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PREFACE

This report, one of a series of community profiles produced by the Fish and
Wildlife Service, synthesizes scientific literature and data on the eelgrass
community of the Atlantic coast from North Carolina to Nova Scotia. It is one
of several profiles in the series to deal with seagrass communities and
complements a published profile on the seagrasses of South Florida
(FWS/0BS-82/25) and profiles being prepared on seagrasses of the Pacific
Northwest and the northeast Gulf of Mexico.

Eelgrass, Zostera marina, dominates the ecologically important but fragile
seagrass communities along the east coast of the United States from North
Carolina to Nova Scotia. Grasslike leaves and an extensive root and rhizome
system enable eelgrass to exist in a shallow aquatic environment subject to
waves, tides, and shifting sediments.

Eelgrass meadows are highly productive, frequently rivaling agricultural
croplands. They provide shelter and a rich variety of primary and secondary
food resources and form a nursery habitat for the 1life history stages of
numerous fishery organisms. The leaves absorb and release nutrients; provide
surfaces for attachment; reduce water current velocity, turbulence, and scour;
and promote accumulation of detritus. Rhizomes provide protection for benthic
infauna and enhance sediment stability. Roots absorb and release nutrients to
interstitial waters.

Because of their shallow, subtidal existence, seagrasses are susceptible to
perturbations of both the water column and sediments. Eelgrass meadows are
jmpacted by dredging and filling, some commercial fishery harvest techniques,
modification of normal temperature and salinity regimes, and addition of
chemical wastes. Techniques have been developed to successfully restore
eelgrass habitats, but a holistic approach to planning research and
environmentally related decisions is needed to avoid cumulative environmental
impacts on these vital nursery areas.

Questions or comments concerning this publication or others in the profile
series should be directed to the following address.

Information Transfer Specialist
National Coastal Ecosystems Team
U.S. Fish and Wildlife Service
NASA S1idell Computer Complex
1010 Gause Boulevard

Slidell, LA 70458
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CHAPTER 1
INTRODUCTION

1.1 TAXONOMIC POSITION AND ADAPTATIONS OF
SEAGRASSES TO A SHALLOW MARINE EXIST-
ENCE

Two families, 12 genera, and 47 spe-
cies of monocotyledonous angiosperms have
successfully returned to the sea to lead
an almost totally submerged existence.
These submerged flowering plants, which

complete their entire 1life cycle in
seawater, -exhibit both vegetative and
sexual reproduction. Their ability to

flourish, function successfully, and com-
pete with other plants in the shallow
marine environment is manifested in their

widespread distribution throughout the
world (Figure 1). In fact, there are few
parts of the world's shallow coastal zone
where one or more species of submerged
aquatic angiosperms does not grow (den
Hartog 1970). In addition to the true
seagrasses, other submerged angiosperms
have adapted to saline conditions, exhi-
biting wide salinity ranges and often
coexisting with seagrass species in
estuarine environments.

Qur subject species, Zostera marina L.,
or eelgrass,
two morphological

and other seagrasses possess
adaptations that are

Figure I:

Major geographic -distributions of genera of seagrasses:

Zostera { \\\ },

Posidonia (&%), Thalassia and Halophila (), Cymodocea (2ZZ), and mixed Syringodium,

Thalassia, Enhalus, Halodule, or Cymodocea (.

(Modified from Thayer et al. 1979.)



unique for submerged marine plants and
that enable them to exist in an aquatic
environment subject to wave and tidal
action and shifting sediments. These
features are linear, grass-like Tleaves
(Figure 2) and an extensive root and rhi-
zome system (Figure 3). In common with
their terrestrial relatives, seagrasses
also have a functional vascular system.

The leaves of most submerged aquatic
plants possess adaptations to facilitate
light penetration, diffusion of gases, and
buoyancy. The leaves and stems of most
species generally are thin, have an exten-
sive system of lacunal air spaces, and
possess reduced structural tissue (Figure
4). Diffusion of gases and nutrients is
enhanced by thin cellulose walls of epi-
dermal, mesophyll, and cortical cells.

Although chloroplasts exist throughout the
undifferentiated jeaf mesophyll and outer
cortex of the stem, the epidermal layer of
seagrass leaves, like that of many shade-
adapted terrestrial plants, possesses high
concentrations of chloroplasts and is the
principal site of photosynthesis
(Sculthorpe 1967). This pigment distribu-
tion is important to the ability of these
plants to grow and survive in turbid
coastal estuaries characteristic of tem-
perate areas.

