NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl's home page > gfdl on-line bibliography > 2004: Journal of the Atmospheric Sciences, 60(17), 2136-2152

Barotropic instability and equatorial superrotation

Williams, G. P., 2003: Barotropic instability and equatorial superrotation. Journal of the Atmospheric Sciences, 60(17), 2136-2152.
Abstract: Baroclinically unstable zones in midlatitudes normally produce medium-scale planetary waves that propagate toward the equator where they generate easterlies while transferring westerly momentum poleward, so that the jet lies in higher latitudes than in the corresponding axisymmetric (eddy-free) state. When the baroclinically unstable zone is moved into low latitudes, however, the equatorward side of the jet can also produce a barotropic instability whose large-scale eddies lead to a strong superrotating westerly current at the equator; the jet remains close to its axisymmetric location. For the earth, the transition between these two regimes occurs when the jet lies close to 30°, according to calculations with a global, multilevel, spectral, primitive equation model that examines superrotating flows for a wide range of rotation rates. The existence of a stable superrotating regime implies that an alternative climate could occur, but only under novel conditions.
smaller bigger reset
last modified: March 23 2004.