E907 Momentum Resolution Study Rajendran Raja
 3-Sep-01

Method:-We have generated 1000 120GeV/c pp events using Pythia. For each track, two other tracks were generated the first with 1.1 times the track momentum and the other with 0.9 times the track momentum. These two tracks were used to find two values of the derivative $\mathrm{dx}_{\mathrm{i}} / \mathrm{dp}$ at each chamber, where x_{i} is the x co-ordinate in the $\mathrm{i}^{\text {th }}$ chamber, and p the momentum of the parent track. The two values of $\mathrm{dx}_{\mathrm{i}} / \mathrm{dp}$ were averaged together to get the central $d x_{i} / d p$ at the track. If we assume that all other track quantities are known and we are only determining the momentum resolution of the track, then the error matrix formula simplifies to

$$
1 / \sigma_{\mathrm{p}}^{2}=\Sigma_{\mathrm{i}}\left(\mathrm{dx}_{\mathrm{i}} / \mathrm{dp}\right)^{2} / \sigma_{\mathrm{i}}^{2}
$$

This enables one to determine the fractional momentum resolution σ_{p} / p as a function of momentum track by track. Multiple scattering is included, since Geant generates tracks in the presence of all interactions. (The special cases where the the two "differential tracks" tracks behave differently from the parent track due to Geant interactions and decay need careful treatment and has taken a significant amount of time.). The chamber resolutions σ_{i} are all taken to be 200 microns for this study. The momentum resolution thus obtained is clearly too optimistic, since it does not include the effects of the errors in the direction of the tracks. But this gives us an excellent way of studying the effect of chamber placement without smearing and fitting.

The chamber positions are given in the following table and illustrated in the following figure, which we include for completeness.

[^0]| Object | Z position (cm) |
| :--- | :--- |
| Target | -843.5 |
| Jolly Green Giant | -739.98 |
| Rosy | 12.998 vertical aperture=36" def |
| RICH | 947.7 |
| Chamber 1 | -552.9 |
| Chamber 2 | -487.3 |
| Chamber 3 | -290.5 |
| Chamber 4 | -241.3 |
| Chamber 5 | -192.1 |
| Chamber 6 | -142.9 |
| Chamber 7 | 168.7 |
| Chamber 8 | 217.9 |
| Chamber 9 | 267.1 |
| Chamber 10 | 316.3 |
| Chamber 11 | 1529.9 |
| Chamber 12 | 1579.1 |

The following picture shows the experiment cut along a vertical
$\mathrm{X}=0$

The following figures contain the fractional momentum resolution as a function of momentum for the 12 chambers. A track is plotted as being associated with a particular chamber if that is the last chamber hit by the track. The figures marked (a) are for ROSY field +1.2 Tesla, (b) for +0.6 Tesla (c) for -0.6 Tesla and (d) for -1.2 Tesla. Clearly no difference is expected between the cases (a), (b),(c) and (d) for chambers upstream of ROSY, that is Chambers 1-6. It can be seen that the fractional resolution improves as more chambers come into play. TPC hits are included in all these plots. TPC is treated as 128 chambers in exactly the same way as the other chambers. The vertex z position of all tracks is constrained to smaller than -840 cm to avoid particles that start in the middle of the TPC from strange particle decays.

| Chamber | Rosy+1.2T | Rosy+0.6T | Rosy-0.6T |
| ---: | ---: | ---: | ---: | Rosy-1.2T

Cutting on Momentum resolution

In order to determine the aperture needed by chambers at particular positions, we employ the following technique. Let us say that a track passes through k chambers before exiting. Then for each chamber $\mathrm{i}, \mathrm{i}=1, \mathrm{k}$, we associate a quantity called the fractional resolution f_{i} where f_{i} is defined as the resolution that would be obtained by all chambers preceding chamber i (including the TPC, but not including i) expressed as a fraction of the resolution obtained by all chambers including the last chamber k .
i.e.
$\mathrm{f}_{\mathrm{i}}=($ resolution of track using all chambers $1-\mathrm{k}) /$ (resolution of track using chambers TPC to chamber i-1)

We then plot the x and y position of hits in each chamber for all tracks and compare it with xy plots where the track is not plotted in chamber m if f_{m} is greater than a cut off (0.5). This means that the $\mathrm{m}^{\text {th }}$ chamber and the following chambers will add less than 50% more resolution for this track. 50% is a harsh cut and we will want to optimize this further and increase it to say 70% or so. So for each chamber we get two plots. The overall xy distribution and the truncated xy distribution. The truncated xy distribution gives the chamber size at that point.

The following figures give such distributions for all chambers for Rosy fields +1.2 T and for chambers 7-12 (downstream of ROSY) for ROSY fields $+0.6 \mathrm{~T},-0.6 \mathrm{~T}$ and -1.2 T .

