βjxij, σ
2)

βj ∼ D

D ∼ DP (λD0)

D0 ≡ πδ0 + (1− π)N(µ, φ2)
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λ ∼ G(a, b)

π ∼ beta(c, d)

φ2 ∼ IG(α1, α2) (9)

where δ0 indicates a point mass at the value 0. The base distribution has a value of 0 with

probability π, and distribution N(µ, φ2) with probability 1 − π. This simple modification

to the base distribution allows βj to be equal to 0, in which case it is effectively removed

from the model. This exclusion can help increase the precision of estimates, particularly

in the presence of highly correlated variables or in small datasets. An important feature of

allowing coefficients to be equal to 0 is that it allows for easy testing of a point hypothesis,

such as βj = 0. For instance, if a Gibbs sampling algorithm is run for R iterations and

βj = 0 for r of those iterations, the posterior probability that βj = 0 is r/R.

When π = 0, model SP2 reduces to the model SP1. The coefficient π is given a beta(c, d)

distribution in order to allow the data to inform the probability that a coefficient is zero.

Elicitation of c and d can proceed by specifying the expected probability, Eπ, that a ran-

domly selected coefficient is 0 and the variance surrounding that estimate, Vπ. Solving the

equations for the mean and variance of the beta distribution:

c =
E2

π − E3
π

Vπ

− Eπ

d =
Eπ(Eπ − 1)2

Vπ

+ Eπ − 1.

Example: Application to Study of Pesticides and Retinal Degeneration

The Agricultural Health Study, which enrolled farmers who applied for pesticide li-

censes in Iowa or North Carolina between 1993 and 1997, has been described in more de-

tail elsewhere.1 Kirrane et al.2 recently examined the association between pesticide expo-

sure and retinal degeneration among the farmers wives. Wives filled out a questionnaire

15



with information on their medical and pesticide history. We analyzed the same data used

by Kirrane et al. in their analysis (31,173 women, 281 of whom experienced retinal degen-

eration), but we limit our analysis to herbicides, of which there are 18 unique chemicals.

These 18 chemicals exhibited a wide range of correlation, from 0.06 to 0.58. Table 2 shows

the 4 hierarchical models used to analyze the data. Prior parameter values are based on

prior knowledge and are similar to those used in Kirrane et al. There is little evidence

of an effect of herbicides on retinal degeneration, so we center our prior distributions at

OR=1.0. Gibbs sampling algorithms were programmed in Matlab (The Mathworks, Nat-

ick, MA) and run for 60,000 iterations, with the initial 5,000 excluded as a burn-in period.

To help illustrate the four hierarchical models, we present representations of the prior

distributions for the effect of the herbicide imazethapyr (β1) in Figure 4. Since the prior

distributions for models P2, SP1 and SP2 depend on random variables, we evaluate their

prior distributions at the posterior mean of all other random variables (φ2 for model P2;

φ2, λ, and β2 . . . β18 for model SP1; φ2, λ, β2 . . . β18, and π for model SP2). The prior dis-

tribution for model P1 is determined by our belief that herbicides most likely have no ef-

fect on retinal degeneration (exp(µ)=1.0) but that we are 95% certain the effect lies be-

tween approximately OR=0.3 and OR=3.1 (φ2 = 0.35). The prior distribution for β1 in

model P2 is more complicated since φ2 is random. We observe little variability of the her-

bicide’s effects about the prior mean, leading to a smaller posterior estimate of φ2 = 0.11.

Thus the prior distribution for β1 evaluated at φ2 = 0.11 is more concentrated around the

null, leading to greater shrinkage of effects toward the prior mean. As indicated earlier,

the prior distribution for model SP1 is a mixture of a normal distribution, with a mean

OR=1.0 and posterior estimate of φ2 = 0.17, and a set of point masses at the posterior

estimates of β2 . . . β18. The mean posterior value of λ = 1.8 indicates that the data pro-

vide somewhat more evidence in favor of normally distributed effects than indicated by the
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prior; this value implies that with probability 0.1, β1 is distributed according to N(0, 0.17),

and with probability 0.9, β1 is assigned the value of one of the other coefficients, β2 . . . β18.

The prior distribution for model SP2 is similar to model SP1, except for a large point

mass at 0. The posterior mean of π = 0.68 and λ = 1.5 imply that β1 is distributed ac-

cording to N(0, 0.18) with probability 0.03 or set equal to one of β2 . . . β18 with probability

0.29 or set equal to 0 with probability 0.68.