The primary functions of the extensive
root-rhizome system of seagrasses are to
anchor the plant and to absorb nutrients
from interstitial waters of the sediment.
Longitudinal sclerenchyma and collenchyma
fiber bundles throughout the inner and
outer cortex (Figure 5) provide both

Figure 2.

Zostera marina leaves.




mechanical support and absorptive tissues.
The lacunal system ot the roois and vhi-
zomes are continuous with that of the stem
and leaves. Numerous investigators have
shown opposing gradients in oxygen and
carbon dioxide concentrations in submerged
angiosperms, with oxygen decreasing from
the leaves to the roots. This observation
suggests that the root-rhizome system

derives 1its oxygen supply from photo-
synthetic activity of the leaves and
stems, the gas diffusing to the roots

through the lacunar system of the piant
(Penhale and Wetzel 1983). The extensive
nature of this lacunar system permits sub-
merged seagrasses to anchor oxygen-
requiring roots 1in anaerobic sediments.

root-rhizome

Zostera marina

Figure 3.
complex.

ZOSTERA

Drawing of a transverse section

Figure 4. i
through an eelgrass Teaf (A} and details
of the mid-vein (B) and mesophyll (C}.
(Redrawn from Tomlinson 1980.)

Partly because of these features of the
root-rhizome complex, seagrasses have been
able to colonize successfully in aimost
Tiquid mud (Ruppia maritima and lostera
marina) and in rocky intertidal areas
(PhyTTospadix sp.).

1.2 SEAGRASSES OF THE TEMPERATE ATLANTIC
COASTAL ZONE OF THE UNITED STATES

Apart from the naturalists' obser-
vations and concerns voiced during the
"wasting disease" episode early this cen-
tury (see Section 1.3), few research
papers on the ecology of temperate

seagrasses are dated prior to 1970. With

the promulgation of  NEPA  (National
Environmental Policy Act) in 1969, the
impetus to study eelgrass systems in

Figure 5. Longitudinal sections of eel-
gréss root (left) and corresponding cross-
sectional views {right}. Letters qefeﬁ ;o
relative distance from root Tip tAk.
(Redrawn from Conover 1964.)




.esponse  to  suspected environmental
impacts was established. The establish-
ment of NEPA was coincident with the

period of  vigorous repopulation by
eelgrass after the “wasting disease"
(Section 1.3).  Widespread, system-level
research began only after the U.S.

Government began to show interest in the
seagrass system through National Science
Foundation grants in the 1970's. Qur com-
munity profile focuses on seagrass eco-
systems dominated by eelgrass, Zostera
marina L., along the temperate Atlantic
coast of North America. Two other spe-
cies, Halodule wrightii Ascherson (Cuban
shoalgrass) and Ruppia maritima L.
(widgeon grass), also occur along this
coastline and are discussed briefly.

To the casual observer there is little
morphological difference between the three
species. In fact, prior to the mid-
seventies there were few reports of the
occurrence of Halodule in North Carolina,
where it now occurs in considerable abun-
dance. This species may have been present
and mistakenly recorded as a narrow form
of Zostera or Ruppia. The astute
observer, however, readily distinguishes
the three species by 1leaf morphology
(Figure 6) and rhizome coloration. The
width of eelgrass leaves normally is 1.5

to 3.0 mm (although there are ecological

variants) while the width of shoalgrass

Ruppia

L]
Zostera
TR
. Halodule ‘

1C™m
Figure 6.  Sketches of Zostera, Halodule, -
and Ruppia Teaf tips showing the major

differences among these genera.

and widgeon grass leaves range from 0.3 to
1.0 mm. The leaf tip is rounded in
eelgrass, lancelate in widgeon grass, and
bicuspidate in shoalgrass. Finally, the
living rhizome is brown in Zostera but is
lighter colored for both other species.

Geographic Data Sources/Physical

Boundaries

The overall range of eelgrass along
the North American east coast is from
approximately 33° to 65° N latitude, a
distance of about 3,090 km. For our pur-
poses, the range of eelgrass along the
east coast may be represented by (1) Nova
Scotia to the U.S./Canadian border, (2)
the U.S./Canadian border to the Hudson
River, (3) the Hudson River to the
Virginia~North Carolina border, but pri-
marily the enclosed waters of the New
Jersey Barrier IsTands and Chesapeake Bay,
and (4) the Carolinas, especially the
sounds and bays landward of the Outer
Banks (Figure 7).