This is followed by a spreadsheet of available chambers.

$$
\text { 2001/09/03 } 17.11
$$

$$
\text { 2001/09/03 } 17.12
$$

Fermilab Chamber Spread Sheet

$\frac{\text { experiment }}{\text { E687 (Focus) }}$		chamber name	x -aperture (cm)	y -aperture (cm)	anode spacing (mm)	anode-to-cathode spacing (mm)	\#planes		\#wires	plane orientation	angles (to local vertical)
		Type 1(P0, P3)	76.2	127	2.032	5.969		4		$2296 \mathrm{x}-\mathrm{y}$-u-v	0,90, 101.3, 888.7
		P4'	101.6	152.4				3		1372 x -u-v	0,101.3,88.7
		Type II (P1, P2, P4)	152.4	228.6	3.048	6.096		4		2944 x-y-u-v	0,90, 101.3, 88.7
E690	MWC	Chamber 1	76.2	45.72	1.984375	3.2512		4		$1536 \mathrm{st-t-v}$	-21.7.7.7.93,77.93,+21.6'
		Chamber 2	91.44	60.96	1.984375	3.2512		4		1920 st-tu-v	-21.7.7.7.93,77.93,+21.6'
		Chamber 3	152.4	101.6	3.175	3.2512		4		$1920 \mathrm{st-t-v}$	-21.7.-7.93, $7.93,+21.6{ }^{\prime}$
		Chamber 4	152.4	101.6	3.175	3.2512		4		$1920 \mathrm{st-tu-v}$	-21.7.7.7.93,77.93,+21.6'
		Chamber 5	152.4	101.6	3.175	3.2512		4		1920 st-tu-v	-21.7.7.7.93, $7.93,+21.6{ }^{\prime}$
		Chamber 6	182.88	121.92	3.4925	3.2512		4		2048 st-u-v	-21.7.7.7.93,77.93,+21.6'
		Beam Chamber 1-1	15.24	10.16	1.016	1.397		4		$640 \mathrm{st-tu-v}$	-21.7.7.7.93,77.93,+21.6'
		Beam Chamber 7-i	38.1	20.32	1.524	1.397		4		$1024 \mathrm{st-u-v}$	-21.7.7.7.93, $7.93,+21.6^{\prime}$
E871(Selex)	MWC	m1_pwc_1	220	220	3					$x-y-v-u$	0,90, +28,-28
	DC	m1_dc1	200	150						x-x	0,0
	mwC	m1_pwc_2	220	220	3					$x-y-v-u$	0,90, +28,-28
	DC	m1_dc2	200	150						x-x	0,0
	mwC	m1_pwc_3	220	220	3					$x-y-v-u$	0,90, +28,-28
	mwc	m2_pwc_1	93	93	2					$x-y$	0,90
	mwC	m2_pwc_2	93	93	2					$x-y$	0,90
	MWC	m2_pwc_3	93	93	2					u-v	+28,-28
	mwc	m2_pwc_4	93	93	2					$y-x$	90,0
	mwC	m2_pwc_5	132	93	2					v-u	$-28,+28$
	mWC	m2_pwc_6	132	93	2					$y-x$	90,0
	MWC	m2_pwc_7	132	93	2					$y-x$	90,0
	MWC	$\mathrm{m}_{3} \mathrm{pwc}^{-1}$	84.2	84.2						v-y-x-u	+28,90,0,-28
	MWC MWC	m3_pwc_2 m3_pwc_3	84.2 135	$\begin{array}{r} 84.2 \\ 109.4 \end{array}$							${ }_{90,0,+28}^{90,0}$
HYPERCP	MWC	C1	45.72	25.4	1.0			4		1408 x-x'u-uv	
	mwc	C2	45.72	25.4	1.0			4		$1408 x-x^{\prime}-u-v$	
	mwc	C3	55.88	30.48	1.25			4		$1408 x-x^{\prime}-u-v$	
	mwc	C4	55.88	30.48	1.25			4		1408 x-x-u-uv	
	mwc	C5	152.4	40.64	1.5			4		$3232 x-x^{\prime}$-uv	
	MWC	C6	152.4	40.64	1.5			4		$3232 x$ x-x'u-v	
	MWC	C7	203.2	55.88	2.0			4		$4000 x-x^{\prime}-u-\mathrm{v}$	
	MWC	C8	203.2	55.88	2.0			4		$4000 x-x^{\prime}-u-v$	
	MWC	C9	203.2	55.88	2.0			4		$4000 x-x^{\prime}$-uve	

[^0]: Geometry used:
 The following table gives the positions of the detectors in E 907 this simulation. The mother volume is called CAVE and is a tube.
 axis along tube axis along the beam direction , y axis is vertic forming a right haadednare system.