The results of the models are presented in Table 3. Figure 5 shows the posterior distri-

bution of the effect of imazethapyr from the four hierarchical models. Model P1 estimated

an effect of imazethapyr that was no longer statistically significant but still markedly el-

evated (OR=1.7; 95% CI= 0.8-3.6). Models P2, SP1, and SP2 were all largely in agree-

ment, indicating little evidence of effect of imazethapyr on retinal degeneration. The dis-

tribution of β1 estimated through model SP2 is of particular interest. The large spike ob-

served at 0 is the posterior probability that β1 = 0 (p=0.63). Also of interest in the poste-

rior distribution from model SP2 is the fact that the most likely non-null effect is virtually

null, leading us to suspect this variable may have no association with retinal degeneration.

Discussion

Although highly correlated data are common in epidemiology, standard analyses can

produce extremely imprecise confidence intervals or fail to converge altogether. We exam-

ined four Bayesian hierarchical models that perform well in this context. These models

may have broad use in other areas, as well, such as in estimating models with a large num-

ber of predictors.

When deciding which of the four models to use in an analysis, consideration should

be given to the properties of each model as well as the computational skill required to im-

plement them. The two parametric models (P1 and P2) are the easiest computationally.

17



Either model can be implemented in WinBUGS, using the code we provide in Appendix

II. The advantages of model P2 may justify its use in preference to model P1. Model P1

assumes a fixed prior variance, while model P2 updates the prior variance based on the ob-

served data. This ”Bayesian learning” allows for adaptive shrinkage and makes estimates

more data-driven and less sensitive to prior specification. However, as the sample size in-

creases, the difference between model; P1 and P2 (and ML) tends to decrease.

Although more computationally intensive than the parametric models, the two semi-

parametric models presented here have very desirable properties in many situations. These

models may be particularly useful when the researcher is unaware how to group coeffi-

cients. When some coefficients have similar true values, the semiparametric models can

decrease MSE by aggregating data within clusters. Indeed, even if the true values of the

coefficients are not exactly identical, ”soft clustering” can still reduce MSE (see Appendix

I). However, as the probability of clustering coefficients increases, models SP1 and SP2 can

perform remarkably well. The decision whether to implement model SP1 or SP2 should

be made on substantive grounds. When researchers have a high prior probability that

many of the effects in question may be zero, the selection prior in model SP2 can help es-

timation. Model SP2 may be particularly useful in situations where hypothesis testing is

required. However, when the true value of most coefficients is zero and only a few coeffi-

cients are non-zero (but still close to zero), model SP2 performs slightly worse than model

SP1.

In summary, the challenges of analyzing highly correlated data can be greatly dimin-

ished using the Bayesian framework. The 2 parametric and 2 semiparametric models we

examine in this paper provide useful alternatives to current maximum likelihood tech-

niques. The choice of model should be guided by careful thought regarding the likely mag-

nitude of effects, as well as whether many effects of similar sizes may be seen.
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∗ All models adjusted for state and age.

OR is odds ratio; CI stands for ”confidence interval” for maximum likelihood and ”credi-

ble interval” for Bayesian models; MLE is maximum likelihood estimate; 2,4,5-TP is 2,4,5-

trichlorophenoxypropionic acid; 2,4,5-T is 2,4,5-trichlorophenoxyacetic acid; 2,4-D is 2,4-

dichlorophenoxyacetic acid; EPTC is S-ethyl dipropylthiocarbamate
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Figure 1: Estimates of β1 obtained from maximum likelihood estimation and model P1

with prior variance of φ2
j = 2, 1, 0.5. Data are a random sample with true β1 = 0, n=50.

Solid line indicates distribution of ML estimator; dashed line, distribution of β1 with φ2
j =

2; dotted line, distribution of β1 with φ2
j = 1; dash-dot line, distribution of β1 with φ2

j =

0.5; and vertical line, true value (β1 = 0).
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Figure 2: Histogram of 45,000 draws from the posterior distributions of β1 and φ2 in model

P2 (µ = 0, α1 = 1 and α2 = 1).
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Figure 3: Two simulations from DPP (λD0) with λ = 1 (left) and λ = 100 (right). D0 ≡

N(0, 1).
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Figure 4: Prior distributions for the effect of imazethapyr, using the four hierarchical mod-

els applied to the Agricultural Health Study data, evaluated at the mean posterior of all

other random variables.
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Figure 5: Posterior distributions for the effect of imazethapyr, using the four hierarchical

models applied to the Agricultural Health Study data. Solid line indicates SP2; dotted

line, SP1; dashed line, P2; dash-dot line, P1.

36