Throughout this range, eelgrass is the
dominant species of submerged aquatic
marine vegetation. This species success-
fully inhabits areas that have sediments
ranging from soft mud to coarse sand
substrates, average salinities of 10% to
30 o/oo, and 2 water temperature range
from less than 0°C to greater than 30°C.
On the east coast of the United States
alone, annual mean temperatures from north
to south range from 7,2° to 17.6°C. The
average minimum temperature at the
northern extent of the range of eelgrass
may be -11.3°C, while the average maximum
temperature at the southern limit may be
31.6°C. The occurrence of mean winter
temperatures of well below freezing over
much of its distribution means that
eelgrass exists in or under sea ice part
of the year. In the Carolinas, sea ice is
not a regular feature of the eelgrass
environment.

Incoming solar radiation (insolation)
over a 30-year period averaged from 373
langleys (L) m-Z day=1 at the southern end
of eelgrass distyibution in the Carolinas
area to 285 L m “ day - in the New England
area —{75% —of—-the southern -maxima)
(Blodgett 1980). At the northern limit of
eelgrass distribution (circa 65° N 1lat),
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Figure 7. Diagram of the east coast of
Nortn America showing major provinces of
eelgrass occurrence,

insolation values may be as low as 15% of
insolation at the southern 1limit of
eelgrass distribution in the Carolinas.

Light availability appears to be the
primary factor limiting both depth and up-
estuary penetration of eelgrass within its
temperature and salinity ranges. Research
on the productivity of eelgrass as a func-
tion of insolation and availability of
photosynthetically active radiation (PAR)
(see Chapter 2), as well as research on
changes
generally support the hypothesis that
light availability, which is a function of

in—standing crops of eeligrass;-

insolation and water clarity, is a primary
limiting factor. For example, Backman and
Barilotti (1976) reduced ambient light for
9 months by 63% and eelgrass densities
relative to controls were reduced by 95%.
Nienhuis and deBree (1977) reported an
increase in both eelgrass density and
depth distribution when a Netherlands
estuarine system was closed off from the
sea. They suggested that this was the
result of increases in overall water
transparency.

The depth distribution of eelgrass on
the east coast also has a range propor-
tional to tidal ranges characteristic of
individual geographic regions. Davies
(1964) and Hayes (1975) used tidal ranges
to characterize coastal morphologies, and
recognized three distinctive types of
coastline on the east coast on the basis
of tidal ranges and associated morphologi-
cal features (Figure 8). Tidal amplitude
ranges from. about 1 m at the southern
boundary of eelgrass distribution up to 8
m in the Canadian Maritimes. Although
local variations in coastal geomorphology
may cause tidal amplitudes greater than
those found farther north, the overall
gradient is one of increasing tidal ampli-
tude from south to north, From the
Carolinas to the midway point of area 3
(Figure 7), the coastline generally is a
microtidal region (Figure 8). In the
upper portion of area 3 (New Jersey outer
banks and generally north of Delaware Bay)
up the U.S./Canadian border (area 3), the
tidal range is generally mesotidal.
Northward through Nova Scotia, meso- and
macrotidal systems are interspersed.

Halodule wrightii, shoalgrass, is a
pantropical species (Figure 1) which grows
over a tidal range similar to that for
eelgrass, except that shoalgrass com-
munities extend into the upper intertidal
zone and frequently are exposed at low
tide. In North America, shoalgrass occurs
throughout the Gulf of Mexico and north
from the Atlantic coast of Florida to
North Carolina. In North Carolina,
shoalgrass occurs in areas similar to
eelgrass, but it dominates in late summer
and early fall whereas eelgrass dominates
in winter to early summer (Kenworthy
1981). - Shoalgrass reportedly is the most
tolerant of all the seagrasses to tem-
perature and salinity variations (McMillan
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Figure 8. Variations of morphology of coastal-plain shorelines with respect to

differences in tidal ranges.

and Moseley 1967). Since it is one of the
few seagrasses that can tolerate extended
exposure to air at low tides, shoalgrass
frequently occurs in shallow. waters on
spoil banks and nearshore areas. Trocine
et al. (1981) have shown that Halodule has
greater tolerance to UV-B radiation be-
tween 290 and 320 nannometers than several
other species, and this capability may
allow the species to exist intertidally.

Ruppia maritima, widgeon grass, is the
third species present in the geographic
area this profile addresses. Widgeon
grass is not considered a true seagrass
but a freshwater angiosperm that has a
pronocunced - salinity tolerance (Zieman
1982). This species is both eurythermal
and euryhaline and is able to successfully
complete its life cycle over a salinity
range of 0-45 o/oo (Phillips 1974b). Like
eelgrass, widgeon grass depth distribution
appears limited by available light.
Congdon and McComb (1979) noted that in an
Australian estuary reduction of ambient
light levels resulted in a reduction of

Ruppia biomass.

Except in North Carolina where the
three species co-occur, seagrass com-

(Redrawn from Hayes 1975.)

munities are composed of eelgrass and
widgeon grass, usually in pure stands or
occasionally in mixed stands. Throughout
its temperate range on the Atlantic coast,
widgeon grass grows almost exclusively in
brackish water and trequently in low sa-
linity pools in salt marshes. Eelgrass,
on the other hand, dominates the mid- to
high-salinity ranges. In upper Chesapeake
Bay, Anderson (1970) noted that where
widgeon grass and eelgrass are dominant
they grow in mutually exciusive popula-
tions, although more recently Boynton and
Heck (1982), reported occurrence of mixed
beds. Mixed meadows with distinct zona-
tion patterns are characteristic of the
lower Chesapeake Bay (Penhale and Wetzel
1983).

In North Carolina one can find. rela-
tively pure stands of seagrasses as well
as extensive meadows composed of both
eelgrass and shoalgrass (Kenworthy 1981)
and occasionally of all three species.
Eelgrass is dominant in winter and early

summer.-and. shoalgrass is dominant in late

summer and fall. Because of this bimodal
seasonal distribution of dominance, the
coexistence of both species in a mixed




stand provides a continuous cover of vege~
tation throughout most of the year.

1.3 EELGRASS "WASTING DISEASE"

The observations of Petersen (1891)
and Ostenfeld (1905) initiated a period of
relatively intense ecological surveys on
eelgrass in Europe, particularly in Danish
waters. In 1918, Petersen summarized the
bulk of the Danish work and synthesized a
trophic model of the Kattegat region of
Denmark based almost exclusively on the
production of eelgrass (little scientific
information was available at that time on
phytoptankton production). His model,
which postulated that cod and plaice were
dependent on the eelgrass community for
food resources, was put to the test in the
1930's during and following a natural
catastrophy to eelgrass populations along
most of the Atlantic coast.

Even with the publication of the
hypothesis of Petersen, very little
research on the ecology of seagrasses was
carried out 1in North America prior to
about 1940. Only after the nearly
catastrophic decline 1in eelgrass stocks
over most of its range along the Atlantic
Ocean in Europe and North America in 1931
and 1932 did eelgrass systems again became
a focus of research. Tutin (1942)
reported that between 1930 and 1933 the
"wasting disease", as it has been termed,
had resulted in the destruction of 90% of
all eelgrass throughout its range in the
Atlantic. Perhaps no one natural event
has centered so much attention on a marine
ecosystem type.

The demise of eelgrass resulted in an
upsurge in scientific research in both
North America and Europe that centered on
diagnostic evaluations of changes in the
piant and on attempts to trace down its
cause. Much of the research was natural
history observations and generally lacked
guantitative information. These obser-
vations, together with studies on the
decline of associated faunal populations,
particularly those related to fisheries,
provoked emotional responses that may even
be heard today. ,

decline
Initially

of the massive
unresolved.

The cause
remains

Labyrinthula macrocystis was suspected as
the causitive agent since it was found
associated with dying eelgrass blades
(Renn 1934 and many others). This orga-
nism originally was considered a slime
mold but is now listed in the phylum
Gymnomyxia, subphylum Labyrinthulina
(Lindsay 1975). Labyrinthula 1is a
saprophyte that apparently penetrates
eelgrass leaves only as the leaves become
moribund (Porter 1967). Further,
Labyrinthuia is found commoniy associated

with healthy stocks of eelgrass (Young

1938; Porter 1967; Phillips 1972).
Bacteria, fungi, commercial harvesting of
fishery organisms, pollution, and com-
peting species have been implicated as
possible causitive agents in the decline,
but they have never been conclusively
shown to have contributed to the "wasti